WO2022124644A1 - Cast iron-aluminum binding material having good interfacial bonding strength and heat transfer characteristic and method for manufacturing same - Google Patents

Cast iron-aluminum binding material having good interfacial bonding strength and heat transfer characteristic and method for manufacturing same Download PDF

Info

Publication number
WO2022124644A1
WO2022124644A1 PCT/KR2021/017292 KR2021017292W WO2022124644A1 WO 2022124644 A1 WO2022124644 A1 WO 2022124644A1 KR 2021017292 W KR2021017292 W KR 2021017292W WO 2022124644 A1 WO2022124644 A1 WO 2022124644A1
Authority
WO
WIPO (PCT)
Prior art keywords
cast iron
aluminum
bonding
layer
graphite
Prior art date
Application number
PCT/KR2021/017292
Other languages
French (fr)
Korean (ko)
Inventor
신제식
김태형
이지운
김동응
조훈
정재헌
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2022124644A1 publication Critical patent/WO2022124644A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3026Mn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Definitions

  • the present invention relates to a technology for manufacturing a cast iron-aluminum bonding material, and more particularly, to a cast iron-aluminum bonding material having excellent interfacial bonding strength and heat transfer properties.
  • iron-based materials have excellent mechanical properties, they are the most widely used material for parts in the field of transportation equipment such as automobiles and heavy equipment.
  • ferrous-non-ferrous dissimilar metal parts that apply ferrous materials such as cast iron and non-ferrous materials such as aluminum and copper alloy together in a single part is rapidly increasing. .
  • the fusion welding process in which a ferrous material is used as an insert material, is placed inside the mold, and non-ferrous molten metal is injected to produce parts at the same time as bonding, is a forced press-fitting method, diffusion bonding method, friction bonding method, welding, etc.
  • parts with complex shapes can be directly manufactured into the final shape, and the process is relatively simple and the manufacturing cost is low.
  • cast iron which is a casting material, and has excellent connectivity with complex-shaped cast orthopedic parts, exhibits difficult-to-join properties with aluminum alloy, a representative non-ferrous material, so it can be used as a dissimilar metal part. It is the biggest obstacle to its utilization.
  • the causes of the cast iron-aluminum poor bonding properties include low wettability and bonding reactivity with the aluminum alloy molten metal due to the graphite grains on the surface of cast iron, high brittle reaction products generated in the bonding area, narrow bonding reaction process window, and defects generated at the bonding interface. etc.
  • the method mainly used to produce cast iron-aluminum dissimilar metal bonding material parts showing the above-mentioned difficult bonding characteristics by the casting process is a mechanical fastening method in which molten aluminum enters and solidifies in a macro-scale pattern formed on the surface of the cast iron insert. .
  • a cast iron insert having a groove formed on the surface by machining or a cast iron insert manufactured by casting to have a protruding surface is used.
  • metallurgical bonding metal bonding
  • Patent Document 1 Korean Patent Publication No. KR2019-0138021
  • An object of the present invention is to provide a cast iron-aluminum dissimilar metal bonding material having excellent interfacial bonding strength and interfacial heat transfer characteristics, and a method for manufacturing the same.
  • the subject of this invention is not limited to the above-mentioned content.
  • the subject of the present invention will be understood from the overall content of the present specification, and those of ordinary skill in the art to which the present invention pertains will have no difficulty in understanding the additional subject of the present invention.
  • One aspect of the present invention is
  • the insert cast iron may be at least one of FC cast iron (flaky graphite cast iron), DCI cast iron (spheroidal graphite cast iron), and CV cast iron (compact cast iron).
  • the cast iron structure of the surface portion forming the bonding interface in the insert cast iron is FC cast iron (flaky graphite cast iron).
  • the average desorption depth of the graphite grains is preferably 5 to 500 ⁇ m.
  • micro-scale grooves or protrusions are formed on the surface forming the bonding interface in the insert cast iron by machining.
  • the soft metal layer may be an Al metal layer.
  • the soft alloy layer may be an aluminum alloy layer including at least one of Fe, Mn, and Si in Al.
  • an Fe-Mn alloy layer having a higher Mn and Si composition than the surrounding cast iron matrix is formed in a predetermined depth region therein, and the Fe-Mn alloy layer is the soft metal layer or alloy layer It is preferable to be connected to
  • the average thickness of the bonding reaction layer according to the bonding reaction between the insert cast iron material and Al is 5 to 100 ⁇ m.
  • the process of bonding cast iron and aluminum by pouring aluminum molten metal After the heat-treated cast iron is charged into a mold, the process of bonding cast iron and aluminum by pouring aluminum molten metal; it relates to a cast iron-aluminum bonding material manufacturing method comprising a.
  • the cast iron material and the metal aluminum layer are connected by at least one soft metal or alloy layer penetrating the Fe-Al intermetallic compound layer vertically, so that there are cracks or microcavities inside the bonding reaction layer. It is possible to manufacture dissimilar metal materials without generation of defects such as
  • the dissimilar metal material of the present invention can reduce interfacial thermal resistance and improve interfacial heat transfer properties, and furthermore, solve various problems caused by the existence of a highly brittle bonding reaction layer in the prior art.
  • FIG. 1 is a schematic view showing a bonding cross-section of a cast iron-aluminum bonding material according to an embodiment of the present invention.
  • Figure 2 is a schematic view showing a process of forming a cross-section of the cast iron-aluminum bonding material according to an embodiment of the present invention is formed.
  • FIG. 3 is a microstructure photograph of a cross-section of a junction part of a cast iron-aluminum dissimilar metal bonding material manufactured by a conventional fusion bonding method.
  • FIG. 4 is a microstructure photograph of the cross-section of the junction of the cast iron-aluminum dissimilar metal bonding material prepared in the present invention.
  • FIG. 5 is a diagram showing the interfacial bonding strength of the inventive material and the comparative material in comparison with each other in the embodiment of the present invention.
  • FIG. 6 is a diagram showing the interfacial heat transfer coefficients of the invention material and the comparative material in comparison with each other in the embodiment of the present invention.
  • Cast iron-aluminum bonding material of the present invention insert material cast iron; an Fe-Al intermetallic compound layer formed on the cast iron; and a metallic aluminum layer formed on the Fe-Al intermetallic compound layer, wherein the cast iron and the metallic aluminum layer are at least one soft metal layer or alloy layer penetrating the Fe-Al intermetallic compound layer vertically. connected.
  • FIG. 1 is a schematic view showing a bonding cross-section of a cast iron-aluminum bonding material according to an embodiment of the present invention.
  • the structure of the cast iron (insert material)-aluminum (cast material) dissimilar metal bonding material of the present invention is the inside of the fusion bonding reaction layer composed of the thick intermetallic compound (1) in the normal direction of the bonding interface (i.e. , in the vertical direction) and a soft (or high toughness) metal layer or metal alloy layer 4 that connects the cast iron 2 and the aluminum 3 is formed.
  • a Fe-Mn alloy layer 5 having a higher Mn and Si composition than the surrounding cast iron matrix 2 is formed in a predetermined depth region therein, and the Fe-Mn alloy layer ( 5) is connected to the soft metal layer or alloy layer.
  • the cast iron-aluminum dissimilar metal bonding material manufactured by the melt bonding process has a narrow bonding reaction process window, so it generally falls under the following two cases, which results in low interfacial bonding strength and poor interfacial heat transfer properties.
  • microcavities formed at the intermetallic compound-graphite grain and graphite grain-aluminum interface and cracks generated by impact all increase the thermal resistance between cast iron-aluminum, and the interfacial heat transfer properties are also greatly reduced.
  • graphite grains which are non-metallic particles that are highly brittle and cause fine cavities, are not present in the fusion bonding reaction layer composed of a highly brittle thick intermetallic compound, but in the normal direction of the bonding interface.
  • a soft (or high-toughness) metal layer or metal alloy layer that penetrates through the metal and connects cast iron and aluminum is formed.
  • the soft metal layer may be Al
  • the soft metal alloy layer may be an aluminum alloy layer in which Al contains at least one of Si, Fe, Mn, and the like.
  • the resistance to generation/propagation of cracks due to thermal and mechanical shock is increased by the soft metal layer or metal alloy layer formed in this way, and as a result, the interfacial bonding strength is greatly increased.
  • the interfacial thermal resistance is reduced and the interfacial heat transfer properties are greatly improved.
  • the intermetallic compound-metal It can be grown in a (alloy) layer composite structure.
  • the insert cast iron may be one or more of FC cast iron (flaky graphite cast iron), DCI cast iron (spheroidal graphite cast iron), and CV cast iron (compact cast iron).
  • the cast iron structure of the surface portion forming the bonding interface in the insert cast iron is FC cast iron (flaky graphite cast iron).
  • the present invention as a method of preventing the nucleation reaction of intermetallic compounds from occurring in an appropriate position in an appropriate shape on the surface of the cast iron insert material, it is preferable to desorb graphite grains. It is also necessary to detach the graphite grains from the surface of the cast iron insert in order to improve the wettability with the aluminum molten metal and to create a graphite free zone inside the bonding reaction layer. At this time, it is preferable that the average desorption depth of the graphite grains is 5 to 500 ⁇ m.
  • micro-scale grooves or protrusions are formed on the surface forming the bonding interface in the insert cast iron by machining.
  • Figure 2 is a schematic view showing a process of forming a cross-section of the cast iron-aluminum bonding material according to an embodiment of the present invention is formed.
  • a cast iron core material 2 suitable for operation characteristics and fusion bonding process is prepared according to the shape of the part, and graphite grains 6 are provided on the surface of the cast iron material exist.
  • FC cast iron flake graphite cast iron
  • DCI cast iron spheroidal graphite cast iron
  • CV cast iron compact cast iron
  • Flake graphite grains have superior heat transfer performance compared to other graphite-type cast irons such as spheroidal graphite grains, and the graphite grain desorption process before casting bonding and the heat treatment process for healing the cavities 7 from which the graphite grains are desorbed are easy
  • the flake form is vulnerable to thermal and mechanical shock, but in the case of a soft (or high toughness) material, the flake form is an effective form for absorbing and alleviating thermal and mechanical shock.
  • a specific method is not limited, but an example thereof may include a method of applying a spheroidizing treatment inhibitory element to the mold wall surface during casting.
  • the cast iron insert prepared as described above improves the wettability with the aluminum molten metal during the fusion bonding process, makes a graphite free zone inside the bonding reaction layer, and melts the inside of the fusion bonding layer composed of an Al-Fe-based intermetallic compound.
  • a metal (alloy) layer that penetrates and connects cast iron and aluminum, it is preferable to desorb (7) the graphite grains on the surface of the cast iron material in contact with the molten aluminum.
  • the average desorption depth of the graphite grains from the surface is 5 to 500 ⁇ m. If the average desorption depth of graphite grains is 5 ⁇ m or less, it is difficult to ensure that all graphite grains are desorbed on the entire bonding interface. Insert material pretreatment effect including simultaneous desorption may not be obtained. On the other hand, if the average desorption depth of graphite grains is 500 ⁇ m or more, the thermal conductivity of cast iron is lowered, and surface defects generated during desorption treatment are excessive, which may decrease bonding reactivity.
  • the present invention is not limited to a specific method for desorbing the graphite grains, and various dry or wet methods may be used without limitation.
  • the cast iron insert treated with graphite grain desorption as described above subsequently diffuses Fe, Mn, etc. from the surrounding cast iron base to the site where the graphite grains are desorbed, so that the void part disappears and a soft Fe-Mn alloy layer 5 is formed. It is desirable to heat-treat at a high temperature to make it possible. That is, as in FIG. 2, the flake graphite grains 6 present on the surface of the cast iron material for insert are desorbed, and the site 7 where the graphite grains are desorbed diffuses Fe, Mn, etc. from the surrounding cast iron base to the cavity ( Healing so that there is no void) wealth. This is because, if a large number of cavities exist at the bonding interface of the dissimilar metal bonding material, the interfacial bonding strength is lowered and the interfacial thermal resistance is increased, thereby greatly reducing the interfacial heat transfer properties.
  • the heat treatment is preferably performed at a temperature of 600 to 1150 °C. If the heat treatment temperature is 600 ° C or less, there is a problem in that the cavity healing process time achieved by the atomic diffusion process is excessively long. It can cause problems.
  • the atmosphere for performing the heat treatment is preferably a reducing atmosphere. This is because it is possible to improve the wettability and bonding reactivity with the aluminum molten metal by removing the oxides in the matrix.
  • various pretreatments such as sanding treatment may be performed on the surface of the cast iron insert if necessary to improve bonding properties.
  • a cast iron material with macro-scale grooves or protrusions formed on the surface may be used to perform a pretreatment process including the above-described graphite grain desorption treatment and high temperature heat treatment for healing the cavity due to graphite grain desorption.
  • the Al-Fe-based intermetallic compound (1) which is a cast iron-aluminum fusion junction reactant, is converted into a cast iron material.
  • Graphite grains on the surface are first selectively nucleated in parts that were not desorbed, and then are realized by consuming surrounding Fe atoms and growing.
  • the surface portion of the cast iron insert 2 is dissolved (Dissolution), so that the Fe solute concentration increases in the aluminum molten metal portion 9 in contact with the cast iron insert.
  • the degree of supercooling of the molten aluminum increases (compositional subcooling).
  • the core of the Al-Fe-based intermetallic compound (1) on the surface of the cast iron insert is created.
  • the Al-Fe-based intermetallic compound is generated by the crystallization reaction of the intermetallic or hypereutectic system, sub-segregation in which the Fe composition in the molten aluminum around the generated intermetallic compound decreases (segregation in which the solute concentration is lower than the initial concentration) ) is characteristic.
  • the Fe solute-depleted part is solidified into an aluminum alloy containing Si, Fe, Mn, etc. dissolved from aluminum or cast iron, and the inside of the intermetallic compound layer 1 is moved in the normal direction of the junction interface.
  • a penetrating soft (or high toughness) metal (alloy) layer 4 is formed.
  • the average thickness of the bonding reaction layer is preferably 5 to 100 ⁇ m. If the average thickness of the bonding reaction layer is 5 ⁇ m or less, it is difficult to ensure that the bonding reaction layer is formed over the entire bonding interface. On the other hand, if the average thickness of the bonding reaction layer is 100 ⁇ m or more, the intermetallic compound-metal (alloy) layer composite It is difficult to maintain the structure, and cracks easily occur inside the brittle intermetallic compound. Also, in the cast iron matrix adjacent to the junction interface, the Fe atom solid solution into the molten metal is excessive, and Kirkendall pores are formed, which lowers the interfacial bonding force. because it becomes
  • the fusion bonding reaction took place and an Al-Fe-based intermetallic compound layer with a thickness of about 50 ⁇ m was uniformly formed at the cast iron-aluminum junction interface. It can be seen that the inside of the bonding reaction layer is a graphite-free region in which graphite grains do not exist. In addition, a soft aluminum or aluminum alloy layer that penetrates the inside of the intermetallic compound layer in the normal direction of the bonding interface and connects cast iron and aluminum was formed.
  • a Fe-Mn alloy layer having a higher composition of Mn and Si than the surrounding cast iron matrix was formed in a predetermined depth region (that is, a region where graphite grains were desorbed and a void was formed).
  • this Fe-Mn alloy layer was connected to the soft aluminum or aluminum alloy layer.
  • no defects such as cracks or microcavities were observed inside the bonding reaction layer.
  • 4 is a microstructure photograph of the cross-section of the junction of the cast iron-aluminum dissimilar metal bonding material of the present invention.
  • FIG. 6 is a graph showing the evaluation of the interfacial heat transfer coefficient of the comparative material and the invention material prepared by the above method by laser scintillation method.
  • the interfacial heat transfer coefficient of the inventive material was more than 10 times higher than that of the comparative material.
  • a large number of defects such as cracks formed inside the highly brittle intermetallic layer, microcavities formed at the intermetallic compound-graphite grain and graphite grain-aluminum interface were generated at the bonding interface, but in the case of the invention material, the inside of the intermetallic compound layer was joined.
  • An aluminum alloy layer that penetrates in the normal direction of the interface and connects cast iron and aluminum was formed.
  • a Fe-Mn alloy layer having a higher composition of Mn and Si than the surrounding cast iron matrix was formed in a predetermined depth region (that is, a region where graphite grains were desorbed and a void was formed).
  • this Fe-Mn alloy layer was connected to the soft aluminum or aluminum alloy layer. Therefore, there was no generation of defects such as cracks or microcavities in the bonding reaction layer. As a result, the interfacial thermal resistance decreased and the interfacial heat transfer characteristics were improved.

Abstract

Provided are cast iron-aluminum binding material having good interfacial bonding strength and heat transfer characteristic, and a method for manufacturing same. The cast iron-aluminum binding material of the present invention comprises: insert material cast-iron; Fe-Al intermetallic compound layer on the cast-iron; and a metal aluminum layer on the Fe-Al intermetallic compound layer, wherein the cast-iron and metal aluminum layer are connected by one or more soft metal or alloy layers perpendicularly penetrating the Fe-Al intermetallic compound layer.

Description

계면접합강도와 열전달특성이 우수한 주철-알루미늄 접합재 및 그 제조방법Cast iron-aluminum bonding material with excellent interfacial bonding strength and heat transfer properties and manufacturing method thereof
본 발명은 주철-알루미늄 접합재 제조기술에 관한 것으로, 보다 상세하게는, 계면접합강도와 열전달특성이 우수한 주철-알루미늄 접합재에 관한 것이다. The present invention relates to a technology for manufacturing a cast iron-aluminum bonding material, and more particularly, to a cast iron-aluminum bonding material having excellent interfacial bonding strength and heat transfer properties.
철계 소재는 우수한 기계적 성질을 지니고 있어 자동차, 중장비 등 수송기기 분야의 부품소재로 가장 광범위하게 사용되고 있는 재료이다. 그런데 최근 부품 경량화나 성능 및 신뢰성 향상 등에 대한 니즈를 동시에 만족시키기 위해, 단일 부품에 주철 등 철계 소재와 알루미늄, 동합금 등 비철계 소재를 함께 적용하는 철-비철 이종금속 부품에 대한 수요가 급증하고 있다. Since iron-based materials have excellent mechanical properties, they are the most widely used material for parts in the field of transportation equipment such as automobiles and heavy equipment. However, recently, in order to simultaneously satisfy the needs for weight reduction of parts and improvement of performance and reliability, the demand for ferrous-non-ferrous dissimilar metal parts that apply ferrous materials such as cast iron and non-ferrous materials such as aluminum and copper alloy together in a single part is rapidly increasing. .
철-비철 이종금속 부품 제조기술 중 철계 소재를 인서트재로 하여 금형 내부에 거치하고 비철계 용탕을 주입하여 접합과 동시에 부품을 제조하는 용융접합 공정은 강제압입법, 확산접합법, 마찰접합법, 용접 등 다른 이종금속 부품 접합 공정에 비교하여 복잡한 형상의 부품을 최종형상으로 직접 제조할 수 있으며 공정이 비교적 단순하고 제조원가가 저렴하다는 장점이 있다. Among the manufacturing technologies for ferrous-non-ferrous dissimilar metal parts, the fusion welding process, in which a ferrous material is used as an insert material, is placed inside the mold, and non-ferrous molten metal is injected to produce parts at the same time as bonding, is a forced press-fitting method, diffusion bonding method, friction bonding method, welding, etc. Compared to other dissimilar metal parts joining processes, parts with complex shapes can be directly manufactured into the final shape, and the process is relatively simple and the manufacturing cost is low.
하지만 용융접합 부품의 철계 코어재료로 쓰이는 소재 중 주조재로서 복잡형상 주조 정형부품과의 연계성이 뛰어난 주철재는 대표적인 비철계 소재인 알루미늄 합금과 난(難)접합 특성을 보이기 때문에 이종금속 부품으로의 활용에 최대 걸림돌로 작용하고 있다. 주철-알루미늄 난접합 특성의 원인으로는 주철재 표면 흑연립들로 인한 알루미늄 합금 용탕과의 낮은 젖음성과 접합반응성, 접합부에 생성되는 고취성 반응 생성물과 좁은 접합반응 프로세스 윈도우, 접합계면에 생성되는 결함 등이 있다. However, among the materials used as iron-based core materials for fusion-joined parts, cast iron, which is a casting material, and has excellent connectivity with complex-shaped cast orthopedic parts, exhibits difficult-to-join properties with aluminum alloy, a representative non-ferrous material, so it can be used as a dissimilar metal part. It is the biggest obstacle to its utilization. The causes of the cast iron-aluminum poor bonding properties include low wettability and bonding reactivity with the aluminum alloy molten metal due to the graphite grains on the surface of cast iron, high brittle reaction products generated in the bonding area, narrow bonding reaction process window, and defects generated at the bonding interface. etc.
지금까지 상기 난접합 특성을 보이는 주철-알루미늄 이종금속 접합재 부품을 주조공정에 의해 생산하기 위해 주로 쓰이는 방식은 주철재 인서트 표면에 형성된 마크로 스케일의 패턴에 알루미늄 용탕이 들어가 응고하면서 형성되는 기계적 체결 방식이다. 이를 위해서는 기계가공하여 표면에 그루브를 형성시킨 주철재 인서트나 돌기형 표면을 갖도록 주조하여 제조한 주철재 인서트가 사용되고 있다. 하지만 이러한 종래의 방식으로 제조되는 주철-알루미늄 이종금속 부품은 이종재질간 야금학적 결합(금속결합)이 일어나지 않기 때문에 계면결합력이 낮고 계면열전달이 감소하여 품질에 문제를 발생시키게 된다.Until now, the method mainly used to produce cast iron-aluminum dissimilar metal bonding material parts showing the above-mentioned difficult bonding characteristics by the casting process is a mechanical fastening method in which molten aluminum enters and solidifies in a macro-scale pattern formed on the surface of the cast iron insert. . For this purpose, a cast iron insert having a groove formed on the surface by machining or a cast iron insert manufactured by casting to have a protruding surface is used. However, in the cast iron-aluminum dissimilar metal parts manufactured in this conventional way, since metallurgical bonding (metal bonding) between dissimilar materials does not occur, interfacial bonding strength is low and interfacial heat transfer is reduced, thereby causing quality problems.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) 한국 공개특허 KR2019-0138021호(Patent Document 1) Korean Patent Publication No. KR2019-0138021
본 발명은 계면접합강도와 계면열전달특성이 우수한 주철-알루미늄 이종금속 접합재 및 그 제조방법을 제공함을 목적으로 한다. An object of the present invention is to provide a cast iron-aluminum dissimilar metal bonding material having excellent interfacial bonding strength and interfacial heat transfer characteristics, and a method for manufacturing the same.
한편, 본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.In addition, the subject of this invention is not limited to the above-mentioned content. The subject of the present invention will be understood from the overall content of the present specification, and those of ordinary skill in the art to which the present invention pertains will have no difficulty in understanding the additional subject of the present invention.
본 발명의 일측면은, One aspect of the present invention is
인써트재 주철; insert material cast iron;
상기 주철 상에 형성된 Fe-Al 금속간화합물층; 및 an Fe-Al intermetallic compound layer formed on the cast iron; and
상기 Fe-Al 금속간화합물층상에 형성된 금속 알루미늄층;을 포함하고, Including; a metal aluminum layer formed on the Fe-Al intermetallic compound layer;
상기 주철과 상기 금속 알루미늄층은, 상기 Fe-Al 금속간화합물층을 수직으로 관통하는 적어도 하나 이상의 연질의 금속층 또는 합금층으로 연결되어 있는 것을 특징으로 하는 주철-알루미늄 접합재 제조에 관한 것이다.The cast iron and the metal aluminum layer, the Fe-Al intermetallic compound layer, characterized in that connected by at least one soft metal layer or an alloy layer penetrating vertically, it relates to a cast iron-aluminum bonding material manufacturing.
상기 인써트 주철은 FC주철(편상흑연주철), DCI주철(구상흑연주철) 및 CV주철(콤팩트주철) 중 하나 이상일 수 있다. The insert cast iron may be at least one of FC cast iron (flaky graphite cast iron), DCI cast iron (spheroidal graphite cast iron), and CV cast iron (compact cast iron).
상기 인써트 주철에서 접합계면을 이루는 표면부의 주철조직은 FC주철(편상흑연주철)인 것이 바람직하다. It is preferable that the cast iron structure of the surface portion forming the bonding interface in the insert cast iron is FC cast iron (flaky graphite cast iron).
상기 인써트 주철에서 접합계면을 이루는 표면은 흑연립이 탈착된 것이 바람직하다. It is preferable that graphite grains are detached from the surface forming the bonding interface in the insert cast iron.
상기 흑연립 평균 탈착 깊이는 5~500 ㎛인 것이 바람직하다. The average desorption depth of the graphite grains is preferably 5 to 500 μm.
상기 상기 인써트 주철에서 접합계면을 이루는 표면은 기계가공에 의해 마이크로 스케일의 그루브나 돌기가 형성되어 있는 것이 바람직하다. It is preferable that micro-scale grooves or protrusions are formed on the surface forming the bonding interface in the insert cast iron by machining.
상기 연질의 금속층은 Al 금속층일 수 있다. The soft metal layer may be an Al metal layer.
상기 연질의 합금층은 Al에 Fe, Mn, Si 중 1종 이상이 포함된 알루미늄 합금층일 수 있다. The soft alloy layer may be an aluminum alloy layer including at least one of Fe, Mn, and Si in Al.
상기 주철재의 접합계면에서 그 내부 소정의 깊이 영역에 주변의 주철 기지보다 Mn 및 Si의 조성이 높은 Fe-Mn 합금층이 형성되어 있으며, 상기 Fe-Mn 합금층은 상기 연질의 금속층 또는 합금층에 연결되어 있는 것이 바람직하다. At the junction interface of the cast iron material, an Fe-Mn alloy layer having a higher Mn and Si composition than the surrounding cast iron matrix is formed in a predetermined depth region therein, and the Fe-Mn alloy layer is the soft metal layer or alloy layer It is preferable to be connected to
상기 인써트 주철재와 Al과의 접합반응에 따른 접합반응층 평균두께가 5~100 ㎛인 것이 바람직하다. It is preferable that the average thickness of the bonding reaction layer according to the bonding reaction between the insert cast iron material and Al is 5 to 100 μm.
또한 본 발명의 다른 측면은, In addition, another aspect of the present invention,
인써트 주철을 마련한 후, 그 표면의 흑연을 탈착하는 공정;After providing the insert cast iron, the step of desorbing the graphite on the surface;
상기 흑연이 탈착된 주철을 600~1150℃의 온도에서 열처리함으로써 상기 흑연이 탈착된 공동(void)에 주철기지 보다 Mn 및 Si 함량이 높은 Fe-Mn합금층을 형성하여 채우는 공정;The process of forming and filling a Fe-Mn alloy layer having a higher Mn and Si content than the cast iron matrix in the void from which the graphite is desorbed by heat-treating the cast iron from which the graphite is desorbed at a temperature of 600 to 1150° C.;
상기 열처리된 주철을 주형에 장입한 후, 알루미늄 용탕을 주입함으로써 주철과 알루미늄을 접합시키는 공정;을 포함하는 주철-알루미늄 접합재 제조방법에 관한 것이다.After the heat-treated cast iron is charged into a mold, the process of bonding cast iron and aluminum by pouring aluminum molten metal; it relates to a cast iron-aluminum bonding material manufacturing method comprising a.
상술한 바와 같은 구성의 본 발명은, 주철재와 금속 알루미늄층이 Fe-Al 금속간화합물층을 수직으로 관통하는 적어도 하나 이상의 연질의 금속 또는 합금층으로 연결됨으로써, 접합반응층 내부에는 균열이나 미세 공동 등 결함의 생성이 없는 이종금속재를 제조할 수 있다. In the present invention having the configuration as described above, the cast iron material and the metal aluminum layer are connected by at least one soft metal or alloy layer penetrating the Fe-Al intermetallic compound layer vertically, so that there are cracks or microcavities inside the bonding reaction layer. It is possible to manufacture dissimilar metal materials without generation of defects such as
따라서 본 발명의 이종금속재는 계면열저항이 감소하고 계면열전달특성이 향상될 수 있으며, 나아가, 종래기술에서의 고취성의 접합반응층 존재에 기인하는 제반 문제점을 해소할 수 있다. Accordingly, the dissimilar metal material of the present invention can reduce interfacial thermal resistance and improve interfacial heat transfer properties, and furthermore, solve various problems caused by the existence of a highly brittle bonding reaction layer in the prior art.
도 1은 본 발명의 일실시예에 의한 주철-알루미늄 접합재의 접합단면을 보이는 개략도이다. 1 is a schematic view showing a bonding cross-section of a cast iron-aluminum bonding material according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 주철-알루미늄 접합재의 접합단면이 형성되는 과정을 보이는 개략도이다. Figure 2 is a schematic view showing a process of forming a cross-section of the cast iron-aluminum bonding material according to an embodiment of the present invention is formed.
도 3은 통상의 용융접합 방법으로 제조된 주철-알루미늄 이종금속 접합재의 접합부 단면에 대한 미세조직 사진이다. 3 is a microstructure photograph of a cross-section of a junction part of a cast iron-aluminum dissimilar metal bonding material manufactured by a conventional fusion bonding method.
도 4는 본 발명에서 제조된 주철-알루미늄 이종금속 접합재의 접합부 단면에 대한 미세조직 사진이다. 4 is a microstructure photograph of the cross-section of the junction of the cast iron-aluminum dissimilar metal bonding material prepared in the present invention.
도 5는 본 발명의 실시예에서 발명재와 비교재의 계면접합강도를 대비하여 나타낸 그림이다. 5 is a diagram showing the interfacial bonding strength of the inventive material and the comparative material in comparison with each other in the embodiment of the present invention.
도 6은 본 발명의 실시예에서 발명재와 비교재의 계면열전달계수를 대비하여 나타낸 그림이다. 6 is a diagram showing the interfacial heat transfer coefficients of the invention material and the comparative material in comparison with each other in the embodiment of the present invention.
이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.
본 발명의 주철-알루미늄 접합재는, 인써트재 주철; 상기 주철 상에 형성된 Fe-Al 금속간화합물층; 및 상기 Fe-Al 금속간화합물층상에 형성된 금속 알루미늄층;을 포함하고, 상기 주철과 상기 금속 알루미늄층은, 상기 Fe-Al 금속간화합물층을 수직으로 관통하는 적어도 하나 이상의 연질의 금속층 또는 합금층으로 연결되어 있다.Cast iron-aluminum bonding material of the present invention, insert material cast iron; an Fe-Al intermetallic compound layer formed on the cast iron; and a metallic aluminum layer formed on the Fe-Al intermetallic compound layer, wherein the cast iron and the metallic aluminum layer are at least one soft metal layer or alloy layer penetrating the Fe-Al intermetallic compound layer vertically. connected.
도 1은 본 발명의 일실시예에 의한 주철-알루미늄 접합재의 접합단면을 보이는 개략도이다. 1 is a schematic view showing a bonding cross-section of a cast iron-aluminum bonding material according to an embodiment of the present invention.
도 1에 나타난 바와 같이, 본 발명의 주철(인서트재)-알루미늄(주조재) 이종금속 접합재의 구조는, 두꺼운 금속간화합물(1)로 구성된 용융접합 반응층 내부를 접합계면의 법선방향(즉, 수직방향으로)으로 관통하며 주철(2)과 알루미늄(3)을 연결해주는 연질(또는 고인성)의 금속층 내지 금속합금층(4)이 형성되어 있다. 그리고 상기 주철재의 접합계면에서 그 내부 소정의 깊이 영역에 주변의 주철 기지(2) 보다 Mn 및 Si의 조성이 높은 Fe-Mn 합금층(5)이 형성되어 있으며, 상기 Fe-Mn 합금층(5)은 상기 연질의 금속층 또는 합금층에 연결되어 있다.As shown in Figure 1, the structure of the cast iron (insert material)-aluminum (cast material) dissimilar metal bonding material of the present invention is the inside of the fusion bonding reaction layer composed of the thick intermetallic compound (1) in the normal direction of the bonding interface (i.e. , in the vertical direction) and a soft (or high toughness) metal layer or metal alloy layer 4 that connects the cast iron 2 and the aluminum 3 is formed. And at the bonding interface of the cast iron material, a Fe-Mn alloy layer 5 having a higher Mn and Si composition than the surrounding cast iron matrix 2 is formed in a predetermined depth region therein, and the Fe-Mn alloy layer ( 5) is connected to the soft metal layer or alloy layer.
일반적으로, 용융접합 공정에 의해 제조되는 주철-알루미늄 이종금속 접합재는 좁은 접합반응 프로세스 윈도우를 갖기 때문에 일반적으로 다음의 두 가지 경우에 해당되며 그로 인해 계면접합강도가 낮고 계면열전달특성이 떨어진다. In general, the cast iron-aluminum dissimilar metal bonding material manufactured by the melt bonding process has a narrow bonding reaction process window, so it generally falls under the following two cases, which results in low interfacial bonding strength and poor interfacial heat transfer properties.
첫째, 주철재 표면에 존재하는 흑연립 및 산화물 등으로 인해 알루미늄 용탕과의 젖음성이 낮고 접합반응이 잘 일어나지 않아 주철과 알루미늄 사이에 큰 계면 공극(Gap)이 존재하는 경우로서, 이종금속간 화학적인 결합(금속결합)이 일어나지 않아 계면접합강도가 낮고 큰 계면 열저항이 존재하게 된다. First, due to graphite grains and oxides present on the surface of cast iron, wettability with molten aluminum is low and bonding reaction does not occur well, so a large interfacial gap exists between cast iron and aluminum. Since bonding (metal bonding) does not occur, the interfacial bonding strength is low and there is a large interfacial thermal resistance.
둘째, 상기의 접합반응을 방해하는 요인들이 제거된 경우로서, 이때에는 주철재 인서트로부터 알루미늄 용탕으로 Fe 원자가 고용되며 취성이 매우 큰 Al-Fe계 금속간화합물이 빠른 속도로 두껍게 형성되게 된다. Second, as the factors impeding the bonding reaction are removed, in this case, Fe atoms are dissolved into the aluminum molten metal from the cast iron insert, and the Al-Fe-based intermetallic compound with high brittleness is rapidly and thickly formed.
두 번째의 경우에는 비록 이종금속 사이에 화학적 결합이 일어났지만, i) 접합계면에 두껍게 형성된 고취성의 금속간화합물 층, ii) 금속간화합물 층 사이에 존재하는 취성이 큰 비금속 입자인 흑연립들, iii) 금속간화합물-흑연립 및 흑연립-알루미늄 계면에 형성된 미세 공동 등으로 인해 이종금속 접합재의 제조, 가공, 또는 사용 중의 열 및 기계적 충격에 의해 접합계면에서 매우 쉽게 균열이 발생하여 낮은 계면접합강도 값을 보이게 된다. 또한 금속간화합물-흑연립 및 흑연립-알루미늄 계면에 형성된 미세 공동들과 충격에 의해 생성된 균열들은 모두 주철-알루미늄 사이의 열저항을 높이게 되어 계면열전달특성 역시 크게 떨어뜨리게 된다.       In the second case, although chemical bonding occurred between dissimilar metals, i) a highly brittle intermetallic compound layer formed thickly at the junction interface, ii) graphite grains, which are non-metallic particles with high brittleness, existing between the intermetallic compound layers; iii) Due to microcavities formed at the intermetallic compound-graphite grain and graphite grain-aluminum interface, cracks occur very easily at the bonding interface due to thermal and mechanical shock during the manufacture, processing, or use of dissimilar metal bonding materials, resulting in low interfacial bonding intensity values are displayed. In addition, microcavities formed at the intermetallic compound-graphite grain and graphite grain-aluminum interface and cracks generated by impact all increase the thermal resistance between cast iron-aluminum, and the interfacial heat transfer properties are also greatly reduced.
반면에 본 발명은 전술한 바와 같이, 고취성의 두꺼운 금속간화합물로 구성되는 용융접합 반응층 내부에 취성이 크며 미세 공동 생성을 유발하는 비금속 입자인 흑연립이 존재하는 것이 아니라, 접합계면의 법선방향으로 관통하며 주철과 알루미늄을 연결해주는 연질(또는 고인성)의 금속층 내지 금속합금층이 형성되어 있다. 본 발명에서 상기 연질의 금속층은 Al일 수 있으며, 상기 연질의 금속합금층은 Al에 Si, Fe, Mn 등에서 1종 이상이 포함된 알루미늄 합금층일 수 있다. On the other hand, in the present invention, as described above, graphite grains, which are non-metallic particles that are highly brittle and cause fine cavities, are not present in the fusion bonding reaction layer composed of a highly brittle thick intermetallic compound, but in the normal direction of the bonding interface. A soft (or high-toughness) metal layer or metal alloy layer that penetrates through the metal and connects cast iron and aluminum is formed. In the present invention, the soft metal layer may be Al, and the soft metal alloy layer may be an aluminum alloy layer in which Al contains at least one of Si, Fe, Mn, and the like.
따라서 이렇게 형성된 연질의 금속층 내지 금속합금층에 의해 열 및 기계적 충격으로 인한 균열의 생성/전파에 대한 저항이 커지고, 그 결과 계면접합강도가 크게 증가하게 된다. 또한 계면 접합반응층에 공극, 미세 공동, 균열 등의 결함 없이 주철-알루미늄 이종금속 사이에 화학적 결합이 형성됨에 따라 계면 열저항은 감소하여 계면열전달특성이 크게 향상되는 효과를 얻을 수 있다. 따라서 전술한 특징을 이용하여 주철재 인서트재 표면에서 금속간화합물의 핵 생성 반응을 적정 위치에서 적절한 형상으로 일어나지 않게 하거나 지연시킬 수 있다면, 용융접합 반응층이 일정 두께에 이르도록 금속간화합물-금속(합금)층 복합 구조로 성장시킬 수 있다. Therefore, the resistance to generation/propagation of cracks due to thermal and mechanical shock is increased by the soft metal layer or metal alloy layer formed in this way, and as a result, the interfacial bonding strength is greatly increased. In addition, as a chemical bond is formed between cast iron-aluminum dissimilar metals without defects such as voids, microcavities, and cracks in the interfacial bonding reaction layer, the interfacial thermal resistance is reduced and the interfacial heat transfer properties are greatly improved. Therefore, if the nucleation reaction of the intermetallic compound on the surface of the cast iron insert material can be prevented or delayed from occurring in an appropriate shape at an appropriate location using the above-described characteristics, the intermetallic compound-metal It can be grown in a (alloy) layer composite structure.
본 발명에서 상기 인써트 주철은 FC주철(편상흑연주철), DCI주철(구상흑연주철) 및 CV주철(콤팩트주철) 중 하나 이상일 수 있다. In the present invention, the insert cast iron may be one or more of FC cast iron (flaky graphite cast iron), DCI cast iron (spheroidal graphite cast iron), and CV cast iron (compact cast iron).
상기 인써트 주철에서 접합계면을 이루는 표면부의 주철조직은 FC주철(편상흑연주철)인 것이 바람직하다. It is preferable that the cast iron structure of the surface portion forming the bonding interface in the insert cast iron is FC cast iron (flaky graphite cast iron).
또한 본 발명에서는 상기 주철재 인서트재 표면에서 금속간화합물의 핵 생성 반응을 적정 위치에서 적절한 형상으로 일어나지 않게 하는 방법으로서는 흑연립을 탈착하는 것이 바람직하다. 알루미늄 용탕과의 젖음성 개선과 접합 반응층 내부의 무흑연영역(Graphite Free Zone)화를 위해서도 주철재 인서트 표면부 흑연립을 탈착해 줄 필요가 있다. 이때, 상기 흑연립 평균 탈착 깊이는 5~500 ㎛인 것이 바람직하다. In addition, in the present invention, as a method of preventing the nucleation reaction of intermetallic compounds from occurring in an appropriate position in an appropriate shape on the surface of the cast iron insert material, it is preferable to desorb graphite grains. It is also necessary to detach the graphite grains from the surface of the cast iron insert in order to improve the wettability with the aluminum molten metal and to create a graphite free zone inside the bonding reaction layer. At this time, it is preferable that the average desorption depth of the graphite grains is 5 to 500 μm.
나아가, 본 발명에서 상기 인써트 주철에서 접합계면을 이루는 표면은 기계가공에 의해 마이크로 스케일의 그루브나 돌기가 형성되어 있는 것이 바람직하다. Furthermore, in the present invention, it is preferable that micro-scale grooves or protrusions are formed on the surface forming the bonding interface in the insert cast iron by machining.
이하, 금속간화합물-금속(합금)층 복합 구조의 접합반응층을 갖는 주철-알루미늄 이종금속 접합재의 제조방법에 대해 상세히 설명한다. Hereinafter, a method for manufacturing a cast iron-aluminum dissimilar metal bonding material having a bonding reaction layer having an intermetallic compound-metal (alloy) layer composite structure will be described in detail.
도 2는 본 발명의 일실시예에 따른 주철-알루미늄 접합재의 접합단면이 형성되는 과정을 보이는 개략도이다. Figure 2 is a schematic view showing a process of forming a cross-section of the cast iron-aluminum bonding material according to an embodiment of the present invention is formed.
먼저, 본 발명에서는 용융접합용 인서트를 준비하기 위해 우선 동작특성과 용융접합공정에 적합한 주철재 코어 소재(2)를 부품의 형태에 맞게 마련하는데, 주철재의 표면에는 흑연립이(6)이 존재한다. First, in the present invention, in order to prepare an insert for fusion welding, a cast iron core material 2 suitable for operation characteristics and fusion bonding process is prepared according to the shape of the part, and graphite grains 6 are provided on the surface of the cast iron material exist.
인서트용 주철재 소재로서는 FC주철(편상흑연주철), DCI주철(구상흑연주철), CV주철(콤팩트주철) 등 부품의 특성에 따라 다양한 주철재가 쓰일 수 있으나, 알루미늄 용탕과 접하여 용융접합계면을 형성하게 될 표면부의 흑연립 조직은 편상흑연인 것이 바람직하다. 편상흑연립은 구상흑연립 등 다른 흑연 형태의 주철들과 비교하여 열전달 성능이 우수하고, 주조접합 전 행해지는 흑연립 탈착 공정 및 흑연립이 탈착된 공동부(7)를 힐링하는 열처리 공정이 용이하고, 또한 용융접합층 내부를 접합계면의 법선방향으로 관통하며 주철과 알루미늄을 연결해 주는 금속 내지 금속합금이 편상(=층상)으로 형성되게 해주기 때문이다. 고취성의 물질인 경우에는 편상 형태일 경우가 열 및 기계적 충격에 취약하지만, 연질(또는 고인성)의 물질인 경우에는 편상 형태일 경우가 열 및 기계적 충격을 흡수하고 완화시키는데 효과적인 형태이다. DCI주철이나 CV주철의 표면 흑연립 조직을 편상으로 하기 위해서는 구체적인 방법에 제한되는 것은 아니나, 그 일예로 주조시 주형벽면에 구상화처리 저해 원소를 도포하는 방법을 들 수도 있다. As cast iron materials for inserts, various cast iron materials can be used depending on the characteristics of parts, such as FC cast iron (flaky graphite cast iron), DCI cast iron (spheroidal graphite cast iron), and CV cast iron (compact cast iron). It is preferable that the graphite grain structure of the surface part to be formed is flake graphite. Flake graphite grains have superior heat transfer performance compared to other graphite-type cast irons such as spheroidal graphite grains, and the graphite grain desorption process before casting bonding and the heat treatment process for healing the cavities 7 from which the graphite grains are desorbed are easy This is because the metal or metal alloy that penetrates the inside of the fusion bonding layer in the normal direction of the bonding interface and connects cast iron and aluminum is formed in a flake shape (= layered). In the case of a highly brittle material, the flake form is vulnerable to thermal and mechanical shock, but in the case of a soft (or high toughness) material, the flake form is an effective form for absorbing and alleviating thermal and mechanical shock. In order to flake the surface graphite grain structure of DCI cast iron or CV cast iron, a specific method is not limited, but an example thereof may include a method of applying a spheroidizing treatment inhibitory element to the mold wall surface during casting.
상기와 같이 마련된 주철재 인서트는 용융접합 공정시 알루미늄 용탕과의 젖음성 개선, 접합 반응층 내부의 무흑연영역(Graphite Free Zone)화, 그리고 Al-Fe계 금속간화합물로 구성되는 용융접합층 내부를 관통하며 주철과 알루미늄을 연결해 주는 금속(합금)층의 형성을 위해 알루미늄 용탕과 접하는 주철재 표면의 흑연립들은 탈착(7)하는 것이 바람직하다. The cast iron insert prepared as described above improves the wettability with the aluminum molten metal during the fusion bonding process, makes a graphite free zone inside the bonding reaction layer, and melts the inside of the fusion bonding layer composed of an Al-Fe-based intermetallic compound. For the formation of a metal (alloy) layer that penetrates and connects cast iron and aluminum, it is preferable to desorb (7) the graphite grains on the surface of the cast iron material in contact with the molten aluminum.
이 때 표면으로부터 흑연립 평균 탈착 깊이는 5~500㎛인 것이 좋다. 흑연립의 평균 탈착 깊이가 5㎛ 이하면, 접합계면 전체의 흑연립들을 모두 탈착하는 것을 보증하기 어렵고, 또한 용융접합 공정에서 용융 알루미늄으로 고용되며 사라지는 주철 인서트재의 두께가 더 커지는 경우가 발생하여 흑연립 탈착을 포함하는 인서트재 전처리 효과를 얻을 수 없게 될 수 있다. 한편 흑연립의 평균 탈착 깊이가 500㎛ 이상이면, 주철의 열전도도를 떨어뜨리게 되며 탈착 처리 시 생성되는 표면결함이 과도하여 오히려 접합반응성을 떨어뜨릴 수 있다. At this time, it is preferable that the average desorption depth of the graphite grains from the surface is 5 to 500 μm. If the average desorption depth of graphite grains is 5㎛ or less, it is difficult to ensure that all graphite grains are desorbed on the entire bonding interface. Insert material pretreatment effect including simultaneous desorption may not be obtained. On the other hand, if the average desorption depth of graphite grains is 500 μm or more, the thermal conductivity of cast iron is lowered, and surface defects generated during desorption treatment are excessive, which may decrease bonding reactivity.
본 발명에서는 상기 흑연립을 탈착시키는 구체적인 방법에 제한되지 않으며, 다양한 건식법 또는 습식법을 제한 없이 이용할 수 있다. The present invention is not limited to a specific method for desorbing the graphite grains, and various dry or wet methods may be used without limitation.
상기와 같이 흑연립 탈착처리한 주철재 인서트는 후속하여 흑연립들이 탈착된 자리를 주변 주철 기지로부터 Fe, Mn 등을 확산시켜 공동(void)부가 사라지고 연질의 Fe-Mn합금층(5)이 형성될 수 있도록 고온에서 열처리를 하는 것이 바람직하다. 즉, 도 2에서와 같이 인서트용 주철재 표면부에 존재하는 편상흑연립들(6)을 탈착하고, 흑연립들이 탈착된 자리(7)는 주변 주철 기지로부터 Fe, Mn 등을 확산시켜 공동(void)부가 없도록 힐링시킨다. 이종금속 접합재의 접합계면에 다수의 공동부가 존재하면 계면접합강도를 떨어뜨리고 또한 계면 열저항을 증가시켜 계면열전달특성 역시 크게 떨어뜨리게 되기 때문이다. The cast iron insert treated with graphite grain desorption as described above subsequently diffuses Fe, Mn, etc. from the surrounding cast iron base to the site where the graphite grains are desorbed, so that the void part disappears and a soft Fe-Mn alloy layer 5 is formed. It is desirable to heat-treat at a high temperature to make it possible. That is, as in FIG. 2, the flake graphite grains 6 present on the surface of the cast iron material for insert are desorbed, and the site 7 where the graphite grains are desorbed diffuses Fe, Mn, etc. from the surrounding cast iron base to the cavity ( Healing so that there is no void) wealth. This is because, if a large number of cavities exist at the bonding interface of the dissimilar metal bonding material, the interfacial bonding strength is lowered and the interfacial thermal resistance is increased, thereby greatly reducing the interfacial heat transfer properties.
상기 열처리는 600~1150℃의 온도에서 행하는 것이 바람직하다. 열처리 온도가 600℃ 이하이면, 원자의 확산 공정에 의해 달성되는 공동부 힐링 공정 시간이 과도하게 길어지는 문제점이 있으며, 열처리 온도가 1150℃ 이상이면 주철의 용융점과 가까워 물성 및 부품의 치수변화 등의 문제를 야기할 수 있다. 상기의 열처리를 수행하는 분위기는 환원성 분위기인 것이 바람직하다. 기지조직의 산화물들을 제거함으로써 알루미늄 용탕과의 젖음성 및 접합반응성을 향상시킬 수 있기 때문이다. The heat treatment is preferably performed at a temperature of 600 to 1150 °C. If the heat treatment temperature is 600 ° C or less, there is a problem in that the cavity healing process time achieved by the atomic diffusion process is excessively long. It can cause problems. The atmosphere for performing the heat treatment is preferably a reducing atmosphere. This is because it is possible to improve the wettability and bonding reactivity with the aluminum molten metal by removing the oxides in the matrix.
그리고 접합특성 향상을 위해 필요에 따라 주철재 인서트의 표면에 추가적으로 샌딩처리 등의 다양한 전처리를 행할 수도 있다. In addition, various pretreatments such as sanding treatment may be performed on the surface of the cast iron insert if necessary to improve bonding properties.
또한 상기의 용융접합공정용 주철재 인서트를 준비하는데 있어 기계적결속 효과에 의해 계면접합강도를 더욱 향상시키면서 이종금속 접합재의 신뢰성을 더욱 제고하기 위해서는, 표면에 마크로 스케일의 그루브나 돌기를 형성시킨 주철재 인서트를 이용하여 전술한 흑연립 탈착처리, 흑연립 탈착으로 인한 공동부 힐링을 위한 고온 열처리 등을 포함하는 전처리 공정을 행할 수 있다. In addition, in preparing the cast iron insert for the fusion bonding process, in order to further improve the interfacial bonding strength by the mechanical bonding effect and to further enhance the reliability of the dissimilar metal bonding material, a cast iron material with macro-scale grooves or protrusions formed on the surface The insert may be used to perform a pretreatment process including the above-described graphite grain desorption treatment and high temperature heat treatment for healing the cavity due to graphite grain desorption.
이어, 본 발명에서는 상기와 같이 준비된 주철 인서트(2)를 주형 내에 장착한 후 용융 알루미늄 합금(8)을 주입하면, 주철-알루미늄 용융접합 반응물인 Al-Fe계 금속간화합물(1)이 주철재 표면 중 흑연립들이 탈착되지 않았던 부분들에서 선택적으로 먼저 핵 생성된 후 주변의 Fe 원자를 소비하며 성장됨에 따라 구현된다. Next, in the present invention, when the molten aluminum alloy 8 is injected after the cast iron insert 2 prepared as described above is mounted in the mold, the Al-Fe-based intermetallic compound (1), which is a cast iron-aluminum fusion junction reactant, is converted into a cast iron material. Graphite grains on the surface are first selectively nucleated in parts that were not desorbed, and then are realized by consuming surrounding Fe atoms and growing.
구체적으로, 주철-알루미늄 용융접합 공정에서는 주철재 인서트(2) 표면부가 용해(Dissolution)되어 주철재 인서트와 접한 알루미늄 용탕부(9)에서는 Fe 용질 농도가 증가하게 된다. Fe 조성이 증가함에 따라 알루미늄 용탕의 과냉도는 증가하게 되는데 (조성적 과냉), 과냉도가 일정 값 이상에 도달하게 되면 주철재 인서트 표면부에서 Al-Fe계 금속간화합물(1)의 핵이 생성된다. 그런데 Al-Fe계 금속간화합물은 포정계 또는 과공정계 시스템의 정출반응에 의해 생성되기 때문에, 생성되는 금속간화합물 주변 용융 알루미늄 내 Fe 조성이 감소하는 부편석(용질 농도가 초기 농도보다 낮아지는 편석)의 특징이 있다. 그 결과 Fe 용질 농도의 구배가 발생함에 따라 Fe 용질들은 핵 생성이 일어나지 않은 고 농도 영역(10)에서 핵 생성이 일어난 저 농도 영역(11)으로 확산하게 되고, 이로 인해 핵 생성이 일어나지 않은 영역의 과냉도는 감소하게 되어 핵 생성이 일어날 조건에는 도달하지 못하게 된다. 또한 계속하여 금속간화합물이 성장하는 동안에도 Fe 용질을 소비하기 때문에 핵 생성이 일어나지 않았던 고 농도 영역으로부터의 Fe 용질 확산 이동은 당분간 지속되게 될 것이고, 결국 핵 생성이 일어나지 않은 주철재 표면부 전방 영역은 시간이 지나고 냉각이 일어남에 따라 Fe 용질이 고갈된 알루미늄 용탕(12)이 남게 된다. 이러한 상황에서 온도가 더욱 낮아져 응고반응이 일어나게 되면 Fe 용질 고갈부는 알루미늄 내지는 주철로부터 고용된 Si, Fe, Mn 등을 포함하는 알루미늄 합금으로 응고되어 금속간화합물층(1) 내부를 접합계면의 법선 방향으로 관통하는 연질(또는 고인성)의 금속(합금)층(4)을 형성하게 되는 것이다. Specifically, in the cast iron-aluminum fusion bonding process, the surface portion of the cast iron insert 2 is dissolved (Dissolution), so that the Fe solute concentration increases in the aluminum molten metal portion 9 in contact with the cast iron insert. As the Fe composition increases, the degree of supercooling of the molten aluminum increases (compositional subcooling). When the degree of subcooling reaches a certain value or more, the core of the Al-Fe-based intermetallic compound (1) on the surface of the cast iron insert is created However, since the Al-Fe-based intermetallic compound is generated by the crystallization reaction of the intermetallic or hypereutectic system, sub-segregation in which the Fe composition in the molten aluminum around the generated intermetallic compound decreases (segregation in which the solute concentration is lower than the initial concentration) ) is characteristic. As a result, as a gradient of Fe solute concentration occurs, the Fe solutes diffuse from the high concentration region 10 where nucleation does not occur to the low concentration region 11 where nucleation occurs, and this causes the The degree of subcooling is reduced so that the conditions for nucleation cannot be reached. In addition, since the Fe solute is consumed while the intermetallic compound continues to grow, the diffusion movement of the Fe solute from the high concentration region where nucleation did not occur will continue for a while, and eventually the area in front of the surface of the cast iron where nucleation does not occur. As time passes and cooling occurs, the aluminum molten metal 12 in which Fe solute is depleted remains. In this situation, when the temperature is further lowered and the solidification reaction occurs, the Fe solute-depleted part is solidified into an aluminum alloy containing Si, Fe, Mn, etc. dissolved from aluminum or cast iron, and the inside of the intermetallic compound layer 1 is moved in the normal direction of the junction interface. A penetrating soft (or high toughness) metal (alloy) layer 4 is formed.
상기의 같이 전처리하여 준비된 주철재 인서트를 이용하여 용융접합공정에 의해 주철-알루미늄 이종금속 접합재를 제조하는 경우, 접합반응층의 평균두께는 5~100 ㎛로 형성시키는 것이 바람직하다. 접합반응층의 평균두께가 5 ㎛ 이하면, 접합계면 전체에 접합반응층이 형성되는 것을 보증하기 어려우며, 한편 접합반응층의 평균두께가 100 ㎛ 이상이면, 금속간화합물-금속(합금)층 복합 구조를 유지하기 어렵고, 취성이 큰 금속간화합물 내부에 균열이 발생하기 쉽고, 또한 접합계면에 인접한 주철재 기지에서는 용탕으로의 Fe 원자 고용이 과도하게 되어 Kirkendall 기공 등이 형성되어 계면결합력을 떨어뜨리게 되기 때문이다. When the cast iron-aluminum dissimilar metal bonding material is manufactured by the melt bonding process using the cast iron insert prepared by the pretreatment as described above, the average thickness of the bonding reaction layer is preferably 5 to 100 μm. If the average thickness of the bonding reaction layer is 5 μm or less, it is difficult to ensure that the bonding reaction layer is formed over the entire bonding interface. On the other hand, if the average thickness of the bonding reaction layer is 100 μm or more, the intermetallic compound-metal (alloy) layer composite It is difficult to maintain the structure, and cracks easily occur inside the brittle intermetallic compound. Also, in the cast iron matrix adjacent to the junction interface, the Fe atom solid solution into the molten metal is excessive, and Kirkendall pores are formed, which lowers the interfacial bonding force. because it becomes
이하, 실시예를 통하여 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail through examples.
(실시예)(Example)
*인서트재로 편상흑연 주철을 준비한 후, 인서트 표면을 샌딩처리하여 산화물이나 이물질을 제거한 후 주형에 장착하고, 충분한 과열도를 갖는 알루미늄 합금 용탕을 주입하여 용융접합하여 비교재인 주철-알루미늄 접합재를 제작하였다. 그 결과, 용융접합 반응이 일어나 주철-알루미늄 접합계면에 30~50㎛ 두께의 Al-Fe계 금속간화합물 층이 형성되었으며, 접합반응층 내부에는 흑연립들이 존재하였다. 또한 금속간화합물층 내부에 형성된 균열과 금속간화합물-흑연립 및 흑연립-알루미늄 계면에 형성된 미세 공동들을 관찰할 수 있었다. 도 3은 통상의 용융접합 방법에 제조된 비교재인 주철-알루미늄 이종금속 접합재의 접합부 단면에 대한 미세조직 사진이다.    * After preparing flake graphite cast iron as an insert material, the surface of the insert is sanded to remove oxides or foreign substances, mounted on the mold, and molten aluminum alloy with sufficient superheat is poured and melted to produce a cast iron-aluminum joint, a comparative material. did As a result, the fusion bonding reaction took place to form an Al-Fe-based intermetallic compound layer with a thickness of 30-50 μm at the cast iron-aluminum bonding interface, and graphite grains were present inside the bonding reaction layer. In addition, cracks formed inside the intermetallic compound layer and microcavities formed at the intermetallic compound-graphite grain and graphite grain-aluminum interface could be observed. 3 is a microstructure photograph of a cross-section of a junction part of a cast iron-aluminum dissimilar metal bonding material, which is a comparative material manufactured by a conventional melt bonding method.
비교를 위하여, 인서트재로 편상흑연 주철을 준비한 후, 건식법에 의해 인서트 표면으로부터 150~200㎛ 깊이에 존재하는 흑연립들을 제거하였다. 후속하여 흑연립들이 탈착되어 생성된 공동부를 Fe, Mn 등을 확산시켜 힐링하기 위한 환원성 분위기에서의 고온열처리를 1100℃에서 추가적으로 수행한 후, 인서트 표면을 샌딩처리하여 산화물이나 이물질을 제거한 후 주형에 장착하고, 충분한 과열도를 갖는 알루미늄 합금 용탕을 주입하여 용융접합하여 발명재인 주철-알루미늄 접합재를 제작하였다. 그 결과, 용융접합 반응이 일어나 주철-알루미늄 접합계면에 50㎛ 두께 내외의 Al-Fe계 금속간화합물 층이 균일하게 형성되었다. 접합반응층 내부에는 흑연립들이 존재하지 않는 무흑연영역임을 알 수 있다. 또한 금속간화합물층 내부를 접합계면의 법선방향으로 관통하며 주철과 알루미늄을 연결해주는 연질의 알루미늄 내지 알루미늄 합금층이 형성되어 있었다. 그리고 상기 주철재의 접합계면에서 내부 소정의 깊이 영역(즉, 흑연립이 탈착되어 공동(void)이 형성된 영역)에 주변의 주철 기지보다 Mn 및 Si의 조성이 높은 Fe-Mn 합금층이 형성되었으며, 이러한 Fe-Mn 합금층 상기 연질의 알루미늄 또는 알루미늄 합금층에 연결되어 있었다. 또한 금속간화합물이 두껍게 생성되었음에도 불구하고 접합반응층 내부에는 균열이나 미세 공동 등 결함들이 관찰되지 않는다. 도 4는 상기 본 발명재의 주철-알루미늄 이종금속 접합재의 접합부 단면에 대한 미세조직 사진이다. For comparison, after preparing flake graphite cast iron as an insert material, graphite grains existing at a depth of 150 to 200 μm from the insert surface were removed by a dry method. Subsequently, high-temperature heat treatment in a reducing atmosphere to diffuse Fe, Mn, etc. to heal the cavities created by the desorption of graphite grains was additionally performed at 1100° C., and then sanded the insert surface to remove oxides or foreign substances, Then, an aluminum alloy molten metal having a sufficient degree of superheat was poured and fusion-bonded to prepare a cast iron-aluminum bonding material, which is an invention material. As a result, the fusion bonding reaction took place and an Al-Fe-based intermetallic compound layer with a thickness of about 50 μm was uniformly formed at the cast iron-aluminum junction interface. It can be seen that the inside of the bonding reaction layer is a graphite-free region in which graphite grains do not exist. In addition, a soft aluminum or aluminum alloy layer that penetrates the inside of the intermetallic compound layer in the normal direction of the bonding interface and connects cast iron and aluminum was formed. And at the bonding interface of the cast iron material, a Fe-Mn alloy layer having a higher composition of Mn and Si than the surrounding cast iron matrix was formed in a predetermined depth region (that is, a region where graphite grains were desorbed and a void was formed). , this Fe-Mn alloy layer was connected to the soft aluminum or aluminum alloy layer. Also, despite the thick formation of the intermetallic compound, no defects such as cracks or microcavities were observed inside the bonding reaction layer. 4 is a microstructure photograph of the cross-section of the junction of the cast iron-aluminum dissimilar metal bonding material of the present invention.
한편 도 5에는 상기의 방법으로 제조한 비교재와 발명재의 계면접합강도를 전단법에 의해 평가하여 나타내었다. Meanwhile, in FIG. 5, the interfacial bonding strength of the comparative material and the inventive material prepared by the above method was evaluated and shown by the shearing method.
발명재의 경우 비교재보다 취성이 큰 금속간화합물이 더 두껍게 형성되었음에도 불구하고, 금속간화합물층 내부를 접합계면의 법선방향으로 관통하며 주철과 알루미늄을 연결해주는 연질의 알루미늄 합금층이 형성되었고, 접합반응층 내부에는 흑연립들이 존재하지 않았으며, 균열이나 미세 공동 등 결함 생성 경향 또한 낮았기 때문에, 그 결과 비교재보다 계면접합강도가 90% 향상되었다. In the case of the invention material, despite the fact that the intermetallic compound, which is more brittle than the comparative material, was formed thicker, a soft aluminum alloy layer that penetrated the inside of the intermetallic compound layer in the normal direction of the bonding interface and connected cast iron and aluminum was formed, and the bonding reaction There were no graphite grains inside the layer, and the tendency to generate defects such as cracks and microcavities was also low. As a result, the interfacial bonding strength was improved by 90% compared to the comparative material.
도 6은 상기의 방법으로 제조한 비교재와 발명재의 계면열전달계수를 레이저 섬광법에 의해 평가하여 나타낸 것이다. 6 is a graph showing the evaluation of the interfacial heat transfer coefficient of the comparative material and the invention material prepared by the above method by laser scintillation method.
발명재의 계면열전달계수가 비교재의 계면열전달계수보다 10배 이상 높은 결과를 보였다. 비교재의 경우 고취성의 금속간화합물층 내부에 형성된 균열, 금속간화합물-흑연립 및 흑연립-알루미늄 계면에 형성된 미세 공동과 같은 다량의 결함이 접합계면에 생성되었지만, 발명재의 경우 금속간화합물층 내부를 접합계면의 법선방향으로 관통하며 주철과 알루미늄을 연결해주는 알루미늄 합금층이 형성되어 있었다. 그리고 상기 주철재의 접합계면에서 내부 소정의 깊이 영역(즉, 흑연립이 탈착되어 공동(void)이 형성된 영역)에 주변의 주철 기지보다 Mn 및 Si의 조성이 높은 Fe-Mn 합금층이 형성되었으며, 이러한 Fe-Mn 합금층 상기 연질의 알루미늄 또는 알루미늄 합금층에 연결되어 있었다. 따라서 접합반응층 내부에는 균열이나 미세 공동 등 결함의 생성이 없었기 때문에, 그 결과 계면열저항이 감소하고 계면열전달특성이 향상되었다. The interfacial heat transfer coefficient of the inventive material was more than 10 times higher than that of the comparative material. In the case of the comparative material, a large number of defects such as cracks formed inside the highly brittle intermetallic layer, microcavities formed at the intermetallic compound-graphite grain and graphite grain-aluminum interface were generated at the bonding interface, but in the case of the invention material, the inside of the intermetallic compound layer was joined. An aluminum alloy layer that penetrates in the normal direction of the interface and connects cast iron and aluminum was formed. And at the bonding interface of the cast iron material, a Fe-Mn alloy layer having a higher composition of Mn and Si than the surrounding cast iron matrix was formed in a predetermined depth region (that is, a region where graphite grains were desorbed and a void was formed). , this Fe-Mn alloy layer was connected to the soft aluminum or aluminum alloy layer. Therefore, there was no generation of defects such as cracks or microcavities in the bonding reaction layer. As a result, the interfacial thermal resistance decreased and the interfacial heat transfer characteristics were improved.
이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관하여 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시 예에 국한되어 정해져서는 안 되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.As described above, in the detailed description of the present invention, preferred embodiments of the present invention have been described, but those of ordinary skill in the art to which the present invention pertains may make various modifications without departing from the scope of the present invention. Of course, this is possible. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims to be described later as well as equivalents thereof.

Claims (11)

  1. 인써트재 주철; insert material cast iron;
    상기 주철 상에 형성된 Fe-Al 금속간화합물층; 및 an Fe-Al intermetallic compound layer formed on the cast iron; and
    상기 Fe-Al 금속간화합물층상에 형성된 금속 알루미늄층;을 포함하고, Including; a metal aluminum layer formed on the Fe-Al intermetallic compound layer;
    상기 주철과 상기 금속 알루미늄층은, 상기 Fe-Al 금속간화합물층을 수직으로 관통하는 적어도 하나 이상의 연질의 금속층 또는 합금층으로 연결되어 있는 것을 특징으로 하는 주철-알루미늄 접합재.The cast iron and the metal aluminum layer, cast iron-aluminum bonding material, characterized in that connected to at least one soft metal layer or alloy layer penetrating the Fe-Al intermetallic compound layer vertically.
  2. 제 1항에 있어서, 상기 인써트 주철은 FC주철(편상흑연주철), DCI주철(구상흑연주철) 및 CV주철(콤팩트주철) 중 하나 이상인 것을 특징으로 하는 주철-알루미늄 접합재. The cast iron-aluminum bonding material according to claim 1, wherein the insert cast iron is at least one of FC cast iron (flaky graphite cast iron), DCI cast iron (spheroidal graphite cast iron), and CV cast iron (compact cast iron).
  3. 제 1항에 있어서, 상기 인써트 주철에서 접합계면을 이루는 표면부의 주철조직은 FC주철(편상흑연주철)인 것을 특징으로 하는 주철-알루미늄 접합재. The cast iron-aluminum bonding material according to claim 1, wherein the cast iron structure of the surface portion forming the bonding interface in the insert cast iron is FC cast iron (flaky graphite cast iron).
  4. 제 1항에 있어서, 상기 인써트 주철에서 접합계면을 이루는 표면은 흑연립이 탈착된 것을 특징으로 하는 주철-알루미늄 접합재. The cast iron-aluminum bonding material according to claim 1, wherein graphite grains are desorbed from the surface forming the bonding interface in the insert cast iron.
  5. 제 4항에 있어서, 상기 흑연립 평균 탈착 깊이는 5~500 ㎛인 것을 특징으로 하는 주철-알루미늄 접합재. [Claim 5] The cast iron-aluminum bonding material according to claim 4, wherein the graphite grains have an average desorption depth of 5 to 500 μm.
  6. 제 1항에 있어서, 상기 상기 인써트 주철에서 접합계면을 이루는 표면은 기계가공에 의해 마이크로 스케일의 그루브나 돌기가 형성되어 있는 것을 특징으로 하는 주철-알루미늄 접합재. The cast iron-aluminum bonding material according to claim 1, wherein micro-scale grooves or protrusions are formed on the surface forming the bonding interface in the insert cast iron.
  7. 제 1항에 있어서, 상기 연질의 금속층은 Al 금속층인 것을 특징으로 하는 주철-알루미늄 접합재. The cast iron-aluminum bonding material according to claim 1, wherein the soft metal layer is an Al metal layer.
  8. 제 1항에 있어서, 상기 연질의 합금층은 Al에 Si, Fe 및 Mn 중 1종 이상이 포함된 알루미늄 합금층인 것을 특징으로 하는 주철-알루미늄 접합재. . The cast iron-aluminum bonding material according to claim 1, wherein the soft alloy layer is an aluminum alloy layer in which Al contains at least one of Si, Fe, and Mn. .
  9. 제 1항에 있어서, 상기 주철재의 접합계면에서 그 내부 소정의 깊이 영역에 주변의 주철 기지보다 Mn 및 Si의 조성이 높은 Fe-Mn 합금층이 형성되어 있으며, 상기 Fe-Mn 합금층은 상기 연질의 금속층 또는 합금층에 연결되어 있는 것을 특징으로 하는 주철-알루미늄 접합재. According to claim 1, wherein a Fe-Mn alloy layer having a higher composition of Mn and Si than the surrounding cast iron matrix is formed in a predetermined depth region at the bonding interface of the cast iron material, and the Fe-Mn alloy layer is Cast iron-aluminum bonding material, characterized in that it is connected to the soft metal layer or alloy layer.
  10. 제 1항에 있어서, 상기 인써트 주철재와 Al과의 접합반응에 따른 접합반응층 평균두께가 5~100 ㎛인 것을 특징으로 하는 주철-알루미늄 접합재. The cast iron-aluminum bonding material according to claim 1, wherein the average thickness of the bonding reaction layer according to the bonding reaction between the insert cast iron material and Al is 5 to 100 μm.
  11. 인써트 주철을 마련한 후, 그 표면의 흑연을 탈착하는 공정;After providing the insert cast iron, the step of desorbing the graphite on the surface;
    상기 흑연이 탈착된 주철을 600~1150℃의 온도에서 열처리함으로써 상기 흑연이 탈착된 공동(void)에 주철기지 보다 Mn 및 Si 함량이 높은 연질의 Fe-Mn합금층을 형성하여 채우는 공정;The process of forming and filling a soft Fe-Mn alloy layer having higher Mn and Si content than the cast iron matrix in the void from which the graphite is desorbed by heat-treating the cast iron from which the graphite is desorbed at a temperature of 600 to 1150° C.;
    상기 열처리된 주철을 주형에 장입한 후, 알루미늄 용탕을 주입함으로써 주철과 알루미늄을 접합시키는 공정;을 포함하는 주철-알루미늄 접합재 제조방법.A method of manufacturing a cast iron-aluminum bonding material comprising a; after charging the heat-treated cast iron into a mold, and then bonding the cast iron and aluminum by injecting molten aluminum.
PCT/KR2021/017292 2020-12-11 2021-11-23 Cast iron-aluminum binding material having good interfacial bonding strength and heat transfer characteristic and method for manufacturing same WO2022124644A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200173706A KR102487981B1 (en) 2020-12-11 2020-12-11 Cast iron-aluminum bimetallic members having good interfacial bonding strength and heat transfer characteristic and method of manufacturing the same
KR10-2020-0173706 2020-12-11

Publications (1)

Publication Number Publication Date
WO2022124644A1 true WO2022124644A1 (en) 2022-06-16

Family

ID=81973791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017292 WO2022124644A1 (en) 2020-12-11 2021-11-23 Cast iron-aluminum binding material having good interfacial bonding strength and heat transfer characteristic and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR102487981B1 (en)
WO (1) WO2022124644A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336070A (en) * 2005-06-01 2006-12-14 Kobe Steel Ltd Steel sheet for welding joining as different material with aluminum material, and different material-joined body
KR20130011739A (en) * 2011-07-22 2013-01-30 동아대학교 산학협력단 The interlayer inserting mothod for enhancing the bonding power at that time of combining al alloy with fe
KR20140080855A (en) * 2012-12-20 2014-07-01 한국생산기술연구원 Method for manufacturing Fe-Al bimetal
KR20150021157A (en) * 2013-08-19 2015-03-02 한국생산기술연구원 Method for manufacturing Fe-Al bimetal having good bonding strength
KR20180064072A (en) * 2016-12-05 2018-06-14 한국생산기술연구원 Automotive engine cylinder block having good bonding strength and performance characteristics

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102118938B1 (en) 2018-06-04 2020-06-04 동국대학교 경주캠퍼스 산학협력단 Adhering member of hetero materials and method for preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336070A (en) * 2005-06-01 2006-12-14 Kobe Steel Ltd Steel sheet for welding joining as different material with aluminum material, and different material-joined body
KR20130011739A (en) * 2011-07-22 2013-01-30 동아대학교 산학협력단 The interlayer inserting mothod for enhancing the bonding power at that time of combining al alloy with fe
KR20140080855A (en) * 2012-12-20 2014-07-01 한국생산기술연구원 Method for manufacturing Fe-Al bimetal
KR20150021157A (en) * 2013-08-19 2015-03-02 한국생산기술연구원 Method for manufacturing Fe-Al bimetal having good bonding strength
KR20180064072A (en) * 2016-12-05 2018-06-14 한국생산기술연구원 Automotive engine cylinder block having good bonding strength and performance characteristics

Also Published As

Publication number Publication date
KR102487981B1 (en) 2023-01-13
KR20220083452A (en) 2022-06-20

Similar Documents

Publication Publication Date Title
WO2020040602A1 (en) Aluminium alloy for die casting, method for manufacturing same, and die casting method
WO2016137211A1 (en) Plastic deformation magnesium alloy having excellent thermal conductivity and flame retardancy, and preparation method
WO2017162198A1 (en) Lightweight, high-conductivity, heat-resistant, iron-containing aluminum wire and preparation process therefor
CN108707813B (en) As-cast high-strength ductile iron and its manufacturing process
CA2412201A1 (en) Cast-in pipe and cooling block
CN102350492A (en) Preparation method of casting aluminum-coated magnesium alloy composite cast ingot
CN110983120A (en) 300 MPa-grade high-strength plastic non-heat-treatment self-strengthening die-casting aluminum alloy and manufacturing method thereof
WO2021035774A1 (en) Preparation method for lithium-containing magnesium/aluminum-based composite material
WO2022124644A1 (en) Cast iron-aluminum binding material having good interfacial bonding strength and heat transfer characteristic and method for manufacturing same
CN111014623B (en) Semi-continuous casting method for large-size copper-magnesium alloy slab ingot
CN103233138B (en) Mg-Al series magnesium alloy grain-refining agent and preparation method thereof
CN110983119B (en) High-strength high-thermal-conductivity die-casting aluminum alloy material and preparation method thereof
Abdollahi et al. An evaluation of calcium as a eutectic modifier in A357 alloy
Zhang et al. The microstructures of aluminium alloy metal-matrix composites manufactured by squeeze casting
CN111575511A (en) Method for improving micro-macro segregation of copper-tin alloy
Eklund On the effects of impurities on the solidification and mechanical behaviour of primary and secondary commercial purity aluminium and aluminium alloys.
WO2012161459A2 (en) Aluminium alloy and manufacturing method for same
CN114752831A (en) High-strength corrosion-resistant aluminum alloy and preparation method and application thereof
WO2020251145A1 (en) Kiniz alloy having homogeneous microstructure
WO2012027992A1 (en) Preparation method of al-zr-c master alloy
JP2758582B2 (en) Brake pad manufacturing method
WO2021251546A1 (en) Aluminum alloy for casting having excellent thermal conductance
CN112281007B (en) Preparation method for improving beryllium recovery rate in aluminum-magnesium aluminum alloy smelting
WO2023085532A1 (en) Fe-cu alloy having mesh structure and method for manufacturing same
JPH1036933A (en) Cast cable parts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903690

Country of ref document: EP

Kind code of ref document: A1