WO2022127081A1 - 一种具有号角的同轴扬声器及其形状优化方法 - Google Patents

一种具有号角的同轴扬声器及其形状优化方法 Download PDF

Info

Publication number
WO2022127081A1
WO2022127081A1 PCT/CN2021/104529 CN2021104529W WO2022127081A1 WO 2022127081 A1 WO2022127081 A1 WO 2022127081A1 CN 2021104529 W CN2021104529 W CN 2021104529W WO 2022127081 A1 WO2022127081 A1 WO 2022127081A1
Authority
WO
WIPO (PCT)
Prior art keywords
horn
tweeter
speaker
coaxial
unit
Prior art date
Application number
PCT/CN2021/104529
Other languages
English (en)
French (fr)
Inventor
陆明伟
柴国强
汤振杰
徐仁方
薛夏丰
Original Assignee
苏州上声电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州上声电子股份有限公司 filed Critical 苏州上声电子股份有限公司
Priority to JP2023534739A priority Critical patent/JP2023554291A/ja
Priority to US18/257,205 priority patent/US20240015431A1/en
Priority to EP21905014.3A priority patent/EP4187921A1/en
Publication of WO2022127081A1 publication Critical patent/WO2022127081A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/30Combinations of transducers with horns, e.g. with mechanical matching means, i.e. front-loaded horns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/24Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2861Enclosures comprising vibrating or resonating arrangements using a back-loaded horn
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2861Enclosures comprising vibrating or resonating arrangements using a back-loaded horn
    • H04R1/2865Enclosures comprising vibrating or resonating arrangements using a back-loaded horn for loudspeaker transducers

Definitions

  • the present disclosure relates to the field of loudspeakers, in particular to a coaxial loudspeaker with a horn and a shape optimization method thereof.
  • the coaxial speaker integrates a tweeter unit and a woofer unit, which are responsible for reproducing treble and mid-bass respectively.
  • the advantage of coaxial speakers is that the bandwidth of the single speaker is greatly improved, and it is widely used in car audio.
  • a few high-quality car speaker audio systems sometimes only use the tweeter unit of the coaxial speaker and leave the woofer unit silent to adjust the sound field in the car. This also leads to the need for the tweeter unit to have a good frequency response curve when it works alone.
  • the structure of the woofer unit will inevitably affect the radiated sound field of the tweeter unit.
  • the present disclosure provides a coaxial speaker with a horn, which has a better frequency response curve when only the tweeter unit works, while reducing the influence of the woofer unit on the sound field of the tweeter unit.
  • the present disclosure also provides a shape optimization method for a coaxial speaker with a horn, which can quickly and accurately optimize the shape of the horn and improve the acoustic performance of the speaker.
  • a coaxial speaker includes a woofer unit and a tweeter unit, the coaxial speaker further includes a horn with an inner cavity and open upper and lower ends, the tweeter unit includes a tweeter The horn surrounds the tweeter cone, the lower end of the horn is connected to the tweeter unit, and the upper end of the horn is where the inner diameter is the largest.
  • the horn has an expansion part, and the inner diameter of the expansion part increases gradually from bottom to top. More preferably, the cross section of the expansion part in the up-down direction has two mirror-symmetrical Bezier-shaped inner contours. Makes the high frequency frequency response curve smoother.
  • the inner diameter of the horn gradually increases from bottom to top. More preferably, the cross section of the horn along the up-down direction has two mirror-symmetrical Bezier curve-shaped inner contours. Makes the high frequency frequency response curve smoother.
  • the tweeter unit further includes a cockpit, the cockpit is arranged on the woofer unit, the tweeter cone is arranged on the cockpit, and the lower end of the horn is connected to the cockpit and/or on the outer edge of the tweeter cone.
  • a part of the lower end surface of the horn has an arched portion that is arched upward, and the edge portion of the tweeter cone is located below the arched portion and communicates with the inner cavity between the two. the annular cavity. Makes the high frequency frequency response curve smoother.
  • the tweeter unit further comprises a tweeter voice coil and a soldering piece for transmitting audio signals to the tweeter voice coil, the upper part of the soldering piece is embedded in the cabin and communicates with the tweeter.
  • the input ends of the coils are in contact and conduct, and the solder pads are electrically connected with a signal input line for inputting audio signals.
  • the bass speaker unit includes a bass voice coil, and the lead wire of the bass voice coil is electrically connected to the signal input line.
  • the woofer unit includes a magnetic circuit system, the magnetic circuit system is provided with a through hole extending in an up-down direction, the signal input line is inserted into the through hole, and the lower part of the soldering piece extends into the through hole.
  • the through hole is electrically connected with the signal input line.
  • the coaxial speaker further includes a dust ring connected between the horn and the woofer unit.
  • the woofer unit includes a bass cone, the dust ring is connected between the horn and the bass cone, and further, the dust ring is made of a breathable material.
  • the dust ring is made of a breathable material.
  • the cross section of the dust ring in the up-down direction includes two mirror-symmetrical wave shapes or zigzag shapes, so as to avoid pulling the bass cone when the woofer unit works.
  • the breathable material is cotton, PC (polycarbonate) or CONEX (aramid fiber).
  • the dust ring is only used for dust protection, not waterproof.
  • the woofer unit includes a woofer voice coil
  • the tweeter unit is arranged in the woofer voice coil
  • the uppermost end of the woofer unit and the upper end of the horn are lower than the woofer unit. upper end.
  • the tweeter unit and the horn are integrally located in the woofer unit.
  • the coaxial speaker further includes a plurality of extension fins extending inwardly from the inner surface of the horn, the extension fins being located above the tweeter cone of the tweeter unit. More preferably, the extension fins extend radially inward of the horn. Further, the radial dimension of the extending fins gradually increases from top to bottom. Furthermore, the lower ends of each of the extending fins are connected to an annular member. Further, the inner edges of the extending fins are arc-shaped.
  • the extension fins can effectively protect the internal components of the tweeter unit and prevent foreign objects such as fingers from accidentally entering the tweeter unit and damage the internal components such as the tweeter cone; the extension fins can also make high-frequency diffusion better.
  • a shape optimization method for a coaxial speaker with a horn includes the steps of:
  • step S5 specifically includes:
  • lb is the lower limit of the coordinate value P
  • ub is the upper limit of the coordinate value P
  • optimization calculation According to the optimization parameter P and the constraint condition C, the optimization algorithm is used to calculate and obtain to satisfy the optimization objective A set of optimization parameters for
  • the step S2 specifically includes:
  • Electromagnetic field and vibration system set a "fixed constraint" on the fixed part of the speaker vibration system component; set the material constitutive relationship of the speaker vibration system component as a "linear elastic material model”; set an axial load FF on the speaker voice coil, as follows:
  • BL is the driving force coefficient of the speaker magnetic circuit
  • Zb(freq) is the basic impedance frequency response curve of the speaker magnetic circuit
  • v is the axial vibration velocity of the speaker voice coil
  • V 0 is the speaker loading voltage
  • step S1 the geometric model of the loudspeaker and its surrounding air domain is established in the finite element analysis software, and the geometric model of the horn profile is established with the parameterized Bezier curve, and the control nodes in the curve are obtained, and the coordinates of these control nodes are obtained.
  • the value controls the geometry of the horn profile.
  • step S3 the mechanical material parameters of each component of the loudspeaker vibration system are defined; the material parameters of the air are defined.
  • step S4 the "free triangular mesh” unit is used to divide the mesh of the loudspeaker and its surrounding air domain, and the size of the maximum mesh unit should satisfy the principle of at least 5-6 linear units within one sound wave wavelength.
  • the optimization algorithm is selected from seven gradient-free optimization algorithms of Nelder-Mead, BOBYQA, COBYLA, Laplace, Winslow, coordinate search, Yeoh smoothing, and three gradient-type optimization algorithms of SNOPT, MMA and Levenberg-Marquardt.
  • the tweeter horn guides the sound wave to propagate forward, preventing the sound wave from radiating backward, thereby reducing the influence of the woofer unit on the treble, while gradually expanding outward. Conducive to the expansion of the high frequency of the tweeter unit.
  • the shape optimization method of the present disclosure designs the optimal Bezier curve shape of the horn through an optimization algorithm, which can quickly, cost-effectively and accurately optimize the speaker horn, thereby shortening the development cycle of the speaker horn and improving the acoustic performance of the speaker.
  • FIG. 1 is a schematic diagram of the overall appearance of a coaxial speaker according to an embodiment of the present disclosure
  • Fig. 2 is the top view of the coaxial loudspeaker shown in Fig. 1;
  • Fig. 3 is the sectional view of A-A in Fig. 2;
  • Fig. 4 is a partial enlarged view at B in Fig. 3;
  • Fig. 5 is the three-dimensional schematic diagram of the tweeter unit and the horn in Fig. 2;
  • FIG. 6 is a cross-sectional view of the tweeter unit and the horn in FIG. 2;
  • FIG. 7 is a comparison diagram of frequency response curves of a coaxial loudspeaker without a horn and a coaxial loudspeaker according to an embodiment of the present disclosure
  • FIG. 8 is a flowchart of a shape optimization design method according to an embodiment of the present disclosure.
  • Fig. 9 is the geometric model of loudspeaker, horn and its surrounding air
  • Figure 10 shows the real part of the fundamental impedance of the tweeter unit
  • Figure 11 shows the imaginary part of the fundamental impedance of the tweeter unit
  • Figure 12 shows the "Fixed Constraint" boundary
  • Figure 13 shows the voice coil of the tweeter unit
  • Figure 14 shows the diaphragm of the tweeter unit
  • Figure 15 shows the "outfield calculation" boundary
  • Figure 16 shows the "Internal Hard Sound Field Boundary (Wall)" boundary
  • Figure 17 shows a perfectly matched layer
  • Figure 18 shows the Acoustic-Structure boundary
  • Figure 19 shows the "Free Triangle Mesh” region
  • Figure 20 shows a "mapped" grid area
  • Figure 22 shows the optimization results of the tweeter unit horn geometry model.
  • tweeter unit 21, cockpit; 22, tweeter cone; 221, central arch; 222, edge arch; 23, tweeter coil; 24, second magnetic circuit system; 25, solder tab;
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • the present embodiment provides a coaxial speaker with a horn, which includes a woofer unit 1 and a tweeter unit 2 that are coaxially arranged.
  • the coaxial speaker also includes a horn 3 with an inner cavity and open upper and lower ends.
  • the above-mentioned tweeter unit 2 includes a tweeter cone 22 , and the horn 3 surrounds the tweeter cone 22 .
  • the lower end of the horn 3 is connected to the tweeter unit 2 , and the upper end of the horn 3 is where its inner diameter is the largest.
  • the horn 3 has an expansion part, and the inner diameter of the expansion part gradually increases from bottom to top.
  • the inner diameter of the horn 3 gradually increases from bottom to top, and the horn 3 as a whole is in the shape of gradually expanding outward.
  • the cross section of the horn 3 in the up-down direction has two mirror-symmetrical Bezier curve-shaped inner contours, so that the high-frequency frequency response curve is relatively smooth, as shown in FIG. 3 .
  • the horn 3 may first expand inward and then gradually expand outward. The horn 3 significantly reduces the influence of the structure of the woofer unit 1 on the sound field radiated by the tweeter unit 2 .
  • the horn can not only improve the acoustic impedance of the surface of the speaker diaphragm, thereby improving the sensitivity of the speaker, but more importantly, it can broaden the directivity of the high-frequency sound field of the speaker and improve the sound field effect.
  • the woofer unit 1 includes a basin frame 11, a bass cone 12 and a first magnetic circuit system 14 arranged on the basin frame 11, a bass voice coil 13 connected to the bass cone 12, and a bass voice coil 13 sleeved on the bass voice coil 13. Positioning tabs 16 .
  • the first magnetic circuit system 14 forms a magnetic gap into which the bass voice coil 13 is inserted, and the lower end of the bass voice coil 13 is inserted into the magnetic gap, and vibrates up and down after being energized, thereby driving the bass cone 12 to vibrate and produce sound.
  • the outer peripheral edge of the positioning support piece 16 is fixed on the basin frame 11 to prevent the bass voice coil 13 from shaking horizontally.
  • the tweeter unit 2 is generally arranged in the voice coil of the woofer unit 1 .
  • the uppermost end of the woofer unit 1 and the upper end of the horn 3 are both lower than the upper end of the woofer unit 1, and the tweeter unit 2 and the horn 3 are located in the woofer unit 1 as a whole, so as not to increase the volume of the coaxial speaker and its components. occupied space.
  • the tweeter unit 2 specifically includes a cockpit 21 provided on the woofer unit 1 , the tweeter cone 22 and the second magnetic circuit system 24 set on the cockpit 21 , and a tweeter voice coil 23 connected to the tweeter cone 22 .
  • the second magnetic circuit system 24 forms a magnetic gap into which the tweeter voice coil 23 is inserted.
  • the lower end of the tweeter voice coil 23 is inserted into the magnetic gap, and vibrates up and down after being energized, thereby driving the tweeter cone 22 to vibrate and produce sound.
  • the cabin 21 is specifically arranged on the first magnetic circuit system 14 of the woofer unit 1 .
  • the first magnetic circuit system 14 specifically includes a T iron 141 and a magnetic steel 142 sleeved on the T iron 141 .
  • the magnetic steel 142 surrounds the T iron 141 and forms a magnetic gap.
  • the cockpit 21 is arranged on the upper part of the T iron 141 .
  • the T iron 141 is provided with a through hole 143 extending in the up-down direction. The lower part of the cabin 21 is inserted into the through hole 143 .
  • the tweeter unit 2 also includes solder lugs 25 for transmitting audio signals to the tweeter voice coil 23 .
  • the upper part of the soldering piece 25 is embedded in the cockpit 21 and is in contact with the input end of the high-pitched voice coil 23, for example, through a lead wire;
  • the signal input line 15 is electrically connected. Specifically, the signal input line 15 penetrates into the through hole 143 , and the lower part of the solder pad 25 extends into the through hole 143 and is electrically connected to the signal input line 15 .
  • the signal input line 15 is also electrically connected to the lead wire of the bass voice coil 13 to input audio signals to the bass speaker unit 1 .
  • the lower end of the horn 3 is specifically connected to the outer peripheral edge of the cabin 21 and/or the tweeter cone 22 .
  • a part of the lower end surface of the horn 3 (the part near the inner side) has an arched portion 31 that is arched upward, and the edge portion of the tweeter cone 22 is located below the arched portion 31 and forms a ring between the two that communicates with the inner cavity.
  • the cavity 310 makes the frequency response curve of the high frequency relatively smooth.
  • the tweeter cone 22 includes a central arch portion 221 that is arched upward and a circle of edge arch portions 222 surrounding the central arch portion 221 , and the edge arch portion 222 is located below the arch portion 31 of the horn 3 .
  • the coaxial speaker also includes a dust ring 4 connected between the horn 3 and the woofer unit 1 .
  • the dust ring 4 is specifically connected between the upper end of the horn 3 and the bass cone 12 .
  • the dustproof ring 4 is made of a breathable material, and is used for dustproofing the magnetic gap of the woofer unit 1 .
  • the section along the up-down direction of the dust ring 4 includes two mirror-symmetrical wave or zigzag shapes, so as to avoid pulling the bass cone 12 when the woofer unit 1 is working.
  • the breathable material is cotton, PC (polycarbonate) or CONEX (aramid fiber).
  • the dust ring 4 is only used for dust protection, not waterproof.
  • the coaxial speaker further includes a plurality of extension fins 32 extending inward from the inner surface of the horn 3 , and the extension fins 32 are located above the tweeter cone 22 of the tweeter unit 2 .
  • the extension fins 32 extend inward along the radial direction of the horn 3 , and the size of the extension fins 32 in the radial direction gradually increases from top to bottom.
  • the lower ends of the extending fins 32 are connected to an annular member 33 .
  • the inner edges of the extension fins 32 are arcuate.
  • the extension fins 32 can effectively protect the internal components of the tweeter unit 2 and prevent foreign objects such as fingers from entering the tweeter unit 2 by mistake and damage the tweeter cone 22 and other internal components; the extension fins 32 can also make high frequency diffusion better.
  • the frequency response tests are respectively performed on the coaxial loudspeaker without a horn (comparative example) and the coaxial loudspeaker with a horn in this embodiment, and the test results are shown in FIG. 7 .
  • the structure of the coaxial loudspeaker of the comparative example is basically the same as that of the present embodiment, except that the tweeter unit is not provided with a horn, and the dust ring is connected between the tweeter unit and the woofer unit.
  • the thin line in Fig. 7 is the frequency response curve of the tweeter unit in the coaxial speaker of the comparative example; the thick line in the figure is the frequency response curve of the tweeter unit in the coaxial speaker of the present embodiment. It can be seen from the figure that the frequency response curve of the tweeter unit in the coaxial speaker of this embodiment is more balanced.
  • the geometry of the horn of the coaxial loudspeaker in this embodiment is directly related to the sound reproduction quality and sound field directivity characteristics of the loudspeaker. If the horn geometry is designed using the traditional empirical method of designing products—trial samples—testing—improving designs—re-trial samples—re-testing, horn problems cannot be found until later in the design, and the development cycle is long and the cost is high. high.
  • the industry has begun to adopt the numerical simulation analysis method based on finite element to simulate and analyze the sound field response of loudspeakers under different shapes of horns. Although this method greatly shortens the product development cycle and reduces research and development costs, it still relies on repeated design. , and it is often impossible to design the theoretically optimal horn shape in the end.
  • the present embodiment provides a shape optimization method for a coaxial loudspeaker with a horn to solve the following problems: 1.
  • the traditional empirical design method of the loudspeaker horn has the problems of long development cycle and high cost; 2.
  • Relying on the sound field of a general loudspeaker Simulation analysis methods are often difficult to design the theoretically optimal horn geometry.
  • FIG. 8 is a flow chart of the shape optimization method, which mainly includes the following steps:
  • Step 1 Since the tweeter unit of this coaxial speaker has an axisymmetric structure, in order to facilitate the calculation, first select the 2D axisymmetric analysis environment in the COMSOL software, and then select the "Acoustic-Solid Interaction, Frequency Domain” physics interface , because the frequency domain analysis of the three-field coupling is to be carried out, the "frequency domain study” is finally selected;
  • Step 2 Use COMSOL software to establish the 2D axisymmetric geometric model of the tweeter unit, the surrounding air domain, and the diaphragm of the woofer unit, and use the parametric cubic Bezier curve to establish the geometric model of the horn profile, as indicated by the arrow in Figure 9. Pointed to by the bold line.
  • the interpretation of the geometric model is as follows: 1) The magnetic circuit system of the tweeter unit does not participate in the finite element calculation, and is only treated as a hard sound field boundary. The driving force coefficient and basic impedance frequency response curve of the required magnetic circuit system can be obtained by additional simulation analysis.
  • the diaphragm of the woofer unit does not participate in the finite element calculation, and is only treated as a hard sound field boundary;
  • the cubic Bezier curve represented by the dark curve is the horn profile, and the two endpoints of the curve are fixed. , the coordinate values of the two nodes in the middle of the curve are used as optimization parameters;
  • Step 3 Define functions, parameters and variables, including: 1) Define the average function on the voice coil and name it coil_av, which is to define the arithmetic mean of the back electromotive force in the voice coil domain; 2) Import the basic impedance of the tweeter unit
  • the interpolation functions of the real part and the imaginary part are named Zbr and Zbi respectively, as shown in Figure 10 and Figure 11; 3) Define the coordinate parameters of the two nodes in the cubic Bezier curve as (P1r, P1z) and (P2r) , P2z), its initial coordinates are set to (13.1,-10)[mm] and (14,-0.5)[mm]; 4) Define six variables as follows:
  • Zb Zbr(freq)+i*Zbi(freq);
  • FF BL*(V0-BL*coil_av(solid.u_tZ))/Zb;
  • Lp_0 10*log10(0.5*abs(pfar(0,1[m])[Pa]) ⁇ 2/acpr.pref_SPL ⁇ 2);
  • Lp_the 10*log10(0.5*abs(pfar(0.707[m],0.707[m])[Pa]) ⁇ 2/acpr.pref_SPL ⁇ 2);
  • Lp_ave_0 sum(with(ka, Lp_0), ka, 1, 21)/21;
  • Lp_ave_the sum(with(ka, Lp_the), ka, 1, 21)/21;
  • Zb is the basic impedance of the tweeter unit
  • Zbr(freq) is the real part of the basic impedance
  • Zbi(freq) is the imaginary part of the basic impedance
  • i is the imaginary unit
  • FF is the load on the voice coil
  • BL is the tweeter
  • the driving force coefficient of the unit is 1.71[Wb/m]
  • V0 is the loading voltage of the speaker, which is 2.828[V]
  • solid.u_tZ is the expression of the axial vibration velocity of the speaker voice coil
  • Lp_0 is the 0° axis of the speaker.
  • Step 4 Define the "Solid Mechanics” physics interface, including: 1) Set the “Fixed Constraint” at the thick line indicated by the arrow in Figure 12; 2) Set the “Body Load” at the voice coil indicated by the arrow in Figure 13 “, set the load type to "Total Force", and input FF in the z-axis direction; 3) Set “Damp” at the diaphragm indicated by the arrow in Figure 14, and set the damping type to "Isotropic Loss Factor";
  • Step 5 Define the "Pressure Acoustics, Frequency Domain” physics interface, including: 1) Setting the “External Field Calculation” at the thick line indicated by the arrow in Figure 15; 2) Setting the thick line indicated by the arrow in Figure 16 "Internal Hard Sound Field Boundary (Wall)”; 3) Set a "Perfect Matching Layer” on the area indicated by the arrow in Figure 17;
  • Step 6 Define the "acoustic-structural boundary", as shown by the thick line indicated by the arrow in Figure 18;
  • Step 7 Set the material parameters, including: 1) The air material parameters are from the COMSOL material database; 2) The material parameters of each component of the tweeter unit vibration system are shown in Table 1 below:
  • Step 8 Mesh division, including: 1) dividing the "free triangle mesh” on the area indicated by the arrow in Figure 19, and setting the maximum element size to "343[m]/20000/5"; 2) in Figure 20 The upper division "mapped” grid indicated by the arrow in the middle, the distribution number is set to "5"; the final grid division results are shown in Table 2 below:
  • Step 9 Set the frequency range to 2000Hz ⁇ 20000Hz, 1/6 octave
  • Step 10 Setting optimization, including: 1) setting the optimization algorithm to "Nelder-Mead”; 2) setting the objective function to Lp_ave_0 and Lp_ave_the; 3) setting the objective function type to "maximize”; 4) setting the value range of the optimization parameter , as shown in Figure 21;
  • Step 11 Left-click the "Calculate” button to view the calculation progress in the lower right corner of the software interface
  • Step 13 Draw the geometric shape of the horn of the tweeter unit according to the calculation result of the optimized parameters, as shown by the area indicated by the arrow in Figure 22.
  • the above method is suitable for moving coil type electric loudspeaker, moving iron type loudspeaker and MEMS loudspeaker.
  • the above method is based on the three-field coupling simulation analysis technology of the loudspeaker magnetic circuit system, the vibration system and the sound field, and the optimal Bezier curve shape of the horn is designed through the optimization algorithm, so the present disclosure can quickly, cost-effectively and accurately optimize the loudspeaker horn, thereby shortening the development cycle of the speaker horn and improving the acoustic performance of the speaker.

Landscapes

  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

一种具有号角的同轴扬声器及其形状优化方法。同轴扬声器包括低音扬声器单元、高音扬声器单元、具有内腔且上下两端开放的号角,高音扬声器单元包括高音音盆,号角环绕所述高音音盆,号角的下端部连接于高音扬声器单元,号角的上端部为其内径最大处。形状优化方法包括如下步骤:S1、建立同轴扬声器的几何模型,获得号角的轮廓曲线中的控制节点;S2、设置物理场;S3、定义材料参数;S4、网格划分;S5、优化号角的轮廓形状的几何参数;S6、根据优化后的参数绘制号角的优化几何模型。形状优化方法能够使高音扬声器单元工作时拥有更好的频响曲线;能够快速准确地优化号角的形状,提高扬声器的声学性能。

Description

一种具有号角的同轴扬声器及其形状优化方法
本公开要求2020年12月14日提交的申请号为CN 2020114631391的中国专利申请的优先权,其全部内容通过引用的方式并入本公开中。
技术领域
本公开涉及扬声器领域,具体涉及一种具有号角的同轴扬声器及其形状优化方法。
背景技术
同轴扬声器集成有高音扬声器单元和低音扬声器单元,分别负责重放高音和中低音。同轴扬声器的优点在于大大提高了单体扬声器的频宽,广泛应用于汽车音响。目前少数高品质的车载扬声器音响系统,有时会仅仅只使用同轴扬声器的高音扬声器单元而让低音扬声器单元不发声,用于调节车内声场。这也导致了高音扬声器单元在单独工作时,也需要有很好的频响响应曲线。但是,在同轴扬声器中,低音扬声器单元的结构势必会影响高音单元的辐射声场。
发明内容
针对上述问题,本公开提供一种具有号角的同轴扬声器,其在仅高音扬声器单元工作时拥有较好的频响曲线,同时降低低音扬声器单元对高音扬声器单元的声场的影响。本公开还提供一种具有号角的同轴扬声器的形状优化方法,能够快速准确地优化号角的形状,提高扬声器的声学性能。
根据本公开的第一个方面,一种同轴扬声器,包括低音扬声器单元和高音扬声器单元,所述同轴扬声器还包括具有内腔且上下两端开放的号角,所述高音扬声器单元包括高音音盆,所述号角环绕所述高音音盆,所述号角的下端部连接于所述高音扬声器单元,所述号角的上端部为其内径最大处。
在一优选的实施例中,所述号角具有扩张部,所述扩张部的内径自下至上逐渐增大。更优选地,所述扩张部的沿上下方向的截面中具有呈两个镜像对称的贝塞尔曲线状的内轮廓。使得高频的频响曲线较为平滑。
在一优选的实施例中,所述号角的内径自下至上逐渐增大。更优选地,所述号角的沿上下方向的截面中具有呈两个镜像对称的贝塞尔曲线状的内轮廓。使得高频的频响曲线较为平滑。
优选地,所述高音扬声器单元还包括座舱,所述座舱设置于所述低音扬声器单元上,所述高音音盆设置于所述座舱上,所述号角的下端部连接于所述座舱和/或高音音盆的外周边沿上。
更优选地,所述号角的下端面的局部具有向上拱起的拱起部,所述高音音盆的边缘部位位于所述拱起部的下方并在二者之间形成和所述内腔连通的环形凹腔。使得高频的频响曲线较为平滑。
更优选地,所述高音扬声器单元还包括高音音圈、及用于向所述高音音圈传输音频信号的焊片,所述焊片的上部嵌设在所述座舱中并和所述高音音圈的输入端相接触导通,所述焊片与一用于输入音频信号的 信号输入线电性连接。
进一步地,所述低音扬声器单元包括低音音圈,所述低音音圈的引线与所述信号输入线电性连接。
更进一步地,所述低音扬声器单元包括磁路系统,所述磁路系统上开设有上下方向延伸的通孔,所述信号输入线穿入所述通孔中,所述焊片的下部伸入所述通孔中以和所述信号输入线电性连接。
优选地,所述同轴扬声器还包括连接于所述号角和低音扬声器单元之间的防尘圈。
更优选地,所述低音扬声器单元包括低音音盆,所述防尘圈连接于所述号角和所述低音音盆之间,进一步地,所述防尘圈由透气材料制成。用于低音扬声器单元磁间隙防尘。
进一步地,防尘圈的沿上下方向的截面包括两个镜像对称的波浪形或锯齿形,以避免在低音扬声器单元工作时拉扯低音音盆。
进一步地,所述透气材料为棉、PC(聚碳酸酯)或者CONEX(芳纶纤维)。防尘圈仅用于防尘,不用于防水。
优选地,所述低音扬声器单元包括低音音圈,所述高音扬声器单元设置于所述低音音圈内,所述低音扬声器单元的最上端及所述号角的上端均低于所述低音扬声器单元的上端。高音扬声器单元及号角整体位于低音扬声器单元内。
优选地,所述同轴扬声器还包括自所述号角的内表面向内延伸的多个延伸翅片,所述延伸翅片位于所述高音扬声器单元的高音音盆的上方。更优选地,所述延伸翅片沿号角的径向向内延伸。进一步地,所述延伸翅片在径向上的尺寸自上至下逐渐增大。更进一步地,各所述延伸翅片的下端部均连接于一环形部件上。更进一步地,所述延伸翅片的内边缘为弧形。延伸翅片能够有效保护高音扬声器单元的内部部件,防止手指等外物误入高音扬声器单元中损坏高音音盆等内部部件;延伸翅片还能够使高频扩散较好。
根据本公开的另一个方面,一种具有号角的同轴扬声器的形状优化方法,包括如下步骤:
S1、建立如上所述的同轴扬声器的几何模型,获得号角的轮廓曲线中的控制节点;
S2、设置物理场;
S3、定义材料参数;
S4、网格划分;
S5、优化号角的轮廓形状的几何参数;
S6、根据优化后的参数绘制号角的优化几何模型;
其中,所述步骤S5具体包括:
S51、选择优化参数:以号角的轮廓曲线中的一组控制节点的坐标值P作为优化参数;
S52、设置约束条件:限定坐标值P的取值范围C为:
C={P:lb≤P≤ub}
上式中,lb是坐标值P的取值下限,ub是坐标值P的取值上限;
S53、确定优化目标:同轴扬声器的0°轴向和偏轴θ角度的高频平均声压级响应
Figure PCTCN2021104529-appb-000001
Figure PCTCN2021104529-appb-000002
之和应取最大值,即满足:
Figure PCTCN2021104529-appb-000003
上式中,
Figure PCTCN2021104529-appb-000004
是满足优化目标的一组优化参数;
Figure PCTCN2021104529-appb-000005
是求解最大值的算子;
S54、优化计算:根据优化参数P和约束条件C,采用优化算法计算得到满足优化目标
Figure PCTCN2021104529-appb-000006
的一组优化参数
Figure PCTCN2021104529-appb-000007
优选地,所述步骤S2具体包括:
S21、电磁场和振动系统:在扬声器振动系统部件的固定部分设置“固定约束”;设置扬声器振动系统部件的材料本构关系为“线弹性材料模型”;在扬声器音圈上设置轴向载荷FF,如下:
Figure PCTCN2021104529-appb-000008
上式中,BL是扬声器磁路的驱动力系数,Zb(freq)是扬声器磁路的基本阻抗频响曲线,v是扬声器音圈的轴向振动速度,V 0是扬声器加载电压;
S22、声场:设置号角轮廓的几何模型为“硬声场边界”;设置扬声器周围空气域的外层为“完美匹配层”。
步骤S1中,在有限元分析软件中建立扬声器及其周围空气域的几何模型,并以参数化的贝塞尔曲线建立号角轮廓的几何模型,获得曲线中的控制节点,由这些控制节点的坐标值控制号角轮廓的几何形状。
步骤S3中,定义扬声器振动系统各部件的力学材料参数;定义空气的材料参数。
步骤S4中,以“自由三角形网格”单元划分扬声器及其周围空气域的网格,最大网格单元尺寸大小应满足一个声波波长内至少有5~6个线性单元的原则。
步骤S54中,优化算法选自Nelder-Mead、BOBYQA、COBYLA、Laplace、Winslow、坐标查找、Yeoh平滑七种无梯度型优化算法,以及SNOPT、MMA和Levenberg-Marquardt三种梯度型优化算法。
在有限元分析软件中执行上述各步骤,有限元分析软件包括COMSOL Multiphysics和ANSYS。
本公开采用以上方案,相比现有技术具有如下优点:
本公开的具有号角的同轴扬声器,当高音扬声器单元工作时,高音号角引导声波向正前方传播,阻止 了声波向后辐射,从而降低低音扬声器单元对高音的影响,同时逐步向外扩张的结构利于高音扬声器单元高频的拓展。本公开的形状优化方法,通过优化算法设计出号角的最优贝塞尔曲线形状,可以快速、低成本且准确地优化扬声器号角,从而缩短扬声器号角的研发周期,提高扬声器的声学性能。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开实施例的一种同轴扬声器的整体外形示意图;
图2是图1所示同轴扬声器的俯视图;
图3为图2中A-A向的剖视图;
图4为图3中B处的局部放大图;
图5为图2中的高音扬声器单元及号角的立体示意图;
图6为图2中的高音扬声器单元及号角的剖视图;
图7为不配置号角的同轴扬声器和本公开实施例的同轴扬声器的频响曲线对比图;
图8为根据本公开实施例的一种形状优化设计方法的流程图;
图9为扬声器、号角及其周围空气的几何模型;
图10示出了高音扬声器单元基本阻抗的实部;
图11示出了高音扬声器单元基本阻抗的虚部;
图12示出了“固定约束”边界;
图13示出了高音扬声器单元的音圈;
图14示出了高音扬声器单元的振膜;
图15示出了“外场计算”边界;
图16示出了“内部硬声场边界(壁)”边界;
图17示出了是完美匹配层;
图18示出了“声-结构”边界;
图19示出了“自由三角形网格”区域;
图20示出了“映射”网格区域;
图21示出了网格划分结果;
图22示出了高音扬声器单元号角几何模型的优化结果。
以上附图中,
1、低音扬声器单元;11、盆架;12、低音音盆;13、低音音圈;14、第一磁路系统;141、T铁;142、磁钢;143、通孔;15、信号输入线;16、定位支片;
2、高音扬声器单元;21、座舱;22、高音音盆;221、中心拱部;222、边缘拱部;23、高音音圈;24、第二磁路系统;25、焊片;
3、号角;31、拱起部;310、环形凹腔;32、延伸翅片;33、环形部件;
4、防尘圈。
具体实施方式
下面结合附图对本的较佳实施例进行详细阐述,以使本公开的优点和特征能更易于被本领域的技术人员理解。在此需要说明的是,对于这些实施方式的说明用于帮助理解本公开,但并不构成对本公开的限定。此外,下面所描述的本公开各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以互相结合。
在本公开的描述中,需要说明的是,术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
参照图1至图6所示,本实施例提供一种具有号角的同轴扬声器,其包括同轴设置的低音扬声器单元1和高音扬声器单元2。该同轴扬声器还包括具有内腔且上下两端开放的号角3。上述高音扬声器单元2包括高音音盆22,号角3环绕高音音盆22。号角3的下端部连接于高音扬声器单元2,号角3的上端为其内径最大处。号角3具有扩张部,扩张部的内径自下至上逐渐增大。进一步地,号角3的内径自下至上逐渐增大,号角3整体呈逐渐外扩的形状。具体而言,号角3的沿上下方向的截面中具有呈两个镜像对称的贝塞尔曲线状的内轮廓,使得高频的频响曲线较为平滑,如图3所示。在另一实施例中,号角3可先向内再逐渐向外扩张。号角3显著降低低音扬声器单元1的结构对高音扬声器单元2辐射声场的影响。号角不仅能够提升扬声器振膜表面的声阻抗,从而提升扬声器灵敏度,更重要的是它能够展宽扬声器的高频声场指向性,改善声场效果。
低音扬声器单元1包括盆架11、设置在盆架11上的低音音盆12及第一磁路系统14、连接在低音音盆12上的低音音圈13及套设在低音音圈13上的定位支片16。第一磁路系统14形成供低音音圈13插入的磁隙,低音音圈13的下端插入磁隙中,并在通电后上下振动,进而驱动低音音盆12振动发声。定位支 片16的外周边缘固定在盆架11上,用于防止低音音圈13水平晃动。
高音扬声器单元2大体设置在低音扬声器单元1的音圈中。低音扬声器单元1的最上端及号角3的上端均低于低音扬声器单元1的上端,高音扬声器单元2及号角3整体位于低音扬声器单元1内,从而不会额外增加同轴扬声器的体积及其所占的空间。
高音扬声器单元2具体包括设置在低音扬声器单元1上的座舱21、设置于座舱21上的上述高音音盆22及第二磁路系统24、连接在高音音盆22上的高音音圈23。第二磁路系统24形成供高音音圈23插入的磁隙,高音音圈23的下端插入磁隙中,并在通电后上下振动,进而驱动高音音盆22振动发声。
座舱21具体设置在低音扬声器单元1的第一磁路系统14上。该第一磁路系统14具体包括T铁141及套设于T铁141上的磁钢142,磁钢142环绕T铁141并形成有磁隙。座舱21即设置在T铁141的上部上。具体到本实施例中,T铁141上开设有沿上下方向延伸的通孔143。座舱21的下部插设在该通孔143中。
该高音扬声器单元2还包括用于向高音音圈23传输音频信号的焊片25。焊片25的上部嵌设在座舱21中并和高音音圈23的输入端接触导通,例如通过引线导通;焊片25的下部伸入低音扬声器单元1中以和用于输入音频信号的信号输入线15电性连接。具体而言,信号输入线15穿入通孔143中,焊片25的下部伸入通孔143中和信号输入线15电性连接。信号输入线15还和低音音圈13的引线电性连接,向低音扬声器单元1输入音频信号。
结合图3和图4所示,号角3的下端部具体连接于座舱21和/或高音音盆22的外周边沿上。号角3的下端面的局部(内侧附近的部分)具有向上拱起的拱起部31,高音音盆22的边缘部位位于拱起部31的下方并在二者之间形成和内腔连通的环形凹腔310,通过这种设置使得高频的频响曲线较为平滑。具体地,高音音盆22包括向上拱起的中心拱部221和环绕中心拱部221的一圈边缘拱部222,边缘拱部222位于号角3的拱起部31的下方。
该同轴扬声器还包括连接于号角3和低音扬声器单元1之间的防尘圈4。防尘圈4具体连接于号角3的上端部和低音音盆12之间。防尘圈4由透气材料制成,用于低音扬声器单元1磁间隙防尘。防尘圈4的沿上下方向的截面包括两个镜像对称的波浪形或锯齿形,以避免在低音扬声器单元1工作时拉扯低音音盆12。透气材料为棉、PC(聚碳酸酯)或者CONEX(芳纶纤维)。防尘圈4仅用于防尘,不用于防水。
进一步地,该同轴扬声器还包括自号角3的内表面向内延伸的多个延伸翅片32,延伸翅片32位于高音扬声器单元2的高音音盆22的上方。延伸翅片32具体沿号角3的径向向内延伸,延伸翅片32在径向上的尺寸自上至下逐渐增大。各延伸翅片32的下端部均连接于一环形部件33上。延伸翅片32的内边缘为弧形。延伸翅片32能够有效保护高音扬声器单元2的内部部件,防止手指等外物误入高音扬声器单元2中损坏高音音盆22等内部部件;延伸翅片32还能够使高频扩散较好。
分别对不配置号角的同轴扬声器(对比例)和本实施例的具有号角的同轴扬声器进行了频响测试,测试结果如图7所示。对比例的同轴扬声器的结构基本同本实施例,区别仅在于:高音扬声器单元上未设置有号角,防尘圈连接在高音扬声器单元和低音扬声器单元之间。图7中细线是对比例的同轴扬声器中高音 扬声器单元的频响曲线;图中粗线是本实施例的同轴扬声器中高音扬声器单元的频响曲线。由图中可以看出,本实施例的同轴扬声器中高音扬声器单元的频响曲线更为平衡。
本实施例的同轴扬声器的号角的几何形状直接关系到扬声器的声音重放质量和声场指向特性。若采用一般为设计产品——试制样品——测试——改善设计——再试制样品——再测试的传统经验法设计号角几何形状,必须等到设计后期才能发现号角问题,而且开发周期长、成本高。业内已开始采用基于有限元的数值仿真分析方法,仿真分析不同形状号角下扬声器的声场响应,虽然这种方法在很大程度上缩短了产品开发周期,减少了研发成本,但是仍然依赖于重复设计,并且往往最终也无法设计出理论上最优的号角形状。基于此,本实施例提供一种具有号角的同轴扬声器的形状优化方法,以解决如下问题:一、扬声器号角的传统经验设计法存在开发周期长且成本高的问题;二、依靠一般扬声器声场仿真分析方法往往很难设计出理论上最优的号角几何形状。
以上述同轴扬声器的高音单元为例,使用COMSOL Multiphysics 5.5优化设计它的号角形状,并直接给出号角的优化设计结果。图8是该形状优化方法的流程图,主要包括如下步骤:
步骤1:由于该款同轴扬声器的高音扬声器单元具有轴对称结构,因此为了便于计算,在COMSOL软件中首先选择2D轴对称分析环境,然后选择“声-固相互作用,频域”物理场接口,因为要进行三场耦合的频域分析,所以最后选择“频域研究”;
步骤2:使用COMSOL软件建立高音扬声器单元、周围空气域,以及低音扬声器单元振膜的2D轴对称几何模型,并以参数化三次贝塞尔曲线建立号角轮廓的几何模型,如图9中箭头所指的粗线所示。对于几何模型的解释如下:1)高音扬声器单元的磁路系统不参与有限元计算,仅作为硬声场边界处理,所需磁路系统的驱动力系数和基本阻抗频响曲线可以另外仿真分析得到,也可以测量得到;2)低音扬声器单元的振膜也不参与有限元计算,仅作为硬声场边界处理;3)深色曲线代表的三次贝塞尔曲线为号角轮廓,曲线两个端点固定不动,曲线中间两个节点的坐标值即作为优化参数;
步骤3:定义函数、参数和变量,包括:1)在音圈上定义平均函数,并命名为coil_av,这是为了定义音圈域内反向电动势的算术平均值;2)导入高音扬声器单元基本阻抗实部和虚部的插值函数,分别命名为Zbr和Zbi,如图10和如图11所示;3)定义三次贝塞尔曲线中两个节点的坐标参数为(P1r,P1z)和(P2r,P2z),其初始坐标设置为(13.1,-10)[mm]和(14,-0.5)[mm];4)定义六个变量,如下:
Zb:Zbr(freq)+i*Zbi(freq);
FF:BL*(V0-BL*coil_av(solid.u_tZ))/Zb;
Lp_0:10*log10(0.5*abs(pfar(0,1[m])[Pa])^2/acpr.pref_SPL^2);
Lp_the:10*log10(0.5*abs(pfar(0.707[m],0.707[m])[Pa])^2/acpr.pref_SPL^2);
Lp_ave_0:sum(with(ka,Lp_0),ka,1,21)/21;
Lp_ave_the:sum(with(ka,Lp_the),ka,1,21)/21;
上式中,Zb为高音扬声器单元的基本阻抗;Zbr(freq)为基本阻抗实部;Zbi(freq)为基本阻抗虚部;i为虚数单位;FF为音圈上的载荷;BL是高音扬声器单元的驱动力系数,为1.71[Wb/m];V0是扬声器的加载电压,为2.828[V];solid.u_tZ是扬声器音圈的轴向振动速度表达式;Lp_0是扬声器0°轴向一米处的声压级;abs()是取模算子;pfar()是远场声压求解算子,将在后续步骤中定义“远场计算”;acpr.pref_SPL 是基准声压,为20微帕斯卡;Lp_the是扬声器偏轴45°一米处的声压级;Lp_ave_0是扬声器0°轴向1米处的声压级平均值;sum()是求和算子,with()是排序算子,ka是序号;Lp_ave_the是扬声器偏轴45°一米处的声压级平均值;
步骤4:定义“固体力学”物理场接口,包括:1)在图12中箭头所指的粗线处设置“固定约束”;2)在图13中箭头所指的音圈处设置“体载荷”,设置载荷类型为“总力”,并在z轴方向上输入FF;3)在图14中箭头所指的振膜处设置“阻尼”,设置阻尼类型为“各向同性损耗因子”;
步骤5:定义“压力声学,频域”物理场接口,包括:1)在图15中箭头所指的粗线处设置“外场计算”;2)在图16中箭头所指的粗线处设置“内部硬声场边界(壁)”;3)在图17中箭头所指的区域上设置“完美匹配层”;
步骤6:定义“声-结构边界”,如图18中箭头所指的粗线所示;
步骤7:设置材料参数,包括:1)空气材料参数来自COMSOL材料数据库;2)高音扬声器单元振动系统各部件材料参数见下表1:
表1材料参数
Figure PCTCN2021104529-appb-000009
步骤8:网格划分,包括:1)在图19中箭头所指的区域上划分“自由三角形网格”,最大单元大小设为“343[m]/20000/5”;2)在图20中箭头所指的上划分“映射”网格,分布数量设为“5”;最后的网格划分结果如下表2所示:
表2
Figure PCTCN2021104529-appb-000010
步骤9:设置频率范围为2000Hz~20000Hz,1/6倍频程;
步骤10:设置优化,包括:1)设置优化算法为“Nelder-Mead”;2)设置目标函数为Lp_ave_0和Lp_ave_the;3)目标函数类型为“最大化”;4)设置优化参数的取值范围,如图21所示;
步骤11:左击“计算”按钮,在软件界面右下角查看计算进度;
步骤12:在软件界面右下角表格栏中读取优化参数的计算结果:(P1r,P1z)=(13.5,-10);(P1r,P1z)=(16,-1);
步骤13:根据优化参数的计算结果绘制高音扬声器单元号角的几何形状,如图22中箭头所指的区域所示。
上述方法适用于动圈式电动扬声器、动铁式扬声器和MEMS扬声器。
上述方法在扬声器磁路系统、振动系统和声场的三场耦合仿真分析技术基础上,通过优化算法设计出号角的最优贝塞尔曲线形状,因此本公开可以快速、低成本且准确地优化扬声器号角,从而缩短扬声器号角的研发周期,提高扬声器的声学性能。
上述实施例只为说明本公开的技术构思及特点,是一种优选的实施例,其目的在于熟悉此项技术的人士能够了解本公开的内容并据以实施,并不能以此限定本公开的保护范围。

Claims (17)

  1. 一种同轴扬声器,包括低音扬声器单元和高音扬声器单元,其特征在于:所述同轴扬声器还包括具有内腔且上下两端开放的号角,所述高音扬声器单元包括高音音盆,所述号角环绕所述高音音盆,所述号角的下端部连接于所述高音扬声器单元,所述号角的上端部为其内径最大处。
  2. 根据权利要求1所述的同轴扬声器,其特征在于:所述号角具有扩张部,所述扩张部低于所述号角的上端部,所述扩张部的内径自下至上逐渐增大。
  3. 根据权利要求1所述的同轴扬声器,其特征在于:所述号角的内径自下至上逐渐增大。
  4. 根据权利要求2或3所述的同轴扬声器,其特征在于:所述号角的沿上下方向的截面的内轮廓或其部分呈贝塞尔曲线状。
  5. 根据权利要求1所述的同轴扬声器,其特征在于:所述高音扬声器单元还包括座舱,所述座舱设置于所述低音扬声器单元上,所述高音音盆设置于所述座舱上,所述号角的下端部连接于所述座舱和/或高音音盆的外周边沿上。
  6. 根据权利要求5所述的同轴扬声器,其特征在于:所述号角的下端面的局部具有向上拱起的拱起部,所述高音音盆的边缘部位位于所述拱起部的下方并在二者之间形成和所述内腔连通的环形凹腔。
  7. 根据权利要求5所述的同轴扬声器,其特征在于:所述高音扬声器单元还包括高音音圈、及用于向所述高音音圈传输音频信号的焊片,所述焊片的上部嵌设在所述座舱中并和所述高音音圈的输入端相接触导通,所述焊片与一用于输入音频信号的信号输入线电性连接。
  8. 根据权利要求7所述的同轴扬声器,其特征在于:所述低音扬声器单元包括低音音圈,所述低音音圈的引线与所述信号输入线电性连接。
  9. 根据权利要求8所述的同轴扬声器,其特征在于:所述低音扬声器单元还包括磁路系统,所述磁路系统上开设有上下方向延伸的通孔,所述信号输入线穿入所述通孔中,所述焊片的下部伸入所述通孔中以和所述信号输入线电性连接。
  10. 根据权利要求1所述的同轴扬声器,其特征在于:所述同轴扬声器还包括连接于所述号角和低音扬声器单元之间的防尘圈。
  11. 根据权利要求10所述的同轴扬声器,其特征在于:所述低音扬声器单元包括排低音音盆,所述防尘圈连接于所述号角的上端部和所述低音音盆之间。
  12. 根据权利要求1所述的同轴扬声器,其特征在于:所述低音扬声器单元包括低音音圈,所述高音扬声器单元设置于所述低音音圈内,所述低音扬声器单元的最上端及所述号角的上端均低于所述低音扬声器单元的上端。
  13. 根据权利要求1所述的同轴扬声器,其特征在于:所述同轴扬声器还包括自所述号角的内表面向内延伸的多个延伸翅片,所述延伸翅片位于所述高音扬声器单元的高音音盆的上方。
  14. 根据权利要求13所述的同轴扬声器,其特征在于:所述延伸翅片沿所述号角的径向向内延伸,所述延伸翅片在径向上的尺寸自上至下逐渐增大。
  15. 根据权利要求14所述的同轴扬声器,其特征在于:各所述延伸翅片的下端部均连接于一环形部件上。
  16. 一种具有号角的同轴扬声器的形状优化方法,其特征在于,包括如下步骤:
    S1、建立如权利要求1至15中任一项所述的同轴扬声器的几何模型,获得号角的轮廓曲线中的控制节点;
    S2、设置物理场;
    S3、定义材料参数;
    S4、网格划分;
    S5、优化号角的轮廓形状的几何参数;及
    S6、根据优化后的参数绘制号角的优化几何模型;
    其中,所述步骤S5具体包括:
    S51、选择优化参数:以号角的轮廓曲线中的一组控制节点的坐标值P作为优化参数;
    S52、设置约束条件:限定坐标值P的取值范围C为:
    C={P:lb≤P≤ub}
    上式中,lb是坐标值P的取值下限,ub是坐标值P的取值上限;
    S53、确定优化目标:同轴扬声器的0°轴向和偏轴θ角度的高频平均声压级响应
    Figure PCTCN2021104529-appb-100001
    Figure PCTCN2021104529-appb-100002
    之和应取最大值,即满足:
    Figure PCTCN2021104529-appb-100003
    上式中,
    Figure PCTCN2021104529-appb-100004
    是满足优化目标的一组优化参数;
    Figure PCTCN2021104529-appb-100005
    是求解最大值的算子;
    S54、优化计算:根据优化参数P和约束条件C,采用优化算法计算得到满足优化目标
    Figure PCTCN2021104529-appb-100006
    的一组优化参数
    Figure PCTCN2021104529-appb-100007
  17. 根据权利要求16所述的形状优化方法,其特征在于,所述步骤S2具体包括:
    S21、电磁场和振动系统:在扬声器振动系统部件的固定部分设置“固定约束”;设置扬声器振动系统部件的材料本构关系为“线弹性材料模型”;在扬声器音圈上设置轴向载荷FF,如下:
    Figure PCTCN2021104529-appb-100008
    上式中,BL是扬声器磁路的驱动力系数,Zb(freq)是扬声器磁路的基本阻抗频响曲线,v是扬声器音圈的轴向振动速度,V 0是扬声器加载电压;
    S22、声场:设置号角轮廓的几何模型为“硬声场边界”;设置扬声器周围空气域的外层为“完美匹配层”。
PCT/CN2021/104529 2020-12-14 2021-07-05 一种具有号角的同轴扬声器及其形状优化方法 WO2022127081A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023534739A JP2023554291A (ja) 2020-12-14 2021-07-05 ホーン付き同軸スピーカー及びその形状最適化方法
US18/257,205 US20240015431A1 (en) 2020-12-14 2021-07-05 Coaxial loudspeaker with horn and shape optimization method therefor
EP21905014.3A EP4187921A1 (en) 2020-12-14 2021-07-05 Coaxial loudspeaker with horn and shape optimization method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011463139.1A CN112995847A (zh) 2020-12-14 2020-12-14 一种具有号角的同轴扬声器及其形状优化方法
CN202011463139.1 2020-12-14

Publications (1)

Publication Number Publication Date
WO2022127081A1 true WO2022127081A1 (zh) 2022-06-23

Family

ID=76344957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104529 WO2022127081A1 (zh) 2020-12-14 2021-07-05 一种具有号角的同轴扬声器及其形状优化方法

Country Status (5)

Country Link
US (1) US20240015431A1 (zh)
EP (1) EP4187921A1 (zh)
JP (1) JP2023554291A (zh)
CN (1) CN112995847A (zh)
WO (1) WO2022127081A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112995847A (zh) * 2020-12-14 2021-06-18 苏州上声电子股份有限公司 一种具有号角的同轴扬声器及其形状优化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2387687Y (zh) * 1999-03-16 2000-07-12 刘建国 球顶高音号角扩声同轴全频扬声器
CN2595118Y (zh) * 2002-11-04 2003-12-24 张景会 号角式全音频同轴扬声器
CN202150931U (zh) * 2011-05-20 2012-02-22 闫天时 共点同轴扬声器
CN104408227A (zh) * 2014-10-28 2015-03-11 浙江中科电声研发中心 一种扬声器失真特性的数值仿真分析方法
CN108737937A (zh) * 2017-04-20 2018-11-02 深圳市三诺数字科技有限公司 一种双磁隙同轴扬声器
CN109145514A (zh) * 2018-09-30 2019-01-04 浙江中科电声研发中心 一种扬声器失真的数值仿真分析方法
CN112995847A (zh) * 2020-12-14 2021-06-18 苏州上声电子股份有限公司 一种具有号角的同轴扬声器及其形状优化方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2387687Y (zh) * 1999-03-16 2000-07-12 刘建国 球顶高音号角扩声同轴全频扬声器
CN2595118Y (zh) * 2002-11-04 2003-12-24 张景会 号角式全音频同轴扬声器
CN202150931U (zh) * 2011-05-20 2012-02-22 闫天时 共点同轴扬声器
CN104408227A (zh) * 2014-10-28 2015-03-11 浙江中科电声研发中心 一种扬声器失真特性的数值仿真分析方法
CN108737937A (zh) * 2017-04-20 2018-11-02 深圳市三诺数字科技有限公司 一种双磁隙同轴扬声器
CN109145514A (zh) * 2018-09-30 2019-01-04 浙江中科电声研发中心 一种扬声器失真的数值仿真分析方法
CN112995847A (zh) * 2020-12-14 2021-06-18 苏州上声电子股份有限公司 一种具有号角的同轴扬声器及其形状优化方法

Also Published As

Publication number Publication date
EP4187921A1 (en) 2023-05-31
CN112995847A (zh) 2021-06-18
JP2023554291A (ja) 2023-12-27
US20240015431A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
US8130994B2 (en) Waveguide
WO2020140460A1 (zh) 一种扬声器装置
Elliott et al. Minimally radiating sources for personal audio
CN110427650B (zh) 动铁式扬声器基本特性的数值仿真分析方法
JP2012039586A (ja) スピーカシステムと音響再生装置
WO2011152433A1 (ja) スピーカ装置、音源シミュレーションシステム、およびエコーキャンセルシステム
JP2008104229A (ja) ラウドスピーカ列システム
CN103782610B (zh) 声学喇叭布置
WO2022127081A1 (zh) 一种具有号角的同轴扬声器及其形状优化方法
KR102628045B1 (ko) 매끄러운 축외 주파수 응답을 위한 웨이브 가이드(waveguide for smooth off-axis frequency response)
JP6810158B2 (ja) ポート型トランスデューサアレイエンクロージャの雑音の低減
US11640816B1 (en) Metamaterial acoustic impedance matching device for headphone-type devices
Lemaitre et al. Model and estimation method for predicting the sound radiated by a horn loudspeaker–With application to a car horn
Chang et al. Acoustical analysis of enclosure design parameters for microspeaker system
EP3486898B1 (en) Compression driver with side-firing compression chamber
JP2008131540A (ja) スピーカ装置
US10708683B2 (en) Speaker system
Huang et al. Insert earphone modeling and measurement by IEC-60711 coupler
Chao et al. Magneto-electrodynamical modeling and design of a microspeaker used for mobile phones with considerations of diaphragm corrugation and air closures
Lei et al. A Study on the Effect of Ventilation Materials on Sound Quality of In-ear Earphones
Schuhmacher et al. Modelling of horn-type loudspeakers for outdoor sound reinforcement systems
Lei et al. Investigations of the Acoustic Characteristics of Headphone with Hybrid Model
CN205946113U (zh) 一种有源音箱
Chiang et al. Experimental modeling and application of push-pull electrostatic speakers
Guillon et al. Creating the sydney york morphological and acoustic recordings of ears database

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021905014

Country of ref document: EP

Effective date: 20230222

WWE Wipo information: entry into national phase

Ref document number: 2023534739

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE