WO2022127287A1 - 风轮、风机以及空调器 - Google Patents

风轮、风机以及空调器 Download PDF

Info

Publication number
WO2022127287A1
WO2022127287A1 PCT/CN2021/121842 CN2021121842W WO2022127287A1 WO 2022127287 A1 WO2022127287 A1 WO 2022127287A1 CN 2021121842 W CN2021121842 W CN 2021121842W WO 2022127287 A1 WO2022127287 A1 WO 2022127287A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
outer edge
suction surface
hub
grooves
Prior art date
Application number
PCT/CN2021/121842
Other languages
English (en)
French (fr)
Inventor
李跃飞
刘乃桐
苏起钦
余东东
王其桢
杨峰
詹镇江
陈维涛
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202023083750.XU external-priority patent/CN213928874U/zh
Priority claimed from CN202023086217.9U external-priority patent/CN214404097U/zh
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Priority to EP21905216.4A priority Critical patent/EP4265914A4/en
Publication of WO2022127287A1 publication Critical patent/WO2022127287A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/306Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the suction side of a rotor blade

Definitions

  • the present application relates to the technical field of fans, and in particular, to a fan wheel, a fan and an air conditioner.
  • the suction surface of the wind rotor blade is usually dominated by a smooth curved surface.
  • the axial flow fan of the outdoor unit of the air conditioner is usually required to have excellent aerodynamic performance and less noise, the chord length of the middle and outer edge of the wind rotor blade is often large, which leads to the suction surface of the blade being prone to airflow separation. phenomenon, which in turn affects the aerodynamic efficiency of the axial flow fan and causes the noise generated by the axial flow fan to increase.
  • the main technical problem to be solved by the present application is to provide a wind wheel, a fan and an air conditioner, which can improve the separation of airflow on the suction surface of the blade.
  • the wind wheel includes a hub.
  • the wind wheel also includes a blade, the blade has a blade root, an outer edge and a suction surface, the blade root is connected to the hub, the outer edge is away from the hub relative to the blade root, and the suction surface is respectively connected to the blade root and the outer edge.
  • the wind wheel further includes at least two first grooves, the at least two first grooves are arranged on the suction surface near the outer edge, and the at least two first grooves are distributed in sequence along the extending direction of the outer edge.
  • the blade further has a pressure surface, the pressure surface and the suction surface are arranged opposite to each other, and the groove bottom of the first groove is closer to the pressure surface than the suction surface.
  • the length L1 of the first groove and the distance L2 between adjacent first grooves have the following relationship: 0.1 ⁇ L1/L2 ⁇ 2.
  • the suction surface includes a first area, and at least two first grooves are provided in the first area;
  • the wind wheel defines a first circumference and a second circumference, and the first circumference is centered on the center of the hub , take the maximum distance from the blade to the center as the radius, the second circumference takes the center of the hub as the center, and the minimum distance from the edge of the first area close to the hub to the center as the radius, the diameter D1 of the first circumference and the diameter D2 of the second circumference Has the following relationship: 0.9 ⁇ D2/D1 ⁇ 0.99.
  • the wind wheel includes at least two sets of first groove groups, each group of first groove groups respectively includes at least two first grooves, and the at least two groups of first groove groups are along the blade root The directions toward the outer edge are sequentially spaced.
  • the blade further has a leading edge and a trailing edge, the leading edge and the trailing edge are arranged oppositely, the leading edge is respectively connected to the blade root and the outer edge, and the trailing edge is respectively connected to the blade root and the outer edge;
  • the concave structure is concave toward the leading edge, and the concave structure is provided through the blade along the thickness direction of the blade.
  • the suction surface includes a second area, and the second area is provided with a concave structure;
  • the wind wheel defines a first circumference and a third circumference, and the first circumference takes the center of the hub as the center, and takes the blade to the center
  • the maximum distance is the radius
  • the third circle takes the center of the hub as the center
  • the minimum distance from the edge of the second area close to the hub to the center is the radius
  • the diameter D1 of the first circle and the diameter D3 of the third circle have the following relationship: 0.5 ⁇ D3/D1 ⁇ 0.95.
  • the rotor includes a plurality of second grooves, the plurality of second grooves are disposed on the suction surface, and the plurality of second grooves are closer to the blade root than the at least two first grooves.
  • the blade further has a leading edge, and two ends of the leading edge are respectively connected to the blade root and the outer edge;
  • the wind wheel includes a protrusion, the protrusion is disposed on the suction surface, and the protrusion is close to the outer edge and the front edge.
  • the rim is disposed, wherein at least two of the first grooves are closer to the outer rim than the protrusions.
  • the number of protrusions is at least two, and the at least two protrusions are spaced apart from each other along a direction close to the outer edge.
  • the protrusion extends in a direction away from the leading edge.
  • the rotor includes a feature structure layer, the feature structure layer is disposed on the suction surface, the feature structure layer includes at least two feature structures, and the at least two feature structures are sequentially distributed along the direction of the blade root toward the outer edge.
  • the number of the characteristic structure layers is at least two layers, and the at least two characteristic structure layers are distributed layer by layer along the direction away from the leading edge, wherein the thickness of the blade at the position of the characteristic structure layer is along the direction away from the leading edge. direction decreases layer by layer.
  • the diameter D1 of the rotor and the diameter D4 of the hub have the following relationship: 0.2 ⁇ D4/D1 ⁇ 0.4.
  • the fan includes a wind wheel, and the wind wheel includes a hub.
  • the wind wheel also includes a blade, the blade has a blade root, an outer edge and a suction surface, the blade root is connected to the hub, the outer edge is away from the hub relative to the blade root, and the suction surface is respectively connected to the blade root and the outer edge.
  • the wind wheel further includes at least two first grooves, the at least two first grooves are arranged on the suction surface near the outer edge, and the at least two first grooves are distributed in sequence along the extending direction of the outer edge.
  • the air conditioner includes a fan, the fan includes a wind wheel, and the wind wheel includes a hub.
  • the wind wheel also includes a blade, the blade has a blade root, an outer edge and a suction surface, the blade root is connected to the hub, the outer edge is away from the hub relative to the blade root, and the suction surface is respectively connected to the blade root and the outer edge.
  • the wind wheel further includes at least two first grooves, the at least two first grooves are arranged on the suction surface near the outer edge, and the at least two first grooves are distributed in sequence along the extending direction of the outer edge.
  • the present application provides a wind wheel, a fan and an air conditioner.
  • the wind wheel includes at least two first grooves, the at least two first grooves are arranged on the suction surface close to the outer edge, and the at least two first grooves are sequentially spaced along the extending direction of the outer edge,
  • the suction surface of the blade presents an uneven surface morphology, thereby improving the airflow separation on the suction surface of the blade.
  • the above-mentioned at least two first grooves of the present application are arranged at the position close to the outer edge of the suction surface, which can further improve the suction surface of the blade.
  • Fig. 1 is the structural schematic diagram of the first embodiment of the rotor of the present application
  • Fig. 2 is the side view structure schematic diagram of the wind wheel shown in Fig. 1;
  • Fig. 3 is the enlarged structural schematic diagram of the rotor A region shown in Fig. 1;
  • Fig. 4 is the structural schematic diagram of the second embodiment of the rotor of the present application.
  • Fig. 5 is the structural schematic diagram of the third embodiment of the rotor of the present application.
  • Fig. 6 is the structural schematic diagram of the fourth embodiment of the rotor of the present application.
  • FIG. 7 is a schematic structural diagram of an embodiment of the cross-sectional structure in the direction B-B of the wind rotor shown in FIG. 6;
  • Fig. 8 is the enlarged structural schematic diagram of the region C of the wind wheel shown in Fig. 6;
  • FIG. 10 is a schematic diagram of the relationship between the distance between the corresponding positions of any adjacent two feature structures in each feature structure layer of the present application and the noise;
  • FIG. 11 is a schematic structural diagram of the fifth embodiment of the rotor of the present application.
  • FIG. 12 is a schematic structural diagram of an embodiment of a fan of the present application.
  • FIG. 13 is a schematic diagram of the comparison between the fan of the present application and the traditional fan with respect to the relationship between air volume and noise;
  • FIG. 14 is a schematic diagram of the comparison between the fan of the present application and the traditional fan with respect to the relationship between air volume and power;
  • Figure 15 is a schematic diagram of the comparison of the noise of the fan of the present application and the traditional fan with respect to the noise at each frequency;
  • FIG. 16 is a schematic structural diagram of an embodiment of an air conditioner of the present application.
  • an embodiment of the present application provides a wind rotor.
  • the wind wheel includes a hub.
  • the wind wheel also includes a blade, the blade has a blade root, an outer edge and a suction surface, the blade root is connected to the hub, the outer edge is away from the hub relative to the blade root, and the suction surface is respectively connected to the blade root and the outer edge.
  • the wind wheel further includes at least two first grooves, the at least two first grooves are arranged on the suction surface near the outer edge, and the at least two first grooves are distributed in sequence along the extending direction of the outer edge. Details are described below.
  • FIG. 1 is a schematic structural diagram of the first embodiment of the wind rotor of the present application
  • FIG. 2 is a side view structural schematic diagram of the wind rotor shown in FIG. 1 .
  • the rotor 10 includes a hub 11 and blades 12 connected to the hub 11 .
  • the number of the blades 12 is one or more, and the blades 12 are sequentially spaced along the circumferential direction of the hub 11 .
  • the hub 11 is used for driving connection with a driving device such as a motor, so as to drive the hub 11 to rotate around the central axis of the hub 11 through the driving device, thereby driving the blades 12 connected to the hub 11 to rotate around the central axis of the hub 11 to generate wind flow.
  • a driving device such as a motor
  • Each blade 12 has a root 121 , an outer edge 122 , a leading edge 123 , a trailing edge 124 , a pressure surface 125 and a suction surface 126 , respectively.
  • the blade root 121 of the blade 12 is connected to the hub 11 , and the edge of the blade 12 opposite to the blade root 121 is the outer edge 122 .
  • the leading edge 123 and the trailing edge 124 of the blade 12 are disposed opposite to each other, and the two ends of the leading edge 123 are respectively connected to the blade root 121 and the outer edge 122 , and the two ends of the trailing edge 124 are also connected to the blade root 121 and the outer edge 122 respectively.
  • the blade 12 moves The resulting circumferential wind flow flows from the leading edge 123 to the trailing edge 124 of the blade 12 .
  • the pressure surface 125 and the suction surface 126 of the blade 12 are arranged opposite to each other, and the axial wind flow caused by the movement of the blade 12 flows from the side where the suction surface 126 is located to the side where the pressure surface 125 is located.
  • the diameter D1 of the wind rotor 10 and the diameter D4 of the hub 11 have the following relationship: 0.2 ⁇ D4/D1 ⁇ 0.4.
  • the wind rotor 10 in this embodiment may be an axial flow wind rotor.
  • Axial flow rotors are widely used in air conditioners and various ventilation and heat dissipation scenarios due to their large air volume, low noise and low pressure.
  • the design of an axial fan greatly affects the efficiency and noise of the axial fan in which it is applied. With the improvement of energy efficiency requirements for air conditioners, the requirements for the efficiency of axial fans are also increasing, which usually require low noise and high efficiency of axial fans.
  • the axial flow fan is a key part in the outdoor unit of the air conditioner. The performance of the axial flow fan has a great influence on the performance of the air conditioner.
  • the axial flow fan is usually used in conjunction with the motor, so it is necessary to fully consider the optimal working speed of the motor and The load capacity of the motor can ensure that the designed axial flow fan has high efficiency.
  • the suction surface of the blade is usually dominated by a smooth curved surface. Keeping the suction surface smooth helps reduce the friction loss of the blade and helps avoid unnecessary Aerodynamic noise.
  • the chord length of the middle and outer edge of the blade is often large, and because the suction surface of the blade of the traditional axial flow rotor is usually a smooth curved surface, this As a result, when the airflow flows through the surface of the blade, a boundary layer will be formed on the surface of the blade due to the action of viscous force, and the thickness of the boundary layer will gradually increase along the flow direction of the airflow, and a back pressure gradient will be generated in the boundary layer.
  • the traditional axial-flow wind turbine is often realized by adjusting the installation angle of the blade.
  • This method is relatively simple and can achieve better results in some specific cases.
  • adjusting the installation angle will cause the aerodynamic performance of the rotor to decrease, or even seriously deteriorate.
  • it is easy to cause obvious changes in the axial dimension of the wind wheel, which cannot meet the needs of practical application of air-conditioning products.
  • the traditional axial flow fan usually designs the blade as a single arc structure of equal thickness, and the blade section no longer adopts the airfoil design, which reduces the weight of the wind rotor and reduces the The fan load is increased, but the noise of the fan is increased, and the strength of the wind rotor is also weakened, and the wind rotor blades are prone to stability problems such as fracture due to the weakened strength.
  • the wind wheel 10 of this embodiment further includes at least two first grooves 13 .
  • the at least two first grooves 13 are disposed on the suction surface 126 near the outer edge 122 , and the at least two first grooves 13 are sequentially spaced along the extending direction of the outer edge 122 .
  • the above-mentioned at least two first grooves 13 make the suction surface 126 of the blade 12 present an uneven surface morphology, which is helpful for introducing high-energy fluid into the boundary layer, so that the boundary layer flow in the reverse pressure gradient is After the field obtains additional energy, it can continue to be attached to the suction surface 126 of the blade 12, so as to achieve the effect of delaying the airflow separation of the suction surface 126, thereby improving the airflow separation of the suction surface 126 of the blade 12, which is conducive to improving the air flow of the wind rotor 10. Aerodynamic efficiency and noise reduction.
  • the suction surface 126 of the blade 12 is close to the outer edge 122, the airflow velocity is relatively fast, and the situation of airflow separation is more serious. Therefore, the above-mentioned at least two first grooves 13 in this embodiment are provided on the suction surface 126 close to The position of the outer edge 122 can make the position on the suction surface 126 close to the outer edge 122 present an uneven surface morphology, which is helpful to further improve the airflow separation of the suction surface 126 of the blade 12 .
  • the groove bottom of the first groove 13 is closer to the pressure surface 125 than the suction surface 126 , that is, the first groove 13 is formed by the suction surface 126 concave toward the pressure surface 125 .
  • the first groove 13 is formed by partially missing the blade 12 at the position of the first groove 13 on the suction surface 126 . In this way, by arranging the first groove 13, the weight of the blade 12 can be reduced, which is beneficial to reduce the load of the fan to which the wind wheel 10 of this embodiment is applied, and thus is beneficial to improve the efficiency of the fan.
  • FIG. 3 is an enlarged schematic structural diagram of the area A of the wind wheel shown in FIG. 1 .
  • the length of the first groove 13 is defined as the chord length corresponding to the position of the first groove 13
  • the distance between the adjacent first grooves 13 in the at least two first grooves 13 is defined as The minimum distance between mutually adjacent ends of adjacent first grooves 13 .
  • the length L1 of the first grooves 13 and the distance L2 between the adjacent first grooves 13 have the following relationship: 0.1 ⁇ L1/L2 ⁇ 2, as shown in FIG. 3 .
  • the at least two first grooves 13 have a reasonable distribution density on the suction surface 126 of the blade 12 , which is beneficial to ensure the effect of the at least two first grooves 13 to disperse the eddy current at the outer edge 122 .
  • the phenomenon of air flow separation on the suction surface 126 of the blade 12 can be suppressed, which is further beneficial to improve the aerodynamic efficiency of the wind rotor 10 and reduce the noise.
  • the effect of the vortex at the position 122 can minimize the phenomenon of airflow separation on the suction surface 126 of the blade 12, which is further beneficial to improve the aerodynamic efficiency of the rotor 10 and reduce noise.
  • the above-mentioned preferred dimension relationship can be reasonably selected according to the specific design of the wind rotor 10 .
  • the suction surface 126 of the blade 12 includes a first area 127 , and the at least two first grooves 13 are provided in the first area 127 .
  • the wind rotor 10 is defined with a first circumference (as shown in the circle ⁇ 1 in FIG. 1 , the same below) and a second circumference (as shown in the circumference ⁇ 2 in FIG. 1 , the same below), and the suction surface 126 is located on the first circumference and the second circumference.
  • the area between the two circles is the first area 127 .
  • the first circumference and the second circumference are concentric circles with the center of the hub 11 as the center of the circle, and the plane where the first circumference is located and the plane where the second circumference is located are both perpendicular to the central axis of the hub 11, and the central axis of the hub 11 through the center of the hub 11.
  • the first circumference takes the center of the hub 11 as the center of the circle, and takes the maximum distance from the blade 12 to the center of the hub 11 as the radius.
  • the second circumference takes the center of the hub 11 as the center of the circle, and takes the minimum distance from the edge of the first region 127 close to the hub 11 to the center of the hub 11 as the radius.
  • the diameter of the first circumference is the diameter of the wind wheel 10 .
  • the diameter D1 of the first circumference and the diameter D2 of the second circumference have the following relationship: 0.9 ⁇ D2/D1 ⁇ 0.99, as shown in FIG. 1 .
  • the at least two first grooves 13 can be arranged as close to the outer edge 122 of the blade 12 as possible, so as to improve the air flow separation on the suction surface 126 of the blade 12 near the outer edge 122 .
  • FIG. 4 is a schematic structural diagram of the second embodiment of the wind wheel of the present application.
  • the wind rotor 10 includes at least two sets of first groove groups 131 .
  • Each of the first groove groups 131 includes the above-mentioned at least two first grooves 13 respectively.
  • the at least two first groove groups 131 are distributed in sequence along the direction of the blade root 121 toward the outer edge 122 at intervals. In this way, by arranging at least two sets of first groove groups 131 on the suction surface 126 near the outer edge 122, the suction surface 126 of the blade 12 can be further rendered uneven surface morphology, which is further conducive to improving the performance of the suction surface 126. The effect of dispersing the vortex at the position of the outer edge 122 is further beneficial to improve the airflow separation of the suction surface 126 .
  • the trailing edge 124 of the blade 12 is provided with a concave structure recessed toward the leading edge 123 , and the concave structure is disposed throughout the blade 12 along the thickness direction of the blade 12 .
  • the thickness direction of the blade 12 can be understood as a direction perpendicular to the suction surface 126 and the pressure surface 125 of the blade 12 .
  • the concave structure can not only reduce the weight of the blade 12 to reduce the load of the fan applying the wind wheel 10 of this embodiment, but also reduce the eddy current loss at the position of the trailing edge 124 of the blade 12, thereby reducing the vibration and the vibration of the wind wheel 10 during operation. noise.
  • the recessed structure includes at least one of the first recessed structure 141 and the second recessed structure 142 .
  • the number of the first concave structures 141 is plural, and the plurality of first concave structures 141 are arranged side by side along the extending direction of the rear edge 124 in a zigzag shape; the second concave structures 142 are concave toward the front edge 123 to a greater degree than the first
  • the extent to which the recessed structure 141 is recessed toward the front edge 123 that is, the end of the second recessed structure 142 toward the front edge 123 is closer to the front edge 123 than the end of the first recessed structure 141 toward the front edge 123 .
  • first recessed structure 141 is close to the outer edge 122 of the blade 12 relative to the second recessed structure 142 , which is only for discussion purposes, not for the relative position between the first recessed structure 141 and the second recessed structure 142 Relationships limit.
  • the suction surface 126 of the blade 12 includes a second region 128 , and the second region 128 is provided with a concave structure.
  • the first concave structure 141 is provided in the second region 128 of the suction surface 126 .
  • the wind rotor 10 defines a first circumference and a third circumference (as shown in the circumference ⁇ 3 in FIG.
  • the first concave structure 141 is provided in the area of the suction surface 126 between the first circumference and the third circumference
  • the second concave structure 142 is provided in the area of the suction surface 126 between the third circumference and the hub 11 . It can be seen from FIG. 1 that the above-mentioned first area 127 is located in the second area 128 .
  • the first circumference and the third circumference are concentric circles centered on the center of the hub 11 , and the planes on which the first circumference and the third circumference lie are both perpendicular to the central axis of the hub 11 .
  • the first circumference takes the center of the hub 11 as the center of the circle, and takes the maximum distance from the blade 12 to the center of the hub 11 as the radius.
  • the third circumference takes the center of the wheel hub 11 as the center of the circle, and the radius is the minimum distance from the edge of the second region 128 close to the wheel hub 11 to the center of the wheel hub 11 .
  • the diameter D1 of the first circumference and the diameter D3 of the third circumference have the following relationship: 0.5 ⁇ D3/D1 ⁇ 0.95, as shown in FIG. 1 .
  • the position of the first concave structure 141 on the suction surface 126 of the blade 12 can be reasonably selected, which is beneficial to ensure the effect of the first concave structure 141 to reduce the eddy current loss at the position of the trailing edge 124 of the blade 12, and is further beneficial to reduce Vibration and noise of the wind turbine 10 during operation.
  • the rotor 10 further includes a plurality of second grooves 15 , and the plurality of second grooves 15 are disposed on the suction surface 126 of the blade 12 . Moreover, the plurality of second grooves 15 are closer to the blade root 121 of the blade 12 than the at least two first grooves 13 mentioned above.
  • the second groove 15 is formed by the way that the suction surface 126 is recessed toward the pressure surface 125 , or it is understood that the second groove 15 is formed by partially missing the blade 12 at the position of the second groove 15 on the suction surface 126 .
  • the second groove 15 can not only reduce the weight of the wind rotor 10 to reduce the load of the wind turbine to which the wind rotor 10 of this embodiment is applied, which is beneficial to reduce the material cost and improve the efficiency of the wind turbine, but also can improve the suction force of the blade 12 In the case where the air flow on the surface 126 is separated, the eddy current loss of the suction surface 126 is reduced, thereby reducing the vibration and noise of the wind turbine 10 during operation.
  • the number of the second grooves 15 is one or two or more, which is not limited herein.
  • the wind wheel provided by the present application includes at least two first grooves, the at least two first grooves are arranged on the suction surface near the outer edge, and the at least two first grooves are The grooves are distributed at intervals along the extending direction of the outer edge, so that the suction surface of the blade presents an uneven surface morphology, thereby improving the airflow separation on the suction surface of the blade.
  • the above-mentioned at least two first grooves of the present application are arranged at the position close to the outer edge of the suction surface, which can further improve the suction surface of the blade.
  • FIG. 5 is a schematic structural diagram of the third embodiment of the wind wheel of the present application.
  • the rotor 10 of this embodiment further includes a protrusion 16 , the protrusion 16 is protruded on the suction surface 126 , and the protrusion 16 is disposed near the outer edge 122 and the front edge 123 .
  • the junction of the outer edge 122 and the leading edge 123 of the blade 12 forms the blade tip of the blade 12, and the protrusion 16 is provided at the blade tip position formed by the outer edge 122 and the leading edge 123, which can break up the eddy current at the blade tip position, and
  • the suction surface 126 of the blade 12 can be made to present an uneven surface morphology, thereby improving the airflow separation of the suction surface 126 of the blade 12 .
  • the protrusion 16 in this embodiment is arranged close to the outer edge 122, which is beneficial to improve the protrusion 16
  • the effect of dispersing eddy currents and suppressing airflow separation is further beneficial to improve the airflow separation of the suction surface 126 of the blade 12 .
  • the protrusions 16 are provided on the second area 128 on the suction surface 126 described in the above embodiments. In this way, the protrusions 16 are arranged as close to the outer edge 122 of the blades 12 as possible, so as to ensure that the protrusions 16 can disperse eddy currents and suppress airflow separation, which is further beneficial to improve the airflow separation of the suction surfaces 126 of the blades 12 .
  • the second region 128 has been described in detail in the above embodiments, and will not be repeated here.
  • the wind wheel 10 described in this embodiment may also be provided with the first grooves 13 described in the above-mentioned embodiments, so as to pass the protrusions 16 and the first grooves.
  • the grooves 13 cooperate to improve the airflow separation of the suction surfaces 126 of the blades 12 .
  • FIG. 5 shows that the suction surface 126 of the blade 12 is provided with a protrusion 16 and a first groove 13 , wherein the first groove 13 is closer to the outer edge 122 of the blade 12 than the protrusion 16 .
  • the number of protrusions 16 is at least two, and the at least two protrusions 16 are spaced apart from each other in a direction close to the outer edge 122 , so that the airflow generated from the leading edge 123 of the blade 12 receives a larger number of protrusions 16, so as to further improve the effect of the protrusion 16 to disperse the eddy current at its location.
  • the protrusions 16 extend in a direction away from the leading edge 123 of the blade 12. While ensuring the effect of the protrusions 16 to disperse the eddy current and suppress the separation of the air flow, the protrusions 16 as designed are conducive to optimizing the flow pattern of the air flow, and further. It is beneficial to reduce the eddy current loss on the suction surface 126 and reduce the vibration and noise of the wind turbine 10 during operation.
  • the rotor 10 also includes a feature layer 17 .
  • the feature layer 17 is provided on the suction surface 126 of the blade 12 .
  • the feature structure layers 17 respectively include at least two feature structures 171 , and the at least two feature structures 171 are sequentially distributed along the direction from the blade root 121 to the outer edge 122 of the blade 12 .
  • the number of characteristic structure layers 17 is at least two layers, and the at least two layers of characteristic structure layers 17 are distributed layer by layer along the direction away from the leading edge 123 of the blade 12 .
  • the suction surface 126 of the blade 12 is provided with a protrusion 16, a first groove 13, and a feature layer 17.
  • the first groove 13 is close to the outer edge 122 of the blade 12 relative to the protrusion 16 and the feature layer 17.
  • the structure layer 17 is close to the trailing edge 124 of the blade 12 relative to the protrusion 16 , and the trailing edge 124 of the blade 12 is further provided with the first concave structure 141 described in the above embodiments.
  • the design of the above-mentioned characteristic structure layer 17 is similar to bird feathers or fish scales, etc., so that the suction surface 126 of the blade 12 presents an uneven surface morphology, which is helpful for introducing high-energy fluid into the boundary.
  • the boundary layer flow field in the reverse pressure gradient can continue to adhere to the suction surface 126 of the blade 12, so as to achieve the effect of delaying the airflow separation of the suction surface 126, thereby improving the suction surface of the blade 12.
  • the air flow is separated, which further helps to improve the aerodynamic efficiency and reduce the noise of the fan to which the fan wheel 10 of this embodiment is applied.
  • FIG. 6 is a schematic structural diagram of a fourth embodiment of the wind rotor of the present application
  • FIG. 7 is a structural schematic diagram of an embodiment of the cross-sectional structure of the wind rotor shown in FIG. 6 in the direction B-B.
  • FIG. 6 only shows one blade 12 of the complete wind wheel 10 and a part of the hub 11 to which it is connected.
  • the thickness of the blade 12 at the position of the above-mentioned characteristic structure layer 17 decreases layer by layer along the direction close to the trailing edge 124 of the blade 12 , so that the thickness of the blade 12 is obtained
  • Thinning can reduce the weight of the blade 12, which is beneficial to improve the aerodynamic performance of the wind rotor 10, and the layer-by-layer thinning of the thickness of the blade 12 also helps to introduce high-energy fluid into the boundary layer, so that the boundary layer in the reverse pressure gradient is After the flow field obtains additional energy, it can continue to be attached to the suction surface 126 of the blade 12 , thereby achieving the effect of delaying the airflow separation of the suction surface 126 .
  • each feature structure layer 17 (as shown by the thickness h in FIG. 7 ) is set differently, so that the thickness of the blade 12 can be reduced to different degrees, so that according to the requirements for the aerodynamic performance of the wind wheel 10, Reasonable selection of the thinning degree of the blade 12 can ensure that the weight of the blade 12 can be reduced, the strength of the blade 12 itself will not be significantly affected, and the requirements for the aerodynamic performance of the wind rotor 10 can also be met.
  • the thickness h of the feature structure layer 17 decreases layer by layer along the direction close to the trailing edge 124 of the blade 12, as shown in FIG. 6 and FIG. The weight of the blade 12 is reduced.
  • the thickness of the feature structure layer 17 increases layer by layer along the direction close to the trailing edge 124 of the blade 12, which is not limited herein.
  • the thickness of the characteristic structure layer 17 is the characteristic structure adjacent to the characteristic structure layer 17 and relatively close to the trailing edge 124 of the blade 12 on the basis of the thickness of the blade 12 at the position of the characteristic structure layer 17 .
  • the characteristic structure layer ⁇ and the characteristic structure layer ⁇ are adjacent, and the characteristic structure layer ⁇ is close to the trailing edge 124 of the blade 12 relative to the characteristic structure layer ⁇ , and the thickness of the characteristic structure layer ⁇ is where the characteristic structure layer ⁇ is located.
  • the thinned thickness of the blade 12 at the position of the characteristic structure layer ⁇ that is, on the basis of the thickness of the blade 12 at the position of the characteristic structure layer ⁇ , the position of the characteristic structure layer ⁇ .
  • the blade 12 at is further thinned by a thickness h of the feature layer ⁇ .
  • the at least two layers of feature structure layers 17 are on the suction surface.
  • 126 is set close to the trailing edge 124 of the blade 12, so that the position on the suction surface 126 of the blade 12 close to the trailing edge 124 presents a non-smooth form, so as to achieve the effect of delaying the airflow separation of the suction surface 126, which can further improve the suction of the blade 12. flow separation on face 126.
  • FIG. 8 is an enlarged schematic view of the structure of the area C of the wind wheel shown in FIG. 6 .
  • the distance between adjacent feature structure layers 17 (as shown by the distance W in FIG. 8 , the same below) is 0.5 mm to 100 mm.
  • the distance between adjacent feature structure layers 17 may be the distance between corresponding positions of adjacent feature structure layers 17 .
  • the distance between adjacent feature layers 17 may be the minimum distance between the ends of the features 171 of adjacent feature layers 17 toward the trailing edge 124 .
  • the distance between the ends of the adjacent feature layers 17 near the blade root 121 is smaller than the distance between the ends of the adjacent feature layers 17 near the outer edge 122 .
  • the distance between adjacent feature layers 17 gradually increases along the direction from the root 121 to the outer edge 122 of the blade 12 to match the chord length of the blade 12 along the direction from the root 121 to the outer edge 122 of the blade 12 The direction gradually increases, so that the distance between adjacent characteristic structure layers 17 better matches the variation of the chord length of the blade 12, which is beneficial to improve the effect of the characteristic structure layer 17 in inhibiting the airflow separation of the suction surface 126 of the blade 12.
  • the above design can make the blade 12 of this embodiment have a more excellent product appearance, which is more in line with industrial design and application, and is beneficial to improve the product competitiveness of the wind rotor 10 of the embodiment of the present application.
  • the distance between adjacent feature structure layers 17 is 0.5mm to 100mm.
  • the distance between the ends of adjacent feature structure layers 17 close to the blade root 121 is preferably 30mm, and the The distance between the ends of adjacent feature layers 17 near the outer edge 122 is 50 mm. That is to say, the distance between adjacent feature structure layers 17 in the present embodiment gradually increases from 30 mm to 50 mm along the direction from the blade root 121 to the outer edge 122 of the blade 12 .
  • the distance between adjacent feature layers 17 can be further ensured to better match the variation of the chord length of the blade 12, which is beneficial to improve the effect of the feature layer 17 in restraining the airflow separation of the suction surface 126 of the blade 12, and further ensures Product appearance effect of the blade 12 .
  • Figure 9 shows the relationship between the distance W between adjacent feature layers and the noise. It can be seen that the distance between adjacent feature structure layers 17 in this embodiment is between 30 mm and 50 mm, which can ensure that the fan using the wind wheel 10 in this embodiment has less noise.
  • the distance between adjacent feature structure layers 17 may also gradually decrease in the direction from the blade root 121 to the outer edge 122 of the blade 12 , or remain unchanged.
  • the distance between the adjacent feature structure layers 17 is irregular along the direction from the blade root 121 to the outer edge 122 of the blade 12, which can improve the effect of the feature structure layer 17 in restraining the airflow separation on the suction surface 126 of the blade 12. This is not limited.
  • each feature structure layer 17 the distance between corresponding positions of any two adjacent feature structures 171 (as shown by the distance w in FIG. 8 , the same below) is 5 mm to 80 mm, wherein The distance between the corresponding positions of any adjacent two features 171 may be the distance between the ends of any adjacent two features 171 toward the trailing edge 124 .
  • the distribution form of the feature structures 171 in each feature structure layer 17 can meet the requirements, thereby ensuring the effect of the feature structure layer 17 to restrain the airflow separation of the suction surface 126 of the blade 12 .
  • the distance between the corresponding positions of any two adjacent feature structures 171 is preferably 22 mm. In this way, the effect of the feature structure layer 17 in restraining the airflow separation of the suction surface 126 of the blade 12 can be ensured to the greatest extent.
  • FIG. 10 shows the relationship between the distance w between the corresponding positions of any adjacent two feature structures in each feature structure layer and the noise. It can be seen that the distance between the corresponding positions of any adjacent two feature structures 171 in each feature structure layer 17 of the above embodiment is preferably 22 mm, which can ensure that the fan using the wind wheel 10 of this embodiment has less noise.
  • each feature structure layer 17 the distance between the corresponding positions of any two adjacent feature structures 171 may be equal, so as to ensure the effect of the feature structure layer 17 to inhibit the airflow separation of the suction surface 126 of the blade 12
  • the blade 12 has a more excellent product appearance, which is more in line with industrial design and application, it is beneficial to improve the product competitiveness of the wind rotor 10 of the embodiment of the present application.
  • the distance between the corresponding positions of any two adjacent feature structures 171 may also be set differently, and there is no regularity, which can improve the The effect of the feature structure layer 17 on restraining the airflow separation of the suction surface 126 of the blade 12 is not limited herein.
  • FIG. 11 is a schematic structural diagram of the fifth embodiment of the rotor of the present application.
  • the orthographic projection of the feature structure 171 on the reference plane is at least one of an arc, a curve, and a broken line, wherein the reference plane (as shown by plane ⁇ in FIG. 6 and FIG. 11 , the same below) ) is perpendicular to the central axis of the hub 11 (as shown by the axis O in FIG. 6 , where the axis O is perpendicular to the direction of the page shown in FIG. 6 ).
  • the blade 12 can have a more excellent product appearance, which is more in line with industrial design and application, and is beneficial to improve the product competitiveness of the wind rotor 10 of the embodiment of the present application.
  • FIG. 6 shows the case where the orthographic projection of the feature structure 171 on the reference plane ⁇ is an arc, which may further be an arc, etc.
  • the orthographic projection of the feature structure 171 on the reference plane ⁇ shown in FIG. 6 is a semicircular arc.
  • FIG. 11 shows the case where the orthographic projection of the feature 171 on the reference plane ⁇ is in the shape of a broken line.
  • the orthographic projection of the feature structure 171 on the reference plane may be other graphics, and the orthographic projection of the at least two feature structures 171 included in each feature structure layer 17 on the reference plane may be It is any combination of arc, broken line and other graphics, which is not limited here.
  • the wind wheel provided by the present application includes protrusions, the protrusions are arranged on the suction surface, and the protrusions are arranged close to the outer edge and the leading edge, and the protrusions can disperse the blades formed by the outer edge and the leading edge.
  • the vortex at the tip position can make the suction surface of the blade show uneven surface morphology, thus improving the airflow separation on the suction surface of the blade.
  • the wind wheel further includes a characteristic structure layer, the characteristic structure layer is arranged on the suction surface, and the characteristic structure layer includes at least two characteristic structures, and the at least two characteristic structures are distributed in sequence along the direction of the blade root toward the outer edge, which also helps The suction surface of the blade presents an uneven surface morphology, which is beneficial to further improve the airflow separation on the suction surface of the blade.
  • FIG. 12 is a schematic structural diagram of an embodiment of a fan of the present application.
  • the fan 100 includes a rotor 10 .
  • the wind rotor 10 has been described in detail in the above embodiments, and will not be repeated here.
  • the fan 100 further includes a driving device 20, and the driving device 20 is drivingly connected with the wind wheel 10, so as to drive the wind wheel 10 to rotate through the driving device 20, thereby generating wind flow.
  • the driving device 20 may be a motor or the like, which is not limited herein.
  • the fan 100 in this embodiment may be an axial-flow fan, and the concept and working principle of the axial-flow fan are within the understanding of those skilled in the art, and will not be repeated here.
  • the fan 100 of this embodiment can be applied to an outdoor unit of an air-conditioning system, etc., especially an outdoor unit of an air-conditioning system in a multi-connected form, which is not limited herein.
  • FIG. 13 is a schematic diagram of the comparison between the fan of the present application and the traditional fan with respect to the relationship between air volume and noise, wherein I1 expresses the relationship between the fan of the present application and the noise, and I2 expresses the traditional fan.
  • the relationship between air volume and noise It can be seen from FIG. 13 that when the fan of the present application has the same air volume as the conventional fan, the fan of the present application has less noise.
  • FIG. 14 is a schematic diagram of the comparison between the fan of the present application and the traditional fan with respect to the relationship between the air volume and power, wherein I3 expresses the relationship between the fan of the present application and the power, and I4 expresses the traditional fan.
  • the relationship between the air volume and power It can be seen from FIG. 14 that when the fan of the present embodiment has the same air volume as the traditional fan, the power of the fan of the present application is lower, which means that the power consumption of the fan of the present application is lower and the efficiency is higher.
  • FIG. 15 is a schematic diagram of the comparison between the fan of the present application and the traditional fan with respect to the noise level at each frequency point, wherein I5 expresses the noise level of the fan of the present application at each frequency point, and I6 expresses the noise level of the traditional fan at each frequency point. point noise level. It can be seen from Fig. 15 that the fan of the present application has less noise in the whole frequency band.
  • FIG. 16 is a schematic structural diagram of an air conditioner according to an embodiment of the present application.
  • the air conditioner 200 includes the fan 100 .
  • the fan 100 has been described in detail in the above embodiments, and will not be repeated here.
  • the air conditioner 200 is applied to form an air conditioning system.
  • the air conditioner 200 may be an outdoor unit of an air conditioner, for example, an outdoor unit of an air conditioner in a multi-connected form, which is not limited herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种风轮(10)、风机(100)以及空调器(200)。该风轮(10)包括轮毂(11)。该风轮(10)还包括叶片(12),叶片(12)具有叶根(121)、外缘(122)以及吸力面(126),叶根(121)连接轮毂(11),外缘(122)相对叶根(121)远离轮毂(11),吸力面(126)分别连接叶根(121)和外缘(122)。该风轮(10)还包括至少两个第一凹槽(13),该至少两个第一凹槽(13)设于吸力面(126)上靠近外缘(122)的位置,至少两个第一凹槽(13)沿外缘(122)的延伸方向依次间隔分布。

Description

风轮、风机以及空调器
本申请要求于2020年12月18日提交的申请号为202023086217.9,发明名称为“风轮、风机以及空调器”的中国专利申请的优先权;要求于2020年12月18日提交的申请号为202023083750.X,发明名称为“风轮、风机以及空调器”的中国专利申请的优先权,其通过引用方式全部并入本申请。
【技术领域】
本申请涉及风机技术领域,特别是涉及一种风轮、风机以及空调器。
【背景技术】
目前,空调室外机所应用的轴流风机,其风轮叶片的吸力面通常以光滑曲面为主。并且,由于通常要求空调室外机的轴流风机具有优良的气动性能以及较小的噪音,风轮叶片的中部以及外缘的弦长往往较大,这就导致叶片的吸力面容易发生气流分离的现象,进而对轴流风机的气动效率造成影响并且导致轴流风机工作时产生的噪音加重。
【发明内容】
有鉴于此,本申请主要解决的技术问题是提供一种风轮、风机以及空调器,能够改善叶片吸力面气流分离的情况。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种风轮。该风轮包括轮毂。该风轮还包括叶片,叶片具有叶根、外缘以及吸力面,叶根连接轮毂,外缘相对叶根远离轮毂,吸力面分别连接叶根和外缘。该风轮还包括至少两个第一凹槽,该至少两个第一凹槽设于吸力面上靠近外缘的位置,至少两个第一凹槽沿外缘的延伸方向依次间隔分布。
在本申请的一实施例中,叶片还具有压力面,压力面与吸力面相背设置,第一凹槽的槽底相对吸力面更靠近压力面。
在本申请的一实施例中,第一凹槽的长度L1与相邻第一凹槽之间的间距L2具有如下关系:0.1<L1/L2<2。
在本申请的一实施例中,第一凹槽的长度L1与相邻第一凹槽之间的间距L2具有如下关系:L1/L2=1.7,或L1/L2=0.23。
在本申请的一实施例中,吸力面包括第一区域,至少两个第一凹槽设于第一区域;风轮定义有第一圆周和第二圆周,第一圆周以轮毂的中心为圆心,以叶片至中心的最大距离为半径,第二圆周以轮毂的中心为圆心,以第一区域靠近轮毂的边缘至中心的最小距离为半径,第一圆周的直径D1与第二圆周的直径D2具有如下关系:0.9<D2/D1<0.99。
在本申请的一实施例中,第一圆周的直径D1与第二圆周的直径D2具有如下关系:D2/D1=0.93。
在本申请的一实施例中,风轮包括至少两组第一凹槽组,每组第一凹槽组分别包括至少两个第一凹槽,且至少两组第一凹槽组沿叶根朝向外缘的方向依次间隔分布。
在本申请的一实施例中,叶片还具有前缘和后缘,前缘和后缘相对设置,前缘分别连接叶根和外缘,后缘分别连接叶根和外缘;后缘设有朝向前缘凹陷的凹陷结构,凹陷结构沿叶片的厚度方向贯穿叶片设置。
在本申请的一实施例中,吸力面包括第二区域,第二区域设有凹陷结构;风轮定义有第一圆周和第三圆周,第一圆周以轮毂的中心为圆心,以叶片至中心的最大距离为半径,第三圆周以轮毂的中心为圆心,以第二区域靠近轮毂的边缘至中心的最小距离为半径,第一圆周 的直径D1与第三圆周的直径D3具有如下关系:0.5<D3/D1<0.95。
在本申请的一实施例中,第一圆周的直径D1与第三圆周的直径D3具有如下关系:D3/D1=0.78。
在本申请的一实施例中,风轮包括若干第二凹槽,若干第二凹槽设于吸力面,且若干第二凹槽相对至少两个第一凹槽更靠近叶根。
在本申请的一实施例中,叶片还具有前缘,前缘的两端分别连接叶根和外缘;风轮包括凸起,凸起凸设于吸力面,且凸起靠近外缘和前缘设置,其中至少两个第一凹槽相对凸起更靠近外缘。
在本申请的一实施例中,凸起的数量为至少两个,至少两个凸起沿靠近外缘的方向彼此间隔分布。
在本申请的一实施例中,凸起沿远离前缘的方向延伸。
在本申请的一实施例中,风轮包括特征结构层,特征结构层设于吸力面,特征结构层包括至少两个特征结构,至少两个特征结构沿叶根朝向外缘的方向依次分布。
在本申请的一实施例中,特征结构层的数量为至少两层,至少两层特征结构层沿远离前缘的方向逐层分布,其中特征结构层所在位置处的叶片的厚度沿远离前缘的方向逐层递减。
在本申请的一实施例中,风轮的直径D1与轮毂的直径D4具有如下关系:0.2<D4/D1<0.4。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种风机,该风机包括风轮,该风轮包括轮毂。该风轮还包括叶片,叶片具有叶根、外缘以及吸力面,叶根连接轮毂,外缘相对叶根远离轮毂,吸力面分别连接叶根和外缘。该风轮还包括至少两个第一凹槽,该至少两个第一凹槽设于吸力面上靠近外缘的位置,至少两个第一凹槽沿外缘的延伸方向依次间隔分布。
为解决上述技术问题,本申请采用的又一个技术方案是:提供一种空调器,该空调器包括风机,该风机包括风轮,该风轮包括轮毂。该风轮还包括叶片,叶片具有叶根、外缘以及吸力面,叶根连接轮毂,外缘相对叶根远离轮毂,吸力面分别连接叶根和外缘。该风轮还包括至少两个第一凹槽,该至少两个第一凹槽设于吸力面上靠近外缘的位置,至少两个第一凹槽沿外缘的延伸方向依次间隔分布。
本申请的有益效果是:区别于现有技术,本申请提供一种风轮、风机以及空调器。该风轮包括至少两个第一凹槽,该至少两个第一凹槽设于吸力面上靠近外缘的位置,并且该至少两个第一凹槽沿外缘的延伸方向依次间隔分布,使得叶片的吸力面呈现出凹凸不平的表面形貌,因而能够改善叶片吸力面气流分离的情况。
并且,由于叶片的吸力面上靠近外缘的位置其气流分离的情况往往较为严重,本申请的上述至少两个第一凹槽设于吸力面上靠近外缘的位置,能够进一步改善叶片吸力面气流分离的情况。
【附图说明】
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。此外,这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
图1是本申请风轮第一实施例的结构示意图;
图2是图1所示风轮的侧视结构示意图;
图3是图1所示风轮A区域的放大结构示意图;
图4是本申请风轮第二实施例的结构示意图;
图5是本申请风轮第三实施例的结构示意图;
图6是本申请风轮第四实施例的结构示意图;
图7是图6所示风轮B-B方向的剖面结构一实施例的结构示意图;
图8是图6所示风轮C区域的放大结构示意图;
图9是本申请相邻特征结构层之间的距离与噪声之间的关系的示意图;
图10是本申请各特征结构层中任意相邻的两个特征结构的对应位置之间的距离与噪声之间的关系的示意图;
图11是本申请风轮第五实施例的结构示意图;
图12是本申请风机一实施例的结构示意图;
图13是本申请风机与传统风机关于风量与噪音关系的对比示意图;
图14是本申请风机与传统风机关于风量与功率关系的对比示意图;
图15是本申请风机与传统风机关于各频点噪音大小的对比示意图;
图16是本申请空调器一实施例的结构示意图。
【具体实施方式】
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请的实施例,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
为解决现有技术中轴流风机所应用的风轮其叶片吸力面容易发生气流分离现象的技术问题,本申请的一实施例提供一种风轮。该风轮包括轮毂。该风轮还包括叶片,叶片具有叶根、外缘以及吸力面,叶根连接轮毂,外缘相对叶根远离轮毂,吸力面分别连接叶根和外缘。该风轮还包括至少两个第一凹槽,该至少两个第一凹槽设于吸力面上靠近外缘的位置,至少两个第一凹槽沿外缘的延伸方向依次间隔分布。以下进行详细阐述。
请参阅图1和图2,图1是本申请风轮第一实施例的结构示意图,图2是图1所示风轮的侧视结构示意图。
在一实施例中,风轮10包括轮毂11以及连接轮毂11的叶片12。叶片12的数量为一个或多个,并且叶片12沿轮毂11的周向依次间隔分布。轮毂11用于与电机等驱动装置传动连接,以通过驱动装置驱动轮毂11绕轮毂11的中心轴自转,进而带动轮毂11所连接的叶片12绕轮毂11的中心轴转动,产生风流。
每个叶片12分别具有叶根121、外缘122、前缘123、后缘124、压力面125以及吸力面126。其中,叶片12的叶根121连接轮毂11,叶片12相对叶根121的边缘为外缘122。叶片12的前缘123和后缘124相对设置,并且前缘123的两端分别连接叶根121和外缘122,后缘124的两端也分别连接叶根121和外缘122,叶片12运动而引起的周向风流自叶片12的前缘123流向后缘124。叶片12的压力面125和吸力面126相背设置,叶片12运动而引起的轴向风流自吸力面126所在侧流向压力面125所在侧。
进一步地,请参阅图1,风轮10的直径D1与轮毂11的直径D4具有如下关系:0.2<D4/D1<0.4。优选地,风轮10的直径D1与轮毂11的直径D4具有如下关系:D4/D1=0.3。如此一来,能够最大限度地减小轮毂11的尺寸,以保证风轮10的出风效率,同时轮毂11和叶片12之间具有足够的连接强度,不易发生叶片12断裂等稳定性问题。
本实施例的风轮10具体可以是轴流风轮。轴流风轮由于风量大、噪音低、压力低而被广泛应用于空调器以及各种通风散热场景。轴流风轮的设计对其所应用轴流风机的效率和噪音影响很大。随着对空调能效要求的提高,对轴流风机效率的要求也与日俱增,其通常要求轴流风机的噪音低、效率高。轴流风轮在空调室外机中是一个关键零件,轴流风轮的性能对空 调性能的影响较大,同时轴流风轮通常与电机配合使用,因此需要充分考虑电机的最佳工作转速以及电机的负载能力,才能保证设计出的轴流风机具有较高的效率。
传统轴流风轮考虑到风轮的气动效率以及噪声等因素,叶片的吸力面通常以光滑曲面为主,吸力面保持光滑有助于减少叶片的摩擦损失,并且有助于避免产生不必要的气动噪声。然而,由于通常要求风轮具有优良的气动性能以及较小的噪声,叶片的中部以及外缘的弦长往往较大,又由于传统轴流风轮其叶片的吸力面通常为光滑曲面,这就导致当气流流经叶片表面时,由于黏滞力的作用会在叶片表面形成边界层,且沿着气流流动方向边界层厚度逐渐增大,边界层内会产生逆压梯度,而当逆压梯度使边界层内的气流流速接近于零时将产生边界层分离的现象,即气流分离,因此弦长较大且较为光滑的吸力面容易导致叶片上靠近后缘的区域产生气流分离的现象,不仅会对风轮的气动效率造成不良影响而且还会增大风轮的气动噪声。
传统轴流风轮为了改善叶片吸力面的气流分离的情况,往往通过调整叶片的安装角来实现,该方法较为简便,且在一些特定情况下也能取得较好的效果。然而,当叶片的安装角调整至与气流角相吻合后再调节安装角将会导致风轮的气动性能下降,甚至严重恶化。此外通过调整叶片的安装角的方式还容易导致风轮轴向尺寸产生明显变化,无法满足空调产品实际应用的需求。
并且传统的轴流风机为了减轻风轮的重量、降低风机的负荷,通常将叶片设计为等厚的单圆弧构造,叶片截面不再采用翼型的设计,这样虽减轻了风轮重量、降低了风机负荷,但导致风机的噪音加重,并且风轮的强度也减弱,风轮叶片由于强度减弱而容易发生断裂等稳定性问题。
有鉴于此,请继续参阅图1,本实施例的风轮10还包括至少两个第一凹槽13。该至少两个第一凹槽13设于吸力面126上靠近外缘122的位置,并且该至少两个第一凹槽13沿外缘122的延伸方向依次间隔分布。
可以看出,上述至少两个第一凹槽13使得叶片12的吸力面126呈现出凹凸不平的表面形貌,有助于将高能流体引入边界层中,使得处于逆压梯度中的边界层流场获得附加能量后能够继续贴附在叶片12的吸力面126,从而达到延缓吸力面126的气流分离的效果,因而能够改善叶片12吸力面126气流分离的情况,进而有利于提高风轮10的气动效率以及减小噪音。
并且,由于叶片12的吸力面126上靠近外缘122的位置,气流流速较快,气流分离的情况较为严重,因此本实施例的上述至少两个第一凹槽13设于吸力面126上靠近外缘122的位置,能够使得吸力面126上靠近外缘122的位置呈现出凹凸不平的表面形貌,有助于进一步改善叶片12吸力面126气流分离的情况。
进一步地,请继续参阅图1和图2,第一凹槽13的槽底相对吸力面126更靠近压力面125,即通过吸力面126朝向压力面125凹陷的方式形成第一凹槽13,亦或是理解为吸力面126上第一凹槽13位置的叶片12部分缺失而形成第一凹槽13。如此一来,通过设置第一凹槽13,能够减轻叶片12的重量,有利于降低应用本实施例风轮10的风机的负荷,进而有利于提高风机的效率。
请参阅图3,图3是图1所示风轮A区域的放大结构示意图。
在一实施例中,第一凹槽13的长度定义为第一凹槽13所在位置对应的弦长,上述至少两个第一凹槽13中相邻第一凹槽13之间的间距定义为相邻第一凹槽13相互邻近的端部之间的最小距离。其中,第一凹槽13的长度L1与相邻第一凹槽13之间的间距L2具有如下关系:0.1<L1/L2<2,如图3所示。如此一来,该至少两个第一凹槽13在叶片12的吸力面126上具有合理的分布疏密度,有利于保证该至少两个第一凹槽13打散外缘122位置的涡流的效果,能够抑制叶片12的吸力面126上气流分离的现象,进而有利于提高风轮10的气动效率以及减小噪音。
进一步地,在一示例性实施例中,第一凹槽13的长度L1与相邻第一凹槽13之间的间距L2优选具有如下关系:L1/L2=1.7。在另一示例性实施例中,第一凹槽13的长度L1与相邻第一凹槽13之间的间距L2优选具有如下关系:L1/L2=0.23。如此一来,能够最大限度地保证上述至少两个第一凹槽13在叶片12的吸力面126上具有合理的分布疏密度,最大限度地保证该至少两个第一凹槽13打散外缘122位置的涡流的效果,能够最大限度地抑制叶片12的吸力面126上气流分离的现象,进一步有利于提高风轮10的气动效率以及减小噪音。并且,可以根据风轮10的具体设计合理选择上述的优选尺寸关系。
请继续参阅图1。在一实施例中,叶片12的吸力面126包括第一区域127,上述至少两个第一凹槽13设于第一区域127。并且,风轮10定义有第一圆周(如图1中圆周Φ1所示,下同)和第二圆周(如图1中圆周Φ2所示,下同),吸力面126位于第一圆周和第二圆周之间的区域为第一区域127。
具体地,第一圆周和第二圆周为以轮毂11的中心为圆心的同心圆,并且第一圆周所处平面和第二圆周所处平面均垂直于轮毂11的中心轴,轮毂11的中心轴过轮毂11的中心。第一圆周以轮毂11的中心为圆心,以叶片12至轮毂11的中心的最大距离为半径,该最大距离即为叶片12上距离轮毂11的中心最远的位置至轮毂11的中心的距离。第二圆周以轮毂11的中心为圆心,以第一区域127靠近轮毂11的边缘至轮毂11的中心的最小距离为半径。其中,第一圆周的直径即为风轮10的直径。
第一圆周的直径D1与第二圆周的直径D2具有如下关系:0.9<D2/D1<0.99,如图1所示。如此一来,能够使得该至少两个第一凹槽13尽量靠近叶片12的外缘122设置,以改善叶片12的吸力面126上靠近外缘122位置的气流分离的情况。
进一步地,第一圆周的直径D1与第二圆周的直径D2优选具有如下关系:D2/D1=0.93,如图1所示。如此一来,能够在保证该至少两个第一凹槽13尽量靠近叶片12的外缘122设置的同时,又能够保证该至少两个第一凹槽13不至于过分靠近叶片12的外缘122,方便形成第一凹槽13以及有助于保证风轮10的结构可靠性。
请参阅图4,图4是本申请风轮第二实施例的结构示意图。
在一实施例中,风轮10包括至少两组第一凹槽组131。每组第一凹槽组131分别包括上述的至少两个第一凹槽13。并且,该至少两组第一凹槽组131沿叶根121朝向外缘122的方向依次间隔分布。如此一来,通过在吸力面126上靠近外缘122的位置设置至少两组第一凹槽组131,能够进一步使得叶片12的吸力面126呈现出凹凸不平的表面形貌,进一步有利于改善打散外缘122位置的涡流的效果,进一步有利于改善吸力面126的气流分离的情况。
请继续参阅图1。在一实施例中,叶片12的后缘124设有朝向前缘123凹陷的凹陷结构,并且凹陷结构沿叶片12的厚度方向贯穿叶片12设置。其中,叶片12的厚度方向可以理解为垂直于叶片12的吸力面126和压力面125的方向。凹陷结构不仅可以减轻叶片12的重量,以减轻应用本实施例风轮10的风机的负荷,还可以减少叶片12后缘124位置的涡流损失,从而减小风轮10在运转过程中的振动和噪音。
具体地,凹陷结构包括第一凹陷结构141和第二凹陷结构142中的至少一者。其中,第一凹陷结构141的数量为多个,且该多个第一凹陷结构141沿后缘124的延伸方向并排设置而呈锯齿状;第二凹陷结构142朝向前缘123凹陷的程度大于第一凹陷结构141朝向前缘123凹陷的程度,即第二凹陷结构142朝向前缘123的端部相对于第一凹陷结构141朝向前缘123的端部更靠近前缘123。并且,图1展示了第一凹陷结构141相对于第二凹陷结构142靠近叶片12的外缘122,仅为论述需要,并非因此对第一凹陷结构141和第二凹陷结构142之间的相对位置关系造成限定。
举例而言,如图1所示,叶片12的吸力面126包括第二区域128,第二区域128设有凹陷结构,具体地第一凹陷结构141设于吸力面126的第二区域128。并且,风轮10定义有第一圆周和第三圆周(如图1中圆周Φ3所示,下同),吸力面126位于第一圆周和第三圆周之 间的区域为第二区域128,即第一凹陷结构141设于吸力面126位于第一圆周和第三圆周之间的区域,而第二凹陷结构142则设于吸力面126位于第三圆周和轮毂11之间的区域。从图1中可以看出,上述的第一区域127处于第二区域128中。
第一圆周和第三圆周为以轮毂11的中心为圆心的同心圆,并且第一圆周所处平面和第三圆周所处平面均垂直于轮毂11的中心轴。第一圆周以轮毂11的中心为圆心,以叶片12至轮毂11的中心的最大距离为半径。第三圆周以轮毂11的中心为圆心,以第二区域128靠近轮毂11的边缘至轮毂11的中心的最小距离为半径。
第一圆周的直径D1与第三圆周的直径D3具有如下关系:0.5<D3/D1<0.95,如图1所示。如此一来,能够合理地选择第一凹陷结构141在叶片12的吸力面126上的位置,有利于保证第一凹陷结构141减少叶片12后缘124位置的涡流损失的效果,进一步有利于减小风轮10在运转过程中的振动和噪音。进一步地,第一圆周的直径D1与第三圆周的直径D3优选具有如下关系:D3/D1=0.78,如图1所示。
请继续参阅图1。在一实施例中,风轮10还包括若干第二凹槽15,该若干第二凹槽15设于叶片12的吸力面126。并且,该若干第二凹槽15相对上述的至少两个第一凹槽13更靠近叶片12的叶根121。第二凹槽15通过吸力面126朝向压力面125凹陷的方式形成,或是理解为吸力面126上第二凹槽15位置的叶片12部分缺失而形成第二凹槽15。如此一来,第二凹槽15不仅能够减轻风轮10的重量,以减轻应用本实施例风轮10的风机的负荷,有利于降低材料成本以及提高风机的效率,还能够改善叶片12的吸力面126气流分离的情况,减小吸力面126的涡流损失,进而减小风轮10在运转过程中的振动和噪音。
需要说明的是,第二凹槽15的数量为一个或两个及以上,在此不做限定。
综上所述,本申请所提供的风轮,其包括至少两个第一凹槽,该至少两个第一凹槽设于吸力面上靠近外缘的位置,并且该至少两个第一凹槽沿外缘的延伸方向依次间隔分布,使得叶片的吸力面呈现出凹凸不平的表面形貌,因而能够改善叶片吸力面气流分离的情况。
并且,由于叶片的吸力面上靠近外缘的位置其气流分离的情况往往较为严重,本申请的上述至少两个第一凹槽设于吸力面上靠近外缘的位置,能够进一步改善叶片吸力面气流分离的情况。
请参阅图5,图5是本申请风轮第三实施例的结构示意图。
在一实施例中,不同于上述实施例,本实施例的风轮10还包括凸起16,凸起16凸设于吸力面126,并且凸起16靠近外缘122和前缘123设置。叶片12的外缘122和前缘123的交汇处形成叶片12的叶尖,凸起16设于外缘122和前缘123所形成的叶尖位置,能够打散该叶尖位置的涡流,并且能够使得叶片12的吸力面126呈现出凹凸不平的表面形貌,进而能够改善叶片12吸力面126气流分离的情况。
由于叶片12的吸力面126上靠近外缘122的位置对气流做功的效率较高,该位置气流的相对线速度较大,本实施例凸起16靠近外缘122设置,有利于改善凸起16打散涡流以及抑制气流分离的效果,进一步有利于改善叶片12吸力面126气流分离的情况。
进一步地,凸起16设于上述实施例所阐述的吸力面126上的第二区域128。如此一来,使得凸起16尽量靠近叶片12的外缘122设置,以保证凸起16打散涡流以及抑制气流分离的效果,进一步有利于改善叶片12吸力面126气流分离的情况。其中,第二区域128已在上述实施例中详细阐述,在此就不再赘述。
需要说明的是,本实施例所阐述的风轮10在设有上述凸起16的基础上,还可以设有上述实施例所阐述的第一凹槽13,以通过凸起16和第一凹槽13配合改善叶片12吸力面126气流分离的情况。图5展示了叶片12的吸力面126设有凸起16和第一凹槽13,其中第一凹槽13相对凸起16更靠近叶片12的外缘122。
进一步地,凸起16的数量为至少两个,并且该至少两个凸起16沿靠近外缘122的方向彼此间隔分布,使得自叶片12的前缘123产生的气流接受更多数量的凸起16的作用,以进 一步改善凸起16打散其所处位置涡流的效果。
进一步地,凸起16沿远离叶片12的前缘123的方向延伸,在保证凸起16打散涡流以及抑制气流分离的效果的同时,如是设计的凸起16有利于优化气流的流型,进一步有利于减小吸力面126上的涡流损失、减小风轮10在运转过程中的振动和噪音。
请继续参阅图5。在一实施例中,风轮10还包括特征结构层17。特征结构层17设于叶片12的吸力面126。特征结构层17分别包括至少两个特征结构171,且该至少两个特征结构171沿自叶片12的叶根121至外缘122的方向依次分布。进一步地,特征结构层17的数量为至少两层,该至少两层特征结构层17沿远离叶片12的前缘123的方向逐层分布。
图5展示了叶片12的吸力面126设有凸起16、第一凹槽13以及特征结构层17,第一凹槽13相对凸起16和特征结构层17靠近叶片12的外缘122,特征结构层17相对凸起16靠近叶片12的后缘124,并且叶片12的后缘124还设有上述实施例所阐述的第一凹陷结构141。
可以看出,上述特征结构层17的设计,类似于鸟类的羽毛或是鱼类的鱼鳞等,使得叶片12的吸力面126呈现出凹凸不平的表面形貌,有助于将高能流体引入边界层中,使得处于逆压梯度中的边界层流场获得附加能量后能够继续贴附在叶片12的吸力面126,从而达到延缓吸力面126的气流分离的效果,因而能够改善叶片12的吸力面126气流分离的情况,进而有助于提高应用本实施例风轮10的风机的气动效率以及减小噪声。
请参阅图6和图7,图6是本申请风轮第四实施例的结构示意图,图7是图6所示风轮B-B方向的剖面结构一实施例的结构示意图。其中,图6仅展示了完整风轮10的一个叶片12及其连接的部分轮毂11。
在一实施例中,上述特征结构层17所在位置处的叶片12的厚度(如图7中厚度H所示)沿靠近叶片12的后缘124的方向逐层减小,使得叶片12的厚度得到减薄,能够减轻叶片12的重量,有利于改善风轮10的气动性能,并且叶片12厚度的逐层减薄同样有助于将高能流体引入边界层中,使得处于逆压梯度中的边界层流场获得附加能量后能够继续贴附在叶片12的吸力面126,从而达到延缓吸力面126的气流分离的效果。
进一步地,每个特征结构层17的厚度(如图7中厚度h所示)差异设置,能够使得叶片12的厚度得到不同程度的减薄,如此能够根据对风轮10的气动性能的要求,合理选择叶片12的减薄程度,在保证叶片12的重量能够得到减轻的前提下,叶片12自身的强度不会受到明显影响,并且还能够满足对风轮10的气动性能的要求。
更进一步地,特征结构层17的厚度h沿靠近叶片12的后缘124的方向逐层递减,如图6和图7所示,如此能够最大限度地减薄叶片12的厚度,即最大限度地减轻叶片12的重量。当然,在本申请的其它实施例中,特征结构层17的厚度沿靠近叶片12的后缘124的方向逐层递增,在此不做限定。
需要说明的是,特征结构层17的厚度即为在该特征结构层17所在位置处的叶片12的厚度的基础上,与该特征结构层17相邻且相对靠近叶片12后缘124的特征结构层17所在位置处的叶片12的减薄厚度。如图7所示,特征结构层α和特征结构层β相邻,并且特征结构层β相对特征结构层α靠近叶片12的后缘124,特征结构层α的厚度即为在特征结构层α所在位置处的叶片12的厚度的基础上,特征结构层β所在位置处的叶片12的减薄厚度,即在特征结构层α所在位置处的叶片12的厚度的基础上,特征结构层β所在位置处的叶片12进一步减薄了一个特征结构层α的厚度h。
请继续参阅图5和图6。在一实施例中,由于叶片12上容易发生气流分离现象的区域多位于叶片12的吸力面126上靠近后缘124的位置,因此本实施例优选地上述至少两层特征结构层17在吸力面126上靠近叶片12的后缘124设置,以使得叶片12的吸力面126上靠近后缘124的位置呈现非光滑的形式,达到延缓吸力面126的气流分离的效果,能够进一步改善叶片12的吸力面126上气流分离的情况。
请参阅图6和图8,图8是图6所示风轮C区域的放大结构示意图。
在一实施例中,相邻特征结构层17之间的距离(如图8中的距离W所示,下同)为0.5mm至100mm。其中,相邻特征结构层17之间的距离可以是相邻特征结构层17的对应位置之间的距离。举例而言,如图8所示,相邻特征结构层17之间的距离可以是相邻特征结构层17的特征结构171朝向后缘124的端部之间的最小距离。
如此一来,能够保证相邻特征结构层17之间具有足够的距离,方便各特征结构层17的特征结构171的设计与制作,并且相邻特征结构层17之间的距离不至于过大,能够保证特征结构层17改善其抑制叶片12吸力面126气流分离的效果,避免由于特征结构层17分布过于稀疏而导致其抑制叶片12吸力面126气流分离的效果较差。
请继续参阅图5和图6。在一实施例中,相邻特征结构层17靠近叶根121的端部之间的距离小于该相邻特征结构层17靠近外缘122的端部之间的距离。进一步地,相邻特征结构层17之间的距离沿自叶片12的叶根121至外缘122的方向逐渐增大,以匹配叶片12的弦长沿自叶片12的叶根121至外缘122的方向逐渐增大的趋势,使得相邻特征结构层17之间的距离更好地匹配叶片12弦长的变化情况,有利于改善特征结构层17抑制叶片12吸力面126气流分离的效果。并且,上述设计,能够使得本实施例的叶片12具有更优异的产品外观,更符合工业设计与应用,有利于提高本申请实施例的风轮10的产品竞争力。
基于上述实施例所阐述的相邻特征结构层17之间的距离为0.5mm至100mm,本实施例优选地相邻特征结构层17靠近叶根121的端部之间的距离为30mm,而该相邻特征结构层17靠近外缘122的端部之间的距离为50mm。也就是说,本实施例中相邻特征结构层17之间的距离沿自叶片12的叶根121至外缘122的方向从30mm逐渐增大至50mm。如此一来,能够进一步保证相邻特征结构层17之间的距离更好地匹配叶片12弦长的变化情况,有利于改善特征结构层17抑制叶片12吸力面126气流分离的效果,并且进一步保证叶片12的产品外观效果。
图9展示了相邻特征结构层之间的距离W与噪声之间的关系。可以看出,本实施例相邻特征结构层17之间的距离介于30mm至50mm之间,能够保证应用本实施例风轮10的风机具有较小的噪声。
当然,在本申请的其它实施例中,相邻特征结构层17之间的距离也可以沿自叶片12的叶根121至外缘122的方向逐渐减小,或是保持不变。亦或是相邻特征结构层17之间的距离沿自叶片12的叶根121至外缘122的方向呈现不规律的形式,能够改善特征结构层17抑制叶片12吸力面126气流分离的效果,在此不做限定。
请继续参阅图6和图8。在一实施例中,在各特征结构层17中,任意相邻的两个特征结构171的对应位置之间的距离(如图8中的距离w所示,下同)为5mm至80mm,其中任意相邻的两个特征结构171的对应位置之间的距离可以是任意相邻的两个特征结构171朝向后缘124的端部之间的距离。通过上述方式,能够使得各特征结构层17中特征结构171的分布形式满足要求,进而保证特征结构层17抑制叶片12吸力面126气流分离的效果。
进一步地,本实施例优选为在各特征结构层17中,任意相邻的两个特征结构171的对应位置之间的距离为22mm。如此一来,能够最大限度地保证特征结构层17抑制叶片12吸力面126气流分离的效果。
图10展示了各特征结构层中任意相邻的两个特征结构的对应位置之间的距离w与噪声之间的关系。可以看出,上述实施例各特征结构层17中任意相邻的两个特征结构171的对应位置之间的距离优选为22mm,能够保证应用本实施例风轮10的风机具有较小的噪声。
可选地,在各特征结构层17中,任意相邻的两个特征结构171的对应位置之间的距离可以是相等的,如此在保证特征结构层17抑制叶片12吸力面126气流分离的效果的前提下,使得叶片12具有更优异的产品外观,更符合工业设计与应用,有利于提高本申请实施例的风轮10的产品竞争力。
当然,在本申请的其它实施例中,在各特征结构层17中,任意相邻的两个特征结构171 的对应位置之间的距离也可以是差异设置的,并且不具备规律,如此能够改善特征结构层17抑制叶片12吸力面126气流分离的效果,在此不做限定。
请参阅图6和图11,图11是本申请风轮第五实施例的结构示意图。
在一实施例中,特征结构171在参考平面上的正投影为弧形、曲线形以及折线形中的至少一种,其中参考平面(如图6和图11中的平面γ所示,下同)垂直于轮毂11的中心轴(如图6中轴线O所示,其中轴线O垂直于图6所示的纸面方向)。通过上述方式,能够使得叶片12具有更优异的产品外观,更符合工业设计与应用,有利于提高本申请实施例的风轮10的产品竞争力。
图6展示了特征结构171在参考平面γ上的正投影为弧形的情况,进一步地可以是圆弧等,图6展示的特征结构171在参考平面γ上的正投影为半圆弧。图11展示了特征结构171在参考平面γ上的正投影为折线形的情况。当然,在本申请的其它实施例中,特征结构171在参考平面上的正投影可以是其它图形,并且各特征结构层17中所包含的至少两个特征结构171在参考平面上的正投影可以是弧形、折线形以及其它图形的任意组合,在此不做限定。
综上所述,本申请所提供的风轮,其包括凸起,凸起凸设于吸力面,并且凸起靠近外缘和前缘设置,凸起能够打散外缘和前缘所形成叶尖位置的涡流,并且能够使得叶片的吸力面呈现出凹凸不平的表面形貌,因而能够改善叶片吸力面气流分离的情况。
并且,该风轮还包括特征结构层,特征结构层设于吸力面,特征结构层包括至少两个特征结构,该至少两个特征结构沿叶根朝向外缘的方向依次分布,同样有助于使得叶片的吸力面呈现出凹凸不平的表面形貌,有利于进一步改善叶片吸力面气流分离的情况。
请参阅图12,图12是本申请风机一实施例的结构示意图。
在一实施例中,风机100包括风轮10。其中,风轮10已在上述实施例中详细阐述,在此就不再赘述。进一步地,风机100还包括驱动装置20,驱动装置20与风轮10传动连接,以通过驱动装置20驱动风轮10转动,进而产生风流。可选地,驱动装置20可以是电机等,在此不做限定。
本实施例的风机100可以是轴流风机,关于轴流风机的概念以及工作原理属于本领域技术人员的理解范畴,在此就不再赘述。并且本实施例的风机100可以应用于空调系统的室外机等,尤其是多联形式的空调室外机等,在此不做限定。
请参阅图13,图13是本申请风机与传统风机关于风量与噪音关系的对比示意图,其中I1表达了本申请的风机关于风量与噪音的关系,I2表达了传统的风机关于风量与噪音的关系。从图13中可以看出,当本申请的风机与传统的风机具有相同风量时,本申请的风机具有更小的噪音。
请参阅图14,图14是本申请风机与传统风机关于风量与功率关系的对比示意图,其中I3表达了本申请的风机关于风量与功率的关系,I4表达了传统的风机关于风量与功率的关系。从图14中可以看出,当本实施例的风机与传统的风机具有相同风量时,本申请风机的功率较低,意味着本申请风机的功耗较低、效率较高。
请参阅图15,图15是本申请风机与传统风机关于各频点噪音大小的对比示意图,其中I5表达了本申请的风机在各频点噪音大小的情况,I6表达了传统的风机在各频点噪音大小的情况。从图15中可以看出,在整个频带本申请的风机具有更小的噪音。
请参阅图16,图16是本申请空调器一实施例的结构示意图。
在一实施例中,空调器200包括风机100。其中,风机100已在上述实施例中详细阐述,在此就不再赘述。空调器200应用于组成空调系统,进一步地,空调器200可以是空调器室外机等,例如多联形式的空调器室外机等,在此不做限定。
此外,在本申请中,除非另有明确的规定和限定,术语“相连”、“连接”、“层叠”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。 对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (19)

  1. 一种风轮,其中,包括:
    轮毂;
    叶片,具有叶根、外缘以及吸力面,所述叶根连接所述轮毂,所述外缘相对所述叶根远离所述轮毂,所述吸力面分别连接所述叶根和所述外缘;
    至少两个第一凹槽,设于所述吸力面上靠近所述外缘的位置,所述至少两个第一凹槽沿所述外缘的延伸方向依次间隔分布。
  2. 根据权利要求1所述的风轮,其中,所述叶片还具有压力面,所述压力面与所述吸力面相背设置,所述第一凹槽的槽底相对所述吸力面更靠近所述压力面。
  3. 根据权利要求1所述的风轮,其中,所述第一凹槽的长度L1与相邻所述第一凹槽之间的间距L2具有如下关系:
    0.1<L1/L2<2。
  4. 根据权利要求3所述的风轮,其中,所述第一凹槽的长度L1与相邻所述第一凹槽之间的间距L2具有如下关系:
    L1/L2=1.7,或L1/L2=0.23。
  5. 根据权利要求1所述的风轮,其中,
    所述吸力面包括第一区域,所述至少两个第一凹槽设于所述第一区域;
    所述风轮定义有第一圆周和第二圆周,所述第一圆周以所述轮毂的中心为圆心,以所述叶片至所述中心的最大距离为半径,所述第二圆周以所述轮毂的中心为圆心,以所述第一区域靠近所述轮毂的边缘至所述中心的最小距离为半径,所述第一圆周的直径D1与所述第二圆周的直径D2具有如下关系:
    0.9<D2/D1<0.99。
  6. 根据权利要求5所述的风轮,其中,所述第一圆周的直径D1与所述第二圆周的直径D2具有如下关系:
    D2/D1=0.93。
  7. 根据权利要求1所述的风轮,其中,所述风轮包括至少两组第一凹槽组,每组所述第一凹槽组分别包括所述至少两个第一凹槽,且所述至少两组第一凹槽组沿所述叶根朝向所述外缘的方向依次间隔分布。
  8. 根据权利要求1所述的风轮,其中,
    所述叶片还具有前缘和后缘,所述前缘和所述后缘相对设置,所述前缘分别连接所述叶根和所述外缘,所述后缘分别连接所述叶根和所述外缘;
    所述后缘设有朝向所述前缘凹陷的凹陷结构,所述凹陷结构沿所述叶片的厚度方向贯穿所述叶片设置。
  9. 根据权利要求8所述的风轮,其中,
    所述吸力面包括第二区域,所述第二区域设有所述凹陷结构;
    所述风轮定义有第一圆周和第三圆周,所述第一圆周以所述轮毂的中心为圆心,以所述叶片至所述中心的最大距离为半径,所述第三圆周以所述轮毂的中心为圆心,以所述第二区域靠近所述轮毂的边缘至所述中心的最小距离为半径,所述第一圆周的直径D1与所述第三圆周的直径D3具有如下关系:
    0.5<D3/D1<0.95。
  10. 根据权利要求9所述的风轮,其中,所述第一圆周的直径D1与所述第三圆周的直径D3具有如下关系:
    D3/D1=0.78。
  11. 根据权利要求1所述的风轮,其中,所述风轮包括若干第二凹槽,所述若干第二凹槽设于所述吸力面,且所述若干第二凹槽相对所述至少两个第一凹槽更靠近所述叶根。
  12. 根据权利要求1所述的风轮,其中,
    所述叶片还具有前缘,所述前缘的两端分别连接所述叶根和所述外缘;
    所述风轮包括凸起,所述凸起凸设于所述吸力面,且所述凸起靠近所述外缘和所述前缘设置,其中所述至少两个第一凹槽相对所述凸起更靠近所述外缘。
  13. 根据权利要求12所述的风轮,其中,所述凸起的数量为至少两个,所述至少两个凸起沿靠近所述外缘的方向彼此间隔分布。
  14. 根据权利要求12所述的风轮,其中,所述凸起沿远离所述前缘的方向延伸。
  15. 根据权利要求1所述的风轮,其中,
    所述风轮包括特征结构层,所述特征结构层设于所述吸力面,所述特征结构层包括至少两个特征结构,所述至少两个特征结构沿所述叶根朝向所述外缘的方向依次分布。
  16. 根据权利要求15所述的风轮,其中,所述特征结构层的数量为至少两层,所述至少两层特征结构层沿远离所述前缘的方向逐层分布,其中所述特征结构层所在位置处的所述叶片的厚度沿远离所述前缘的方向逐层递减。
  17. 根据权利要求1所述的风轮,其中,所述风轮的直径D1与所述轮毂的直径D4具有如下关系:
    0.2<D4/D1<0.4。
  18. 一种风机,其中,包括风轮,所述风轮包括:
    轮毂;
    叶片,具有叶根、外缘以及吸力面,所述叶根连接所述轮毂,所述外缘相对所述叶根远离所述轮毂,所述吸力面分别连接所述叶根和所述外缘;
    至少两个第一凹槽,设于所述吸力面上靠近所述外缘的位置,所述至少两个第一凹槽沿所述外缘的延伸方向依次间隔分布。
  19. 一种空调器,其中,包括风机,所述风机包括风轮,所述风轮包括:
    轮毂;
    叶片,具有叶根、外缘以及吸力面,所述叶根连接所述轮毂,所述外缘相对所述叶根远离所述轮毂,所述吸力面分别连接所述叶根和所述外缘;
    至少两个第一凹槽,设于所述吸力面上靠近所述外缘的位置,所述至少两个第一凹槽沿所述外缘的延伸方向依次间隔分布。
PCT/CN2021/121842 2020-12-18 2021-09-29 风轮、风机以及空调器 WO2022127287A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21905216.4A EP4265914A4 (en) 2020-12-18 2021-09-29 WIND TURBINE, FAN AND AIR CONDITIONING

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202023083750.X 2020-12-18
CN202023083750.XU CN213928874U (zh) 2020-12-18 2020-12-18 风轮、风机以及空调器
CN202023086217.9 2020-12-18
CN202023086217.9U CN214404097U (zh) 2020-12-18 2020-12-18 风轮、风机以及空调器

Publications (1)

Publication Number Publication Date
WO2022127287A1 true WO2022127287A1 (zh) 2022-06-23

Family

ID=82060057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121842 WO2022127287A1 (zh) 2020-12-18 2021-09-29 风轮、风机以及空调器

Country Status (2)

Country Link
EP (1) EP4265914A4 (zh)
WO (1) WO2022127287A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB192568A (en) * 1922-01-03 1923-02-08 Albert Eustace Short Improvements in the wings and other aerofoils for aircraft
CN2451783Y (zh) * 2000-10-10 2001-10-03 安徽天大(集团)股份有限公司工程塑料厂 一种轴流通风机叶片
CN201671881U (zh) * 2010-05-14 2010-12-15 珠海格力电器股份有限公司 一种轴流风叶及空调用轴流风机
CN206221361U (zh) * 2016-11-09 2017-06-06 广东美的暖通设备有限公司 轴流风轮和具有轴流风轮的空调器
CN107588046A (zh) * 2017-08-28 2018-01-16 珠海格力电器股份有限公司 风机结构及具有其的空调器
CN108167224A (zh) * 2017-12-27 2018-06-15 泛仕达机电股份有限公司 一种设置多层降噪结构的叶片及包括该叶片的风扇
CN208138200U (zh) * 2018-05-03 2018-11-23 新昌县三新空调风机有限公司 轻量化低噪音轴流风叶
CN112283154A (zh) * 2020-11-23 2021-01-29 珠海格力电器股份有限公司 轴流风叶和空调器
CN213928874U (zh) * 2020-12-18 2021-08-10 广东美的暖通设备有限公司 风轮、风机以及空调器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157113A (ja) * 2006-12-25 2008-07-10 Daikin Ind Ltd 送風機
CN107975494B (zh) * 2017-11-22 2020-08-25 广东美的暖通设备有限公司 轴流风轮和空调

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB192568A (en) * 1922-01-03 1923-02-08 Albert Eustace Short Improvements in the wings and other aerofoils for aircraft
CN2451783Y (zh) * 2000-10-10 2001-10-03 安徽天大(集团)股份有限公司工程塑料厂 一种轴流通风机叶片
CN201671881U (zh) * 2010-05-14 2010-12-15 珠海格力电器股份有限公司 一种轴流风叶及空调用轴流风机
CN206221361U (zh) * 2016-11-09 2017-06-06 广东美的暖通设备有限公司 轴流风轮和具有轴流风轮的空调器
CN107588046A (zh) * 2017-08-28 2018-01-16 珠海格力电器股份有限公司 风机结构及具有其的空调器
CN108167224A (zh) * 2017-12-27 2018-06-15 泛仕达机电股份有限公司 一种设置多层降噪结构的叶片及包括该叶片的风扇
CN208138200U (zh) * 2018-05-03 2018-11-23 新昌县三新空调风机有限公司 轻量化低噪音轴流风叶
CN112283154A (zh) * 2020-11-23 2021-01-29 珠海格力电器股份有限公司 轴流风叶和空调器
CN213928874U (zh) * 2020-12-18 2021-08-10 广东美的暖通设备有限公司 风轮、风机以及空调器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4265914A4

Also Published As

Publication number Publication date
EP4265914A4 (en) 2024-05-29
EP4265914A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
CN213928874U (zh) 风轮、风机以及空调器
KR101713264B1 (ko) 헬리콥터 앤티토크 장치용 블레이드
US9695695B2 (en) Turbojet fan blade
CN206344995U (zh) 用于飞行器的涵道风扇
CN108431428B (zh) 超低噪声工业用轴流风机
WO2021208496A1 (zh) 混流风轮、风机组件、动力系统、风扇
US6142738A (en) Blade for rotary wing aircraft
CN106593952A (zh) 轴流风叶及具有其的风机、空调室外机
WO2010125645A1 (ja) プロペラファン
WO2022121412A1 (zh) 风轮以及风机
WO2022127287A1 (zh) 风轮、风机以及空调器
JP2001234893A (ja) 軸流送風機
CN206816552U (zh) 轴流风轮及空调器
JP2006090178A (ja) 送風機羽根車
CN214404097U (zh) 风轮、风机以及空调器
WO2024001739A1 (zh) 叶片及使用其的轴流叶轮
CN108953222B (zh) 一种离心叶轮
TW202020313A (zh) 葉片及使用其的軸流葉輪
JP4676633B2 (ja) 回転翼航空機の回転翼羽根
CN107299906A (zh) 叶轮及其所适用的离心式风扇
WO2021233483A1 (zh) 风轮、风扇及空调器室外机
CN111498108B (zh) 一种适用于多旋翼高速飞行的高效桨叶
RU2812993C1 (ru) Ветряная турбина, вентилятор и кондиционер воздуха
CN213331680U (zh) 一种三相四极外转宽频交流散热轴流风机
WO2021243969A1 (zh) 扇叶、风机、空调室外机和空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021905216

Country of ref document: EP

Effective date: 20230718