WO2022124564A1 - Method for predicting and diagnosing diabetic neuropathy using micro-rna, and kit therefor - Google Patents

Method for predicting and diagnosing diabetic neuropathy using micro-rna, and kit therefor Download PDF

Info

Publication number
WO2022124564A1
WO2022124564A1 PCT/KR2021/014992 KR2021014992W WO2022124564A1 WO 2022124564 A1 WO2022124564 A1 WO 2022124564A1 KR 2021014992 W KR2021014992 W KR 2021014992W WO 2022124564 A1 WO2022124564 A1 WO 2022124564A1
Authority
WO
WIPO (PCT)
Prior art keywords
diabetic neuropathy
mir
nucleic acid
predicting
acid sequence
Prior art date
Application number
PCT/KR2021/014992
Other languages
French (fr)
Korean (ko)
Inventor
박영광
임장미
장지련
Original Assignee
주식회사 레피겐엠디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레피겐엠디 filed Critical 주식회사 레피겐엠디
Publication of WO2022124564A1 publication Critical patent/WO2022124564A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material

Definitions

  • the present invention relates to a method for diagnosing diabetic neuropathy and a diagnostic kit using the same.
  • it relates to a method for diagnosing or predicting diabetic neuropathy using microRNA, which can be an indicator of diabetic neuropathy, and a kit for the same. More specifically, it relates to a method and a kit capable of increasing the accuracy of diagnosis of diabetic neuropathy by using microRNAs showing opposite expression levels.
  • Diabetic neuropathy a common microvascular complication of type 1 diabetes mellitus and type 2 diabetes mellitus, is a symptom of peripheral nerve dysfunction in diabetic patients. defined by existence. Population- and clinical-based studies suggest that the prevalence of diabetic neuropathy after 20 years of type 1 diabetes is 20% and increases by about 10% to 15% to 50% at 10 years of type 2 diabetes. Despite these studies, the pathophysiology of diabetic neuropathy has not been clearly defined because of numerous closely related causal mechanisms and difficulties in establishing a definitive diagnostic method.
  • micro-RNA micro-RNA or miRNA, hereinafter abbreviated as 'miRNA'
  • miRNA is an untranslated RNA composed of several to several tens of nucleotides, and performs the functions of RNA silencing in the transcriptional stage and regulating gene expression in the post-transcriptional stage. It is known that the function of these miRNAs is performed through the formation of base pairs with complementary sequences in mRNA (Bartel, D.P., Cell, 136(2): 215-233, 2009).
  • miRNA was first discovered in C. elegans, various types of miRNAs have been reported one after another as it is known that it is being used as a regulatory mechanism for gene expression in animals, plants and viruses, due to mutations in miRNA genes, etc. It is known that certain diseases, such as cancer, may occur due to the dissonance of the functions of : 834-838, 2005).
  • the technical problem to be solved by the present invention is to measure the expression level of miRNA that is over-expressed or under-expressed under diabetic neuropathy and compared with a normal control group to treat diabetic neuropathy. It is to provide a simple method for diagnosing or predicting expression.
  • Another object is to provide a diagnostic kit for diabetic neuropathy using such biomarkers.
  • composition for prediction or diagnosis of diabetic neuropathy for solving any of the above problems is for measuring one or more biomarkers selected from the group consisting of miR-122, miR-199b, and miR-8485 Includes reagents.
  • the reagent may include a nucleic acid sequence of each biomarker, a nucleic acid sequence complementary to the nucleic acid sequence, and a fragment of the nucleic acid sequence.
  • the nucleic acid sequence or fragment of the nucleic acid sequence may be a primer or a probe capable of specific binding to each of the markers, or a primer and a probe.
  • the reagent is a reverse transcription polymerase chain reaction of each biomarker, a polymerase chain reaction, a competitive polymerase chain reaction, a nuclease protection assay (RNase, S1 nuclease assay), an in situ hybridization method, a ligation-based polymerase chain reaction, a micro It may be a reagent used in an array or northern blot.
  • the method for detecting a diabetic neuropathy marker according to an embodiment of the present invention for solving any of the above other problems is a subject suspected of diabetic neuropathy in order to provide information necessary for diagnosing or predicting diabetic neuropathy.
  • the detection may be by a hybridization or nucleic acid amplification method.
  • the hybridization may be a microarray analysis and the nucleic acid amplification may be reverse transcriptase polymerase chain reaction.
  • the biological sample may be whole blood, plasma, or serum from a diabetic neuropathy patient.
  • the method may be to use the average value of the expression levels of the miR-122, miR-199b, and miR-8485 markers.
  • biomarkers selected from the group consisting of miR-122, miR-199b, and miR-8485 for predicting or diagnosing diabetic neuropathy according to an embodiment of the present invention for solving any of the above other problems Reagents for marker measurement are included.
  • diabetic neuropathy can be diagnosed simply by measuring the expression level of miRNAs showing a specific expression pattern under diabetic neuropathy and comparing it with a normal control group.
  • 1 is a heat map analysis result between two groups using a next-generation genomic analysis method for discovering miRNA biomarkers in a normal group and a diabetic neuropathy group.
  • 'comprises' and/or 'comprising' does not exclude the presence or addition of one or more other components in addition to the stated components.
  • Numerical ranges indicated using 'to' indicate numerical ranges including the values stated before and after them as lower and upper limits, respectively.
  • 'About' or 'approximately' means a value or numerical range within 20% of the value or numerical range recited thereafter.
  • the term 'diagnosis' refers to confirming the presence or characteristics of a pathological condition. That is, to determine the susceptibility of the test subject to the disease for a specific disease or disorder, to determine whether or not to currently have the specific disease or disorder, to determine the prognosis of the subject suffering from the specific disease or disorder adjudicating, monitoring the condition of the subject to provide information about whether the disease has relapsed after treatment or therametrics, such as efficacy of the treatment.
  • the diagnosis can be interpreted not only as confirming whether the progress or onset of diabetic neuropathy, but also as confirming the possibility of the onset of diabetic neuropathy.
  • the term 'diagnostic subject' refers to a specimen or biological sample such as blood, body fluid, secretion, tissue, or sample isolated from a patient, individual, or these for diagnosing a corresponding indication.
  • the expression level of miRNA of the present invention can be measured by collecting and detecting blood, body fluid, tissue, nerve cell or nerve tissue of a patient or individual.
  • Biological samples are taken from investigators expected to have diabetic neuropathy.
  • control samples may be taken from investigators already aware of the disease state to corroborate the data obtained.
  • the biological sample refers to an organ, tissue, cell or body fluid derived from an organism.
  • biological samples include, but are not limited to, tissue sections, whole blood, plasma, serum, urine or blood-derived white blood cells, red blood cells, or platelets, or tissue or cell cultures. Also, one or more samples may be mixed and used.
  • the biological sample may be obtained directly from a subject by a routine sample obtaining method from a body having or suspected of having diabetic neuropathy, or may be previously isolated and stored.
  • the sample may be used as a biological sample after purification from the obtained liquid.
  • the expression level of the nucleic acid marker in the present invention is determined in a biological sample derived from a subject.
  • the sample used for detection in the in vitro method of the present invention should generally be collected in a clinically acceptable manner, and is preferably preserved in a nucleic acid (especially RNA) or protein method.
  • a sample awaiting analysis is usually taken from blood.
  • the term 'normal control' refers to a patient, individual, or blood, body fluid, secretion, sample, etc. isolated from a patient or individual who does not have the relevant indication, and the miRNA related to the indication is expressed at a normal level to be diagnosed It can be a criterion for evaluating the miRNA expression level of
  • the term 'biomarker' or 'diagnosis marker' refers to a tissue or cell in which diabetic neuropathy has occurred can be diagnosed by distinguishing it from normal cells or tissues or cells that have received appropriate diabetic neuropathy treatment. It contains non-coding nucleic acids that show an increase or decrease in the diseased tissue or site compared to a normal sample (control).
  • the biomarker according to the present disclosure may be used as one or a combination of two or more, for example, two or three combinations, and may be used together with an existing marker and/or a diagnostic method.
  • 'miRNA (micro-RNA)' refers to a target RNA that promotes degradation. or 21 to 23 non-coding RNAs that post-transcriptionally regulate gene expression by inhibiting their translation.
  • the mature sequence of the miRNA used herein can be obtained from the miRNA database (http://www.mirbase.org).
  • microRNA is transcribed into a precursor of about 70-80 nt (nucleotide) in length with a hairpin structure called pre-miRNA, and then cut by the RNAse III enzyme Dicer to produce a mature form.
  • MicroRNA forms a ribonucleo complex called miRNP to cleave a target gene through complementary binding to a target site or inhibit translation. More than 30% of human miRNA exists as a cluster, and after being transcribed into a single precursor, it undergoes a cleavage process to form a final mature miRNA.
  • miRNAs modified to have a sequence that maintains 80% or more, preferably 90% or more, more preferably 95% or more, and most preferably 98% or more homology to the miRNA of the present invention. It will be readily understood that it is equivalent to miRNA.
  • nucleic acid includes polynucleotides, oligonucleotides, DNA, RNA, and analogs and derivatives thereof, and includes, for example, peptide nucleic acids (PNA) or mixtures thereof.
  • PNA peptide nucleic acids
  • the nucleic acid may be single or double-stranded, and may encode a molecule including a polypeptide, mRNA, microRNA, or siRNA.
  • the term 'primer' is a nucleic acid sequence having a short free 3' hydroxyl group, which can form a complementary template and base pair, and is a start for template strand copying. It refers to a short nucleic acid sequence that functions as a point. Primers are capable of initiating DNA synthesis in the presence of reagents for polymerization (ie, DNA polymerase or reverse transcriptase) and four different nucleoside triphosphates in appropriate buffers and temperatures.
  • reagents for polymerization ie, DNA polymerase or reverse transcriptase
  • the term "complementary" means that under certain hybridization (hybridization) or annealing conditions, preferably under physiological conditions, the antisense oligonucleotide is sufficiently complementary to selectively hybridize to the target of the microRNA according to the present application, , has a meaning encompassing both partially or partially substantially complementary and perfectly complementary, and preferably means completely complementary.
  • substantially complementary refers to a degree of complementarity that is not completely complementary, but is sufficient to bind to a target sequence and produce an effect sufficient to interfere with the effect according to the present application, that is, microRNA activity.
  • the term 'probe' refers to a nucleic acid fragment such as RNA or DNA corresponding to several bases to several hundred bases as short as possible to achieve specific binding to a gene or mRNA, oligonucleotide It may be manufactured in the form of a probe, a single stranded DNA probe, a double stranded DNA probe, an RNA probe, or the like, and may be labeled for easier detection.
  • the present invention is based on the discovery of a non-coding RNA marker such as miRNA that can be used as a biomarker that enables the prediction and accurate early diagnosis of diabetic neuropathy.
  • the present invention relates to a composition for predicting and diagnosing diabetic neuropathy, comprising a reagent for detecting one or more markers selected from the group consisting of miR-122, miR-199b, and miR-8485.
  • a person skilled in the art can select a combination of markers satisfying the desired sensitivity and specificity through a method such as an analysis using a biological sample from a subject, including a normal person and a patient, and/or a logistic regression analysis, such as the method described in the Examples herein. will be.
  • a combination of miR-122, miR-199b, and miR-8485 is used.
  • a blood sample such as whole blood, serum or plasma is used.
  • urine, whole blood, serum and/or plasma may be used.
  • a tissue/cell or an in vitro cell culture obtained from a subject having, suspected, or likely to develop diabetic neuropathy may be used, but is not limited thereto. It also includes fractions or derivatives of the blood, cells or tissues. In the case of using cells or tissues, the cells themselves or a lysate of the cells or tissues may be used.
  • a subject herein includes a mammal suspected of having a disease, a mammal who has been treated after having a disease but is suspected of relapse, particularly a human.
  • composition according to the present application detects the expression level of the one or more miRNAs in a biological sample, and compares it with a control or reference group, and can diagnose or predict diabetic neuropathy according to the degree of increase or change in the expression level.
  • composition according to the present application can measure/detect one or more markers selected from the group consisting of miR-122, miR-199b, and miR-8485 using the following method, and thus used in such method It may contain reagents that are
  • the measurement of miRNA according to the present disclosure includes methods for qualitative, quantitative and semi-quantitative detection of a desired miRNA. Any known method related to nucleic acid detection, for example, a nucleic acid hybridization and/or polymerization and/or amplification method described below and/or a hybridization-based ligation method may be used.
  • the biomarker according to the present disclosure can be detected at the level of the presence or absence of a nucleic acid, particularly miRNA, and/or its expression level itself, change in expression level, and difference in expression level through quantitative or qualitative analysis.
  • Nucleic acid hybridization can be performed using a nucleic acid biochip array (microarray) or in situ hybridization.
  • miRNA microarray technology enables the analysis of multiple miRNAs simultaneously.
  • Nucleotides complementary to the miRNA according to the present disclosure may be spotted on a coated carrier or may be spotted on a carrier by an in situ synthesis method.
  • miRNA isolated from a biological sample may be detected by incorporation of a label (eg, biotin, fluorescent dye) detected by an enzymatic reaction after hybridization with a complementary sequence on the carrier.
  • the miRNA isolated from the biological sample is labeled with a fluorescent material to bind to the corresponding sequence, and the resulting fluorescent signal is indicative of the presence of a specific miRNA.
  • Microarray fabrication techniques are described, for example, in Schena et al., 1996, Proc Natl Acad Sci USA. 93(20):10614-9; Schena et al., 1995, Science 270(5235):467-70; and U.S. Pat. Nos. 5,599,695, 5,556,752 or 5,631,734.
  • Nucleic acid polymerization or amplification methods may also be used for the detection of miRNAs according to the present application, and are particularly suitable for detecting miRNAs present in trace amounts.
  • Various known nucleic acid amplification or synthesis methods can be used, for example, reverse transcription reaction, reverse transcription polymerase chain reaction (RT-PCR), real-time RT-PCR, PCR, real-time PCR, quantitative RT-PCR, quantitative PCR, NASBA ( Nucleic Acid Sequence-Base Amplification), LCR (Ligase Chain Reaction), Multiple ligatable probe amplification, Invader Technology (Third Wave), SDA (Strand Displacement Amplification), TMA (Transcription Mediated Amplification), and Eberwine RNA It may include, but is not limited to, amplification.
  • a real-time quantitative PCR method is used after the reverse transcription reaction, which may be performed with reference to, for example, Chen et al., Nucleic Acids Research, 33(20):e170, 2005.
  • RT-PCR is a method to isolate a sample RNA, specifically miRNA, synthesize cDNA therefrom, and then use a specific primer or a combination of a primer and a probe to detect a specific gene in the sample, and the presence/ It is a method that can determine the absence or expression level. Such methods are described, for example, in (Han, H. et al, 2002. Cancer Res. 62: 2890-6).
  • a typical PCR method consists of three steps for amplification of a specific target sequence, consisting of denaturation of the template, annealing in which forward and reverse primers bind to the target sequence, and elongation by thermostable polymerase, in several cycles, e.g., usually 20 More than one time is performed. Alternatively, annealing and stretching may be performed in the same step. Since mature miRNA is single-stranded, reverse transcription reaction can be performed first before PCR. The reverse transcription reaction requires the use of a primer and a reverse transcriptase. In PCR and quantitative PCR, one set of primers, forward and reverse, are used.
  • the length of the primer is determined according to various factors such as the hybridization temperature, the composition of the target sequence, and the complexity of the target sequence. In one embodiment, the length of the primer is about 10-35 nucleotides, for example 15, 20, 25, 30 or 35 nucleotides.
  • the forward primer includes at least one sequence capable of specifically binding to the biomarker miRNA, and may further include a non-complementary sequence on the 5' side.
  • the sequence of the reverse primer may be independent of the sequence of the biomarker, and a plurality of miRNA biomarkers may be amplified with one type of reverse primer, or may include one or more sequences specific for the biomarker.
  • two or more miRNAs are amplified in one reaction using multiple quantitative PCR and multiple quantitative RT-PCR methods.
  • one or more pairs of primers and/or probes are used, for example, each pair of primers specifically amplifies a specific miRNA, and the probe is used to distinguish each amplified miRNA to enable multiple amplification.
  • Reverse transcription and PCR can be performed together in reverse transcription quantitative PCR.
  • the reaction includes both reverse transcriptase and thermostable polymerase, and a "hot start" reaction method that controls the activity of thermostable polymerase by chemical or thermal method (See, eg, US Pat. Nos. 5,411,876, 5,550,044, etc.) may be used.
  • the amplified product has a sequence corresponding to the molecule used as a template, and can be analyzed by various methods known in the art. Such methods are known in the art, for example, gel electrophoresis, real-time PCR analysis, single strand conformational polymorphism (SSCP), restriction fragment length polymorphism (RFLP), capillary zone electrophoresis (CZE), WAVE (HPLC-based nucleic acid) analyzing technology), including, but not limited to, microchips.
  • SSCP single strand conformational polymorphism
  • RFLP restriction fragment length polymorphism
  • CZE capillary zone electrophoresis
  • WAVE HPLC-based nucleic acid
  • hybridization-based ligation techniques can be used for quantitative analysis of miRNAs. Such methods are known in the art and do not bind a detectable probe that binds to a target nucleic acid sequence, such as, for example, oligonucleotide ligation (OLA) and methods using HARP-like probes described in US Publication 2006-0078894. It includes, but is not limited to, a method for isolating from a non-existing probe.
  • OLA oligonucleotide ligation
  • MLPA Multiplex Ligation-dependent Probe Amplification
  • the miRNA after hybridization, amplification and/or hybridization-based ligation reaction as described above can detect hybridization or amplified miRNA products through, for example, staining or labeling of a target, staining or labeling of a primer or probe.
  • a technique known in the art may be used, and a person skilled in the art will be able to select an appropriate method in consideration of the sensitivity of detection and/or the amount of the target. Depending on the sensitivity of the detection method and/or the amount of target, amplification may not be necessary prior to detection.
  • miRNAs can be detected by direct or indirect methods.
  • miRNA is labeled with a detectable label bound thereto, and then bound to a probe connected to a solid support such as a bead, and then detected by screening the labeled miRNA.
  • a labeled probe may be used for direct detection, and is detected through screening of the labeled probe after specific binding to the miRNA.
  • the amplified miRNA is detected using a bead conjugated to a probe capable of capturing a desired nucleic acid.
  • the probe may be labeled with a fluorescent material.
  • Labels for detection include, but are not limited to, compounds capable of generating or canceling a detectable fluorescence, chemiluminescent or bioluminescent signal such as a light emitting, light scattering, light absorbing material, for example, Garman Reference may be made to A., Non-Radioactive Labeling, Academic Press 1997.
  • Fluorescent materials include, but are not limited to, fluorescein (eg, US Pat. No. 6,020,481), rhodamine (eg, US Pat. No. 6,191,278), benzophenoxazine (eg, US Pat. No. 6,140,500), donors and acceptors.
  • Energy transfer fluorescent dyes including (eg US Pat. No.
  • SYBR-Green, 6-carboxyfluorescein (“FAM”), TET, ROX, VICTM, or JOE is used as the fluorescent label.
  • FAM 6-carboxyfluorescein
  • TET tetrachloride
  • ROX X-Reactive OLED
  • VICTM VICTM
  • JOE JOE
  • a probe labeled with two fluorescent substances, a reporter fluorescent material and an erasing fluorescent material is used.
  • a fluorescent material emitting a spectrum with a distinguishable wavelength is used as the fluorescent material.
  • the marker is a compound capable of enhancing, stabilizing, or affecting the binding of a nucleic acid
  • an intercalator including ethyl bromide and SYBR-Green, a minor groove binder, and a crosslinkable functional group can be used, but is not limited thereto, and is described in Blackburn et al., eds. See “DNA and RNA Structure” in Nucleic Acids in Chemistry and Biology (1996).
  • composition according to the present disclosure may include reagents used in any one or more of the methods described above.
  • a probe and/or primer pair specific for the mRNA of the present marker is included.
  • “Primer” or “probe” means a nucleic acid sequence having a free 3' hydroxyl group capable of complementary binding to a template and allowing reverse transcriptase or DNA polymerase to initiate replication of the template do.
  • the reagent may be labeled with a chromogenic, luminescent or fluorescent substance as described above for detection of the amplified product.
  • reverse transcription PCR polymerase chain reaction
  • the detection reagent may be provided in the form of an array or chip including a microarray. Detection reagents may be labeled directly or indirectly in a sandwich form for detection. In the case of the direct labeling method, serum samples used for arrays and the like are labeled with a fluorescent label such as Cy3 or Cy5.
  • biomarker according to the present disclosure or a composition comprising the same may be usefully used for diagnosis, prediction and/or prognosis measurement of diabetic neuropathy.
  • composition herein, a kit comprising said composition, or a method.
  • the kit of the present application is used for nucleic acid amplification, in particular for amplification using RT-PCR.
  • the kit contains the necessary buffer for the reaction of RT-PCR, reverse transcriptase, Taq polymerase and MgCl2.
  • Various buffers known in the art may be used, for example, Tris-HCl, pH 9.0 buffer may be used, but is not limited thereto.
  • Reverse transcriptase and Taq polymerase are commercially available, for example, AmpliTaq Gold (Applied Biosystems, USA) capable of hot start reaction with polymerase may be used, and an appropriate concentration, for example, 1.5 mM to 2.5 mM MgCl2 may be included.
  • the kit according to the present application further comprises a positive control group, a negative control group and instructions for use.
  • the negative control group may include a sample that does not contain miRNA, and the positive control group may include one or more of the detection target miRNAs.
  • the present application also provides a sample derived from a subject suspected of diabetic neuropathy in order to provide information necessary for the diagnosis or prognosis of diabetic neuropathy; measuring the expression level of one or more markers selected from the group consisting of miR-122, miR-199b, and miR-8485 in the sample; comparing the measurement result with the corresponding result of the corresponding marker in the control group; and when there is a change in the expression level of the subject sample compared to the control sample, determining it as diabetic neuropathy.
  • Reagents and the like used in the method of the present application may be referred to as previously described.
  • a sample from a diabetic patient may be used for prediction or early diagnosis of diabetic neuropathy.
  • the method may be performed over a specific period of time, for example, several times over a year or once a year, and may be used to monitor changes in expression patterns.
  • an increase or decrease in expression can be associated with a diabetic neuropathy state. It can be used to determine the onset, progression, exacerbation, etc. of diabetic neuropathy by comparison with a previous test value for the same subject or a control value.
  • Prophylactic measures can be taken to prevent the progression or onset of diabetic neuropathy based on changes in diabetic neuropathy markers over time.
  • biomarkers can be used as an auxiliary means, and other diagnostic methods such as biopsy, ultrasound, computerized axial tomography (CT scan) or magnetic resonance imaging (magnetic resonance) imaging (MRI)).
  • CT scan computerized axial tomography
  • MRI magnetic resonance imaging
  • the present invention can be practiced using conventional techniques within the skill level of those skilled in the art in cell biology, cell culture, molecular biology, gene transformation technology, microbiology, and DNA recombination technology.
  • RNA was isolated from the obtained serum using the Qiagen RNA extraction kit according to the manufacturer's method, and the quality of the isolated total RNA was checked using an Agilent 2100 Bioanalyzer according to the manufacturer's method.
  • Vitinylated cDNA was synthesized from the total RNA isolated in Example 1 using SMARTer smRNA seq kit for Illumina (Takara). The cDNA was then hybridized to Affymetrix GeneChip ® miRNA 4.0 according to the manufacturer's standard method. Measurement and analysis of fluorescence intensity after hybridization were performed using Genechip operating software (Affymetrix) according to the manufacturer's method. A total of 6658 human miRNAs were compared and analyzed in 3 cases of normal persons and diabetic neuropathy, respectively, and as shown in FIG. 1 , a heat map for miRNAs related to diabetic neuropathy (yellow: overexpressed miRNAs more than twice, blue) : Two-fold or more underexpressed miRNAs).
  • RNA sample 10 pM stem-loop RT primer, 10X RT buffer, 5 U/uL poly A polymerase, 2 mM of each dNTP, 200 U/uL M-MLV, 10mM ATP, and 5 U/uL RNase Inhibitor (enzynomics, Korea) was used to synthesize cDNA by reverse transcription. Then cDNA was denatured for 5 min at 95 °C using respective miRNA primers and SYBR greenI. Amplification was performed by 40 cycles of 10 seconds at 95 degrees and 40 seconds at 60 degrees, and the signals were collected and analyzed in real time with Bio-Rad CFX-Dx 3.1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided are: a method for diagnosing or predicting diabetic neuropathy using microRNA, which can be an indicator of diabetic neuropathy, and a kit for the method. A composition for predicting or diagnosing diabetic neuropathy comprises at least one biomarker measurement reagent selected from the group consisting of miR-122, miR-199b, and miR-8485.

Description

마이크로RNA를 이용한 당뇨병성 신경병증의 예측 및 진단 방법 및 이를 위한 키트Method for predicting and diagnosing diabetic neuropathy using microRNA and kit therefor
본 발명은 당뇨병성 신경병증을 진단하는 방법 및 이를 이용한 진단 키트에 대한 것이다. 상세하게는 당뇨병성 신경병증의 지표가 될 수 있는 마이크로RNA를 이용하여 당뇨병성 신경병증을 진단하거나 예측하는 방법과 이를 위한 키트에 대한 것이다. 더 상세하게는, 서로 상반된 양상의 발현수준을 보이는 마이크로RNA들을 이용하여 당뇨병성 신경병증 진단의 정확도를 높일 수 있는 방법 및 키트에 대한 것이다.The present invention relates to a method for diagnosing diabetic neuropathy and a diagnostic kit using the same. In detail, it relates to a method for diagnosing or predicting diabetic neuropathy using microRNA, which can be an indicator of diabetic neuropathy, and a kit for the same. More specifically, it relates to a method and a kit capable of increasing the accuracy of diagnosis of diabetic neuropathy by using microRNAs showing opposite expression levels.
제1형 당뇨병(type 1 diabetes mellitus) 및 제2형 당뇨병(type 2 diabetes mellitus)의 흔한 미세혈관 합병증인 당뇨병성 신경병증(diabetic neuropathy)은 당뇨병 환자에서 말초신경 기능 장애의 징후 및/또는 증상의 존재로 정의된다. 인구 및 임상 기반 연구는 20년간 제1형 당뇨병이 지속된 후에 당뇨병성 신경병증의 유병률이 20%이고 10년간의 제2형 당뇨병에서는 약 10% 내지 15%가 50%까지 증가함을 시사한다. 이러한 연구에도 불구하고, 서로 밀접하게 연관된 수많은 원인 메커니즘과 명확한 진단법 확립의 어려움 때문에 당뇨병성 신경병증의 병리 생리학은 명확하게 정의되지 않았다. Diabetic neuropathy, a common microvascular complication of type 1 diabetes mellitus and type 2 diabetes mellitus, is a symptom of peripheral nerve dysfunction in diabetic patients. defined by existence. Population- and clinical-based studies suggest that the prevalence of diabetic neuropathy after 20 years of type 1 diabetes is 20% and increases by about 10% to 15% to 50% at 10 years of type 2 diabetes. Despite these studies, the pathophysiology of diabetic neuropathy has not been clearly defined because of numerous closely related causal mechanisms and difficulties in establishing a definitive diagnostic method.
당뇨병성 신경병증의 진단 접근법은 복잡하고 아직까지 표준화되지 않았으며 결과의 감도 및 특이성을 증가시키기 위해 일반적으로 다양한 정성적 및 정량적 방법들의 조합으로 구성되어 왔다.Diagnostic approaches for diabetic neuropathy are complex and not yet standardized and have generally consisted of a combination of various qualitative and quantitative methods to increase the sensitivity and specificity of the results.
특히 종래의 방법으로는 명백한 임상 증상, 무증상 질환 과정을 가진 환자 또는 당뇨병성 신경병증 발달 후보를 확인하기 이전의 초기 이상에 대한 효과적인 선별이 불가능하였다. 당뇨병성 신경병증에 대한 신뢰성 있는 진단 방법이 결여된 것만큼이나 종래 사용되던 치료 요법에 대해서는 복잡성도 존재하였다. 당뇨병성 신경병증 발달에 대한 인과적 치료가 부재할 경우, 종래의 치료법은 종종 혈당 조절과 통증 관리의 조합으로 구성되었다.In particular, effective screening for early abnormalities prior to identifying patients with obvious clinical symptoms, asymptomatic disease course, or diabetic neuropathy development candidates was not possible by conventional methods. As well as the lack of a reliable diagnostic method for diabetic neuropathy, there was also a complexity to the conventional treatment regimens. In the absence of a causal treatment for the development of diabetic neuropathy, conventional therapies have often consisted of a combination of glycemic control and pain management.
이러한 문제점을 해결하고자 본 발명자는 당뇨병성 신경병증에 연관된 마이크로 RNA(micro-RNA 또는 miRNA, 이하, 'miRNA'로 약칭함)를 이용하는 방안에 주목하였다. In order to solve this problem, the present inventors focused on a method of using micro-RNA (micro-RNA or miRNA, hereinafter abbreviated as 'miRNA') involved in diabetic neuropathy.
miRNA는 수 내지 수십개 정도의 뉴클레오티드로 구성된 비번역 RNA로, 전사단계에서 RNA 침묵(RNA silencing), 그리고 전사 후 단계에서 유전자의 발현을 조절하는 기능을 수행한다. 이러한 miRNA의 기능은 mRNA 내의 상보서열과의 염기쌍의 형성을 통해 수행되는 것으로 알려져 있다(Bartel, D.P., Cell, 136(2): 215-233, 2009).miRNA is an untranslated RNA composed of several to several tens of nucleotides, and performs the functions of RNA silencing in the transcriptional stage and regulating gene expression in the post-transcriptional stage. It is known that the function of these miRNAs is performed through the formation of base pairs with complementary sequences in mRNA (Bartel, D.P., Cell, 136(2): 215-233, 2009).
miRNA는 최초에 예쁜 꼬마선충(C. elegans)에서 발견된 이후, 동물, 식물 및 바이러스에 유전자 발현의 조절기구로 활용되고 있음이 알려지면서 다양한 종류의 miRNA들이 속속 보고되고 있고, miRNA 유전자의 돌연변이 등에 기인하는 기능의 부조화에 의해 암 등 특정 질병이 발생할 수 있음이 알려지고 있다(Pontual et al., Nat. Genet., 43(10): 1026-1030, 2011; Lu et al., Nature 435(9): 834-838, 2005).After miRNA was first discovered in C. elegans, various types of miRNAs have been reported one after another as it is known that it is being used as a regulatory mechanism for gene expression in animals, plants and viruses, due to mutations in miRNA genes, etc. It is known that certain diseases, such as cancer, may occur due to the dissonance of the functions of : 834-838, 2005).
앞서 설명한 것과 같이 당뇨병성 신경병증의 효과적인 치료를 위해서는 정확하고 신속한 진단이 필요하다. 이러한 문제를 해결하고자 당뇨병성 신경병증과 연관된 마이크로RNA를 이용한 진단 방법을 제시한다.As described above, accurate and rapid diagnosis is required for effective treatment of diabetic neuropathy. To solve this problem, a diagnostic method using microRNA associated with diabetic neuropathy is presented.
즉, 이에 본 발명이 해결하고자 하는 기술적 과제는 당뇨병성 신경병증 하에서 고발현(over-expression) 또는 저발현(under-expression)되는 miRNA의 발현수준을 측정하여 정상 대조군과 비교함으로써 당뇨병성 신경병증을 간단하게 진단하는 방법 또는 발현을 예측하는 방법을 제공하는 것이다. That is, the technical problem to be solved by the present invention is to measure the expression level of miRNA that is over-expressed or under-expressed under diabetic neuropathy and compared with a normal control group to treat diabetic neuropathy. It is to provide a simple method for diagnosing or predicting expression.
또한, 당뇨병성 신경병증 하에서 서로 다른 양상의 발현수준을 보이는 miRNA들을 조합하여 발현수준을 측정함으로써 진단의 정확도를 높이는 것이다.In addition, it is to increase the accuracy of diagnosis by measuring the expression level by combining miRNAs showing different expression levels under diabetic neuropathy.
또한 이를 위한 당뇨병성 신경병증의 예측 또는 진단용 조성물을 제공하는 것이다.It is also to provide a composition for prediction or diagnosis of diabetic neuropathy for this purpose.
아울러, 이를 위한 당뇨병성 신경병증을 진단하거나 예측할 수 있는 바이오 마커를 제공하는 것이다.In addition, it is an object to provide a biomarker capable of diagnosing or predicting diabetic neuropathy.
또, 이러한 바이오 마커를 이용한 당뇨병성 신경병증의 진단 키트를 제공하는 것이다.Another object is to provide a diagnostic kit for diabetic neuropathy using such biomarkers.
본 발명의 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems of the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 어느 과제를 해결하기 위한 본 발명의 일 실시예에 따른 당뇨병성 신경병증의 예측 또는 진단용 조성물은 miR-122, miR-199b, 및 miR-8485로 구성되는 군으로부터 선택되는 하나 이상의 바이오마커 측정용 시약을 포함한다.The composition for prediction or diagnosis of diabetic neuropathy according to an embodiment of the present invention for solving any of the above problems is for measuring one or more biomarkers selected from the group consisting of miR-122, miR-199b, and miR-8485 Includes reagents.
상기 시약은 상기 각 바이오마커의 핵산서열, 상기 핵산서열에 상보적인 핵산서열, 상기 핵산서열의 단편을 포함하는 것일 수 있다.The reagent may include a nucleic acid sequence of each biomarker, a nucleic acid sequence complementary to the nucleic acid sequence, and a fragment of the nucleic acid sequence.
상기 핵산 서열 또는 핵산 서열의 단편은 상기 각 마커를 특이적 결합할 수 있는 프라미어, 또는 프로브, 또는 프라이머 및 프로브일 수 있다.The nucleic acid sequence or fragment of the nucleic acid sequence may be a primer or a probe capable of specific binding to each of the markers, or a primer and a probe.
상기 시약은 상기 각 바이오 마커의 역전사 중합효소연쇄반응, 중합효소연쇄반응, 경쟁적 중합효소연쇄반응, Nuclease 보호 분석 (RNase, S1 nuclease assay), in situ 교잡법, 라이게이션 기반 중합효소 연쇄반응, 마이크로어레이 또는 노던블랏에 사용되는 시약일 수 있다.The reagent is a reverse transcription polymerase chain reaction of each biomarker, a polymerase chain reaction, a competitive polymerase chain reaction, a nuclease protection assay (RNase, S1 nuclease assay), an in situ hybridization method, a ligation-based polymerase chain reaction, a micro It may be a reagent used in an array or northern blot.
상기 다른 어느 과제를 해결하기 위한 본 발명의 일 실시예에 따른 당뇨병성 신경병증 마커를 검출하는 방법은, 당뇨병성 신경병증 진단 또는 예측에 필요한 정보를 제공하기 위하여, 당뇨병성 신경병증이 의심되는 대상체 유래의 시료를 제공하는 단계; 상기 시료에서 miR-122, miR-199b, 및 miR-8485로 구성되는 군으로부터 선택되는 하나 이상의 마커의 발현량을 측정하는 단계; 상기 측정 결과를 대조군의 해당 마커의 상응하는 결과와 비교하는 단계; 및 상기 대조군 시료와 비교하여, 상기 대상체 시료의 발현량에 변화가 있는 경우, 이를 당뇨병성 신경병증으로 판정하는 단계를 포함한다.The method for detecting a diabetic neuropathy marker according to an embodiment of the present invention for solving any of the above other problems is a subject suspected of diabetic neuropathy in order to provide information necessary for diagnosing or predicting diabetic neuropathy. providing a sample derived from; measuring the expression level of one or more markers selected from the group consisting of miR-122, miR-199b, and miR-8485 in the sample; comparing the measurement result with the corresponding result of the corresponding marker in the control group; and when there is a change in the expression level of the subject sample compared to the control sample, determining it as diabetic neuropathy.
상기 검출은 교잡 또는 핵산 증폭 방법에 의한 것일 수 있다.The detection may be by a hybridization or nucleic acid amplification method.
상기 교잡은 마이크로어레이 분석, 상기 핵산 증폭은 역전사 효소 중합연쇄반응법일 수 있다.The hybridization may be a microarray analysis and the nucleic acid amplification may be reverse transcriptase polymerase chain reaction.
또, 상기 생물학적 시료는 당뇨병성 신경병증 환자의 전혈, 혈장 또는 혈청일 수 있다.In addition, the biological sample may be whole blood, plasma, or serum from a diabetic neuropathy patient.
상기 방법은 상기 miR-122, miR-199b, 및 miR-8485 마커 발현량의 평균값을 사용하는 것일 수 있다.The method may be to use the average value of the expression levels of the miR-122, miR-199b, and miR-8485 markers.
상기 또 다른 어느 과제를 해결하기 위한 본 발명의 일 실시예에 따른 당뇨병성 신경병증의 예측 또는 진단용 바이오 마커는 miR-122, miR-199b, 및 miR-8485로 구성되는 군으로부터 선택되는 하나 이상의 바이오마커 측정용 시약을 포함한다.One or more biomarkers selected from the group consisting of miR-122, miR-199b, and miR-8485 for predicting or diagnosing diabetic neuropathy according to an embodiment of the present invention for solving any of the above other problems Reagents for marker measurement are included.
기타 실시예의 구체적인 사항들은 상세한 설명에 포함되어 있다. Details of other embodiments are included in the detailed description.
본 발명의 실시예들에 따르면, 당뇨병성 신경병증 하에서 특정 발현 양상을 보이는 miRNA들의 발현수준을 측정하여 정상 대조군과 비교함으로써 당뇨병성 신경병증을 간단하게 진단할 수 있다. According to embodiments of the present invention, diabetic neuropathy can be diagnosed simply by measuring the expression level of miRNAs showing a specific expression pattern under diabetic neuropathy and comparing it with a normal control group.
또한, 당뇨병성 신경병증 하에서 서로 다른 양상의 발현수준을 보이는 miRNA들을 조합하여 발현수준을 측정함으로써 진단의 정확도를 높일 수 있다.In addition, it is possible to increase the accuracy of diagnosis by measuring the expression level by combining miRNAs showing different expression levels under diabetic neuropathy.
본 발명의 실시예들에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.Effects according to the embodiments of the present invention are not limited by the contents exemplified above, and more various effects are included in the present specification.
도 1은 정상군과 당뇨병성 신경병증군에서 miRNA 바이오 마커 발굴을 위한 차세대 유전체 분석법을 이용하여 두개의 군 간의 heat map 분석 결과이다.1 is a heat map analysis result between two groups using a next-generation genomic analysis method for discovering miRNA biomarkers in a normal group and a diabetic neuropathy group.
도 2는 정상군과 당뇨병성 신경병증군에서 발현의 차이를 나타낸 3개의 miRNA를 실시간 RT-PCR로 분석한 결과이다.2 is a result of real-time RT-PCR analysis of three miRNAs showing differences in expression in the normal group and the diabetic neuropathy group.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, and only the embodiments allow the disclosure of the present invention to be complete, and those of ordinary skill in the art to which the present invention pertains. It is provided to fully inform the person of the scope of the invention, and the present invention is only defined by the scope of the claims.
즉, 본 발명이 제시하는 실시예들에는 다양한 변경이 가해질 수 있다. 아래 설명하는 실시예들은 실시 형태에 대해 한정하려는 것이 아니며, 이들에 대한 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.That is, various changes may be made to the embodiments presented by the present invention. It should be understood that the embodiments described below are not intended to limit the embodiments, and include all modifications, equivalents, and substitutes thereto.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, '및/또는'은 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다. 또, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. The terminology used herein is for the purpose of describing the embodiments and is not intended to limit the present invention. In this specification, 'and/or' includes each and every combination of one or more of the recited items. The singular also includes the plural, unless the phrase specifically states otherwise.
본 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. '내지'를 사용하여 나타낸 수치 범위는 그 앞과 뒤에 기재된 값을 각각 하한과 상한으로서 포함하는 수치 범위를 나타낸다. '약' 또는 '대략'은 그 뒤에 기재된 값 또는 수치 범위의 20% 이내의 값 또는 수치 범위를 의미한다.As used herein, 'comprises' and/or 'comprising' does not exclude the presence or addition of one or more other components in addition to the stated components. Numerical ranges indicated using 'to' indicate numerical ranges including the values stated before and after them as lower and upper limits, respectively. 'About' or 'approximately' means a value or numerical range within 20% of the value or numerical range recited thereafter.
본 명세서에서 사용되는 용어 '진단'이란, 병리 상태의 존재 또는 특징을 확인하는 것을 의미한다. 즉, 특정 질병 또는 질환에 대하여 검사 대상자의 질환에 대한 감수성(susceptibility)을 판정하는 것, 특정 질병 또는 질환을 현재 가지고 있는지 여부를 판정하는 것, 특정 질병 또는 질환에 걸린 대상자의 예후(prognosis)를 판정하는 것, 질환의 치료 후 재발 여부 또는 테라메트릭스(therametrics), 예컨대 치료 효능에 대한 정보를 제공하기 위해 객체의 상태를 모니터링하는 것을 포함한다.As used herein, the term 'diagnosis' refers to confirming the presence or characteristics of a pathological condition. That is, to determine the susceptibility of the test subject to the disease for a specific disease or disorder, to determine whether or not to currently have the specific disease or disorder, to determine the prognosis of the subject suffering from the specific disease or disorder adjudicating, monitoring the condition of the subject to provide information about whether the disease has relapsed after treatment or therametrics, such as efficacy of the treatment.
본 발명에 있어서, 상기 진단은 당뇨병성 신경병증(diabetic neuropathy)의 진행 또는 발병 여부를 확인하는 것으로 해석될 뿐만 아니라, 당뇨병성 신경병증의 발병 가능성을 확인하는 것으로도 해석될 수 있다.In the present invention, the diagnosis can be interpreted not only as confirming whether the progress or onset of diabetic neuropathy, but also as confirming the possibility of the onset of diabetic neuropathy.
본 명세서에서 사용되는 용어 '진단 대상'이란, 해당 적응증을 진단하기 위한 환자, 개체, 또는 이들에게서 분리한 혈액, 체액, 분비물, 조직, 시료 등의 검체 내지는 생물학적 샘플을 의미한다. 본 발명의 miRNA는 환자 또는 개체의 혈액, 체액, 조직, 신경세포나 신경조직 등을 채취하여 검출함으로써 그 발현수준을 측정할 수 있다.As used herein, the term 'diagnostic subject' refers to a specimen or biological sample such as blood, body fluid, secretion, tissue, or sample isolated from a patient, individual, or these for diagnosing a corresponding indication. The expression level of miRNA of the present invention can be measured by collecting and detecting blood, body fluid, tissue, nerve cell or nerve tissue of a patient or individual.
생물학적 샘플은 당뇨병성 신경병증이 예상되는 시험자들로부터 채집된다. 또한, 획득한 데이터를 확증하기 위해 대비 샘플을 이미 질병 상태를 알고 있는 시험자들로부터 채집할 수 있다. Biological samples are taken from investigators expected to have diabetic neuropathy. In addition, control samples may be taken from investigators already aware of the disease state to corroborate the data obtained.
상기 생물학적 샘플은 생물 유래의 장기, 조직, 세포 또는 체액을 의미한다. 생물학적 시료의 예로는 조직 절편, 전혈, 혈장, 혈청, 소변 또는 혈액 유래의 백혈구, 적혈구, 또는 혈소판, 또는 조직 또는 세포 배양물을 포함하나 이에 제한되는 것은 아니다. 또한 하나 이상의 시료가 혼합되어 사용될 수도 있다.The biological sample refers to an organ, tissue, cell or body fluid derived from an organism. Examples of biological samples include, but are not limited to, tissue sections, whole blood, plasma, serum, urine or blood-derived white blood cells, red blood cells, or platelets, or tissue or cell cultures. Also, one or more samples may be mixed and used.
생물학적 샘플은 당뇨병성 신경병증을 가지고 있거나 또는 당뇨병성 신경병증이 의심되는 신체로부터 통상의 시료 수득 방법에 의해 대상체로부터 직접 수득한 것이거나, 또는 종전에 분리되어 보관된 것일 수 있다. 또한 상기샘플은 필요 시, 획득한 액체로부터 정제 후 생물학 샘플로 사용될 수 있다. 본 발명에 따르면, 본 발명 중 핵산 마커의 표현 수준은 대상에서 파생된 생물학적 샘플 중 확정된다.The biological sample may be obtained directly from a subject by a routine sample obtaining method from a body having or suspected of having diabetic neuropathy, or may be previously isolated and stored. In addition, if necessary, the sample may be used as a biological sample after purification from the obtained liquid. According to the present invention, the expression level of the nucleic acid marker in the present invention is determined in a biological sample derived from a subject.
본 발명의 체외 방법 중 검측에 사용된 샘플은 일반적으로 임상적으로 수용 가능한 방식으로 채집하여야 하며, 바람직하게는 핵산 (특히 RNA) 또는 단백질 방식으로 보존된다. 분석 대기 샘플은 일반적으로 혈액에서 채취된다.The sample used for detection in the in vitro method of the present invention should generally be collected in a clinically acceptable manner, and is preferably preserved in a nucleic acid (especially RNA) or protein method. A sample awaiting analysis is usually taken from blood.
본 명세서에서 사용되는 용어 '정상 대조군'이란, 해당 적응증을 가지고 있지 않은 환자, 개체, 또는 이들에게서 분리한 혈액, 체액, 분비물, 시료 등으로서, 해당 적응증에 관련된 miRNA이 정상 수준으로 발현되어 진단 대상의 miRNA 발현수준을 평가하기 위한 기준이 될 수 있다. As used herein, the term 'normal control' refers to a patient, individual, or blood, body fluid, secretion, sample, etc. isolated from a patient or individual who does not have the relevant indication, and the miRNA related to the indication is expressed at a normal level to be diagnosed It can be a criterion for evaluating the miRNA expression level of
본 명세서에서 사용되는 용어 '바이오 마커' 또는 '진단 마커(diagnosis marker)'란 당뇨병성 신경병증이 발생한 조직 또는 세포를 정상 세포 또는 적절한 당뇨병성 신경병증 치료를 받은 조직 또는 세포와 구분하여 진단할 수 있는 물질로, 정상 검체 (대조군)에 비하여 질환이 발생한 조직이나 부위에서 증가 또는 감소 양상을 보이는 비코딩 핵산을 포함한다.As used herein, the term 'biomarker' or 'diagnosis marker' refers to a tissue or cell in which diabetic neuropathy has occurred can be diagnosed by distinguishing it from normal cells or tissues or cells that have received appropriate diabetic neuropathy treatment. It contains non-coding nucleic acids that show an increase or decrease in the diseased tissue or site compared to a normal sample (control).
본원에 따른 바이오 마커는 하나 또는 두 개 이상의 조합, 예를 들면 두 개, 세 개의 조합으로 사용될 수 있으며, 기존의 마커 및/또는 진단 방법 등과 함께 사용될 수 있다.The biomarker according to the present disclosure may be used as one or a combination of two or more, for example, two or three combinations, and may be used together with an existing marker and/or a diagnostic method.
본 명세서에서 사용되는 용어 'miRNA (micro-RNA)', 또는 'miR', 또는 'miRNA', 또는 '마이크로 RNA', 또는 '마이크로알엔에이'란, 표적 RNA의 분해 (degradation)을 촉진시키거나 또는 그들의 번역을 억제시킴으로써 유전자 발현을 전사 후에 조절하는 21 내지 23개의 비코딩 RNA를 말한다. 본원에 사용된 miRNA의 성숙 서열은 miRNA 데이터베이스 (http://www.mirbase.org)에서 얻을 수 있다. As used herein, the term 'miRNA (micro-RNA)', or 'miR', or 'miRNA', or 'micro RNA', or 'microRNA' refers to a target RNA that promotes degradation. or 21 to 23 non-coding RNAs that post-transcriptionally regulate gene expression by inhibiting their translation. The mature sequence of the miRNA used herein can be obtained from the miRNA database (http://www.mirbase.org).
일반적으로 마이크로 RNA는 pre-miRNA라 불리는 헤어핀 구조를 갖는 약 70-80 nt (nucleotide) 길이의 전구체로 전사된 후, RNAse III 효소인 Dicer에 의해 잘려 성숙된 형태로 생성된다. 마이크로 RNA는 miRNP라 불리는 리보뉴클레오복합체를 형성하여 표적 부위에 상보적 결합을 통해 표적 유전자를 절단하거나, 번역을 억제한다. 30% 이상의 인간 miRNA는 클러스터로 존재하며, 하나의 전구체로 전사된 후, 절단과정을 거쳐 최종 성숙 miRNA가 형성된다.In general, microRNA is transcribed into a precursor of about 70-80 nt (nucleotide) in length with a hairpin structure called pre-miRNA, and then cut by the RNAse III enzyme Dicer to produce a mature form. MicroRNA forms a ribonucleo complex called miRNP to cleave a target gene through complementary binding to a target site or inhibit translation. More than 30% of human miRNA exists as a cluster, and after being transcribed into a single precursor, it undergoes a cleavage process to form a final mature miRNA.
본 기술분야의 당업자라면 상기 miRNA와 80% 이상, 바람직하게는 90% 이상, 보다 바람직하게는 95% 이상, 가장 바람직하게는 98% 이상의 상동성이 유지되는 서열을 갖도록 변형된 miRNA도 본 발명의 miRNA와 균등한 것임을 쉽게 이해할 것이다.Those of ordinary skill in the art may also use miRNAs modified to have a sequence that maintains 80% or more, preferably 90% or more, more preferably 95% or more, and most preferably 98% or more homology to the miRNA of the present invention. It will be readily understood that it is equivalent to miRNA.
본 명세서에서 사용되는 용어 '핵산'은 폴리뉴클레오타이드, 올리고뉴클레오타이드, DNA, RNA, 및 그 유사체 및 그 유도체를 포함하는 것으로 예를 들면 펩타이드 핵산 (PNA) 또는 그 혼합물을 포함한다. 또한 핵산은 단일 또는 이중가닥일 수 있으며, 폴리펩타이드, mRNA, microRNA 또는 siRNA 등을 포함하는 분자를 코딩할 수 있다.As used herein, the term 'nucleic acid' includes polynucleotides, oligonucleotides, DNA, RNA, and analogs and derivatives thereof, and includes, for example, peptide nucleic acids (PNA) or mixtures thereof. In addition, the nucleic acid may be single or double-stranded, and may encode a molecule including a polypeptide, mRNA, microRNA, or siRNA.
본 명세서에서 사용되는 용어 '프라이머'란, 짧은 자유 3말단 수산화기(free 3' hydroxylgroup)를 가지는 핵산서열로 상보적인 템플레이트(template)와 염기쌍(base pair)을 형성할 수 있고 템플레이트 가닥 복사를 위한 시작 지점으로 기능을 하는 짧은 핵산 서열을 의미한다. 프라이머는 적절한 완충용액 및 온도에서 중합반응(즉, DNA 폴리머레이즈 또는 역전사효소)을 위한 시약 및 상이한 4가지 뉴클레오사이드 트리포스페이트의 존재하에서 DNA 합성을 개시할 수 있다.As used herein, the term 'primer' is a nucleic acid sequence having a short free 3' hydroxyl group, which can form a complementary template and base pair, and is a start for template strand copying. It refers to a short nucleic acid sequence that functions as a point. Primers are capable of initiating DNA synthesis in the presence of reagents for polymerization (ie, DNA polymerase or reverse transcriptase) and four different nucleoside triphosphates in appropriate buffers and temperatures.
본원에서 용어 "상보적"은 소정의 혼성화 (교잡) 또는 어닐링 조건, 바람직하게는 생리학적 조건 하에서 안티센스 올리고뉴클레오타이드가 본원에 따른 마이크로알엔에이의 표적에 선택적으로 혼성화 할 정도로 충분히 상보적인 것을 의미하며, 일부 또는 부분적으로 실질적으로 상보적(substantially complementary) 및 완전히 상보적(perfectly complementary)인 것을 모두 포괄하는 의미를 가지며, 바람직하게는 완전히 상보적인 것을 의미한다. 실질적으로 상보적이란, 완전히 상보적인 것은 아니지만, 표적 서열에 결합하여 본원에 따른 효과 즉 마이크로알엔에이의 활성을 방해하기에 충분한 효과를 낼 정도의 상보성을 의미하는 것이다.As used herein, the term "complementary" means that under certain hybridization (hybridization) or annealing conditions, preferably under physiological conditions, the antisense oligonucleotide is sufficiently complementary to selectively hybridize to the target of the microRNA according to the present application, , has a meaning encompassing both partially or partially substantially complementary and perfectly complementary, and preferably means completely complementary. Substantially complementary refers to a degree of complementarity that is not completely complementary, but is sufficient to bind to a target sequence and produce an effect sufficient to interfere with the effect according to the present application, that is, microRNA activity.
본 명세서에서 사용되는 용어 '프로브'란, 유전자 또는 mRNA와 특이적 결합을 이룰 수 있는 짧게는 수 염기 내지 길게는 수백 염기에 해당하는 RNA 또는 DNA 등의 핵산 단편을 의미하는데, 올리고뉴클레오티드(oligonucleotide) 프로브, 단쇄 DNA(single stranded DNA) 프로브, 이중쇄 DNA(double stranded DNA) 프로브, RNA 프로브 등의 형태로 제작될 수 있고, 보다 용이하게 검출하기 위하여 라벨링될 수 있다.As used herein, the term 'probe' refers to a nucleic acid fragment such as RNA or DNA corresponding to several bases to several hundred bases as short as possible to achieve specific binding to a gene or mRNA, oligonucleotide It may be manufactured in the form of a probe, a single stranded DNA probe, a double stranded DNA probe, an RNA probe, or the like, and may be labeled for easier detection.
이하 본 발명에 대하여 상세하게 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 당뇨병성 신경병증(diabetic neuropathy)의 예측 및 정확한 조기진단을 가능하게 하는 바이오 마커로 사용될 수 있는 miRNA와 같은 비코딩 RNA 마커의 발견에 근거한 것이다.The present invention is based on the discovery of a non-coding RNA marker such as miRNA that can be used as a biomarker that enables the prediction and accurate early diagnosis of diabetic neuropathy.
일 양태에서, 본 발명은 miR-122, miR-199b, 및 miR-8485로 구성되는 군으로부터 선택되는 하나 이상의 마커의 검출용 시약을 포함하는 당뇨병성 신경병증 예측 및 진단용 조성물에 관한 것이다.In one aspect, the present invention relates to a composition for predicting and diagnosing diabetic neuropathy, comprising a reagent for detecting one or more markers selected from the group consisting of miR-122, miR-199b, and miR-8485.
당업자라면 본원 실시예에 기재된 방법과 같은 정상인 및 환자를 포함하는 대상체의 생물학적 시료를 사용한 분석 및/또는 Logistic regression 분석과 같은 방법을 통해 목적하는 민감도 및 특이성을 만족하는 마커의 조합을 선별할 수 있을 것이다. 본원에 따른 일 구현예에서는 miR-122, miR-199b, 및 miR-8485의 조합이 사용된다.A person skilled in the art can select a combination of markers satisfying the desired sensitivity and specificity through a method such as an analysis using a biological sample from a subject, including a normal person and a patient, and/or a logistic regression analysis, such as the method described in the Examples herein. will be. In one embodiment according to the present application, a combination of miR-122, miR-199b, and miR-8485 is used.
본원에 따른 일 구현예에서는 전혈, 혈청 또는 혈장과 같은 혈액시료가 사용된다.In one embodiment according to the present application, a blood sample such as whole blood, serum or plasma is used.
일 구현예에서는 뇨, 전혈, 혈청 및/또는 혈장이 사용될 수 있다. 다른 구현예에서는 당뇨병성 신경병증이 발생한 또는 발생이 의심되는 또는 발생가능성이 있는 대상체에서 수득한 조직/세포 또는 인비트로 세포 배양물이 사용될 수 있으나, 이로 제한하는 것은 아니다. 또한 상기 혈액, 세포 또는 조직의 분획 또는 유도물을 포함하는 것이다. 세포 또는 조직을 이용하는 경우, 세포 자체 또는 세포 또는 조직의 융해물이 사용될 수 있다. 본원에서 대상체는 질환에 걸린 것으로 의심되는 포유류, 질환에 걸린 후 치료가 되었으나 재발이 의심되는 포유류, 특히 인간을 포함한다.In one embodiment, urine, whole blood, serum and/or plasma may be used. In another embodiment, a tissue/cell or an in vitro cell culture obtained from a subject having, suspected, or likely to develop diabetic neuropathy may be used, but is not limited thereto. It also includes fractions or derivatives of the blood, cells or tissues. In the case of using cells or tissues, the cells themselves or a lysate of the cells or tissues may be used. A subject herein includes a mammal suspected of having a disease, a mammal who has been treated after having a disease but is suspected of relapse, particularly a human.
본원에 따른 조성물은 생물학적 시료에서 상기 하나 이상의 miRNA의 발현량을 검출하고, 이를 대조군 또는 참조군과 비교하여, 그 발현량의 증가, 변화 정도에 따라 당뇨병성 신경병증을 진단 또는 예측할 수 있다.The composition according to the present application detects the expression level of the one or more miRNAs in a biological sample, and compares it with a control or reference group, and can diagnose or predict diabetic neuropathy according to the degree of increase or change in the expression level.
따라서, 본원에 따른 조성물은 다음과 같은 방법을 사용하여 miR-122, miR-199b, 및 miR-8485로 구성되는 군으로부터 선택되는 하나 이상의 마커를 측정/검출 할 수 있으며, 따라서, 이러한 방법에 사용되는 시약을 포함할 수 있다.Accordingly, the composition according to the present application can measure/detect one or more markers selected from the group consisting of miR-122, miR-199b, and miR-8485 using the following method, and thus used in such method It may contain reagents that are
본원에 따른 miRNA의 측정은 목적하는 miRNA의 정성, 정량 및 반정량 검출 방법을 포함한다. 핵산 검출과 관련된 임의의 공지된 방법 예를 들면 후술하는 핵산 교잡 및/또는 중합 및/또는 증폭 방법 및/또는 교잡기반 라이게이션 방법이 사용될 수 있다. 본원에 따른 바이오마커는 정량적 또는 정성적 분석을 통해 핵산, 특히 miRNA의 존재 여부의 검출 및/또는 이의 발현량 자체, 발현량의 변화, 발현량 차이의 수준에서 검출될 수 있다.The measurement of miRNA according to the present disclosure includes methods for qualitative, quantitative and semi-quantitative detection of a desired miRNA. Any known method related to nucleic acid detection, for example, a nucleic acid hybridization and/or polymerization and/or amplification method described below and/or a hybridization-based ligation method may be used. The biomarker according to the present disclosure can be detected at the level of the presence or absence of a nucleic acid, particularly miRNA, and/or its expression level itself, change in expression level, and difference in expression level through quantitative or qualitative analysis.
핵산 교잡은 핵산 바이오칩 어레이 (마이크로에레이) 또는 인시츄 교잡을 이용하여 수행될 수 있다. miRNA 마이크로어레이 기술은 동시에 다수의 miRNA의 분석을 가능하게 한다. 본원에 따른 miRNA에 상보적인 뉴클레오타이드는 코팅된 캐리어에 스폿팅되거나 또는 인시츄 합성 방법으로 캐리어에 스폿팅 될 수 있다. 일 구현예에서 생물학적 시료로부터 분리된 miRNA는 상기 캐리어 상의 상보적인 서열과의 교잡 후에 효소반응에 의해 검출되는 표지 (예를 들면 바이오틴, 형광염료)의 혼입에 의해 검출될 수 있다. 다른 구현예에서, 생물학적 시료에서 분리된 miRNA는 형광물질로 표지되어, 상응하는 서열과 결합하고, 그 결과 방출된 형광신호는 특정 miRNA의 존재를 나타낸다. 마이크로어레이 제조 기술은 예를 들면 Schena et al., 1996, Proc Natl Acad Sci USA. 93(20):10614-9; Schena et al., 1995, Science 270(5235):467-70; 및 U.S. Pat. Nos. 5,599,695, 5,556,752 또는 5,631,734를 참조할 수 있다.Nucleic acid hybridization can be performed using a nucleic acid biochip array (microarray) or in situ hybridization. miRNA microarray technology enables the analysis of multiple miRNAs simultaneously. Nucleotides complementary to the miRNA according to the present disclosure may be spotted on a coated carrier or may be spotted on a carrier by an in situ synthesis method. In one embodiment, miRNA isolated from a biological sample may be detected by incorporation of a label (eg, biotin, fluorescent dye) detected by an enzymatic reaction after hybridization with a complementary sequence on the carrier. In another embodiment, the miRNA isolated from the biological sample is labeled with a fluorescent material to bind to the corresponding sequence, and the resulting fluorescent signal is indicative of the presence of a specific miRNA. Microarray fabrication techniques are described, for example, in Schena et al., 1996, Proc Natl Acad Sci USA. 93(20):10614-9; Schena et al., 1995, Science 270(5235):467-70; and U.S. Pat. Nos. 5,599,695, 5,556,752 or 5,631,734.
본원에 따른 miRNA의 검출에는 핵산 중합 또는 증폭 방법이 또한 사용될 수 있으며, 특히 미량으로 존재하는 miRNA 검출에 적합하다. 공지된 다양한 핵산 증폭 또는 합성 방법이 사용될 수 있으며, 예를 들면 역전사 반응, 역전사 중합효소연쇄반응 (RT-PCR), 실시간 RT-PCR, PCR, 실시간 PCR, 정량 RT-PCR, 정량 PCR, NASBA (Nucleic Acid Sequence-Base Amplification), LCR (Ligase Chain Reaction), 다중 연결 프로브 증폭 (Multiple ligatable probe amplification), Invader기술 (Third Wave), SDA(Strand Displacement Amplification), TMA (Transcription Mediated Amplification), 및 Eberwine RNA 증폭 등을 포함할 수 있으나 이로 제한하는 것은 아니다.Nucleic acid polymerization or amplification methods may also be used for the detection of miRNAs according to the present application, and are particularly suitable for detecting miRNAs present in trace amounts. Various known nucleic acid amplification or synthesis methods can be used, for example, reverse transcription reaction, reverse transcription polymerase chain reaction (RT-PCR), real-time RT-PCR, PCR, real-time PCR, quantitative RT-PCR, quantitative PCR, NASBA ( Nucleic Acid Sequence-Base Amplification), LCR (Ligase Chain Reaction), Multiple ligatable probe amplification, Invader Technology (Third Wave), SDA (Strand Displacement Amplification), TMA (Transcription Mediated Amplification), and Eberwine RNA It may include, but is not limited to, amplification.
일 구현예에서는 역전사 반응 후에 실시간 정량 PCR 방법이 사용되며 이는 예를 들면 Chen et al., Nucleic Acids Research, 33(20):e170, 2005를 참조하여 수행될 수 있다. RT-PCR은 검체의 RNA를 특히 miRNA를 분리한 후, 이로부터 cDNA를 합성한 후, 특정 프라이머, 또는 프라이머 및 프로브의 조합을 사용하여, 검체 중의 특정 유전자를 검출하는 것으로, 특정 유전자의 존재/부존재 또는 발현량을 결정할 수 있는 방법이다. 이러한 방법은 예를 들면 (Han, H. et al, 2002. Cancer Res. 62: 2890-6) 에 기재되어 있다.In one embodiment, a real-time quantitative PCR method is used after the reverse transcription reaction, which may be performed with reference to, for example, Chen et al., Nucleic Acids Research, 33(20):e170, 2005. RT-PCR is a method to isolate a sample RNA, specifically miRNA, synthesize cDNA therefrom, and then use a specific primer or a combination of a primer and a probe to detect a specific gene in the sample, and the presence/ It is a method that can determine the absence or expression level. Such methods are described, for example, in (Han, H. et al, 2002. Cancer Res. 62: 2890-6).
전형적인 PCR 방법은 특정 표적 서열의 증폭을 위해, 주형의 변성, 포워드 및 리버스 프라이머가 표적 서열에 결합하는 어닐링 및 열안정 중합효소에 의한 신장의 단계로 구성되는 3 단계가 여러 주기 예를 들면 통상 20회 이상이 수행된다. 대안적으로 어닐링 및 신장은 동일한 단계에서 수행되기도 한다. 성숙한 miRNA는 단일가닥이기 때문에, PCR 전에 역전사 반응이 먼저 수행될 수 있다. 역전사 반응에는 프라이머와 역전사 효소의 사용을 필요로 한다. PCR 및 정량 PCR에서는 포워드 및 리버스의 한 세트의 프라이머가 사용된다. A typical PCR method consists of three steps for amplification of a specific target sequence, consisting of denaturation of the template, annealing in which forward and reverse primers bind to the target sequence, and elongation by thermostable polymerase, in several cycles, e.g., usually 20 More than one time is performed. Alternatively, annealing and stretching may be performed in the same step. Since mature miRNA is single-stranded, reverse transcription reaction can be performed first before PCR. The reverse transcription reaction requires the use of a primer and a reverse transcriptase. In PCR and quantitative PCR, one set of primers, forward and reverse, are used.
프라이머의 길이는 교잡온도, 표적서열의 구성, 표적 서열의 복잡성 등과 같은 다양한 요소에 따라 결정된다. 일 구현예에서는 프라이머의 길이는 약 10 내지 35 뉴클레오타이드, 예를 들면 15, 20, 25, 30 또는 35 뉴클레오타이드이다. 포워드 프라이머는 바이오마커 miRNA에 특이적으로 결합할 수 있는 적어도 하나의 서열을 포함하며, 5'쪽에 비상보적 서열을 추가로 포함할 수 있다. 리버스 프라이머의 서열은 바이오마커의 서열과는 독립적일 수 있으며, 다수의 miRNA 바이오마 커가 한 종류의 리버스 프라이머로 증폭될 수 있거나, 또는 바이오마커에 특이적인 하나 이상의 서열을 포함할 수 있다.The length of the primer is determined according to various factors such as the hybridization temperature, the composition of the target sequence, and the complexity of the target sequence. In one embodiment, the length of the primer is about 10-35 nucleotides, for example 15, 20, 25, 30 or 35 nucleotides. The forward primer includes at least one sequence capable of specifically binding to the biomarker miRNA, and may further include a non-complementary sequence on the 5' side. The sequence of the reverse primer may be independent of the sequence of the biomarker, and a plurality of miRNA biomarkers may be amplified with one type of reverse primer, or may include one or more sequences specific for the biomarker.
일 구현예에서는 다중 정량 PCR, 다중 정량 RT-PCR 방법을 사용하여 두 개 이상의 miRNA가 하나의 반응으로 증폭된다. 이 경우 한쌍 이상의 프라이머 및/또는 프로브가 사용되며, 예를 들면 각 쌍의 프라이머는 각각 특이적 miRNA를 특이적으로 증폭하며, 프로브는 증폭된 각 miRNA를 구분하는데 사용되어 다중 증폭을 가능하게 한다.In one embodiment, two or more miRNAs are amplified in one reaction using multiple quantitative PCR and multiple quantitative RT-PCR methods. In this case, one or more pairs of primers and/or probes are used, for example, each pair of primers specifically amplifies a specific miRNA, and the probe is used to distinguish each amplified miRNA to enable multiple amplification.
역전사 정량 PCR에서 역전사 및 PCR이 함께 수행될 수 있으며, 이 경우 반응물은 역전사효소 및 열안정중합효소를 모두 포함하며, 화학적 또는 열적 방법으로 열안정중합효소의 활성을 조절하는"hot start"반응 방법 (예를 들면 미국 특허 5,411,876, 5,550,044 등 참조)이 사용될 수 있다.Reverse transcription and PCR can be performed together in reverse transcription quantitative PCR. In this case, the reaction includes both reverse transcriptase and thermostable polymerase, and a "hot start" reaction method that controls the activity of thermostable polymerase by chemical or thermal method (See, eg, US Pat. Nos. 5,411,876, 5,550,044, etc.) may be used.
증폭된 산물은 주형으로 사용한 분자와 상응하는 서열을 가지며, 당업계에 공지된 다양한 방법으로 분석될 수 있다. 이러한 방법은 당업계에 공지된 것으로서 예를 들면 젤 전기영동, 실시간 PCR 분석, SSCP (single strand conformational polymorphism), RFLP(restriction fragment length polymorphism), CZE(capillary zone electrophoresis), WAVE (HPLC-based nucleic acid analyzing technology), 마이크로칩을 포함하나, 이로 제한하는 것은 아니다.The amplified product has a sequence corresponding to the molecule used as a template, and can be analyzed by various methods known in the art. Such methods are known in the art, for example, gel electrophoresis, real-time PCR analysis, single strand conformational polymorphism (SSCP), restriction fragment length polymorphism (RFLP), capillary zone electrophoresis (CZE), WAVE (HPLC-based nucleic acid) analyzing technology), including, but not limited to, microchips.
또한 교잡에 기반한 라이게이션 기술이 miRNA의 정량 분석에 사용될 수 있다. 이러한 방법은 당업계에 공지되어 있으며, 예를 들면 OLA (oligonucleotide ligation) 및 예를 들면 미국공개공보 2006-0078894에 기재된 HARP-유사 프로브를 사용한 방법과 같은 표적 핵산 서열에 결합한 검출가능한 프로브를 결합하지 않은 프로브로부터 분리해내는 방법 등을 포함하나 이로 제한하는 것은 아니다.In addition, hybridization-based ligation techniques can be used for quantitative analysis of miRNAs. Such methods are known in the art and do not bind a detectable probe that binds to a target nucleic acid sequence, such as, for example, oligonucleotide ligation (OLA) and methods using HARP-like probes described in US Publication 2006-0078894. It includes, but is not limited to, a method for isolating from a non-existing probe.
라이게이션을 이용한 다른 기술은 MLPA (Multiplex Ligation-dependent Probe Amplification)(Schouten et al., Nucleic Acids Research 30:e57 (2002))을 들 수 있다. 상기 기술은 한 쌍의 프르브가 표적서열에 나란히 결합한 경우에만 라이게이션이 일어나는 방식으로 결합하며, 라이게이션된 프로브는 PCR에 의해 증폭될 수 있도록 프라이머 결합부위를 포함한다.Another technique using ligation is Multiplex Ligation-dependent Probe Amplification (MLPA) (Schouten et al., Nucleic Acids Research 30:e57 (2002)). The above technique binds in such a way that ligation occurs only when a pair of probes bind side by side to the target sequence, and the ligated probe includes a primer binding site so that it can be amplified by PCR.
상술한 바와 같은 교잡, 증폭 및/또는 교잡 기반 라이게이션 반응 후의 miRNA는 예를 들면 표적의 염색 또는 표지, 프라이머 또는 프로브의 염색 또는 표지를 통해 교잡 또는 증폭된 miRNA 산물을 검출할 수 있다. 검출에는 당업계의 공지의 기술이 사용될 있으며, 당업자라면 검출의 민감도 및/또는 표적의 양을 고려하여 적절한 방법을 선택할 수 있을 것이다. 검출 방법의 민감도 및/또는 표적의 양에 따라 검출 전에 증폭이 필요하지 않을 수도 있다.The miRNA after hybridization, amplification and/or hybridization-based ligation reaction as described above can detect hybridization or amplified miRNA products through, for example, staining or labeling of a target, staining or labeling of a primer or probe. For detection, a technique known in the art may be used, and a person skilled in the art will be able to select an appropriate method in consideration of the sensitivity of detection and/or the amount of the target. Depending on the sensitivity of the detection method and/or the amount of target, amplification may not be necessary prior to detection.
또한 miRNA는 직접적 또는 간접적 방법에 의해 검출될 수 있다. 직접적 방법에서 miRNA는 이에 결합된 검출가능한 표지로 표지되고 이어 비드와 같은 고상지지체에 연결된 프로브에 결합된 후 표지된 miRNA를 스크리닝하여 검출된다. 대안적으로 직접 검출에 표지된 프로브가 사용될 수 있으며, miRNA와 특이적 결합 후 표지된 프로브의 스크리닝을 통해 검출된다. 일 구현예에서는 증폭된 miRNA는 목적하는 핵산을 캡쳐할 수 있는 프로브와 컨쥬게이션된 비드를 이용하여 검출된다. 다른 구현예에서 프로브는 형광물질로 표지될 수 있다.In addition, miRNAs can be detected by direct or indirect methods. In the direct method, miRNA is labeled with a detectable label bound thereto, and then bound to a probe connected to a solid support such as a bead, and then detected by screening the labeled miRNA. Alternatively, a labeled probe may be used for direct detection, and is detected through screening of the labeled probe after specific binding to the miRNA. In one embodiment, the amplified miRNA is detected using a bead conjugated to a probe capable of capturing a desired nucleic acid. In other embodiments, the probe may be labeled with a fluorescent material.
검출을 위한 표지자 (label)는 이로 제한하는 것은 아니나, 광방출, 광산란, 광흡수 물질과 같은 검출가능한 형광, 화학발광 또는 생발광 신호를 생성 또는 소거할 수 있는 화합물을 포함하며, 예를 들면 Garman A., Non-Radioactive Labeling, Academic Press 1997을 참조할 수 있다. 형광 물질은 예를 들면 이로 제한하는 것은 아니다 플루오레신 (예를 들면 미국특허 6,020,481), 로다민 (예를 들면 미국 특허 6,191,278), 벤조페녹사진 (예를 들면 미국특허 6,140,500), 공여체와 수용체를 포함하는 에너지 전이 형광 염료 (예를 들면 미국특허 5,945,526) 및 사이아나인 (예를 들면 WO1997-45539), 리사민, 파이코에리쓰린, Cy2, Cy3, Cy3.5, Cy5, Cy5.5,Cy7, FluorX (Amersham), Alexa 350, Alexa 430, AMCA, BODIPY 630/650, BODIPY 650/665, BODIPY-FL, BODIPYR6G, BODIPY-TMR, BODIPY-TRX, Cascade Blue, 6-FAM, Fluorescein Isothiocyanate, HEX, 6-JOE, Oregon Green 488, Oregon Green 500, Oregon Green 514, Pacific Blue, REG, Rhodamine Green, Rhodamine Red, Renographin, ROX, SYPRO, TAMRA, Tetramethylrhodamine, 및/또는 Texas Red는 물론 기타 검출가능한 신호를 생성할 수 있는 임의의 형광 모이어티를 포함한다. 형광염료는 6-carboxyfluorescein; 2',4',1,4,-tetrachlorofluorescein; 및 2',4',5',7',1,4-hexachlorofluorescein를 포함하나 이로 제한하는 것은 아니다. 일 구현예에서는 형광 표지로 SYBR-Green, 6-carboxyfluorescein ("FAM"), TET, ROX, VICTM, 또는 JOE가 사용된다. 일 구현예에서는 리포터 형광물질과 소거형광물질의 두 개의 형광물질로 표지된 프로브가 사용되며, 이 경우 형광물질은 구분이 가능한 파장이 스펙트럼을 방출하는 형광물질이 사용된다. 또한 표지자는 핵산의 결합을 향상, 안정화 또는 핵산의 결합에 영향을 미칠 [0047] 수 있는 화합물 예를 들면 에씨디움 브로마이드 및 SYBR-Green을 포함하는 인터칼레이터, 마이너그루브 결합체 및 가교가능한 작용기가 사용될 수 있으나, 이로 제한하는 것은 아니며, Blackburn et al., eds. "DNA and RNA Structure" in Nucleic Acids in Chemistry and Biology (1996)을 참조할 수 있다.Labels for detection include, but are not limited to, compounds capable of generating or canceling a detectable fluorescence, chemiluminescent or bioluminescent signal such as a light emitting, light scattering, light absorbing material, for example, Garman Reference may be made to A., Non-Radioactive Labeling, Academic Press 1997. Fluorescent materials include, but are not limited to, fluorescein (eg, US Pat. No. 6,020,481), rhodamine (eg, US Pat. No. 6,191,278), benzophenoxazine (eg, US Pat. No. 6,140,500), donors and acceptors. Energy transfer fluorescent dyes including (eg US Pat. No. 5,945,526) and cyanine (eg WO1997-45539), lysamine, phycoerythrin, Cy2, Cy3, Cy3.5, Cy5, Cy5.5,Cy7 , FluorX (Amersham), Alexa 350, Alexa 430, AMCA, BODIPY 630/650, BODIPY 650/665, BODIPY-FL, BODIPYR6G, BODIPY-TMR, BODIPY-TRX, Cascade Blue, 6-FAM, Fluorescein Isothiocyanate, HEX, Generates 6-JOE, Oregon Green 488, Oregon Green 500, Oregon Green 514, Pacific Blue, REG, Rhodamine Green, Rhodamine Red, Renographin, ROX, SYPRO, TAMRA, Tetramethylrhodamine, and/or Texas Red as well as other detectable signals any fluorescent moiety capable of Fluorescent dyes include 6-carboxyfluorescein; 2',4',1,4,-tetrachlorofluorescein; and 2',4',5',7',1,4-hexachlorofluorescein. In one embodiment, SYBR-Green, 6-carboxyfluorescein (“FAM”), TET, ROX, VIC™, or JOE is used as the fluorescent label. In one embodiment, a probe labeled with two fluorescent substances, a reporter fluorescent material and an erasing fluorescent material, is used. In this case, a fluorescent material emitting a spectrum with a distinguishable wavelength is used as the fluorescent material. In addition, the marker is a compound capable of enhancing, stabilizing, or affecting the binding of a nucleic acid, for example, an intercalator including ethyl bromide and SYBR-Green, a minor groove binder, and a crosslinkable functional group can be used, but is not limited thereto, and is described in Blackburn et al., eds. See "DNA and RNA Structure" in Nucleic Acids in Chemistry and Biology (1996).
따라서 본원에 따른 조성물은 상술한 방법 중 어느 하나 이상의 방법에 사용되는 시약을 포함할 수 있다.Accordingly, the composition according to the present disclosure may include reagents used in any one or more of the methods described above.
일 구현예에서는 상기 miRNA 존재 여부와 그 양 또는 패턴을 RT-PCR로 측정하기 위한 방법에 필요한 시약을 포함하여, 예를 들면 본원 마커의 mRNA에 특이적인 프로브 및/또는 프라이머쌍을 포함한다. "프라이머" 또는 "프로브"는 주형과 상보적으로 결합할 수 있고 역전사효소 또는 DNA 중합효소가 주형의 복제를 개시할 수 있도록 하는 자유 3말단 수산화기(free 3' hydroxyl group)를 가지는 핵산 서열을 의미한다. 본원에 사용되는 상기시약은 증폭된 산물의 검출을 위해 상술한 바와 같은 발색, 발광 또는 형광물질과 같은 것으로 표지될 수 있다. 일구현예에서는 miRNA 검출을 위해 역전사 PCR (중합효소연쇄반응)이 사용된다.In one embodiment, including reagents required for a method for measuring the presence or absence of the miRNA and the amount or pattern by RT-PCR, for example, a probe and/or primer pair specific for the mRNA of the present marker is included. "Primer" or "probe" means a nucleic acid sequence having a free 3' hydroxyl group capable of complementary binding to a template and allowing reverse transcriptase or DNA polymerase to initiate replication of the template do. As used herein, the reagent may be labeled with a chromogenic, luminescent or fluorescent substance as described above for detection of the amplified product. In one embodiment, reverse transcription PCR (polymerase chain reaction) is used for miRNA detection.
다른 구현예에서, 검출시약은 마이크로어레이를 포함하는 어레이 또는 칩의 형태로 제공될 수 있다. 검출시약은 검출을 위해 직접적 또는 샌드위치 형태로 간접적으로 표지될 수 있다. 직접적 표지방법의 경우, 어레이 등에 사용되는 혈청 시료는 Cy3, Cy5와 같은 형광 표지로 표지된다.In another embodiment, the detection reagent may be provided in the form of an array or chip including a microarray. Detection reagents may be labeled directly or indirectly in a sandwich form for detection. In the case of the direct labeling method, serum samples used for arrays and the like are labeled with a fluorescent label such as Cy3 or Cy5.
본원에 따른 바이오마커 또는 이를 포함하는 조성물은 당뇨병성 신경병증의 진단, 예측 및/또는 예후 측정에 유용하게 사용될 수 있다.The biomarker according to the present disclosure or a composition comprising the same may be usefully used for diagnosis, prediction and/or prognosis measurement of diabetic neuropathy.
이러한 맥락에서 본원의 조성물, 상기 조성물을 포함하는 키트, 또는 방법에 관한 것이다.In this context it relates to a composition herein, a kit comprising said composition, or a method.
상기 키트에 포함될 수 있는 시약 및 이를 이용한 검출은 앞서 언급한 바를 참조할 수 있다. 본원에 따른 일 구현에서, 본원의 키트는 핵산 증폭에 사용되며, 특히 RT-PCR을 이용한 증폭에 사용된다. 이 경우 키트는 RT-PCR의 반응에 필요한 완충액, 역전사 효소, Taq 폴리머라제 및 MgCl2를 포함한다. 당업계에 공지된 다양한 완충액이 사용될 수 있으며, 예를 들면 Tris-HCl, pH 9.0 완충액이 사용될 수 있으나 이로 제한하는 것은 아니다. 역전사 효소 및 Taq 폴리머라제는 시중에서 구입할 수 있으며, 예를 들면 폴리머라제로 hot start 반응이 가능한 AmpliTaq Gold (Applied Biosystems, USA)와 같은 것을 사용할 수 있으며, 적절한 농도 예를 들면 1.5mM 내지 2.5mM의 MgCl2가 포함될 수 있다.Reagents that may be included in the kit and detection using the same may be referred to as described above. In one embodiment according to the present application, the kit of the present application is used for nucleic acid amplification, in particular for amplification using RT-PCR. In this case, the kit contains the necessary buffer for the reaction of RT-PCR, reverse transcriptase, Taq polymerase and MgCl2. Various buffers known in the art may be used, for example, Tris-HCl, pH 9.0 buffer may be used, but is not limited thereto. Reverse transcriptase and Taq polymerase are commercially available, for example, AmpliTaq Gold (Applied Biosystems, USA) capable of hot start reaction with polymerase may be used, and an appropriate concentration, for example, 1.5 mM to 2.5 mM MgCl2 may be included.
본원에 따른 키트는 양성대조군, 음성대조군 및 사용설명서를 추가로 포함한다. 음성대조군으로는 miRNA를 포함하지 않는 시료, 양상대조군은 검출대상 miRNA 중 하나 이상을 포함할 수 있다.The kit according to the present application further comprises a positive control group, a negative control group and instructions for use. The negative control group may include a sample that does not contain miRNA, and the positive control group may include one or more of the detection target miRNAs.
이런 측면에서 본원은 또한 당뇨병성 신경병증의 진단 또는 예후에 필요한 정보를 제공하기 위하여, 당뇨병성 신경병증이 의심되는 대상체 유래의 시료를 제공하는 단계; 상기 시료에서 miR-122, miR-199b, 및 miR-8485로 구성되는 군으로부터 선택되는 하나 이상의 마커의 발현량을 측정하는 단계; 상기 측정 결과를 대조군의 해당 마커의 상응하는 결과와 비교하는 단계; 및 상기 대조군 시료와 비교하여, 상기 대상체 시료의 발현량에 변화가 있는 경우, 이를 당뇨병성 신경병증으로 판정하는 단계를 포함하는, 당뇨병성 신경병증 마커를 검출하는 방법에 관한 것이다.In this aspect, the present application also provides a sample derived from a subject suspected of diabetic neuropathy in order to provide information necessary for the diagnosis or prognosis of diabetic neuropathy; measuring the expression level of one or more markers selected from the group consisting of miR-122, miR-199b, and miR-8485 in the sample; comparing the measurement result with the corresponding result of the corresponding marker in the control group; and when there is a change in the expression level of the subject sample compared to the control sample, determining it as diabetic neuropathy.
본원의 방법에 사용되는 시약 등은 앞서 기술한 바를 참조할 수 있다.Reagents and the like used in the method of the present application may be referred to as previously described.
본원에 따른 방법에서 대조군은 당뇨병성 신경병증의 예측 또는 조기 진단을 위해, 당뇨병 환자의 시료가 사용될 수 있다.In the method according to the present disclosure, as a control group, a sample from a diabetic patient may be used for prediction or early diagnosis of diabetic neuropathy.
본 방법은 특정 기간 동안 예를 들어 1년에 걸쳐 수차례 또는 매 1년에 한 번씩 수행될 수 있으며, 발현 패턴의 변화 추이 모니터링에 사용될 수 있다. 마커의 종류에 따라 발현의 증가 또는 감소를 당뇨병성 신경병증 상태와 연관 지을 수 있다. 동일 대상체에 대한 종전의 검사수치 또는 대조군의 수치와 비교하여, 당뇨병성 신경병증의 발병, 진행, 악화 등의 판단에 사용될 수 있다. 시간의 경과에 따른 당뇨병성 신경병증 마커의 변화를 근거로 당뇨병성 신경병증의 진행 또는 발병을 막기 위한 예방적 조치를 취할 수 있다. 또한 당뇨병성 신경병증의 확진을 위해, 바이오 마커는 보조 수단으로 사용될 수 있으며, 다른 진단 방법 예를 들면 조직검사, 초음파, 컴퓨터단층촬영 (computerized axial tomography (CT scan)) 또는 자기공명영상(magnetic resonance imaging (MRI)) 검사와 함께 사용될 수 있다. 이하 실시예를 통해 본 발명을 상세히 설명하나, 본 실시예는 예시 적인 것일 뿐 어떤 식으로 든 본원의 범위를 한정하는 것은 아니다.The method may be performed over a specific period of time, for example, several times over a year or once a year, and may be used to monitor changes in expression patterns. Depending on the type of marker, an increase or decrease in expression can be associated with a diabetic neuropathy state. It can be used to determine the onset, progression, exacerbation, etc. of diabetic neuropathy by comparison with a previous test value for the same subject or a control value. Prophylactic measures can be taken to prevent the progression or onset of diabetic neuropathy based on changes in diabetic neuropathy markers over time. In addition, for the diagnosis of diabetic neuropathy, biomarkers can be used as an auxiliary means, and other diagnostic methods such as biopsy, ultrasound, computerized axial tomography (CT scan) or magnetic resonance imaging (magnetic resonance) imaging (MRI)). Hereinafter, the present invention will be described in detail through examples, but these examples are merely illustrative and do not limit the scope of the present application in any way.
본 발명은 달리 언급이 없는 한 세포생물학, 세포배양, 분자생물학, 유전자 형질전환 기술, 미생물학, DNA 재조합기술에 관한 당업자의 기술수준 내인 통상의 기술을 사용하여 실시될 수 있다.Unless otherwise specified, the present invention can be practiced using conventional techniques within the skill level of those skilled in the art in cell biology, cell culture, molecular biology, gene transformation technology, microbiology, and DNA recombination technology.
이하에서는 본 발명의 실시예들을 구체적인 실험예를 통해 더욱 상세하게 설명한다. 단, 하기 실험예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described in more detail through specific experimental examples. However, the following experimental examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
실시예 1 실험대상 검체의 수집 및 miRNA 추출Example 1 Collection of test subject specimens and miRNA extraction
본 실험의 대상자는 임상연구윤리위원회(IRB)의 승인을 받아 충북대학교병원 및 계명대학교동산병원에서 정상인군과 당뇨병성 신경병증으로 진단받은 환자 각각 3명 (총 6명)의 혈청 샘플을 인체자원은행을 통해 수득하였다.Subjects of this experiment, with the approval of the Clinical Research Ethics Committee (IRB), received serum samples from the normal group and 3 patients (total of 6) diagnosed with diabetic neuropathy at Chungbuk National University Hospital and Keimyung University Dongsan Hospital as human resources. Obtained through the bank.
이어 수득한 혈청에서 Qiagen RNA extraction Kit를 제조자의 방법대로 사용하여 총 RNA를 분리하였으며, 분리된 총 RNA의 질은 Agilent 2100 Bioanalyzer를 제조자의 방법대로 사용하여 확인하였다.Then, total RNA was isolated from the obtained serum using the Qiagen RNA extraction kit according to the manufacturer's method, and the quality of the isolated total RNA was checked using an Agilent 2100 Bioanalyzer according to the manufacturer's method.
실시예 2 차세대 유전체 분석을 이용한 miRNA 바이오 마커 선별Example 2 miRNA biomarker selection using next-generation genome analysis
실시예 1에서 분리한 총 RNA로부터 SMARTer smRNA seq kit for Illumina(Takara)를 이용하여 바이티닐화된 cDNA를 합성하였다. 이어 상기 cDNA를 제조자의 표준 방법에 따라 Affymetrix GeneChip® miRNA 4.0에 교잡하였다. 교잡 후 형광광도의 측정 및 분석은 Genechip operating software(Affymetrix)을 제조자의 방법대로 이용하여 수행하였다. 총 6658개의 인간 miRNA를 각각 3건의 정상인과 당뇨병성 신경병증에서 비교 분석하여, 도 1에 나타난 바와 같이 당뇨병성 신경병증과 연관성이 있는 miRNA에 대한 heat map (황색: 2배이상 과발현된 miRNAs, 청색: 2배이상 저발현된 miRNAs)를 나타낸다. Vitinylated cDNA was synthesized from the total RNA isolated in Example 1 using SMARTer smRNA seq kit for Illumina (Takara). The cDNA was then hybridized to Affymetrix GeneChip ® miRNA 4.0 according to the manufacturer's standard method. Measurement and analysis of fluorescence intensity after hybridization were performed using Genechip operating software (Affymetrix) according to the manufacturer's method. A total of 6658 human miRNAs were compared and analyzed in 3 cases of normal persons and diabetic neuropathy, respectively, and as shown in FIG. 1 , a heat map for miRNAs related to diabetic neuropathy (yellow: overexpressed miRNAs more than twice, blue) : Two-fold or more underexpressed miRNAs).
그 결과 당뇨병성 신경병증과 정상군 사이에서 miR-122, miR-199b, 및 miR-8485가 두 그룹에서 유의적인 차이가 있는 것으로 나타났다. 통계분석은 Student's t-test를 이용하여 수행되었으며, 통계적 유의성은 <0.05이다.As a result, it was found that there were significant differences in miR-122, miR-199b, and miR-8485 between the diabetic neuropathy and normal groups in the two groups. Statistical analysis was performed using Student's t-test, and statistical significance was <0.05.
실시예 3 임상시료에서 선별된 miRNA의 실시간 정량 PCR 분석Example 3 Real-time quantitative PCR analysis of miRNAs selected from clinical samples
실시예 2에서 선별된 정상군과 당뇨병성 신경병증 환자군에서 발현의 차이를 나타낸 3개의 miRNA(miR-122, miR-199b, 및 miR-8485)에 대하여 프라이머와 형광 프로브(SYBR GreenI)를 제조자의 방법대로 사용하여 200명의 혈청에서 RT-PCR을 이용한 miRNA 분석을 실시하였다. Primers and fluorescent probes (SYBR GreenI) for three miRNAs (miR-122, miR-199b, and miR-8485) showing differences in expression in the normal group and diabetic neuropathy patient group selected in Example 2 MiRNA analysis was performed using RT-PCR in the sera of 200 people using the method as described.
구체적으로 Bio-rad사의 CFX-96을 이용하여 실시하였다. 구체적으로 10 ng RNA 샘플, 10 pM stem-loop RT primer, 10X RT buffer, 5 U/uL poly A polymerase, 2 mM of each dNTP, 200 U/uL M-MLV, 10mM ATP 그리고 5 U/uL RNase Inhibitor (enzynomics, Korea)를 이용한 역전사 반응으로 cDNA를 합성하였다. 이어서 cDNA는 각각의 miRNA 프라이머 및 SYBR greenI을 사용하여 95도 5분 동안 변성하고. 95도에서 10초, 60도에서 40초로 40사이클을 돌려 증폭하고 Bio-Rad CFX-Dx 3.1로 신호는 실시간으로 수집하여 분석하였다.Specifically, it was carried out using Bio-rad's CFX-96. Specifically, 10 ng RNA sample, 10 pM stem-loop RT primer, 10X RT buffer, 5 U/uL poly A polymerase, 2 mM of each dNTP, 200 U/uL M-MLV, 10mM ATP, and 5 U/uL RNase Inhibitor (enzynomics, Korea) was used to synthesize cDNA by reverse transcription. Then cDNA was denatured for 5 min at 95 °C using respective miRNA primers and SYBR greenI. Amplification was performed by 40 cycles of 10 seconds at 95 degrees and 40 seconds at 60 degrees, and the signals were collected and analyzed in real time with Bio-Rad CFX-Dx 3.1.
그리고 그 결과를 도 2에 나타내었다. 도 2에 나타난 바와 같이 miR-122, miR-199b, 및 miR-8485의 발현령의 차이가 정상군과 당뇨병성 신경병증군과의 사이에 유의한 연관성이 있는 것으로 나타났으며, 이는 miR-122, miR-199b, 및 miR-8485이 당뇨병성 신경병증의 예측 및 진단에 유용하게 사용할 수 있음을 나타낸다.And the result is shown in FIG. As shown in Figure 2, the difference in the expression ages of miR-122, miR-199b, and miR-8485 was found to have a significant correlation between the normal group and the diabetic neuropathy group, which It shows that miR-199b and miR-8485 can be usefully used for the prediction and diagnosis of diabetic neuropathy.
이상에서 본 발명의 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 본 발명의 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. In the above, the embodiment of the present invention has been mainly described, but this is only an example and does not limit the present invention. It will be appreciated that various modifications and applications not exemplified above are possible.
따라서 본 발명의 범위는 이상에서 예시된 기술 사상의 변경물, 균등물 내지는 대체물을 포함하는 것으로 이해되어야 한다. 예를 들어, 본 발명의 실시예에 구체적으로 나타난 각 구성요소는 변형하여 실시할 수 있다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Therefore, it should be understood that the scope of the present invention includes changes, equivalents or substitutes of the technical idea exemplified above. For example, each component specifically shown in the embodiment of the present invention may be implemented by modification. And differences related to such modifications and applications should be construed as being included in the scope of the present invention defined in the appended claims.

Claims (10)

  1. miR-122, miR-199b, 및 miR-8485로 구성되는 군으로부터 선택되는 하나 이상의 바이오마커 측정용 시약을 포함하는 당뇨병성 신경병증의 예측 또는 진단용 조성물.A composition for prediction or diagnosis of diabetic neuropathy, comprising a reagent for measuring one or more biomarkers selected from the group consisting of miR-122, miR-199b, and miR-8485.
  2. 제1항에 있어서,According to claim 1,
    상기 시약은 상기 각 바이오마커의 핵산서열, 상기 핵산서열에 상보적인 핵산서열, 상기 핵산서열의 단편을 포함하는 것인, 당뇨병성 신경병증 예측 또는 진단용 조성물.The reagent comprises a nucleic acid sequence of each biomarker, a nucleic acid sequence complementary to the nucleic acid sequence, and a fragment of the nucleic acid sequence, a composition for predicting or diagnosing diabetic neuropathy.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 핵산 서열 또는 핵산 서열의 단편은 상기 각 마커를 특이적 결합할 수 있는 프라미어, 또는 프로브, 또는 프라이머 및 프로브인, 당뇨병성 신경병증 예측 또는 진단용 조성물.The nucleic acid sequence or fragment of the nucleic acid sequence is a primer, or a probe, or a primer and a probe capable of specifically binding each of the markers, a composition for predicting or diagnosing diabetic neuropathy.
  4. 제1항에 있어서,According to claim 1,
    상기 시약은 상기 각 바이오 마커의 역전사 중합효소연쇄반응, 중합효소연쇄반응, 경쟁적 중합효소연쇄반응, Nuclease 보호 분석 (RNase, S1 nuclease assay), in situ 교잡법, 라이게이션 기반 중합효소 연쇄반응, 마이크로어레이 또는 노던블랏에 사용되는 시약인, 당뇨병성 신경병증 예측 또는 진단용 조성물.The reagent is a reverse transcription polymerase chain reaction of each biomarker, a polymerase chain reaction, a competitive polymerase chain reaction, a nuclease protection assay (RNase, S1 nuclease assay), an in situ hybridization method, a ligation-based polymerase chain reaction, micro A composition for predicting or diagnosing diabetic neuropathy, which is a reagent used in an array or northern blot.
  5. 당뇨병성 신경병증 진단 또는 예측에 필요한 정보를 제공하기 위하여,To provide information necessary for diagnosing or predicting diabetic neuropathy,
    당뇨병성 신경병증이 의심되는 대상체 유래의 시료를 제공하는 단계;providing a sample derived from a subject suspected of having diabetic neuropathy;
    상기 시료에서 miR-122, miR-199b, 및 miR-8485로 구성되는 군으로부터 선택되는 하나 이상의 마커의 발현량을 측정하는 단계;measuring the expression level of one or more markers selected from the group consisting of miR-122, miR-199b, and miR-8485 in the sample;
    상기 측정 결과를 대조군의 해당 마커의 상응하는 결과와 비교하는 단계; 및comparing the measurement result with the corresponding result of the corresponding marker in the control group; and
    상기 대조군 시료와 비교하여, 상기 대상체 시료의 발현량에 변화가 있는 경우, 이를 당뇨병성 신경병증으로 판정하는 단계를 포함하는, 당뇨병성 신경병증 마커를 검출하는 방법.Comparing with the control sample, when there is a change in the expression level of the subject sample, the method comprising the step of determining the diabetic neuropathy marker, detecting a diabetic neuropathy marker.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 검출은 교잡 또는 핵산 증폭 방법에 의한 것인, 방법.Wherein the detection is by a hybridization or nucleic acid amplification method.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 교잡은 마이크로어레이 분석, 상기 핵산 증폭은 역전사 효소 중합연쇄반응법인, 방법.The hybridization is a microarray analysis, the nucleic acid amplification is a reverse transcriptase polymerase chain reaction method, the method.
  8. 제5항에 있어서,6. The method of claim 5,
    상기 생물학적 시료는 당뇨병성 신경병증 환자의 전혈, 혈장 또는 혈청인, 방법.The method of claim 1, wherein the biological sample is whole blood, plasma or serum from a diabetic neuropathy patient.
  9. 제5항에 있어서,6. The method of claim 5,
    상기 방법은 상기 miR-122, miR-199b, 및 miR-8485 마커 발현량의 평균값을 사용하는 것인, 방법.The method is to use the average value of the expression levels of the miR-122, miR-199b, and miR-8485 markers.
  10. miR-122, miR-199b, 및 miR-8485를 포함하는 당뇨병성 신경병증의 예측 또는 진단용 조성물.A composition for prediction or diagnosis of diabetic neuropathy comprising miR-122, miR-199b, and miR-8485.
PCT/KR2021/014992 2020-12-10 2021-10-25 Method for predicting and diagnosing diabetic neuropathy using micro-rna, and kit therefor WO2022124564A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0171841 2020-12-10
KR20200171841 2020-12-10
KR1020210108217A KR102357260B1 (en) 2020-12-10 2021-08-17 Method for diagnosis and predict of diabetic neuropathy using micro-rna and kit therefor
KR10-2021-0108217 2021-08-17

Publications (1)

Publication Number Publication Date
WO2022124564A1 true WO2022124564A1 (en) 2022-06-16

Family

ID=80252748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014992 WO2022124564A1 (en) 2020-12-10 2021-10-25 Method for predicting and diagnosing diabetic neuropathy using micro-rna, and kit therefor

Country Status (2)

Country Link
KR (1) KR102357260B1 (en)
WO (1) WO2022124564A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050114214A (en) * 2003-02-07 2005-12-05 플로리안 랑 Use of the sgk gene family for diagnosis and therapy of cataracts and glaucoma
JP2017181518A (en) * 2009-09-14 2017-10-05 バンヤン・バイオマーカーズ・インコーポレーテッド Micro-rna, autoantibody, and protein markers for diagnosis of neuronal injury
KR20180029936A (en) * 2016-09-13 2018-03-21 사회복지법인 삼성생명공익재단 Novel Biomarkers For Diagnosing Liver Cancer and Uses Thereof
KR20200061893A (en) * 2018-11-26 2020-06-03 순천향대학교 산학협력단 Biomarker microRNA let-7 or microRNA-150 for diagnosing diabetic nephropathy and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3355059A3 (en) * 2009-06-19 2018-09-26 Banyan Biomarkers, Inc. Biomarker assay of neurological condition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050114214A (en) * 2003-02-07 2005-12-05 플로리안 랑 Use of the sgk gene family for diagnosis and therapy of cataracts and glaucoma
JP2017181518A (en) * 2009-09-14 2017-10-05 バンヤン・バイオマーカーズ・インコーポレーテッド Micro-rna, autoantibody, and protein markers for diagnosis of neuronal injury
KR20180029936A (en) * 2016-09-13 2018-03-21 사회복지법인 삼성생명공익재단 Novel Biomarkers For Diagnosing Liver Cancer and Uses Thereof
KR20200061893A (en) * 2018-11-26 2020-06-03 순천향대학교 산학협력단 Biomarker microRNA let-7 or microRNA-150 for diagnosing diabetic nephropathy and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PASTUKH NINA; MEERSON ARI; KALISH DORINA; JABALY HANIN; BLUM ARNON: "Serum miR-122 levels correlate with diabetic retinopathy", CLINICAL AND EXPERIMENTAL MEDICINE, SPRINGER VERLAG, MILAN, IT, vol. 19, no. 2, 23 January 2019 (2019-01-23), IT , pages 255 - 260, XP036759532, ISSN: 1591-8890, DOI: 10.1007/s10238-019-00546-x *

Also Published As

Publication number Publication date
KR102357260B1 (en) 2022-02-08

Similar Documents

Publication Publication Date Title
US20190136330A1 (en) Method for screening cancer
US8535914B2 (en) Probe, probe set and information acquisition method using the same
WO2023025259A1 (en) Method and kit for detecting microrna
AU2016286088A1 (en) Single nucleotide polymorphism in HLA-B*15:02 and use thereof
KR101784714B1 (en) Mirna biomarker for dignosing recurrent ovarian cancer or predicting recurrence of ovarain cancer and its use
JP4317854B2 (en) Detection method of trace gastric cancer cells
KR20220052461A (en) MicroRNA-1246 for diagnosing of ovarian cancer and use thereof
KR101992539B1 (en) miRNA Based composition and method of diagnosis of cognitive disorder
KR101646189B1 (en) Marker for diagnosing intrinsic atopic dermatitis and use thereof
WO2022124564A1 (en) Method for predicting and diagnosing diabetic neuropathy using micro-rna, and kit therefor
CN107090508B (en) Novel kit for detecting gene mutation
CN106868130B (en) Biomarkers for use in colorectal cancer
CN112322722B (en) Primer probe composition and kit for detecting 16p11.2 microdeletion and application thereof
US8367814B2 (en) Assay for BCR/ABL gene rearrangement
WO2021080335A1 (en) Composition for diagnosis of nontuberculous mycobacteria-caused infection or infectious disease
US20200181716A1 (en) Composite epigenetic biomarkers for accurate screening, diagnosis and prognosis of colorectal cancer
US10731219B1 (en) Method for preventing progression to metabolic syndrome
US10407737B2 (en) Methods and kits for identifying pre-cancerous colorectal polyps and colorectal cancer
US10155991B2 (en) Biomarkers for use in colorectal cancer
KR20230026734A (en) Method for diagnosis and predict of diabetic neuropathy using micro-rna and kit therefor
WO2023063775A1 (en) Use of mir-625-3p as biomarker for diagnosing severity of psoriasis
LU102676B1 (en) A Biomarker for Severe Asthma and Application Thereof
RU2804110C1 (en) Set of oligonucleotide primers and probes for determining alleles of the rs55986091 polymorphism and method for its use
KR102562955B1 (en) Single nucleotide polymorphism for predicting the risk factor of lung function depression and the use thereof
KR20230036926A (en) Sinfle nucleotide polymorphism for predicting of vitamin d defieciency and the use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/10/2023)