WO2022127493A1 - Dci检测方法及装置、存储介质、用户设备 - Google Patents

Dci检测方法及装置、存储介质、用户设备 Download PDF

Info

Publication number
WO2022127493A1
WO2022127493A1 PCT/CN2021/131139 CN2021131139W WO2022127493A1 WO 2022127493 A1 WO2022127493 A1 WO 2022127493A1 CN 2021131139 W CN2021131139 W CN 2021131139W WO 2022127493 A1 WO2022127493 A1 WO 2022127493A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
drx
cycle
dci
space set
Prior art date
Application number
PCT/CN2021/131139
Other languages
English (en)
French (fr)
Inventor
邓云
赵思聪
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2022127493A1 publication Critical patent/WO2022127493A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • the present invention relates to the technical field of communication processing, and in particular, to a DCI detection method and device, a storage medium, and user equipment.
  • a base station can configure one or more Control Resource Sets (Control Resource Sets) of a User Equipment (User Equipment, UE) on an activated bandwidth (Bandwidth Part, BWP) of a serving cell , CORESET) detects its own downlink control signaling (Downlink Control Information, DCI) according to its own wireless network temporary identifier (Radio Network Temporary Identifier, RNTI).
  • DCI Downlink Control Information
  • RNTI Radio Network Temporary Identifier
  • the base station can configure the UE to detect the search space in one or more CORESETs on the active BWP on the carrier, and the UE can detect the search space according to its own RNTI. It belongs to its own DCI, and then receives or uploads data according to the DCI.
  • a serving cell can be configured with one or more BWPs, and BWPs can be active or inactive. The UE does not need to detect DCI on an inactive BWP.
  • the UE may be configured with one serving cell, or may be configured with multiple serving cells.
  • one or more control resource sets (Control Resource Sets, CORESETs) may be configured according to the BWP, and one or more search space sets (search space sets) may be configured on each CORESET.
  • the network may configure the number of times, aggregation level, DCI format, etc., of the UE to detect DCI in each search space set, as well as the timing of detecting DCI, and the like. The number of times the UE performs different DCI blind checks is closely related to the power consumption of the UE. Therefore, in the New Radio (NR) system, switching the search space set group (Search space set group) of the UE is considered to achieve the purpose of power saving.
  • NR New Radio
  • the network needs to instruct the switching of each search space set group through signaling, which increases signaling overhead and increases the number of times the UE detects DCI, thereby increasing the power consumption of the UE.
  • the technical problem solved by the present invention is how to reduce the power consumption of the user equipment.
  • an embodiment of the present invention provides a DCI detection method.
  • the DCI detection method includes: determining the length type of the current DRX cycle; A search space set corresponding to the current length type is selected from all search space sets corresponding to the BWP; DCI is detected in the selected search space set.
  • the number of search space sets corresponding to the activated BWP is the same as the number of length types of the DRX cycle, and the length types of the current DRX cycle are sorted according to the cycle length of the current DRX cycle in all DRX cycles.
  • selecting a search space set group from all search space sets according to the length type of the current DRX cycle includes: selecting all search space sets according to the detection times of each search space set in each time slot or each span Perform sorting; select a search space set group whose sorting is the same as the sorting of the current DRX cycle in all DRX cycles.
  • the length types of the DRX cycle include DRX long cycle and DRX short cycle
  • the number of search space sets corresponding to the activated BWP is two
  • the length type according to the current DRX cycle is in all search space sets.
  • Selecting a search space set group includes: if the length type of the current DRX cycle is the DRX short cycle, then selecting a search space set with more detection times in each time slot or each span in the two search space set groups Group.
  • the DCI detection method further includes: if scheduling is not obtained within a preset number of DRX short cycles, or scheduling is not obtained within a continuous preset number of DRX short cycles, selecting each of the two search space set groups. Each time slot or the search space group with fewer detection times per span, and continue to detect DCI in the selected search space group.
  • the length types of the DRX cycle include DRX long cycle and DRX short cycle
  • the number of search space sets corresponding to the activated BWP is two
  • the length type according to the current DRX cycle is in all search space sets.
  • Selecting a search space set group includes: if the current DRX cycle is the DRX long cycle, selecting a search space set group with fewer detection times for each time slot or each span in the two search space sets.
  • the length types of the DRX cycle include a DRX long cycle and a DRX short cycle.
  • the DRX short cycle corresponds to two search space set groups, and the length type according to the current DRX cycle is Selecting a search space set among all search space sets includes: selecting a search space set with a larger number of detections in the corresponding two search space sets within an initial preset number of DRX short cycles; No scheduling is obtained within a number of DRX short cycles, or no scheduling is obtained within a preset number of consecutive DRX short cycles, or after the initial preset number of DRX short cycles, each of the corresponding two search space set groups is selected.
  • determining the length type of the current DRX cycle includes: receiving an association relationship between the length type of the DRX cycle sent by the network side and the search space set group; Selecting a search space set among all search space sets corresponding to the BWP includes: selecting a corresponding search space set according to the length type of the current DRX cycle and the association relationship.
  • the detecting the DCI in the selected search space set group includes: detecting the DCI in the activated BWP of the serving cell; or, detecting the DCI in the activated BWP of all the serving cells.
  • the embodiment of the present invention further discloses a DCI detection device, the DCI detection device includes: a cycle type determination module, used to determine the length type of the current DRX cycle; a search space set group selection module, used in the activated BWP of the serving cell, According to the length type of the current DRX cycle, a search space set group corresponding to the current length type is selected from all search space sets corresponding to the activated BWP; the DCI detection module is used to detect DCI in the selected search space set group.
  • the embodiment of the present invention further discloses a storage medium on which a computer program is stored, and when the computer program is run by a processor, the steps of the DCI detection method or the search space set switching method are executed.
  • An embodiment of the present invention further discloses a user equipment, including a memory and a processor, the memory stores a computer program that can be run on the processor, and the processor executes the DCI when the processor runs the computer program The steps of the detection method or the search space set switching method.
  • An embodiment of the present invention further discloses a base station, including a memory and a processor, the memory stores a computer program that can be run on the processor, and the processor executes the search space when the computer program runs. Set switching method steps.
  • the user equipment when detecting DCI, can select a search space set group according to the length type of the current DRX cycle for detecting DCI.
  • the user equipment directly selects the search space set group based on the type of the current DRX cycle, without the need for the network to send signaling for instructions, which can reduce the number of detection signaling, thereby reducing power consumption and achieving further power saving.
  • the technical solution of the present invention does not obtain scheduling within a preset number of DRX short periods, selects a search space set with fewer times of detection in each time slot or each span in the two search space sets, and selects the search space set in the selection
  • the search space set group continues to detect DCI.
  • the user equipment does not obtain scheduling within the preset number of DRX short periods, which means that the scheduling requirement of the user equipment becomes weak. Power consumption of user equipment.
  • FIG. 1 is a flowchart of a DCI detection method according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a DCI detection apparatus according to an embodiment of the present invention.
  • the network needs to instruct the switching of each search space set group through signaling, which increases signaling overhead and increases the number of times the UE detects DCI, thereby increasing the power consumption of the UE.
  • the user equipment when detecting DCI, can select a search space set group according to the length type of the current DRX cycle for detecting DCI.
  • the user equipment directly selects the search space set group based on the length type of the current DRX cycle, without the need for the network to send signaling for instructions, which can reduce the number of detection signaling, thereby reducing power consumption and achieving the purpose of further power saving .
  • the technical solution of the present invention can be applied to 5G (5Generation) communication systems, 4G and 3G communication systems, and various new communication systems in the future, such as 6G and 7G.
  • the technical solution of the present invention is also applicable to different network architectures, including but not limited to relay network architecture, dual link architecture, Vehicle-to-Everything (vehicle-to-anything communication) architecture and other architectures.
  • FIG. 1 is a flowchart of a DCI detection method according to an embodiment of the present invention.
  • the DCI detection method in this embodiment of the present invention may be used on the user equipment side, that is, the user equipment may perform each step of the method shown in FIG. 1 .
  • the DCI detection method may include the following steps:
  • Step S101 determine the length type of the current DRX cycle
  • Step S102 In the activated BWP of the serving cell, according to the length type of the current DRX cycle, a search space set group corresponding to the current length type is selected from all search space set groups corresponding to the activated BWP.
  • Step S103 Detect DCI in the selected search space set.
  • the DCI detection method may be implemented by a software program, and the software program runs in a processor integrated inside a chip or a chip module.
  • the method can also be implemented by combining software with hardware, which is not limited in this application.
  • the UE accesses the serving cell to establish a radio resource control (Radio Resource Control, RRC) connection.
  • RRC Radio Resource Control
  • the network configures discontinuous reception (Discontinuous Reception, DRX) for the UE, and can configure DRX cycles of different lengths.
  • DRX discontinuous Reception
  • the network may also configure multiple search space set groups for the UE. If the UE is configured with multiple serving cells, each serving cell may be configured with multiple search space set groups respectively. For each serving cell, one or more BWPs may be configured, and each BWP may be configured with one or more search space set groups. Each search space set group can contain one or more search space sets. Different serving cells may use respective subcarrier spacings such as 15kHz, 30kHz, or 60kHz. When the UE applies different subcarriers, the number of candidate DCIs that can be detected in a time slot (that is, the number of physical downlink control channel (Physical Downlink Control Channel, PDCCH) blind detection (PDCCH detection, or Blind Detection) times) is different. Taking a serving cell with a subcarrier of 15 kHz as an example, the UE can support a maximum of 44 DCI detection times in one time slot.
  • PDCCH Physical Downlink Control Channel
  • the network can configure the number of times the UE needs to detect DCI, the DCI format, and the timing of detecting DCI, etc.
  • the detection times of the search space set group in each time slot may be the sum of the DCI times that the UE needs to detect in each time slot on all the search space sets included in the search space set group. It should be noted that other time units can be used to count the total number of DCI times that the UE needs to detect. For example, the length of 7 OFDM symbols is used as a span (Span) to count the total number of DCI times that the UE needs to detect.
  • the method described in this patent is also applicable.
  • the duration of the span may also be any other implementable duration, which is not limited in this embodiment of the present invention.
  • one DCI is composed of at least one Control Channel Element (CCE), and the number of CCEs constituting one DCI is called an aggregation level, and the aggregation level can be 1, 2, 4, 8, or 16.
  • CCE is composed of 6 resource element groups (Resource Element Group, REG), wherein each REG refers to a resource block (Resource Block) occupying an Orthogonal Frequency Division Multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol duration, RB), that is, each REG contains 12 consecutive resource elements (Resource Element, RE) in the frequency domain.
  • REG resource element groups
  • OFDM Orthogonal Frequency Division Multiplexing
  • the demodulation reference signal will be included in the 12 REs, there are less than 12 REs in each REG that are actually and effectively used to transmit DCI. The more times the UE needs to detect DCI in a search space set, the greater the power consumption of the UE, which is not conducive to the power saving of the UE.
  • the UE may determine the length type of the current DRX cycle it is currently in, and the length type of the current DRX cycle indicates the relative length of the current DRX cycle and other DRX cycles in all DRX cycles.
  • the lengths of all DRX cycles configured by the network for the UE are different.
  • the network configures two types of DRX cycle lengths for the UE, DRX long cycle (Long DRX) and DRX short cycle (Short DRX), which may also be referred to as long DRX cycle and short DRX cycle.
  • the cycle length of the DRX long cycle is longer than that of the DRX short cycle.
  • the UE may determine that the cycle length of the DRX short cycle is shorter among all DRX cycles configured by the UE.
  • the UE can learn the length type of the current DRX cycle through medium access control (Medium Access Control, MAC) layer signaling, that is, the network can instruct the UE to enter the DRX long cycle or short cycle through MAC layer control signaling; or, The UE learns the length type of the current DRX cycle through the DRX short cycle timer.
  • the DRX short cycle timer is used to count the number of DRX short cycles.
  • the UE has entered 5 DRX short cycles, then the UE can determine whether it is currently in the DRX short cycle according to whether the DRX short cycle timer expires; if the timer does not expire, the UE determines that it is currently in the DRX short cycle; if the timer If it has timed out or is not running, the UE needs to switch to the DRX long cycle.
  • each BWP of each serving cell may be configured with a corresponding search space set group.
  • the UE selects a search space set group from all search space set groups corresponding to the active BWP of the serving cell according to the length type of the current DRX cycle. In order to achieve the purpose of power saving, the longer the relative length of the current DRX cycle and other DRX cycles in all DRX cycles, the less the number of times of detection in each time slot of the selected search space set.
  • the length type of the DRX cycle is selected from DRX long cycle and DRX short cycle, and the number of search space sets is two.
  • Step S102 shown in FIG. 1 may include the following steps: if the length type of the current DRX cycle is the DRX short cycle, selecting a search space set with more detection times among the two search space sets.
  • a search space set with fewer detection times among the two search space sets is selected.
  • the network configures two types of DRX cycle lengths for the UE, DRX long cycle (Long DRX) and DRX short cycle (Short DRX).
  • the UE adopts a search space set group with a large number of detections (that is, the UE detects the DCI on the search space set in the search space set group).
  • the UE uses a search space set with a small number of detections in the Long DRX cycle. In other words, the UE determines the DRX cycle it is in according to the MAC layer DRX command, and then decides to use the search space set corresponding to the DRX cycle.
  • the UE can judge the search space set group applied in short DRX and Long DRX by the number of DCI detections corresponding to the search space set group, and the number of DCI detections can be counted according to time slot Slot or according to span Span.
  • step S103 the UE uses the selected search space set group to detect DCI, that is, the UE detects the DCI on the search space set corresponding to the search space set group.
  • the embodiment of the present invention adopts an implicit method of switching the search space set group, which does not require the network to send additional signaling to indicate.
  • the number of times of signaling detection can be reduced, thereby reducing power consumption and achieving the purpose of further power saving.
  • the number of search space sets is the same as the number of length types of the DRX cycle, and the length type of the current DRX cycle is based on the current DRX cycle in all DRX cycles by cycle Length order to represent.
  • Step S102 shown in FIG. 1 may include the following steps: sorting all search space sets according to the DCI detection times of each search space set; selecting a search space set with the same sorting order as the current DRX cycle in all DRX cycles Group.
  • all DRX cycles configured by the UE may be sorted in advance according to the cycle length, such as from long to short or from short to long, and each type of DRX cycle has a corresponding sequence number.
  • the UE is configured with three types (that is, three lengths) of DRX cycles, and the DRX cycles of these three lengths are sorted from short to long.
  • Each type of DRX cycle has a corresponding sequence number, such as 1, 2 , 3.
  • the network also configures three search space sets for the UE according to the BWP. When the BWP is in the active state, the UE needs to detect the DCI on the search space set corresponding to the BWP.
  • the search space sets may be sorted first, for example, according to the number of detections in descending order, and the UE selects the search space sets with the same sorting order as the current DRX cycle in all DRX cycles.
  • the search space set groups are sorted from most to least; when all DRX cycles are sorted from long to short, then The search space sets are sorted in descending order. In this case, the UE can select the search space sets with the same sorting order as the current DRX cycle in all DRX cycles.
  • step S101 shown in FIG. 1 may further include the following step: receiving the association relationship between the length type of the DRX cycle sent by the network side and the search space set group.
  • step S102 shown in FIG. 1 may include the following steps: selecting a corresponding search space set group according to the length type of the current DRX cycle and the association relationship.
  • the network may directly indicate whether each search space set is applied to short DRX or long DRX when configuring the search space set, that is, the network indicates to the UE the association between the length type of the DRX cycle and the search space set relationship, so that the UE directly determines the search space set to use according to the association relationship.
  • the embodiment of the present invention does not need to calculate the number of detections of each search space set group, which can improve the calculation efficiency of the UE.
  • step S102 shown in FIG. 1 may include the following steps: in an initial preset number of DRX short cycles, select a search with a larger number of detections in the corresponding two search space sets Space set group; if no scheduling is obtained within the preset number of DRX short cycles or after the initial preset number of DRX short cycles, regardless of whether the UE obtains scheduling, select the number of detections in the corresponding two search space sets and groups Fewer search space sets.
  • the network configures the DRX long period and the DRX short period for the UE, and simultaneously configures two search space sets for the UE according to the BWP.
  • the DRX short cycle counter (drx-ShortCycleTimer) may contain multiple DRX short cycles (Short DRX Cycle), such as a maximum of 16 DRX short cycles.
  • the UE usually has scheduling requirements in the first few DRX short cycles, and the scheduling requirements in the subsequent DRX short cycles are not strong. In this case, the UE uses the search space set with more detection times in the first few DRX short cycles. Once the UE does not obtain scheduling in the current DRX short cycle (or does not obtain scheduling for several consecutive DRX short cycles) or After an initial preset number of DRX short periods, the search space set group with fewer detection times is transferred.
  • the UE may maintain a timer or a counter to record that a preset number of consecutive DRX short periods have not been scheduled.
  • This preset number can be 1, or another integer value lower than the number of DRX short cycles corresponding to drx-ShortCycleTimer.
  • the embodiments of the present invention can use a search space set with fewer detection times when the scheduling requirement of the UE is not strong, so as to achieve better power saving.
  • the specific value of the preset number may be set according to an actual application scenario, which is not limited in this embodiment of the present invention.
  • the UE uses a search space set with fewer detection times in the DRX long cycle.
  • the short DRX cycle may correspond to two sets of search space sets (the two sets of search space sets have different DCI detection times in each time slot or each span), for example, the DCI corresponding to one search space set
  • the number of blind checks is 30 times (for example, the number of DCI blind checks in one time slot is 30 times), and the number of DCI blind checks corresponding to another search space set group is 16 times (one time slot).
  • the DRX long cycle can correspond to a set of search space sets.
  • the search space set with more detection times is used in the first few DRX short cycles when the DRX short cycle is applied.
  • the scheduling is not obtained in the current DRX short cycle or after the first few DRX short cycles, it will be transferred to A set of search space sets with fewer detections.
  • the drx-ShortCycleTimer as 8 short DRX cycles and the initial preset number of DRX short cycles as 4 as an example, when the UE enters the short DRX cycle, the UE starts the drx-ShortCycleTimer, and the UE performs DCI in the search space set with a large number of detections detection.
  • the UE If the UE does not receive scheduling information in the first 4 short DRX cycles after entering the short DRX cycle, the UE performs DCI detection in the search space set with fewer detection times in the next 4 short DRX cycles; or the UE directly after The 4 short DRX cycles are used for DCI detection in the search space set with a small number of detections. Once the drx-ShortCycleTimer times out, the UE enters the long DRX cycle, and the UE continues to perform DCI detection in the search space set group with a small number of detections.
  • the UE is configured with a short DRX cycle (Short DRX) and a long DRX cycle (Long DRX), and the UE corresponds to multiple sets of search space sets (each time slot or each time slot or each short DRX cycle) during the short DRX cycle.
  • the detection times of each span are different), and the DRX long period corresponds to one or more sets of search space sets. That is to say, the base station configures the corresponding search space set groups according to the length and type of the DRX cycle of the UE.
  • the base station configures the number and index of search space sets corresponding to the DRX short cycle through RRC signaling. For example, the base station configures two sets of search space sets corresponding to the DRX short cycle through RRC signaling, and the indices are 0 and 1.
  • the base station may configure a search space set group corresponding to the DRX short period according to each BWP of the serving cell.
  • the base station may instruct the UE to switch search space set groups through DCI. For example, there may be a bit in the DCI dedicated to indicating whether the search space set with index 0 or 1 is used.
  • the base station decides whether to switch the search space set group according to the scheduling requirement of the UE. For example, if the scheduling requirement of the UE becomes stronger, and the UE is currently using a search space set with fewer detections, the base station instructs the UE to switch to the search space set with more detections.
  • the UE detects the physical downlink control channel on the search space set group detected on the activated BWP of each serving cell, and detects its own DCI.
  • the UE receives the DCI for switching the search space set on any serving cell, and the UE implements the switching of the search space set on all serving cells;
  • the UE receives the DCI for switching the search space set group on one serving cell, and the UE switches the search space set group only in the serving cell, that is, the DCI only controls the switching of the search space set group on a single serving cell.
  • the UE first uses the default search space set group to detect DCI, and after detecting the DCI, learns whether there is an index of the search space set group in the DCI, if so, it means that the search space set group needs to be switched, and switch to the index Pointed to the search space set for DCI detection.
  • the UE In the DRX long cycle, if there is only one set of search space sets corresponding to the DRX long cycle, the UE does not need an independent bit in the DCI to indicate the search space set during the DRX long cycle; if the DRX long cycle corresponds to multiple sets of searches If the space set group is selected, the DCI detected by the UE in the DRX long period needs to have an independent bit to indicate the applied search space set group.
  • the network can effectively reduce the bits indicating the search space sets in the DCI when instructing to switch the search space sets, thereby reducing signaling overhead .
  • an embodiment of the present invention further discloses a DCI detection device 20 .
  • the DCI detection device 20 may include:
  • the cycle type determination module 201 is used to determine the length type of the current DRX cycle
  • a search space set group selection module 202 configured to select a search space set group corresponding to the current length type from all search space set groups corresponding to the active BWP according to the length type of the current DRX cycle in the active BWP of the serving cell, Wherein, the longer the relative length, the less the number of times of detection of the selected search space set group in each time slot;
  • the DCI detection module 203 is configured to detect DCI in the selected search space group.
  • the user equipment directly selects the search space set group based on the length type of the current DRX cycle, without the need for the network to send signaling for instructions, which can reduce the number of times of signaling detection, thereby reducing power consumption and achieving the purpose of further power saving .
  • the above-mentioned DCI detection device may correspond to a chip with a DCI detection function in the terminal device, such as a SOC (System-On-a-Chip, system-on-chip), a baseband chip, etc.; A chip module with detection function; or a chip module with a data processing function chip, or a terminal device.
  • a SOC System-On-a-Chip, system-on-chip
  • a baseband chip etc.
  • a chip module with detection function or a chip module with a data processing function chip, or a terminal device.
  • each module/unit included in each device and product described in the above-mentioned embodiments it may be a software module/unit, a hardware module/unit, or a part of a software module/unit and a part of a hardware module/unit .
  • each module/unit included therein may be implemented by hardware such as circuits, or at least some of the modules/units may be implemented by a software program.
  • the remaining (if any) part of the modules/units can be implemented by hardware such as circuits; for each device and product applied to or integrated in the chip module, the modules/units contained therein can be They are all implemented by hardware such as circuits, and different modules/units can be located in the same component of the chip module (such as chips, circuit modules, etc.) or in different components, or at least some of the modules/units can be implemented by software programs.
  • the software program runs on the processor integrated inside the chip module, and the remaining (if any) part of the modules/units can be implemented by hardware such as circuits; for each device and product applied to or integrated in the terminal, each module contained in it
  • the units/units may all be implemented in hardware such as circuits, and different modules/units may be located in the same component (eg, chip, circuit module, etc.) or in different components in the terminal, or at least some of the modules/units may be implemented by software programs Realization, the software program runs on the processor integrated inside the terminal, and the remaining (if any) part of the modules/units can be implemented in hardware such as circuits.
  • the embodiment of the present invention further discloses a storage medium, which is a computer-readable storage medium, and stores a computer program thereon, and the computer program can execute the steps of the method shown in FIG. 1 when running.
  • the storage medium may include ROM, RAM, magnetic or optical disks, and the like.
  • the storage medium may also include a non-volatile memory (non-volatile) or a non-transitory (non-transitory) memory and the like.
  • the embodiment of the present invention further discloses a user equipment, the user equipment may include a memory and a processor, and the memory stores a computer program that can run on the processor.
  • the processor may perform the steps of the method shown in FIG. 1 when running the computer program.
  • the user equipment includes but is not limited to terminal equipment such as mobile phones, computers, and tablet computers.
  • a base station (base station, BS for short) in this embodiment of the present application is a device deployed in a radio access network (RAN) to provide a wireless communication function.
  • RAN radio access network
  • the equipment that provides base station functions in 2G networks includes base transceiver stations (English: base transceiver station, referred to as BTS), the equipment that provides base station functions in 3G networks includes NodeB (NodeB), and the equipment that provides base station functions in 4G networks.
  • the base station in the embodiment of the present application also includes a device that provides a base station function in a new communication system in the future, and the like.
  • the base station controller in the embodiments of the present application is a device for managing base stations, such as a base station controller (BSC) in a 2G network and a radio network controller (RNC) in a 3G network. ), and may also refer to a device for controlling and managing base stations in a new communication system in the future.
  • BSC base station controller
  • RNC radio network controller
  • the network side network in the embodiment of the present invention refers to a communication network that provides communication services for terminals, including a base station of a wireless access network, a base station controller of a wireless access network, and a device on the core network side.
  • the terminal in this embodiment of the present application may refer to various forms of user equipment (user equipment, UE for short), access terminal, subscriber unit, subscriber station, mobile station, mobile station (mobile station, built as MS), remote station, remote station A terminal, mobile device, user terminal, terminal equipment, wireless communication device, user agent or user equipment.
  • user equipment user equipment, UE for short
  • access terminal subscriber unit, subscriber station, mobile station, mobile station (mobile station, built as MS), remote station, remote station
  • subscriber unit subscriber station
  • mobile station mobile station (mobile station, built as MS)
  • remote station remote station
  • remote station remote station
  • remote station remote station
  • mobile device mobile device
  • user terminal terminal equipment
  • terminal equipment wireless communication device
  • user agent or user equipment user agent
  • the terminal device may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), Handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices with wireless communication capabilities, terminal devices in future 5G networks or future evolved public land mobile communication networks (Public Land Mobile Network, referred to as PLMN), which is not limited in this embodiment of the present application.
  • PLMN Public Land Mobile Network
  • connection in the embodiment of the present application refers to various connection modes such as direct connection or indirect connection, so as to realize communication between devices, which is not limited in the embodiment of the present application.
  • the processor may be a central processing unit (central processing unit, CPU for short), and the processor may also be other general-purpose processors, digital signal processors (digital signal processor, DSP for short) , application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM for short), programmable read-only memory (PROM for short), erasable programmable read-only memory (EPROM for short) , Electrically Erasable Programmable Read-Only Memory (electrically EPROM, EEPROM for short) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous Dynamic random access memory
  • SDRAM synchronous Dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Synchronous connection dynamic random access memory
  • DR RAM direct memory bus random access memory
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission by wire or wireless to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • the disclosed method, apparatus and system may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative; for example, the division of the units is only a logical function division, and other division methods may be used in actual implementation; for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included individually, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated units implemented in the form of software functional units can be stored in a computer-readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium, and includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM for short), Random Access Memory (RAM for short), magnetic disk or CD, etc. that can store program codes medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种DCI检测方法及装置、存储介质、用户设备,DCI检测方法包括:确定当前DRX周期的长度类型;在服务小区的激活BWP内,根据所述当前DRX周期的长度类型在该激活BWP对应的所有搜索空间集组中选取当前长度类型对应的搜索空间集组;在选取的搜索空间集组检测DCI。本发明技术方案能够减小用户设备的功耗。

Description

DCI检测方法及装置、存储介质、用户设备
本申请要求2020年12月14日提交中国专利局、申请号为202011467470.0、发明名称为“DCI检测方法及装置、存储介质、用户设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信处理技术领域,尤其涉及一种DCI检测方法及装置、存储介质、用户设备。
背景技术
在新无线接入(New Radio,NR)系统中,基站可以配置用户设备(User Equipment,UE)在服务小区的激活带宽(Bandwidth Part,BWP)上的一个或者多个控制资源集(Control Resource Set,CORESET)根据自己的无线网络临时标识(Radio Network Temporary Identifier,RNTI)检测属于自己的下行控制信令(Downlink Control Information,DCI)。例如,对于不考虑载波聚合的场景,UE工作在一个载波上即一个服务小区上,基站可以配置UE检测该载波中激活BWP上的一个或者多个CORESET中的搜索空间,UE根据自己的RNTI检测属于自己的DCI,然后根据DCI接收数据或者上传数据。一个服务小区可以配置一个或多个BWP,BWP可以是激活或非激活的。UE不需要检测非激活BWP上的DCI。
UE可以配置一个服务小区,也可以配置多个服务小区。对于每个服务小区,可以按照BWP分别配置一个或多个控制资源集(Control Resource Set,CORESET),在每个CORESET上可以配置一个或多个搜索空间集(search space set)。网络可以配置UE在每个搜索空间集检测DCI的次数、汇聚等级、DCI格式等,以及检测DCI 的时机等。UE执行不同的DCI盲检次数与UE的功耗密切相关,因此新无线(New Radio,NR)系统中考虑切换UE的搜索空间集组(Search space set group)来达到省电的目的。
但是,现有技术中需要网络通过信令指示每次搜索空间集组的切换,增加信令开销,增加UE检测DCI的次数,从而导致UE的功耗也增加。
发明内容
本发明解决的技术问题是如何减小用户设备的功耗。
为解决上述技术问题,本发明实施例提供一种DCI检测方法,DCI检测方法包括:确定当前DRX周期的长度类型;在服务小区的激活BWP内,根据所述当前DRX周期的长度类型在该激活BWP对应的所有搜索空间集组中选取当前长度类型对应的搜索空间集组;在选取的搜索空间集组检测DCI。
可选的,激活BWP对应的搜索空间集组的数量与DRX周期的长度类型数量是相同的,所述当前DRX周期的长度类型以所述当前DRX周期在所有DRX周期中按照周期长度的排序来表示,所述根据所述当前DRX周期的长度类型在所有搜索空间集组中选取搜索空间集组包括:按照每个时隙或每个跨度各个搜索空间集组的检测次数对所有搜索空间集组进行排序;选取排序与所述当前DRX周期在所有DRX周期中的排序相同的搜索空间集组。
可选的,DRX周期的长度类型包括DRX长周期和DRX短周期,激活BWP对应的搜索空间集组的数量为两个,所述根据所述当前DRX周期的长度类型在所有搜索空间集组中选取搜索空间集组包括:如果所述当前DRX周期的长度类型为所述DRX短周期,则选取所述两个搜索空间集组中每个时隙或每个跨度检测次数较多的搜索空间集组。
可选的,所述DCI检测方法还包括:如果在预设数量个DRX 短周期内未获得调度,或者连续预设数量个DRX短周期内未获得调度,则选取两个搜索空间集组中每个时隙或每个跨度检测次数较少的搜索空间集组,并在选取的搜索空间集组继续检测DCI。
可选的,DRX周期的长度类型包括DRX长周期和DRX短周期,激活BWP对应的搜索空间集组的数量为两个,所述根据所述当前DRX周期的长度类型在所有搜索空间集组中选取搜索空间集组包括:如果所述当前DRX周期为所述DRX长周期,则选取两个搜索空间集组中每个时隙或每个跨度检测次数较少的搜索空间集组。
可选的,DRX周期的长度类型包括DRX长周期和DRX短周期,在所述激活BWP中,所述DRX短周期对应两个搜索空间集组,所述根据所述当前DRX周期的长度类型在所有搜索空间集组中选取搜索空间集组包括:在初始的预设数量个DRX短周期内选取对应的两个搜索空间集组中检测次数较多的搜索空间集组;如果在所述预设数量个DRX短周期内未获得调度,或者连续预设数量个DRX短周期内未获得调度,或者在初始的预设数量个DRX短周期之后,则选取对应的两个搜索空间集组中每个时隙或每个跨度检测次数较少的搜索空间集组。
可选的,所述确定当前DRX周期的长度类型之前包括:接收网络侧发送的DRX周期的长度类型与所述搜索空间集组的关联关系;所述根据所述当前DRX周期的长度类型在该BWP对应的所有搜索空间集组中选取搜索空间集组包括:根据所述当前DRX周期的长度类型以及所述关联关系选取对应的搜索空间集组。
可选的,所述在选取的搜索空间集组检测DCI包括:在所述服务小区的激活BWP中检测DCI;或者,在所有服务小区的激活BWP中检测DCI。
本发明实施例还公开了一种DCI检测装置,DCI检测装置包括:周期类型确定模块,用于确定当前DRX周期的长度类型;搜索空间集组选取模块,用于在服务小区的激活BWP内,根据所述当前DRX 周期的长度类型在该激活BWP中对应的所有搜索空间集组中选取当前长度类型对应的搜索空间集组;DCI检测模块,用于在选取的搜索空间集组检测DCI。
本发明实施例还公开了一种存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行所述DCI检测方法或所述搜索空间集切换方法的步骤。
本发明实施例还公开了一种用户设备,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行所述DCI检测方法或所述搜索空间集切换方法的步骤。
本发明实施例还公开了一种基站,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行所述搜索空间集切换方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本发明技术方案中,用户设备在检测DCI时,可以根据当前DRX周期的长度类型来选取搜索空间集组,以用于检测DCI。本发明技术方案中用户设备直接基于当前DRX周期的类型来选取搜索空间集组,无需网络发送信令进行指示,能够减少检测信令的次数,从而减小功耗,实现进一步省电的目的。
进一步地,本发明技术方案在预设数量个DRX短周期内未获得调度时,选取两个搜索空间集组中每个时隙或每个跨度检测次数较少的搜索空间集组,并在选取的搜索空间集组继续检测DCI。本发明技术方案中用户设备在预设数量个DRX短周期内未获得调度,表示用户设备的调度需求变弱,此时通过切换检测次数较少的搜索空间集组来检测DCI,能够进一步减小用户设备的功耗。
附图说明
图1是本发明实施例一种DCI检测方法的流程图;
图2是本发明实施例一种DCI检测装置的结构示意图。
具体实施方式
如背景技术中所述,现有技术中需要网络通过信令指示每次搜索空间集组的切换,增加信令开销,增加UE检测DCI的次数,从而导致UE的功耗也增加。
本发明技术方案中,用户设备在检测DCI时,可以根据当前DRX周期的长度类型来选取搜索空间集组,以用于检测DCI。本发明技术方案中用户设备直接基于当前DRX周期的长度类型来选取搜索空间集组,无需网络发送信令进行指示,能够减少检测信令的次数,从而减小功耗,实现进一步省电的目的。
本方明技术方案可适用于5G(5Generation)通信系统,还可适用于4G、3G通信系统,还可适用于未来新的各种通信系统,例如6G、7G等。
本方明技术方案也适用于不同的网络架构,包括但不限于中继网络架构、双链接架构、Vehicle-to-Everything(车辆到任何物体的通信)架构等架构。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1是本发明实施例一种DCI检测方法的流程图。
本发明实施例的DCI检测方法可以用于用户设备侧,也即可以由用户设备执行图1所示方法的各个步骤。
具体地,所述DCI检测方法可以包括以下步骤:
步骤S101:确定当前DRX周期的长度类型;
步骤S102:在服务小区的激活BWP内,根据所述当前DRX周期的长度类型在该激活BWP对应的所有搜索空间集组中选取当前长 度类型对应的搜索空间集组。
其中,所述DRX周期的相对长度越长,选取的搜索空间集组在每个时隙内的检测次数越少;
步骤S103:在选取的搜索空间集组检测DCI。
需要指出的是,本实施例中各个步骤的序号并不代表对各个步骤的执行顺序的限定。
可以理解的是,在具体实施中,所述DCI检测方法可以采用软件程序的方式实现,该软件程序运行于芯片或芯片模组内部集成的处理器中。该方法也可以采用软件结合硬件的方式实现,本申请不作限制。
本发明实施例中,UE接入服务小区建立无线资源控制(Radio Resource Control,RRC)连接。为了省电,网络为UE配置了非连续接收(Discontinuous Reception,DRX),并可以配置不同长度的DRX周期。
网络还可以为UE配置多个搜索空间集组。如果UE配置多个服务小区,则每个服务小区可以分别配置多个搜索空间集组。对于每个服务小区,可以配置一个或多个BWP,每个BWP可以配置一个或多个搜索空间集组。每个搜索空间集组可以包含一个或多个搜索空间集。不同的服务小区可以采用各自对应的子载波间隔如15kHz、30kHz或60kHz等。UE应用不同的子载波时,一个时隙可以检测的候选DCI次数(即物理下行控制信道(Physical Downlink Control Channel,PDCCH)盲检(PDCCH Detection,或者Blind Detection)次数)是有差别的。以子载波为15kHz的服务小区为例,UE在一个时隙可以支持最大44次DCI检测次数。
对于搜索空间集组内的每个搜索空间集,网络可以配置UE需要检测DCI的次数、DCI格式和检测DCI的时机等。搜索空间集组在每个时隙内的检测次数可以是在该搜索空间集组包含的所有搜索空 间集上,UE在每个时隙需要检测的DCI次数的总和。需要说明的是,可以采用其他的时长单位统计UE需要检测的DCI次数总和,如以7个OFDM符号长度作为一个跨度(Span)统计UE需要检测的DCI次数总和,本专利所述方法同样适用。
当然,所述跨度的时长也可以是其他任意可实施的时间长度,本发明实施例对此不作限制。
具体地,一个DCI由至少一个控制信道单元(Control Channel Element,CCE)构成,构成一个DCI的CCE数量称为汇聚等级(Aggregation level),汇聚等级可以是1、2、4、8或者16。一个CCE由6个资源元素组(Resource Element Group,REG)构成,其中,每个REG是指占据一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号时长的一个资源块(Resource Block,RB),即每个REG包含频域上连续的12个资源元素(Resource Element,RE)。考虑到12个RE中会包含解调参考信号,因此每个REG中实际有效地用于传输DCI的RE不足12个。UE在一个搜索空间集组中需要检测DCI的次数越多,UE的功耗也就越大,不利于UE的省电。
在步骤S101的具体实施中,UE可以确定其当前所处的当前DRX周期的长度类型,当前DRX周期的长度类型表示当前DRX周期与所有DRX周期中其他DRX周期的相对长度。其中,网络为UE配置的所有DRX周期的长度不同。
例如,网络为UE配置了两种DRX周期的长度类型,DRX长周期(Long DRX)和DRX短周期(Short DRX),也可以称为长DRX周期和短DRX周期。DRX长周期的周期长度比DRX短周期的周期长度要长。当UE确定当前DRX周期的长度类型为DRX短周期时,UE可以确定DRX短周期的周期长度在UE配置的所有DRX周期中是较短的。
具体地,UE可以通过媒体接入控制(Medium Access Control, MAC)层信令获知当前DRX周期的长度类型,即网络可以通过MAC层控制信令指示UE进入DRX长周期,或短周期;或者,UE通过DRX短周期定时器获知当前DRX周期的长度类型。其中,DRX短周期定时器用于对DRX短周期的数量进行计数。例如,UE已经进入5个DRX短周期,那么UE可以根据DRX短周期定时器的是否超时确定当前是否处于DRX短周期;如果该定时器没有超时,UE确定当前处于DRX短周期;如果该定时器已经超时或者不在运行状态,UE需要转入DRX长周期。
如前所述,每一服务小区的每个BWP可以配置对应的搜索空间集组。在步骤S102的具体实施中,UE根据当前DRX周期的长度类型在服务小区激活BWP对应的所有搜索空间集组中选取搜索空间集组。为了达到省电的目的,当前DRX周期与所有DRX周期中其他DRX周期的相对长度越长,选取的搜索空间集组在每个时隙内的检测次数越少。
在一个具体的实施例中,DRX周期的长度类型选自DRX长周期和DRX短周期,搜索空间集组的数量为两个。图1所示步骤S102可以包括以下步骤:如果所述当前DRX周期的长度类型为所述DRX短周期,则选取两个搜索空间集组中检测次数较多的搜索空间集组。
在一个变化例中,如果所述当前DRX周期为所述DRX长周期,则选取两个搜索空间集组中检测次数较少的搜索空间集组。
本实施例中,网络为UE配置了两种DRX周期的长度类型,DRX长周期(Long DRX)和DRX短周期(Short DRX)。UE在Short DRX周期采用检测次数多的搜索空间集组(即UE检测该搜索空间集组内搜索空间集上的DCI)。UE在Long DRX周期采用检测次数少的搜索空间集组。换言之,UE依据MAC层DRX命令确定所处的DRX周期,然后决定采用该DRX周期对应的搜索空间集组。UE具体可以通过搜索空间集组对应的DCI检测次数判断在short DRX和Long DRX时应用的搜索空间集组,DCI检测次数可以按照时隙Slot、或者按照跨 度Span来统计。
需要说明的是,UE应用short DRX和Long DRX的机制与现有方式相同,此处不再赘述。
在步骤S103的具体实施中,UE利用选取的搜索空间集组检测DCI,也即UE检测该搜索空间集组对应的搜索空间集上的DCI。
相对于现有技术中需要网络通过信令指示每次搜索空间集组的切换,本发明实施例所采用的是隐式的切换搜索空间集组的方式,无需网络发送额外的信令进行指示,能够减少检测信令的次数,从而减小功耗,实现进一步省电的目的。
在本发明一个非限制性的实施例中,搜索空间集组的数量与DRX周期的长度类型数量是相同的,所述当前DRX周期的长度类型以所述当前DRX周期在所有DRX周期中按照周期长度的排序来表示。图1所示步骤S102可以包括以下步骤:按照各个搜索空间集组的DCI检测次数对所有搜索空间集组进行排序;选取排序与所述当前DRX周期在所有DRX周期中的排序相同的搜索空间集组。
具体实施中,可以预先按照周期长度对UE配置的所有DRX周期进行排序,如从长到短或者从短到长,每一类型的DRX周期具有对应的序号。例如,UE配置了三种类型(也即三种长度)的DRX周期,按照从短到长对这三种长度的DRX周期进行排序,每一类型的DRX周期具有对应的序号,例如1、2、3。相应地,网络也为UE按照BWP配置了3组搜索空间集组,当BWP处于激活状态时,UE需要检测该BWP对应的搜索空间集组上的DCI,则UE在选取搜索空间集组时,可以先对搜索空间集组进行排序,例如按照检测次数从多到少进行排序,则UE选取排序与所述当前DRX周期在所有DRX周期中的排序相同的搜索空间集组。
需要说明的是,在按照从短到长对所有DRX周期进行排序时,则按照从多到少的顺序对搜索空间集组进行排序;在按照从长到短对 所有DRX周期进行排序时,则按照从少到多的顺序对搜索空间集组进行排序,在这种情况下,UE才能够选取排序与当前DRX周期在所有DRX周期中的排序相同的搜索空间集组。
在本发明一个非限制性的实施例中,图1所示步骤S101之前还可以包括以下步骤:接收网络侧发送的DRX周期的长度类型与所述搜索空间集组的关联关系。相应地,图1所示步骤S102可以包括以下步骤:根据所述当前DRX周期的长度类型以及所述关联关系选取对应的搜索空间集组。
本实施例中,网络可以在配置搜索空间集组时,直接指示各个搜索空间集组应用于short DRX还是long DRX,也即网络向UE指示DRX周期的长度类型与所述搜索空间集组的关联关系,使得UE直接根据该关联关系确定采用的搜索空间集组。
相对于前述实施例,本发明实施例无需计算各个搜索空间集组的检测次数,能够提升UE的计算效率。
在本发明一个非限制性的实施例中,图1所示步骤S102可以包括以下步骤:在初始的预设数量个DRX短周期内选取对应的两个搜索空间集组中检测次数较多的搜索空间集组;如果在所述预设数量个DRX短周期内未获得调度或者在初始预设数量个DRX短周期之后,无论UE是否获得调度,则选取对应的两个搜索空间集组中检测次数较少的搜索空间集组。
本实施例中,网络为UE配置了DRX长周期和DRX短周期,同时为UE按照BWP配置了两个搜索空间集组。DRX短周期计数器(drx-ShortCycleTimer)可能包含多个DRX短周期(Short DRX Cycle),如包含最多16个DRX短周期。一旦DRX短周期计数器超时,UE转入DRX长周期。UE通常在最初的数个DRX短周期有调度需求,后面的DRX短周期的调度需求不强。在这种情况下,UE在最初的数个DRX短周期采用检测次数较多的搜索空间集组,一旦UE在当前的DRX短周期没有获得调度(或者连续数个DRX短周期 没有获得调度)或者在初始预设数量个DRX短周期之后,则转入检测次数较少的搜索空间集组。
具体实施中,UE可以维护一个定时器或计数器,以便记录连续预设数量个DRX短周期没有获得调度。这个预设数量可以是1,或其他低于drx-ShortCycleTimer对应的DRX短周期数的整数值。
本发明实施例能够在UE的调度需求不强烈的时候使用检测次数少的搜索空间集组,以实现更好的省电。
可以理解的是,关于预设数量的具体数值可以根据的实际的应用场景进行设置,本发明实施例对此不作限制。
相应地,本实施例中,UE在DRX长周期使用检测次数较少的搜索空间集组。
在一个变化例中,DRX短周期可以对应两套搜索空间集组(两套搜索空间集组在每个时隙或每个Span内DCI检测次数不同),例如,一个搜索空间集组对应的DCI盲检次数为30次(如一个时隙内DCI盲检次数为30次),另一个搜索空间集组对应的DCI盲检次数为16次(一个时隙)。DRX长周期可以对应一套搜索空间集组。
具体在应用DRX短周期的最初的数个DRX短周期内采用检测次数较多的搜索空间集,一旦在当前的DRX短周期内没有获得调度或者在最初的数个DRX短周期之后,则转入检测次数较少的搜索空间集组。以drx-ShortCycleTimer为8个short DRX周期,且初始预设数量个DRX短周期为4为例,当UE进入short DRX周期,UE启动drx-ShortCycleTimer,UE在检测次数多的搜索空间集组进行DCI检测。如果UE在进入short DRX周期之后,在最初的4个short DRX周期没有收到调度信息,UE在之后的4个short DRX周期在检测次数少的搜索空间集组进行DCI检测;或者UE直接在之后的4个short DRX周期在检测次数少的搜索空间集组进行DCI检测。一旦drx-ShortCycleTimer超时,UE进入长DRX周期,UE继续在检测次 数少的搜索空间集组进行DCI检测。
在本发明一个非限制性的实施例中,UE配置了DRX短周期(Short DRX)和DRX长周期(Long DRX),UE在DRX短周期对应多套搜索空间集组(每个时隙或每个跨度的检测次数不同),DRX长周期对应一套或多套搜索空间集组。也就是说,基站根据UE的DRX周期的长度类型分别配置对应的搜索空间集组。
基站通过RRC信令配置DRX短周期对应的搜索空间集组的数量以及索引(index),例如基站通过RRC信令配置DRX短周期对应的搜索空间集组的数量为两套,index分别是0和1,基站可以按照服务小区的每个BWP分别配置DRX短周期对应的搜索空间集组。在DRX短周期中,基站可以通过DCI指示UE切换搜索空间集组。比如DCI中可以有一个比特专用于指示采用index 0还是1的搜索空间集组。具体地,基站根据UE的调度需求来决定是否切换搜索空间集组。例如,UE的调度需求变强,并且UE当前使用的是检测次数较少的搜索空间集组,则基站指示UE切换至检测次数较多的搜索空间集组。
当UE配置了多个服务小区,UE在每个服务小区的激活BWP上检测的搜索空间集组上的物理下行控制信道,检测属于自己的DCI。对于DCI指示应用的搜索空间集组,可以有如下的实现方案:UE在任何一个服务小区上收到切换搜索空间集组的DCI,UE在所有的服务小区上均实施搜索空间集组的切换;UE在一个服务小区上收到切换搜索空间集组的DCI,UE仅在该服务小区切换搜索空间集组,即DCI仅控制单个服务小区上搜索空间集组的切换。
具体实施中,UE先采用默认搜索空间集组检测DCI,在检测到DCI后,获知DCI中是否有搜索空间集组的索引,如果有,则表示需要切换搜索空间集组,并切换至该索引指向的搜索空间集组进行DCI的检测。
在DRX长周期中,如果仅有一套DRX长周期对应的搜索空间 集组,则UE在DRX长周期时,DCI中不需要有独立的比特指示搜索空间集组;如果DRX长周期对应多套搜索空间集组,则UE在DRX长周期时检测的DCI中需要有独立的比特指示应用的搜索空间集组。
本发明实施例中,网络通过配置不同DRX周期的长度类型对应的搜索空间集组,可以在指示切换搜索空间集组时,有效减少DCI中指示搜索空间集组的比特位,从而减少信令开销。
请参照图2,本发明实施例还公开了一种DCI检测装置20。DCI检测装置20可以包括:
周期类型确定模块201,用于确定当前DRX周期的长度类型;
搜索空间集组选取模块202,用于在服务小区的激活BWP内,根据所述当前DRX周期的长度类型在该激活BWP对应的所有搜索空间集组中选取当前长度类型对应的搜索空间集组,其中,所述相对长度越长,选取的搜索空间集组在每个时隙内的检测次数越少;
DCI检测模块203,用于在选取的搜索空间集组检测DCI。
本发明实施例中用户设备直接基于当前DRX周期的长度类型来选取搜索空间集组,无需网络发送信令进行指示,能够减少检测信令的次数,从而减小功耗,实现进一步省电的目的。
关于所述DCI检测装置20的工作原理、工作方式的更多内容,可以参照图1中的相关描述,这里不再赘述。
在具体实施中,上述DCI检测装置可以对应于终端设备中具有DCI检测功能的芯片,例如SOC(System-On-a-Chip,片上系统)、基带芯片等;或者对应于终端设备中包括具有DCI检测功能的芯片模组;或者对应于具有数据处理功能芯片的芯片模组,或者对应于终端设备。
关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分 是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
本发明实施例还公开了一种存储介质,所述存储介质为计算机可读存储介质,其上存储有计算机程序,所述计算机程序运行时可以执行图1中所示方法的步骤。所述存储介质可以包括ROM、RAM、磁盘或光盘等。所述存储介质还可以包括非挥发性存储器(non-volatile)或者非瞬态(non-transitory)存储器等。
本发明实施例还公开了一种用户设备,所述用户设备可以包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序。所述处理器运行所述计算机程序时可以执行图1中所示方法的步骤。所述用户设备包括但不限于手机、计算机、平板电脑等终端设备。
本申请实施例中的基站(base station,简称BS),也可称为基站设备,是一种部署在无线接入网(RAN)用以提供无线通信功能的装 置。例如在2G网络中提供基站功能的设备包括基地无线收发站(英文:base transceiver station,简称BTS),3G网络中提供基站功能的设备包括节点B(NodeB),在4G网络中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB),在无线局域网络(wireless local area networks,简称WLAN)中,提供基站功能的设备为接入点(access point,简称AP),5G新无线(New Radio,简称NR)中的提供基站功能的设备gNB,以及继续演进的节点B(ng-eNB),其中gNB和终端之间采用NR技术进行通信,ng-eNB和终端之间采用E-UTRA(Evolved Universal Terrestrial Radio Access)技术进行通信,gNB和ng-eNB均可连接到5G核心网。本申请实施例中的基站还包含在未来新的通信系统中提供基站功能的设备等。
本申请实施例中的基站控制器,是一种管理基站的装置,例如2G网络中的基站控制器(base station controller,简称BSC)、3G网络中的无线网络控制器(radio network controller,简称RNC)、还可指未来新的通信系统中控制管理基站的装置。
本发明实施例中的网络侧network是指为终端提供通信服务的通信网络,包含无线接入网的基站,还可以包含无线接入网的基站控制器,还可以包含核心网侧的设备。
本申请实施例中的终端可以指各种形式的用户设备(user equipment,简称UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,建成MS)、远方站、远程终端、移动设备、用户终端、终端设备(terminal equipment)、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称SIP)电话、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字处理(Personal Digital Assistant,简称PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land  Mobile Network,简称PLMN)中的终端设备等,本申请实施例对此并不限定。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/“,表示前后关联对象是一种“或”的关系。
本申请实施例中出现的“多个”是指两个或两个以上。
本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。
本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。
应理解,本申请实施例中,所述处理器可以为中央处理单元(central processing unit,简称CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,简称DSP)、专用集成电路(application specific integrated circuit,简称ASIC)、现成可编程门阵列(field programmable gate array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,简称ROM)、可编程只读存储器(programmable ROM,简称PROM)、可擦除可编程只读存储器(erasable PROM,简称EPROM)、电可擦除可编程只读存储器(electrically EPROM,简称EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存 取存储器(random access memory,简称RAM)可用,例如静态随机存取存储器(static RAM,简称SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,简称DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,简称DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法、装置和系统,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的;例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式;例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以 是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (11)

  1. 一种DCI检测方法,其特征在于,包括:
    确定当前DRX周期的长度类型;
    在服务小区的激活BWP内,根据所述当前DRX周期的长度类型在该激活BWP对应的所有搜索空间集组中选取当前长度类型对
    应的搜索空间集组;
    在选取的搜索空间集组检测DCI。
  2. 根据权利要求1所述的DCI检测方法,其特征在于,激活BWP对应的搜索空间集组的数量与DRX周期的长度类型数量是相同的,所述当前DRX周期的长度类型以所述当前DRX周期在所有DRX周期中按照周期长度的排序来表示,所述根据所述当前DRX周期的长度类型在所有搜索空间集组中选取搜索空间集组包括:
    按照每个时隙或每个跨度各个搜索空间集组的检测次数对所有搜索空间集组进行排序;
    选取排序与所述当前DRX周期在所有DRX周期中的排序相同的搜索空间集组。
  3. 根据权利要求1所述的DCI检测方法,其特征在于,DRX周期的长度类型包括DRX长周期和DRX短周期,激活BWP对应的搜索空间集组的数量为两个,所述根据所述当前DRX周期的长度类型在所有搜索空间集组中选取搜索空间集组包括:
    如果所述当前DRX周期的长度类型为所述DRX短周期,则选取所述两个搜索空间集组中每个时隙或每个跨度检测次数较多的搜索空间集组。
  4. 根据权利要求3所述的DCI检测方法,其特征在于,还包括:
    如果在预设数量个DRX短周期内未获得调度,或者连续预设数量 个DRX短周期内未获得调度,则选取两个搜索空间集组中每个时隙或每个跨度检测次数较少的搜索空间集组,并在选取的搜索空间集组继续检测DCI。
  5. 根据权利要求1所述的DCI检测方法,其特征在于,DRX周期的长度类型包括DRX长周期和DRX短周期,激活BWP对应的搜索空间集组的数量为两个,所述根据所述当前DRX周期的长度类型在所有搜索空间集组中选取搜索空间集组包括:
    如果所述当前DRX周期为所述DRX长周期,则选取两个搜索空间集组中每个时隙或每个跨度检测次数较少的搜索空间集组。
  6. 根据权利要求1所述的DCI检测方法,其特征在于,DRX周期的长度类型包括DRX长周期和DRX短周期,在所述激活BWP中,所述DRX短周期对应两个搜索空间集组,所述根据所述当前DRX周期的长度类型在所有搜索空间集组中选取搜索空间集组包括:
    在初始的预设数量个DRX短周期内选取对应的两个搜索空间集组中检测次数较多的搜索空间集组;
    如果在所述预设数量个DRX短周期内未获得调度,或者连续预设数量个DRX短周期内未获得调度,或者在初始的预设数量个DRX短周期之后,则选取对应的两个搜索空间集组中每个时隙或每个跨度检测次数较少的搜索空间集组。
  7. 根据权利要求1所述的DCI检测方法,其特征在于,所述确定当前DRX周期的长度类型之前包括:
    接收网络侧发送的DRX周期的长度类型与所述搜索空间集组的关联关系;
    所述根据所述当前DRX周期的长度类型在该BWP对应的所有搜索空间集组中选取搜索空间集组包括:
    根据所述当前DRX周期的长度类型以及所述关联关系选取对应的 搜索空间集组。
  8. 根据权利要求1所述的DCI检测方法,其特征在于,所述在选取的搜索空间集组检测DCI包括:
    在所述服务小区的激活BWP中检测DCI;
    或者,在所有服务小区的激活BWP中检测DCI。
  9. 一种DCI检测装置,其特征在于,包括:
    周期类型确定模块,用于确定当前DRX周期的长度类型;
    搜索空间集组选取模块,用于在服务小区的激活BWP内,根据所述当前DRX周期的长度类型在该激活BWP对应的所有搜索空间集组中选取当前长度类型对应的搜索空间集组;
    DCI检测模块,用于在选取的搜索空间集组检测DCI。
  10. 一种存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器运行时执行权利要求1至8中任一项所述DCI检测方法的步骤。
  11. 一种用户设备,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求1至8中任一项所述DCI检测方法的步骤。
PCT/CN2021/131139 2020-12-14 2021-11-17 Dci检测方法及装置、存储介质、用户设备 WO2022127493A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011467470.0 2020-12-14
CN202011467470.0A CN114629611A (zh) 2020-12-14 2020-12-14 Dci检测方法及装置、存储介质、用户设备

Publications (1)

Publication Number Publication Date
WO2022127493A1 true WO2022127493A1 (zh) 2022-06-23

Family

ID=81897141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131139 WO2022127493A1 (zh) 2020-12-14 2021-11-17 Dci检测方法及装置、存储介质、用户设备

Country Status (2)

Country Link
CN (1) CN114629611A (zh)
WO (1) WO2022127493A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020001123A1 (zh) * 2018-06-26 2020-01-02 Oppo广东移动通信有限公司 一种下行控制信道的检测方法及装置、终端设备
WO2020034218A1 (zh) * 2018-08-17 2020-02-20 Oppo广东移动通信有限公司 非连续传输的方法和设备
WO2020064908A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive control-resource-set (coreset) and/or search-space configuration
CN111757473A (zh) * 2019-03-28 2020-10-09 中国移动通信有限公司研究院 一种基于带宽部分的终端节能方法
CN111867019A (zh) * 2019-04-30 2020-10-30 中国移动通信有限公司研究院 信息传输方法、装置、相关设备及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117528805A (zh) * 2018-08-10 2024-02-06 华为技术有限公司 一种通信方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020001123A1 (zh) * 2018-06-26 2020-01-02 Oppo广东移动通信有限公司 一种下行控制信道的检测方法及装置、终端设备
WO2020034218A1 (zh) * 2018-08-17 2020-02-20 Oppo广东移动通信有限公司 非连续传输的方法和设备
WO2020064908A1 (en) * 2018-09-28 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive control-resource-set (coreset) and/or search-space configuration
CN111757473A (zh) * 2019-03-28 2020-10-09 中国移动通信有限公司研究院 一种基于带宽部分的终端节能方法
CN111867019A (zh) * 2019-04-30 2020-10-30 中国移动通信有限公司研究院 信息传输方法、装置、相关设备及存储介质

Also Published As

Publication number Publication date
CN114629611A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2019128580A1 (zh) 控制信道配置及检测方法和装置、程序及介质
US20220006602A1 (en) Discontinuous Reception for Carrier Aggregation
CN113347743A (zh) 在lte许可协助接入操作中的drx处理
WO2020145869A1 (en) Wake-up signal (wus) controlled actions
WO2020220929A1 (zh) 物理下行控制信道的监听方法、装置及设备
WO2012139272A1 (en) Method and apparatus for providing for discontinuous reception via cells having different time division duplex subframe configurations
WO2020019235A1 (zh) 传输信号的方法、网络设备和终端设备
US20220104122A1 (en) Selective Cross-Slot Scheduling for NR User Equipment
EP3614609A1 (en) Signal transmission method and apparatus
CN111436085B (zh) 通信方法及装置
US20210337477A1 (en) Communication method and apparatus
WO2020030167A1 (zh) 信号的发送、接收方法、装置、存储介质及处理装置
US20220369418A1 (en) Methods and devices for signal processing
WO2019153201A1 (zh) 一种信道检测方法及装置、计算机存储介质
US20210168809A1 (en) Communication method, device, and apparatus
WO2021206625A1 (en) Beam failure recovery in multi-cell configuration
WO2019000364A1 (zh) 一种通信方法及装置
EP4009555A1 (en) Information transmission method and apparatus, terminal, and network device
WO2022127493A1 (zh) Dci检测方法及装置、存储介质、用户设备
WO2020221253A1 (zh) 由用户设备执行的方法以及用户设备
WO2022127490A1 (zh) 搜索空间集组切换方法及装置、存储介质、用户设备、基站
WO2021031045A1 (zh) 一种通信方法及装置
CN116711396A (zh) 用于增强的ue功率节省的5g nr trs/csi-rs信令方面
WO2021159378A1 (zh) 一种反馈方法及装置、终端设备、网络设备
WO2023201662A1 (en) Wireless communication method and device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905422

Country of ref document: EP

Kind code of ref document: A1