WO2022126393A1 - 介质滤波器、收发信机及基站 - Google Patents

介质滤波器、收发信机及基站 Download PDF

Info

Publication number
WO2022126393A1
WO2022126393A1 PCT/CN2020/136616 CN2020136616W WO2022126393A1 WO 2022126393 A1 WO2022126393 A1 WO 2022126393A1 CN 2020136616 W CN2020136616 W CN 2020136616W WO 2022126393 A1 WO2022126393 A1 WO 2022126393A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric resonator
dielectric
built
external
coupling
Prior art date
Application number
PCT/CN2020/136616
Other languages
English (en)
French (fr)
Inventor
郑清扩
黄炳文
俞熹
张晓峰
彭杰
梁丹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020237023936A priority Critical patent/KR20230119198A/ko
Priority to PCT/CN2020/136616 priority patent/WO2022126393A1/zh
Priority to EP20965411.0A priority patent/EP4254651A4/en
Priority to CN202080107401.0A priority patent/CN116547862A/zh
Priority to JP2023536539A priority patent/JP2024501799A/ja
Publication of WO2022126393A1 publication Critical patent/WO2022126393A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20309Strip line filters with dielectric resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20363Linear resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • H01P1/2056Comb filters or interdigital filters with metallised resonator holes in a dielectric block

Definitions

  • the present application relates to the field of communication equipment components, and in particular, to a dielectric filter, a transceiver and a base station.
  • dielectric waveguide filter is a better realization of miniaturization and integration.
  • the form is more and more widely concerned and researched by the industry.
  • Dielectric filters are generally formed by a plurality of resonators and the coupling between the respective resonators.
  • the coupling between the resonators can be divided into inductive coupling (also referred to as positive coupling) and capacitive coupling (also referred to as negative coupling) according to the polarity.
  • inductive coupling also referred to as positive coupling
  • capacitive coupling also referred to as negative coupling
  • a transmission zero can be formed.
  • the transmission zero point also known as the attenuation pole or the notch point, refers to a certain frequency point outside the passband of the filter, and the degree of suppression of the signal at this frequency point by the filter is theoretically infinite at this frequency point.
  • the dielectric filter in the prior art generally realizes the transmission zero point characteristic of the dielectric filter by adding cross-coupling on the main transmission channel of the dielectric filter.
  • this method has a complex structure and poor out-of-band suppression characteristics.
  • Embodiments of the present application provide a dielectric filter, a transceiver, and a base station, which can solve the problem of poor out-of-band suppression capability of the dielectric filter and improve the out-of-band suppression capability of the dielectric filter.
  • a dielectric filter in a first aspect, includes a dielectric body, an input port, an output port, a built-in dielectric resonator and an external dielectric resonator arranged on the dielectric body.
  • a plurality of built-in dielectric resonators are arranged between the input port and the output port.
  • the dielectric resonator forms a coupled main channel cascade resonator.
  • Two external dielectric resonators are arranged on one side of the input port. The coupling between the external dielectric resonator and the input port is greater than that between the external dielectric resonator and any built-in dielectric.
  • the coupling amount between the resonators; and/or, two external dielectric resonators are arranged on one side of the output port, and the coupling amount between the external dielectric resonator and the output port is greater than that between the external dielectric resonator and any built-in dielectric The amount of coupling between the resonators.
  • the built-in dielectric resonator is used to transmit radio frequency signals, and multiple built-in dielectric resonators can be set. The specific number of sets can be determined according to the transmission requirements of the radio frequency signal and the size of the dielectric filter.
  • a plurality of built-in dielectric resonators arranged between the input port and the output port are coupled to form a main coupling channel, and the radio frequency signal is transmitted along the main coupling channel.
  • two external dielectric resonators By arranging two external dielectric resonators on one side of the input port, and the coupling amount between the external dielectric resonator and the input port is greater than the coupling amount between the external dielectric resonator and any built-in dielectric resonator; or , two external dielectric resonators are set on one side of the output port, and the coupling amount between the external dielectric resonator and the output port is greater than the coupling amount between the external dielectric resonator and any built-in dielectric resonator.
  • a pair of transmission zeros the two transmission zeros are located on both sides of the filter passband respectively; if the above conditions are met, and two external dielectric resonators are set on one side of the input port and one side of the output port at the same time, two external dielectric resonators can be obtained. for transmission zero.
  • the side of the input port or the output port in this embodiment refers to any side of the input port or the output port, since the coupling between the external dielectric resonator and the input port or the output port needs to be larger than that of the external dielectric resonator
  • the amount of coupling with any built-in dielectric resonator, so the built-in dielectric resonator and the external dielectric resonator are preferably located on both sides of the input port or the output port, respectively.
  • the interior of the dielectric filter can be flexibly laid out, either a cascaded resonator with a staggered topology structure or a cascaded resonator with a linear topology structure can be used.
  • the structure is simple, the mold is used for forming, the cost is low, the reliability is good, and it is easy to realize mass production.
  • the angle between the first connection line and the second connection line is greater than or equal to 90°; and/or, the angle between the third connection line and the fourth connection line is The angle is greater than or equal to 90°.
  • the first connection is the connection between the center of the external dielectric resonator and the center of the input port
  • the second connection is the connection between the center of the built-in dielectric resonator closest to the input port and the center of the input port
  • the third The connection line is the connection line between the center of the external dielectric resonator and the center of the output port
  • the fourth connection line is the connection line between the center of the built-in dielectric resonator closest to the output port and the center of the output port.
  • the position of the external dielectric resonator is set by setting the angle between the first connection line and the second connection line and the angle between the third connection line and the fourth connection line, so that the external dielectric resonator is set.
  • the coupling amount between the external dielectric resonator and the input port or the output port is greater than the coupling amount between the external dielectric resonator and any one of the built-in dielectric resonators, so that a pair of transmission zeros or two pairs of transmission zeros can be obtained.
  • two external dielectric resonators are coupled, one external dielectric resonator close to the input port or output port is the first external dielectric resonator, and the other external dielectric resonator is the first external dielectric resonator.
  • the resonator is the second external dielectric resonator; the first external dielectric resonator is coupled with the input port or the output port.
  • the coupling of the first external dielectric resonator with the input port or the output port and the coupling of the second external dielectric resonator with the first external dielectric resonator are realized by cascading, which is beneficial to realize the external dielectric resonance.
  • the flexible layout of the device, and this design method is beneficial to obtain the transmission zero.
  • the coupled main channel cascaded resonators include cascaded resonators of linear topology and cascaded resonators of staggered topology.
  • the linear topology of the cascaded resonators can simplify the structural design of the dielectric filter. It is sufficient to design multiple dielectric resonances on a straight line.
  • the structure is simple and the layout of the dielectric filter is convenient.
  • the cascaded resonators of the staggered topology can make multiple adjacent built-in dielectric resonators form cross-coupling, and the cross-coupling is conducive to the realization of the transmission zero point characteristics of the dielectric filter. , which is beneficial to enhance the out-of-band rejection characteristics of the dielectric filter.
  • a first coupling slot is provided between two adjacent built-in dielectric resonators.
  • the amount of medium between two adjacent built-in dielectric resonators can be controlled.
  • the size of the first coupling slot can be controlled to control the amount of medium.
  • the coupling amount between the two built-in dielectric resonators can be controlled.
  • the control of the formation of the main coupling channel is realized.
  • the coupled main channel cascade resonator can take different forms. In practical applications, the layout form of the coupled main channel cascade resonator can be flexibly adjusted to facilitate the overall layout of the dielectric filter.
  • the external dielectric resonator includes a resonator body formed by a part of the dielectric body and a debugging hole located on the resonating body, and the debugging hole is a blind hole or a through hole.
  • the design flexibility of the external dielectric resonator can be maintained by setting the debugging holes as blind holes or through holes.
  • the shape of the first coupling slot is related to the coupling amount between each built-in dielectric resonator in the cascaded resonator of the staggered topology. Since the first coupling slot can control the amount of the medium between the two built-in dielectric resonators, the amount of coupling between the two built-in dielectric resonators can be controlled; The amount of coupling determines the amount of medium between different built-in dielectric resonators, thereby determining the corresponding shape of the first coupling slot.
  • the second external dielectric resonator is coupled to the near-end built-in dielectric resonator, and the near-end built-in dielectric resonator is a port on the side where the second external dielectric resonator is located Adjacent built-in dielectric resonators.
  • the input port is coupled with the built-in dielectric resonator adjacent thereto
  • the output port is coupled with the built-in dielectric resonator adjacent thereto
  • the staggered layout that is, the two external dielectric resonators and the near-end built-in dielectric resonator adopt a triangular layout. In such a layout, it is easier to generate between the two external dielectric resonators and the near-end built-in dielectric resonator. Cross-coupling for better out-of-band rejection.
  • coupling holes and/or coupling slots are provided between the external dielectric resonator and the near-end built-in dielectric resonator, and the near-end built-in dielectric resonator is connected to the external dielectric resonator.
  • the provided coupling hole or second coupling slot can adjust the amount of coupling between the input port and the built-in dielectric resonator and the external dielectric resonator located on both sides of the input port , the coupling amount between the output port and the built-in dielectric resonator and the external dielectric resonator located on both sides of the output port can also be adjusted.
  • the coupling hole and the second coupling slot are different forms of adjusting the coupling amount between the input port and the built-in dielectric resonator and the external dielectric resonator, and adjusting the coupling amount between the output port and the built-in dielectric resonator and the external dielectric resonator.
  • the corresponding coupling hole or second coupling slot can be designed according to the coupling amount between the input port or output port and the built-in dielectric resonator and the external dielectric resonator.
  • the coupling hole and the second coupling slot can be matched with each other. By using it, the design scheme can be diversified, and the effect of adjusting the coupling amount between the built-in dielectric resonator and the external dielectric resonator is flexible.
  • the coupling hole is a blind hole or a through hole
  • the second coupling slot is a blind slot.
  • the coupling hole is a through hole or a blind hole
  • the effect of the through hole or blind hole on adjusting the coupling amount between the input port or output port and the dielectric resonator of the corresponding port is different, and can be adjusted according to the coupling amount.
  • choose through holes or blind holes to achieve a simpler adjustment method to adjust the coupling between the input port or output port and different dielectric resonators. This simple adjustment method also facilitates the production and processing of dielectric filters. .
  • a second coupling slot is provided between the built-in dielectric resonator adjacent to the input port or the output port and the external dielectric resonator, and the second coupling slot is connected to the second coupling slot located in the second There is no communication between the built-in dielectric resonator at one end of the coupling slot and the external dielectric resonator at the other end of the second coupling slot.
  • both the built-in dielectric resonator and the external dielectric resonator are adjacent to the input port or both are adjacent to the output port, and the built-in dielectric resonator and the external dielectric resonator are not communicated by setting the second coupling slot, It can realize to reduce the coupling amount between the input port and the built-in dielectric resonator and the coupling amount between the input port and the external dielectric resonator; and/or, it can realize to reduce the coupling amount between the output port and the built-in dielectric resonator and The amount of coupling between the output port and the external dielectric resonator.
  • a second coupling slot is provided between the built-in dielectric resonator adjacent to the input port or the output port and the external dielectric resonator, and one end of the second coupling slot is connected to the The built-in dielectric resonator located at one end of the second coupling slot or the external dielectric resonator located at the other end of the second coupling slot communicates with each other.
  • both the built-in dielectric resonator and the external dielectric resonator are adjacent to the input port or both are adjacent to the output port.
  • the external dielectric resonator at one end of the second coupling slot can be connected to enhance the coupling between the input port or the output port and the built-in dielectric resonator or the external dielectric resonator connected to one end of the second coupling slot, while The coupling amount between the built-in dielectric resonator or the external dielectric resonator that is not communicated with the second coupling slot and the input port or the output port is reduced, so as to adjust the input port or output port of the dielectric resonator and the built-in dielectric resonator or the external dielectric resonator. The effect of the amount of coupling between dielectric resonators.
  • a second coupling slot is provided between the built-in dielectric resonator and the external dielectric resonator adjacent to the input port or the output port, and two ends of the second coupling slot are respectively It communicates with the built-in dielectric resonator located at one end of the second coupling slot and the external dielectric resonator located at the other end of the second coupling slot.
  • both the built-in dielectric resonator and the external dielectric resonator are adjacent to the input port or both are adjacent to the output port.
  • both ends of the second coupling slot By setting both ends of the second coupling slot to be respectively connected to the built-in dielectric resonator located at one end of the second coupling slot
  • the communication between the dielectric resonator and the external dielectric resonator at one end of the second coupling slot can increase the coupling amount between the input port and the built-in dielectric resonator and the coupling amount between the input port and the external dielectric resonator, and/ Or, it is possible to increase the coupling amount between the output port and the built-in dielectric resonator and the coupling amount between the output port and the external dielectric resonator.
  • a coupling hole is provided between the built-in dielectric resonator adjacent to the input port or the output port and the external dielectric resonator, the axis of the coupling hole, the axis of the built-in dielectric resonator The axis and the axis of the external dielectric resonator are parallel to each other.
  • both the outer surface and the inner surface of the dielectric body are metallized.
  • the inner surface of the dielectric body includes all the inner surfaces of the through holes, the inner surfaces and bottom surfaces of the blind holes, and the inner surfaces and bottom surfaces of the blind grooves.
  • the outer surface and inner surface of the body form metal walls, so as to realize the formation of a resonance system in the dielectric body.
  • a transceiver including a receiver, a transmitter, an amplifying unit, and a dielectric filter as provided in the first aspect or any possible implementation manner of the first aspect.
  • the transceiver has the same technical effect as the dielectric filter provided in the foregoing embodiment, and details are not described here.
  • a base station including an antenna feeder component, a control component, and the transceiver provided in the above-mentioned second aspect.
  • the base station has the same technical effect as the transceiver provided in the foregoing embodiment, and details are not described here.
  • FIG. 1 is one of the schematic diagrams of a dielectric filter provided by an embodiment of the present application
  • FIG. 2 is the second schematic diagram of a dielectric filter provided by an embodiment of the present application.
  • Fig. 3 is the topological structure schematic diagram of the dielectric filter shown in Fig. 1 and Fig. 2;
  • Fig. 4 is the response curve of the dielectric filter shown in Fig. 1;
  • FIG. 5 is a schematic diagram of a topology structure provided by an embodiment of the present application.
  • FIG. 6 is an equivalent circuit diagram of the input impedance of the topology shown in FIG. 5;
  • FIG. 7 is the third schematic diagram of a dielectric filter provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the topology structure of the dielectric filter shown in FIG. 7;
  • Fig. 9 is the response curve of the dielectric filter shown in Fig. 7;
  • FIG. 10 is one of the schematic diagrams of coupling between an input port and a built-in dielectric resonator and an external dielectric resonator in a dielectric filter provided by an embodiment of the application;
  • FIG. 11 is a cross-sectional view of one of the schematic diagrams of the coupling between the port shown in FIG. 10 and the built-in dielectric resonator and the external dielectric resonator;
  • FIG. 12 is the second schematic diagram of coupling between an input port and a built-in dielectric resonator and an external dielectric resonator in a dielectric filter provided by an embodiment of the application;
  • FIG. 13 is a cross-sectional view of the second schematic diagram of the coupling between the port shown in FIG. 12 and the built-in dielectric resonator and the external dielectric resonator;
  • FIG. 14 is the third schematic diagram of coupling between an input port and a built-in dielectric resonator and an external dielectric resonator in a dielectric filter provided by an embodiment of the application;
  • FIG. 15 is a cross-sectional view of the third schematic diagram of the coupling between the port shown in FIG. 14 and the built-in dielectric resonator and the external dielectric resonator;
  • FIG. 16 is a fourth schematic diagram of coupling between an input port and a built-in dielectric resonator and an external dielectric resonator in a dielectric filter provided by an embodiment of the application;
  • 17 is the fifth schematic diagram of the coupling between the input port and the built-in dielectric resonator and the external dielectric resonator in a dielectric filter provided by an embodiment of the application;
  • FIG. 18 is a sixth schematic diagram of coupling between an input port and a built-in dielectric resonator and an external dielectric resonator in a dielectric filter provided by an embodiment of the application;
  • FIG. 19 is a cross-sectional view of the sixth schematic diagram of the coupling between the port shown in FIG. 18 and the built-in dielectric resonator and the external dielectric resonator;
  • FIG. 20 is the fourth schematic diagram of a dielectric filter provided by an embodiment of the application.
  • FIG. 21 is a schematic diagram of the topology structure of the dielectric filter shown in FIG. 20;
  • FIG. 22 is the fifth schematic diagram of a dielectric filter provided by an embodiment of the application.
  • FIG. 23 is a schematic diagram of the topology structure of the dielectric filter shown in FIG. 22 .
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • first”, “second”, “third” and “fourth” are used for descriptive purposes only, and should not be construed as indicating or implying relative importance or implying indicated the number of technical characteristics.
  • a feature defined as “first”, “second”, “third”, “fourth” may expressly or implicitly include one or more of that feature.
  • At least one means one or more, and “plurality” means two or more.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • determining B according to A does not mean that B is only determined according to A, and B may also be determined according to A and/or other information.
  • references throughout the specification to "one embodiment,” “an embodiment,” and “one possible implementation” mean that a particular feature, structure, or characteristic related to the embodiment or implementation is included in the present application at least one embodiment of .
  • appearances of "in one embodiment” or “in an embodiment of the present application” or “one possible implementation” in various places throughout the specification are not necessarily necessarily referring to the same embodiment.
  • the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • FIG. 1 is one of schematic diagrams of a dielectric filter provided by an embodiment of the present application.
  • the dielectric filter includes a dielectric body, an input port 10 , an output port 20 , a built-in dielectric resonator and an external dielectric resonator arranged on the dielectric body.
  • a plurality of built-in dielectric resonators, the plurality of built-in dielectric resonators form a coupled main channel cascade resonator, and two external dielectric resonators are arranged outside the input port 10; and/or, two outside the output port 20 are arranged outside. Dielectric resonators.
  • the outer side of the input port 10 refers to the other side of the input port 10 relative to the output port 20
  • the outer side of the output port 20 refers to the other side relative to the input port 10
  • the coupled main channel cascaded resonator refers to multiple built-in dielectric resonators that are cascaded together, and the channels with strong coupling effect between two adjacent built-in dielectric resonators among the multiple built-in dielectric resonators are connected in turn.
  • the channel is the coupled master channel. As shown in FIG.
  • the main channel of coupling between the built-in dielectric resonator 11 , the built-in dielectric resonator 12 , the built-in dielectric resonator 13 , and the built-in dielectric resonator 14 is shown by the dotted line in FIG. 7 .
  • the built-in dielectric resonator is used to transmit radio frequency signals, and multiple built-in dielectric resonators can be set, and the specific number of settings can be based on the transmission of radio frequency signals.
  • the requirements and the size of the dielectric filter are determined.
  • a plurality of built-in dielectric resonators arranged between the input port 10 and the output port 20 are coupled to form a main coupling channel, and the radio frequency signal is transmitted along the main coupling channel.
  • the built-in dielectric resonators inside the dielectric filter can be arranged flexibly, and either a cascaded resonator with a staggered topology structure or a cascaded resonator with a linear topology structure can be used.
  • the structure of the dielectric filter is simple, the mold can be used, the cost is low, the reliability is good, and it is easy to realize mass production.
  • FIG. 1 is one of the schematic diagrams of a dielectric filter provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the topology structure of the dielectric filter shown in FIG. 1 .
  • four built-in dielectric resonators can be provided.
  • 11 is coupled
  • the built-in dielectric resonator 13 is coupled with the built-in dielectric resonator 12
  • the built-in dielectric resonator 14 is coupled with the built-in dielectric resonator 13, and the output port 20 is coupled with the built-in dielectric resonator 14, that is, the radio frequency signal is coupled along the built-in dielectric resonator 11.
  • the built-in dielectric resonator 12 , the built-in dielectric resonator 13 and the built-in dielectric resonator 14 transmit in the direction indicated by the arrow in FIG. 1 , and the path is the main coupling
  • two external dielectric resonators are set outside the input port 10 as an example. illustrate.
  • FIG. 5 is a schematic diagram of a topology structure provided by an embodiment of the present application
  • FIG. 6 is an equivalent circuit diagram of the input impedance of the topology structure shown in FIG. 5
  • the external dielectric resonator 1 and the external dielectric resonator 2 in the figure form a series suppression resonator, which provides a transmission zero point for the entire link.
  • the resonant frequency of the traditional NRN hanging cavity is at the transmission zero point, while the series external dielectric resonator 1 in the circuit topology shown in Fig.
  • the resonant frequency of the external dielectric resonator 2 is at the center of the filter passband.
  • the transmission zero point S z can be obtained as:
  • the reflection zero point Sp is:
  • b 1 is the frequency factor of the external dielectric resonator 1
  • b 2 is the frequency factor of the external dielectric resonator 2
  • j is the imaginary unit in the complex number
  • J 1 is the external dielectric resonator 1 and the input port 10.
  • the coupling factor between the two, J 2 is the coupling factor between the external dielectric resonator 1 and the external dielectric resonator 2.
  • the topology can realize a pair of out-of-band transmission zeros, and the pair of out-of-band transmission zeros can be symmetrical transmission zeros symmetrically distributed on both sides of the passband, or asymmetrical transmission zeros located on both sides of the passband;
  • the external dielectric resonator 1 and the external dielectric resonator 2 provide two reflection zeros at the center frequency.
  • the included angle between the first connecting line and the second connecting line is greater than or equal to 90°; and/or the included angle between the third connecting line and the fourth connecting line is greater than or equal to 90° °.
  • the first connection is the connection between the center of the external dielectric resonator and the center of the input port
  • the second connection is the connection between the center of the built-in dielectric resonator closest to the input port and the center of the input port
  • the third The connection line is the connection line between the center of the external dielectric resonator and the center of the output port
  • the fourth connection line is the connection line between the center of the built-in dielectric resonator closest to the output port and the center of the output port.
  • the built-in dielectric resonator and the external dielectric resonator are located on two sides of the input port respectively.
  • the side where the built-in dielectric resonator is located is the inner side of the input port, and the other side is the outer side of the input port.
  • Vertical straight line the center of the external dielectric resonator can be located just on the boundary line or outside the input port.
  • the built-in dielectric resonator and the external dielectric resonator are located on two sides of the output port respectively.
  • the side where the built-in dielectric resonator is located is the inside of the output port, and the other side is the outside of the output port.
  • the boundary line between the inside and the outside of the output port is the line passing through the center of the output port and connecting Vertical straight line, the center of the external dielectric resonator can be located just on the boundary line or outside the output port.
  • the external dielectric resonator By setting the position of the external dielectric resonator, the external dielectric resonator can be prevented from directly resonating with the built-in dielectric without passing through the output port.
  • the resonator is coupled to become part of the cascaded resonators of the coupled main channel. Make the transmission path of the wave pass through the output port and then to the external dielectric resonator to realize the generation of transmission zero.
  • two external dielectric resonators are coupled, and one external dielectric resonator close to the input port 10 or the output port 20 is coupled to the input port 10 or the output port 20 . It can be understood that one of the external dielectric resonators is coupled to the input port 10 or the output port 20 by cascading. This design method satisfies the theoretical basis for obtaining the transmission zero point described above and is beneficial to obtaining the transmission zero point.
  • an external dielectric resonator and an external dielectric resonator are provided outside the input port 10
  • an external dielectric resonator and an external dielectric resonator are also provided outside the output port 20 .
  • the external dielectric resonator outside the input port 10 close to the input port 10 is named external dielectric resonator A31
  • the other external dielectric resonator outside the input port 10 is named external dielectric resonator A32
  • the external dielectric resonator outside the output port 20 close to the output port 20 is named as the external dielectric resonator B21
  • the external dielectric resonator outside the output port 20 close to the output port 20 is named as the external dielectric resonator B22 .
  • the coupled main channel cascaded resonators include cascaded resonators of linear topology and cascaded resonators of staggered topology.
  • the cascaded resonators with linear topology can simplify the structural design of the dielectric filter. It is sufficient to design multiple built-in dielectric resonators on a straight line. The structure is simple and the layout of the dielectric filter is convenient.
  • the cascaded resonators of the staggered topology can make multiple adjacent built-in dielectric resonators form cross-coupling, and the cross-coupling is conducive to the realization of the transmission zero point characteristics of the dielectric filter. , which is beneficial to enhance the out-of-band rejection characteristics of the dielectric filter.
  • FIG. 2 is the second schematic diagram of a dielectric filter provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a topology structure of the dielectric filter shown in FIG. 2
  • a plurality of built-in dielectric resonators are arranged between the input port 10 and the output port 20, the plurality of built-in dielectric resonators are arranged in a straight line, and the input port 10 and the output port 20 are also arranged on the straight line .
  • a total of four built-in dielectric resonators are set, wherein the built-in dielectric resonator 11 is coupled with the input port 10, the built-in dielectric resonator 12 is coupled with the built-in dielectric resonator 11, the built-in dielectric resonator 13 is coupled with the built-in dielectric resonator 12, The built-in dielectric resonator 14 is coupled with the built-in dielectric resonator 13, and the output port 20 is coupled with the built-in dielectric resonator 14 to form a linear coupling main channel, along which the radio frequency signal is transmitted from the input port 10 to the output port 20. . As shown in FIG.
  • two external dielectric resonators are arranged outside the output port 20: an external dielectric resonator B21 and an external dielectric resonator B22, the external dielectric resonator B21 is coupled to the output port 20, and the external dielectric resonator B21 is The dielectric resonator B22 is coupled to the external dielectric resonator B21, and the external dielectric resonator B21 and the external dielectric resonator B22 may be arranged on the same line as the four internal dielectric resonators. This arrangement does not need to consider the cross-coupling between the built-in dielectric resonators, so that the structure of the dielectric filter is very simple, convenient for processing, and easy to realize mass production.
  • FIG. 1 is one of the schematic diagrams of a dielectric filter provided by an embodiment of the present application, and a schematic diagram of the topology structure of the dielectric filter shown in FIG. 1 is shown in FIG. 3 .
  • a plurality of built-in dielectric resonators can be arranged between the input port 10 and the output port 20, and the plurality of built-in dielectric resonators can be arranged in multiple rows. This arrangement is to facilitate the layout of the dielectric filter. , making full use of the longitudinal space of the dielectric filter, but multiple built-in dielectric resonators only form one main coupling channel.
  • a total of four built-in dielectric resonators are arranged in two rows in two rows. As shown in Figure 1, the four built-in dielectric resonators are located at the four corners of the rectangle respectively.
  • the arrangement form of the plurality of built-in dielectric resonators is not limited to this.
  • the built-in dielectric resonator 11 is coupled with the input port 10
  • the built-in dielectric resonator 12 is coupled with the built-in dielectric resonator 11
  • the built-in dielectric resonator 13 is coupled with the built-in dielectric resonator 12
  • the built-in dielectric resonator 14 is coupled with the built-in dielectric resonator 13 Coupling
  • the output port 20 is coupled with the built-in dielectric resonator 14 to form a "U"-shaped coupling main channel
  • the radio frequency signal is transmitted from the input port 10 to the output port 20 along the coupling main channel. As shown in FIG.
  • two external dielectric resonators are arranged outside the output port 20: an external dielectric resonator B21 and an external dielectric resonator B22, the external dielectric resonator B21 is coupled to the output port 20, and the external dielectric resonator B21 is The dielectric resonator B22 is coupled with the external dielectric resonator B21.
  • the external dielectric resonator B21 and the external dielectric resonator B22 can be laid out according to the structure of the dielectric filter.
  • the layout of the two external dielectric resonators is the same as the built-in dielectric resonator.
  • the longitudinal layout of the dielectric resonator is similar. With the layout of this example, the space of the dielectric filter can be fully utilized.
  • FIG. 4 is a response curve of the dielectric filter shown in FIG. 1 .
  • the curve S11 is the signal reflection curve of the signal transmitted in the dielectric filter shown in this example
  • the curve S21 is the signal transmission curve of the signal transmitted in the dielectric filter shown in this example
  • the small undulating part in the middle of curve S11 represents the passband of the coupled main channel cascade resonator in the dielectric filter of this example
  • the two inflection points on S21 represent the two transmission zeros, which are distributed in the passband of the sides.
  • FIG. 7 is the third schematic diagram of a dielectric filter provided by an embodiment of the present application
  • FIG. 8 is a schematic topological structure diagram of the dielectric filter shown in FIG. 7
  • a plurality of built-in dielectric resonators can be arranged between the input port 10 and the output port 20 .
  • the layout is similar in appearance, and will not be repeated here, but can refer to the layout of the built-in dielectric resonator in Example 2.
  • the four built-in dielectric resonators form a "U"-shaped coupled main channel, along which the radio frequency signal is transmitted from the input port 10 to the output port 20 .
  • two external dielectric resonators are arranged outside the input port 10 : the external dielectric resonator A31 and the external dielectric resonator A32 , and the external dielectric resonator A31 is coupled to the input port 10 , the external dielectric resonator A32 is coupled with the external dielectric resonator A31.
  • Two external dielectric resonators are also arranged outside the output port 20: an external dielectric resonator B21 and an external dielectric resonator B22, the external dielectric resonator B21 is coupled to the output port 20, and the external dielectric resonator B22 is coupled to the output port 20. External dielectric resonator B21 is coupled.
  • the layout form of the two external dielectric resonators at the input port 10 can be the same as the layout form of the two external dielectric resonators at the output port 20. Refer to the two external dielectric resonators outside the output port 20 in Example 2. the layout of the device.
  • FIG. 9 is a response curve of the dielectric filter shown in FIG. 7 .
  • the curve S11 is the reflection curve of the signal transmitted in the dielectric filter shown in this example
  • the curve S21 is the transmission curve of the signal transmitted in the dielectric filter shown in this example
  • the curve The small undulating part in the middle of S11 represents the passband of the coupled main channel cascade resonator in the dielectric filter of this example.
  • FIG. 20 is a fourth schematic diagram of a dielectric filter provided by an embodiment of the present application
  • FIG. 21 is a schematic topological structure diagram of the dielectric filter shown in FIG. 20
  • a plurality of built-in dielectric resonators are provided between the input port 10 and the output port 20, and the plurality of built-in dielectric resonators are staggered. It should be noted that the solid line between the built-in dielectric resonators in Fig.
  • the dashed line 21 represents the main channel for coupling
  • the dashed line indicates that the built-in dielectric resonators at both ends of the dashed line have coupling, or the built-in dielectric resonator at one end of the dashed line and the external There is also coupling between the dielectric resonators.
  • the built-in dielectric resonator 11 the built-in dielectric resonator 12 , and the built-in dielectric resonator 13 will be described as examples.
  • the coupling path between the built-in dielectric resonator 11 and the built-in dielectric resonator 12, and the coupling path between the built-in dielectric resonator 12 and the built-in dielectric resonator 13 are part of the main coupling channel.
  • the above-mentioned coupling path Shown as a solid line.
  • the coupling path is not part of the main coupling channel, which is represented by a dotted line, so that the built-in dielectric resonator 11, the built-in dielectric resonator 12 and the built-in dielectric resonator 13 achieve cross-coupling .
  • a total of five built-in dielectric resonators are set, wherein the built-in dielectric resonator 11 is coupled with the input port 10, the built-in dielectric resonator 12 is coupled with the built-in dielectric resonator 11, the built-in dielectric resonator 13 is coupled with the built-in dielectric resonator 12, The built-in dielectric resonator 14 is coupled with the built-in dielectric resonator 13, the built-in dielectric resonator 15 is coupled with the built-in dielectric resonator 14, the output port 20 is coupled with the built-in dielectric resonator 15, and the five built-in dielectric resonators are staggered to form a zigzag line 20, the arrow at the end of the curve represents the transmission path of the radio frequency signal, along which the radio frequency signal is transmitted from the input port 10 to the output port 20 along the coupling main channel.
  • two external dielectric resonators are arranged outside the output port 20: the external dielectric resonator B21 and the external dielectric resonator B22, the external dielectric resonator B21 is coupled to the output port 20, and the external dielectric resonator B21 is The dielectric resonator B22 is coupled to the external dielectric resonator B21 , and the external dielectric resonator B22 may also be coupled to the internal dielectric resonator 15 .
  • the layout design of the two external dielectric resonators can be determined according to the design requirements of the dielectric filter.
  • the layout of the two external dielectric resonators refers to the layout of the internal dielectric resonator, which is the same as the internal dielectric resonator 14 and the internal dielectric resonator.
  • the layout of the dielectric resonator 15 is the same.
  • the layout design of cascaded resonators with staggered topology structure, the built-in dielectric resonator can form cross-coupling when forming the main coupling channel.
  • the transmission zero formed by the resonator improves the out-of-band rejection capability of the entire dielectric filter.
  • FIG. 22 is a fifth schematic diagram of a dielectric filter provided by an embodiment of the present application
  • FIG. 23 is a schematic topological structure diagram of the dielectric filter shown in FIG. 22 .
  • a plurality of built-in dielectric resonators are provided between the input port 10 and the output port 20, and the plurality of built-in dielectric resonators are arranged in a staggered manner.
  • a total of three built-in dielectric resonators are set, wherein the built-in dielectric resonator 11 is coupled with the input port 10, the built-in dielectric resonator 12 is coupled with the built-in dielectric resonator 11, the built-in dielectric resonator 13 is coupled with the built-in dielectric resonator 12, The output port 20 is coupled with the built-in dielectric resonator 13 , and the three built-in dielectric resonators are alternately arranged to form a zigzag coupling main channel, along which the radio frequency signal is transmitted from the input port 10 to the output port 20 .
  • two external dielectric resonators are arranged outside the input port 10: the external dielectric resonator A31 and the external dielectric resonator A32, the external dielectric resonator A31 is coupled to the output port 20, and the external dielectric resonator A31
  • the dielectric resonator A32 is coupled to the external dielectric resonator A31
  • the external dielectric resonator A32 may also be coupled to the internal dielectric resonator 11 .
  • Two external dielectric resonators are arranged outside the output port 20: the external dielectric resonator B21 and the external dielectric resonator B22, the external dielectric resonator B21 is coupled to the output port 20, and the external dielectric resonator B22 is coupled to the external dielectric resonator B22.
  • the external dielectric resonator B22 can also be coupled with the built-in dielectric resonator 13 .
  • the layout design of the two external dielectric resonators outside each port can be determined according to the design requirements of the dielectric filter.
  • the layout of the external dielectric resonator A31 and the external dielectric resonator A32 refer to the built-in dielectric resonator.
  • the layout between the external dielectric resonator B21 and the external dielectric resonator B22 refers to the layout between the built-in dielectric resonator 13 and the built-in dielectric resonator 12 .
  • two external dielectric resonators are provided at the outer end of the input port 10 and the outer end of the output port 20, which can realize four transmission zeros and have better out-of-band suppression capability.
  • a coupling slot 30 is provided between two adjacent built-in dielectric resonators.
  • the amount of medium between two adjacent built-in dielectric resonators can be controlled.
  • the size of the coupling slot 30 can be controlled to control the amount of medium.
  • the size of the coupling between the built-in dielectric resonators can be controlled.
  • the control of the formation of the main coupling channel is realized.
  • the coupled main channel cascade resonator can take different forms. In practical applications, the layout form of the coupled main channel cascade resonator can be flexibly adjusted to facilitate the overall layout of the dielectric filter.
  • the shape of the coupling slot 30 is related to the amount of coupling between the respective built-in dielectric resonators in the cascaded resonators of the staggered topology.
  • the coupling slot 30 can control the coupling amount between the two built-in dielectric resonators by controlling the amount of medium between the two built-in dielectric resonators; otherwise, the coupling amount between the two built-in dielectric resonators can be set by setting The amount of medium between different built-in dielectric resonators is determined, so as to determine the corresponding shape of the coupling slot 30 .
  • the external dielectric resonator includes a resonator body formed by a part of the dielectric body and a debugging hole located on the resonance body, and the debugging hole is a blind hole or a through hole.
  • the resonator body in this embodiment is a part of the dielectric body, and the debugging hole is set as a blind hole or a through hole, and the frequency of the external dielectric resonator can be adjusted by setting the depth of the debugging hole, which can meet the design requirements of the dielectric filter. , flexibly choose whether the debugging hole of the external dielectric resonator is a blind hole or a through hole, so as to maintain the design flexibility.
  • the external dielectric resonator A32 or the external dielectric resonator B22 is coupled with the near-end built-in dielectric resonator, and the near-end built-in dielectric resonator resonates with the external dielectric resonator A32 or the external dielectric resonator A built-in dielectric resonator adjacent to the port on the side where the B22 is located.
  • the port on the side where the external dielectric resonator A32 or the external dielectric resonator B22 is located may be the input port 10 or the output port 20, which is specifically determined according to the position of the external dielectric resonator.
  • the port refers to the input port 10; if only the output port 20 end is set with the external dielectric resonator B22, the port refers to the is the output port 20; if both the input port 10 and the output port 20 are provided with an external dielectric resonator A32 or an external dielectric resonator B22, the port refers to the input port 10 and the output port 20.
  • the external dielectric resonator A32 or the external dielectric resonator B22 has been coupled with the input port 10 or the output port 20, and the input port 10 is coupled with its adjacent built-in dielectric resonator (coupled to the first of the main channel cascaded resonators) two built-in dielectric resonators), and the output port 20 is coupled with its adjacent built-in dielectric resonator (the last built-in dielectric resonator in the coupled main channel cascade resonator). Therefore, in the layout of the cavity, a staggered layout can be used, that is, the two external dielectric resonators and the near-end built-in dielectric resonator adopt a triangular layout. In this layout, the two external dielectric resonators It is easier to generate cross-coupling between the built-in dielectric resonators at the terminals, so as to achieve better out-of-band suppression effect.
  • two external dielectric resonators are arranged outside the output port 20, the external dielectric resonator B21 is coupled to the output port 20, the external dielectric resonator B22 is coupled to the external dielectric resonator B21, and the output The port 20 is coupled with the built-in dielectric resonator 15, and the built-in dielectric resonator 15 is the near-end built-in dielectric resonator.
  • the external dielectric resonator B22 By coupling the external dielectric resonator B22 with the built-in dielectric resonator 15, cross-coupling can be formed between the external dielectric resonator B21, the external dielectric resonator B22, and the built-in dielectric resonator 15, so as to achieve a better external suppression effect.
  • two external dielectric resonators are arranged on the outside of the input port 10 and the output port 20.
  • the external dielectric resonator A31 outside the input port 10 is coupled to the input port 10, and the external dielectric resonator A32 is coupled to the input port 10.
  • the external dielectric resonator A31 is coupled, and the input port 10 is coupled with the built-in dielectric resonator 11 , and the built-in dielectric resonator 11 is the near-end built-in dielectric resonator of the input port 10 .
  • the external dielectric resonator B21 outside the output port 20 is coupled with the output port 20
  • the external dielectric resonator B22 is coupled with the external dielectric resonator B21
  • the output port 20 is coupled with the built-in dielectric resonator 13, and the built-in dielectric resonator 13 is A dielectric resonator is built in the proximal end of the output port 20 .
  • Cross-coupling is formed between the external dielectric resonator A31, the external dielectric resonator A32 and the built-in dielectric resonator 11; the cross-coupling is formed between the external dielectric resonator B21, the external dielectric resonator B22 and the built-in dielectric resonator 13, Cross-coupling occurs at both ports to achieve better out-of-band rejection.
  • a coupling hole 50 and/or a coupling slot 40 are provided between the built-in dielectric resonator adjacent to the input port 10 and the external dielectric resonator A31 adjacent to the input port 10; and/or , a coupling hole 50 and/or a coupling slot 40 are provided between the built-in dielectric resonator adjacent to the output port 20 and the external dielectric resonator B21 adjacent to the output port 20 .
  • the provided coupling hole 50 or the coupling slot 40 can adjust the coupling amount between the input port 10 and the built-in dielectric resonator and the external dielectric resonator A31 on both sides of the input port 10, and also The amount of coupling between the output port 20 and the built-in dielectric resonator and the external dielectric resonator B21 located on both sides of the output port 20 can be adjusted.
  • the coupling hole 50 and the coupling slot 40 are different forms of adjusting the coupling amount between the input port 10 or the output port 20 and the built-in dielectric resonator and the external dielectric resonator.
  • the corresponding coupling holes 50 or coupling slots 40 , coupling holes 50 and coupling slots 40 can be designed according to the coupling amount between the input port 10 or the output port 20 and the built-in dielectric resonator and the external dielectric resonator. It can be used in conjunction to realize the diversification of design schemes and the flexible effect of adjusting the coupling amount between the built-in dielectric resonator and the external dielectric resonator.
  • the coupling hole 50 is a blind hole or a through hole
  • the coupling slot 40 is a blind slot.
  • a coupling slot 40 is provided between the built-in dielectric resonator adjacent to the input port 10 and the external dielectric resonator, or a coupling is provided between the built-in dielectric resonator and the external dielectric resonator adjacent to the output port 20 There is no communication between the slot 40, the coupling slot 40 and the built-in dielectric resonator located at one end of the coupling slot 40 and the external dielectric resonator located at the other end of the coupling slot 40.
  • Both the built-in dielectric resonator and the external dielectric resonator are adjacent to the input port 10 or both are adjacent to the output port 20.
  • the coupling slot 40 By setting the coupling slot 40 to be disconnected from the built-in dielectric resonator and the external dielectric resonator, the input can be reduced.
  • FIG. 10 is one of the schematic diagrams of the coupling between the input port and the built-in dielectric resonator and the external dielectric resonator in a dielectric filter provided by an embodiment of the application
  • FIG. 11 is shown in FIG. 10 .
  • the built-in dielectric resonator adjacent to the input port 10 is the built-in dielectric resonator 11
  • the external dielectric resonator adjacent to the input port 10 is the external dielectric resonator A31
  • the built-in dielectric resonator is A coupling slot 40 is provided between the resonator 11 and the external dielectric resonator A31, and the coupling slot 40 is not connected to the internal dielectric resonator 11 and the external dielectric resonator A31.
  • the coupling amount between the input port 10 and the built-in dielectric resonator 11 and between the input port 10 and the external dielectric resonator can be adjusted by adjusting the size of the coupling slot 40 , such as adjusting its depth, length or width.
  • a coupling slot 40 is provided between the built-in dielectric resonator adjacent to the input port 10 and the external dielectric resonator, or a coupling is provided between the built-in dielectric resonator and the external dielectric resonator adjacent to the output port 20 In the slot 40 , one end of the coupling slot 40 is communicated with the built-in dielectric resonator at one end of the coupling slot 40 or the external dielectric resonator at the other end of the coupling slot 40 .
  • FIG. 12 is the second schematic diagram of the coupling between the input port and the built-in dielectric resonator and the external dielectric resonator in a dielectric filter provided by an embodiment of the application
  • FIG. 13 is shown in FIG. 12 Cross-sectional view of the second schematic diagram of the coupling between the port and the built-in dielectric resonator and the external dielectric resonator. As shown in FIG. 12 and FIG.
  • the built-in dielectric resonator adjacent to the input port 10 is the built-in dielectric resonator 11
  • the external dielectric resonator adjacent to the input port 10 is the external dielectric resonator A31
  • the built-in dielectric resonator is A coupling slot 40 is provided between the resonator 11 and the external dielectric resonator A31.
  • the coupling slot 40 is not connected to the built-in dielectric resonator 11, and the coupling slot 40 is connected to the external dielectric resonator A31; the coupling slot 40 can also be used to communicate with the built-in dielectric resonator 11, and the coupling slot 40 is connected to the external dielectric resonator A31.
  • connection between the coupling slot 40 and the built-in dielectric resonator 11 and the external dielectric resonator A31 can be adjusted according to specific needs. , to adjust the coupling amount between the input port 10 and the built-in dielectric resonator 11 and the external dielectric resonator A31. Take the coupling slot 40 shown in FIG.
  • the built-in dielectric resonator 11 and the external dielectric resonator are resonated
  • the coupling amount between the input port 10 and the external dielectric resonator A31 is larger than the coupling amount between the input port 10 and the built-in dielectric resonator 11 .
  • the amount of coupling between the input port 10 and the built-in dielectric resonator 11 can be adjusted by adjusting the distance between the coupling slot 40 and the built-in dielectric resonator 11 , and can also be adjusted by adjusting the depth and width of the coupling slot 40
  • the coupling amount between the input port 10 and the built-in dielectric resonator 11 and the coupling amount between the input port 10 and the external dielectric resonator A31 are adjusted by adjusting the size of the coupling slot 40 to adjust the coupling between the port and the corresponding dielectric resonator.
  • the coupling amount belongs to the prior art and will not be described in detail here.
  • Both the built-in dielectric resonator 11 and the external dielectric resonator A31 are adjacent to the input port 10.
  • the coupling amount between the input port 10 and the external dielectric resonator A31 can be enhanced to adjust the input port 10 of the dielectric resonator and the built-in dielectric.
  • the input port 10 can be replaced with the corresponding output port 20, and the built-in dielectric resonator 11 corresponds to the built-in dielectric resonator adjacent to the output port 20.
  • the external dielectric The resonator A31 corresponds to an external dielectric resonator adjacent to the output port 20 .
  • a coupling slot 40 is provided between the built-in dielectric resonator adjacent to the input port 10 and the external dielectric resonator, or a coupling is provided between the built-in dielectric resonator and the external dielectric resonator adjacent to the output port 20 In the slot 40 , two ends of the coupling slot 40 are respectively communicated with the built-in dielectric resonator at one end of the coupling slot 40 and the external dielectric resonator at the other end of the coupling slot 40 .
  • FIG. 14 is the third schematic diagram of the coupling between the input port and the built-in dielectric resonator and the external dielectric resonator in a dielectric filter provided by an embodiment of the application
  • FIG. 15 is shown in FIG. 14 Cross-sectional view of the third schematic diagram of the coupling between the port and the built-in dielectric resonator and the external dielectric resonator. As shown in FIGS.
  • the built-in dielectric resonator adjacent to the input port 10 is the built-in dielectric resonator 11
  • the external dielectric resonator adjacent to the input port 10 is the external dielectric resonator A31
  • the built-in dielectric resonator is A coupling slot 40 is provided between the resonator 11 and the external dielectric resonator A31.
  • the coupling slot 40 is in communication with the built-in dielectric resonator 11 and the external dielectric resonator A31.
  • the coupling slot When both the 40 and the built-in dielectric resonator 11 and the external dielectric resonator A31 are connected, the input port 10 and the The coupling amount between the built-in dielectric resonator 11 and the external dielectric resonator A31 is larger. That is, the coupling amount between the input port 10 and the built-in dielectric resonator 11 and the external dielectric resonator A31 in the case shown in FIG. 14 is larger than that between the input port 10 and the built-in dielectric resonator 11 and the external dielectric resonator in the case shown in FIG. 12 .
  • the amount of coupling between the devices A31 can be adjusted by adjusting the depth and width of the coupling slot 40 .
  • the coupling amount between the input port 10 and the built-in dielectric resonator 11 and the resonance between the input port 10 and the external dielectric can be increased.
  • a coupling hole 50 can also be provided between the built-in dielectric resonator adjacent to the input port 10 or the output port 20 and the external dielectric resonator, and the axis of the coupling hole 50, the axis of the built-in dielectric resonator and the external dielectric The resonator axes are parallel to each other.
  • FIG. 16 is a fourth schematic diagram of coupling between an input port and a built-in dielectric resonator and an external dielectric resonator in a dielectric filter provided by an embodiment of the present application.
  • the built-in dielectric resonator adjacent to the input port 10 is the built-in dielectric resonator 11
  • the external dielectric resonator adjacent to the input port 10 is the external dielectric resonator A31
  • the built-in dielectric resonator 11 is the same as the Coupling holes 50 are provided between the external dielectric resonators A31.
  • two coupling holes 50 are provided.
  • the axes of the two coupling holes 50 and the axis of the built-in dielectric resonator 11 and the axis of the external dielectric resonator A31 can also be arranged in the same plane, and the two coupling holes 50 are respectively arranged on both sides of the input port 10,
  • the coupling hole 50 may be configured as a through hole or a blind hole, or may be configured as a combination form of a through hole and a blind hole.
  • the coupling amount between the input port 10 and the built-in dielectric resonator 11 can be adjusted by adjusting the position of the coupling hole 50 between the input port 10 and the built-in dielectric resonator 11; or by adjusting the input port 10 and the external dielectric resonator
  • the position of the coupling hole 50 between A31 adjusts the coupling amount between the input port 10 and the external dielectric resonator A31.
  • FIG. 17 is the fifth schematic diagram of coupling between an input port and a built-in dielectric resonator and an external dielectric resonator in a dielectric filter provided by an embodiment of the present application.
  • the axes of the two coupling holes 50 are parallel to the axis of the built-in dielectric resonator 11 and the axis of the external dielectric resonator A31, but the axis of the built-in dielectric resonator 11 and the axis of the external dielectric resonator A31 are parallel to each other.
  • the plane is perpendicular to the plane where the axes of the two coupling holes 50 are located, and the two coupling holes 50 are located on both sides of the plane where the axis of the built-in dielectric resonator 11 and the axis of the external dielectric resonator A31 are located.
  • the specific position of the coupling hole 50 can be determined according to the coupling amount between the input port 10 and the built-in dielectric resonator 11 and the coupling amount between the input port 10 and the external dielectric resonator A31.
  • the positions of the two coupling holes 50 are set to the state shown in FIG. 17 , that is, the two coupling holes 50 are located on both sides of the plane where the axis of the built-in dielectric resonator 11 and the axis of the external dielectric resonator A31 are located. In the state in which the axes of the two coupling holes 50 are located in the plane where the axis of the built-in dielectric resonator 11 and the axis of the external dielectric resonator A31 are located in FIG.
  • the coupling holes 50 located on both sides of the plane can suppress the built-in dielectric resonator 11
  • the parasitic coupling generated between the external dielectric resonator A31 and the external dielectric resonator A31 reduces the interference of the parasitic coupling to the realization of the transmission zero point.
  • the coupling hole 50 in this embodiment can be set as a through hole or a blind hole, and can be used to adjust the coupling amount between the input port 10 and the built-in dielectric resonator 11 and adjust the coupling between the input port 10 and the external dielectric resonator A31 amount of coupling.
  • the coupling slot 40 and the coupling hole 50 may be simultaneously provided between the built-in dielectric resonator adjacent to the input port 10 or the output port 20 and the external dielectric resonator.
  • FIG. 18 is the sixth schematic diagram of the coupling between the input port and the built-in dielectric resonator and the external dielectric resonator in a dielectric filter provided by an embodiment of the application
  • FIG. 19 is shown in FIG. 18 Cross-sectional view of the sixth schematic diagram of the coupling between the port and the built-in dielectric resonator and the external dielectric resonator. As shown in FIGS.
  • the built-in dielectric resonator adjacent to the input port 10 is the built-in dielectric resonator 11
  • the external dielectric resonator adjacent to the input port 10 is the external dielectric resonator A31
  • the built-in dielectric resonator is A coupling slot 40 and a coupling hole 50 are simultaneously provided between the resonator 11 and the external dielectric resonator A31.
  • the coupling slot 40 is set on the side close to the external dielectric resonator A31
  • the coupling hole 50 is set on the side close to the built-in dielectric resonator 11.
  • the positions of the coupling slot 40 and the coupling hole 50 are not limited to this.
  • the coupling amount between the input port 10 and the external dielectric resonator A31 and the coupling amount between the input port 10 and the built-in dielectric resonator 11 is adjusted according to the coupling amount between the input port 10 and the external dielectric resonator A31 and the coupling amount between the input port 10 and the built-in dielectric resonator 11 .
  • the form of communication between the coupling slot 40 and the external dielectric resonator A31 is adopted, and the connection can also be selected according to the coupling amount between the input port 10 and the external dielectric resonator A31.
  • the axis of the coupling holes 50 can be set in the vertical direction, and the number of the coupling holes 50 can be set to one or more according to the coupling amount between the input port 10 and the built-in dielectric resonator 11 .
  • the input port 10 is composed of a connector 101 and a port through hole 100.
  • the connector 101 is connected to the medium body, and the port through hole 100 is a through hole passing through the connector 101 and the medium body. If the connector 101 is a For the connector 101 with a uniform shape, when the port through hole 100 is provided, the axis of the port through hole 100 can pass through the center of the connector 101 .
  • the coupling slot 40 is provided between the built-in dielectric resonator adjacent to the input port 10 and the external dielectric resonator, when the port through hole 100 is provided, the port through hole 100 can be communicated with the coupling slot 40 .
  • the above example simply enumerates the case where the coupling slot 40 and/or the coupling hole 50 are arranged between the built-in dielectric resonator 11 at the input port 10 and the external dielectric resonator A31.
  • the input port 10 or the output port Corresponding built-in dielectric resonators and external dielectric resonators can be set at 20 positions, and between the built-in dielectric resonator and the external dielectric resonator, a coupling slot 40 and/or a coupling hole 50, a coupling slot 40 and/or a coupling slot 40 and/or a coupling
  • the arrangement form of the hole 50 can be as shown in the above example.
  • the input port 10 is provided with the coupling slot 40 and/or the coupling hole 50, and the output port 20 is also provided with the coupling slot 40 and/or the coupling hole 50, it can also be Combine the setup forms from the examples above. For example, only the coupling slot 40 is set at the input port 10, the positional relationship of the coupling slot 40 is set as shown in example 1, and only the coupling slot 40 is set at the output port 20, and the positional relationship of the coupling slot 40 is set as shown in the second example .
  • the input port 10 is only provided with a coupling hole 50, the positional relationship of the coupling hole 50 is set as shown in Example 4, the output port 20 is provided with a coupling slot 40 and a coupling hole 50, and the positions of the coupling slot 40 and the coupling hole 50 are set The relationship is set as shown in example five. Not all combinations are illustrated here.
  • both the outer surface and the inner surface of the dielectric body are metallized.
  • the inner surface of the dielectric body includes all the inner surfaces of the through holes, the inner surfaces and bottom surfaces of the blind holes, and the inner surfaces and bottom surfaces of the blind grooves.
  • the outer surface and the inner surface of the body form metal walls, and the dielectric body is completely wrapped by the metal walls, so as to realize the formation of a resonance system in the dielectric body.
  • an embodiment of the present application provides a transceiver, which includes a receiver, a transmitter, an amplifying unit, and a dielectric filter as provided in any of the foregoing embodiments.
  • the transceiver has the same technical effect as the dielectric filter provided in the foregoing embodiments, and details are not described here.
  • an embodiment of the present application provides a base station, where the base station includes an antenna feeder component, a control component, and the transceiver provided by the above embodiments.
  • the base station has the same technical effect as the transceiver provided in the foregoing embodiment, and details are not described here.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本申请提供一种介质滤波器、收发信机及基站,能够解决介质滤波器排腔布局单一、带外抑制能力较差的问题,从而实现排腔布局灵活,提高介质滤波器的抑制能力。该介质滤波器包括介质本体以及设置在介质本体上的输入端口、输出端口、内置介质谐振器和外置介质谐振器,输入端口与输出端口之间设置有多个内置介质谐振器,多个内置介质谐振器形成耦合主通道级联谐振器,输入端口一侧设置有两个外置介质谐振器,外置介质谐振器与输入端口之间的耦合量大于外置介质谐振器与任一内置介质谐振器之间的耦合量;和/或,输出端口一侧设置有两个外置介质谐振器,外置介质谐振器与输出端口之间的耦合量大于外置介质谐振器与任一内置介质谐振器之间的耦合量。

Description

介质滤波器、收发信机及基站 技术领域
本申请涉及通信设备组件领域,尤其涉及一种介质滤波器、收发信机及基站。
背景技术
随着无线通信基站设备的高速发展,尤其是5G大规模天线技术(Massive MIMO,Massive Multiple-Input Multiple-Output)基站的广泛应用,介质波导滤波器作为一种小型化和集成化较好的实现形式,越来越被业界广泛关注和研究。
介质滤波器一般由多个谐振器以及各个谐振器之间的耦合所形成。其中,各个谐振器之间的耦合根据极性可以分为电感耦合(也可以称作为正耦合)和电容耦合(也可以称作为负耦合)。基于各个谐振器之间的耦合极性,可以形成传输零点。其中,传输零点又称衰减极点或者陷波点,是指滤波器通带外的某个频点,在该频点上滤波器对该频点的信号的抑制度理论上无穷大。
现有技术中的介质滤波器一般通过在介质滤波器的传输主通道上增加交叉耦合,来实现介质滤波器的传输零点特性,但是,这样的方式结构复杂,且带外抑制特性较差。
发明内容
本申请实施例提供一种介质滤波器、收发信机及基站,能够解决介质滤波器带外抑制能力较差的问题,实现提高介质滤波器的带外抑制能力。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种介质滤波器。该介质滤波器包括介质本体以及设置在介质本体上的输入端口、输出端口、内置介质谐振器和外置介质谐振器,输入端口与输出端口之间设置有多个内置介质谐振器,多个内置介质谐振器形成耦合主通道级联谐振器,输入端口一侧设置有两个外置介质谐振器,外置介质谐振器与输入端口之间的耦合量大于外置介质谐振器与任一内置介质谐振器之间的耦合量;和/或,输出端口一侧设置有两个外置介质谐振器,外置介质谐振器与输出端口之间的耦合量大于外置介质谐振器与任一内置介质谐振器之间的耦合量。
内置介质谐振器用于传输射频信号,内置介质谐振器可以设置多个,具体的设置数量可根据射频信号的传输要求以及介质滤波器的尺寸等因素确定。输入端口与输出端口之间设置的多个内置介质谐振器通过耦合,形成一条耦合主通道,射频信号沿着该耦合主通道传输。通过在输入端口的一侧设置两个外置介质谐振器,且外置介质谐振器与输入端口之间的耦合量大于外置介质谐振器与任一内置介质谐振器之间的耦合量;或,在输出端口的一侧设置两个外置介质谐振器,外置介质谐振器与输出端口之间的耦合量大于外置介质谐振器与任一内置介质谐振器之间的耦合量,可以获得一对传输零点,两个传输零点分别处于滤波器通带的两边;若满足上述条件,且同时在输入端口的一侧和输出端口的一侧设置两个外置介质谐振器,则可以获得两对传输零点。本实施例中的输入端口或输出端口的一侧是指输入端口或输出端口的任意一侧, 由于需要满足外置介质谐振器与输入端口或输出端口之间的耦合量大于外置介质谐振器与任一内置介质谐振器之间的耦合量,因此内置介质谐振器和外置介质谐振器最好分别位于输入端口或输出端口的两侧。通过在输入端口或者输出端口外附加两个外置介质谐振器,即可实现两个传输零点,提高了介质滤波器的带外抑制能力。而且介质滤波器内部可以灵活布局,既可以采用交错型拓扑结构的级联谐振器,也可以采用直线型拓扑结构的级联谐振器。结构简单,采用模具成型,成本低,可靠性好,易于实现大批量生产。
在第一方面的一种可能的实现方式中,第一连线与第二连线之间的夹角大于或等于90°;和/或,第三连线与第四连线之间的夹角大于或等于90°。
其中,第一连线为外置介质谐振器的中心与输入端口的中心的连线,第二连线为距输入端口最近的内置介质谐振器的中心与输入端口的中心的连线,第三连线为外置介质谐振器的中心与输出端口的中心的连线,第四连线为距输出端口最近的内置介质谐振器的中心与输出端口的中心的连线。
在此情况下,通过设置第一连线与第二连线之间的夹角以及第三连线与第四连线之间的夹角,来设置外置介质谐振器的位置,从而使得外置介质谐振器与输入端口或者输出端口之间的耦合量大于外置介质谐振器与任意一内置介质谐振器之间的耦合量,实现获得一对传输零点或者两对传输零点。
在第一方面的一种可能的实现方式中,两个外置介质谐振器耦合,其中一个靠近输入端口或者输出端口的外置介质谐振器为第一外置介质谐振器,另一个外置介质谐振器为第二外置介质谐振器;第一外置介质谐振器与输入端口或者输出端口耦合。在此情况下,通过级联的方式实现第一外置介质谐振器与输入端口或者输出端口耦合,第二外置介质谐振器与第一外置介质谐振器耦合,有利于实现外置介质谐振器的灵活布局,且这样的设计方式有利于获得传输零点。
在第一方面的一种可能的实现方式中,耦合主通道级联谐振器包括直线型拓扑结构的级联谐振器和交错型拓扑结构的级联谐振器。在此情况下,直线型拓扑结构的级联谐振器可以简化介质滤波器的结构设计,将多个介质谐振设计在一条直线上即可,结构简单,方便介质滤波器的布局。交错型拓扑结构的级联谐振器可以使得多个相邻的内置介质谐振器形成交叉耦合,交叉耦合有利于实现介质滤波器的传输零点特性,加之通过设置外置介质谐振器所获得的传输零点,有利于增强介质滤波器的带外抑制特性。
耦合主通道级联谐振器为非直线型的级联谐振器时,相邻的两个内置介质谐振器之间设置有第一耦合槽。在此情况下,通过设置第一耦合槽,可以控制相邻两个内置介质谐振器之间介质的多少。通过控制第一耦合槽的大小控制介质的多少,从而实现控制两个内置介质谐振器之间的耦合量大小。通过控制内置介质谐振器之间耦合量的大小,实现对耦合主通道形成的控制。耦合主通道级联谐振器可以采用不同的形式,在实际应用中可以灵活调整耦合主通道级联谐振器的布局形式,方便对介质滤波器进行整体布局。
在第一方面的一种可能的实现方式中,外置介质谐振器包括由部分介质本体所形成的谐振器本体以及位于谐振本体上的调试孔,调试孔为盲孔或者通孔。在此情况 下,通过将调试孔设置为盲孔或者通孔,可以保持外置介质谐振器的设计灵活性。
在本申请实施例中,第一耦合槽的形状与交错型拓扑结构的级联谐振器中各个内置介质谐振器之间的耦合量相关。由于第一耦合槽可以通过控制两个内置介质谐振器之间的介质的多少,来实现控制两个内置介质谐振器之间的耦合量;反之,可以通过设定两个内置介质谐振器之间耦合量的多少,确定出不同内置介质谐振器之间的介质多少,从而确定第一耦合槽的相应形状。
在第一方面的一种可能的实现方式中,第二外置介质谐振器与近端内置介质谐振器相耦合,近端内置介质谐振器为与第二外置介质谐振器所在一侧的端口相邻的内置介质谐振器。在此情况下,由于第一外置介质谐振器已经与输入端口或者输出端口耦合,而输入端口与与其相邻的内置介质谐振器相耦合,输出端口与与其相邻的内置介质谐振器相耦合,因此,通过将第二外置介质谐振器与近端内置介质谐振器进行附加耦合,在将该外置介质谐振器与近端内置介质谐振器附加耦合时,在排腔布局时,可以采用交错的布局,即两个外置介质谐振器与近端内置介质谐振器采用呈三角形的布局形式,这样的布局形式,两个外置介质谐振器与近端内置介质谐振器之间更容易产生交叉耦合,实现更好的带外抑制效果。
在第一方面的一种可能的实现方式中,外置介质谐振器与近端内置介质谐振器之间设置有耦合孔和/或耦合槽,近端内置介质谐振器为与外置介质谐振器所在一侧的端口相邻的内置介质谐振器。
在此情况下,通过设置耦合孔或者第二耦合槽,设置的耦合孔或者第二耦合槽可以调节输入端口与位于输入端口两侧的内置介质谐振器以及外置介质谐振器之间的耦合量,也可以调节输出端口与位于输出端口两侧的内置介质谐振器以及外置介质谐振器之间的耦合量。耦合孔和第二耦合槽是调整输入端口与内置介质谐振器以及外置介质谐振器之间耦合量,和调整输出端口与内置介质谐振器以及外置介质谐振器之间耦合量的不同形式。在实际应用中,可以根据输入端口或者输出端口与内置介质谐振器以及外置介质谐振器之间耦合量的需要,设计相应的耦合孔或者第二耦合槽,耦合孔和第二耦合槽可以配合使用,可以实现设计方案多样化,调整内置介质谐振器和外置介质谐振器之间耦合量灵活的效果。
在第一方面的一种可能的实现方式中,耦合孔为盲孔或者通孔,第二耦合槽为盲槽。在此情况下,通过将耦合孔设置为通孔或者盲孔,通孔或者盲孔对于调整输入端口或者输出端口与对应端口的介质谐振器之间耦合量的效果不同,可以根据耦合量的调整需求,选择通孔或者盲孔,以实现采用更简单的调整方式来调节输入端口或者输出端口与不同介质谐振器之间的耦合量,采用这种简单的调整方式也方便介质滤波器的生产加工。
在第一方面的一种可能的实现方式中,与输入端口或者与输出端口相邻的内置介质谐振器以及外置介质谐振器之间设置有第二耦合槽,第二耦合槽与位于第二耦合槽一端的内置介质谐振器以及位于第二耦合槽另一端的外置介质谐振器之间均不连通。
在此情况下,该内置介质谐振器和外置介质谐振器均与输入端口相邻或者均与输出端口相邻,通过设置第二耦合槽与内置介质谐振器以及外置介质谐振器不连通,可以实现降低输入端口与内置介质谐振器之间的耦合量以及输入端口与外置介质谐振器 之间的耦合量;和/或,可以实现降低输出端口与内置介质谐振器之间的耦合量以及输出端口与外置介质谐振器之间的耦合量。
在第一方面的一种可能的实现方式中,与输入端口或者与输出端口相邻的内置介质谐振器以及外置介质谐振器之间设置有第二耦合槽,第二耦合槽的其中一端与位于第二耦合槽一端的内置介质谐振器或位于第二耦合槽另一端的外置介质谐振器连通。
在此情况下,该内置介质谐振器和外置介质谐振器均与输入端口相邻或者均与输出端口相邻,通过设置第二耦合槽其中一端与位于第二耦合槽一端的内置介质谐振器或位于第二耦合槽一端的外置介质谐振器连通,可以实现增强输入端口或者输出端口与与第二耦合槽其中一端连通的内置介质谐振器或者外置介质谐振器之间的耦合量,而未与第二耦合槽连通的内置介质谐振器或者外置介质谐振器与输入端口或者输出端口之间的耦合量降低,起到调节介质谐振器输入端口或者输出端口与内置介质谐振器或者外置介质谐振器之间耦合量的作用。
在第一方面的一种可能的实现方式中,与输入端口或者与输出端口相邻的内置介质谐振器以及外置介质谐振器之间设置有第二耦合槽,第二耦合槽的两端分别与位于第二耦合槽一端的内置介质谐振器以及位于第二耦合槽另一端的外置介质谐振器连通。
在此情况下,该内置介质谐振器和外置介质谐振器均与输入端口相邻或者均与输出端口相邻,通过设置第二耦合槽的两端均分别与位于第二耦合槽一端的内置介质谐振器以及位于第二耦合槽一端的外置介质谐振器连通,可以实现增加输入端口与内置介质谐振器之间的耦合量以及输入端口与外置介质谐振器之间的耦合量,和/或,可以实现增加输出端口与内置介质谐振器之间的耦合量以及输出端口与外置介质谐振器之间的耦合量。
在第一方面的一种可能的实现方式中,与输入端口或者与输出端口相邻的内置介质谐振器以及外置介质谐振器之间设置有耦合孔,耦合孔的轴线、内置介质谐振器的轴线和外置介质谐振器轴线相互平行。
在此情况下,通过将耦合孔的轴线设置为与内置介质谐振器的轴线和外置介质谐振器的轴线相互平行,方便生产加工。还可以通过调整耦合孔的轴线与内置介质谐振器的轴线的距离,来调整输入端口或者输出端口与该内置介质谐振器的耦合量,或者调整其与外置介质谐振器的轴线的距离,来调整输入端口或者输出端口与该外置介质谐振器的耦合量。
在第一方面的一种可能的实现方式中,介质本体的外表面及内表面均金属化。介质本体的内表面包括介质本体上设置的通孔的所有内表面、盲孔的内表面和底面以及盲槽的内表面和底面,将介质本体的外表面及内表面均金属化,以在介质本体的外表面和内表面形成金属壁,实现在介质本体内形成谐振系统。
第二方面,提供一种收发信机,包括接收机、发射机、放大单元以及如上述第一方面或者第一方面的任一种可能的实现方式所提供的介质滤波器。该收发信机具有与前述实施例提供的介质滤波器相同的技术效果,在此不做赘述。
第三方面,提供一种基站,包括天馈组件,控制组件以及如上述第二方面所提供的收发信机。该基站具有与前述实施例提供的收发信机相同的技术效果,在此不做赘 述。
附图说明
图1为本申请实施例提供的一种介质滤波器的示意图之一;
图2为本申请实施例提供的一种介质滤波器的示意图之二;
图3为图1和图2所示介质滤波器的拓扑结构示意图;
图4为图1所示介质滤波器的响应曲线;
图5为本申请实施例提供的一种拓扑结构示意图;
图6为图5所示拓扑结构输入阻抗等效电路图;
图7为本申请实施例提供的一种介质滤波器的示意图之三;
图8为图7所示介质滤波器的拓扑结构示意图;
图9为图7所示介质滤波器的响应曲线;
图10为本申请实施例提供的一种介质滤波器中输入端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之一;
图11为图10所示端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之一的剖视图;
图12为本申请实施例提供的一种介质滤波器中输入端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之二;
图13为图12所示端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之二的剖视图;
图14为本申请实施例提供的一种介质滤波器中输入端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之三;
图15为图14所示端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之三的剖视图;
图16为本申请实施例提供的一种介质滤波器中输入端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之四;
图17为本申请实施例提供的一种介质滤波器中输入端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之五;
图18为本申请实施例提供的一种介质滤波器中输入端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之六;
图19为图18所示端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之六的剖视图;
图20为本申请实施例提供的一种介质滤波器的示意图之四;
图21为图20所示介质滤波器的拓扑结构示意图;
图22为本申请实施例提供的一种介质滤波器的示意图之五;
图23为图22所示介质滤波器的拓扑结构示意图。
图中:10-输入端口;11、12、13、14、15-内置介质谐振器;20-输出端口;21、22-外置介质谐振器B;31、32-外置介质谐振器A;30、40-耦合槽;50-耦合孔;100-端口通孔;101-连接器。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例中,有时候下标如W 1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
在本申请的实施例中,术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括一个或者更多个该特征。
应理解,在本文中对各种所述示例的描述中所使用的术语只是为了描述特定示例,而并非旨在进行限制。如在对各种所述示例的描述和所附权利要求书中所使用的那样,单数形式“一个(“a”,“an”)”和“该”旨在也包括复数形式,除非上下文另外明确地指示。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
还应理解,本文中所使用的术语“和/或”是指并且涵盖相关联的所列出的项目中的一个或多个项目的任何和全部可能的组合。术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中的字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
还应理解,术语“包括”(也称“includes”、“including”、“comprises”和/或“comprising”)当在本说明书中使用时指定存在所陈述的特征、整数、步骤、操作、元素、和/或部件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元素、部件、和/或其分组。
应理解,说明书通篇中提到的“一个实施例”、“一实施例”、“一种可能的实现方式”意味着与实施例或实现方式有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在本申请的实施例中”、“一种可能的实现方式”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
参考图1,图1为本申请实施例提供的一种介质滤波器的示意图之一。如图1所示,该介质滤波器包括介质本体以及设置在介质本体上的输入端口10、输出端口20、内置介质谐振器和外置介质谐振器,输入端口10与输出端口20之间设置有多个内置介质谐振器,多个内置介质谐振器形成耦合主通道级联谐振器,输入端口10外 侧设置有两个外置介质谐振器;和/或,输出端口20外侧设置有两个外置介质谐振器。
本申请实施例中,输入端口10的外侧是指输入端口10相对于输出端口20的另一侧,输出端口20的外侧是指相对于输入端口10的另一侧。耦合主通道级联谐振器是指级联在一起的多个内置介质谐振器,多个内置介质谐振器中相邻两个内置介质谐振器之间具有较强的耦合效应的通道依次相连所形成的的通道为耦合主通道。如图7所示,内置介质谐振器11、内置介质谐振器12、内置介质谐振器13和内置介质谐振器14之间的耦合主通道如图7中的虚线所示。
在此基础上,通过在输入端口10与输出端口20之间设置内置介质谐振器,内置介质谐振器用于传输射频信号,内置介质谐振器可以设置多个,具体的设置数量可根据射频信号的传输要求以及介质滤波器的尺寸等因素确定。输入端口10与输出端口20之间设置的多个内置介质谐振器通过耦合,形成一条耦合主通道,射频信号沿着该耦合主通道传输。通过在输入端口10或输出端口20的外侧设置两个外置介质谐振器,可以获得一对传输零点,两个传输零点分别处于滤波器通带的两边;若同时在输入端口10和输出端口20的外侧设置两个外置介质谐振器,则可以获得两对传输零点。
通过在输入端口10或者输出端口20外附加两个外置介质谐振器,而不受内置介质谐振器排腔布局的影响,即可实现两个传输零点,提高了介质滤波器的带外抑制能力。而且介质滤波器内部的内置介质谐振器可以灵活布局,既可以采用交错型拓扑结构的级联谐振器,也可以采用直线型拓扑结构的级联谐振器。使得介质滤波器结构简单,可以采用模具成型,成本低,可靠性好,易于实现大批量生产。
内置介质谐振器的具体设置个数可以根据介质滤波器的实际功能需求进行确定,示例的,参考图1、图3,图1为本申请实施例提供的一种介质滤波器的示意图之一,图3为图1所示介质滤波器的拓扑结构示意图。如图1、图3所示,可以设置4个内置介质谐振器。分别是:内置介质谐振器11、内置介质谐振器12、内置介质谐振器13和内置介质谐振器14,其中,内置介质谐振器11与输入端口10耦合,内置介质谐振器12与内置介质谐振器11耦合,内置介质谐振器13与内置介质谐振器12耦合,内置介质谐振器14与内置介质谐振器13耦合,输出端口20与内置介质谐振器14耦合,即射频信号沿着内置介质谐振器11、内置介质谐振器12、内置介质谐振器13和内置介质谐振器14进行传输,如图1中箭头指示的方向进行传输,该路径即为耦合主通道。
下面对在输入端口10和/或输出端口20外侧设置两个外置介质谐振器产生传输零点的原理进行阐述,本实施例以在输入端口10外侧设置两个外置介质谐振器为例进行说明。
参考图5、图6,图5为本申请实施例提供的一种拓扑结构示意图,图6为图5所示拓扑结构输入阻抗等效电路图。如图5所示的电路拓扑,图中的外置介质谐振器1与外置介质谐振器2构成串联的抑制谐振器,为整个链路提供传输零点。与传统的零腔、非谐振节点、抑制谐振器相比,传统的NRN的挂腔谐振频率都是在传输零点处,而图5中所示的电路拓扑中的串联外置介质谐振器1与外置介质谐振器2的谐振 频率在滤波的通带中心处。为了分析传输零点的产生机理,首先计算输入导纳Y in
Figure PCTCN2020136616-appb-000001
设输入阻抗Z in为:
Figure PCTCN2020136616-appb-000002
当Y in趋近于无穷大时,即Z in趋近于0(Z in=0)时,产生传输零点;当Y in等于0时,产生反射零点。因此可以得到传输零点S z为:
Figure PCTCN2020136616-appb-000003
反射零点S p为:
S p=-jb 2
其中,b 1为外置介质谐振器1的频率因子,b 2为外置介质谐振器2的频率因子,j为复数中的虚数单位,J 1为外置介质谐振器1与输入端口10之间的耦合因子,J 2为外置介质谐振器1与外置介质谐振器2之间的耦合因子。
因此,当传输零点是对称分布的时候,外置介质谐振器1与外置介质谐振器2都在中心频率谐振,即b 1=b 2=0,则S z=±jJ 2,S p=0。
通过上述分析,可以得到以下结论:
(1)该拓扑结构可以实现一对带外传输零点,该对带外传输零点可以是对称分布于通带两侧的对称传输零点,或者是位于通带两侧的非对称传输零点;
(2)J 2可以影响传输零点的位置;
(3)J 1只提供耦合,对传输零点的位置基本无影响。
当传输零点对称分布于通带两侧时,该外置介质谐振器1和外置介质谐振器2在中心频率处提供二个反射零点。
在本申请的实施例中,第一连线与第二连线之间的夹角大于或等于90°;和/或,第三连线与第四连线之间的夹角大于或等于90°。
其中,第一连线为外置介质谐振器的中心与输入端口的中心的连线,第二连线为距输入端口最近的内置介质谐振器的中心与输入端口的中心的连线,第三连线为外置介质谐振器的中心与输出端口的中心的连线,第四连线为距输出端口最近的内置介质谐振器的中心与输出端口的中心的连线。
通过设置第一连线与第二连线之间的夹角大于或者等于90°,使得内置介质谐振器与外置介质谐振器分别位于输入端口的两侧。本申请实施例中定义内置介质谐振器所在的一侧为输入端口的内侧,另一侧为输入端口的外侧,输入端口的内、外侧的分界线为穿过输入端口中心且与第二连线垂直的直线,外置介质谐振器的中心可以刚好位于分界线上或者位于输入端口的外侧,通过设置外置介质谐振器的位置,防止外置介质谐振器不经过输入端口而直接与内置介质谐振器耦合,成为耦合主通道级联谐振器的一部分。使得波的传输路径经过输入端口,再到外置介质谐振器,实现传输零点 的产生。
通过设置第三连线与第四连线之间的夹角大于或者等于90°,使得内置介质谐振器与外置介质谐振器分别位于输出端口的两侧。本申请实施例中定义内置介质谐振器所在的一侧为输出端口的内侧,另一侧为输出端口的外侧,输出端口的内、外侧的分界线为穿过输出端口中心且与第四连线垂直的直线,外置介质谐振器的中心可以刚好位于分界线上或者位于输出端口的外侧,通过设置外置介质谐振器的位置,防止外置介质谐振器不经过输出端口而直接与内置介质谐振器耦合,成为耦合主通道级联谐振器的一部分。使得波的传输路径经过输出端口,再到外置介质谐振器,实现传输零点的产生。
在本申请的实施例中,两个外置介质谐振器耦合,其中一个靠近输入端口10或者输出端口20的外置介质谐振器与输入端口10或者输出端口20耦合。可以理解为通过级联的方式实现其中一个外置介质谐振器与输入端口10或者输出端口20耦合,这样的设计方式满足上述所阐述的获得传输零点的理论基础,有利于获得传输零点。
由于本实施例中存在输入端口10外侧设置有外置介质谐振器和外置介质谐振器,输出端口20外侧也设置有外置介质谐振器和外置介质谐振器的情况。为了方便描述和方便区分,将输入端口10外侧靠近输入端口10的外置介质谐振器命名为外置介质谐振器A31,将输入端口10外侧的另一个外置介质谐振器命名为外置介质谐振器A32;将输出端口20外侧靠近输出端口20的外置介质谐振器命名为外置介质谐振器B21,将输出端口20外侧靠近输出端口20的外置介质谐振器命名为外置介质谐振器B22。
在本申请的实施例中,耦合主通道级联谐振器包括直线型拓扑结构的级联谐振器和交错型拓扑结构的级联谐振器。直线型拓扑结构的级联谐振器可以简化介质滤波器的结构设计,将多个内置介质谐振器设计在一条直线上即可,结构简单,方便介质滤波器的布局。交错型拓扑结构的级联谐振器可以使得多个相邻的内置介质谐振器形成交叉耦合,交叉耦合有利于实现介质滤波器的传输零点特性,加之通过设置外置介质谐振器所获得的传输零点,有利于增强介质滤波器的带外抑制特性。
下面分别对直线型拓扑结构的级联谐振器和交错型拓扑结构的级联谐振器的具体设置形式进行说明。
示例一
本示例中,参考图2、图3,图2为本申请实施例提供的一种介质滤波器的示意图之二,图2所示介质滤波器的拓扑结构示意图如图3所示。如图2、图3所示,在输入端口10与输出端口20之间设置多个内置介质谐振器,多个内置介质谐振器呈直线排列,输入端口10和输出端口20也设置在该直线上。本示例中共设置四个内置介质谐振器,其中,内置介质谐振器11与输入端口10耦合,内置介质谐振器12与内置介质谐振器11耦合,内置介质谐振器13与内置介质谐振器12耦合,内置介质谐振器14与内置介质谐振器13耦合,输出端口20与内置介质谐振器14耦合,形成一条直线型的耦合主通道,射频信号沿着该耦合主通道从输入端口10传输到输出端口20。如图2所示,在输出端口20的外侧设置有两个外置介质谐振器:外置介质谐振器B21和外置介质谐振器B22,外置介质谐振器B21与输出端口20耦合,外置介质 谐振器B22与外置介质谐振器B21耦合,外置介质谐振器B21和外置介质谐振器B22可以与四个内置介质谐振器设置在同一直线上。这样设置不用考虑内置介质谐振器之间的交叉耦合,使得介质滤波器的结构十分简单,方便加工,易于实现批量生产。
示例二
本示例中,参考图1、图3,图1为本申请实施例提供的一种介质滤波器的示意图之一,图1所示介质滤波器的拓扑结构示意图如图3所示。如图1、图3所示,可以在输入端口10与输出端口20之间设置多个内置介质谐振器,多个内置介质谐振器可以排列成多排,这样设置是为了方便介质滤波器的布局,充分利用介质滤波器的纵向空间,但多个内置介质谐振器只形成一条耦合主通道。本示例中共设置四个内置介质谐振器,以每排两个,共两排的形式排列,如图1所示,四个内置介质谐振器分别位于矩形的四个角。当然,多个内置介质谐振器的排列形式并不限于此。其中,内置介质谐振器11与输入端口10耦合,内置介质谐振器12与内置介质谐振器11耦合,内置介质谐振器13与内置介质谐振器12耦合,内置介质谐振器14与内置介质谐振器13耦合,输出端口20与内置介质谐振器14耦合,形成一条“U”型的耦合主通道,射频信号沿着该耦合主通道从输入端口10传输到输出端口20。如图1所示,在输出端口20的外侧设置有两个外置介质谐振器:外置介质谐振器B21和外置介质谐振器B22,外置介质谐振器B21与输出端口20耦合,外置介质谐振器B22与外置介质谐振器B21耦合,外置介质谐振器B21和外置介质谐振器B22可以根据介质滤波器的结构进行布局,本示例中两个外置介质谐振器的布局与内置介质谐振器的纵向布局类似。采用本示例这样的布局,可以充分利用介质滤波器的空间。
通过在输出端口20外设置两个外置介质谐振器,可以产生两个传输零点,实现良好的带外抑制效果。参考图4,图4为图1所示介质滤波器的响应曲线。如图4所示,图中共有两条曲线,曲线S11为信号在本示例所示介质滤波器中传输的信号反射曲线,曲线S21为信号在本示例所示介质滤波器中传输的信号传输曲线,曲线S11中间起伏较小的部分表示本示例介质滤波器中的耦合主通道级联谐振器的通带,S21上的两个折点表示两个传输零点,两个传输零点分布于通带的两侧。
示例三
本示例中,参考图7、图8,图7为本申请实施例提供的一种介质滤波器的示意图之三,图8为图7所示介质滤波器的拓扑结构示意图。如图7、图8所示,可以在输入端口10与输出端口20之间设置多个内置介质谐振器,本示例中多个内置介质谐振器的布局形式与示例二中的内置介质谐振器的布局形似类似,在此不作赘述,可以参考示例二中内置介质谐振器的形式进行布局。四个内置介质谐振器形成一条“U”型的耦合主通道,射频信号沿着该“U”型耦合主通道从输入端口10传输到输出端口20。如图7、图8所示,在输入端口10的外侧设置有两个外置介质谐振器:外置介质谐振器A31和外置介质谐振器A32,外置介质谐振器A31与输入端口10耦合,外置介质谐振器A32与外置介质谐振器A31耦合。在输出端口20的外侧也设置有两个外置介质谐振器:外置介质谐振器B21和外置介质谐振器B22,外置介质谐振器B21与输出端口20耦合,外置介质谐振器B22与外置介质谐振器B21耦合。输入端口10 处的两个外置介质谐振器的布局形式可以与输出端口20处的两个外置介质谐振器的布局形式相同,可以参照示例二中输出端口20外的两个外置介质谐振器的布局形式。
通过在输入端口10外设置两个外置介质谐振器以及在输出端口20外设置两个外置介质谐振器,可以产生四个传输零点,实现更好的带外抑制效果。参考图9,图9为图7所示介质滤波器的响应曲线。如图9所示,图中共有两条曲线,曲线S11为信号在本示例所示介质滤波器中传输的反射曲线,曲线S21为信号在本示例所示介质滤波器中传输的传输曲线,曲线S11中间起伏较小的部分表示本示例介质滤波器中的耦合主通道级联谐振器的通带,S21上共有四个折点,每个折点表示一个传输零点,四个折点基本呈对称分布在通带的两侧。
示例四
在本示例中,参考图20、图21,图20为本申请实施例提供的一种介质滤波器的示意图之四,图21为图20所示介质滤波器的拓扑结构示意图。如图20、21所示,在输入端口10与输出端口20之间设置多个内置介质谐振器,多个内置介质谐振器交错排列。需要说明的是,图21中的内置介质谐振器之间的实线表示耦合主通道,虚线表示虚线两端的内置介质谐振器具有耦合,或者表示虚线一端的内置介质谐振器与另一端的外置介质谐振器之间也具有耦合。下面以内置介质谐振器11、内置介质谐振器12和内置介质谐振器13为例进行说明。
内置介质谐振器11和内置介质谐振器12之间的耦合路径,以及,内置介质谐振器12和内置介质谐振器13之间的耦合路径为耦合主通道的一部分,在图21中,上述耦合路径以实线表示。内置介质谐振器11与内置介质谐振器13也存在耦合,该耦合路径非主耦合通道的一部分,以虚线表示,使得内置介质谐振器11、内置介质谐振器12和内置介质谐振器13实现交叉耦合。
本示例中共设置五个内置介质谐振器,其中,内置介质谐振器11与输入端口10耦合,内置介质谐振器12与内置介质谐振器11耦合,内置介质谐振器13与内置介质谐振器12耦合,内置介质谐振器14与内置介质谐振器13耦合,内置介质谐振器15与内置介质谐振器14耦合,输出端口20与内置介质谐振器15耦合,五个内置介质谐振器交错布置,形成一条折线型的耦合主通道,耦合主通道的路径可以如图20中的曲线所示,曲线末端的箭头表示射频信号的传输路径,射频信号沿着该耦合主通道从输入端口10传输到输出端口20。
如图20所示,在输出端口20的外侧设置有两个外置介质谐振器:外置介质谐振器B21和外置介质谐振器B22,外置介质谐振器B21与输出端口20耦合,外置介质谐振器B22与外置介质谐振器B21耦合,外置介质谐振器B22还可以与内置介质谐振器15耦合。两个外置介质谐振器的布局设计可以根据介质滤波器的设计需要进行确定,本示例中,两个外置介质谐振器的布局参照内置介质谐振器的布局,同内置介质谐振器14与内置介质谐振器15的布局相同。采用交错型拓扑结构的级联谐振器的布局设计,内置介质谐振器在形成耦合主通道时,可以形成交叉耦合,交叉耦合有利于实现介质滤波器的传输零点特性,加之通过两个外置介质谐振器所形成的传输零点,提高了整个介质滤波器的带外抑制能力。
示例五
在本示例中,参考图22、图23,图22为本申请实施例提供的一种介质滤波器的示意图之五,图23为图22所示介质滤波器的拓扑结构示意图。如图22、图23所示,在输入端口10与输出端口20之间设置多个内置介质谐振器,多个内置介质谐振器交错排列。
本示例中共设置三个内置介质谐振器,其中,内置介质谐振器11与输入端口10耦合,内置介质谐振器12与内置介质谐振器11耦合,内置介质谐振器13与内置介质谐振器12耦合,输出端口20与内置介质谐振器13耦合,三个内置介质谐振器交错布置,形成一条折线型的耦合主通道,射频信号沿着该耦合主通道从输入端口10传输到输出端口20。
如图22所示,在输入端口10的外侧设置有两个外置介质谐振器:外置介质谐振器A31和外置介质谐振器A32,外置介质谐振器A31与输出端口20耦合,外置介质谐振器A32与外置介质谐振器A31耦合,外置介质谐振器A32还可以与内置介质谐振器11耦合。在输出端口20的外侧设置有两个外置介质谐振器:外置介质谐振器B21和外置介质谐振器B22,外置介质谐振器B21与输出端口20耦合,外置介质谐振器B22与外置介质谐振器B21耦合,外置介质谐振器B22还可以与内置介质谐振器13耦合。
每个端口外的两个外置介质谐振器的布局设计可以根据介质滤波器的设计需要进行确定,本示例中,外置介质谐振器A31和外置介质谐振器A32的布局参照内置介质谐振器11与内置介质谐振器12的布局,外置介质谐振器B21与外置介质谐振器B22之间的布局参照内置介质谐振器13与内置介质谐振器12之间的布局。本示例在输入端口10的外端和输出端口20的外端均设置有两个外置介质谐振器,可以实现四个传输零点,具更好的带外抑制能力。
在耦合主通道级联谐振器为非直线布置时,相邻的两个内置介质谐振器之间设置有耦合槽30。如图1、图7、图20和图22,通过设置耦合槽30,可以控制相邻两个内置介质谐振器之间介质的多少。通过控制耦合槽30的大小控制介质的多少,从而实现控制两个内置介质谐振器之间的耦合量大小。通过控制内置介质谐振器之间耦合量的大小,实现对耦合主通道形成的控制。耦合主通道级联谐振器可以采用不同的形式,在实际应用中可以灵活调整耦合主通道级联谐振器的布局形式,方便对介质滤波器进行整体布局。
耦合槽30的形状与交错型拓扑结构的级联谐振器中各个内置介质谐振器之间的耦合量相关。耦合槽30可以通过控制两个内置介质谐振器之间的介质的多少,来实现控制两个内置介质谐振器之间的耦合量;反之,可以通过设定两个内置介质谐振器之间耦合量的多少,确定出不同内置介质谐振器之间的介质多少,从而确定耦合槽30的相应形状。
在本申请的实施例中,外置介质谐振器包括由部分介质本体所形成的谐振器本体以及位于谐振本体上的调试孔,调试孔为盲孔或者通孔。本实施例中的谐振器本体为介质本体的一部分,将调试孔设置为盲孔或者通孔,可以通过设置调试孔的深度来调节外置介质谐振器的频率,即可以介质滤波器的设计需求,灵活选择外置介质谐振器 的调试孔采用盲孔还是通孔,从而保持设计灵活性。
在本申请的实施例中,外置介质谐振器A32或外置介质谐振器B22与近端内置介质谐振器相耦合,近端内置介质谐振器为与外置介质谐振器A32或外置介质谐振器B22所在一侧的端口相邻的内置介质谐振器。外置介质谐振器A32或外置介质谐振器B22所在一侧的端口可以是输入端口10,也可以是输出端口20,具体根据外置介质谐振器的位置进行确定。例如:若只在输入端口10这一端设置有外置介质谐振器A32,则该端口指的是输入端口10;若只在输出端口20这一端设置有外置介质谐振器B22,则该端口指的是输出端口20;若在输入端口10和输出端口20均设置有外置介质谐振器A32或外置介质谐振器B22,则该端口指的是输入端口10和输出端口20。
由于外置介质谐振器A32或外置介质谐振器B22已经与输入端口10或者输出端口20耦合,而输入端口10与与其相邻的内置介质谐振器(耦合主通道级联谐振器中的第一个内置介质谐振器)相耦合,输出端口20与与其相邻的内置介质谐振器(耦合主通道级联谐振器中的最后一个内置介质谐振器)相耦合。因此,在排腔布局时,可以采用交错的布局,即两个外置介质谐振器与近端内置介质谐振器采用呈三角形的布局形式,这样的布局形式,两个外置介质谐振器与近端内置介质谐振器之间更容易产生交叉耦合,实现更好的带外抑制效果。
示例一
如图20所示,在输出端口20的外侧设置有两个外置介质谐振器,外置介质谐振器B21与输出端口20耦合,外置介质谐振器B22与外置介质谐振器B21耦合,输出端口20与内置介质谐振器15耦合,内置介质谐振器15即为近端内置介质谐振器。将外置介质谐振器B22与内置介质谐振器15耦合,外置介质谐振器B21、外置介质谐振器B22和内置介质谐振器15之间可以形成交叉耦合,实现更好地带外抑制效果。
示例二
如图22所示,输入端口10和输出端口20的外侧均设置有两个外置介质谐振器,输入端口10外侧的外置介质谐振器A31与输入端口10耦合,外置介质谐振器A32与外置介质谐振器A31耦合,输入端口10与内置介质谐振器11耦合,内置介质谐振器11即为输入端口10的近端内置介质谐振器。输出端口20外侧的外置介质谐振器B21与输出端口20耦合,外置介质谐振器B22与外置介质谐振器B21耦合,输出端口20与内置介质谐振器13耦合,内置介质谐振器13即为输出端口20的近端内置介质谐振器。外置介质谐振器A31、外置介质谐振器A32和内置介质谐振器11之间形成交叉耦合;外置介质谐振器B21、外置介质谐振器B22和内置介质谐振器13之间形成交叉耦合,两个端口处均产生了交叉耦合,实现更好的带外抑制效果。
在本申请的实施例中,与输入端口10相邻的内置介质谐振器和与输入端口10相邻的外置介质谐振器A31之间设置有耦合孔50和/或耦合槽40;和/或,与输出端口20相邻的内置介质谐振器和与输出端口20相邻的外置介质谐振器B21之间设置有耦合孔50和/或耦合槽40。
通过设置耦合孔50或者耦合槽40,设置的耦合孔50或者耦合槽40可以调节输 入端口10与位于输入端口10两侧的内置介质谐振器以及外置介质谐振器A31之间的耦合量,也可以调节输出端口20与位于输出端口20两侧的内置介质谐振器以及外置介质谐振器B21之间的耦合量。耦合孔50和耦合槽40是调整输入端口10或输出端口20与内置介质谐振器以及外置介质谐振器之间耦合量的不同形式。在实际应用中,可以根据输入端口10或者输出端口20与内置介质谐振器以及外置介质谐振器之间耦合量的需要,设计相应的耦合孔50或者耦合槽40,耦合孔50和耦合槽40可以配合使用,可以实现设计方案多样化,调整内置介质谐振器和外置介质谐振器之间耦合量灵活的效果。
在本申请的实施例中,耦合孔50为盲孔或者通孔,耦合槽40为盲槽。通过将耦合孔50设置为通孔或者盲孔,通孔或者盲孔对于调整输入端口10或者输出端口20与对应端口的介质谐振器之间耦合量的效果不同,可以根据耦合量的调整需求,选择通孔或者盲孔,以实现采用更简单的调整方式来调节输入端口10或者输出端口20与不同介质谐振器之间的耦合量,采用这种简单的调整方式也方便介质滤波器的生产加工。
下面结合图10至图18对耦合孔50以及耦合槽40的设置形式以及组合形式进行介绍。
示例一
在与输入端口10相邻的内置介质谐振器以及外置介质谐振器之间设置有耦合槽40,或者在与输出端口20相邻的内置介质谐振器以及外置介质谐振器之间设置有耦合槽40,耦合槽40与位于耦合槽40一端的内置介质谐振器以及位于耦合槽40另一端的外置介质谐振器之间均不连通。
该内置介质谐振器和外置介质谐振器均与输入端口10相邻或者均与输出端口20相邻,通过设置耦合槽40与内置介质谐振器以及外置介质谐振器不连通,可以实现降低输入端口10与内置介质谐振器之间的耦合量以及输入端口10与外置介质谐振器之间的耦合量;和/或,可以实现降低输出端口20与内置介质谐振器之间的耦合量以及输出端口20与外置介质谐振器之间的耦合量。
以在与输入端口10相邻的内置介质谐振器以及外置介质谐振器之间设置有耦合槽40为例进行说明。参考图10、图11,图10为本申请实施例提供的一种介质滤波器中输入端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之一,图11为图10所示端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之一的剖视图。如图10、图11所示,与输入端口10相邻的内置介质谐振器为内置介质谐振器11,与输入端口10相邻的外置介质谐振器为外置介质谐振器A31,内置介质谐振器11与外置介质谐振器A31之间设置有耦合槽40,耦合槽40与内置介质谐振器11以及外置介质谐振器A31之间均不连通。可以通过调整耦合槽40的尺寸,如调整其深度、长度或者宽度来调整输入端口10与内置介质谐振器11以及输入端口10与外置介质谐振器之间的耦合量。
示例二
在与输入端口10相邻的内置介质谐振器以及外置介质谐振器之间设置有耦合槽40,或者在与输出端口20相邻的内置介质谐振器以及外置介质谐振器之间设置有耦 合槽40,耦合槽40的其中一端与位于耦合槽40一端的内置介质谐振器或位于耦合槽40另一端的外置介质谐振器连通。
以在与输入端口10相邻的内置介质谐振器以及外置介质谐振器之间设置有耦合槽40为例进行说明。参考图12、图13,图12为本申请实施例提供的一种介质滤波器中输入端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之二,图13为图12所示端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之二的剖视图。如图12、图13所示,与输入端口10相邻的内置介质谐振器为内置介质谐振器11,与输入端口10相邻的外置介质谐振器为外置介质谐振器A31,内置介质谐振器11与外置介质谐振器A31之间设置有耦合槽40。耦合槽40与内置介质谐振器11不连通,耦合槽40与外置介质谐振器A31之间连通;也可以采用耦合槽40与内置介质谐振器11连通,耦合槽40与外置介质谐振器A31之间不连通的形式(该种情形图中未示出),在实际应用中,可以根据具体的需求来调整耦合槽40与内置介质谐振器11和外置介质谐振器A31之间的连通关系,以调整输入端口10与内置介质谐振器11和外置介质谐振器A31之间的耦合量。以图12中所示的耦合槽40与内置介质谐振器11不连通,耦合槽40与外置介质谐振器A31之间连通为例:在输入端口10与内置介质谐振器11和外置介质谐振器A31之间的距离相等的情况下,输入端口10与外置介质谐振器A31之间的耦合量大于输入端口10与内置介质谐振器11之间的耦合量。与此同时,可以通过调节耦合槽40与内置介质谐振器11之间的距离来调整输入端口10与内置介质谐振器11之间的耦合量,也可以通过调节耦合槽40的深度和宽度来调整输入端口10与内置介质谐振器11之间的耦合量以及输入端口10与外置介质谐振器A31之间的耦合量,通过调节耦合槽40的大小来调节端口与相应的介质谐振器之间的耦合量属于现有技术,在此不作赘述。
内置介质谐振器11和外置介质谐振器A31均与输入端口10相邻,通过设置耦合槽40其中一端与内置介质谐振器11连通,可以实现增强输入端口10与内置介质谐振器11之间的耦合量;或者通过设置耦合槽40一端与外置介质谐振器A31连通,实现增强输入端口10与外置介质谐振器A31之间的耦合量,起到调节介质谐振器的输入端口10与内置介质谐振器11或者外置介质谐振器之间耦合量的作用。本实施例中仅以输入端口10为例进行说明,输入端口10可以换成对应的输出端口20,则内置介质谐振器11对应的为与输出端口20相邻的内置介质谐振器,外置介质谐振器A31对应的为与输出端口20相邻的外置介质谐振器。
示例三
在与输入端口10相邻的内置介质谐振器以及外置介质谐振器之间设置有耦合槽40,或者在与输出端口20相邻的内置介质谐振器以及外置介质谐振器之间设置有耦合槽40,耦合槽40的两端分别与位于耦合槽40一端的内置介质谐振器以及位于耦合槽40另一端的外置介质谐振器连通。
以在与输入端口10相邻的内置介质谐振器以及外置介质谐振器之间设置有耦合槽40为例进行说明。参考图14、图15,图14为本申请实施例提供的一种介质滤波器中输入端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之三,图15为图14所示端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之三的剖视 图。如图14、图15所示,与输入端口10相邻的内置介质谐振器为内置介质谐振器11,与输入端口10相邻的外置介质谐振器为外置介质谐振器A31,内置介质谐振器11与外置介质谐振器A31之间设置有耦合槽40。耦合槽40与内置介质谐振器11以及外置介质谐振器A31之间均连通,在输入端口10、内置介质谐振器11和外置介质谐振器A31之间的布置情况相同的情况下,耦合槽40与内置介质谐振器11以及外置介质谐振器A31之间均连通时,相比于耦合槽40与内置介质谐振器11以及外置介质谐振器A31之间均不连通时,输入端口10与内置介质谐振器11以及外置介质谐振器A31之间的耦合量更大。即图14所示情况下的输入端口10与内置介质谐振器11以及外置介质谐振器A31之间的耦合量大于图12所示情况下输入端口10与内置介质谐振器11以及外置介质谐振器A31之间的耦合量。本实施例中,可以通过调节耦合槽40的深度和宽度来调整输入端口10与内置介质谐振器11之间的耦合量以及输入端口10与外置介质谐振器A31之间的耦合量。
通过设置耦合槽40的两端分别与内置介质谐振器11以及外置介质谐振器A31连通,可以实现增加输入端口10与内置介质谐振器11之间的耦合量以及输入端口10与外置介质谐振器A31之间的耦合量。
此外,还可以在与输入端口10或者与输出端口20相邻的内置介质谐振器以及外置介质谐振器之间设置耦合孔50,耦合孔50的轴线、内置介质谐振器的轴线和外置介质谐振器轴线相互平行。
示例四
参考图16,图16为本申请实施例提供的一种介质滤波器中输入端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之四。如图16所示,与输入端口10相邻的内置介质谐振器为内置介质谐振器11,与输入端口10相邻的外置介质谐振器为外置介质谐振器A31,内置介质谐振器11与外置介质谐振器A31之间设置有耦合孔50,本示例中设置有两个耦合孔50,两个耦合孔50的轴线与内置介质谐振器11的轴线以及外置介质谐振器A31的轴线相互平行,也可以将两个耦合孔50的轴线与内置介质谐振器11的轴线以及外置介质谐振器A31的轴线设置于同一平面内,两个耦合孔50分别设置于输入端口10的两侧,耦合孔50可以设置为通孔或者盲孔,也可以设置为通孔与盲孔的组合形式。可以通过调整输入端口10与内置介质谐振器11之间的耦合孔50的位置,调整输入端口10与内置介质谐振器11之间的耦合量;也可以通过调整输入端口10与外置介质谐振器A31之间的耦合孔50的位置,调整输入端口10与外置介质谐振器A31之间的耦合量。
示例的,参考图17,图17为本申请实施例提供的一种介质滤波器中输入端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之五。如图17所示,两个耦合孔50的轴线与内置介质谐振器11的轴线以及外置介质谐振器A31的轴线相互平行,但内置介质谐振器11的轴线和外置介质谐振器A31的轴线所在的平面与两个耦合孔50的轴线所在的平面垂直,两个耦合孔50位于内置介质谐振器11的轴线和外置介质谐振器A31的轴线所在平面的两侧。在实际应用中,耦合孔50的具体位置可以根据输入端口10与内置介质谐振器11之间的耦合量以及输入端口10与外置介质谐振器A31之间的耦合量进行确定。
此外,将两个耦合孔50的位置设置为图17所示的状态,即两个耦合孔50位于内置介质谐振器11的轴线和外置介质谐振器A31的轴线所在平面的两侧,相比于图16中两个耦合孔50的轴线位于内置介质谐振器11的轴线和外置介质谐振器A31的轴线所在的平面内的状态,位于平面两侧的耦合孔50可以抑制内置介质谐振器11与外置介质谐振器A31之间所产生的寄生耦合,从而减少寄生耦合对实现传输零点的干扰。
通过将耦合孔50的轴线设置为与内置介质谐振器的轴线和外置介质谐振器的轴线相互平行,方便生产加工。本实施例中的耦合孔50可以设置为通孔或者盲孔,可以用于调整输入端口10与内置介质谐振器11之间的耦合量以及调整输入端口10与外置介质谐振器A31之间的耦合量。
示例五
除上述示例所展示的情况外,还可以在与输入端口10或者与输出端口20相邻的内置介质谐振器以及外置介质谐振器之间同时设置耦合槽40和耦合孔50。
本示例以在与输入端口10相邻的内置介质谐振器以及外置介质谐振器之间同时设置耦合槽40和耦合孔50为例进行说明。参考图18、图19,图18为本申请实施例提供的一种介质滤波器中输入端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之六,图19为图18所示端口与内置介质谐振器和外置介质谐振器之间耦合的示意图之六的剖视图。如图18、图19所示,与输入端口10相邻的内置介质谐振器为内置介质谐振器11,与输入端口10相邻的外置介质谐振器为外置介质谐振器A31,内置介质谐振器11与外置介质谐振器A31之间同时设置有耦合槽40和耦合孔50。本示例中在靠近外置介质谐振器A31的一侧设置耦合槽40,在靠近内置介质谐振器11的一侧设置耦合孔50,耦合槽40和耦合孔50的位置并不局限于此,可以根据输入端口10与外置介质谐振器A31之间的耦合量以及输入端口10与内置介质谐振器11之间的耦合量进行情况调整。本示例中采用耦合槽40与外置介质谐振器A31连通的形式,也可以根据输入端口10与外置介质谐振器A31之间的耦合量选择不连通。为了方便生产加工,可以将耦合孔50的轴线设置为在竖直方向上,耦合孔50的数量可以根据输入端口10与内置介质谐振器11之间的耦合量设置一个或者多个。
在本实施例中,输入端口10由连接器101和端口通孔100组成,连接器101连接在介质本体上,端口通孔100为贯穿连接器101和介质本体的通孔,若连接器101为均匀形状的连接器101,在设置端口通孔100时,可以使得端口通孔100的轴线穿过连接器101的中心。当在与输入端口10相邻的内置介质谐振器以及外置介质谐振器之间设置有耦合槽40时,在设置端口通孔100时,可以将端口通孔100与耦合槽40连通。
上述示例只是简单列举了在输入端口10处的内置介质谐振器11以及外置介质谐振器A31之间设置耦合槽40和/或耦合孔50的情况,在实际应用中,输入端口10或输出端口20处均可以设置对应的内置介质谐振器和外置介质谐振器,并在内置介质谐振器和外置介质谐振器之间设置耦合槽40和/或耦合孔50,耦合槽40和/或耦合孔50的设置形式可以如上述示例中所示,若输入端口10处设置有耦合槽40和/或耦合孔50,且输出端口20处也设置有耦合槽40和/或耦合孔50,还可以将上述示例中的 设置形式进行组合。例如:输入端口10处只设置有耦合槽40,耦合槽40的位置关系设置为示例一所示,输出端口20处只设置有耦合槽40,耦合槽40的的位置关系设置为示例二所示。再例如:输入端口10处只设置有耦合孔50,耦合孔50的位置关系设置为示例四所示,输出端口20处设置有耦合槽40和耦合孔50,耦合槽40和耦合孔50的位置关系设置为示例五所示。在此不对所有的组合情况进行一一举例说明。
在本申请的实施例中,介质本体的外表面及内表面均金属化。介质本体的内表面包括介质本体上设置的通孔的所有内表面、盲孔的内表面和底面以及盲槽的内表面和底面,将介质本体的外表面及内表面均金属化,以在介质本体的外表面和内表面形成金属壁,利用金属壁将介质本体完全包裹,实现在介质本体内形成谐振系统。
基于同一发明构思,本申请一实施例提供一种收发信机,该收发信机包括接收机、发射机、放大单元以及如上述任一实施例所提供的介质滤波器。该收发信机具有与前述实施例提供的介质滤波器相同的技术效果,在此不做赘述。
基于同一发明构思,本申请一实施例提供一种基站,该基站包括天馈组件,控制组件以及如上述实施例所提供的收发信机。该基站具有与前述实施例提供的收发信机相同的技术效果,在此不做赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
以上对本申请所提供的一种介质滤波器、收发信机及基站,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (16)

  1. 一种介质滤波器,其特征在于,包括介质本体以及设置在所述介质本体上的输入端口、输出端口、内置介质谐振器和外置介质谐振器,所述输入端口与所述输出端口之间设置有多个所述内置介质谐振器,所述多个所述内置介质谐振器形成耦合主通道级联谐振器,所述输入端口一侧设置有两个所述外置介质谐振器,所述外置介质谐振器与所述输入端口之间的耦合量大于所述外置介质谐振器与任一所述内置介质谐振器之间的耦合量;和/或,所述输出端口一侧设置有两个所述外置介质谐振器,所述外置介质谐振器与所述输出端口之间的耦合量大于所述外置介质谐振器与任一所述内置介质谐振器之间的耦合量。
  2. 根据权利要求1所述的介质滤波器,第一连线与第二连线之间的夹角大于或等于90°;和/或,第三连线与第四连线之间的夹角大于或等于90°;
    其中,所述第一连线为所述外置介质谐振器的中心与所述输入端口的中心的连线,所述第二连线为距所述输入端口最近的所述内置介质谐振器的中心与所述输入端口的中心的连线;
    所述第三连线为所述外置介质谐振器的中心与所述输出端口的中心的连线,所述第四连线为距所述输出端口最近的所述内置介质谐振器的中心与所述输出端口的中心的连线。
  3. 根据权利要求1或2所述的介质滤波器,两个所述外置介质谐振器耦合,其中一个靠近所述输入端口或者所述输出端口的所述外置介质谐振器为第一外置介质谐振器,另一个所述外置介质谐振器为第二外置介质谐振器;所述第一外置介质谐振器与所述输入端口或者所述输出端口耦合。
  4. 根据权利要求1至3任意一项所述的介质滤波器,所述耦合主通道级联谐振器包括直线型拓扑结构的级联谐振器或交错型拓扑结构的级联谐振器。
  5. 根据权利要求4所述的介质滤波器,所述外置介质谐振器包括由部分所述介质本体所形成的谐振器本体以及位于所述谐振本体上的调试孔,所述调试孔为盲孔或者通孔。
  6. 根据权利要求3所述的介质滤波器,所述第二外置介质谐振器与近端内置介质谐振器相耦合,所述近端内置介质谐振器为与所述第二外置介质谐振器所在一侧的端口相邻的所述内置介质谐振器。
  7. 根据权利要求1至6中任意一项所述的介质滤波器,所述外置介质谐振器与近端内置介质谐振器之间设置有耦合孔和/或耦合槽,所述近端内置介质谐振器为与所述外置介质谐振器所在一侧的端口相邻的所述内置介质谐振器。
  8. 根据权利要求7所述的介质滤波器,所述耦合孔为盲孔或者通孔。
  9. 根据权利要求7所述的介质滤波器,所述耦合槽为盲槽。
  10. 根据权利要求7至9任意一项所述的介质滤波器,与所述输入端口或者与所述输出端口相邻的所述内置介质谐振器以及所述外置介质谐振器之间设置有所述耦合槽,所述耦合槽与位于所述耦合槽一端的所述内置介质谐振器以及位于所述耦合槽另一端的所述外置介质谐振器之间均不连通。
  11. 根据权利要求7至9任意一项所述的介质滤波器,与所述输入端口或者与所 述输出端口相邻的所述内置介质谐振器以及所述外置介质谐振器之间设置有耦合槽,所述耦合槽的其中一端与位于所述耦合槽一端的所述内置介质谐振器或位于所述耦合槽另一端的所述外置介质谐振器连通。
  12. 根据权利要求7至9任意一项所述的介质滤波器,与所述输入端口或者与所述输出端口相邻的所述内置介质谐振器以及所述外置介质谐振器之间设置有耦合槽,所述耦合槽的两端分别与位于所述耦合槽一端的所述内置介质谐振器以及位于所述耦合槽另一端的所述外置介质谐振器连通。
  13. 根据权利要求7至12任意一项所述的介质滤波器,与所述输入端口或者与所述输出端口相邻的所述内置介质谐振器以及所述外置介质谐振器之间设置有耦合孔,所述耦合孔的轴线、所述内置介质谐振器的轴线和所述外置介质谐振器轴线相互平行。
  14. 根据权利要求1至13任一项所述的介质滤波器,所述介质本体的外表面及内表面均金属化。
  15. 一种收发信机,其特征在于,包括接收机、发射机、放大单元以及权利要求1至14任意一项所述的介质滤波器。
  16. 一种基站,其特征在于,包括天馈组件,控制组件以及权利要求15所述的收发信机。
PCT/CN2020/136616 2020-12-15 2020-12-15 介质滤波器、收发信机及基站 WO2022126393A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237023936A KR20230119198A (ko) 2020-12-15 2020-12-15 유전체 필터, 송수신기, 및 기지국
PCT/CN2020/136616 WO2022126393A1 (zh) 2020-12-15 2020-12-15 介质滤波器、收发信机及基站
EP20965411.0A EP4254651A4 (en) 2020-12-15 2020-12-15 DIELECTRIC FILTER, TRANSCEIVER AND BASE STATION
CN202080107401.0A CN116547862A (zh) 2020-12-15 2020-12-15 介质滤波器、收发信机及基站
JP2023536539A JP2024501799A (ja) 2020-12-15 2020-12-15 誘電体フィルタ、送受信機、および基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/136616 WO2022126393A1 (zh) 2020-12-15 2020-12-15 介质滤波器、收发信机及基站

Publications (1)

Publication Number Publication Date
WO2022126393A1 true WO2022126393A1 (zh) 2022-06-23

Family

ID=82059879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136616 WO2022126393A1 (zh) 2020-12-15 2020-12-15 介质滤波器、收发信机及基站

Country Status (5)

Country Link
EP (1) EP4254651A4 (zh)
JP (1) JP2024501799A (zh)
KR (1) KR20230119198A (zh)
CN (1) CN116547862A (zh)
WO (1) WO2022126393A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030222736A1 (en) * 2002-05-29 2003-12-04 Allison Robert C. Compact edge coupled filter
CN1797842A (zh) * 2004-12-21 2006-07-05 华为技术有限公司 一种具有传输零点的带通滤波器
CN102800909A (zh) * 2012-07-31 2012-11-28 深圳光启创新技术有限公司 多模滤波器
CN204927461U (zh) * 2015-09-16 2015-12-30 华南理工大学 一种ltcc双工器
CN111313131A (zh) * 2020-03-24 2020-06-19 广东通宇通讯股份有限公司 一种介质波导滤波器
CN212062649U (zh) * 2020-03-27 2020-12-01 合肥云之微电子有限公司 Tem模介质微波谐振器及滤波器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7545240B2 (en) * 2005-05-24 2009-06-09 Cts Corporation Filter with multiple shunt zeros
US9030279B2 (en) * 2011-05-09 2015-05-12 Cts Corporation Dielectric waveguide filter with direct coupling and alternative cross-coupling
JP6676171B2 (ja) * 2015-12-24 2020-04-08 華為技術有限公司Huawei Technologies Co.,Ltd. フィルタおよびワイヤレスネットワークデバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030222736A1 (en) * 2002-05-29 2003-12-04 Allison Robert C. Compact edge coupled filter
CN1797842A (zh) * 2004-12-21 2006-07-05 华为技术有限公司 一种具有传输零点的带通滤波器
CN102800909A (zh) * 2012-07-31 2012-11-28 深圳光启创新技术有限公司 多模滤波器
CN204927461U (zh) * 2015-09-16 2015-12-30 华南理工大学 一种ltcc双工器
CN111313131A (zh) * 2020-03-24 2020-06-19 广东通宇通讯股份有限公司 一种介质波导滤波器
CN212062649U (zh) * 2020-03-27 2020-12-01 合肥云之微电子有限公司 Tem模介质微波谐振器及滤波器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4254651A4 *

Also Published As

Publication number Publication date
JP2024501799A (ja) 2024-01-16
EP4254651A4 (en) 2024-02-14
CN116547862A (zh) 2023-08-04
KR20230119198A (ko) 2023-08-16
EP4254651A1 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
WO2017107134A1 (zh) 一种滤波器及无线网络设备
CN110400995B (zh) 小型化宽阻带的hmsiw单腔三模带通滤波器
CN109860966B (zh) 介质滤波器及5g通信设备
CN102509822B (zh) 双通带微带滤波器
CN105990630A (zh) 基于基片集成波导的高选择性巴伦带通滤波器
CN109509950A (zh) 一种小型化双频波导滤波器
CN111129669A (zh) 混合电磁耦合全介质滤波器
CN112563702A (zh) 基于hmsiw腔体的小型化双模滤波器及零点调节方法
WO2022126393A1 (zh) 介质滤波器、收发信机及基站
CN106532201A (zh) 基于环形谐振器的小型化宽阻带双模平衡带通滤波器
CN105914468B (zh) 基于枝节加载谐振器的具有带通滤波特性的微带线巴特勒矩阵
CN210379367U (zh) 陶瓷介质滤波器
CN208986181U (zh) 一种平面型全向偶极子双工天线
CN112072235A (zh) 一种微带-探针结构馈电的双模siw平衡带通滤波器
CN209515949U (zh) 一种基于平行耦合线的平面带通滤波器
CN114156618B (zh) 一种单腔三模陶瓷波导谐振器及滤波器
CN110534852A (zh) 基于并联平行耦合分裂结构多模谐振器的多频带通滤波器
CN106058391B (zh) 一种基于新型匹配网络的平面cq双工器
CN109728390A (zh) 一种双层堆叠式差分微波带通滤波器
CN108847516A (zh) 一种消失模波导高通滤波器
CN110011009B (zh) 一种带通滤波器
CN212182505U (zh) 具有陡峭带外抑制的介质滤波器及天线
CN206532855U (zh) 腔体式带阻滤波器及射频器件
CN114709577A (zh) 一种基于交指结构的四阶交叉耦合滤波器
CN209282364U (zh) 一种小型化双频波导滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965411

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107401.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023536539

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2020965411

Country of ref document: EP

Effective date: 20230629

ENP Entry into the national phase

Ref document number: 20237023936

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE