WO2022127066A1 - 一种特异性中和辅助性T细胞TGF-β信号的双特异性抗体、其药物组合及其用途 - Google Patents

一种特异性中和辅助性T细胞TGF-β信号的双特异性抗体、其药物组合及其用途 Download PDF

Info

Publication number
WO2022127066A1
WO2022127066A1 PCT/CN2021/102428 CN2021102428W WO2022127066A1 WO 2022127066 A1 WO2022127066 A1 WO 2022127066A1 CN 2021102428 W CN2021102428 W CN 2021102428W WO 2022127066 A1 WO2022127066 A1 WO 2022127066A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
seq
amino acid
antibody
acid sequence
Prior art date
Application number
PCT/CN2021/102428
Other languages
English (en)
French (fr)
Other versions
WO2022127066A9 (zh
Inventor
程汉兵
Original Assignee
深圳市迈加瑞生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市迈加瑞生物技术有限公司 filed Critical 深圳市迈加瑞生物技术有限公司
Priority to CA3205494A priority Critical patent/CA3205494A1/en
Priority to EP21905000.2A priority patent/EP4265644A1/en
Priority to AU2021403263A priority patent/AU2021403263B2/en
Priority to US18/010,813 priority patent/US20240059796A1/en
Priority to JP2022578626A priority patent/JP2023550673A/ja
Publication of WO2022127066A1 publication Critical patent/WO2022127066A1/zh
Publication of WO2022127066A9 publication Critical patent/WO2022127066A9/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2812Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/35Valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/64Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising a combination of variable region and constant region components
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Oncology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Communicable Diseases (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Virology (AREA)

Abstract

本发明涉及生物技术领域,特别是涉及一种特异性中和辅助性T细胞TGF-β信号的双特异性抗体,所述双特异性抗体至少包括第一蛋白链和第二蛋白链,所述第一蛋白链包括第一蛋白功能区的部分或全部结构,和/或,第二蛋白功能区的部分或全部结构;所述第一蛋白功能区靶向CD4;所述第二蛋白功能区靶向TGFβ1,经优化的抗CD4/抗TGF-β1双功能抗体,能以高亲和性、亲和力以及特异性,高效中和辅助性T细胞TGF-β信号。具体地,经优化的抗CD4/抗TGF-β1双功能抗体,以IgG-(L)-ScFv形式为代表,能以更高的中和效力抑制辅助性T细胞TGF-β信号通路,且以更低的药物浓度实现相同的抑癌效果,使其成为用于治疗应用的理想候选物。

Description

一种特异性中和辅助性T细胞TGF-β信号的双特异性抗体、其药物组合及其用途 技术领域
本发明涉及生物技术领域,特别是涉及一种特异性中和辅助性T细胞TGF-β信号的双特异性抗体、其药物组合及其用途。
背景技术
肿瘤尤其是恶性肿瘤是当今世界严重危害人类健康的疾病,在各种疾病所导致的死亡中高居第二位。随着近年来环境污染,人们生活压力增大,恶性肿瘤发病率呈逐年上升趋势。而且,恶性肿瘤治疗效果差,尤其是晚期转移率高,预后多不佳。目前临床上采用的常规疗法如放疗、化疗、靶向治疗或手术治疗虽一定程度上缓解了病情,延长了生存时间,但这些方法仍然存在很大的局限性,不仅仅是体现在治疗效果上,而且很多恶性肿瘤病人仍然没有有效的治疗方案,例如胰腺癌等。
TGF-β于1981年首次被鉴别(Robert等人,PNAS,78:5339-5343.(1981))。转化生长因子-β,因最初其将正常成纤维细胞转化为不依赖锚定生长的细胞的能力,而命名的多功能细胞因子。
TGF-β家族成员一般有TGF-β1、TGF-β2和TGF-β3。其中,人TGF-β与小鼠TGF-β保守性非常高:人TGF-β1与小鼠TGF-β1只有一个氨基酸的差异,人TGF-β2与小鼠TGF-β2只有三个氨基酸的差异,人TGF-β3与小鼠TGF-β3相同。
具有生物学活性的TGF-β一般以二聚体的形式错在,当其与细胞表面的TGF-β Type II受体(TGF-βRII)结合后,就会与临近的TGF-β type I受体(TGF-βRI)结合,共同形成六聚体。随后,由于TGF-β的结合,TGF-βRII丝氨酸/苏氨酸激酶的活性被激活。此时,TGF-βRII使TGF-βRI上一些关键的丝氨酸被磷酸化,激活了其丝氨酸/苏氨酸激酶的活性。这个磷酸化过程会持续向下游进行,使临近的regulatory SMAD(R-SMAD)被磷酸化,主要包括SMAD2,3,9等等(通常R-SMAD会被SARA蛋白固定在细胞膜内部)。被磷酸化的R-SMAD对于细胞质游离的Co-SMAD(如SMAD4)有着极高的亲和力,于是形成了R-SAMD-Co-SMAD聚合物。它将进入细胞核,与转录因子共同结合到DNA上,启动下游基因的表达(Sporn等,Science,233:532(1986))。
然而,TGF-β并不能直接作用于细胞表面的受体。在正常情况下,只有少量的游离态TGF-β可以与受体结合,而大多数TGF-β都是与latency-associated peptide(LAP)结合,不具有活性。TGF-β共有四种形态,只有当TGF-β-LAP聚体被肿瘤微环境中的蛋白酶(由肿瘤细胞分泌)剪切,形成游离态,才能激活TGF-β。关于TGF-β及其作用的一般性综述可参见相应的文献(Joan Massague,TGF-β in Cancer.Cell,134(2):215-230(2008))。
TGF-β是一类重要的细胞因子。TGF-β信号通路能够调控细胞的生长,分化以及细胞凋亡,是细胞维持正常功能不可或缺的重要部分。然而,TGF-β却能操控肿瘤微环境,具有致癌作用。恶性肿瘤细胞会大量分泌TGF-β蛋白,一方面让癌细胞加速成长和扩散,另一方面令癌细胞绕过免疫系统的攻击。
TGF-β在肿瘤发生、发展中具有双重作用。最初的研究发现,TGF-β抑制造血细 胞上皮细胞和的增殖,促进细胞凋亡。随后的实验又证明TGF-β对多种上皮性肿瘤细胞(如胃癌、肺癌、结肠癌、肝癌、肾癌及前列腺癌)的体外增殖起负调控作用,其信号传导通路中任何蛋白发生突变都将使肿瘤细胞具有选择性生长优势,导致肿瘤的发生。由于这种增殖抑制特性,TGF-β一度被认为是最有潜力的癌症治疗药物靶点。但随着研究的深入,人们又发现TGF-β在肿瘤进展期能够促进肿瘤侵袭和转移。因此有学者提出TGF-β在肿瘤的发生、发展中是一把“双刃剑”(俞清翔,转化生长因子β与肿瘤转移的研究进展,世界华人消化杂志,14(25):2538-2541(2016))。
TGF-β对肿瘤生长的影响不仅体现在对肿瘤细胞的直接作用上,TGF-β还能够抑制免疫系统对于癌细胞的杀伤。TGF-β能够诱导调控性T细胞(Treg),使之对效应性T细胞(effector T cell)产生抑制作用。另外,TGF-β能够直接作用于辅助性T细胞(helper T cell),B细胞,NK细胞,巨噬细胞以及树突状细胞(dendritic cell,,DC),抑制它们的免疫活性(Eduard Battle&Joan Massague,Transformating Growth Factor-β Signaling in Immunity and Cancer.Immunity,50(4):924-940(2019))。
根据TGF-β在肿瘤生长中的作用,人们开发出了很多抑制TGF-β信号通路的抗体或者小分子化合物,但近二十多年过去了,没有一个靶向TGF-β的药物取得临床上的成功。靶向TGF-β通路的化学小分子抑制剂本身有很大的毒性,比如一些TGF-βRI化学小分子抑制剂具有很强的心脏毒性。而中和TGF-β活性的抗体分子,相对化学小分子来说,不容易渗透进细胞内,因此其安全性有很大的优势,但并没有显示出临床有效性。
CAT192是一个人IgG4单克隆抗体,主要中和TGF-β1的活性,对TGF-β2和TGF-β3没有中和能力。该抗体最初由美国剑桥抗体公司(Cambridge Antibody Technology,CAT)通过噬菌体展示技术分离得到。2000年,CAT公司与美国Genzyme公司签署合作协议共同开发TGF-β抗体。2004年,CAT和Genzyme公司共同宣布CAT192在治疗硬皮症(scleroderma)的I/II期临床实验中,在各种剂量使用上都是安全的,但并没有显示出有效性。临床有效性实验的失败导致CAT192被Genzyme公司放弃,转而以开发另外一种TGF-β中和抗体fresolimumab来替代。目前,fresolimumab在治疗恶性肿瘤的临床有效性方面仍然进展缓慢。
TGF-β通路抑制剂药物开发的失败,究其原因可能是因为TGF-β通路调控的多样性和复杂性。TGF-β对肿瘤细胞的双重作用,且肿瘤细胞本身的异质性,导致抑制TGF-β对肿瘤生长本身没有多大效果。另一方面,TGF-β对免疫细胞也具有抑制作用,从而帮助肿瘤细胞逃避免疫系统的监视。虽然抑制TGF-β的药物,也能在一定程度上解除TGF-β对免疫细胞的抑制,从而抑制肿瘤。但是其效果可能被大量肿瘤细胞消耗药物所稀释。
通过基因工程的方法改造TGF-β1抗体,使其特异性地抑制辅助性T细胞(CD4阳性T细胞)上的TGF-β信号通路,从而解除TGF-β对免疫细胞的抑制,使其发挥抗肿瘤作用。
双功能抗体也称作双特异性抗体(Bispecific Antibody),是同时靶向两种不同抗原的特异性抗体,其可以通过免疫分选纯化产生。另外,也可以通过基因工程获得。基因工程在结合位点处优化,合成形式的考量以及产量等方面均有相应的灵活性及优势。目前,其存在形式已经被证明有超过45种。目前已开发的多种双特异性 抗体为IgG-ScFv形式即Morrison模式,由于这种类似于天然存在的IgG形式,其在抗体工程、表达和纯化上所具有的优势,已被证明是双功能抗体的一种理想存在形式。
发明内容
鉴于以上所述现有技术的缺点,本发明人总结以往TGF-β抗体临床失败的教训,通过设计抗CD4/抗TGF-β1双功能抗体,将中和TGF-β1抗体特异性靶向到辅助性T细胞(CD4阳性T细胞)、从而实现传统TGF-β1抗体所不能实现的抗肿瘤功能。
本发明的目的在于提供一种特异性中和辅助性T细胞TGF-β信号的双特异性抗体、其药物组合及其用途,用于解决现有技术中的问题。通过基因工程技术,将中和TGF-β1抗体和靶向免疫细胞抗体整合成一个双功能抗体,从而特异性中和免疫细胞上的TGF-β信号。这种类型的双功能抗体能够充分解除TGF-β对免疫细胞的功能抑制,从而更大程度上实现其抗癌功能。
为实现上述目的及其他相关目的,本发明第一方面提供一种双特异性抗体,所述双特异性抗体至少包括第一蛋白链和第二蛋白链,
所述第一蛋白链包括第一蛋白功能区的部分或全部结构,和/或,第二蛋白功能区的部分或全部结构;
所述第一蛋白功能区靶向CD4,所述第一蛋白功能区为抗CD4的抗体或其抗原结合片段;
所述第二蛋白功能区靶向TGFβ1,所述第二蛋白功能区为抗TGFβ1的抗体或其抗原结合片段。
本发明第二方面提供一种分离的核酸分子,编码前述双特异性抗体。
本发明第三方面提供一种载体,包含前述的分离的核酸分子。
本发明第四方面提供一种宿主细胞,所述宿主细胞含有前述分离的核酸分子,或者包含前述载体。
本发明第五方面提供前述双特异性抗体的制备方法,包括如下步骤:在适合表达所述双特异性抗体的条件下,培养如前述的宿主细胞,以及从细胞培养物中回收所述双特异性抗体的步骤。
本发明第六方面提供一种偶联物,其包含双特异性抗体以及偶联部分,所述双特异性抗体为前述双特异性抗体,所述偶联部分为可检测的标记;优选地,所述偶联部分为化学小分子、荧光物质、发光物质、有色物质或酶。
本发明第七方面提供一种药物组合物,包括治疗有效量的前述双特异性抗体、宿主细胞或偶联物;可选地,所述药物组合物还包含药学上可接受的辅料。
本发明第八方面提供前述的双特异性抗体或者偶联物的在制备预防和/或治疗疾病的药物中用途,其中所述疾病或病况选自下组:癌症、免疫介导的疾病、纤维化疾病、病毒感染性疾病、神经退行性疾病、骨重塑、肾病,及其组合。
本发明第九方面提供前述的双特异性抗体或者偶联物在制备预防和/或治疗恶性肿瘤的药物中的用途;优选地,所述恶性肿瘤选自结肠癌、直肠癌、肺癌、肾癌、乳腺癌、卵巢癌、前列腺癌、膀胱癌、胰腺癌、胃肠道癌、脑癌、肝癌、黑色素瘤和白血病中的一种或多种。
如上所述,本发明特异性中和辅助性T细胞TGF-β信号的双特异性抗体、其药物组合及其用途,具有以下有益效果:
本发明的双特异性抗体具有不同的双特异性抗体组合形式以及相应的亲和力(affinity)、亲和性(avidity)、中和效力、和抗肿瘤效果。本发明中所揭示的一种以高亲和性、亲合力及特异性结合并中和TGF-β1的双功能抗体,能在更低的血清浓度下高效结合并中和辅助性T细胞的TGF-β信号,从而实现更好的抑制肿瘤效果。
本发明的双功能抗体CT101、CT102、CT103、CT104、CT105、CT106、CT107、CT108、CT109、CT110、CT111以及CT112能够很好地特异性与CD4结合,也能与TGF-β1结合,并且能够有效地阻断TGF-β1与TGF-β RII的结合,从而特异地解除TGF-β对辅助性T细胞的免疫抑制;
其中,CT102抑制辅助性T细胞TGF-β1信号激活的效果最强,其IC50值达到2pM;CT101次之,其IC50值达到15pM。
本发明的CT102为最强的中和TGF-β1活性的双特异性抗体形式,IgG-(L)-ScFv,这种形式的抗CD4/抗TGF-β1双功能抗体,其IC 50能够达到pM级别,是其他形式双特异性抗体的10倍甚至100倍以上。
通过MC38结肠癌移植肿瘤模型,本发明人发现即使在很低的用药浓度下,这种IgG-(L)-ScFv形式的抗CD4/抗TGF-β1双功能抗体CT102也能达到最佳的抗癌效果。
CT102能够:
有效地结合人辅助性T细胞表面的CD4分子,解除TGF-β对辅助性T细胞的免疫抑制;
有效地激活辅助性T细胞,从而激活一系列免疫细胞,抑制肿瘤的生长;
具有用于制备防治肝癌、肺癌、乳腺癌、胰腺癌、肾癌、宫颈癌、卵巢癌、淋巴瘤、胃癌、结肠癌、直肠癌等恶性肿瘤的药物的潜力。
本发明的双特异性抗体CT101能够很好地特异性与CD4结合,特异性地结合到辅助性T细胞上;与此同时,CT101也能与TGFβ1结合,并且能够十分有效地阻断TGFβ1与TGFβ RII的结合,从而特异地解除TGFβ对辅助性T细胞的免疫抑制。具有用于制备防治肝癌、肺癌、乳腺癌、肾癌、宫颈癌、卵巢癌、淋巴瘤、结肠癌、直肠癌等恶性肿瘤的药物的作用。
附图说明
图1:双功能抗体CT102的IgG-(L)-ScFv形式结构示意图。
图2:双功能抗体抗CD4/抗TGF-β1的各种双特异性抗体组合形式结构示意图。
图3:双价抗TGF-β1双功能抗体CT101和单价抗TGF-β1双功能抗体CT110、CT111、及CT112对HEK293细胞TGF-β信号通路的抑制作用。
图4:双价抗TGF-β1双功能抗体CT101和单价抗TGF-β1双功能抗体CT110、CT111、及CT112对稳定表达人CD4分子的HEK293细胞TGF-β信号通路的抑制作用。
图5:各种双价抗TGF-β1双功能抗体对稳定表达人CD4分子的HEK293细胞TGF-β信号通路的抑制作用。
图6:双价抗TGF-β1双功能抗体CT101、CT102以及单价抗TGF-β1双功能抗 体CT111、CT112与CD4结合的动力学特征参数检测结果。
图7:双价抗TGF-β1双功能抗体CT101、CT102以及单价抗TGF-β1双功能抗体CT111、CT112与TGF-β1结合的动力学特征参数检测结果。
图8:双价抗TGF-β1双功能抗体CT101、CT102以及单价抗TGF-β1双功能抗体CT111、CT112结合CD4与TGF-β1的示意图。
图9:CT101、CT102、TGF-β1抗体以及对照抗体的结构示意图。
图10:FACS流式细胞术检测CT101、CT102、TGF-β1抗体以及对照抗体在人源化CD4小鼠体内与CD4T细胞的结合情况。
图11:药代动力学测试的结果,以确定双功能抗体CT101、CT102在单剂量200μg尾静脉注射后的半衰期。
图12:药代动力学测试的结果,以确定双功能抗体CT101、CT102在单剂量20μg尾静脉注射后的半衰期。
图13:200μg每剂量(共4剂量,5天/次)的抗体治疗对MC38结肠癌移植肿瘤的抑制效果。治疗抗体有对照抗体、TGF-β1抗体、以及双功能抗体CT101和CT102。
图14:20μg每剂量(共4剂量,5天/次)的抗体治疗对MC38结肠癌移植肿瘤的抑制效果。治疗抗体有对照抗体、TGF-β1抗体、以及双功能抗体CT101和CT102。
图15:不同的抗体治疗对EMT-6乳腺癌移植肿瘤的抑制效果。治疗抗体有对照IgG、抗TGFβ抗体、抗CD8/抗TGFβ双功能抗体、抗CD64/抗TGFβ双功能抗体以及抗CD4/抗TGFβ双功能抗体。
图16:双功能抗体CT101的IgG-ScFv形式(Morrison模式)结构示意图。
图17:双功能抗体CT101的IgG-ScFv形式(Morrison模式)氨基酸序列,其中下划线部分的氨基酸为抗体的重链或轻链CDR区域。
图18:双功能抗体CT101(IgG-ScFv形式)的SDS-PAGE检测结果。左图为还原型蛋白电泳结果,右图为非还原型蛋白电泳结果。
图19:双功能抗体CT101(IgG-ScFv形式)流经分子筛的高效液相色谱图。
图20:双功能抗体CT101与CD4结合的动力学特征参数检测结果。
图21:双功能抗体CT101与TGFβ1结合的动力学特征参数检测结果。
图22:间接ELISA法检测双功能抗体CT101、抗TGFβ1抗体CAT192与TGFβ1蛋白的结合常数EC50。
图23:间接ELISA法检测双功能抗体CT101、抗CD4抗体Ibalizumab与CD4蛋白的结合常数EC50。
图24:竞争ELISA方法检测双功能抗体CT101、抗TGFβ1抗体CAT192与TGFβ RII竞争结合TGFβ1的活性。
图25:FACS流式细胞术检测双功能抗体CT101、抗CD4抗体Ibalizumab与HEK293-CD4细胞表面CD4蛋白的结合常数EC50。
图26:双功能抗体CT101和抗TGFβ1抗体CAT192对HEK293细胞TGFβ信号通路的抑制作用。
图27:双功能抗体CT101和抗TGFβ1抗体CAT192对稳定表达人CD4分子的HEK293细胞TGFβ信号通路的抑制作用。
图28:不同的抗体治疗对MC38结肠癌移植肿瘤的抑制效果。治疗抗体有对 照IgG、抗TGFβ1抗体CAT192、抗PD-L1抗体atezolizumab、atezolizumab联合CAT192以及双功能抗体CT101。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
在进一步描述本发明具体实施方式之前,应理解,本发明的保护范围不局限于下述特定的具体实施方案;还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围;在本发明说明书和权利要求书中,除非文中另外明确指出,单数形式“一个”、“一”和“这个”包括复数形式。
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域技术人员通常理解的意义相同。除实施例中使用的具体方法、设备、材料外,根据本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
本发明一实施例的双特异性抗体,所述双特异性抗体至少包括第一蛋白链和第二蛋白链,
所述第一蛋白链包括第一蛋白功能区的部分或全部结构,和/或,第二蛋白功能区的部分或全部结构。
所述第一蛋白功能区靶向CD4,所述第一蛋白功能区为抗CD4的抗体或其抗原结合片段;
所述第二蛋白功能区靶向TGFβ1,所述第二蛋白功能区为抗TGFβ1的抗体或其抗原结合片段。
所述抗CD4的抗体的重链可变区(VH)包括可变重链互补决定区1(HCDR1)、可变重链互补决定区2(HCDR2)、及可变重链互补决定区3(HCDR3)。所述抗CD4的抗体的轻链可变区(VL)包括可变轻链互补决定区1(LCDR1)、可变轻链互补决定区2(LCDR2)、及可变轻链互补决定区3(LCDR3)。
所述第一蛋白功能区的重链可变区(VH)包含氨基酸序列分别为SEQ ID NO:53—SEQ ID NO:55所示的HCDR1-HCDR3,其轻链可变区(VL)包含氨基酸序列分别为SEQ ID NO:56—SEQ ID NO:58所示的LCDR1-LCDR3;
所述抗TGFβ1的抗体的轻链可变区(VL)包括可变轻链互补决定区1(LCDR1)、可变轻链互补决定区2(LCDR2)、及可变轻链互补决定区3(LCDR3),
所述抗TGFβ1的抗体的重链可变区(VH)包括可变重链互补决定区1(HCDR1)、可变重链互补决定区2(HCDR2)、及可变重链互补决定区3(HCDR3),
所述第二蛋白功能区的重链可变区(VH)包含氨基酸序列为SEQ ID NO:59所 示的HCDR1,氨基酸序列为SEQ ID NO:60所示的HCDR2,氨基酸序列为SEQ ID NO:61-SEQ ID NO:63任一个或多个所示的HCDR3,其轻链可变区(VL)包含氨基酸序列分别为SEQ ID NO:65—SEQ ID NO:67所示的LCDR1-LCDR3。
在本发明的一些实施方式中,所述的双特异性抗体,其中,所述抗CD4的抗体或其抗原结合片段选自Fab、Fab’、F(ab’)2、Fd、Fv、dAb、互补决定区片段、单链抗体(ScFv)、人源化抗体、嵌合抗体或双抗体;
在本发明的一些实施方式中,所述的双特异性抗体,其中,所述抗TGFβ1的抗体或其抗原结合片段选自Fab、Fab’、F(ab’)2、Fd、Fv、dAb、互补决定区片段、单链抗体(ScFv)、人源化抗体、嵌合抗体或双抗体。
在本发明的一些实施方式中,所述的双特异性抗体,其中,所述第一蛋白功能区为免疫球蛋白(IgG),其重链可变区(VH)包括SEQ ID NO:1中所示的VH域氨基酸序列;且其轻链可变区(VL)包括SEQ ID NO:2中所示的VL域氨基酸序列。
在本发明的一些实施方式中,所述的双特异性抗体,其中,所述第二蛋白功能区为单链抗体或Fab,其重链可变区(VH)包括SEQ ID NO:3、SEQ ID NO:4或SEQ ID NO:5中任一所示的VH氨基酸序列;且其轻链可变区(VL)包括SEQ ID NO:6中所示的VL氨基酸序列。
在本发明的一些实施方式中,所述第一蛋白功能区为免疫球蛋白,所述第一蛋白功能区的重链可变区的氨基酸序列如SEQ ID NO:76所示,所述第一蛋白功能区的轻链可变区的氨基酸序列如SEQ ID NO:78所示;
和,
所述第二蛋白功能区为单链抗体或Fab,所述第二蛋白功能区的重链可变区的氨基酸序列如SEQ ID NO:80所示;所述第二蛋白功能区的轻链可变区的氨基酸序列如SEQ ID NO:82所示。
在本发明的一些实施方式中,所述的双特异性抗体,其存在形式不限于IgG-ScFv/Fab形式,也可以为其他双特异性抗体存在形式。
在本发明的一些实施方式中,所述的双特异性抗体,其中,所述第一蛋白功能区和第二蛋白功能区独立地为1个、2个或者2个以上。
在本发明的一些实施方式中,所述的双特异性抗体,其中,所述第一蛋白功能区和第二蛋白功能区直接连接或者通过连接片段连接;优选地,所述连接片段为(GGGGS)m,m为正整数,例如1、2、3、4、5或6。具体可以为SEQ ID NO:7所示的连接片段。
在本发明的一些实施方式中,所述的双特异性抗体,其中,所述的免疫球蛋白,其恒定区来自人抗体。优选地,所述免疫球蛋白的恒定区选自人IgG1、IgG2、IgG3或IgG4的恒定区。
在本发明的一些实施方式中,所述第一蛋白链从N末端至C末端具有下式:
轻链可变区-轻链恒定区-(连接片段)m-重链可变区-(连接片段)n-轻链可变区,
所述第二蛋白链从N端至C端具有下式:
重链可变区-重链恒定区-铰链-Fc区,
优选地,所述连接片段为GGGGS,其中m是0或正整数,n是0或正整数。
在本发明的一些实施方式中,所述第一蛋白链的轻链可变区-轻链恒定区与第 二蛋白链的重链可变区-重链恒定区相互结合形成蛋白链组,两条蛋白链组形成二聚体。
在本发明的一些实施方式中,所述第一蛋白链N端的轻链可变区包含SEQ ID NO:2的氨基酸序列,所述的第一蛋白链的重链可变区包含SEQ ID NO:3、SEQ ID NO:4或SEQ ID NO:5中任一所示的氨基酸序列,所述的第一蛋白链C端的轻链可变区包括SEQ ID NO:6中所示的氨基酸序列;且所述第二蛋白链的重链可变区包含SEQ ID NO:1的氨基酸序列。
在本发明的一些实施方式中,所述的双特异性抗体,其所述第一蛋白链包含SEQ ID NO:15中所示的氨基酸序列;且其所述第二蛋白链包含SEQ ID NO:16中所示的氨基酸序列。
在本发明的一些实施方式中,所述的双特异性抗体,所述第一蛋白链的氨基酸序列如SEQ ID NO:13所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:14所示;
在本发明的一些实施方式中,所述的双特异性抗体,所述第一蛋白链的氨基酸序列如SEQ ID NO:17所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:18所示;
在本发明的一些实施方式中,所述的双特异性抗体,所述第一蛋白链的氨基酸序列如SEQ ID NO:19所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:20所示;
在本发明的一些实施方式中,所述的双特异性抗体,所述第一蛋白链的氨基酸序列如SEQ ID NO:21所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:22所示;
在本发明的一些实施方式中,所述的双特异性抗体,所述第一蛋白链的氨基酸序列如SEQ ID NO:23所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:24所示;所述双特异性抗体还包括第三蛋白链和第四蛋白链,所述第三蛋白链的氨基酸序列如SEQ ID NO:25所示,所述第四蛋白链的氨基酸序列如SEQ ID NO:26所示;
在本发明的一些实施方式中,所述的双特异性抗体,所述第一蛋白链的氨基酸序列如SEQ ID NO:27所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:28所示;所述双特异性抗体还包括第三蛋白链和第四蛋白链,所述第三蛋白链的氨基酸序列如SEQ ID NO:29所示,所述第四蛋白链的氨基酸序列如SEQ ID NO:30所示;
在本发明的一些实施方式中,所述的双特异性抗体,所述第一蛋白链的氨基酸序列如SEQ ID NO:31所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:32所示;所述双特异性抗体还包括第三蛋白链,所述第三蛋白链的氨基酸序列如SEQ ID NO:33所示;
在本发明的一些实施方式中,所述的双特异性抗体,所述第一蛋白链的氨基酸序列如SEQ ID NO:34所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:35所示;所述双特异性抗体还包括第三蛋白链,所述第三蛋白链的氨基酸序列如SEQ ID NO:36所示;
在本发明的一些实施方式中,所述的双特异性抗体,所述第一蛋白链的氨基酸序列如SEQ ID NO:37所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:38所示;所述双特异性抗体还包括第三蛋白链,所述第三蛋白链的氨基酸序列如SEQ ID NO:39所示;
在本发明的一些实施方式中,所述的双特异性抗体,所述第一蛋白链的氨基酸序列如SEQ ID NO:40所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:41所示;所述双特异性抗体还包括第三蛋白链,所述第三蛋白链的氨基酸序列如SEQ ID  NO:42所示;
在本发明的一些实施方式中,所述的双特异性抗体,所述第一蛋白链的氨基酸序列如SEQ ID NO:43所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:44所示;所述双特异性抗体还包括第三蛋白链和第四蛋白链,所述第三蛋白链的氨基酸序列如SEQ ID NO:45所示,所述第四蛋白链的氨基酸序列如SEQ ID NO:46所示。
在本发明的一些实施方式中,所述的双特异性抗体,其所述抗体能选择性地结合人CD4以及TGF-β1分子。
在本发明的一些实施方式中,所述的双特异性抗体,其中,
所述的免疫球蛋白,其恒定区来自于人抗体;
优选地,所述免疫球蛋白的恒定区选自人IgG1、IgG2、IgG3或IgG4的恒定区。
在本发明的一些实施方式中,所述的双特异性抗体,其中,
所述的免疫球蛋白,其重链恒定区为人IgG1 chain C region或人IgG4 chain C region,并且其轻链恒定区为人Ig kappa chain C region。
在本发明的一些实施方式中,所述免疫球蛋白的恒定区是人源化的,例如,重链恒定区均采用IgG4 chain C region,ACCESSION:P01861;轻链恒定区均采用Ig kappa chain C region,ACCESSION:P01834。
在本发明的一些实施方式中,所述轻链恒定区包含如SEQ ID NO:9所示的氨基酸序列。
在本发明的一些实施方式中,所述重链恒定区包含如SEQ ID NO:10所示的氨基酸序列。
在本发明的一些实施方式中,所述铰链区包含如SEQ ID NO:11所示的氨基酸序列。
在本发明的一些实施方式中,所述Fc区包含如SEQ ID NO:12所示的氨基酸序列。
在本发明的一些实施方式中,所述的双特异性抗体,其中,所述第一蛋白功能区和第二蛋白功能区直接连接或者通过连接片段连接;
优选地,所述连接片段为(GGGGS)m,m为正整数,例如1、2、3、4、5或6。其中,GGGGS(SEQ ID NO:8)为Linker的构成单元。
在本发明的一些实施方式中,所述的双特异性抗体,其中,所述第一蛋白功能区和第二蛋白功能区独立地为1个、2个或者2个以上。
在本发明的一些实施方式中,所述的双特异性抗体,其中,所述免疫球蛋白为1个;所述单链抗体为2个,并且优选为两个相同的单链抗体。
在本发明的一些实施方式中,所述的双特异性抗体,其中,所述免疫球蛋白为IgG、IgA、IgD、IgE或IgM;优选为IgG,例如IgG1、IgG2、IgG3或IgG4。
在本发明的一些实施方式中,所述的双特异性抗体,其中,所述单链抗体连接在免疫球蛋白的重链的C末端。由于免疫球蛋白有两条重链,因此,一个免疫球蛋白分子连接有两个单链抗体分子。优选地,两个单链单体分子相同。
在本发明的一些实施方式中,所述的双特异性抗体,其中,所述单链抗体为两条,每条单链抗体的一端分别连接在免疫球蛋白的两条重链的C末端或N末端。
在本发明的一些实施方式中,所述单链抗体的VH与VL之间存在二硫键。在抗体的VH和VL之间引入二硫键的方法是本领域熟知的,例如可参见美国专利申 请US5747654;Rajagopal等人,Prot.Engin.10(1997)1453-1459;Reiter等人,Nature Biotechnology 14(1996)1239-1245;Webber等人,Molecular Immunology 32(1995)249-258;Reiter等人,Immunity 2(1995)281-287;Reiter等人,JBC 269(1994)18327-18331;Reiter等人,Inter.J.of Cancer 58(1994)142-149;或,Reiter等人,Cancer Res.54(1994)2714-2718;其通过引用并入本文。
在本发明的一些实施方式中,所述的双特异性抗体,其中,所述的双特异性抗体以小于10 -9M或更小的Kd结合CD4蛋白和/或TGF-β1蛋白;优选地,所述Kd通过Biacore分子相互作用仪测得。
在本发明的一些实施方式中所述的双特异性抗体,其所述抗体在TGF-β1报告基因荧光素酶活性测定中具有针对人TGF-β1的低于5nM的IC 50
在本发明的一些实施方式中所述的双特异性抗体,其所述抗体在TGF-β1报告基因荧光素酶活性测定中具有针对人TGF-β1的低于5pM的IC 50
本发明的另一方面涉及一种分离的核酸分子,其编码本发明中任一所述的双特异性抗体。
本发明还涉及一种载体,其包含本发明的分离的核酸分子。
本发明还涉及一种宿主细胞,其包含本发明的分离的核酸分子,或者包含本发明的载体。
本发明的再一方面涉及本发明中任一项所述的双特异性抗体的方法,其包括在合适的条件下培养本发明的宿主细胞,以及从细胞培养物中回收所述双特异性抗体的步骤。
本发明的再一方面涉及一种偶联物,其包含双特异性抗体以及偶联部分,其中,所述双特异性抗体为本发明中任一项所述的双特异性抗体,所述偶联部分为可检测的标记;优选地,所述偶联部分为小分子化合物、荧光物质、发光物质、有色物质或酶。
本发明的再一方面涉及一种药物组合物,其包含本发明中任一项所述的双特异性抗体或者包含本发明的偶联物;可选地,其还包含药学上可接受的辅料。
本发明的双特异性抗体或者本发明的药物组合物可以配制成药学领域已知的任何剂型,例如,片剂、丸剂、混悬剂、乳剂、溶液、凝胶剂、胶囊剂、粉剂、颗粒剂、酏剂、锭剂、栓剂、注射剂(包括注射液、注射用无菌粉末与注射用浓溶液)、吸入剂、喷雾剂等。优选剂型取决于预期的给药方式和治疗用途。本发明的药物组合物应当是无菌的并在生产和储存条件下稳定。一种优选的剂型是注射剂。此类注射剂可以是无菌注射溶液。例如,可通过下述方法来制备无菌注射溶液:在适当的溶剂中掺入必需剂量的本发明的双特异性抗体,以及任选地,同时掺入其他期望的成分(包括但不限于,pH调节剂,表面活性剂,佐剂,离子强度增强剂,等渗剂、防腐剂、稀释剂,或其任何组合),随后过滤除菌。此外,可以将无菌注射溶液制备为无菌冻干粉剂(例如,通过真空干燥或冷冻干燥)以便于储存和使用。此类无菌冻干粉剂可在使用前分散于合适的载体中,例如无菌无热原水。此外,本发明的双特异性抗体可以以单位剂量形式存在于药物组合物中,以便于施用。在某些实施方案中,所述单位剂量为至少1mg,至少5mg,至少10mg,至少15mg,至少20mg,至少25mg,至少30mg,至少45mg,至少50mg,至少75mg,或至少100mg。在所述药物组合物为液体(例如,注射剂)剂型的情况下,其可以包含浓度至少为 0.1mg/ml,如至少0.25mg/ml,至少0.5mg/ml,至少1mg/ml,至少2.5mg/ml,至少5mg/ml,至少8mg/ml,至少10mg/ml,至少15mg/ml,至少25mg/ml,至少50mg/ml,至少75mg/ml,或至少100mg/ml的本发明的双特异性抗体。
本发明的双特异性抗体或药物组合物可以通过本领域已知的任何合适的方法来施用,包括但不限于,口服、口腔、舌下、眼球、局部、肠胃外、直肠、叶鞘内、内胞浆网槽内、腹股沟、膀胱内、局部(如,粉剂、药膏或滴剂),或鼻腔途径。但是,对于许多治疗用途而言,优选的给药途径/方式是胃肠外给药(例如静脉注射,皮下注射,腹膜内注射,肌内注射)。技术人员应理解,给药途径和/或方式将根据预期目的而发生变化。在一个优选的实施方案中,本发明的双特异性抗体或药物组合物通过静脉输注或注射给予。
本发明所提供的双特异性抗体或药物组合物可以单独使用或联合使用,也可以与另外的药学活性剂(例如肿瘤化疗药物)联合使用。这种另外的药学活性剂可以在施用本发明的双特异性抗体或本发明的药物组合物之前、同时或之后施用。
在本发明中,可调整给药方案以获得最佳目的反应(例如治疗或预防反应)。例如,可以单次给药,可以在一段时间内多次给药,或者可以随治疗情况的紧急程度按比例减少或增加剂量。
本发明的再一方面涉及本发明中任一项所述的双特异性抗体或者本发明的偶联物的在制备预防和/或治疗疾病的药物中用途,其中所述疾病或病况选自下组:癌症、免疫介导的疾病、纤维化疾病、病毒感染性疾病、神经退行性疾病、骨重塑、肾病,及其组合。
本发明的再一方面涉及本发明中任一项所述的双特异性抗体或者本发明的偶联物在制备预防和/或治疗恶性肿瘤的药物中的用途;优选地,所述肿瘤选自结肠癌、直肠癌、肺癌例如非小细胞性肺癌、肝癌、卵巢癌、皮肤癌、胶质瘤、黑色素瘤、肾肿瘤、前列腺癌、胰腺癌、膀胱癌、胃肠道癌、乳腺癌、脑癌和白血病。
本发明的再一方面涉及一种预防和/或治疗恶性肿瘤的方法,包括给予受试者有效量的本发明中任一项所述的双特异性抗体或者本发明的偶联物的步骤;优选地,所述肿瘤选自结肠癌、直肠癌、肺癌、肝癌、卵巢癌、皮肤癌、胶质瘤、黑色素瘤、肾癌、前列腺癌、膀胱癌、胃肠道癌、乳腺癌、脑癌和白血病。
本发明的双特异性抗体的治疗或预防有效量的典型非极限范围是0.02-50mg/kg,例如0.1-50mg/kg,0.1-25mg/kg,或1-10mg/kg。应注意的是,剂量可随需要治疗的症状的类型和严重性不同而发生变化。此外,本领域技术人员理解,对于任一特定患者,特定的给药方案应根据患者需要和医生的专业评价而随时间调整;此处给出的剂量范围只用于举例说明目的,而不限定本发明药物组合物的使用或范围。
在本发明中,所述受试者可以为啮齿类动物,如小鼠,或灵长类动物,例如人,食蟹猴。
本发明中任一项所述的双特异性抗体或者偶联物,其用于预防和/或治疗恶性肿瘤;优选地,所述肿瘤选自结肠癌、直肠癌、肺癌、肝癌、卵巢癌、黑色素瘤、肾癌、胰腺癌、皮肤癌、胶质瘤、前列腺癌、膀胱癌、胃肠道癌、乳腺癌、脑癌和白血病。
抗体治疗药物,特别是单克隆抗体(Monoclonal Antibody,mAb)已在多种疾病的 治疗中取得了良好的疗效。获取这些治疗性抗体的传统实验方法是采用抗原免疫动物,在免疫动物体内获取靶向抗原的抗体,或通过亲和力成熟的方法来改进那些与抗原的亲和力较低的抗体。然而,这些方法需要大量时间和精力,大多数时候也并不能针对抗原上的特定表位。
轻链和重链的可变区决定抗原的结合;每条链的可变区均含有三个高变区,称互补决定区(CDR)(重链(H)的CDR包含HCDR1、HCDR2、HCDR3,轻链(L)的CDR包含LCDR1、LCDR2、LCDR3;其由Kabat等人命名,见Sequences of Proteins of Immunological Interest,Fifth Edition(1991),第1-3卷,NIH Publication 91-3242,Bethesda Md)。
通过本领域技术人员所熟知的技术手段,例如通过VBASE2数据库分析下面的(1)-(13)项中的单克隆抗体序列的CDR区的氨基酸序列,结果如下:
(1)双功能抗体抗CD4/抗TGF-β1的第一蛋白功能区:
重链可变区(VH)的氨基酸序如SEQ ID NO:1所示,轻链可变区(VL)的氨基酸序列如SEQ ID NO:2所示。
其重链可变区的3个CDR区的氨基酸序列如下:
HCDR1:GYTFTSYVIH(SEQ ID NO:53)
HCDR2:YINPYNDGTDYDEKFKG(SEQ ID NO:54)
HCDR3:EKDNYATGAWFA(SEQ ID NO:55)
其轻链可变区的3个CDR区的氨基酸序列如下:
LCDR1:KSSQSLLYSTNQKNYLA(SEQ ID NO:56)
LCDR2:WASTRES(SEQ ID NO:57)
LCDR3:QQYYSYRT(SEQ ID NO:58)
(2)双功能抗体抗CD4/抗TGF-β1的第二蛋白功能区:
重链可变区的氨基酸序如SEQ ID NO:3、SEQ ID NO:4、及SEQ ID NO:5所示,轻链可变区的氨基酸序列如SEQ ID NO:6所示。
其重链可变区的3个CDR区的氨基酸序列如下:
HCDR1:SYGMH(SEQ ID NO:59)
HCDR2:VISYDGSIKYYADSVKG(SEQ ID NO:60)
HCDR3:TGEYSGYDTDPQYS(SEQ ID NO:61)或TGEYSGYDTSGVEL(SEQ ID NO:62)或TGFYSGYDTPASPD(SEQ ID NO:63)
HCDR3共有序列:TGX 1YSGYDTX 2X 3X 4X 5X 6(SEQ ID NO:64)
其中:X1可以是任意氨基酸(优选为E或F),
其轻链可变区的3个CDR区的氨基酸序列如下:
LCDR1:RSSQGIGDDLG(SEQ ID NO:65)
LCDR2:GTSTLQS(SEQ ID NO:66)
LCDR3:LQDSNYPLT(SEQ ID NO:67)
在本发明中,除非另有说明,否则本文中使用的科学和技术名词具有本领域技术人员所通常理解的含义。并且,本文中所用的细胞培养、分子遗传学、核酸化学、免疫学实验室操作步骤均为相应领域内广泛使用的常规步骤。同时,为了更好地理解本发明,下面提供相关术语的定义和解释。
如本文中所使用的,当提及TGF-β1蛋白(GenBank ID:NP_000651.3)的氨基酸序列时,其包括TGF-β1蛋白的全长。然而,本领域技术人员理解,在TGF-β1蛋 白的氨基酸序列中,可天然产生或人工引入突变或变异(包括但不限于置换,缺失和/或添加),而不影响其生物学功能。因此,在本发明中,术语“TGF-β1蛋白”应包括所有此类序列,包括其天然或人工的变体。在本发明的一个实施方案中,TGF-β1蛋白的氨基酸序列如SEQ ID NO:51的下划线部分所示。
如本文中所使用的,当提及CD4蛋白(cluster differentiation 4,NCBIGenBank:NP_000607.1)的氨基酸序列时,其包括CD4蛋白的全长,还包括CD4的胞外片段,可溶性CD4分子(soluble CD4,sCD4)。然而,本领域技术人员理解,在CD4蛋白的氨基酸序列中,可天然产生或人工引入突变或变异(包括但不限于置换,缺失和/或添加),而不影响其生物学功能。因此,在本发明中,术语“CD4蛋白”应包括所有此类序列,包括其天然或人工的变体。在本发明的一个实施方案中,CD4的胞外片段sCD4的氨基酸序列如SEQ ID NO:49的下划线部分所示。
如本文中所使用的,术语EC 50是指半最大效应浓度(concentration for 50%of maximal effect),是指能引起50%最大效应的浓度。
如本文中所使用的,术语IC 50是指半最大抑制浓度(concentration for 50%of maximal inhibition),是指能引起50%最大抑制的浓度。
如本文中所使用的,术语“抗体”是指,是指通常由两对多肽链(每对具有一条“轻”(L)链和一条“重”(H)链)组成的免疫球蛋白分子。从一般意义上,重链可以理解为抗体中分子量较大的多肽链,轻链是指抗体中分子量较小的多肽链。轻链可分类为κ和λ轻链。重链通常可分类为μ、δ、γ、α或ε,并且分别将抗体的同种型定义为IgM、IgD、IgG、IgA和IgE。在轻链和重链内,可变区和恒定区通过大约12或更多个氨基酸的“J”区连接,重链还包含大约3个或更多个氨基酸的“D”区。各重链由重链可变区(VH)和重链恒定区(CH)组成。重链恒定区由3个结构域(CH1、CH2和CH3)组成。各轻链由轻链可变区(VL)和轻链恒定区(CL)组成。轻链恒定区由一个结构域CL组成。抗体的恒定区可介导免疫球蛋白与宿主组织或因子,包括免疫系统的各种细胞(例如,效应细胞)和经典补体系统的第一组分(C1q)的结合。VH和VL区还可被细分为具有高变性的区域(称为互补决定区(CDR)),其间散布有较保守的称为构架区(FR)的区域。各VH和VL由按下列顺序:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4从氨基末端至羧基末端排列的3个CDR和4个FR组成。各重链/轻链对的可变区(VH和VL)分别形成抗体结合部位。氨基酸至各区域或结构域的分配遵循Kabat Sequences of Proteins of ImmunologicalInterest(National Institutes of Health,Bethesda,Md.(1987and 1991)),或Chothia&Lesk(1987)J.Mol.Biol.196:901-917;Chothia等人(1989)Nature 342:878-883的定义。特别地,重链还可以包含3个以上CDR,例如6、9、或12个。例如在本发明的双功能抗体中,重链可以是IgG抗体的重链的C端连接另一个抗体的ScFv,这种情况下重链含有9个CDR。术语“抗体”不受任何特定的产生抗体的方法限制。例如,其包括,特别地,重组抗体、单克隆抗体和多克隆抗体。抗体可以是不同同种型的抗体,例如,IgG(例如,IgG1,IgG2,IgG3或IgG4亚型),IgA1,IgA2,IgD,IgE或IgM抗体。
如本文中所使用的,术语抗体的“抗原结合片段”是指包含全长抗体的片段的多肽,其保持特异性结合全长抗体所结合的相同抗原的能力,和/或与全长抗体竞争对抗原的特异性结合,其也被称为“抗原结合部分”。通常参见,Fundamental  Immunology,Ch.7(Paul,W.,ed.,第2版,Raven Press,N.Y.(1989),其以其全文通过引用合并入本文,用于所有目的。可通过重组DNA技术或通过完整抗体的酶促或化学断裂产生抗体的抗原结合片段。在一些情况下,抗原结合片段包括Fab、Fab'、F(ab')2、Fd、Fv、dAb和互补决定区(CDR)片段、单链抗体(例如,scFv)、嵌合抗体、双抗体(diabody)和这样的多肽,其包含足以赋予多肽特异性抗原结合能力的抗体的至少一部分。
如本文中所使用的,术语“Fd片段”意指由VH和CH1结构域组成的抗体片段;术语“Fv片段”意指由抗体的单臂的VL和VH结构域组成的抗体片段;术语“dAb片段”意指由VH结构域组成的抗体片段(Ward等人,Nature 341:544-546(1989));术语“Fab片段”意指由VL、VH、CL和CH1结构域组成的抗体片段;术语“F(ab')2片段”意指包含通过铰链区上的二硫桥连接的两个Fab片段的抗体片段。
在一些情况下,抗体的抗原结合片段是单链抗体(例如,scFv),其中VL和VH结构域通过使其能够产生为单个多肽链的连接体配对形成单价分子(参见,例如,Bird等人,Science 242:423-426(1988)和Huston等人,Proc.Natl.Acad.Sci.USA 85:5879-5883(1988))。此类scFv分子可具有一般结构:NH2-VL-接头-VH-COOH或NH2-VH-接头-VL-COOH。合适的现有技术接头由重复的GGGGS氨基酸序列或其变体组成。例如,可使用具有氨基酸序列(GGGGS) 4的接头,但也可使用其变体(Holliger等人(1993),Proc.Natl.Acad.Sci.USA 90:6444-6448)。可用于本发明的其他接头由Alfthan等人(1995),Protein Eng.8:725-731,Choi等人(2001),Eur.J.Immunol.31:94-106,Hu等人(1996),Cancer Res.56:3055-3061,Kipriyanov等人(1999),J.Mol.Biol.293:41-56和Roovers等人(2001),Cancer Immunol.描述。
在一些情况下,抗体的抗原结合片段是双抗体,即,双价抗体,其中VH和VL结构域在单个多肽链上表达,但使用太短的连接体以致不允许在相同链的两个结构域之间配对,从而迫使结构域与另一条链的互补结构域配对并且产生两个抗原结合部位(参见,例如,Holliger P.等人,Proc.Natl.Acad.Sci.USA 90:6444-6448(1993),和Poljak R.J.等人,Structure 2:1121-1123(1994))。
可使用本领域技术人员已知的常规技术(例如,重组DNA技术或酶促或化学断裂法)从给定的抗体获得抗体的抗原结合片段(例如,上述抗体片段),并且以与用于完整抗体的方式相同的方式就特异性筛选抗体的抗原结合片段。
在本文中,除非上下文明确指出,否则当提及术语“抗体”时,其不仅包括完整抗体,而且包括抗体的抗原结合片段。
如本文中所使用的,术语“单抗”和“单克隆抗体”是指,来自一群高度同源的抗体分子中的一个抗体或抗体的一个片断,也即除可能自发出现的自然突变外,一群完全相同的抗体分子。单抗对抗原上的单一表位具有高特异性。多克隆抗体是相对于单克隆抗体而言的,其通常包含至少2种或更多种的不同抗体,这些不同的抗体通常识别抗原上的不同表位。单克隆抗体通常可采用Kohler等首次报道的杂交瘤技术获得(Nature,256:495,1975),但也可采用重组DNA技术获得(如参见U.S.P 4,816,567)。
如本文中所使用的,术语“嵌合抗体”是指这样的抗体,其轻链或/和重链的一部分源自一个抗体(其可以源自某一特定物种或属于某一特定抗体类或亚类),而轻 链或/和重链的另一部分源自另一个抗体(其可以源自相同或不同的物种或属于相同或不同的抗体类或亚类),但无论如何,其仍保留对目标抗原的结合活性(U.S.P 4,816,567to Cabilly etal.;Morrison et al.,Proc.Natl.Acad.Sci.USA,81:6851 6855(1984))。
如本文中所使用的,术语“人源化抗体”是指,人源免疫球蛋白(受体抗体)的全部或部分CDR区被一非人源抗体(供体抗体)的CDR区替换后得到的抗体或抗体片段,其中的供体抗体可以是具有预期特异性、亲和性或反应性的非人源(例如,小鼠、大鼠或兔)抗体。此外,受体抗体的构架区(FR)的一些氨基酸残基也可被相应的非人源抗体的氨基酸残基替换,或被其他抗体的氨基酸残基替换,以进一步完善或优化抗体的性能。关于人源化抗体的更多详细内容,可参见例如,Jones et al.,Nature,321:522 525(1986);Reichmann etal.,Nature,332:323 329(1988);Presta,Curr.Op.Struct.Biol.,2:593 596(1992);和Clark,Immunol.Today 21:397 402(2000)。
如本文中所使用的,术语“表位”是指,抗原上被免疫球蛋白或抗体特异性结合的部位。“表位”在本领域内也称为“抗原决定簇”。表位或抗原决定簇通常由分子的化学活性表面基团例如氨基酸或碳水化合物或糖侧链组成并且通常具有特定的三维结构特征以及特定的电荷特征。例如,表位通常以独特的空间构象包括至少3,4,5,6,7,8,9,10,11,12,13,14或15个连续或非连续的氨基酸,其可以是“线性的”或“构象的”。参见,例如,EpitopeMapping Protocols in Methods in Molecular Biology,第66卷,G.E.Morris,Ed.(1996)。在线性表位中,蛋白质与相互作用分子(例如抗体)之间的所有相互作用的点沿着蛋白质的一级氨基酸序列线性存在。在构象表位中,相互作用的点跨越彼此分开的蛋白质氨基酸残基而存在。
如本文中所使用的,术语“分离的”或“被分离的”指的是,从天然状态下经人工手段获得的。如果自然界中出现某一种“分离”的物质或成分,那么可能是其所处的天然环境发生了改变,或从天然环境下分离出该物质,或二者情况均有发生。例如,某一活体动物体内天然存在某种未被分离的多聚核苷酸或多肽,而从这种天然状态下分离出来的高纯度的相同的多聚核苷酸或多肽即称之为分离的。术语“分离的”或“被分离的”不排除混有人工或合成的物质,也不排除存在不影响物质活性的其它不纯物质。
如本文中所使用的,术语“载体(vector)”是指,可将多聚核苷酸插入其中的一种核酸运载工具。当载体能使插入的多核苷酸编码的蛋白获得表达时,载体称为表达载体。载体可以通过转化,转导或者转染导入宿主细胞,使其携带的遗传物质元件在宿主细胞中获得表达。载体是本领域技术人员公知的,包括但不限于:质粒;噬菌粒;柯斯质粒;人工染色体,例如酵母人工染色体(YAC)、细菌人工染色体(BAC)或P1来源的人工染色体(PAC);噬菌体如λ噬菌体或M13噬菌体及动物病毒等。可用作载体的动物病毒包括但不限于,逆转录酶病毒(包括慢病毒)、腺病毒、腺相关病毒、疱疹病毒(如单纯疱疹病毒)、痘病毒、杆状病毒、乳头瘤病毒、乳头多瘤空泡病毒(如SV40)。一种载体可以含有多种控制表达的元件,包括但不限于,启动子序列、转录起始序列、增强子序列、选择元件及报告基因。另外,载体还可含有复制起始位点。
如本文中所使用的,术语“宿主细胞”是指,可用于导入载体的细胞,其包括 但不限于,如大肠杆菌或枯草菌等的原核细胞,如酵母细胞或曲霉菌等的真菌细胞,如S2果蝇细胞或Sf9等的昆虫细胞,或者如纤维原细胞,CHO细胞,COS细胞,NSO细胞,HeLa细胞,BHK细胞,HEK 293细胞或人细胞等的动物细胞。
如本文中使用的,术语“特异性结合”是指,两分子间的非随机的结合反应,如抗体和其所针对的抗原之间的反应。在某些实施方式中,特异性结合某抗原的抗体(或对某抗原具有特异性的抗体)是指,抗体以小于大约10 -5M,例如小于大约10 -6M、10 -7M、10 -8M、10 -9M或10 -10M或更小的亲和力(Kd)结合该抗原。在本发明的一些实施方案中,术语“靶向”是指特异性结合。
如本文中所使用的,术语“Kd”是指特定抗体-抗原相互作用的解离平衡常数,其用于描述抗体与抗原之间的结合亲和力。平衡解离常数越小,抗体-抗原结合越紧密,抗体与抗原之间的亲和力越高。通常,抗体以小于大约10 -5M,例如小于大约10 -6M、10 -7M、10 -8M、10 -9M或10 -10M或更小的解离平衡常数(Kd)结合抗原,例如,如使用表面等离子体共振术(SPR)在Biacore仪中测定的。
如本文中所使用的,术语“单克隆抗体”和“单抗”具有相同的含义且可互换使用;术语“多克隆抗体”和“多抗”具有相同的含义且可互换使用;术语“多肽”和“蛋白质”具有相同的含义且可互换使用。并且在本发明中,氨基酸通常用本领域公知的单字母和三字母缩写来表示。例如,甘氨酸可用G或Gly表示,丙氨酸可用A或Ala表示。
如本文中所使用的,术语“药学上可接受的辅料”是指在药理学和/或生理学上与受试者和活性成分相容的载体和/或赋形剂,其是本领域公知的(参见例如Remington'sPharmaceutical Sciences.Edited by Gennaro AR,19th ed.Pennsylvania:MackPublishing Company,1995),并且包括但不限于:pH调节剂,表面活性剂,佐剂,离子强度增强剂。例如,pH调节剂包括但不限于磷酸盐缓冲液;表面活性剂包括但不限于阳离子,阴离子或者非离子型表面活性剂,例如Tween-80;离子强度增强剂包括但不限于氯化钠。
如本文中所使用的,术语“佐剂”是指非特异性免疫增强剂,当其与抗原一起或预先递送入机体时,其可增强机体对抗原的免疫应答或改变免疫应答类型。佐剂有很多种,包括但不限于铝佐剂(例如氢氧化铝)、弗氏佐剂(例如完全弗氏佐剂和不完全弗氏佐剂)、短小棒状杆菌、脂多糖、细胞因子等。弗氏佐剂是目前动物试验中最常用的佐剂。氢氧化铝佐剂则在临床实验中使用较多。
如本文中所使用的,术语“有效量”是指足以获得或至少部分获得期望的效果的量。治疗疾病有效量是指,足以治愈或至少部分阻止已患有疾病的患者的疾病和其并发症的量。测定这样的有效量完全在本领域技术人员的能力范围之内。例如,对于治疗用途有效的量将取决于待治疗的疾病的严重度、患者自己的免疫系统的总体状态、患者的一般情况例如年龄,体重和性别,药物的施用方式,以及同时施用的其他治疗等等。
制备例1:重组蛋白CD4-His的表达和纯化
1.构建pCMV-CD4-His质粒
以CD4 human cDNA(Genewiz公司合成)为模板进行PCR扩增并用普通DNA产物纯化试剂盒纯化回收CD4-His片段。将回收后的CD4-His片段与表达载体pCMV使用NheI和XbaI酶切,胶回收目的基因片段和线性表达载体,通过T4连 接酶连接,并将全部连接产物转化DH5α化学感受态细胞,涂布带有Amp的Agar平板,挑选分离良好的单菌落进行菌落PCR鉴定,将PCR鉴定结果为阳性的克隆子接种到LB培养基培养,并取菌液送广州英俊公司测序验证。测序结果比对显示,阳性重组子插入序列完全正确。
2.重组蛋白CD4-His的表达和纯化
按照lipofectamin转染试剂盒(购自Invitrogen公司)方法将重组质粒pCMV-CD4-his转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至Binding Buffer A(20mM HEPES,150mM NaCl,pH 7.4)后上样至HisTrap柱,用Elution Buffer(20mM HEPES,150mM NaCl,0.5M Immidazole,pH 7.4)线性洗脱蛋白,初纯样品用HiTrap Desalting柱换液至Binding Buffer B(20mM Tris-HCl,pH 9.0)并上样至HiTrap Q柱,用Elution Buffer B(50mM Tris-HCl,1M NaCl,pH 9.0)线性洗脱蛋白、回收目标样品并换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
制得了融合蛋白CD4-His。
CD4-His的氨基酸序列如下(371aa):
Figure PCTCN2021102428-appb-000001
编码重组CD4-His蛋白的核苷酸序列如SEQ ID NO:50所示。
制备例2:重组TGF-β1的制备
1.构建pCMV-TGF-β1-His质粒
以TGF-β1 human cDNA(Genewiz公司合成)为模板进行PCR扩增并用普通DNA产物纯化试剂盒纯化回收TGF-β1-His片段。将回收后的TGF-β1-His片段与表达载体pCMV使用NheI和XbaI酶切,胶回收目的基因片段和线性表达载体,通过T4连接酶连接,并将全部连接产物转化DH5α化学感受态细胞,涂布带有Amp的Agar平板,挑选分离良好的单菌落进行菌落PCR鉴定,将PCR鉴定结果为阳性的克隆子接种到LB培养基培养,并取菌液送广州英俊公司测序验证。测序结果比对显示,阳性重组子插入序列完全正确。
2.融合蛋白TGF-β1-His的表达和纯化
按照lipofectamin转染试剂盒(购自Invitrogen公司)方法将重组质粒pCMV-TGF-β1-his转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至Binding Buffer A(20mM HEPES,150mM NaCl,pH 7.4)后上样至HisTrap柱,用Elution Buffer(20mM HEPES,150mM NaCl,0.5M Immidazole,pH 7.4)线性洗脱蛋白,初纯样品用HiTrap Desalting柱换液至Binding Buffer B(20mM Tris-HCl,pH 9.0)并上样至HiTrap Q柱,用Elution Buffer B(50mM Tris-HCl,1M NaCl,pH 9.0)线性洗脱蛋白、回收目标样品并换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
制得了融合蛋白TGF-β1-His。
TGF-β1-His的氨基酸序列如下(118aa):
Figure PCTCN2021102428-appb-000002
编码重组TGF-β1-His蛋白的核苷酸序列如SEQ ID NO:52所示。
制备例3:TGF-β1抗体(ScFv-IgG4)的制备
TGF-β1抗体的重链可变区和轻链可变区(来源于metelimumab)通过(GGGGS) 3接头连接在一起,组成ScFv形式,然后与Fc恒定区通过铰链连接在一起,组成ScFv-IgG。Fc恒定区采用Ig gamma-4 chain C region,ACCESSION:P01861。编码抗TGF-β1抗体的核苷酸序列由上海生工合成。
将编码TGF-β1抗体的核苷酸序列克隆到pCMV载体中,获得TGF-β1抗体的重组表达质粒。
将重组质粒转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至1x Binding Buffer(20mM Na 3PO 4,pH 7.0)后上样至Protein G柱,用Elution Buffer(10mM Tris-Glycine,pH 2.7)洗脱蛋白至Neutralization buffer(1M Tris-HCl,pH 9.0)。回收目标样品换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
制得了TGF-β1抗体(ScFv-IgG4)。
编码TGF-β1抗体的氨基酸序列:(475bp)
Figure PCTCN2021102428-appb-000003
制备例4:对照抗体(ScFv-IgG4)的制备
对照抗体的重链可变区和轻链可变区通过(GGGGS) 3接头连接在一起,组成ScFv形式,然后与Fc恒定区通过铰链连接在一起,组成ScFv-IgG。Fc恒定区采用Ig gamma-4 chain C region,ACCESSION:P01861。对照抗体的核苷酸序列由上海生工合成。
将编码对照抗体的核苷酸序列克隆到pCMV载体中,获得对照抗体的重组表达质粒。
将重组质粒转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至1x Binding Buffer(20mM Na 3PO 4,pH 7.0)后上样至Protein G柱,用Elution Buffer(10mM Tris-Glycine,pH 2.7)洗脱蛋白至Neutralization buffer(1M Tris-HCl,pH 9.0)。回收目标样品换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
编码对照抗体的氨基酸序列:(475aa)
Figure PCTCN2021102428-appb-000004
制得了对照抗体(ScFv-IgG4)。
制备例5:双功能抗体CT101的制备
双功能抗体CT101的第一蛋白链由Ibalizumab的轻链组成,其第二蛋白链由Ibalizumab的重链通过(GGGGS) 3接头与抗TGF-β1 ScFv连接在一起,最终两条蛋白链组成IgG-(H)-ScFv形式。
将编码双功能抗体CT101的核苷酸序列克隆到pCMV载体中,获得CT101抗体的重组表达质粒。
将重组质粒转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至1x Binding Buffer(20mM Na 3PO 4,pH 7.0)后上样至Protein G柱,用Elution Buffer(10mM Tris-Glycine,pH 2.7)洗脱蛋白至Neutralization buffer(1M Tris-HCl,pH 9.0)。回收目标样品换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
编码双功能抗体CT101第一蛋白链的氨基酸序列:
(219aa)
Figure PCTCN2021102428-appb-000005
编码双功能抗体CT101第二蛋白链的氨基酸序列:(709aa)
Figure PCTCN2021102428-appb-000006
制得了双功能抗体CT101。
制备例6:双功能抗体CT102的制备
双功能抗体CT102的第一蛋白链由Ibalizumab的轻链通过(GGGGS) 3接头与抗TGF-β1 ScFv连接在一起,其第二蛋白链由Ibalizumab的重链组成,最终两条蛋白链组成IgG-(L)-ScFv形式。
将编码双功能抗体CT102的核苷酸序列克隆到pCMV载体中,获得CT102抗体的重组表达质粒。
将重组质粒转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至1x Binding Buffer(20mM Na 3PO 4,pH 7.0)后上样至Protein G柱,用Elution Buffer(10mM Tris-Glycine,pH 2.7)洗脱蛋白至Neutralization buffer(1M Tris-HCl,pH 9.0)。回收目标样品换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
编码双功能抗体CT102第一蛋白链的氨基酸序列:(479aa)
Figure PCTCN2021102428-appb-000007
编码双功能抗体CT102第二蛋白链的氨基酸序列:(449aa)
Figure PCTCN2021102428-appb-000008
制得了双功能抗体CT102。
制备例7:双功能抗体CT103的制备
双功能抗体CT103的第一蛋白链由Ibalizumab的轻链组成,其第二蛋白链由抗TGF-β1 ScFv通过(GGGGS) 3接头与Ibalizumab的重链连接在一起,最终两条蛋白链组成ScFv-(H)-IgG形式。
将编码双功能抗体CT103的核苷酸序列克隆到pCMV载体中,获得CT103抗体的重组表达质粒。
将重组质粒转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至1x Binding Buffer(20mM Na 3PO 4,pH 7.0)后上样至Protein G柱,用Elution Buffer(10mM Tris-Glycine,pH 2.7)洗脱蛋白至Neutralization  buffer(1M Tris-HCl,pH 9.0)。回收目标样品换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
编码双功能抗体CT103第一蛋白链的氨基酸序列:(219aa)
Figure PCTCN2021102428-appb-000009
编码双功能抗体CT103第二蛋白链的氨基酸序列:(709aa)
Figure PCTCN2021102428-appb-000010
制得了双功能抗体CT103。
制备例8:双功能抗体CT104的制备
双功能抗体CT104的第一蛋白链由抗TGF-β1 ScFv通过(GGGGS) 3接头与Ibalizumab的轻链连接在一起,其第二蛋白链由Ibalizumab的重链组成,最终两条蛋白链组成ScFv-(L)-IgG形式。
将编码双功能抗体CT104的核苷酸序列克隆到pCMV载体中,获得CT104抗体的重组表达质粒。
将重组质粒转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至1x Binding Buffer(20mM Na 3PO 4,pH 7.0)后上样至Protein G柱,用Elution Buffer(10mM Tris-Glycine,pH 2.7)洗脱蛋白至Neutralization buffer(1M Tris-HCl,pH 9.0)。回收目标样品换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
编码双功能抗体CT104第一蛋白链的氨基酸序列:(479aa)
Figure PCTCN2021102428-appb-000011
Figure PCTCN2021102428-appb-000012
编码双功能抗体CT104第二蛋白链的氨基酸序列:(449aa)
Figure PCTCN2021102428-appb-000013
制得了双功能抗体CT104。
制备例9:双功能抗体CT105的制备
双功能抗体CT105的第一蛋白链由抗TGF-β1抗体的轻链可变区通过(GGGGS) 1接头与Ibalizumab的轻链连接在一起,其第二蛋白链由抗TGF-β1抗体的重链可变区与Ibalizumab的重链组成,最终两条蛋白链组成DVD-IgG形式。
将编码双功能抗体CT105的核苷酸序列克隆到pCMV载体中,获得CT105抗体的重组表达质粒。
将重组质粒转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至1x Binding Buffer(20mM Na 3PO 4,pH 7.0)后上样至Protein G柱,用Elution Buffer(10mM Tris-Glycine,pH 2.7)洗脱蛋白至Neutralization buffer(1M Tris-HCl,pH 9.0)。回收目标样品换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
编码双功能抗体CT105第一蛋白链的氨基酸序列:(331aa)
Figure PCTCN2021102428-appb-000014
编码双功能抗体CT105第二蛋白链的氨基酸序列:(449aa)
Figure PCTCN2021102428-appb-000015
Figure PCTCN2021102428-appb-000016
制得了双功能抗体CT105。
制备例10:双功能抗体CT106的制备
双功能抗体CT106的第一蛋白链由Ibalizumab的轻链组成,其第二蛋白链由Ibalizumab的重链组成(Fc区引入S354C/T366W/R409A Knob突变),其第三蛋白链由串联的抗TGF-β1抗体的重链可变区与轻链恒定区组合(crossmab形式),以及Fc恒定区IgG4(引入Y349C/T366S/L368A/F405K/Y407V Hole突变)组成,其第四蛋白链由抗TGF-β1抗体的轻链可变区与重链恒定区CH1通过crossmab形式组成,最终四条蛋白链组成sFab-IgG形式。
将编码双功能抗体CT106的核苷酸序列克隆到pCMV载体中,获得CT106抗体的重组表达质粒。
将重组质粒转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至1x Binding Buffer(20mM Na 3PO 4,pH 7.0)后上样至Protein G柱,用Elution Buffer(10mM Tris-Glycine,pH 2.7)洗脱蛋白至Neutralization buffer(1M Tris-HCl,pH 9.0)。回收目标样品换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
编码双功能抗体CT106第一蛋白链的氨基酸序列:(219aa)
Figure PCTCN2021102428-appb-000017
编码双功能抗体CT106第二蛋白链的氨基酸序列:(449aa)
Figure PCTCN2021102428-appb-000018
编码双功能抗体CT106第三蛋白链的氨基酸序列:(698aa)
Figure PCTCN2021102428-appb-000019
Figure PCTCN2021102428-appb-000020
编码双功能抗体CT106第四蛋白链的氨基酸序列:(210aa)
Figure PCTCN2021102428-appb-000021
制得了双功能抗体CT106。
制备例11:双功能抗体CT107的制备
双功能抗体CT107的第一蛋白链由抗TGF-β1抗体的轻链可变区与重链恒定区CH1通过crossmab形式组成,其第二蛋白链由抗TGF-β1抗体的重链可变区与轻链恒定区组合(crossmab形式),以及Fc恒定区IgG4(Fc区引入S354C/T366W/R409A Knob突变)组成,其第三蛋白链由Ibalizumab重链可变区与重链恒定区CH1组合,抗TGF-β1抗体的重链可变区与轻链恒定区组合(crossmab形式),以及Fc恒定区IgG4(Fc区引入Y349C/T366S/L368A/F405K/Y407V Hole突变)组成,其第四蛋白链由Ibalizumab的轻链组成,最终四条蛋白链组成Fab-IgG形式。
将编码双功能抗体CT107的核苷酸序列克隆到pCMV载体中,获得CT107抗体的重组表达质粒。
将重组质粒转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至1x Binding Buffer(20mM Na 3PO 4,pH 7.0)后上样至Protein G柱,用Elution Buffer(10mM Tris-Glycine,pH 2.7)洗脱蛋白至Neutralization buffer(1M Tris-HCl,pH 9.0)。回收目标样品换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
编码双功能抗体CT107第一蛋白链的氨基酸序列:(210aa)
Figure PCTCN2021102428-appb-000022
编码双功能抗体CT107第二蛋白链的氨基酸序列:(460aa)
Figure PCTCN2021102428-appb-000023
编码双功能抗体CT107第三蛋白链的氨基酸序列:(687aa)
Figure PCTCN2021102428-appb-000024
编码双功能抗体CT107第四蛋白链的氨基酸序列:(219aa)
Figure PCTCN2021102428-appb-000025
制得了双功能抗体CT107。
制备例12:双功能抗体CT108的制备
双功能抗体CT108的第一蛋白链由Ibalizumab的轻链组成,其第二条链由抗TGF-β1抗体的轻链可变区与重链恒定区CH1通过crossmab形式组成,其第三蛋白链由Ibalizumab重链可变区与重链恒定区CH1组合,抗TGF-β1抗体的重链可变区与轻链恒定区组合(crossmab形式),以及Fc恒定区IgG4组成,最终三条蛋白链组成Fab-IgG形式。
将编码双功能抗体CT108的核苷酸序列克隆到pCMV载体中,获得CT108抗体的重组表达质粒。
将重组质粒转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至1x Binding Buffer(20mM Na 3PO 4,pH 7.0)后上样至Protein G柱,用Elution Buffer(10mM Tris-Glycine,pH 2.7)洗脱蛋白至Neutralization buffer(1M Tris-HCl,pH 9.0)。回收目标样品换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
编码双功能抗体CT108第一蛋白链的氨基酸序列:(219aa)
Figure PCTCN2021102428-appb-000026
编码双功能抗体CT108第二蛋白链的氨基酸序列:(210aa)
Figure PCTCN2021102428-appb-000027
Figure PCTCN2021102428-appb-000028
编码双功能抗体CT108第三蛋白链的氨基酸序列:(687aa)
Figure PCTCN2021102428-appb-000029
制得了双功能抗体CT108。
制备例13:双功能抗体CT109的制备
双功能抗体CT109的第一蛋白链由Ibalizumab的轻链组成,其第二条链由抗TGF-β1抗体的轻链可变区与重链恒定区CH1通过crossmab形式组成,其第三蛋白链由Ibalizumab的重链,以及抗TGF-β1抗体的重链可变区与轻链恒定区组合(crossmab形式)组成,最终三条蛋白链组成IgG-Fab形式。
将编码双功能抗体CT109的核苷酸序列克隆到pCMV载体中,获得CT109抗体的重组表达质粒。
将重组质粒转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至1x Binding Buffer(20mM Na 3PO 4,pH 7.0)后上样至Protein G柱,用Elution Buffer(10mM Tris-Glycine,pH 2.7)洗脱蛋白至Neutralization buffer(1M Tris-HCl,pH 9.0)。回收目标样品换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
编码双功能抗体CT109第一蛋白链的氨基酸序列:(219aa)
Figure PCTCN2021102428-appb-000030
编码双功能抗体CT109第二蛋白链的氨基酸序列:(210aa)
Figure PCTCN2021102428-appb-000031
编码双功能抗体CT109第三蛋白链的氨基酸序列:(696aa)
Figure PCTCN2021102428-appb-000032
Figure PCTCN2021102428-appb-000033
制得了双功能抗体CT109。
制备 例14:双功能抗体CT110的制备
双功能抗体CT110的第一蛋白链由Ibalizumab的轻链组成,其第二蛋白链由Ibalizumab的重链(Fc区引入S354C/T366W/R409A Knob突变)通过(GGGGS) 1接头与抗TGF-β1抗体的重链可变区组成,其第三蛋白链由Ibalizumab的重链(Fc区引入Y349C/T366S/L368A/F405K/Y407V Hole突变)通过(GGGGS) 1接头与抗TGF-β1抗体的轻链可变区组成,最终三条蛋白链组成IgG-Fv形式。
将编码双功能抗体CT110的核苷酸序列克隆到pCMV载体中,获得CT110抗体的重组表达质粒。
将重组质粒转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至1x Binding Buffer(20mM Na 3PO 4,pH 7.0)后上样至Protein G柱,用Elution Buffer(10mM Tris-Glycine,pH 2.7)洗脱蛋白至Neutralization buffer(1M Tris-HCl,pH 9.0)。回收目标样品换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
编码双功能抗体CT110第一蛋白链的氨基酸序列:(219aa)
Figure PCTCN2021102428-appb-000034
编码双功能抗体CT110第二蛋白链的氨基酸序列:(577aa)
Figure PCTCN2021102428-appb-000035
Figure PCTCN2021102428-appb-000036
编码双功能抗体CT110第三蛋白链的氨基酸序列:(561aa)
Figure PCTCN2021102428-appb-000037
制得了双功能抗体CT110。
制备例15:双功能抗体CT111的制备
双功能抗体CT111的第一蛋白链由Ibalizumab的轻链组成,其第二蛋白链由Ibalizumab的重链(Fc区引入S354C/T366W/R409A Knob突变)组成,其第三蛋白链由抗TGF-β1 ScFv通过铰链与Fc恒定区IgG4(Fc区引入Y349C/T366S/L368A/F405K/Y407V Hole突变)连接组成,最终三条蛋白链组成Fab-Fc-ScFv形式。
将编码双功能抗体CT111的核苷酸序列克隆到pCMV载体中,获得CT111抗体的重组表达质粒。
将重组质粒转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至1x Binding Buffer(20mM Na 3PO 4,pH 7.0)后上样至Protein G柱,用Elution Buffer(10mM Tris-Glycine,pH 2.7)洗脱蛋白至Neutralization buffer(1M Tris-HCl,pH 9.0)。回收目标样品换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
编码双功能抗体CT111第一蛋白链的氨基酸序列:(219aa)
Figure PCTCN2021102428-appb-000038
编码双功能抗体CT111第二蛋白链的氨基酸序列:(449aa)
Figure PCTCN2021102428-appb-000039
Figure PCTCN2021102428-appb-000040
编码双功能抗体CT111第三蛋白链的氨基酸序列:(471aa)
Figure PCTCN2021102428-appb-000041
制得了双功能抗体CT111。
制备例16:双功能抗体CT112的制备
双功能抗体CT112的第一蛋白链由Ibalizumab的轻链组成,其第二蛋白链由Ibalizumab重链(Fc区引入S354C/T366W/R409A Knob突变)组成,其第三蛋白链由抗TGF-β1抗体的重链可变区与轻链恒定区组合(crossmab形式),以及Fc恒定区IgG4(Fc区引入S354C/T366W/R409A Knob突变)组成,其第四蛋白链由抗TGF-β1抗体的轻链可变区与重链恒定区CH1组合(crossmab形式)组成,最终四条蛋白链组成IgG Crossmab形式。
将编码双功能抗体CT112的核苷酸序列克隆到pCMV载体中,获得CT112抗体的重组表达质粒。
将重组质粒转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至1x Binding Buffer(20mM Na 3PO 4,pH 7.0)后上样至Protein G柱,用Elution Buffer(10mM Tris-Glycine,pH 2.7)洗脱蛋白至Neutralization buffer(1M Tris-HCl,pH 9.0)。回收目标样品换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
编码双功能抗体CT112第一蛋白链的氨基酸序列:(219aa)
Figure PCTCN2021102428-appb-000042
编码双功能抗体CT112第二蛋白链的氨基酸序列:(449aa)
Figure PCTCN2021102428-appb-000043
编码双功能抗体CT112第三蛋白链的氨基酸序列:(460aa)
Figure PCTCN2021102428-appb-000044
编码双功能抗体CT112第四蛋白链的氨基酸序列:(210aa)
Figure PCTCN2021102428-appb-000045
制得了双功能抗体CT112。
制备例17:重组TGFβ1的制备
1.构建pCMV-TGFβ1-His质粒
以TGFβ1 human cDNA(Genewiz公司合成)为模板进行PCR扩增并用普通DNA产物纯化试剂盒纯化回收TGFβ1-His片段。将回收后的TGFβ1-His片段与表达载体pCMV使用NheI和XbaI酶切,胶回收目的基因片段和线性表达载体,通过T4连接酶连接,并将全部连接产物转化DH5α化学感受态细胞,涂布带有Amp的Agar平板,挑选分离良好的单菌落进行菌落PCR鉴定,将PCR鉴定结果为阳性的克隆子接种到LB培养基培养,并取菌液送广州英俊公司测序验证。测序结果比对显示,阳性重组子插入序列完全正确。
2.融合蛋白TGFβ1-His的表达和纯化
按照lipofectamin转染试剂盒(购自Invitrogen公司)方法将重组质粒pCMV-TGFβ1-his转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至Binding Buffer A(20mM HEPES,150mM NaCl,pH 7.4)后上样至HisTrap柱,用Elution Buffer(20mM HEPES,150mM NaCl,0.5M Immidazole,pH 7.4)线性洗脱蛋白,初纯样品用HiTrap Desalting柱换液至Binding Buffer B(20mM Tris-HCl,pH 9.0)并上样至HiTrap Q柱,用Elution Buffer B(50mM Tris-HCl,1M NaCl,pH 9.0)线性洗脱蛋白、回收目标样品并换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
制得了融合蛋白TGFβ1-His。
TGFβ1-His的氨基酸序列如下(118aa):
Figure PCTCN2021102428-appb-000046
其中,下划线部分为TGFβ1的氨基酸序列。
编码TGFβ1-His的核酸序列
Figure PCTCN2021102428-appb-000047
Figure PCTCN2021102428-appb-000048
制备例18:重组蛋白CD4-His的表达和纯化
1.构建pCMV-CD4-His质粒
以CD4 human cDNA(Genewiz公司合成)为模板进行PCR扩增并用普通DNA产物纯化试剂盒纯化回收CD4-His片段。将回收后的CD4-His片段与表达载体pCMV使用NheI和XbaI酶切,胶回收目的基因片段和线性表达载体,通过T4连接酶连接,并将全部连接产物转化DH5α化学感受态细胞,涂布带有Amp的Agar平板,挑选分离良好的单菌落进行菌落PCR鉴定,将PCR鉴定结果为阳性的克隆子接种到LB培养基培养,并取菌液送广州英俊公司测序验证。测序结果比对显示,阳性重组子插入序列完全正确。
2.重组蛋白CD4-His的表达和纯化
按照lipofectamin转染试剂盒(购自Invitrogen公司)方法将重组质粒pCMV-CD4-his转染HEK293F细胞(购自Invitrogen公司)5天后,将培养液通过高速离心、上清浓缩并换液至Binding Buffer A(20mM HEPES,150mM NaCl,pH 7.4)后上样至HisTrap柱,用Elution Buffer(20mM HEPES,150mM NaCl,0.5M Immidazole,pH 7.4)线性洗脱蛋白,初纯样品用HiTrap Desalting柱换液至Binding Buffer B(20mM Tris-HCl,pH 9.0)并上样至HiTrap Q柱,用Elution Buffer B(50mM Tris-HCl,1M NaCl,pH 9.0)线性洗脱蛋白、回收目标样品并换液至PBS。取纯化后样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
制得了融合蛋白CD4-His。
CD4-His的氨基酸序列如下(371aa):
Figure PCTCN2021102428-appb-000049
其中,下划线部分为CD4的氨基酸序列。
编码CD4-His的核酸序列
Figure PCTCN2021102428-appb-000050
Figure PCTCN2021102428-appb-000051
制备例19:融合蛋白TGFβ RII-hFc的表达和纯化
1.基因TGFβ RII-hFc的合成:
对基因TGFβ RII(Transforming Growth Factor Beta Receptor II,NCBIGenBank:NP_001020018.1)的胞外片段TGFβ RII-ECD所对应的氨基酸分别与Thrombin酶切位点及人IgG的Fc蛋白片段(hFc)进行融合设计(SEQ ID NO:74)。委托金唯智公司合成相应的编码核酸序列(SEQ ID NO:75)。
TGFβ RII:Transforming Growth Factor Beta Receptor II,NCBIGenBank:NP_001020018.1;
hFc:Ig gamma-1 chain C region,ACCESSION:P01857,106-330;
融合蛋白TGFβ RII-hFc的氨基酸序列:(370aa)
Figure PCTCN2021102428-appb-000052
其中,带双下划线的为TGFβ RII的ECD部分,带波浪线的为Thrombin酶切位点,带单下划线的为hFc部分。
编码融合蛋白TGFβ RII-hFc的核酸序列:(1110bp).
Figure PCTCN2021102428-appb-000053
Figure PCTCN2021102428-appb-000054
2.pCMV-TGFβ RII-hFc质粒的构建;
将金唯智公司合成的TGFβ RII-hFc编码基因克隆到pCMV(本公司拥有)表达载体中,获得pCMV-TGFβ RII-hFc质粒。
3.重组质粒pCMV-TGFβ RII-hFc转染HEK293F细胞
按照lipofectamin转染试剂盒(购自Invitrogen公司)方法将重组质粒pCMV-TGFβ RII-hFc转染HEK293F细胞(购自ThermoFisher Scientific公司)。
4.TGFβ RII-hFc蛋白的SDS-PAGE电泳检测
将重组质粒pCMV-TGFβ RII-hFc转染HEK293F细胞5天后,将培养液通过高速离心、微孔滤膜抽真空过滤以及ProteinA/G柱进行纯化得到TGFβ RII-hFc融合蛋白样品,并取部分样品加入还原型蛋白电泳上样缓冲液,进行SDS-PAGE电泳检测。
制得了融合蛋白TGFβ RII-hFc。
制备例20:抗CD4的抗体Ibalizumab的制备
上市的CD4单抗Trogarzo(Ibalizumab)的重链可变区和轻链可变区的氨基酸序列参照美国专利公开US005871732。编码重链可变区和轻链可变区的核酸序列委托金斯瑞公司合成。
Ibalizumab重链可变区的氨基酸序列:(122aa)
Figure PCTCN2021102428-appb-000055
编码Bevacizumab重链可变区的核酸序列:(366bp)
Figure PCTCN2021102428-appb-000056
Ibalizumab轻链可变区的氨基酸序列:(112aa)
Figure PCTCN2021102428-appb-000057
Figure PCTCN2021102428-appb-000058
编码Ibalizumab轻链可变区的核酸序列:(336bp)
Figure PCTCN2021102428-appb-000059
重链恒定区均采用Ig gamma-4 chain C region,ACCESSION:P01861;轻链恒定区均采用Ig kappa chain C region,ACCESSION:P01834。
将Ibalizumab的重链cDNA和轻链的cDNA分别克隆到pCMV载体中,获得抗体Ibalizumab的重组表达质粒。
将重组质粒转染HEK293F细胞。将HEK293F细胞培养液纯化后进行检测。
制得了抗CD4单抗Trogarzo(Ibalizumab)。
制备例21:抗TGFβ1的抗体CAT192的制备和检测
抗体CAT192重链可变区的氨基酸序列:(123aa)
Figure PCTCN2021102428-appb-000060
抗体CAT192重链可变区的核酸序列:(369bp)
Figure PCTCN2021102428-appb-000061
抗体CAT192轻链可变区的氨基酸序列:(107aa)
Figure PCTCN2021102428-appb-000062
抗体CAT192轻链可变区的核酸序列:(321bp)
Figure PCTCN2021102428-appb-000063
制得了抗TGFβ1的抗体CAT192。
实施例1:双价双抗CT101与单价双抗CT110、CT111、CT112抑制TGF-β1 诱导HEK293细胞TGF-β/Smad信号激活的比较
HEK293细胞以1x 10 5/ml的浓度接种于24孔板,500μL/孔,于37℃、5%CO 2孵箱中培养24h后,转染TGF-β/Smad启动子活性荧光素酶报告质粒pSMAD-Luc以及海参荧光素酶内参质粒pRL-TK。转染后24小时,加入不同浓度的CT101、CT110、CT111以及CT112抗体继续培养12小时。12小时后,弃培养基,每孔细胞用100μL 1x Passive Lysis Buffer(购自Promega公司)裂解。取70μL裂解液置于酶标板中,加30μL底物1溶液,立即把酶标板放入酶标仪中,选择Luminescence读取酶标板各孔的数值为An。再加入30μL底物2溶液,立即把酶标板放入酶标仪中,选择Luminescence读取酶标板各孔的数值为Bn。用SoftMax Pro软件对数据进行分析处理。An/Bn的比值即为TGF-β/Smad信号通路的激活倍数。
结果如图3所示。结果显示,抗体CT101、CT110、CT111以及CT112均可有效抑制TGF-β1诱导的TGF-β/Smad信号通路激活,且呈剂量依赖关系;并且在相同的剂量下,CT101有效抑制TGF-β1诱导的TGF-β/Smad信号通路激活的药理学活性稍优于CT110、CT111以及CT112,其IC 50分别为250、750、800以及1000pM左右。
实施例2:双价双抗CT101与单价双抗CT110、CT111、CT112抑制TGF-β1 诱导HEK293-CD4细胞TGF-β/Smad信号激活的比较
HEK293-CD4细胞以1x 10 5/ml的浓度接种于24孔板,500μL/孔,于37℃、5%CO 2孵箱中培养24h后,转染TGF-β/Smad启动子活性荧光素酶报告质粒pSMAD-Luc以及海参荧光素酶内参质粒pRL-TK。转染后24小时,加入不同浓度的CT101、CT110、CT111以及CT112抗体继续培养12小时。12小时后,弃培养基,每孔细胞用100μL 1x Passive Lysis Buffer(购自Promega公司)裂解。取70μL裂解液置于酶标板中,加30μL底物1溶液,立即把酶标板放入酶标仪中,选择Luminescence读取酶标板各孔的数值为An。再加入30μL底物2溶液,立即把酶标板放入酶标仪中,选择Luminescence读取酶标板各孔的数值为Bn。用SoftMax Pro软件对数据进行分析处理。An/Bn的比值即为TGF-β/Smad信号通路的激活倍数。
结果如图4所示。结果显示,只有抗体CT101抗体能有效抑制TGF-β1诱导的TGF-β/Smad信号通路激活,且呈剂量依赖关系;而单价双抗CT110、CT111以及CT112在0.1-1000pM的浓度范围内能剂量依赖性的部分抑制TGF-β1活性,但在1000pM浓度以上,对TGF-β1活性是剂量依赖性的增强。CT101有效抑制TGF-β1诱导HEK93-CD4细胞中TGF-β/Smad信号通路激活的IC 50值为15pM。
实施例3:双抗CT101、CT102、CT103、CT104、CT105、CT106、CT107、 CT108以及CT109抑制TGF-β1诱导HEK293-CD4细胞TGF-β/Smad信号激活的 比较
HEK293-CD4细胞以1x 10 5/ml的浓度接种于24孔板,500μL/孔,于37℃、5%CO 2孵箱中培养24h后,转染TGF-β/Smad启动子活性荧光素酶报告质粒pSMAD-Luc以及海参荧光素酶内参质粒pRL-TK。转染后24小时,加入不同浓度的双抗CT101、CT102、CT103、CT104、CT105、CT106、CT107、CT108以及CT109继续培养12小时。12小时后,弃培养基,每孔细胞用100μL 1x Passive Lysis Buffer(购自Promega公司)裂解。取70μL裂解液置于酶标板中,加30μL底物1溶液,立即把酶标板放入酶标仪中,选择Luminescence读取酶标板各孔的数值为An。再加入30μL底物2溶液,立即把酶标板放入酶标仪中,选择Luminescence读取酶 标板各孔的数值为Bn。用SoftMax Pro软件对数据进行分析处理。An/Bn的比值即为TGF-β/Smad信号通路的激活倍数。
结果如图5所示。结果显示,双抗CT101、CT102、CT103、CT104、CT105、CT106、CT107、CT108以及CT109均能有效抑制TGF-β1诱导的TGF-β/Smad信号通路激活,且呈剂量依赖关系;并且在相同的剂量下,CT102有效抑制TGF-β1诱导的TGF-β/Smad信号通路激活的药理学活性远胜于其他抗体,其IC 50值低至2pM。其他双抗CT101、CT103、CT104、CT105、CT106、CT107、CT108以及CT109有效抑制TGF-β1诱导的TGF-β/Smad信号通路激活的IC 50值分别是15pM、2500pM、2400pM、2500pM、300pM、2600pM、2700pM以及50pM。
实施例4:抗体CT101、CT102、CT111以及CT112的动力学参数测定
1.双功能抗体CT101、CT102、CT111以及CT112与CD4结合的动力学参数测定
采用Biacore分子相互作用仪检测抗体CT101、CT102、CT111以及CT112与人CD4的亲和力常数。以HBS-EP作为缓冲液,采用Bicaore标准氨基偶联方式将人CD4固定于CM5芯片表面。抗体CT101、CT102、CT111以及CT112与人CD4结合,抗体CT101、CT102、CT111以及CT112浓度为250nM,流速为30μl/min,结合时间为120s,解离时间为880s。芯片使用10mM甘氨酸,pH2.7再生,流速为30μl/min,时间为120s。数据以1:1模型拟合分析,得到亲和力常数。使用Biacore Control 2.0软件进行数据采集,Biacore T200Evaluation 2.0软件进行数据分析。抗体CT101、CT102、CT111以及CT112与人CD4结合的动力学参数见表1,抗体CT101、CT102、CT111以及CT112与人CD4结合的动力学特征参数检测结果分别如图6所示。
表1:抗体CT101、CT102、CT111以及CT112与人CD4分子结合的动力学参数
Figure PCTCN2021102428-appb-000064
Kd为亲和力常数;Kon为抗原抗体结合速率;Koff为抗原抗体解离速率;Kd=Koff/Kon。
结果表明,双价抗体CT101、CT102与抗原CD4有较好的亲和力,且亲和力稍优于单价抗体CT111、抗体CT112。
2.抗体CT101、CT102、CT111以及CT112与TGF-β1结合的动力学参数测定
采用Biacore分子相互作用仪检测抗体CT101、CT102、CT111以及CT112与人TGF-β1的亲和力常数。以HBS-EP作为缓冲液,采用Bicaore标准氨基偶联方式将人TGF-β1固定于CM5芯片表面。抗体抗体CT101、CT102、CT111以及CT112与人TGF-β1结合,抗体抗体CT101、CT102、CT111以及CT112浓度为250nM,流速为30μl/min,结合时间为120s,解离时间为880s。芯片使用10mM甘氨酸,pH2.7再生,流速为30μl/min,时间为120s。数据以1:1模型拟合分析,得到亲和 力常数。使用Biacore Control 2.0软件进行数据采集,Biacore T200 Evaluation 2.0软件进行数据分析。抗体CT101、CT102、CT111以及CT112与人TGF-β1结合的动力学参数见表2,抗体CT101、CT102、CT111以及CT112与人TGF-β1结合的动力学特征参数检测结果分别如图7所示。
表2:抗体CT101、CT102、CT111以及CT112与TGF-β1结合的动力学参数
Figure PCTCN2021102428-appb-000065
结果表明,双价抗体CT101、CT102与抗原TGF-β1均有较好的亲和力,且亲和力稍优于单价抗体CT111、CT112。
实施例5:CT101、CT102、TGF-β1抗体以及对照抗体对人源化CD4小鼠辅 助性T细胞的结合
人源化CD4小鼠,其CD4辅助性T细胞上特异性表达人CD4分子,采用流式细胞术分析验证抗体在体内对CD4辅助性T细胞的特异性结合能力。
将200μg的CT101、CT102、TGF-β1抗体以及对照抗体通过尾静脉注射到人源化CD4小鼠体内。4小时后,安乐死处死小鼠,并取出小鼠的淋巴结,匀浆器碾碎后过滤组织碎片,收集细胞后置于冰上与抗体混合液孵育半小时。抗体混合液为FITC偶联大鼠抗小鼠CD45 IgG(1:400),APC偶联大鼠抗小鼠TCRβ IgG(1:200),APC-Cy7偶联大鼠抗小鼠CD4 IgG(1:200),PE-Cy7偶联大鼠抗小鼠CD8 IgG(1:200),PE偶联羊抗人Fc IgG(1:400)稀释在1x FACS buffer(1%BSA,2mM EDTA,0.1%叠氮钠)。用PBS洗涤,加入200μL PBS重悬细胞,在流式细胞仪上检测荧光信号(MFI,mean fluorescent intensity)。
结果如图10所示,抗体CT101、CT102均能通过结合CD4分子有效地附着在辅助性T细胞上,因此能特异性抑制辅助性T细胞上的TGF-β信号通路激活。而TGF-β1抗体以及对照抗体不能结合CD4分子,因此不能附着在辅助性T细胞上。
实施例6:高剂量静脉注射情况下CT101、CT102在人源化CD4小鼠体内的药 物代谢
为检测高剂量尾静脉注射情况下CT101以及CT102在人源化CD4小鼠体内的药物代谢,通过尾静脉将200μg的CT101或CT102抗体注射到8-10周龄人源化CD4小鼠体内,然后取血检测抗体的血清浓度,且每间隔24小时取血检测抗体的血清浓度。
ELISA方法测定血清中抗体CT101、CT102的浓度,方法具体如下:
用CD4-His包被酶标板,37℃孵育3小时。洗板后,1%BSA封闭1小时。洗板后加入稀释的血清,37℃孵育60分钟。洗板后加入酶标记的驴抗人IgG二抗工作液,37℃孵育30分钟。洗板后加入TMB显色液避光显色5min,加入终止液终止显色反应。立即把酶标板放入酶标仪中,选择450nm光波长读取酶标板各孔的OD数值。用SoftMax Pro软件对数据进行分析处理。
高剂量静脉注射抗体CT101与CT102的药物代谢结果如图11所示。以抗体注射后时间为横坐标,血清浓度为纵坐标进行曲线拟合,计算抗体CT101以及CT102 的半衰期t 1/2均为60小时。
实施例7:低剂量静脉注射情况下CT101、CT102在人源化CD4小鼠体内的药 物代谢
为检测低剂量尾静脉注射情况下CT101以及CT102在人源化CD4小鼠体内的药物代谢,通过尾静脉将20μg的CT101或CT102抗体注射到8-10周龄人源化CD4小鼠体内,然后取血检测抗体的血清浓度,且每间隔24小时取血检测抗体的血清浓度。
ELISA方法测定血清中抗体CT101、CT102的浓度,方法具体如下:
用CD4-His包被酶标板,37℃孵育3小时。洗板后,1%BSA封闭1小时。洗板后加入稀释的血清,37℃孵育60分钟。洗板后加入酶标记的驴抗人IgG二抗工作液,37℃孵育30分钟。洗板后加入TMB显色液避光显色5min,加入终止液终止显色反应。立即把酶标板放入酶标仪中,选择450nm光波长读取酶标板各孔的OD数值。用SoftMax Pro软件对数据进行分析处理。
低剂量静脉注射抗体CT101与CT102的药物代谢结果如图12所示。以抗体注射后时间为横坐标,血清浓度为纵坐标进行曲线拟合,计算抗体CT101以及CT102的半衰期t 1/2分别为30,32小时。
实施例8:高剂量抗体治疗抑制体内肿瘤生长的实验
为检测高剂量下CT101、CT102、TGF-β1抗体以及对照抗体的体内抑瘤活性,首先用MC38结肠癌细胞,接种于到8-10周龄的雌性人源化CD4小鼠皮下。然后每5天给药依次,每次尾静脉注射200μg,一共给药4次。给药后测量各组肿瘤的长宽,计算肿瘤体积。
结果图13所示。结果表明:在高剂量情况下,相比对照抗体和TGF-β1抗体,CT101和CT102对小鼠肿瘤生长均具有抑制效果,而且两者的抑瘤效果相当。
实施例9:低剂量抗体治疗抑制体内肿瘤生长的实验
为检测低剂量下CT101、CT102、TGF-β1抗体以及对照抗体的体内抑瘤活性,首先用MC38结肠癌细胞,接种于到8-10周龄的雌性人源化CD4小鼠皮下。然后每5天给药依次,每次尾静脉注射20μg,一共给药4次。给药后测量各组肿瘤的长宽,计算肿瘤体积。
结果图14所示。结果表明:在低剂量情况下,相比对照抗体和TGF-β1抗体,CT101和CT102对小鼠肿瘤生长均具有抑制效果,但是CT102的抑瘤效果要胜于CT101。
实施例9:不同双功能抗体体内抑制肿瘤生长实验
为检测不同双功能抗体的体内抑瘤活性,首先用EMT-6乳腺癌细胞,接种于到6-8周龄的雌性BALB/c小鼠皮下。然后每5天给药一次,每次尾静脉注射50μg,一共给药5次。给药后测量各组肿瘤的长宽,计算肿瘤体积。
结果图15所示。结果表明:与对照抗体IgG以及抗TGFβ(克隆1D11)抗体对比,抗CD4/抗TGFβ对小鼠肿瘤具有最强的抑制效果,抗CD64/抗TGFβ效果次之,抗CD8/抗TGFβ则相交于抗TGFβ抗体没有明显效果。
实施例2:双功能抗体CT101的重链和轻链的序列设计、制备和检测
1.序列设计
本发明中的双功能抗体CT101的结构模式属于Morrison模式(IgG-scFv),即在一个IgG抗体的两条重链的C端均连接另一个抗体的scFv片段,其重链和轻链的主要组成设计以及序列信息如图16和图17。
2.抗体CT101的表达和纯化
分别将CT101的重链cDNA序列和轻链的cDNA序列克隆到pCMV载体中,提取重组质粒共转染HEK293F细胞。细胞培养5天后,将培养液通过高速离心、上清浓缩后上样至ProteinA/G柱,用Elution Buffer一步洗脱蛋白并回收目标样品抗体CT101,并换液至PBS。
2.抗体CT101的检测
将纯化后的抗体CT101分别加入还原型蛋白电泳上样缓冲液和非还原型蛋白电泳上样缓冲液,煮沸后进行SDS-PAGE电泳检测。CT101的电泳图如图18所示,还原型蛋白样品目标蛋白在75kD和25kD处,非还原型蛋白样品(单个抗体)目标蛋白在200kD处。
3.抗体CT101的高效液相色谱分析
将纯化后的抗体CT101流经AKTA纯化仪上的Superdex S200 10/300GL柱子(通用公司),使用PBS溶液以0.5mL/分钟流经系统。抗体CT101的高效液相色谱图如图19所示,CT101主要以单体形式存在(90%),另外,还有10%以多聚体的形式存在。
以下的实验中用到的人源化抗体CT101,如果没有特别说明,均为参照本实施例的方法制得。
实施例10:抗体CT101的动力学参数测定
1.双功能抗体CT101与CD4结合的动力学参数测定
采用Biacore分子相互作用仪检测抗体CT101与人CD4的亲和力常数。以HBS-EP作为缓冲液,采用Bicaore标准氨基偶联方式将人CD4固定于CM5芯片表面。抗体CT101与人CD4结合,抗体CT101浓度为8-250nM(两倍稀释),流速为30μl/min,结合时间为120s,解离时间为880s。芯片使用10mM甘氨酸,pH2.7再生,流速为30μl/min,时间为120s。数据以1:1模型拟合分析,得到亲和力常数。使用Biacore Control 2.0软件进行数据采集,Biacore T200 Evaluation 2.0软件进行数据分析。抗体CT101、Ibalizumab与人CD4结合的动力学参数见表1,抗体CT101与人CD4结合的动力学特征参数检测结果分别如图20所示。
表1:人源化抗体CT101、Ibalizumab与人CD4分子结合的动力学参数
抗体名称 Kon(10 4/Ms) Koff(10 -5/s) Kd(Koff/Kon,nM)
CT101 3.8 0.03 0.01
Ibalizumab 3.0 0.15 0.05
Kd为亲和力常数;Kon为抗原抗体结合速率;Koff为抗原抗体解离速率;Kd=Koff/Kon。
结果表明,抗体CT101与抗原有较好的亲和力,且亲和力稍优于对照抗体Ibalizumab。
2.双功能抗体CT101与TGFβ1结合的动力学参数测定
采用Biacore分子相互作用仪检测抗体CT101与人TGFβ1的亲和力常数。以HBS-EP作为缓冲液,采用Bicaore标准氨基偶联方式将人TGFβ1固定于CM5芯片 表面。抗体CT101与人TGFβ1结合,抗体CT101浓度为8-250nM(两倍稀释),流速为30μl/min,结合时间为120s,解离时间为880s。芯片使用10mM甘氨酸,pH2.7再生,流速为30μl/min,时间为120s。数据以1:1模型拟合分析,得到亲和力常数。使用Biacore Control 2.0软件进行数据采集,Biacore T200 Evaluation 2.0软件进行数据分析。抗体CT101、CAT192与人TGFβ1结合的动力学参数见表2,抗体CT101与人TGFβ1结合的动力学特征参数检测结果分别如图21所示。
表2:抗体CT101和CAT192与TGFβ1结合的动力学参数
抗体名称 Kon(10 4/Ms) Koff(10 -5/s) Kd(Koff/Kon,nM)
CT101 2.8 2.1 0.75
CAT192 3.0 2.4 0.80
结果表明,抗体CT101、CAT192与抗原TGFβ1均有较好的亲和力。
实施例11:ELISA方法检测抗体CT101与抗原的结合活性
1.间接ELISA方法分别测定抗体CT101、CAT192与抗原TGFβ1-Ηis的结合活性方法具体如下:
用TGFβ1-His包被酶标板,37℃孵育3小时。洗板后,1%BSA封闭1小时。洗板后加入梯度稀释的抗体,37℃孵育60分钟。洗板后加入酶标记的驴抗人IgG二抗工作液,37℃孵育30分钟。洗板后加入TMB显色液避光显色5min,加入终止液终止显色反应。立即把酶标板放入酶标仪中,选择450nm光波长读取酶标板各孔的OD数值。用SoftMax Pro软件对数据进行分析处理。
检测抗体CT101与抗原TGFβ1-Ηis结合的结果如图22所示。以抗体浓度为横坐标,吸光度值为纵坐标进行曲线拟合,计算抗体的结合EC 50,结果如下表3所示。
表3:抗体CT101和CAT192分别与TGFβ1-his的结合(间接ELISA)
  CT101 CAT192
EC 50 85.2pM 84.5pM
结果显示,抗体CT101与CAT192均能有效地结合TGFβ1蛋白,且其结合效率呈剂量依赖关系。
2.间接ELISA方法分别测定抗体CT101、ibalizumab与CD4的结合活性
方法具体如下:
用CD4-His包被酶标板,37℃孵育3小时。洗板后,1%BSA封闭1小时。洗板后加入梯度稀释的抗体,37℃孵育60分钟。洗板后加入酶标记的驴抗人IgG二抗工作液,37℃孵育30分钟。洗板后加入TMB显色液避光显色5min,加入终止液终止显色反应。立即把酶标板放入酶标仪中,选择450nm光波长读取酶标板各孔的OD数值。用SoftMax Pro软件对数据进行分析处理。
检测抗体CT101与抗原CD4结合结果如图23所示。以抗体浓度为横坐标,吸光度值为纵坐标进行曲线拟合,计算抗体的结合EC 50,结果如下表4所示。
表4:抗体CT101和Ibalizumab分别与CD4-his的结合(间接ELISA)
  CT101 Ibalizumab
EC 50 255.5pM 250.4pM
结果显示,抗体CT101与ibalizumab均能有效地结合CD4蛋白,并且其结合效率呈剂量依赖关系。
3.竞争ELISA方法分别测定抗体CT101、CAT192与TGFβRII竞争结合抗原TGFβ1 的活性。
具体方法如下:
用TGFβ1-His包被酶标板,37℃孵育3小时。洗板后,1%BSA于37℃封闭1小时。洗板后加入梯度稀释的抗体和人TGFβRII-ECD-Fc-biotin(终浓度为0.1μg/ml),室温孵育2小时。洗板后加入HRP标记链霉亲和素SA-HRP(1:2000)工作液,37℃孵育30分钟。洗板后加入TMB显色液避光显色5min,加入终止液终止显色反应。立即把酶标板放入酶标仪中,选择450nm光波长读取酶标板各孔的OD数值。用SoftMax Pro软件对数据进行分析处理。
检测结果如图24所示。通过对结合的抗体CT101进行吸光强度定量分析,曲线模拟抗体的结合效率获得结合EC 50(表5)。
表5:竞争ELISA检测抗体与TGFβRII-Fc竞争结合抗原TGFβ1-His。
  CT101 CAT192
IC 50 105.2pM 105.5pM
结果显示,抗体CT101和CAT192均能有效地结合抗原TGFβ1,抑制TGFβRII结合TGFβ1,并且抗体抑制TGFβRII结合TGFβ1的效率呈剂量依赖关系。
实施例12:抗体CT101对细胞膜表面抗原CD4的结合
首先构建表达人CD4抗原的HEK293,然后采用流式细胞术分析验证抗体对细胞膜表面抗原CD4的特异性结合能力。
1.构建表达CD4抗原的HEK293细胞
慢病毒载体pHAGE-CD4-IRES-EGFP以及辅助质粒psPAX2、pMD2.G转染HEK293细胞,48小时后,收集上清,用0.45μm的滤膜过滤后感染新的HEK293细胞。感染48小时后,用流式细胞仪检测EGFP,从而分选出稳定表达CD4的克隆群体HEK293-CD4细胞。
2.检测抗体CT101对细胞表面抗原的结合
采用常规胰酶消化方法消化上述步骤获得的表达CD4抗原的HEK293-CD4细胞,并使每个收集管内细胞数为2×10 5,用PBS(含1%BSA)配制抗体浓度梯度稀释液,冰上与HEK293-CD4细胞孵育半小时,每管加入100μL FITC偶联羊抗人IgG(1:200)冰上孵育半小时,用PBS洗涤,加入200μL PBS重悬细胞,在流式细胞仪上用FITC通道检测荧光信号(MFI,mean fluorescent intensity)。
结果如图25所示,通过对结合的CT101抗体和Ibalizumab进行荧光定量分析和曲线拟合,计算出CT101抗体和ibalizumab结合EC 50如表6所示。
表6:FACS检测CT101结合HEK293T-CD4表面抗原的荧光强度分析
  CT101 CAT192
EC 50 310.5pM 312.5pM
结果显示,CT101抗体能有效地结合HEK293-CD4细胞表面CD4抗原,其结合效率呈剂量依赖关系,Ibalizumab对HEK293-CD4细胞表面CD4抗原的结合活性与CT101相似,表明双功能抗体CT101的抗CD4功能没有因为抗体改造而受到影响。
实施例13:CT101抗体抑制TGFβ1诱导HEK93细胞中TGFβ/Smad信号通路激活
HEK293细胞以1x 10 5/ml的浓度接种于24孔板,500μL/孔,于37℃、5%CO 2孵箱中培养24h后,转染TGFβ/Smad启动子活性荧光素酶报告质粒pSMAD-Luc以 及海参荧光素酶内参质粒pRL-TK。转染后24小时,加入不同浓度的CT101抗体和CAT192抗体继续培养12小时。12小时后,弃培养基,每孔细胞用100μL 1x Passive Lysis Buffer(购自Promega公司)裂解。取70μL裂解液置于酶标板中,加30μL底物1溶液,立即把酶标板放入酶标仪中,选择Luminescence读取酶标板各孔的数值为An。再加入30μL底物2溶液,立即把酶标板放入酶标仪中,选择Luminescence读取酶标板各孔的数值为Bn。用SoftMax Pro软件对数据进行分析处理。An/Bn的比值即为TGFβ/Smad信号通路的激活倍数。
结果如图26所示。结果显示,抗体CT101、CAT192均可有效抑制TGFβ1诱导的TGFβ/Smad信号通路激活,且呈剂量依赖关系;并且在相同的剂量下,CT101有效抑制TGFβ1诱导的TGFβ/Smad信号通路激活的药理学活性与CAT192类似,其IC 50均为250pM左右。
实施例14:CT101抗体抑制TGFβ1诱导HEK293-CD4细胞中TGFβ/Smad信号通路 激活
HEK293-CD4细胞以1x 10 5/ml的浓度接种于24孔板,500μL/孔,于37℃、5%CO 2孵箱中培养24h后,转染TGFβ/Smad启动子活性荧光素酶报告质粒pSMAD-Luc以及海参荧光素酶内参质粒pRL-TK。转染后24小时,加入不同浓度的CT101抗体和CAT192抗体继续培养12小时。12小时后,弃培养基,每孔细胞用100μL 1x Passive Lysis Buffer(购自Promega公司)裂解。取70μL裂解液置于酶标板中,加30μL底物1溶液,立即把酶标板放入酶标仪中,选择Luminescence读取酶标板各孔的数值为An。再加入30μL底物2溶液,立即把酶标板放入酶标仪中,选择Luminescence读取酶标板各孔的数值为Bn。用SoftMax Pro软件对数据进行分析处理。An/Bn的比值即为TGFβ/Smad信号通路的激活倍数。
结果如图27所示。结果显示,抗体CT101、CAT192均可有效抑制TGFβ1诱导的TGFβ/Smad信号通路激活,且呈剂量依赖关系;并且在相同的剂量下,CT101有效抑制TGFβ1诱导HEK93-CD4细胞中TGFβ/Smad信号通路激活的药理学活性远高于CAT192,其IC 50值分别为15pM和250pM。
实施例15:CT101体内抑制肿瘤生长实验
为检测CT101的体内抑瘤活性,首先用MC38结肠癌细胞,接种于到6-8周龄的雌性人CD4转基因小鼠皮下。然后每5天给药依次,每次尾静脉注射50μg,一共给药4次。给药后测量各组肿瘤的长宽,计算肿瘤体积。
结果图28所示。结果表明:相比同型对照抗体IgG,CAT192,atezolizumab(抗PDL1抗体),抑或是atezolizumab联合CAT192,CT101对小鼠肿瘤具有更强的抑制效果。
本发明涉及的序列如下:
第一蛋白功能区VH域(SEQ ID NO:1)
Figure PCTCN2021102428-appb-000066
第一蛋白功能区VL域(SEQ ID NO:2)
Figure PCTCN2021102428-appb-000067
第二蛋白功能区VH域1型(SEQ ID NO:3)
Figure PCTCN2021102428-appb-000068
第二蛋白功能区VH域2型(SEQ ID NO:4)
Figure PCTCN2021102428-appb-000069
第二蛋白功能区VH域3型(SEQ ID NO:5)
Figure PCTCN2021102428-appb-000070
第二蛋白功能区VL域(SEQ ID NO:6)
Figure PCTCN2021102428-appb-000071
连接片段(SEQ ID NO:7)
GGGGSGGGGSGGGGS
连接片段构成单元(SEQ ID NO:8)
GGGGS
人IgG4κ轻链CL域(SEQ ID NO:9)
Figure PCTCN2021102428-appb-000072
人IgG4 CH1域(SEQ ID NO:10)
Figure PCTCN2021102428-appb-000073
人IgG4铰链区(S228P)(SEQ ID NO:11)
KYGPPCPPCPAPEFLGGP
人IgG4 Fc区(SEQ ID NO:12)
Figure PCTCN2021102428-appb-000074
双功能抗体CT101的第一蛋白链(SEQ ID NO:13)
Figure PCTCN2021102428-appb-000075
双功能抗体CT101的第二蛋白链(SEQ ID NO:14)
Figure PCTCN2021102428-appb-000076
Figure PCTCN2021102428-appb-000077
双功能抗体CT102的第一蛋白链(SEQ ID NO:15)
Figure PCTCN2021102428-appb-000078
双功能抗体CT102的第二蛋白链(SEQ ID NO:16)
Figure PCTCN2021102428-appb-000079
双功能抗体CT103的第一蛋白链(SEQ ID NO:17)
Figure PCTCN2021102428-appb-000080
双功能抗体CT103的第二蛋白链(SEQ ID NO:18)
Figure PCTCN2021102428-appb-000081
Figure PCTCN2021102428-appb-000082
双功能抗体CT104的第一蛋白链(SEQ ID NO:19)
Figure PCTCN2021102428-appb-000083
双功能抗体CT104的第二蛋白链(SEQ ID NO:20)
Figure PCTCN2021102428-appb-000084
双功能抗体CT105的第一蛋白链(SEQ ID NO:21)
Figure PCTCN2021102428-appb-000085
双功能抗体CT105的第二蛋白链(SEQ ID NO:22)
Figure PCTCN2021102428-appb-000086
Figure PCTCN2021102428-appb-000087
双功能抗体CT106的第一蛋白链(SEQ ID NO:23)
Figure PCTCN2021102428-appb-000088
双功能抗体CT106的第二蛋白链(SEQ ID NO:24)
Figure PCTCN2021102428-appb-000089
双功能抗体CT106的第三蛋白链(SEQ ID NO:25)
Figure PCTCN2021102428-appb-000090
双功能抗体CT106的第四蛋白链(SEQ ID NO:26)
Figure PCTCN2021102428-appb-000091
双功能抗体CT107的第一蛋白链(SEQ ID NO:27)
Figure PCTCN2021102428-appb-000092
双功能抗体CT107的第二蛋白链(SEQ ID NO:28)
Figure PCTCN2021102428-appb-000093
Figure PCTCN2021102428-appb-000094
双功能抗体CT107的第三蛋白链(SEQ ID NO:29)
Figure PCTCN2021102428-appb-000095
双功能抗体CT107的第四蛋白链(SEQ ID NO:30)
Figure PCTCN2021102428-appb-000096
双功能抗体CT108的第一蛋白链(SEQ ID NO:31)
Figure PCTCN2021102428-appb-000097
双功能抗体CT108的第二蛋白链(SEQ ID NO:32)
Figure PCTCN2021102428-appb-000098
双功能抗体CT108的第三蛋白链(SEQ ID NO:33)
Figure PCTCN2021102428-appb-000099
Figure PCTCN2021102428-appb-000100
双功能抗体CT109的第一蛋白链(SEQ ID NO:34)
Figure PCTCN2021102428-appb-000101
双功能抗体CT109的第二蛋白链(SEQ ID NO:35)
Figure PCTCN2021102428-appb-000102
双功能抗体CT109的第三蛋白链(SEQ ID NO:36)
Figure PCTCN2021102428-appb-000103
双功能抗体CT110的第一蛋白链(SEQ ID NO:37)
Figure PCTCN2021102428-appb-000104
双功能抗体CT110的第二蛋白链(SEQ ID NO:38)
Figure PCTCN2021102428-appb-000105
Figure PCTCN2021102428-appb-000106
双功能抗体CT110的第三蛋白链(SEQ ID NO:39)
Figure PCTCN2021102428-appb-000107
双功能抗体CT111的第一蛋白链(SEQ ID NO:40)
Figure PCTCN2021102428-appb-000108
双功能抗体CT111的第二蛋白链(SEQ ID NO:41)
Figure PCTCN2021102428-appb-000109
双功能抗体CT111的第三蛋白链(SEQ ID NO:42)
Figure PCTCN2021102428-appb-000110
双功能抗体CT112的第一蛋白链(SEQ ID NO:43)
Figure PCTCN2021102428-appb-000111
双功能抗体CT112的第二蛋白链(SEQ ID NO:44)
Figure PCTCN2021102428-appb-000112
双功能抗体CT112的第三蛋白链(SEQ ID NO:45)
Figure PCTCN2021102428-appb-000113
双功能抗体CT112的第四蛋白链(SEQ ID NO:46)
Figure PCTCN2021102428-appb-000114
TGF-β1抗体(ScFv-IgG4)的蛋白链(SEQ ID NO:47)
Figure PCTCN2021102428-appb-000115
对照抗体(ScFv-IgG4)的蛋白链(SEQ ID NO:48)
Figure PCTCN2021102428-appb-000116
Figure PCTCN2021102428-appb-000117
重组CD4-His蛋白序列(SEQ ID NO:49)
Figure PCTCN2021102428-appb-000118
编码重组CD4-His蛋白的核苷酸序列(SEQ ID NO:50)
Figure PCTCN2021102428-appb-000119
TGF-β1-His蛋白序列(SEQ ID NO:51)
Figure PCTCN2021102428-appb-000120
编码重组TGF-β1-His蛋白的核苷酸序列(SEQ ID NO:52)
Figure PCTCN2021102428-appb-000121
Figure PCTCN2021102428-appb-000122
第一蛋白功能区HCDR1:(SEQ ID NO:53)
GYTFTSYVIH
第一蛋白功能区HCDR2:(SEQ ID NO:54)
YINPYNDGTDYDEKFKG
第一蛋白功能区HCDR3:(SEQ ID NO:55)
EKDNYATGAWFA
第一蛋白功能区LCDR1:(SEQ ID NO:56)
KSSQSLLYSTNQKNYLA
第一蛋白功能区LCDR2:WASTRES(SEQ ID NO:57)
WASTRES
第一蛋白功能区LCDR3:(SEQ ID NO:58)
QQYYSYRT
第二蛋白功能区HCDR1:(SEQ ID NO:59)
SYGMH
第二蛋白功能区HCDR2:(SEQ ID NO:60)
VISYDGSIKYYADSVKG
第二蛋白功能区HCDR3(1型):(SEQ ID NO:61)
TGEYSGYDTDPQYS
第二蛋白功能区HCDR3(2型):(SEQ ID NO:62)
TGEYSGYDTSGVEL
第二蛋白功能区HCDR3(3型):(SEQ ID NO:63)
TGFYSGYDTPASPD
第二蛋白功能区HCDR3共有序列:(SEQ ID NO:64)
TGX 1YSGYDTX 2X 3X 4X 5X 6
第二蛋白功能区LCDR1:(SEQ ID NO:65)
RSSQGIGDDLG
第二蛋白功能区LCDR2:(SEQ ID NO:66)
GTSTLQS
第二蛋白功能区LCDR3:(SEQ ID NO:67)
LQDSNYPLT
编码TGF-β1抗体的氨基酸序列:(475aa)
Figure PCTCN2021102428-appb-000123
Figure PCTCN2021102428-appb-000124
编码对照抗体的氨基酸序列:(475aa)
Figure PCTCN2021102428-appb-000125
尽管本发明的内容就其公开的具体实施方式作出了完整而清晰的描述,但其不仅限于此。对于所属技术领域的人员来说,通过这些表述的指导而对本发明作出修改和替代是有可能发生的,这些改进和替代包含在本发明的保护范围之内。本发明的全部范围由所附权利要求及其任何等同物给出。

Claims (26)

  1. 一种双特异性抗体,其特征在于,所述双特异性抗体至少包括第一蛋白链和第二蛋白链,
    所述第一蛋白链包括第一蛋白功能区的部分或全部结构,和/或,第二蛋白功能区的部分或全部结构;
    所述第一蛋白功能区靶向CD4,所述第一蛋白功能区为抗CD4的抗体或其抗原结合片段;
    所述第二蛋白功能区靶向TGFβ1,所述第二蛋白功能区为抗TGFβ1的抗体或其抗原结合片段。
  2. 根据权利要求1所述的双特异性抗体,其特征在于,
    所述第一蛋白功能区的重链可变区包含氨基酸序列分别为SEQ ID NO:53—SEQ ID NO:55所示的HCDR1-HCDR3,其轻链可变区包含氨基酸序列分别为SEQ ID NO:56—SEQ ID NO:58所示的LCDR1-LCDR3;
    所述第二蛋白功能区的重链可变区包含氨基酸序列为SEQ ID NO:59所示的HCDR1,氨基酸序列为SEQ ID NO:60所示的HCDR2,氨基酸序列为SEQ ID NO:61-SEQ ID NO:63任一所示的HCDR3,其轻链可变区包含氨基酸序列分别为SEQ ID NO:65—SEQ ID NO:67所示的LCDR1-LCDR3。
  3. 根据权利要求1所述的双特异性抗体,其特征在于,
    所述抗CD4的抗体或其抗原结合片段选自Fab、Fab’、F(ab’)2、Fd、Fv、dAb、互补决定区片段、单链抗体、人源化抗体、嵌合抗体或双抗体;
    和/或,
    所述抗TGFβ1的抗体或其抗原结合片段选自Fab、Fab’、F(ab’)2、Fd、Fv、dAb、互补决定区片段、单链抗体、人源化抗体、嵌合抗体或双抗体。
  4. 根据权利要求1-3任一所述的双特异性抗体,其特征在于,所述第一蛋白功能区为免疫球蛋白,其重链可变区包括SEQ ID NO:1中所示的氨基酸序列;且其轻链可变区包括SEQ ID NO:2中所示的氨基酸序列;
    所述第二蛋白功能区为单链抗体或Fab,其重链可变区包括SEQ ID NO:3、SEQ ID NO:4或SEQ ID NO:5中任一所示的氨基酸序列;且其轻链可变区包括SEQ ID NO:6中所示的氨基酸序列。
  5. 根据权利要求1-3任一所述的双特异性抗体,其特征在于,所述第一蛋白功能区为免疫球蛋白,所述第一蛋白功能区的重链可变区的氨基酸序列如SEQ ID NO:76所示,所述第一蛋白功能区的轻链可变区的氨基酸序列如SEQ ID NO:78所示;
    和,
    所述第二蛋白功能区为单链抗体或Fab,所述第二蛋白功能区的重链可变区的氨基酸序列如SEQ ID NO:80所示;所述第二蛋白功能区的轻链可变区的氨基酸序列如SEQ ID NO:82所示。
  6. 根据权利要求1-5任一所述的双特异性抗体,其特征在于,所述双特异性抗体存在形式为IgG-ScFv/Fab形式,或其他双特异性抗体存在形式。
  7. 根据权利要求1-6任一所述的双特异性抗体,其特征在于,所述第一蛋白功能区和第二蛋白功能区独立地为1个、2个或者2个以上。
  8. 根据权利要求1-7任一所述的双特异性抗体,其特征在于,所述第一蛋白功能区和第二蛋白功能区直接连接或者通过连接片段连接;
    优选地,所述连接片段为(GGGGS)m,m为正整数,例如1、2、3、4、5或6。
  9. 根据权利要求1-8任一所述的双特异性抗体,其特征在于,所述的免疫球蛋白,其恒定区来自人抗体;
    优选地,所述免疫球蛋白的恒定区选自人IgG1、IgG2、IgG3或IgG4的恒定区。
  10. 根据权利要求1-9任一所述的双特异性抗体,其特征在于,所述第一蛋白链从N末端至C末端具有下式:
    轻链可变区-轻链恒定区-(连接片段)m-重链可变区-(连接片段)n-轻链可变区,
    所述第二蛋白链从N端至C端具有下式:
    重链可变区-重链恒定区-铰链-Fc区,
    优选地,所述连接片段为GGGGS,其中m是0或正整数,n是0或正整数。
  11. 根据权利要求10所述的双特异性抗体,其特征在于,所述第一蛋白链的轻链可变区-轻链恒定区与第二蛋白链的重链可变区-重链恒定区相互结合形成蛋白链组,两条蛋白链组形成二聚体。
  12. 根据权利要求10-11任一所述的双特异性抗体,其特征在于,所述第一蛋白链N端的轻链可变区包含SEQ ID NO:2的氨基酸序列,所述的第一蛋白链的重链可变区包含SEQ ID NO:3、SEQ ID NO:4或SEQ ID NO:5中任一个或多个所示的氨基酸序列,所述的第一蛋白链C端的轻链可变区包括SEQ ID NO:6中所示的氨基酸序列;且,
    所述第二蛋白链的重链可变区包含SEQ ID NO:1的氨基酸序列。
  13. 根据权利要求10-12任一所述的双特异性抗体,其特征在于,所述第一蛋白链包含SEQ ID NO:15中所示的氨基酸序列;且,
    所述第二蛋白链包含SEQ ID NO:16中所示的氨基酸序列。
  14. 根据权利要求1-13任一所述的双特异性抗体,其特征在于,还包括以下特征中的任一项:
    a.所述第一蛋白链的氨基酸序列如SEQ ID NO:13所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:14所示;
    b.所述第一蛋白链的氨基酸序列如SEQ ID NO:17所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:18所示;
    c.所述第一蛋白链的氨基酸序列如SEQ ID NO:19所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:20所示;
    d.所述第一蛋白链的氨基酸序列如SEQ ID NO:21所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:22所示;
    e.所述第一蛋白链的氨基酸序列如SEQ ID NO:23所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:24所示;所述双特异性抗体还包括第三蛋白链和第四蛋白链,所述第三蛋白链的氨基酸序列如SEQ ID NO:25所示,所述第四蛋白链的氨基酸序列如SEQ ID NO:26所示;
    f.所述第一蛋白链的氨基酸序列如SEQ ID NO:27所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:28所示;所述双特异性抗体还包括第三蛋白链和第四蛋白链,所述第三蛋白链的氨基酸序列如SEQ ID NO:29所示,所述第四蛋白链的氨基酸序列如SEQ ID NO:30所示;
    g.所述第一蛋白链的氨基酸序列如SEQ ID NO:31所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:32所示;所述双特异性抗体还包括第三蛋白链,所述第三蛋白链的氨基酸序列如SEQ ID NO:33所示;
    h.所述第一蛋白链的氨基酸序列如SEQ ID NO:34所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:35所示;所述双特异性抗体还包括第三蛋白链,所述第三蛋白链的氨基酸序列如SEQ ID NO:36所示;
    i.所述第一蛋白链的氨基酸序列如SEQ ID NO:37所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:38所示;所述双特异性抗体还包括第三蛋白链,所述第三蛋白链的氨基酸序列如SEQ ID NO:39所示;
    j.所述第一蛋白链的氨基酸序列如SEQ ID NO:40所示,所述第二蛋白链的氨基酸序列 如SEQ ID NO:41所示;所述双特异性抗体还包括第三蛋白链,所述第三蛋白链的氨基酸序列如SEQ ID NO:42所示;
    k.所述第一蛋白链的氨基酸序列如SEQ ID NO:43所示,所述第二蛋白链的氨基酸序列如SEQ ID NO:44所示;所述双特异性抗体还包括第三蛋白链和第四蛋白链,所述第三蛋白链的氨基酸序列如SEQ ID NO:45所示,所述第四蛋白链的氨基酸序列如SEQ ID NO:46所示。
  15. 根据权利要求1-14任一所述的双特异性抗体,其特征在于,所述抗体能选择性地结合人CD4以及TGF-β1分子。
  16. 根据权利要求1-15任一所述的双特异性抗体,其特征在于,所述抗体以小于10 -9M或更小的Kd结合CD4蛋白和/或TGF-β1蛋白;优选地,所述Kd通过Biacore分子相互作用仪测得。
  17. 根据权利要求1-16任一所述的双特异性抗体,其特征在于,所述抗体在TGF-β1报告基因荧光素酶活性测定中具有针对人TGF-β1的低于5nM的IC 50
  18. 根据权利要求17所述的双特异性抗体,其特征在于,所述抗体在TGF-β1报告基因荧光素酶活性测定中具有针对人TGF-β1的低于5pM的IC 50
  19. 分离的核酸分子,其包含编码权利要求1-18任一权利要求所述的抗体蛋白或者其片段的核苷酸序列。
  20. 一种载体,其特征在于,包含权利要求19所述的分离的核酸分子。
  21. 一种宿主细胞,其特征在于,包含权利要求所述的分离的核酸分子,或者权利要求20所述的载体。
  22. 制备权利要求1至18中任一权利要求所述的双特异性抗体的方法,其特征在于,在合适的条件下培养权利要求21的宿主细胞,以及从细胞培养物中回收所述的双特异性抗体的步骤。
  23. 偶联物,其特征在于,包含双特异性抗体以及偶联部分,其中,所述双特异性抗体为权利要求1至18中任一权利要求所述的双特异性抗体,所述偶联部分为可检测的标记;优选地,所述偶联部分为化学小分子、荧光物质、发光物质、有色物质或酶。
  24. 一种药物组合物,其包含权利要求1至18中任一权利要求所述的双特异性抗体或者包含权利要求23所述的偶联物;可选地,其还包含药学上可接受的辅料。
  25. 权利要求1至18中任一权利要求所述的双特异性抗体或者权利要求23所述的偶联物的在制备预防和/或治疗疾病的药物中用途,其中所述疾病或病况选自下组:癌症、免疫介导的疾病、纤维化疾病、病毒感染性疾病、神经退行性疾病、骨重塑、肾病,及其组合。
  26. 权利要求1至18中任一权利要求所述的双特异性抗体或者权利要求23所述的偶联物在制备预防和/或治疗恶性肿瘤的药物中的用途;优选地,所述恶性肿瘤选自结肠癌、直肠癌、肺癌、肾癌、乳腺癌、卵巢癌、前列腺癌、膀胱癌、胰腺癌、胃肠道癌、脑癌、肝癌、黑色素瘤和白血病中的一种或多种。
PCT/CN2021/102428 2020-12-18 2021-06-25 一种特异性中和辅助性T细胞TGF-β信号的双特异性抗体、其药物组合及其用途 WO2022127066A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3205494A CA3205494A1 (en) 2020-12-18 2021-06-25 Bispecific antibody for specifically neutralizing tgf-.beta. signal of helper t cell, and pharmaceutical combination and use thereof
EP21905000.2A EP4265644A1 (en) 2020-12-18 2021-06-25 Bispecific antibody for specifically neutralizing tgf-? signal of helper t cell, and pharmaceutical combination and use thereof
AU2021403263A AU2021403263B2 (en) 2020-12-18 2021-06-25 Bispecific antibody for specifically neutralizing tgf-β signal of helper t cell, and pharmaceutical combination and use thereof
US18/010,813 US20240059796A1 (en) 2020-12-18 2021-06-25 Bispecific antibody for specifically neutralizing tgf-b signal of helper t cell, and pharmaceutical combination and use thereof
JP2022578626A JP2023550673A (ja) 2020-12-18 2021-06-25 ヘルパーT細胞TGF-βシグナルを特異的に中和する二重特異性抗体、その薬物組成物およびその使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011502521.9 2020-12-18
CN202011502521.9A CN112500491B (zh) 2020-12-18 2020-12-18 一种特异性中和辅助性T细胞TGF-β信号的双特异性抗体、其药物组合及其用途

Publications (2)

Publication Number Publication Date
WO2022127066A1 true WO2022127066A1 (zh) 2022-06-23
WO2022127066A9 WO2022127066A9 (zh) 2023-08-10

Family

ID=74922433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102428 WO2022127066A1 (zh) 2020-12-18 2021-06-25 一种特异性中和辅助性T细胞TGF-β信号的双特异性抗体、其药物组合及其用途

Country Status (7)

Country Link
US (1) US20240059796A1 (zh)
EP (1) EP4265644A1 (zh)
JP (1) JP2023550673A (zh)
CN (1) CN112500491B (zh)
AU (1) AU2021403263B2 (zh)
CA (1) CA3205494A1 (zh)
WO (1) WO2022127066A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112500491B (zh) * 2020-12-18 2022-04-08 深圳市迈加瑞生物技术有限公司 一种特异性中和辅助性T细胞TGF-β信号的双特异性抗体、其药物组合及其用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5747654A (en) 1993-06-14 1998-05-05 The United States Of America As Represented By The Department Of Health And Human Services Recombinant disulfide-stabilized polypeptide fragments having binding specificity
US5871732A (en) 1990-11-27 1999-02-16 Biogen, Inc. Anti-CD4 antibody homologs useful in prophylaxis and treatment of AIDS, ARC and HIV infection
CN107889491A (zh) * 2015-03-04 2018-04-06 建新公司 以高亲和性、亲合力及特异性结合转化生长因子‑β1的scFv‑Fc二聚体
CN108884155A (zh) * 2015-10-30 2018-11-23 加利福尼亚大学董事会 转化生长因子-β应答多肽及其使用方法
CN112500491A (zh) * 2020-12-18 2021-03-16 深圳市迈加瑞生物技术有限公司 一种特异性中和辅助性T细胞TGF-β信号的双特异性抗体、其药物组合及其用途

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012065055A2 (en) * 2010-11-12 2012-05-18 The Rockefeller University Fusion proteins for hiv therapy
US9315567B2 (en) * 2012-08-14 2016-04-19 Ibc Pharmaceuticals, Inc. T-cell redirecting bispecific antibodies for treatment of disease
GB201712556D0 (en) * 2017-08-04 2017-09-20 Univ Court Univ Of Glasgow Materials and methods for inducing regulatory T cells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5871732A (en) 1990-11-27 1999-02-16 Biogen, Inc. Anti-CD4 antibody homologs useful in prophylaxis and treatment of AIDS, ARC and HIV infection
US5747654A (en) 1993-06-14 1998-05-05 The United States Of America As Represented By The Department Of Health And Human Services Recombinant disulfide-stabilized polypeptide fragments having binding specificity
CN107889491A (zh) * 2015-03-04 2018-04-06 建新公司 以高亲和性、亲合力及特异性结合转化生长因子‑β1的scFv‑Fc二聚体
CN108884155A (zh) * 2015-10-30 2018-11-23 加利福尼亚大学董事会 转化生长因子-β应答多肽及其使用方法
CN112500491A (zh) * 2020-12-18 2021-03-16 深圳市迈加瑞生物技术有限公司 一种特异性中和辅助性T细胞TGF-β信号的双特异性抗体、其药物组合及其用途

Non-Patent Citations (35)

* Cited by examiner, † Cited by third party
Title
"Fundamental Immunology", 1989, RAVEN PRESS
"Remington's Pharmaceutical Sciences", 1995, PENNSYLVANIA: MACK PUBLISHING COMPANY
ALFTHAN ET AL., PROTEIN ENG, vol. 8, 1995, pages 725 - 731
BIRD ET AL., SCIENCE, vol. 242, 1988, pages 423 - 426
CHOI ET AL., EUR.J.IMMUNOL., vol. 31, 2001, pages 94 - 106
CHOTHIA ET AL., NATURE, vol. 341, 1989, pages 544 - 546
CHOTHIALESK, J.MOL.BIOL., vol. 196, 1987, pages 901 - 917
CLARK, IMMUNOL, vol. 21, 2000, pages 397 402
EDUARD BATTLEJOAN MASSAGUE: "Transforming Growth Factor-β Signaling in Immunity and Cancer", IMMUNITY, vol. 50, no. 4, 2019, pages 924 - 940, XP055942435, DOI: 10.1016/j.immuni.2019.03.024
EPITOPE MAPPING PROTOCOLS IN METHODS IN MOLECULAR BIOLOGY, vol. 66, 1996
HOLLIGER ET AL., PROC. NATL.ACAD.SCI. USA, vol. 90, 1993, pages 6444 - 6448
HOLLIGER P ET AL., PROC.NATL.ACAD.SCI. USA, vol. 90, 1993, pages 6444 - 6448
HU ET AL., CANCER RES., vol. 56, 1996, pages 3055 - 3061
HUSTON ET AL., PROC. NATL.ACAD.SCI. USA, vol. 85, 1988, pages 5879 - 5883
JOAN MASSAGUE, TGF-Β IN CANCER. CELL, vol. 134, no. 2, 2008, pages 215 - 230
JONES ET AL., NATURE, vol. 321, 1986, pages 522 525
KABAT ET AL.: "Sequences of Proteins of Immunological Interest", vol. 1-3, 1991, NIH PUBLICATION, pages: 91 - 3242
KIPRIYANOV ET AL., J.MOL.BIOL., vol. 293, 1999, pages 41 - 56
KOHLER ET AL., NATURE, vol. 256, 1975, pages 495
LI SHUN; LIU MING; DO MYTRANG H.; CHOU CHUN; STAMATIADES EFSTATHIOS G.; NIXON BRIANA G.; SHI WEI; ZHANG XIAN; LI PENG; GAO SHENGYU: "Cancer immunotherapy via targeted TGF-β signalling blockade in Tcells", NATURE, vol. 587, no. 7832, 21 October 2020 (2020-10-21), London, pages 121 - 125, XP037295116, ISSN: 0028-0836, DOI: 10.1038/s41586-020-2850-3 *
MORRISON ET AL., PROC.NATL.ACAD.SCI.USA, vol. 81, 1984, pages 6851 6855
POLJAK R.J. ET AL., STRUCTURE, vol. 2, 1994, pages 1121 - 1123
PRESTA, CURR. OP.STRUCT.BIOL., vol. 2, 1992, pages 593 596
RAJAGOPAL ET AL., PROT.ENGIN, vol. 10, 1997, pages 1453 - 1459
REICHMANN ET AL., NATURE, vol. 332, 1988, pages 323 329
REITER ET AL., CANCER RES., vol. 54, 1994, pages 2714 - 2718
REITER ET AL., IMMUNITY, vol. 2, 1995, pages 281 - 287
REITER ET AL., INTER. J. OF CANCER, vol. 58, 1994, pages 142 - 149
REITER ET AL., JBC, vol. 269, 1994, pages 18327 - 18331
REITER ET AL., NATURE BIOTECHNOLOGY, vol. 14, 1996, pages 1239 - 1245
ROBERT ET AL., PNAS, vol. 78, 1981, pages 5339 - 5343
ROOVERS ET AL., CANCER IMMUNOL, 2001
SPORN ET AL., SCIENCE, vol. 233, 1986, pages 532
WEBBER ET AL., MOLECULAR IMMUNOLOGY, vol. 32, 1995, pages 249 - 258
YU QINGXIANG: "Research Progress of Transforming Growth Factor β and Tumor Metastasis", WORLD CHINESE JOURNAL OF DIGESTOLOGY, vol. 14, no. 25, 2016, pages 2538 - 2541

Also Published As

Publication number Publication date
EP4265644A1 (en) 2023-10-25
CN112500491B (zh) 2022-04-08
CA3205494A1 (en) 2022-06-23
AU2021403263A1 (en) 2023-07-06
US20240059796A1 (en) 2024-02-22
AU2021403263B2 (en) 2023-11-09
CN112500491A (zh) 2021-03-16
JP2023550673A (ja) 2023-12-05
WO2022127066A9 (zh) 2023-08-10

Similar Documents

Publication Publication Date Title
ES2801873T3 (es) Anticuerpo de PDL-1, composición farmacéutica del mismo y sus usos
KR102340832B1 (ko) 항 pd-1 항체 및 그의 용도
WO2020043184A1 (zh) 抗pd-1-抗vegfa的双功能抗体、其药物组合物及其用途
JP7145895B2 (ja) 組換え二重特異性抗体
CN115991778A (zh) 抗pd-l1抗体及其用途
JP2022547081A (ja) 抗cd73抗体
WO2022127066A1 (zh) 一种特异性中和辅助性T细胞TGF-β信号的双特异性抗体、其药物组合及其用途
CA3207791A1 (en) Anti-cd112r antibody and use thereof
KR20220167331A (ko) 항-flt3 항체 및 조성물
CA3189473A1 (en) Novel human antibodies binding to human cd3 epsilon
WO2023186081A1 (zh) 抗tigit-抗pvrig双特异性抗体、其药物组合物及用途
WO2023186063A1 (zh) 抗pvrig抗体、其药物组合物及用途
WO2023241656A1 (zh) 包含抗cldn18.2抗体的双特异性抗体、药物组合物及用途
WO2023186112A1 (zh) 靶向ceacam和cd3的多特异性抗体及其用途
WO2023109888A1 (zh) 抗ang2-vegf双特异性抗体及其用途
WO2024017281A1 (zh) 多特异性抗体及其用途
WO2023221936A9 (zh) 双功能蛋白质及其制剂和用途
CN116135884A (zh) 抗tigit-抗pd-l1双特异性抗体、其药物组合物及用途
EA042365B1 (ru) Бифункциональное антитело против ctla4 и против pd-1, его фармацевтическая композиция и их применение

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022578626

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3205494

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021403263

Country of ref document: AU

Date of ref document: 20210625

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021905000

Country of ref document: EP

Effective date: 20230718

WWE Wipo information: entry into national phase

Ref document number: 11202304719Y

Country of ref document: SG