WO2022126657A1 - 充电方法、电子装置以及存储介质 - Google Patents

充电方法、电子装置以及存储介质 Download PDF

Info

Publication number
WO2022126657A1
WO2022126657A1 PCT/CN2020/137783 CN2020137783W WO2022126657A1 WO 2022126657 A1 WO2022126657 A1 WO 2022126657A1 CN 2020137783 W CN2020137783 W CN 2020137783W WO 2022126657 A1 WO2022126657 A1 WO 2022126657A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
current
voltage
preset
Prior art date
Application number
PCT/CN2020/137783
Other languages
English (en)
French (fr)
Inventor
朱珊
关婷
吴飞
余红明
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to EP20965670.1A priority Critical patent/EP4250514A4/en
Priority to CN202080028896.8A priority patent/CN113728528B/zh
Priority to PCT/CN2020/137783 priority patent/WO2022126657A1/zh
Publication of WO2022126657A1 publication Critical patent/WO2022126657A1/zh
Priority to US18/211,963 priority patent/US20230335809A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to a charging method, an electronic device, and a storage medium.
  • internal materials such as cathode and anode materials and electrolyte
  • the internal materials will be consumed due to chemical or electrochemical reactions, thereby affecting the performance of the battery such as capacity and rate. Both the high voltage and the duration of the high voltage during battery charging can affect the chemical or electrochemical reactions of the battery.
  • Existing charging methods such as multi-step charging and extreme fast charging, can improve battery performance to a certain extent, but the degree of improvement is limited. Such as the multi-step charging method, although the time that the battery is at high voltage can be shortened.
  • the charging rate of the battery will continue to decrease, and the overall charging time of the battery or the time under high voltage is not significantly shortened, and the improvement effect on the battery performance is not significant.
  • Another example is the method of extreme fast charging, which can significantly reduce the charging time, but because there is no step-by-step charging, this method still has a relatively long time under high voltage, and the improvement effect on the overall performance is not significant.
  • An embodiment of the present application provides a method for charging a battery.
  • the method includes: constant current charging the battery to a first voltage U 1 with a first charging current I 1 , and constant voltage charging the battery with the first voltage U 1 to a first charging cut-off current I ′ 1 ; constant current charging the battery to a second voltage U 2 with the first charging current I 1 ; and constant current charging the battery to a third voltage U 3 with the second charging current I 2 , and
  • the third voltage U 3 constantly charges the battery to the second charge-off current I′ 2 .
  • U 2 is the charging limit voltage of the battery, U 2 >U 1 , U 3 >U 2 , I 2 ⁇ I 1 , and I′ 1 ⁇ I′ 2 .
  • the method further comprises determining the first voltage U 1 .
  • the method further includes determining the first charging current I 1 .
  • the step of determining the first charging current I1 includes: after the battery is discharged to a fully discharged state, using a first preset current to charge the battery to a fully charged state at a preset temperature; using a second discharging the battery to a fully charged state with a preset current; cyclically performing charging the battery to a fully charged state using the first preset current and discharging the battery to a fully charged state using the second preset current After a preset number of discharge states, determine whether lithium precipitation occurs in the anode plate of the battery; and if lithium precipitation occurs in the anode plate of the battery, determine that the first preset current is the battery in the preset state.
  • the first charging current I 1 at temperature.
  • the step of determining the first charging current I1 further includes: if no lithium precipitation occurs in the anode plate of the battery, adjusting the first preset current; The battery is charged to a fully charged state using the adjusted first preset current at a set temperature; the battery is discharged to a fully discharged state using the second preset current; the cycle is performed using the adjusted first preset current.
  • the method further includes setting the first voltage U 1 , the second voltage U 2 , the third voltage U 3 , the first charging current I 1 , the second charging current I 2 , the first charging current The cut-off current I' 1 and the second charge cut-off current I' 2 value.
  • An embodiment of the present application provides an electronic device, the electronic device includes: a battery and a processor, where the processor is configured to execute the above charging method to charge the battery.
  • An embodiment of the present application provides a storage medium on which at least one computer instruction is stored, where the instruction is loaded by a processor and used to execute the charging method as described above.
  • the embodiment of the present application uses the charging method of constant current and constant voltage to charge as much power as possible before the battery voltage reaches the first voltage, and uses the charging method of high rate constant current and overcharge in the subsequent charging process . It can not only ensure the fast charging of the battery, but also shorten the time of the battery under high voltage, and improve the capacity decay of the battery during the cycle of charge and discharge.
  • FIG. 1 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a charging method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of current variation with time during charging according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of voltage variation with time during charging according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram showing the comparison of battery capacity attenuation when the battery is charged and discharged by the conventional method and the charging method of the present application.
  • FIG. 6 is a functional block diagram of a charging system according to an embodiment of the present application.
  • the first charging module 101 The first charging module 101
  • the second charging module 102 The second charging module 102
  • the third charging module 103 The third charging module 103
  • FIG. 1 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • the charging system 10 operates in the electronic device 1 .
  • the electronic device 1 includes, but is not limited to, a memory 11 , at least one processor 12 and a battery 13 .
  • the memory 11 , at least one processor 12 and the battery 13 may be connected through a bus or directly.
  • the battery 13 is a rechargeable battery, and is used to provide power to the electronic device 1 .
  • the battery 13 may be a lithium ion battery, a lithium polymer battery, a lithium iron phosphate battery, or the like.
  • the battery 13 includes at least one battery cell, which may be adapted to be rechargeable in a cycle.
  • the battery 13 is logically connected to the processor 12 through a power management system, so that functions such as charging, discharging, and power consumption management are implemented through the power management system.
  • FIG. 1 only illustrates the electronic device 1 by way of example. In other embodiments, the electronic device 1 may also include more or less elements, or have different element configurations.
  • the electronic device 1 can be an electric motorcycle, an electric bicycle, an electric vehicle, a mobile phone, a tablet computer, a personal digital assistant, a personal computer, or any other suitable rechargeable device.
  • the electronic device 1 may also include other components such as a wireless fidelity (Wireless Fidelity, Wi-Fi) unit, a Bluetooth unit, a speaker, etc., which will not be repeated here.
  • a wireless fidelity (Wireless Fidelity, Wi-Fi) unit Wireless Fidelity, Wi-Fi) unit
  • a Bluetooth unit Bluetooth unit
  • speaker etc., which will not be repeated here.
  • FIG. 2 is a flowchart of a battery charging method according to an embodiment of the present application.
  • the order of the steps in the flowchart can be changed, and some steps can be omitted.
  • the present application proposes a charging method that can shorten the time of the battery under high voltage and improve the capacity decay and polarization growth of the battery during the cyclic charging and discharging process.
  • the charging method may include the following steps:
  • Step S1 Constantly charge the battery to a first voltage U 1 with a first charging current I 1 , and constant-voltage charge the battery to a first charge-off current I′ 1 with the first voltage U 1 .
  • a constant current and constant voltage charging method is used first, so that the battery can be charged as much power as possible before the voltage reaches a stable voltage (ie, the first voltage U 1 ). Further, the charging time after the voltage of the battery is greater than the stable voltage is shortened.
  • the method further includes determining the first charging current I 1 .
  • the step of determining the first charging current I 1 includes: after the battery is discharged to a fully discharged state, using a first preset current (eg, 1C) to charge the battery to a preset temperature fully charged state; use the second preset current (such as 0.2C) to discharge the battery to a fully discharged state; cyclically perform using the first preset current to charge the battery to a fully charged state and use the first preset current 2.
  • a first preset current eg, 1C
  • the second preset current such as 0.2C
  • the first preset current is determined to be the first charging current I 1 of the battery at the preset temperature.
  • adjust the first preset current for example, the adjusted first preset current is 1.1C
  • use the adjusted first preset current at the preset temperature Set the current to charge the battery to a fully-charged state
  • use the second preset current to discharge the battery to a fully-discharged state
  • cyclically use the adjusted first preset current to charge the battery to a fully-charged state state and using the second preset current to discharge the battery to a fully discharged state for a preset number of times (such as 5 times)
  • determine whether lithium precipitation occurs in the anode plate of the battery and if the anode of the battery is Lithium precipitation occurs in the pole piece, and the adjusted first preset current (that is, the current at which lithium precipitation begins to occur as the charging current increases) is determined as the first charging of the battery at the preset temperature current I 1 .
  • the first charging current at different temperatures can also be determined. Specifically, the preset temperature is adjusted, and the same charging process and lithium deposition state analysis are performed by the method for determining the first charging current I 1 above, so as to obtain the first charging current of the battery at different temperatures.
  • the method further includes determining the first voltage U 1 .
  • the magnitude of the first charging cut-off current is related to the charging time and charging capacity of the battery. Specifically, in order to charge as much power as possible before the voltage of the battery reaches a stable voltage and shorten the charging time of the battery, it is necessary to limit the magnitude of the first charging cut-off current I′ 1 . If the first charging cut-off current is too small, it will take a longer time for the voltage of the battery to reach the stable voltage, and the amount of electricity charged into the battery is too small; if the first charging cut-off current is too large If the voltage of the battery reaches the stable voltage, the purpose of charging as much power as possible cannot be achieved. Therefore, in this application, 0.1C ⁇ I′ 1 ⁇ 0.6C, where C is the charge-discharge rate.
  • the charge-discharge rate refers to the current value required to charge to the rated capacity or to release the rated capacity within a specified time, which is numerically equal to the charge-discharge current/rated capacity of the battery. For example, when a battery with a rated capacity of 10Ah is discharged at 2A, its discharge rate is 0.2C; when it is discharged at 20A, its discharge rate is 2C.
  • the fully discharged state is that after the battery is discharged, the amount of electricity in the battery is 0. In other embodiments, the fully discharged state may be that the battery is discharged to a preset power level.
  • Step S2 Constantly charge the battery to a second voltage U 2 with the first charging current I 1 , where U 2 is the charging limit voltage of the battery, and U 2 >U 1 .
  • Step S3 the battery is charged to a third voltage U 3 with a constant current with the second charging current I 2 , and the battery is charged with a constant voltage with the third voltage U 3 to a second charge-off current I′ 2 , Wherein, U 3 >U 2 , and I 2 ⁇ I 1 .
  • the battery after the battery is charged to the charging limit voltage, the battery needs to be charged to a fully charged state.
  • the charging limit voltage of the battery is widened from the second voltage U 2 to the third voltage U 3 , that is, U 3 >U 2 .
  • the third voltage should not be higher than the decomposition potential of the electrolyte in the cell system of the battery, therefore, U 2 ⁇ U 3 ⁇ U 2 +500mV.
  • the U 3 ⁇ U 2 +500mV can satisfy the requirement that the battery does not exhibit lithium precipitation.
  • the third voltage U 3 is the voltage of the battery in a fully charged state, and in a preferred embodiment, U 2 ⁇ U 3 ⁇ U 2 +100mV is satisfied.
  • the second charging current I 2 is smaller than the first charging current I 1 . More preferably, U 2 ⁇ U 3 ⁇ U 2 +100mV.
  • the second charging current I 2 is a constant current charging current for overcharging the battery. It is necessary to comprehensively consider the second charging current I 2 and the overcharge voltage to ensure that when the second charging current I 2 is used for overvoltage charging, the anode of the battery does not undergo lithium precipitation, and the cathode does not undergo over-delithiation. Therefore, the magnitude of the second charging current needs to satisfy 0.5I 1 ⁇ I 2 ⁇ I 1 .
  • the second charging cut-off current I′ 2 is mainly affected by the charging capacity, and the charging capacity is guaranteed by the constant-voltage cut-off current, and the charging time can be controlled at the same time.
  • the magnitude of the second charge-off current satisfies 0.1C ⁇ I′ 2 ⁇ 0.6C, and I′ 1 ⁇ I′ 2 .
  • the battery is charged to a first voltage U 1 with a constant current by using a first charging current I 1 , and the battery is charged with a constant voltage with the first voltage U 1 to a first charge-off current I′ 1 ; constant current charge the battery to a second voltage U 2 with the first charging current I 1 ; constant current charge the battery to a third voltage U 3 with the second charging current I 2 , and charge the battery with the second charging current I 2 to a third voltage U 3 ;
  • the third voltage U 3 constantly charges the battery to the second charge-off current I′ 2 .
  • the constant-current and constant-voltage charging before the voltage of the battery reaches the first voltage may adopt one-step constant-current and constant-voltage charging, or may be multi-step constant-current and constant-voltage charging.
  • the charging voltage is gradually increased, and the charging current is gradually decreased. Refer to the existing multi-step charging method.
  • the charging method further includes setting the first voltage U 1 , the second voltage U 2 , the third voltage U 3 , the first charging current I 1 , the second charging current I 2 , the first charging current The cut-off current I' 1 and the second charge cut-off current I' 2 value.
  • the charging method provided by the embodiments of the present application can greatly reduce the time that the battery is at high voltage, and can significantly suppress the side reaction process of the electrode material, which is of great significance to the improvement of the battery performance during the cycle.
  • the battery is charged using a conventional charging method (eg, a constant current and constant voltage charging method).
  • the ambient temperature of the battery during the charging process is 45° C. as an example.
  • the battery is charged by using the battery charging method provided in the present application.
  • the ambient temperature of the battery during the charging process is 45° C. as an example.
  • the charging method provided by the present application can improve the capacity decay of the battery during the cyclic charge and discharge process.
  • the charging system 10 can be divided into one or more modules, and the one or more modules can be stored in the processor 12 and processed by the processor 12
  • the charging method of the embodiment of the present application is executed.
  • the one or more modules may be a series of computer program instruction segments capable of accomplishing specific functions, and the instruction segments are used to describe the execution process of the charging system 10 in the electronic device 1 .
  • the charging system 10 may be divided into a first charging module 101 , a second charging module 102 and a third charging module 103 in FIG. 6 .
  • the first charging module 101 is used for constant current charging the battery to a first voltage U 1 with a first charging current I 1 , and constant voltage charging the battery to a first charging with the first voltage U 1 .
  • cut-off current I′ 1 the second charging module 102 is used for constant current charging the battery to a second voltage U 2 with the first charging current I 1 , where U 2 is the charging limit voltage of the battery , U 2 >U 1 ;
  • the third charging module 103 is used for constant current charging the battery to a third voltage U 3 with the second charging current I 2 , and charging the battery with the third voltage U 3
  • the battery is charged under constant voltage to the second charging cut-off current I′ 2 , where U 3 >U 2 , I 2 ⁇ I 1 , and I′ 1 ⁇ I′ 2 .
  • the charging system 10 can shorten the time of the battery under high voltage, and improve the capacity decay and polarization growth of the battery during the cyclic charge and discharge process.
  • the charging system 10 can shorten the time of the battery under high voltage, and improve the capacity decay and polarization growth of the battery during the cyclic charge and discharge process.
  • the processor 12 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific integrated circuits) Integrated Circuit, ASIC), off-the-shelf Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor 12 may be any other conventional processor or the like.
  • modules in the charging system 10 are implemented in the form of software functional units and sold or used as independent products, they may be stored in a computer-readable storage medium.
  • the present application can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium, and the When the computer program is executed by the processor, the steps of the above method embodiments can be implemented.
  • the computer program includes computer program code
  • the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), etc.
  • each functional module in each embodiment of the present application may be integrated in the same processing unit, or each module may exist physically alone, or two or more modules may be integrated in the same unit.
  • the above-mentioned integrated modules can be implemented in the form of hardware, or can be implemented in the form of hardware plus software function modules.
  • the one or more modules may also be stored in memory and executed by the processor 12 .
  • the memory 11 may be an internal memory of the electronic device 1 , that is, a memory built in the electronic device 1 . In other embodiments, the memory 11 may also be an external memory of the electronic device 1, that is, a memory externally connected to the electronic device 1.
  • the memory 11 is used to store program codes and various data, for example, to store the program codes of the charging system 10 installed in the electronic device 1 , and to achieve high speed during the operation of the electronic device 1 . , Automatically complete program or data access.
  • the memory 11 may include random access memory, and may also include non-volatile memory, such as hard disk, internal memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), Secure Digital (Secure Digital, SD) card , a flash card (Flash Card), at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • non-volatile memory such as hard disk, internal memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), Secure Digital (Secure Digital, SD) card , a flash card (Flash Card), at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池的充电方法,包括:以第一充电电流I1对所述电池恒流充电至第一电压U1,并以所述第一电压U1对所述电池恒压充电至第一充电截止电流I'1(S1);以所述第一充电电流I1对所述电池恒流充电至第二电压U2,其中,U2为所述电池的充电限制电压,U2>U1(S2);及以第二充电电流I2对所述电池恒流充电至第三电压U3,并以所述第三电压U3对所述电池恒压充电至第二充电截止电流I'2,其中,U3>U2,I2<I1,且I'1≤I'2(S3)。一种电子装置和介质,可以缩短电池在高电压下的时间,改善电池在循环充放电过程中的容量衰减。

Description

充电方法、电子装置以及存储介质 技术领域
本申请涉及电池技术领域,尤其涉及一种充电方法、电子装置以及存储介质。
背景技术
在锂离子电池体系内,内部材料(如阴阳极材料与电解液)是其重要组成部分。在电池循环充放电过程中,所述内部材料会因发生化学或电化学反应而消耗,进而影响电池的容量和倍率等性能。电池充电过程中的高电压和高电压持续的时间均会影响电池的化学或电化学反应。现有的充电方法如多步充电、极限快充等均会对电池性能有一定的改善,但是改善程度有限。如多步充电的方法,虽然可以缩短电池处于高电压的时间。但是电池的充电倍率会持续减小,不管是电池的整体充电时间还是处于高电压下的时间并没有明显的缩短,对于电池性能的改善效果不显著。又如极限快充的方法,可以显著减少充电时间,但是因为没有分步充电,该方法在高电压下的时间仍然相对较长,对于整体性能的改善效果也不显著。
发明内容
有鉴于此,有必要提供一种电池的充电方法、电子装置以及存储介质,可以满足电池满充的要求。
本申请一实施方式提供了一种电池的充电方法。所述方法包括:以第一充电电流I 1对所述电池恒流充电至第一电压U 1,并以所述第一电压U 1对所述电池恒压充电至第一充电截止电流I′ 1;以所述第一充电电流I 1对所述电池恒流充电至第二电压U 2;及以第二充电电流I 2对所述电池恒流充电至第三电压U 3,并以所述第三电压U 3对所述电池恒压充 电至第二充电截止电流I′ 2。U 2为所述电池的充电限制电压,U 2>U 1,U 3>U 2,I 2<I 1,且I′ 1≤I′ 2
根据本申请的一些实施方式,所述方法还包括确定所述第一电压U 1。所述确定所述第一电压U 1的步骤包括:确定所述电池中阴极材料的相变电位V c;获取所述电池在所述相变电位下的荷电状态,进而确定对应的阳极电位V a;及基于所述相变电位V c和所述阳极电位V a得到所述电池的电压U cv,其中,U cv=V c-V a,U 1=U cv
根据本申请的一些实施方式,所述方法还包括确定所述第一充电电流I 1。所述确定所述第一充电电流I 1的步骤包括:在所述电池放电至满放状态后,在预设温度下使用第一预设电流对所述电池充电至满充状态;使用第二预设电流对所述电池进行放电至满放状态;循环执行使用所述第一预设电流对所述电池充电至满充状态和使用所述第二预设电流对所述电池进行放电至满放状态预设次数后,确定所述电池的阳极极片是否出现析锂;及若所述电池的阳极极片出现析锂,确定所述第一预设电流为所述电池在所述预设温度下的第一充电电流I 1
根据本申请的一些实施方式,所述确定所述第一充电电流I 1的步骤还包括:若所述电池的阳极极片没有出现析锂,调整所述第一预设电流;在所述预设温度下使用调整后的第一预设电流对所述电池充电至满充状态;使用第二预设电流对所述电池进行放电至满放状态;循环执行使用所述调整后的第一预设电流对所述电池充电至满充状态和使用所述第二预设电流对所述电池进行放电至满放状态预设次数后,确定所述电池的阳极极片是否出现析锂;及若所述电池的阳极极片出现析锂,确定所述调整后的第一预设电流为所述电池在所述预设温度下的第一充电电流I 1
根据本申请的一些实施方式,U 2<U 3≤U 2+500mV。
根据本申请的一些实施方式,0.5I 1<I 2<I 1
根据本申请的一些实施方式,0.1C<I′ 1<0.6C,其中,C为充放电倍率。
根据本申请的一些实施方式,0.1C<I′ 2<0.6C。
根据本申请的一些实施方式,所述方法还包括设定第一电压U 1、第二电压U 2、第三电压U 3、第一充电电流I 1、第二充电电流I 2、第一充电截止电流I′ 1、及第二充电截止电流I′ 2值。
本申请一实施方式提供一种电子装置,所述电子装置包括:电池和处理器,所述处理器用于执行如上所述的充电方法对所述电池进行充电。
本申请一实施方式提供一种存储介质,其上存储有至少一条计算机指令,所述指令由处理器加载并用于执行如上所述的充电方法。
本申请的实施方式通过在电池电压达到第一电压之前,先利用恒流加恒压的充电方法尽量充入更多的电量,并在后续充电过程中利用大倍率恒流加过充的充电方法。不仅可以保证电池的快速充电,还可以缩短电池在高电压下的时间,改善电池在循环充放电过程中的容量衰减。
附图说明
图1是根据本申请一实施方式的电子装置的示意图。
图2是根据本申请一实施方式的充电方法的流程图。
图3是根据本申请一实施方式的充电过程中电流随时间变化的示意图。
图4是根据本申请一实施方式的充电过程中电压随时间变化的示意图。
图5是分别采用传统方法和本申请的充电方法对电池进行充放电的电池容量衰减对比示意图。
图6是根据本申请一实施方式的充电系统的功能模块图。
主要元件符号说明
电子装置            1
充电系统            10
存储器              11
处理器               12
电池                 13
第一充电模块         101
第二充电模块         102
第三充电模块         103
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本申请一部分实施方式,而不是全部的实施方式。
请参阅图1,图1为本申请一实施例的电子装置的示意图。参阅图1所示,充电系统10运行于电子装置1中。所述电子装置1包括,但不仅限于,存储器11、至少一个处理器12及电池13,所述存储器11、至少一个处理器12及电池13之间可以通过总线连接,也可以直接连接。
在一个实施例中,所述电池13为可充电电池,用于给所述电子装置1提供电能。例如,所述电池13可以是锂离子电池、锂聚合物电池及磷酸铁锂电池等。所述电池13包括至少一个电池单元(battery cell),其可适用于可循环再充电的方式。所述电池13通过电源管理系统与所述处理器12逻辑相连,从而通过所述电源管理系统实现充电、放电、以及功耗管理等功能。
需要说明的是,图1仅为举例说明电子装置1。在其他实施方式中,电子装置1也可以包括更多或者更少的元件,或者具有不同的元件配置。所述电子装置1可以为电动摩托、电动单车、电动汽车、手机、平板电脑、个人数字助理、个人电脑,或者任何其他适合的可充电式设备。
尽管未示出,所述电子装置1还可以包括无线保真(Wireless Fidelity,Wi-Fi)单元、蓝牙单元、扬声器等其他组件,在此不再一一赘述。
请参阅图2,图2为根据本申请一实施方式的电池的充电方法的 流程图。根据不同的需求,所述流程图中步骤的顺序可以改变,某些步骤可以省略。本申请从电池材料在充电过程中的稳定性出发,提出一种充电方法,可以缩短电池在高电压下的时间,改善电池在循环充放电过程中的容量衰减和极化增长。具体地,所述充电方法可以包括以下步骤:
步骤S1:以第一充电电流I 1对所述电池恒流充电至第一电压U 1,并以所述第一电压U 1对所述电池恒压充电至第一充电截止电流I′ 1
在本实施方式中,先通过恒流恒压的充电方法,使得电池的电压在达到稳定电压(即第一电压U 1)前,尽量充入更多的电量。进而缩短电池的电压在大于所述稳定电压后的充电时间。
在本实施方式中,所述方法还包括确定所述第一充电电流I 1。具体地,所述确定所述第一充电电流I 1的步骤包括:在所述电池放电至满放状态后,在预设温度下使用第一预设电流(如1C)对所述电池充电至满充状态;使用第二预设电流(如0.2C)对所述电池进行放电至满放状态;循环执行使用所述第一预设电流对所述电池充电至满充状态和使用所述第二预设电流对所述电池进行放电至满放状态预设次数(如5次)后,确定所述电池的阳极极片是否出现析锂;及若所述电池的阳极极片出现析锂,确定所述第一预设电流为所述电池在所述预设温度下的第一充电电流I 1。若所述电池的阳极极片没有出现析锂,调整所述第一预设电流(如调整后的第一预设电流为1.1C);在所述预设温度下使用调整后的第一预设电流对所述电池充电至满充状态;使用第二预设电流对所述电池进行放电至满放状态;循环执行使用所述调整后的第一预设电流对所述电池充电至满充状态和使用所述第二预设电流对所述电池进行放电至满放状态预设次数(如5次)后,确定所述电池的阳极极片是否出现析锂;及若所述电池的阳极极片出现析锂,确定所述调整后的第一预设电流(即随着充电电流的增大,刚开始发生析锂的电流)为所述电池在所述预设温度下的第一充电电流I 1
需要说明的是,还可以确定不同温度下的所述第一充电电流。具体地,调节所述预设温度,通过上述确定所述第一充电电流I 1的方法进 行相同充电流程及析锂状态分析,可以得到不同温度下所述电池的第一充电电流。
在本实施方式中,所述方法还包括确定所述第一电压U 1。具体地,所述确定所述第一电压U 1的步骤包括:确定所述电池中阴极材料的相变电位V c;获取所述电池在所述相变电位下的荷电状态,进而确定对应的阳极电位V a;及基于所述相变电位V c和所述阳极电位V a得到所述电池的电压U cv,其中,U cv=V c-V a,U 1=U cv
在本实施方式中,所述第一充电截止电流的大小与电池的充电时间和充电容量相关。具体地,为了使电池的电压在达到稳定电压前,尽量充入更多的电量,缩短电池的充电时间,需要限制所述第一充电截止电流I′ 1的大小。若所述第一充电截止电流太小,需要更长的时间才能使所述电池的电压达到所述稳定电压,并且充入所述电池中的电量过少;若所述第一充电截止电流太大,无法实现在所述电池的电压达到所述稳定电压尽量充入更多电量的目的。因此,在本申请中,0.1C<I′ 1<0.6C,其中,C为充放电倍率。
需要说明的是,所述充放电倍率是指在规定时间内充电至额定容量或者放出其额定容量时所需要的电流值,它在数值上等于充放电电流/电池额定容量。例如,当额定容量为10Ah电池以2A放电时,其放电倍率为0.2C;以20A放电时,则其放电倍率为2C。在本实施方式中,所述满放状态为所述电池放电后,所述电池中的电量为0。在其他实施方式中,所述满放状态可以为所述电池放电至预设电量。
步骤S2:以所述第一充电电流I 1对所述电池恒流充电至第二电压U 2,其中,U 2为所述电池的充电限制电压,U 2>U 1
在本实施方式中,在电池通过恒流恒压充电到第一电压U1,需要继续对所述电池充电至所述电池的充电限制电压(即第二电压U 2),U 2>U 1。如此,可以利用大倍率恒流充电加过充的方法,减少所述电池处于高电压下的时间。
步骤S3:以第二充电电流I 2对所述电池恒流充电至第三电压U 3,并以所述第三电压U 3对所述电池恒压充电至第二充电截止电流I′ 2,其 中,U 3>U 2,I 2<I 1
在本实施方式中,在对所述电池充电至充电限制电压后,还需要将所述电池充电至满充状态。通过采用拓宽充电限制电压的方法,使得电池充电至满充状态。即将所述电池的充电限制电压第二电压U 2拓宽至第三电压U 3,即U 3>U 2。但所述第三电压不得高于所述电池的电芯体系中电解液的分解电位,因此,U 2<U 3≤U 2+500mV。所述U 3≤U 2+500mV可以满足所述电池不会出现析锂现象。需要说明的是,所述第三电压U 3为电池在满充状态下的电压,并且在一较佳实施方式中满足U 2<U 3≤U 2+100mV。
在本申请中,在对所述电池充电至第二电压U 2后,通过降电流的充电方法,使得电池的电压达到第三电压U 3。因此,所述第二充电电流I 2小于所述第一充电电流I 1。进一步优选U 2<U 3≤U 2+100mV。
在本实施方式中,所述第二充电电流I 2为所述电池过充的恒流充电电流。需要综合考虑所述第二充电电流I 2及过充电压,保证采用所述第二充电电流I 2进行过压充电时,所述电池的阳极不发生析锂,阴极不发生过脱锂。因此,所述第二充电电流的大小需要满足0.5I 1<I 2<I 1
另外需要说明的是,确定所述电池的阳极是否发生析锂的方法和确定所述电池的阴极不过脱锂的方法都是现有技术,在此不再赘述。
在本实施方式中,所述第二充电截止电流I′ 2主要受充电容量的影响,利用恒压截止电流保证充电容量,同时可以控制充电时间。所述第二充电截止电流的大小满足0.1C<I′ 2<0.6C,且I′ 1≤I′ 2
在本申请中,通过使用第一充电电流I 1对所述电池恒流充电至第一电压U 1,以所述第一电压U 1对所述电池恒压充电至第一充电截止电流I′ 1;以所述第一充电电流I 1对所述电池恒流充电至第二电压U 2;以第二充电电流I 2对所述电池恒流充电至第三电压U 3,并以所述第三电压U 3对所述电池恒压充电至第二充电截止电流I′ 2。其中,在整个充电过程中,电流随时间变化的示意图如图3所示,电压随时间变化的示意图如图4所示。另外,在所述电池的电压达到第一电压前的恒流恒压充电可以采用一步恒流恒压充电,也可以是多步恒流恒压充电。若是多 步充电的话,则充电电压逐步提升,充电电流逐渐减少,参考现有的多步充电方法。
在本申请中,所述充电方法还包括设定所述第一电压U 1、第二电压U 2、第三电压U 3、第一充电电流I 1、第二充电电流I 2、第一充电截止电流I′ 1及第二充电截止电流I′ 2值。
本申请实施例提供的充电方法可以大幅降低电池在高电压下所处的时间,可显著抑制电极材料的副反应过程,对于循环过程中的电池性能的改善具有重大的意义。
为了使本申请的发明目的、技术方案和技术效果更加清晰,以下结合附图和实施例,对本申请进一步详细说明。应当理解的是,本说明书中给出的实施例只是为了解释本申请,并非为了限定本申请,本申请并不局限于说明书中给出的实施例。
对比例1
采用传统的充电方法(如恒流恒压充电方法)对所述电池进行充电。其中,所述电池在充电过程中的环境温度以45℃为例。
1)使用1.5C的充电电流对所述电池进行恒流充电至4.4V;
2)以恒定的充电电压4.4V对电池恒压充电至截止电流0.05C;
3)将电池静置5min;
4)使用0.5C的放电电流对所述电池进行恒流放电至放电截止电压3.0V;
5)将电池静置5min;
6)循环上述步骤1)至步骤5)500次,即对所述电池进行500次循环充放电。
实施例1:
采用本申请提供的电池的充电方法对所述电池进行充电。其中,所述电池在充电过程中的环境温度以45℃为例。
1)使用1.5C的充电电流对所述电池进行恒流充电至4.1V;
2)以恒定的充电电压4.1V对电池恒压充电至截止电流0.2C;
3)使用1.5C的充电电流对所述电池进行恒流充电至4.4V;
4)使用1C的充电电流对所述电池进行恒流充电至4.5V;
5)以恒定的充电电压4.5V对电池恒压充电至截止电流0.4C;
6)将电池静置5min;
7)使用0.5C的放电电流对所述电池进行恒流放电至放电截止电压3.0V;
8)将电池静置5min;
9)循环上述步骤1)至步骤8)500次,即对所述电池进行500次循环充放电。
参阅图5可知,采用传统的充电方法对所述电池进行充放电时,所述电池的容量随着循环次数的增加而衰减得更多,而采用本申请提供的充电方法对所述电池进行充放电时,所述电池的容量随着循环次数的增加而衰减得少。由此可知,本申请提供的充电方法可以改善电池在循环充放电过程中的容量衰减。
请参阅图6,在本实施方式中,所述充电系统10可以被分割成一个或多个模块,所述一个或多个模块可存储在所述处理器12中,并由所述处理器12执行本申请实施例的充电方法。所述一个或多个模块可以是能够完成特定功能的一系列计算机程序指令段,所述指令段用于描述所述充电系统10在所述电子装置1中的执行过程。例如,所述充电系统10可以被分割成图6中的第一充电模块101、第二充电模块102和第三充电模块103。
所述第一充电模块101用于以第一充电电流I 1对所述电池恒流充电至第一电压U 1,并以所述第一电压U 1对所述电池恒压充电至第一充电截止电流I′ 1;所述第二充电模块102用于以所述第一充电电流I 1对所述电池恒流充电至第二电压U 2,其中,U 2为所述电池的充电限制电压,U 2>U 1;及所述第三充电模块103用于以第二充电电流I 2对所述电池恒流充电至第三电压U 3,并以所述第三电压U 3对所述电池恒压充电至第二充电截止电流I′ 2,其中,U 3>U 2,I 2<I 1,且I′ 1≤I′ 2
通过所述充电系统10可以缩短电池在高电压下的时间,改善电池在循环充放电过程中的容量衰减和极化增长。具体内容可以参见上 述电池的充电方法的实施例,在此不再详述。
在一实施方式中,所述处理器12可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者所述处理器12也可以是其它任何常规的处理器等。
所述充电系统10中的模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,所述计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、等。
可以理解的是,以上所描述的模块划分,为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在相同处理单元中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在相同单元中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
所述一个或多个模块还可存储在存储器中,并由所述处理器12执行。所述存储器11可以是电子装置1的内部存储器,即内置于所述电子装置1的存储器。在其他实施例中,所述存储器11也可以是电子装 置1的外部存储器,即外接于所述电子装置1的存储器。
在一些实施例中,所述存储器11用于存储程序代码和各种数据,例如,存储安装在所述电子装置1中的充电系统10的程序代码,并在电子装置1的运行过程中实现高速、自动地完成程序或数据的存取。
所述存储器11可以包括随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘、智能存储卡(Smart Media Card,SMC)、安全数字(Secure Digital,SD)卡、闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点来看,均应将本申请上述的实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本申请内。

Claims (10)

  1. 一种电池的充电方法,其特征在于,所述方法包括:
    以第一充电电流I 1对所述电池恒流充电至第一电压U 1,并以所述第一电压U 1对所述电池恒压充电至第一充电截止电流I′ 1
    以所述第一充电电流I 1对所述电池恒流充电至第二电压U 2,其中,U 2为所述电池的充电限制电压,U 2>U 1;及
    以第二充电电流I 2对所述电池恒流充电至第三电压U 3,并以所述第三电压U 3对所述电池恒压充电至第二充电截止电流I′ 2,其中,U 3>U 2,I 2<I 1,且I′ 1≤I′ 2
  2. 如权利要求1所述的充电方法,其特征在于,所述方法还包括确定所述第一电压U 1,所述确定所述第一电压U 1的步骤包括:
    确定所述电池中阴极材料的相变电位V c
    获取所述电池在所述相变电位下的荷电状态,进而确定对应的阳极电位V a;及
    基于所述相变电位V c和所述阳极电位V a得到所述电池的电压U cv,其中,U cv=V c-V a,U 1=U cv
  3. 如权利要求1所述的电池的充电方法,其特征在于,所述方法还包括确定所述第一充电电流I 1,所述确定所述第一充电电流I 1的步骤包括:
    在所述电池放电至满放状态后,在预设温度下使用第一预设电流对所述电池充电至满充状态;
    使用第二预设电流对所述电池进行放电至满放状态;
    循环执行使用所述第一预设电流对所述电池充电至满充状态和使用所述第二预设电流对所述电池进行放电至满放状态预设次数后,确定所述电池的阳极极片是否出现析锂;及
    若所述电池的阳极极片出现析锂,确定所述第一预设电流为所述电池在所述预设温度下的第一充电电流I 1
  4. 如权利要求3所述的充电方法,其特征在于,所述确定所述第 一充电电流I 1的步骤还包括:
    若所述电池的阳极极片没有出现析锂,调整所述第一预设电流;
    在所述预设温度下使用调整后的第一预设电流对所述电池充电至满充状态;
    使用第二预设电流对所述电池进行放电至满放状态;
    循环执行使用所述调整后的第一预设电流对所述电池充电至满充状态和使用所述第二预设电流对所述电池进行放电至满放状态预设次数后,确定所述电池的阳极极片是否出现析锂;及
    若所述电池的阳极极片出现析锂,确定所述调整后的第一预设电流为所述电池在所述预设温度下的第一充电电流I 1
  5. 如权利要求1所述的充电方法,其特征在于,U 2<U 3≤U 2+500mV。
  6. 如权利要求1所述的充电方法,其特征在于,0.5I 1<I 2<I 1
  7. 如权利要求1所述的充电方法,其特征在于,0.1C<I′ 1<0.6C,其中,C为充放电倍率。
  8. 如权利要求7所述的充电方法,其特征在于,0.1C<I′ 2<0.6C。
  9. 一种电子装置,其特征在于,所述电子装置包括:
    电池;以及
    处理器,用于执行如权利要求1至8中任意一项所述的充电方法对所述电池进行充电。
  10. 一种存储介质,其上存储有至少一条计算机指令,其特征在于,所述指令由处理器加载并用于执行如权利要求1至8中任意一项所述的充电方法。
PCT/CN2020/137783 2020-12-18 2020-12-18 充电方法、电子装置以及存储介质 WO2022126657A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20965670.1A EP4250514A4 (en) 2020-12-18 2020-12-18 CHARGING METHOD, ELECTRONIC DEVICE AND STORAGE MEDIUM
CN202080028896.8A CN113728528B (zh) 2020-12-18 2020-12-18 充电方法、电子装置以及存储介质
PCT/CN2020/137783 WO2022126657A1 (zh) 2020-12-18 2020-12-18 充电方法、电子装置以及存储介质
US18/211,963 US20230335809A1 (en) 2020-12-18 2023-06-20 Charging method, electronic apparatus, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/137783 WO2022126657A1 (zh) 2020-12-18 2020-12-18 充电方法、电子装置以及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/211,963 Continuation US20230335809A1 (en) 2020-12-18 2023-06-20 Charging method, electronic apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2022126657A1 true WO2022126657A1 (zh) 2022-06-23

Family

ID=78672472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137783 WO2022126657A1 (zh) 2020-12-18 2020-12-18 充电方法、电子装置以及存储介质

Country Status (4)

Country Link
US (1) US20230335809A1 (zh)
EP (1) EP4250514A4 (zh)
CN (1) CN113728528B (zh)
WO (1) WO2022126657A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101071887A (zh) * 2007-05-20 2007-11-14 张家港市华为电子有限公司 一种铅酸蓄电池的充电方法
US20140159644A1 (en) * 2012-12-12 2014-06-12 Richtek Technology Corporation Charger Circuit and Charging Control Method
CN105322245A (zh) * 2014-07-31 2016-02-10 中信国安盟固利动力科技有限公司 一种提高锂离子电池充电效率的充电方法
CN110098646A (zh) * 2018-01-31 2019-08-06 宁德新能源科技有限公司 充电方法、充电装置、终端及可读存储介质
CN110870159A (zh) * 2018-12-21 2020-03-06 Oppo广东移动通信有限公司 一种充电控制方法、装置及计算机存储介质
CN112018463A (zh) * 2019-05-28 2020-12-01 东莞新能德科技有限公司 电池充电方法、装置、设备及介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502230B1 (ko) * 2013-09-17 2015-03-12 삼성에스디아이 주식회사 배터리 충전 방법 및 배터리 충전 시스템
CN109065989B (zh) * 2018-07-27 2020-06-05 维沃移动通信有限公司 一种充电方法及充电装置
CN111293739B (zh) * 2018-12-10 2022-05-17 华为技术有限公司 一种充电方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101071887A (zh) * 2007-05-20 2007-11-14 张家港市华为电子有限公司 一种铅酸蓄电池的充电方法
US20140159644A1 (en) * 2012-12-12 2014-06-12 Richtek Technology Corporation Charger Circuit and Charging Control Method
CN105322245A (zh) * 2014-07-31 2016-02-10 中信国安盟固利动力科技有限公司 一种提高锂离子电池充电效率的充电方法
CN110098646A (zh) * 2018-01-31 2019-08-06 宁德新能源科技有限公司 充电方法、充电装置、终端及可读存储介质
CN110870159A (zh) * 2018-12-21 2020-03-06 Oppo广东移动通信有限公司 一种充电控制方法、装置及计算机存储介质
CN112018463A (zh) * 2019-05-28 2020-12-01 东莞新能德科技有限公司 电池充电方法、装置、设备及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4250514A4 *

Also Published As

Publication number Publication date
EP4250514A1 (en) 2023-09-27
CN113728528B (zh) 2023-10-13
CN113728528A (zh) 2021-11-30
EP4250514A4 (en) 2024-02-14
US20230335809A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
CN112005426B (zh) 充电方法、电子装置以及存储介质
WO2021056687A1 (zh) 充电方法、电子装置及存储介质
JP7181995B2 (ja) 充電方法、電子装置及び記憶媒体
CN112689934B (zh) 充电方法、电子装置以及存储介质
WO2021155538A1 (zh) 充电方法、电子装置以及存储介质
US20230238822A1 (en) Charging method, electronic apparatus, and storage medium
CN112272908B (zh) 充电方法、电子装置以及存储介质
WO2021155539A1 (zh) 充电方法、电子装置以及存储介质
US20230231405A1 (en) Charging method, electronic apparatus, and storage medium
US20230238818A1 (en) Charging method, electronic apparatus, and storage medium
US20230344260A1 (en) Battery charging method, electric device, and storage medium
JP7179166B2 (ja) バッテリサイクルにおけるカソード保護方法、カソード保護装置及び記憶媒体
WO2022126657A1 (zh) 充电方法、电子装置以及存储介质
JP7152548B2 (ja) 放電方法、電子装置及び記憶媒体
JP7250914B2 (ja) 充電方法、電子装置及び記憶媒体
WO2021189319A1 (zh) 充电方法、电子装置以及存储介质
US20230238821A1 (en) Charging method, electronic apparatus, and storage medium
WO2023184338A1 (zh) 电化学装置、充电方法和电子设备
CN114665527A (zh) 电池组的充电控制方法、电子装置以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020965670

Country of ref document: EP

Effective date: 20230621

NENP Non-entry into the national phase

Ref country code: DE