WO2022124587A1 - High strength ferritic stainless steel having improved corrosion resistance at welded portion - Google Patents

High strength ferritic stainless steel having improved corrosion resistance at welded portion Download PDF

Info

Publication number
WO2022124587A1
WO2022124587A1 PCT/KR2021/015968 KR2021015968W WO2022124587A1 WO 2022124587 A1 WO2022124587 A1 WO 2022124587A1 KR 2021015968 W KR2021015968 W KR 2021015968W WO 2022124587 A1 WO2022124587 A1 WO 2022124587A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
corrosion resistance
ferritic stainless
less
content
Prior art date
Application number
PCT/KR2021/015968
Other languages
French (fr)
Korean (ko)
Inventor
유한진
김용호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2022124587A1 publication Critical patent/WO2022124587A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferritic stainless steel and a method for manufacturing the same, and more particularly, to a high-strength ferritic stainless steel having improved corrosion resistance at welds.
  • stainless steel is classified according to its chemical composition or metal structure. According to the metal structure, stainless steel is classified into austenitic (300 series), ferritic (400 series), martensitic, and ideal.
  • ferritic stainless steel is a steel with high price competitiveness compared to austenitic stainless steel because it contains less expensive alloying elements.
  • Ferritic stainless steel has good surface gloss, drawability and oxidation resistance, and is widely used in kitchenware, building exterior materials, home appliances, and electronic parts.
  • STS 430 among ferritic stainless steels is a ferritic stainless steel in which 300 to 800 ppm of C and N are added to a composition containing 16 to 18% of chromium (Cr).
  • STS 430 has an elongation of about 30% and has been applied to parts such as refrigerator doors.
  • the C content is high, so it is difficult to use by welding, and the yield strength is low as 300 MPa or less.
  • STS 430J1L among ferritic stainless steels, 100 ppm or less of C and N were added to a composition containing about 18 to 20% Cr, respectively, so that it could be used by welding.
  • STS 430J1L has a problem that, although Cu and Nb are added for the purpose of improving strength, it still has a low yield strength of 300 MPa or less and a high manufacturing cost.
  • High-strength ferritic stainless steel with improved corrosion resistance at the weld according to an embodiment of the present invention is, by weight, C: 0.01% or less (excluding 0), Si: 1.0 to 3.0% or less, Mn: 0.5% or less (excluding 0) ), P: 0.05 to 0.2%, Cr: 13 to 21%, Ti: 0.1 to 0.5%, N: 0.01% or less (excluding 0) remaining Fe and other unavoidable impurities.
  • the high-strength ferritic stainless steel with improved corrosion resistance at the weld according to an embodiment of the present invention may satisfy the yield strength index of 1.50 or more, which is expressed by the following formula (1).
  • Si and P mean the content (wt%) of each element
  • the high-strength ferritic stainless steel with improved corrosion resistance at the weld according to an embodiment of the present invention may satisfy the following Equation (2), an elongation index of 3.00 or less.
  • Si and P mean the content (wt%) of each element
  • the high-strength ferritic stainless steel with improved corrosion resistance at the weld according to an embodiment of the present invention may satisfy the intergranular corrosion resistance index of the weld, expressed by the following formula (3), of 6.0 or more.
  • Equation (3) Ti/(C+N)
  • 1 is a graph showing the change in yield strength according to the addition of P to the Fe-13Cr-1.0Si alloy composition.
  • 3 is a graph showing the change in yield strength of ferritic stainless steel according to the yield strength index (Si+6P).
  • High-strength ferritic stainless steel with improved corrosion resistance at the weld according to an embodiment of the present invention is, by weight, C: 0.01% or less (excluding 0), Si: 1.0 to 3.0% or less, Mn: 0.5% or less (excluding 0) ), P: 0.05 to 0.2%, Cr: 13 to 21%, Ti: 0.1 to 0.5%, N: 0.01% or less (excluding 0) remaining Fe and other unavoidable impurities.
  • High-strength ferritic stainless steel with improved corrosion resistance in the weld zone according to the present invention is, by weight, C: 0.01% or less (excluding 0), Si: 1.0 to 3.0% or less, Mn: 0.5% or less (excluding 0), P: 0.05 to 0.2%, Cr: 13 to 21%, Ti: 0.1 to 0.5%, N: 0.01% or less (excluding 0)
  • the remaining Fe and other unavoidable impurities are included.
  • the content of carbon (C) is 0.01% or less (excluding 0).
  • C is a low-cost austenite stabilizing element, and effectively suppresses the formation of a delta (?)-ferrite phase.
  • C is an interstitial element and improves the yield strength of steel by a solid solution strengthening effect.
  • the content of C is excessive, chromium carbide (Cr 23 C 6 ) is generated when used for a long time at 600° C. or less after welding, intergranular corrosion occurs, and the elongation, toughness, etc. of the steel are reduced. Therefore, in the present invention, the content of C is to be controlled to 0.01% or less (excluding 0).
  • the content of silicon (Si) is 1.0 to 3.0%.
  • Si is a component added as a deoxidizer in the steelmaking step, and when a certain amount is added, it has the effect of improving yield strength and corrosion resistance.
  • Si is a ferrite phase forming element and increases the stability of the ferrite phase, improves the pitting dislocation, and increases the oxidation resistance. Therefore, in the present invention, Si is added by 1.0% or more. However, when the content of Si is excessive, elongation and toughness are lowered, so the Si content is controlled to 3.0% in the present invention.
  • the content of manganese (Mn) is 0.5% or less (excluding 0).
  • Mn forms inclusions (MnS), thereby reducing hot workability, ductility, and toughness of the steel.
  • Mn content is controlled to 0.5% or less.
  • the content of chromium (Cr) is 13 to 21%.
  • Cr is an element that improves corrosion resistance by forming a passivation film in an oxidizing environment, and 13% or more is added to secure corrosion resistance.
  • the upper limit of the Cr content is to be limited to 21%.
  • the content of phosphorus (P) is 0.05 to 0.2%.
  • P is a harmful element that segregates at grain boundaries to reduce corrosion resistance and hot workability, and its content is limited to 0.04% or less.
  • P when P is added, it not only has a solid solution strengthening effect, but also forms precipitates such as Fe 2 P, Cr 2 P, and Ti 2 P to improve the yield strength of stainless steel due to the precipitation strengthening effect.
  • the P content is added by 0.05% or more to secure high strength of 400 MPa or more.
  • the content of P exceeds 0.2%, there is a problem in that the elongation value falls to less than 25%. Therefore, in the present invention, in order to secure high strength and workability, the content of P is to be controlled to 0.05 to 0.2%.
  • the content of nitrogen (N) is 0.01% or less (excluding 0 silver).
  • N is an interstitial element and improves the yield strength of steel by the solid solution strengthening effect.
  • the content of N is excessive, carbonitride is generated when used for a long time at 600° C. or less after welding, intergranular corrosion occurs, and the elongation, toughness, etc. of the steel are reduced. Therefore, in the present invention, the content of N is to be controlled to 0.01% or less (excluding 0).
  • the content of titanium (Ti) is 0.1 to 0.5%.
  • Ti is an element effective in reducing the amount of solid solution C and solid solution N in steel and securing corrosion resistance of steel by preferentially combining with interstitial elements such as C and N to form precipitates (carbonitrides).
  • interstitial elements such as C and N to form precipitates (carbonitrides).
  • the content is excessive, the toughness is reduced, the titanium-based inclusions increase, and surface defects such as scabs occur, and the nozzle clogging phenomenon may occur during playing. Therefore, in the present invention, it is intended to control the content of titanium to 0.1 to 0.5%.
  • the remaining component of the present invention is iron (Fe).
  • Fe iron
  • the present inventors obtained the following knowledge through specific studies on P and Si, which are alloying elements that affect the yield strength characteristics of ferritic stainless steel, in order to improve the strength of ferritic stainless steel.
  • the yield strength increases linearly as the yield strength index increases.
  • the yield strength index is 1.50 or more, it is possible to secure a yield strength of 400 MPa or more.
  • the elongation value decreases linearly as the elongation index decreases.
  • the elongation index is 3.00 or less, an elongation of 25% or more may be secured.
  • the high-strength ferritic stainless steel having improved corrosion resistance at the weld according to an embodiment of the present invention may have a yield strength index of 1.50 or more.
  • the high-strength ferritic stainless steel with improved corrosion resistance at the weld according to an embodiment of the present invention may have an elongation index of 3.00 or less.
  • stainless steel is a steel with improved corrosion resistance by the Cr component containing 11% or more.
  • the corrosion resistance of stainless steel is deteriorated when the Cr component is locally lowered to 11% or less, and this area is said to be sensitized.
  • Ferritic stainless steels have lower carbon solubility than austenitic stainless steels, so Cr carbonitrides are more easily generated at the grain boundaries when subjected to heat, thereby forming a Cr-depleted layer around the grain boundaries, and thus grain boundary sensitization is easy to occur.
  • the ferritic stainless steel when welding ferritic stainless steel, Cr carbide is precipitated at grain boundaries in the heat affected zone (Heat Affected Zone) heated to the sensitized temperature range by welding heat input. Therefore, the ferritic stainless steel has a problem of corrosion due to the occurrence of sensitization phenomenon due to the lack of chromium having a lower chromium content than the matrix effective for corrosion resistance near the grain boundary during welding.
  • the intergranular corrosion resistance index of the weld is expressed by the following formula (3).
  • Equation (3) Ti/(C+N)
  • the intergranular corrosion resistance index value of the weld zone where intergranular corrosion occurs at the weld zone is different.
  • intergranular corrosion does not occur when the intergranular corrosion resistance index of the weld zone satisfies 12 or more.
  • the content of the alloy element P in the ferritic stainless steel is 0.05% or more by weight, intergranular corrosion does not occur when the intergranular corrosion resistance index of the weld zone is 6.0 or more.
  • the content of P is 0.05% or more by weight, and the intergranular corrosion resistance index of the weld can satisfy 6.0 or more.
  • the composition ratio and component relation of the alloy elements it is possible to secure higher strength compared to STS 430.
  • the thickness of the material can be reduced and dent characteristics can be improved.
  • the content of the alloying element P it is possible to improve the intergranular corrosion resistance of the weld zone while reducing the content of Ti, which is an expensive stabilizing element.
  • 120 mm thick ingots were prepared by dissolving in a 50 kg vacuum melting facility.
  • the prepared ingot was hot-rolled at 1100 to 1200° C. to a thickness of 3.0 mm. After that, the hot-rolled material was annealed and pickled, cold-rolled to 0.6 mm, and then cold-rolled annealing and pickling were performed.
  • Example 1 0.006 1.50 0.30 0.070 13 0.12 0.007
  • Example 2 0.008 2.00 0.48 0.069 13.5 0.12 0.007
  • Example 3 0.004 1.68 0.30 0.085 15.5 0.14 0.005
  • Example 4 0.005 1.25 0.20 0.095 16.5 0.15 0.005
  • Example 5 0.006 1.19 0.20 0.160 16.5 0.10 0.006
  • Example 6 0.008 2.01 0.20 0.050 18.5 0.12 0.005
  • Example 7 0.008 1.35 0.20 0.070 18.5 0.19 0.006
  • Example 8 0.005 1.22 0.20 0.089 19.5 0.21 0.006
  • Example 9 0.006 1.20 0.21 0.185 20.5 0.25 0.006 Comparative Example 1 0.05 0.30 0.20 0.020 16.5 0.01 0.035 Comparative Example 2 0.008 1.40 0.28 0.020 11.5 0.22 0.005 Comparative Example 3 0.007 1.18 0.19 0.019 17.5 0.31 0.005 Comparative Example 4 0.008 0.
  • Table 2 shows the yield strength index values and elongation index values of Examples and Comparative Examples, and the yield strength values and elongation values measured through the tensile test.
  • Examples 1 to 9 have a yield strength index of 1.5 or more, and an elongation index of 3.0 or less. Accordingly, Examples 1 to 9 had a high yield strength of 400 MPa or more, and an elongation value of 25% or more was derived. Therefore, in Examples 1 to 9, by securing high strength, it is possible to reduce the thickness of the material, and at the same time, suitable processing is possible.
  • Comparative Examples 1 to 8 the elongation index value satisfies 3.0 or less. Accordingly, in Comparative Examples 1 to 8, elongation values of 25% or more were derived. However, Comparative Examples 1 to 8 had a yield strength index value of less than 1.5, and thus, had a low yield strength value of less than 400 MPa.
  • Comparative Examples 9 to 14 had a yield strength value of 1.5 or more, and thus a yield strength value of 400 MPa or more was derived. However, Comparative Examples 9 to 14 had an elongation index value greater than 3.0, resulting in an elongation of less than 25%.
  • sensitization characteristics and intergranular corrosion characteristics were evaluated by measuring the intergranular corrosion test of the weld zone with respect to the cold rolled material.
  • TIG Tungsten inert gas
  • a DC type welding machine maximum welding current 350A
  • bead-on-plate was used.
  • Welding conditions were a welding current of 110A, welding speed of 0.32m/min, tungsten electrode diameter of 2.5mm, arc length of 1.5mm, and shielding gas Ar (15L/min).
  • Modified-Strauss test method is a method to evaluate intergranular corrosion by placing Cu balls on the bottom of 6% CuSO4 + 0.5% H2SO4 aqueous solution, immersing them in a boiling aqueous solution for 24 hours, and then performing a U-bend test.
  • Table 3 shows whether the P content of Examples and Comparative Examples is 0.05% or more by weight, the intergranular corrosion resistance index of the weld zone, and whether the intergranular corrosion of the weld zone occurs.
  • Examples 1 to 9 have a P content of 0.05% or more, and a weld intergranular corrosion resistance index of 6 or more. Accordingly, Examples 1 to 9 improved the intergranular corrosion resistance of the weld zone.
  • Comparative Examples 1 to 8 P was added in an amount of less than 0.05% (wt%), and in Comparative Example 1, the intergranular corrosion resistance index of the weld zone was 0.1 and had a value of less than 12, and intergranular corrosion of the weld zone occurred. In addition, in Comparative Examples 4 to 8, the intergranular corrosion resistance index of the weld portion had a value of less than 12, and intergranular corrosion of the weld portion occurred.
  • Comparative Example 2 had a weld resistance index value of 16.9, which is 12 or more, so that intergranular corrosion of the weld zone did not occur.
  • Comparative Example 3 also had a weld resistance index value of 25.8, which is 12 or more, so that intergranular corrosion of the weld area did not occur.
  • the intergranular corrosion resistance index of the weld zone had a value of 5.6, which is less than 6, and intergranular corrosion of the weld zone occurred.
  • the intergranular corrosion resistance index of the weld zone had a value of 3.3, which is less than 6, and intergranular corrosion of the weld zone occurred.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

The present specification discloses a ferritic stainless steel having improved ridging resistance. According to an embodiment, the disclosed ferritic stainless steel having improved ridging resistance comprises: at most 0.01 wt% (exclusive of 0) of C; 1.0 to 3.0 wt% of Si; at most 0.5 wt% (exclusive of 0) of Mn; 0.05 to 0.2 wt% of P; 13 to 21 wt% of Cr; 0.1 to 0.5 wt% of Ti; and at most 0.01 wt% (exclusive of 0) of N, with the balance being Fe and other unavoidable impurities.

Description

용접부 내식성이 향상된 고강도 페라이트계 스테인리스강 및 그 제조방법High-strength ferritic stainless steel with improved corrosion resistance in welds and manufacturing method therefor
본 발명은 페라이트계 스테인리스강 및 그 제조 방법에 관한 것으로, 보다 상세하게는 용접부 내식성이 향상된 고강도 페라이트계 스테인리스강에 관한 것이다.The present invention relates to a ferritic stainless steel and a method for manufacturing the same, and more particularly, to a high-strength ferritic stainless steel having improved corrosion resistance at welds.
일반적으로 스테인리스강은 화학성분이나 금속조직에 따라 분류된다. 금속조직에 따를 경우, 스테인리스강은 오스테나이트계(300계), 페라이트계(400계), 마르텐사이트계, 이상계로 분류된다.In general, stainless steel is classified according to its chemical composition or metal structure. According to the metal structure, stainless steel is classified into austenitic (300 series), ferritic (400 series), martensitic, and ideal.
이 중 페라이트계 스테인리스강은 고가의 합금원소가 적게 첨가되어, 오스테나이트계 스테인리스강에 비하여 가격 경쟁력이 높은 강재이다. 페라이트계 스테인리스강은 표면광택, 드로잉성 및 내산화성이 양호하여 주방용품, 건축 외장재, 가전제품, 전자부품 등에 널리 사용되고 있다.Among them, ferritic stainless steel is a steel with high price competitiveness compared to austenitic stainless steel because it contains less expensive alloying elements. Ferritic stainless steel has good surface gloss, drawability and oxidation resistance, and is widely used in kitchenware, building exterior materials, home appliances, and electronic parts.
그러나, 페라이트계 스테인리스강은 온도가 400℃ 이상으로 가열되거나, 400℃ 이상의 온도 분위기에서 장시간 노출되면 입계부식이 발생하게된다. 입계부식의 주요원인은 스테인리스강 중에 포함된 탄소(C)와 스테인리스강의 주 합금원소인 크롬(Cr)의 반응에 의하여 Cr-탄화물이 결정립계에 생성됨으로써, Cr-탄화물의 주위에 형성되는 Cr 결핍부에 의한 것으로 알려져 있다.However, when the ferritic stainless steel is heated to a temperature of 400°C or higher or exposed to a temperature atmosphere of 400°C or higher for a long time, intergranular corrosion occurs. The main cause of intergranular corrosion is Cr-carbide formed at the grain boundary by the reaction of carbon (C) contained in stainless steel and chromium (Cr), which is the main alloying element of stainless steel. is known to be caused by
한편, 페라이트계 스테인리스강 중 STS 430은 크롬(Cr)을 16 내지 18 % 함유하고 있는 조성에 C, N을 각각 300 내지 800ppm를 첨가한 페라이트 스테인리스강이다. STS 430은 연신율이 약 30%로 냉장고 도어 등의 부품에 적용되어 왔다. 그러나 STS 430의 경우 C 함유량이 높아 용접을 하여 사용하는 것이 어렵고, 항복 강도가 300MPa 이하로 낮은 문제가 있다.Meanwhile, STS 430 among ferritic stainless steels is a ferritic stainless steel in which 300 to 800 ppm of C and N are added to a composition containing 16 to 18% of chromium (Cr). STS 430 has an elongation of about 30% and has been applied to parts such as refrigerator doors. However, in the case of STS 430, there is a problem that the C content is high, so it is difficult to use by welding, and the yield strength is low as 300 MPa or less.
페라이트계 스테인리스강 중 STS 430J1L의 경우 Cr을 18~20% 정도 함유하고 있는 조성에 C, N 을 각각 100ppm 이하로 첨가하여, 용접을 하여 사용이 가능하도록 하였다. 그러나, STS 430J1L은 강도 향상 목적으로 Cu 및 Nb를 첨가하였지만, 여전히 300MPa 이하의 낮은 항복 강도를 가지며 제조원가가 높은 문제가 있다.In the case of STS 430J1L among ferritic stainless steels, 100 ppm or less of C and N were added to a composition containing about 18 to 20% Cr, respectively, so that it could be used by welding. However, STS 430J1L has a problem that, although Cu and Nb are added for the purpose of improving strength, it still has a low yield strength of 300 MPa or less and a high manufacturing cost.
본 발명의 목적은 상술한 바와 같은 문제점을 해결하기 위해, 페라이트계 스테인리스강의 합금조성 범위를 최적화함으로써 용접부 내식성이 향상된 고강도 페라이트계 스테인리스강을 제공하고자 한다.It is an object of the present invention to provide a high-strength ferritic stainless steel having improved corrosion resistance in welds by optimizing the alloy composition range of the ferritic stainless steel in order to solve the above problems.
본 발명의 일 실시예에 따른 용접부 내식성이 향상된 고강도 페라이트계 스테인리스강은 중량%로, C: 0.01% 이하(0은 제외), Si: 1.0 내지 3.0% 이하, Mn: 0.5% 이하(0은 제외), P: 0.05 내지 0.2%, Cr: 13 내지 21%, Ti: 0.1 내지 0.5%, N: 0.01% 이하(0은 제외) 나머지 Fe 및 기타 불가피한 불순물을 포함한다.High-strength ferritic stainless steel with improved corrosion resistance at the weld according to an embodiment of the present invention is, by weight, C: 0.01% or less (excluding 0), Si: 1.0 to 3.0% or less, Mn: 0.5% or less (excluding 0) ), P: 0.05 to 0.2%, Cr: 13 to 21%, Ti: 0.1 to 0.5%, N: 0.01% or less (excluding 0) remaining Fe and other unavoidable impurities.
또한, 본 발명의 일 실시예에 따른 용접부 내식성이 향상된 고강도 페라이트계 스테인리스강은 하기 식(1)로 표현되는, 항복강도 지수가 1.50 이상을 만족할 수 있다.In addition, the high-strength ferritic stainless steel with improved corrosion resistance at the weld according to an embodiment of the present invention may satisfy the yield strength index of 1.50 or more, which is expressed by the following formula (1).
식(1): Si+6PFormula (1): Si+6P
(여기서, Si 및 P은 각 원소의 함량(중량%)을 의미한다)(Here, Si and P mean the content (wt%) of each element)
또한, 본 발명의 일 실시예에 따른 용접부 내식성이 향상된 고강도 페라이트계 스테인리스강은 하기 식(2)로 표현되는, 연신율 지수가 3.00 이하를 만족할 수 있다.In addition, the high-strength ferritic stainless steel with improved corrosion resistance at the weld according to an embodiment of the present invention may satisfy the following Equation (2), an elongation index of 3.00 or less.
식(2): Si+10PFormula (2): Si+10P
(여기서, Si 및 P은 각 원소의 함량(중량%)을 의미한다)(Here, Si and P mean the content (wt%) of each element)
또한, 본 발명의 일 실시예에 따른 용접부 내식성이 향상된 고강도 페라이트계 스테인리스강은 하기 식(3)로 표현되는, 용접부 입계부식 저항지수가 6.0 이상을 만족할 수 있다.In addition, the high-strength ferritic stainless steel with improved corrosion resistance at the weld according to an embodiment of the present invention may satisfy the intergranular corrosion resistance index of the weld, expressed by the following formula (3), of 6.0 or more.
식(3): Ti/(C+N)Equation (3): Ti/(C+N)
(여기서, C, N 및 Ti은 각 원소의 함량(중량%)을 의미한다)(Here, C, N and Ti mean the content (wt%) of each element)
본 발명의 실시예에 따르면, 합금원소 Si 및 P의 합금조성 범위와 성분 관계식을 최적화함으로써 용접부 내식성이 향상된 고강도 페라이트계 스테인리스강을 제공할 수 있다.According to an embodiment of the present invention, it is possible to provide a high-strength ferritic stainless steel having improved corrosion resistance in the weld zone by optimizing the alloy composition range and component relation of the alloying elements Si and P.
도 1은 Fe-13Cr-1.0Si 합금 조성에 P 첨가에 따른 항복강도 변화를 나타낸 그래프이다.1 is a graph showing the change in yield strength according to the addition of P to the Fe-13Cr-1.0Si alloy composition.
도 2는 Fe-13Cr-0.05P 합금 조성에 Si 첨가에 따른 항복강도 변화를 나타낸 그래프이다.2 is a graph showing the change in yield strength according to the addition of Si to the Fe-13Cr-0.05P alloy composition.
도 3는 항복강도 지수(Si+6P)에 따른 페라이트계 스테인리스강의 항복강도 변화를 나타낸 그래프이다. 3 is a graph showing the change in yield strength of ferritic stainless steel according to the yield strength index (Si+6P).
도 4는 연신율 지수(Si+10P)에 따른 페라이트계 스테인리스강의 연신율 변화를 나타낸 그래프이다.4 is a graph showing the change in the elongation of the ferritic stainless steel according to the elongation index (Si+10P).
본 발명의 일 실시예에 따른 용접부 내식성이 향상된 고강도 페라이트계 스테인리스강은 중량%로, C: 0.01% 이하(0은 제외), Si: 1.0 내지 3.0% 이하, Mn: 0.5% 이하(0은 제외), P: 0.05 내지 0.2%, Cr: 13 내지 21%, Ti: 0.1 내지 0.5%, N: 0.01% 이하(0은 제외) 나머지 Fe 및 기타 불가피한 불순물을 포함한다.High-strength ferritic stainless steel with improved corrosion resistance at the weld according to an embodiment of the present invention is, by weight, C: 0.01% or less (excluding 0), Si: 1.0 to 3.0% or less, Mn: 0.5% or less (excluding 0) ), P: 0.05 to 0.2%, Cr: 13 to 21%, Ti: 0.1 to 0.5%, N: 0.01% or less (excluding 0) remaining Fe and other unavoidable impurities.
이하에서는 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술사상이 이하에서 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following describes preferred embodiments of the present invention. However, the embodiment of the present invention may be modified in various other forms, and the technical idea of the present invention is not limited to the embodiment described below. In addition, the embodiments of the present invention are provided in order to more completely explain the present invention to those of ordinary skill in the art.
본 출원에서 사용하는 용어는 단지 특정한 예시를 설명하기 위하여 사용되는 것이다. 때문에 가령 단수의 표현은 문맥상 명백하게 단수여야만 하는 것이 아닌 한, 복수의 표현을 포함한다. 덧붙여, 본 출원에서 사용되는 "포함하다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 명확히 지칭하기 위하여 사용되는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것의 존재를 예비적으로 배제하고자 사용되는 것이 아님에 유의해야 한다.The terms used in this application are only used to describe specific examples. Therefore, for example, a singular expression includes a plural expression unless the context clearly requires it to be singular. In addition, terms such as "comprises" or "including" as used in the present application are used to clearly indicate that the features, steps, functions, components, or combinations thereof described in the specification exist, and other features It should be noted that it is not intended to preliminarily exclude the existence of elements, steps, functions, components, or combinations thereof.
한편, 다르게 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진 것으로 보아야 한다. 따라서, 본 명세서에서 명확하게 정의하지 않는 한, 특정 용어가 과도하게 이상적이거나 형식적인 의미로 해석되어서는 안 된다. 가령, 본 명세서에서 단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Meanwhile, unless otherwise defined, all terms used herein should be regarded as having the same meaning as commonly understood by those of ordinary skill in the art to which the present invention pertains. Accordingly, unless explicitly defined herein, specific terms should not be construed in an unduly idealistic or formal sense. For example, a singular expression herein includes a plural expression unless the context clearly dictates otherwise.
또한, 본 명세서의 "약", "실질적으로" 등은 언급한 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.In addition, in this specification, "about", "substantially", etc. are used in or close to the numerical value when manufacturing and material tolerances inherent in the stated meaning are presented, and are used in a precise sense to aid the understanding of the present invention. or absolute figures are used to prevent unreasonable use by unconscionable infringers of the mentioned disclosure.
본 발명에 따른 용접부내식성이 향상된 고강도 페라이트계 스테인리스강은 중량%로, C: 0.01% 이하(0은 제외), Si: 1.0 내지 3.0% 이하, Mn: 0.5% 이하(0은 제외), P: 0.05 내지 0.2%, Cr: 13 내지 21%, Ti: 0.1 내지 0.5%, N: 0.01% 이하(0은 제외) 나머지 Fe 및 기타 불가피한 불순물을 포함한다.High-strength ferritic stainless steel with improved corrosion resistance in the weld zone according to the present invention is, by weight, C: 0.01% or less (excluding 0), Si: 1.0 to 3.0% or less, Mn: 0.5% or less (excluding 0), P: 0.05 to 0.2%, Cr: 13 to 21%, Ti: 0.1 to 0.5%, N: 0.01% or less (excluding 0) The remaining Fe and other unavoidable impurities are included.
이하, 각 합금원소의 성분범위를 한정한 이유를 서술한다.Hereinafter, the reason for limiting the component range of each alloy element will be described.
탄소(C)의 함량은 0.01% 이하(0은 제외)이다.The content of carbon (C) is 0.01% or less (excluding 0).
C는 저원가 오스테나이트 안정화원소이고, 델타(δ)-페라이트상의 생성을 효과적으로 억제한다. 또한, C는 침입형 원소로 고용강화효과에 의해 강재의 항복강도를 향상시킨다. 하지만, C의 함량이 과다하면 용접 후 600℃ 이하에서 장시간 사용하는 경우 크롬탄화물(Cr23C6)이 생성되어 입계부식이 발생되고, 강재의 연신율, 인성 등을 저하시킨다. 따라서, 본 발명에서는 C의 함량을 0.01% 이하(0은 제외)로 제어하고자 한다.C is a low-cost austenite stabilizing element, and effectively suppresses the formation of a delta (?)-ferrite phase. In addition, C is an interstitial element and improves the yield strength of steel by a solid solution strengthening effect. However, if the content of C is excessive, chromium carbide (Cr 23 C 6 ) is generated when used for a long time at 600° C. or less after welding, intergranular corrosion occurs, and the elongation, toughness, etc. of the steel are reduced. Therefore, in the present invention, the content of C is to be controlled to 0.01% or less (excluding 0).
규소(Si)의 함량은 1.0 내지 3.0%이다.The content of silicon (Si) is 1.0 to 3.0%.
Si는 제강단계에서 탈산제로 첨가되는 성분이며, 일정량 첨가 시 항복강도를 및 내식성을 향상시키는 효과가 있다. 또한, Si는 페라이트상 형성 원소로 페라이트 상의 안정성을 높이며, 공식전위를 향상시키고, 내산화특성이 증대시킨다. 따라서, 본 발명에서는 Si를 1.0% 이상 첨가한다. 그러나, Si의 함량이 과도한 경우, 연신율 및 인성이 저하되므로, 본 발명에서는 Si 함량을 3.0%로 제어한다.Si is a component added as a deoxidizer in the steelmaking step, and when a certain amount is added, it has the effect of improving yield strength and corrosion resistance. In addition, Si is a ferrite phase forming element and increases the stability of the ferrite phase, improves the pitting dislocation, and increases the oxidation resistance. Therefore, in the present invention, Si is added by 1.0% or more. However, when the content of Si is excessive, elongation and toughness are lowered, so the Si content is controlled to 3.0% in the present invention.
망간(Mn)의 함량은 0.5% 이하(0은 제외)이다.The content of manganese (Mn) is 0.5% or less (excluding 0).
Mn은 개재물(MnS)을 형성하여, 강재의 열간 가공성, 연성 및 인성을 저하시킨다. 그러나, Mn의 과도한 저감은 정제 비용을 증가시키므로, 본 발명에서는 Mn의 함량을 0.5% 이하로 제어하고자 한다.Mn forms inclusions (MnS), thereby reducing hot workability, ductility, and toughness of the steel. However, since excessive reduction of Mn increases the refining cost, in the present invention, the Mn content is controlled to 0.5% or less.
크롬(Cr)의 함량은 13 내지 21%이다.The content of chromium (Cr) is 13 to 21%.
Cr은 산화성 환경에서 부동태 피막을 형성하여 내식성을 향상시키는 원소로서 내식성 확보를 위해서 13% 이상 첨가한다. 그러나 Cr의 함량이 과다할 경우, 슬라브 내 델타(δ) 페라이트 형성을 조장하여 연신율 및 충격인성이 저하된다. 따라서, 본 발명에서는 Cr 함량의 상한을 21%로 한정하고자 한다.Cr is an element that improves corrosion resistance by forming a passivation film in an oxidizing environment, and 13% or more is added to secure corrosion resistance. However, when the content of Cr is excessive, delta (δ) ferrite formation in the slab is promoted, and elongation and impact toughness are reduced. Therefore, in the present invention, the upper limit of the Cr content is to be limited to 21%.
인(P)의 함량은 0.05 내지 0.2%이다.The content of phosphorus (P) is 0.05 to 0.2%.
종래의 경우, P은 결정입계에 편석되어 내식성 및 열간 가공성을 저하시키는 유해원소로서 그 함량을 0.04% 이하로 제한한다. 그러나 P은 첨가 시 고용강화 효과뿐만 아니라, Fe2P, Cr2P, Ti2P 등의 석출물을 형성시켜 석출강화 효과로 스테인리스강의 항복강도를 향상시킨다. 이러한 점을 이용하여, 본 발명에서는 P 함량을 0.05% 이상 첨가하여, 400MPa 이상의 높은 강도를 확보하고자 한다. 다만, P의 함량이 0.2%를 초과하면 연신율 값이 25% 미만으로 떨어지는 문제가 있다. 따라서, 본 발명에서는 고강도 및 가공성을 확보하기 위해서 P의 함량을 0.05 내지 0.2%로 제어하고자 한다.In the conventional case, P is a harmful element that segregates at grain boundaries to reduce corrosion resistance and hot workability, and its content is limited to 0.04% or less. However, when P is added, it not only has a solid solution strengthening effect, but also forms precipitates such as Fe 2 P, Cr 2 P, and Ti 2 P to improve the yield strength of stainless steel due to the precipitation strengthening effect. Using this point, in the present invention, the P content is added by 0.05% or more to secure high strength of 400 MPa or more. However, when the content of P exceeds 0.2%, there is a problem in that the elongation value falls to less than 25%. Therefore, in the present invention, in order to secure high strength and workability, the content of P is to be controlled to 0.05 to 0.2%.
질소(N)의 함량은 0.01% 이하(0은제외)이다.The content of nitrogen (N) is 0.01% or less (excluding 0 silver).
N는 C와 마찬가지로, 침입형 원소로 고용강화효과에 의해 강재의 항복강도를 향상시킨다. 하지만 N의 함량이 과다하면, 용접 후 600℃ 이하에서 장시간 사용하는 경우 탄질화물이 생성되어 입계부식이 발생되고, 강재의 연신율, 인성 등을 저하시킨다. 따라서, 본 발명에서는 N의 함량을 0.01% 이하(0은 제외)로 제어하고자 한다.Like C, N is an interstitial element and improves the yield strength of steel by the solid solution strengthening effect. However, if the content of N is excessive, carbonitride is generated when used for a long time at 600° C. or less after welding, intergranular corrosion occurs, and the elongation, toughness, etc. of the steel are reduced. Therefore, in the present invention, the content of N is to be controlled to 0.01% or less (excluding 0).
티타늄(Ti)의 함량은 0.1 내지 0.5%이다.The content of titanium (Ti) is 0.1 to 0.5%.
Ti은 C 및 N와 같은 침입형 원소와 우선적으로 결합하여 석출물(탄질화물)을 형성함으로써, 강 중 고용 C 및 고용 N의 양을 저감하고 강의 내식성 확보에 효과적인 원소이다. 다만, 그 함량이 과다할 경우, 인성이 저하되고, 티타늄계 개재물이 증가하여 스켑(scab)과 같은 표면결함이 발생하며, 연주시 노즐 막힘 현상이 발생할 수 있다. 따라서, 본 발명에서는 티타늄의 함량을 0.1 내지 0.5% 로 제어하고자 한다.Ti is an element effective in reducing the amount of solid solution C and solid solution N in steel and securing corrosion resistance of steel by preferentially combining with interstitial elements such as C and N to form precipitates (carbonitrides). However, when the content is excessive, the toughness is reduced, the titanium-based inclusions increase, and surface defects such as scabs occur, and the nozzle clogging phenomenon may occur during playing. Therefore, in the present invention, it is intended to control the content of titanium to 0.1 to 0.5%.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining component of the present invention is iron (Fe). However, since unintended impurities from raw materials or the surrounding environment may inevitably be mixed in the normal manufacturing process, this cannot be excluded. Since these impurities are known to any person skilled in the art in the manufacturing process, all details thereof are not specifically mentioned in the present specification.
본 발명자들은 페라이트계 스테인리스강의 강도 향상을 위하여, 페라이트계 스테인리스강의 항복강도 특성에 영향을 미치는 합금 원소인 P와 Si에 대한 구체적인 연구를 통하여 아래와 같은 지견을 얻었다.The present inventors obtained the following knowledge through specific studies on P and Si, which are alloying elements that affect the yield strength characteristics of ferritic stainless steel, in order to improve the strength of ferritic stainless steel.
페라이트계 스테인리스강의 항복강도의 값은 (Si+6P)로 표현되는 항복강도 지수에 비례하여 증가하는 현상을 발견했다. 또한, 페라이트계 스테인리스강의 연신율 값은 (Si+10P)로 표현되는 연신율 지수에 비례하여 감소하는 현상을 발견했다.It was found that the value of the yield strength of ferritic stainless steel increases in proportion to the yield strength index expressed as (Si+6P). In addition, it was found that the elongation value of the ferritic stainless steel decreases in proportion to the elongation index expressed as (Si+10P).
도 2를 살펴 보면, 항복강도 지수가 증가함에 따라서 항복강도는 선형적으로 증가하고 있음을 알 수 있다. 또한, 도 2를 살펴 보면, 항복강도 지수가 1.50 이상인 경우, 400MPa 이상의 항복강도를 확보할 수 있다.Referring to FIG. 2 , it can be seen that the yield strength increases linearly as the yield strength index increases. In addition, referring to FIG. 2 , when the yield strength index is 1.50 or more, it is possible to secure a yield strength of 400 MPa or more.
도 3을 살펴 보면, 연신율 지수가 감소함에 따라서 연신율 값은 선형적으로 감소하고 있음을 알 수 있다. 또한, 도 3을 살펴 보면, 연신율 지수가 3.00 이하인 경우, 25% 이상의 연신율을 확보할 수 있다.Referring to FIG. 3 , it can be seen that the elongation value decreases linearly as the elongation index decreases. In addition, referring to FIG. 3 , when the elongation index is 3.00 or less, an elongation of 25% or more may be secured.
이에, 본 발명의 일 실시예에 따른 용접부 내식성이 향상된 고강도 페라이트계 스테인리스강은 항복강도 지수가 1.50 이상을 만족할 수 있다.Accordingly, the high-strength ferritic stainless steel having improved corrosion resistance at the weld according to an embodiment of the present invention may have a yield strength index of 1.50 or more.
또한, 본 발명의 일 실시예에 따른 용접부 내식성이 향상된 고강도 페라이트계 스테인리스강은 연신율 지수가 3.00 이하를 만족할 수 있다.In addition, the high-strength ferritic stainless steel with improved corrosion resistance at the weld according to an embodiment of the present invention may have an elongation index of 3.00 or less.
일반적으로, 스테인리스강은 11% 이상 함유되어있는 Cr 성분에 의해 향상된 내식성을 갖는 강이다. 그러나, 스테인리스강은 사용환경에 따라서 국부적으로 Cr 성분이 11% 이하로 내려가면 내식성이 떨어지게 되며, 이런 부위를 예민화(sensitization)되어 있다고 한다.In general, stainless steel is a steel with improved corrosion resistance by the Cr component containing 11% or more. However, depending on the environment of use, the corrosion resistance of stainless steel is deteriorated when the Cr component is locally lowered to 11% or less, and this area is said to be sensitized.
페라이트계 스테인리스강은 오스테나이트계 스테인리스강에 비해서 탄소의 용해도가 낮아서 열을 받으면 입계에 Cr 탄질화물이 더 용이하게 생성되어 주위에 Cr 결핍층을 형성시킴으로써 입계예민화가 발생하기 쉬운 강이다.Ferritic stainless steels have lower carbon solubility than austenitic stainless steels, so Cr carbonitrides are more easily generated at the grain boundaries when subjected to heat, thereby forming a Cr-depleted layer around the grain boundaries, and thus grain boundary sensitization is easy to occur.
특히, 페라이트계 스테인리스강을 용접 시, 용접입열에 의해 예민화 온도 구간에 가열된 용접열영향부(Heat Affected Zone)에서 결정립계에 Cr 탄화물이 석출된다. 따라서, 페라이트계 스테인리스강은 용접 시, 입계 근처에서 내식성에 효과적인 크롬의 함량이 기지보다 낮은 Cr 결핍이 나타나 예민화 현상이 발생하여 부식되는 문제점을 가지고 있다.In particular, when welding ferritic stainless steel, Cr carbide is precipitated at grain boundaries in the heat affected zone (Heat Affected Zone) heated to the sensitized temperature range by welding heat input. Therefore, the ferritic stainless steel has a problem of corrosion due to the occurrence of sensitization phenomenon due to the lack of chromium having a lower chromium content than the matrix effective for corrosion resistance near the grain boundary during welding.
이러한 용접부 입계부식 문제를 해결하기 위해, 다양한 제어 조건을 검토한 결과, 합금 원소 P의 함량에 따라, 입계부식이 발생하기 시작하는 용접부 입계부식 저항지수 값이 상이함을 알 수 있었다.As a result of examining various control conditions to solve the intergranular corrosion problem at the weld, it was found that the intergranular corrosion resistance index value at the weld where intergranular corrosion starts to occur is different depending on the content of the alloying element P.
용접부 입계부식 저항지수는 하기 식(3)으로 표현된다.The intergranular corrosion resistance index of the weld is expressed by the following formula (3).
식(3): Ti/(C+N)Equation (3): Ti/(C+N)
(여기서, C, N 및 Ti은 각 원소의 함량(중량%)을 의미한다)(Here, C, N and Ti mean the content (wt%) of each element)
페라이트계 스테인리스강의 합금원소 P의 함량에 따라, 용접부 입계부식이 발생되는 용접부 입계부식 저항지수 값이 상이하다.Depending on the content of the alloying element P in the ferritic stainless steel, the intergranular corrosion resistance index value of the weld zone where intergranular corrosion occurs at the weld zone is different.
페라이트계 스테인리스강의 합금원소 P의 함량이 중량%로, 0.05% 미만인 경우에는 용접부 입계부식 저항 지수가 12 이상을 만족할 때, 입계부식이 발생하지 않는다. 반면, 페라이트계 스테인리스강의 합금원소 P의 함량이 중량%로, 0.05% 이상인 경우에는 용접부 입계부식 저항 지수가 6.0 이상인 경우 입계부식이 발생하지 않는다.If the content of the alloying element P in the ferritic stainless steel is less than 0.05% by weight, intergranular corrosion does not occur when the intergranular corrosion resistance index of the weld zone satisfies 12 or more. On the other hand, when the content of the alloy element P in the ferritic stainless steel is 0.05% or more by weight, intergranular corrosion does not occur when the intergranular corrosion resistance index of the weld zone is 6.0 or more.
따라서, P의 함량이 0.05%(중량%) 이상인 경우에는 고가의 합금원소인 Ti를 첨가량을 감소하면서, 용접부 내입계부식특성 향상이 가능하다.Therefore, when the content of P is 0.05% (wt%) or more, it is possible to improve the intergranular corrosion resistance of the weld zone while reducing the addition amount of Ti, which is an expensive alloying element.
이에, 본 발명의 일 실시예에 따른 용접부 내식성이 향상된 고강도 페라이트계 스테인리스강은 P의 함량이 중량%로, 0.05% 이상이며, 용접부 입계부식 저항지수가 6.O 이상을 만족할 수 있다.Accordingly, in the high-strength ferritic stainless steel with improved corrosion resistance at the weld according to an embodiment of the present invention, the content of P is 0.05% or more by weight, and the intergranular corrosion resistance index of the weld can satisfy 6.0 or more.
이와 같이, 합금 원소의 조성비, 성분 관계식을 최적화함으로써, STS 430 대비 높은 강도를 확보할 수 있다. 높은 강도 특성을 이용하여 냉장고의 도어 등과 같은 가전 분야에 사용할 경우 소재의 두께를 저감할 수 있으며, 덴트(dent) 특성이 향상시킬 수 있다. 또한, 합금원소 P의 함량을 조절하여, 고가의 안정화 원소인 Ti 함량을 줄이면서도 용접부 입계부식 저항성을 향상시킬 수 있다.As described above, by optimizing the composition ratio and component relation of the alloy elements, it is possible to secure higher strength compared to STS 430. When it is used in the field of home appliances such as a door of a refrigerator by using high strength characteristics, the thickness of the material can be reduced and dent characteristics can be improved. In addition, by adjusting the content of the alloying element P, it is possible to improve the intergranular corrosion resistance of the weld zone while reducing the content of Ti, which is an expensive stabilizing element.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, it is necessary to note that the following examples are only intended to illustrate the present invention in more detail and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and matters reasonably inferred therefrom.
{실시예}{Example}
하기 표 1에 나타낸 다양한 합금 성분범위에 대하여, 50kg 진공용해설비에서 용해하여 120mm 두께의 잉곳(ingot)을 제조하였다. 제조된 잉곳을 1100 내지 1200℃에서 3.0mm 두께로 열간압연 하였다. 이후 열간압연재를 소둔 및 산세하고, 0.6mm까지 냉간압연을 진행한 뒤, 냉연소둔 및 산세를 실시했다.For the various alloy component ranges shown in Table 1 below, 120 mm thick ingots were prepared by dissolving in a 50 kg vacuum melting facility. The prepared ingot was hot-rolled at 1100 to 1200° C. to a thickness of 3.0 mm. After that, the hot-rolled material was annealed and pickled, cold-rolled to 0.6 mm, and then cold-rolled annealing and pickling were performed.
구분division 합금성분alloy composition
CC SiSi MnMn PP CrCr TiTi NN
실시예 1Example 1 0.0060.006 1.501.50 0.300.30 0.0700.070 1313 0.120.12 0.0070.007
실시예 2Example 2 0.0080.008 2.002.00 0.480.48 0.0690.069 13.513.5 0.120.12 0.0070.007
실시예 3Example 3 0.0040.004 1.681.68 0.300.30 0.0850.085 15.515.5 0.140.14 0.0050.005
실시예 4Example 4 0.0050.005 1.251.25 0.200.20 0.0950.095 16.516.5 0.150.15 0.0050.005
실시예 5Example 5 0.0060.006 1.191.19 0.200.20 0.1600.160 16.516.5 0.100.10 0.0060.006
실시예 6Example 6 0.0080.008 2.012.01 0.200.20 0.0500.050 18.518.5 0.120.12 0.0050.005
실시예 7Example 7 0.0080.008 1.351.35 0.200.20 0.0700.070 18.518.5 0.190.19 0.0060.006
실시예 8Example 8 0.0050.005 1.221.22 0.200.20 0.0890.089 19.519.5 0.210.21 0.0060.006
실시예 9Example 9 0.0060.006 1.201.20 0.210.21 0.1850.185 20.520.5 0.250.25 0.0060.006
비교예 1Comparative Example 1 0.050.05 0.300.30 0.200.20 0.0200.020 16.516.5 0.010.01 0.0350.035
비교예 2Comparative Example 2 0.0080.008 1.401.40 0.280.28 0.0200.020 11.511.5 0.220.22 0.0050.005
비교예 3Comparative Example 3 0.0070.007 1.181.18 0.190.19 0.0190.019 17.517.5 0.310.31 0.0050.005
비교예 4Comparative Example 4 0.0080.008 0.600.60 0.480.48 0.0220.022 13.513.5 0.120.12 0.0070.007
비교예 5Comparative Example 5 0.0030.003 0.750.75 0.300.30 0.0210.021 14.514.5 0.150.15 0.0190.019
비교예 6Comparative Example 6 0.0070.007 0.950.95 0.480.48 0.0220.022 16.516.5 0.090.09 0.0070.007
비교예 7Comparative Example 7 0.0080.008 0.850.85 0.300.30 0.0210.021 17.517.5 0.130.13 0.0050.005
비교예 8Comparative Example 8 0.0060.006 0.900.90 0.480.48 0.0450.045 19.519.5 0.100.10 0.0070.007
비교예 9Comparative Example 9 0.0080.008 2.602.60 0.300.30 0.3000.300 13.513.5 0.220.22 0.0060.006
비교예 10Comparative Example 10 0.0090.009 2.902.90 0.250.25 0.1200.120 14.514.5 0.190.19 0.0080.008
비교예 11Comparative Example 11 0.0080.008 1.851.85 0.250.25 0.2000.200 15.515.5 0.200.20 0.0080.008
비교예 12Comparative Example 12 0.0090.009 2.902.90 0.250.25 0.1200.120 14.514.5 0.190.19 0.0080.008
비교예 13Comparative Example 13 0.0080.008 1.831.83 0.250.25 0.1500.150 15.515.5 0.090.09 0.0080.008
비교예 14Comparative Example 14 0.0060.006 1.451.45 0.400.40 0.2500.250 16.516.5 0.050.05 0.0090.009
다음으로, 상기 냉연재를 압연방향에 수직 방향으로 시험편을 제작하여, JIS 13B 인장시험을 진행하였다. 하기 표 2는 실시예와 비교예의 항복강도 지수 값 및 연신율 지수 값과 상기 인장시험을 통해 측정한 항복강도 값 및 연신율 값을 나타냈다.Next, a test piece of the cold-rolled material was prepared in a direction perpendicular to the rolling direction, and a JIS 13B tensile test was performed. Table 2 below shows the yield strength index values and elongation index values of Examples and Comparative Examples, and the yield strength values and elongation values measured through the tensile test.
구분division 항복강도 지수Yield strength index 항복강도 (MPa)Yield strength (MPa) 연신율 지수elongation index 연신율 (%)Elongation (%)
실시예 1Example 1 1.921.92 437.0437.0 2.202.20 27.427.4
실시예 2Example 2 2.412.41 481.1481.1 2.692.69 25.925.9
실시예 3Example 3 2.192.19 462.4462.4 2.532.53 26.426.4
실시예 4Example 4 1.821.82 429.6429.6 2.202.20 27.427.4
실시예 5Example 5 2.152.15 462.8462.8 2.792.79 25.625.6
실시예 6Example 6 2.312.31 471.0471.0 2.512.51 26.526.5
실시예 7Example 7 1.771.77 423.2423.2 2.052.05 27.927.9
실시예 8Example 8 1.751.75 423.1423.1 2.112.11 27.727.7
실시예 9Example 9 2.312.31 479.1479.1 3.053.05 24.824.8
비교예 1Comparative Example 1 0.420.42 299.0299.0 0.500.50 32.532.5
비교예 2Comparative Example 2 1.521.52 398.0398.0 1.601.60 29.229.2
비교예 3Comparative Example 3 1.291.29 377.6377.6 1.371.37 29.929.9
비교예 4Comparative Example 4 0.730.73 327.2327.2 0.820.82 31.531.5
비교예 5Comparative Example 5 0.880.88 340.1340.1 0.960.96 31.131.1
비교예 6Comparative Example 6 1.081.08 358.7358.7 1.171.17 30.530.5
비교예 7Comparative Example 7 0.980.98 349.1349.1 1.061.06 30.830.8
비교예 8Comparative Example 8 1.171.17 368.0368.0 1.351.35 30.030.0
비교예 9Comparative Example 9 4.404.40 674.0674.0 5.605.60 17.217.2
비교예 10Comparative Example 10 3.623.62 593.0593.0 4.104.10 21.721.7
비교예 11Comparative Example 11 3.053.05 546.5546.5 3.853.85 22.522.5
비교예 12Comparative Example 12 3.623.62 593.0593.0 4.104.10 21.721.7
비교예 13Comparative Example 13 2.732.73 514.7514.7 3.333.33 24.024.0
비교예 14Comparative Example 14 2.952.95 540.5540.5 3.953.95 22.222.2
표 2를 참조하면, 실시예 1 내지 9는 항복강도 지수가 1.5 이상이며, 연신율 지수가 3.0 이하이다. 이에 따라, 실시예 1 내지 9는 400MPa 이상의 높은 항복강도를 가지는 동시에 25% 이상의 연신율 값이 도출되었다. 따라서, 실시예 1 내지 9는 고강도를 확보함으로써 소재의 두께 절감이 가능함과 동시에 적절한 가공이 가능하다.Referring to Table 2, Examples 1 to 9 have a yield strength index of 1.5 or more, and an elongation index of 3.0 or less. Accordingly, Examples 1 to 9 had a high yield strength of 400 MPa or more, and an elongation value of 25% or more was derived. Therefore, in Examples 1 to 9, by securing high strength, it is possible to reduce the thickness of the material, and at the same time, suitable processing is possible.
비교예 1 내지 8은 연신율 지수 값이 3.0 이하를 만족한다. 이에 따라, 비교예 1 내지 8은 25% 이상의 연신율 값이 도출되었다. 그러나, 비교예 1 내지 8은 항복강도 지수 값이 1.5 미만이며, 이에 따라, 400MPa 미만의 낮은 항복강도 값을 가졌다.In Comparative Examples 1 to 8, the elongation index value satisfies 3.0 or less. Accordingly, in Comparative Examples 1 to 8, elongation values of 25% or more were derived. However, Comparative Examples 1 to 8 had a yield strength index value of less than 1.5, and thus, had a low yield strength value of less than 400 MPa.
비교예 9 내지 14는 항복강도 값이 1.5 이상이며, 이에 따라 400MPa 이상의 항복강도 값이 도출되었다. 그러나, 비교예 9 내지 14는 3.0 보다 큰 연신율 지수 값을 가져, 연신율이 25% 미만으로 도출되었다.Comparative Examples 9 to 14 had a yield strength value of 1.5 or more, and thus a yield strength value of 400 MPa or more was derived. However, Comparative Examples 9 to 14 had an elongation index value greater than 3.0, resulting in an elongation of less than 25%.
또한, 상기 냉연재에 대하여 용접부 입계부식실험 등을 측정하여 예민화 특성 및 입계부식특성을 평가하였다.In addition, the sensitization characteristics and intergranular corrosion characteristics were evaluated by measuring the intergranular corrosion test of the weld zone with respect to the cold rolled material.
용접의 방법으로는 TIG(Tungsten inert gas) 용접을 병행하여 실시하였다. TIG 용접은 DC type 용접기(최대용접전류 350A)를 사용하였으며, 비드온플레이트(bead-on-plate)로 실시하였다. 용접조건은 용접전류 110A, 용접속도 0.32m/min, 텅스텐 전극경 2.5mm, 아크 길이(Arc length) 1.5mm, 보호가스 Ar (15L/min)으로 하였다.As a welding method, TIG (Tungsten inert gas) welding was performed in parallel. For TIG welding, a DC type welding machine (maximum welding current 350A) was used, and bead-on-plate was used. Welding conditions were a welding current of 110A, welding speed of 0.32m/min, tungsten electrode diameter of 2.5mm, arc length of 1.5mm, and shielding gas Ar (15L/min).
용접부의 입계부식은 TIG용접 시험편에 대하여 예민화 처리를 실시하지 않은 조건에서 Modified-Strauss 시험 방법을 통해 평가하였다. Modified-Strauss 시험 방법은 6% CuSO4 + 0.5% H2SO4 수용액의 하부에 Cu 볼을 깐 다음 비등 수용액에서 24시간 침지한 다음 유 벤드 테스트(U-bend test)를 실시하여 입계부식성을 평가하는 방법이다.The intergranular corrosion of the weld was evaluated by the Modified-Strauss test method under the condition that sensitization treatment was not performed on the TIG welding test piece. Modified-Strauss test method is a method to evaluate intergranular corrosion by placing Cu balls on the bottom of 6% CuSO4 + 0.5% H2SO4 aqueous solution, immersing them in a boiling aqueous solution for 24 hours, and then performing a U-bend test.
하기 표 3은 실시예와 비교예의 P 함량이 중량%로 0.05% 이상인지 여부, 용접부 입계부식 저항지수 및 용접부 입계부식 발생 여부를 나타냈다.Table 3 below shows whether the P content of Examples and Comparative Examples is 0.05% or more by weight, the intergranular corrosion resistance index of the weld zone, and whether the intergranular corrosion of the weld zone occurs.
구분division P 함량(중량%)P content (wt%) 용접부 입계부식 저항지수Intergranular corrosion resistance index of welds 용접부 입계부식 발생 여부Whether or not intergranular corrosion occurs in the weld area
실시예 1Example 1 ≥0.05≥0.05 9.29.2 XX
실시예 2Example 2 ≥0.05≥0.05 8.08.0 XX
실시예 3Example 3 ≥0.05≥0.05 15.615.6 XX
실시예 4Example 4 ≥0.05≥0.05 15.015.0 XX
실시예 5Example 5 ≥0.05≥0.05 8.38.3 XX
실시예 6Example 6 ≥0.05≥0.05 9.29.2 XX
실시예 7Example 7 ≥0.05≥0.05 13.613.6 XX
실시예 8Example 8 ≥0.05≥0.05 19.119.1 XX
실시예 9Example 9 ≥0.05≥0.05 20.820.8 XX
비교예 1Comparative Example 1 < 0.05< 0.05 0.10.1 OO
비교예 2Comparative Example 2 < 0.05< 0.05 16.916.9 XX
비교예 3Comparative Example 3 < 0.05< 0.05 25.825.8 XX
비교예 4Comparative Example 4 < 0.05< 0.05 8.08.0 OO
비교예 5Comparative Example 5 < 0.05< 0.05 7.07.0 OO
비교예 6Comparative Example 6 < 0.05< 0.05 6.46.4 OO
비교예 7Comparative Example 7 < 0.05< 0.05 9.69.6 OO
비교예 8Comparative Example 8 < 0.05< 0.05 7.77.7 OO
비교예 9Comparative Example 9 ≥0.05≥0.05 15.715.7 XX
비교예 10Comparative Example 10 ≥0.05≥0.05 11.211.2 XX
비교예 11Comparative Example 11 ≥0.05≥0.05 12.512.5 XX
비교예 12Comparative Example 12 ≥0.05≥0.05 11.211.2 XX
비교예 13Comparative Example 13 ≥0.05≥0.05 5.65.6 OO
비교예 14Comparative Example 14 ≥0.05≥0.05 3.33.3 OO
표 3을 참조하면, 실시예 1 내지 9는 P함량이 0.05% 이상이며, 용접부 입계부식 저항지수가 6 이상이다. 이에 따라, 실시예 1 내지 9는 용접부 내입계부식성이 향상되었다.Referring to Table 3, Examples 1 to 9 have a P content of 0.05% or more, and a weld intergranular corrosion resistance index of 6 or more. Accordingly, Examples 1 to 9 improved the intergranular corrosion resistance of the weld zone.
비교예 1 내지 8은 P가 0.05%(중량%) 미만으로 첨가되어있고, 비교예 1은 용접부 입계부식 저항지수가 0.1로 12 미만의 값을 가져, 용접부 입계부식이 발생했다. 또한, 비교예 4 내지 8도 용접부 입계부식 저항지수가 12 미만의 값을 가져, 용접부 입계부식이 발생했다.In Comparative Examples 1 to 8, P was added in an amount of less than 0.05% (wt%), and in Comparative Example 1, the intergranular corrosion resistance index of the weld zone was 0.1 and had a value of less than 12, and intergranular corrosion of the weld zone occurred. In addition, in Comparative Examples 4 to 8, the intergranular corrosion resistance index of the weld portion had a value of less than 12, and intergranular corrosion of the weld portion occurred.
반면, 비교예 2는 12 이상인 16.9의 용접부 저항지수 값을 가져, 용접부 입계부식이 발생하지 않았다. 또한, 비교예 3도 12 이상인 25.8의 용접부 저항지수 값을 가져, 용접부 입계부식이 발생하지 않았다.On the other hand, Comparative Example 2 had a weld resistance index value of 16.9, which is 12 or more, so that intergranular corrosion of the weld zone did not occur. In addition, Comparative Example 3 also had a weld resistance index value of 25.8, which is 12 or more, so that intergranular corrosion of the weld area did not occur.
비교예 9 내지 14는 P가 0.05%(중량%) 이상으로 첨가되어있지만, 비교예 9 내지 12는 용접부 입계부식 저항지수가 용접부 입계부식 저항지수가 6 이상의 값을 가져, 용접부 입계부식이 발생하지 않았다.In Comparative Examples 9 to 14, P was added in an amount of 0.05% (wt%) or more, but in Comparative Examples 9 to 12, the intergranular corrosion resistance index of the weld intergranular corrosion resistance index had a value of 6 or more, and intergranular corrosion of the weld area did not occur. didn't
반면, 비교예 13은 용접부 입계부식 저항지수가 6 미만인 5.6의 값을 가져, 용접부 입계부식이 발생했다. 또한, 비교예 14도 용접부 입계부식 저항지수가 6 미만인 3.3의 값을 가져, 용접부 입계부식이 발생했다.On the other hand, in Comparative Example 13, the intergranular corrosion resistance index of the weld zone had a value of 5.6, which is less than 6, and intergranular corrosion of the weld zone occurred. In Comparative Example 14, the intergranular corrosion resistance index of the weld zone had a value of 3.3, which is less than 6, and intergranular corrosion of the weld zone occurred.
개신된 실시예에 따르면, 합금성분 및 성분관계식을 최적으로 제어함으로써, 고강도를 확보함과 동시에 적절한 가공이 가능하게 하며, 용접부에 입계부식이 발생하지 않는 향상된 내식성을 확보할 수 있다.According to the revised embodiment, by optimally controlling the alloy composition and the compositional formula, it is possible to secure high strength and at the same time to enable proper processing, and to secure improved corrosion resistance in which intergranular corrosion does not occur in the welded part.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.In the foregoing, exemplary embodiments of the present invention have been described, but the present invention is not limited thereto, and those of ordinary skill in the art may not depart from the concept and scope of the claims described below. It will be appreciated that various modifications and variations are possible.
본 발명의 일 예에 따르면, 페라이트계 스테인리스강의 합금조성 범위를 최적화함으로써 용접부 내식성이 향상된 고강도 페라이트계 스테인리스강을 제공할 수 있다.According to an example of the present invention, by optimizing the alloy composition range of the ferritic stainless steel, it is possible to provide a high-strength ferritic stainless steel with improved corrosion resistance at the weld.

Claims (4)

  1. 중량%로, C: 0.01% 이하(0은 제외), Si: 1.0 내지 3.0% 이하, Mn: 0.5% 이하(0은 제외), P: 0.05 내지 0.2%, Cr: 13 내지 21%, Ti: 0.1 내지 0.5%, N: 0.01% 이하(0은 제외) 나머지 Fe 및 기타 불가피한 불순물을 포함하는, 용접부 내식성이 향상된 고강도 페라이트계 스테인리스강.By weight%, C: 0.01% or less (excluding 0), Si: 1.0 to 3.0% or less, Mn: 0.5% or less (excluding 0), P: 0.05 to 0.2%, Cr: 13 to 21%, Ti: 0.1 to 0.5%, N: 0.01% or less (excluding 0) High-strength ferritic stainless steel with improved weld corrosion resistance, including the remaining Fe and other unavoidable impurities.
  2. 청구항 1에 있어서,The method according to claim 1,
    하기 식(1)로 표현되는, 항복강도 지수가 1.50 이상을 만족하는, 용접부 내식성이 향상된 고강도 페라이트계 스테인리스강.High-strength ferritic stainless steel with improved corrosion resistance in the weld, which is expressed by the following formula (1), and has a yield strength index of 1.50 or more.
    식(1): Si+6PFormula (1): Si+6P
    (여기서, Si 및 P은 각 원소의 함량(중량%)을 의미한다)(Here, Si and P mean the content (wt%) of each element)
  3. 청구항 1에 있어서,The method according to claim 1,
    하기 식(2)로 표현되는, 연신율 지수가 3.00 이하를 만족하는, 용접부 내식성이 향상된 고강도 페라이트계 스테인리스강.A high-strength ferritic stainless steel with improved corrosion resistance at welds, which is expressed by the following formula (2), and has an elongation index of 3.00 or less.
    식(2): Si+10PFormula (2): Si+10P
    (여기서, Si 및 P은 각 원소의 함량(중량%)을 의미한다)(Here, Si and P mean the content (wt%) of each element)
  4. 청구항 1에 있어서,The method according to claim 1,
    하기 식(3)로 표현되는, 용접부 입계부식 저항지수가 6.0 이상인, 용접부 내식성이 향상된 고강도 페라이트계 스테인리스강.A high-strength ferritic stainless steel with improved corrosion resistance at the weld, having a weld intergranular corrosion resistance index of 6.0 or more, expressed by the following formula (3).
    식(3): Ti/(C+N)Equation (3): Ti/(C+N)
    (여기서, C, N 및 Ti은 각 원소의 함량(중량%)을 의미한다)(Here, C, N and Ti mean the content (wt%) of each element)
PCT/KR2021/015968 2020-12-09 2021-11-05 High strength ferritic stainless steel having improved corrosion resistance at welded portion WO2022124587A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0171166 2020-12-09
KR1020200171166A KR102443422B1 (en) 2020-12-09 2020-12-09 High strength ferritic stainless steel with improved intergranular corrosion resistance

Publications (1)

Publication Number Publication Date
WO2022124587A1 true WO2022124587A1 (en) 2022-06-16

Family

ID=81973728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015968 WO2022124587A1 (en) 2020-12-09 2021-11-05 High strength ferritic stainless steel having improved corrosion resistance at welded portion

Country Status (2)

Country Link
KR (1) KR102443422B1 (en)
WO (1) WO2022124587A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870002190B1 (en) * 1982-12-29 1987-12-28 닛신 세이꼬오 가부시기 가이샤 Corrosion resistant alloy
JPH108218A (en) * 1996-06-26 1998-01-13 Nisshin Steel Co Ltd Ferritic stainless steel for exhaust gas heat transfer member and its production
JP2005194572A (en) * 2004-01-07 2005-07-21 Sanyo Special Steel Co Ltd Ferritic stainless steel superior in cold forgeability
KR20140014275A (en) * 2011-06-16 2014-02-05 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless-steel sheet with excellent non-ridging property and process for producing same
KR101928636B1 (en) * 2014-03-26 2018-12-12 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Rolled ferritic stainless-steel plate, process for producing same, and flange component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100825630B1 (en) 2006-10-20 2008-04-25 주식회사 포스코 Ferritic stainless steel having excellent formability of welded zone, and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870002190B1 (en) * 1982-12-29 1987-12-28 닛신 세이꼬오 가부시기 가이샤 Corrosion resistant alloy
JPH108218A (en) * 1996-06-26 1998-01-13 Nisshin Steel Co Ltd Ferritic stainless steel for exhaust gas heat transfer member and its production
JP2005194572A (en) * 2004-01-07 2005-07-21 Sanyo Special Steel Co Ltd Ferritic stainless steel superior in cold forgeability
KR20140014275A (en) * 2011-06-16 2014-02-05 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless-steel sheet with excellent non-ridging property and process for producing same
KR101928636B1 (en) * 2014-03-26 2018-12-12 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Rolled ferritic stainless-steel plate, process for producing same, and flange component

Also Published As

Publication number Publication date
KR102443422B1 (en) 2022-09-16
KR20220081557A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
WO2019117430A1 (en) Ferritic stainless steel having excellent high-temperature oxidation resistance, and manufacturing method therefor
US20230265547A1 (en) Nickel-Based Superalloy Steel And Preparation Method Thereof
WO2019039768A1 (en) Low-ni austenitic stainless steel with excellent hot workability and hydrogen embrittlement resistance
WO2018117477A1 (en) Duplex stainless steel having excellent corrosion resistance and moldability, and manufacturing method therefor
EP1207214B1 (en) Soft Cr-containing steel
WO2022124587A1 (en) High strength ferritic stainless steel having improved corrosion resistance at welded portion
WO2016105092A1 (en) Ferrite-based stainless steel and method for manufacturing same
WO2019124729A1 (en) Utility ferritic stainless steel having excellent hot workability, and manufacturing method therefor
WO2017209431A1 (en) Austenitic stainless steel having improved corrosion-resistance and workability and method for producing same
KR102326046B1 (en) LOW-Cr FERRITIC STAINLESS STEEL WITH IMPROVED HIGH TEMPERATURE CHARACTERISTICS AND FORMABILITY AND MANUFACTURING METHOD THEREOF
WO2021125564A1 (en) High-strength ferritic stainless steel for clamp, and manufacturing method therefor
WO2022124586A1 (en) Ferritic stainless steel with improved intergranular corrosion properties
KR102168829B1 (en) LOW-Cr FERRITIC STAINLESS STEEL WITH EXCELLENT FORMABILITY AND HIGH TEMPERATURE PROPERTIES AND MANUFACTURING METHOD THEREOF
WO2020036370A1 (en) Austenitic stainless steel having improved strength
WO2020085687A1 (en) High-strength ferritic stainless steel for clamp and method for manufacturing same
WO2014098301A1 (en) Hot-rolled stainless steel sheet having excellent hardness and low-temperature impact properties
WO2021045371A1 (en) Highly corrosion-resistant austenitic stainless steel having excellent impact toughness and hot workability
WO2017111437A1 (en) Lean duplex stainless steel and method for manufacturing same
JP2500948B2 (en) Manufacturing method of thick 80kgf / mm2 grade high strength steel with excellent weldability
WO2022108170A1 (en) High-strength austenitic stainless steel having excellent hot workability
WO2021025248A1 (en) Ferritic stainless steel with improved high temperature creep resistance and manufacturing method therefor
WO2022045595A1 (en) Austenitic stainless steel with improved deep drawability
WO2022131503A1 (en) Ferritic stainless steel having excellent heat resistance and method for manufacturing same
US20050169790A1 (en) Steel for components of chemical installations
WO2022270814A1 (en) Austenitic stainless steel and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903634

Country of ref document: EP

Kind code of ref document: A1