WO2022124421A1 - Ozone concentration measurement device, and ozone concentration monitoring system in which same is used - Google Patents

Ozone concentration measurement device, and ozone concentration monitoring system in which same is used Download PDF

Info

Publication number
WO2022124421A1
WO2022124421A1 PCT/JP2021/045717 JP2021045717W WO2022124421A1 WO 2022124421 A1 WO2022124421 A1 WO 2022124421A1 JP 2021045717 W JP2021045717 W JP 2021045717W WO 2022124421 A1 WO2022124421 A1 WO 2022124421A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
ozone concentration
control unit
sensor
network
Prior art date
Application number
PCT/JP2021/045717
Other languages
French (fr)
Japanese (ja)
Inventor
武 田中
序治 岡光
正彦 中本
浩一 宮園
Original Assignee
株式会社大柿産業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大柿産業 filed Critical 株式会社大柿産業
Priority to JP2022568366A priority Critical patent/JPWO2022124421A1/ja
Publication of WO2022124421A1 publication Critical patent/WO2022124421A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0076Indoor units, e.g. fan coil units with means for purifying supplied air by electric means, e.g. ionisers or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/74Ozone

Definitions

  • the present invention relates to an ozone concentration measuring device for measuring the ozone concentration in a predetermined space such as a living room, a business establishment, a theater or a hotel, and an ozone concentration monitoring system for monitoring the ozone concentration in the defined predetermined space.
  • Non-Patent Document 2 reported that the new coronavirus is inactivated with a low concentration of ozone gas that is safe for the human body, for example, 0.05 ppm or 0.1 ppm.
  • the reported ozone gas has a low concentration of 50 ppb to 100 ppb.
  • An optical ozone sensor or an ozone sensor using an oxide film is used to measure the concentration of ozone gas.
  • Optical ozone sensors are highly accurate but expensive when measuring low concentrations of ozone.
  • an ozone sensor using an oxide film converts a change in resistance due to a change in ozone concentration into a change in voltage and detects it, but there is a problem that the resistance value is likely to change depending on the ambient temperature and humidity.
  • the first object of the present invention is to provide an ozone concentration measuring device capable of accurately measuring the ozone concentration with an inexpensive ozone sensor, and to provide an ozone concentration monitoring system using the ozone concentration measuring device.
  • the second purpose is to do.
  • the ozone concentration measuring device of the present invention has a storage unit for storing an ozone concentration measuring program, a control unit for reading a program from the storage unit and executing the program, and a control unit. It is equipped with an ozone sensor that is connected to measure the ozone concentration, a clean air blower that blows clean air to the ozone sensor, and a transmission / reception unit that is connected to the control unit.
  • the control unit uses an ozone sensor to measure the ozone concentration in a predetermined space.
  • the ozone concentration is acquired from the measured data and stored in the storage unit, and the measurement data regarding the ozone concentration stored in the storage unit is transmitted to the management center via the network by the transmission / reception unit.
  • the ozone sensor is preferably made of a metal oxide film.
  • the control unit preferably blows clean air to the ozone sensor to acquire the zero point of the ozone concentration, and measures the ozone concentration in a predetermined space with the ozone sensor with reference to the zero point to acquire the measurement data.
  • the clean air blower preferably comprises a fan and a filter that adsorbs ozone.
  • the ozone concentration measuring device preferably further includes a temperature sensor and a humidity sensor.
  • the control unit preferably transmits the ozone concentration measured by the ozone sensor to the first network at predetermined first time intervals, and blows clean air to the ozone sensor to measure the ozone concentration at the zero point. Every predetermined second time, the transmission is performed to the first network alternately with the first time.
  • the ozone concentration monitoring system of the present invention includes an ozone generator arranged in a defined predetermined space and an ozone concentration measuring device for measuring the ozone concentration generated by the ozone generator in order to achieve the second object.
  • a management center connected to the ozone concentration measuring device via a network, and an ozone concentration monitoring system that monitors the ozone concentration in a predetermined space.
  • the ozone concentration measuring device stores a program for measuring the ozone concentration.
  • the ozone concentration is calculated from the data obtained by measuring the ozone concentration in the predetermined space, the acquired ozone concentration is stored in the storage unit, and the measurement data related to the ozone concentration stored in the storage unit is transmitted to the management center via the network by the transmission / reception unit. Then, the measurement data was configured to be acquired at the management center via the network.
  • the ozone concentration measuring device preferably includes a clean air blower that blows clean air to the ozone sensor.
  • the network preferably comprises a short-range first network connected to the ozone concentration measuring device and a wideband second network connected to the first network.
  • the ozone generation device includes an ozone generation control unit, and the ozone generation control unit controls the amount of ozone generated by the control unit of the ozone concentration measuring device or the control unit of the control center.
  • the ozone generation control unit is arranged integrally or separately from the ozone generator, and the ozone generator is arranged inside the air conditioner or inside the duct of the air conditioner.
  • the ozone generation amount is preferably controlled by the control unit of the ozone concentration measuring device or the control unit of the management center so that the ozone exposure amount in the predetermined space is within the predetermined range.
  • an ozone concentration measuring device capable of accurately measuring the ozone concentration with an inexpensive ozone sensor and an ozone concentration monitoring system using the same.
  • FIG. It is a figure which shows the graph of the voltage applied to the ozone sensor MQ131 acquired in the management center of Example 1.
  • FIG. It is a figure which shows the graph of the output voltage of the ozone sensor MQ131 acquired in the management center of Example 1.
  • FIG. It is a figure which shows the graph of the temperature acquired in the management center of Example 1.
  • FIG. It is a figure which shows the graph of the humidity acquired in the management center of Example 1.
  • FIG. It is a figure which shows the graph of the atmospheric pressure acquired in the management center of Example 1.
  • FIG. It is a figure which shows the measurement result of the ozone concentration in the weak mode and the strong mode of the rechargeable ozone deodorizer of Example 1.
  • FIG. 2 It is a figure which shows the ozone generation amount when the duty cycle is changed from 0.1 to 1 by the ozone generation control part of Example 2.
  • FIG. It is a figure which shows the measurement example of the ozone concentration by the ozone concentration monitoring system of Example 2. It is a figure which shows the correlation between the measured value of the ozone concentration by the ozone sensor MQ131 of Example 2 and the ozone concentration measured by the high-precision ozone gas monitor.
  • Example 2 it is a figure which shows the result of having measured the average ozone concentration in one day at the time of releasing ozone of 4 mg / h into a laboratory every day.
  • the present invention is not limited to the embodiments exemplified here, and technological advances related to information and communication technology and applicable laws and regulations are described. And those that are changed as appropriate according to the system are also included.
  • FIG. 1 to 3 show the configuration of the ozone concentration monitoring system 1 according to the embodiment of the present invention
  • FIG. 1 is a schematic configuration of the ozone concentration monitoring system 1
  • FIG. 2 is a schematic configuration of the ozone concentration measuring device 16.
  • 3 shows the configuration of the management center 30.
  • the ozone concentration monitoring system 1 according to the embodiment of the present invention includes an ozone generator 11 arranged in a defined predetermined space and ozone for measuring the ozone concentration generated by the ozone generator 11. It includes a concentration measuring device 16 and a control center 30 connected to the ozone concentration measuring device 16 via a network, and monitors the ozone concentration in a predetermined space.
  • the ozone generator 11 and the ozone concentration measuring device 16 are arranged, for example, inside the air conditioner 10 of the room 12 which is a predetermined space or in the duct of the air conditioner 10, and the air containing ozone is discharged by the air conditioner 10 to the ceiling of the room 12. Is blown into the interior of the room 12.
  • the ozone concentration measuring device 16 includes a main body 16A, an ozone sensor 15 connected to the main body 16A to measure the ozone concentration, and a clean air blowing device 17 for blowing clean air for zero point measurement to the ozone sensor 15.
  • a clean air blowing device 17 for blowing clean air for zero point measurement to the ozone sensor 15.
  • at least one or more ozone is passed through a first network 20 connected to the ozone concentration measuring device 16 and a second network 25 connected to the first network 20.
  • the concentration measuring device 16 is configured to be connected to the control center 30.
  • one air conditioner 10 blows air into one room 12, but there may be a plurality of air conditioners 10 and rooms 12.
  • the predetermined space means, for example, a room 12 in a building, and one section in which air containing ozone is blown by the air conditioner 10.
  • Room 12 is a room used by people in a building or a house, such as a commercial building, a large commercial facility, a public facility such as a government office, a tourist facility such as a hotel or an inn, a school, a hospital, a nursing facility, a welfare facility, a store, or the like. It includes, but is not limited to, large commercial facilities, large residential facilities, etc.
  • the ozone generator 11 is a device capable of generating ozone in the range of, for example, 10 ppb order to 1000 ppb, or 1 ppm to 10 ppm order as the ozone concentration, and may have a function of changing the ozone concentration to generate ozone.
  • the air conditioner 10 is a device for heating and cooling the inside of a building, and a packaged air conditioner or the like can be used.
  • the control of the air conditioner 10 may be controlled by a control room installed in the building, or may be controlled by an air conditioning control unit (not shown) in the ozone concentration monitoring system 1.
  • an ozone sensor made of a metal oxide film such as WO 3 , SnO 2 , In 2 O 3 , and TiO 2 can be used as the ozone sensor 15 as the ozone sensor 15.
  • the ozone sensor 15 is preferably arranged at a position close to the ozone generator 11 in order to accurately measure the concentration of ozone generated from the ozone generator 11.
  • the clean air blower 17 is a device that locally blows fresh air 17c from which ozone is removed from the air in the room 12 only to the ozone sensor 15.
  • the clean air blower 17 includes a fan 17a and a filter 17b that adsorbs ozone.
  • the filter 17b for example, an activated carbon filter can be used.
  • the ozone concentration measuring device 16 is connected to the first network 20, the first network 20 is connected to the second network 25, and the second network 25 is connected to the management center 30.
  • an active low-power wireless communication system in the 920 MHz band a wireless LAN such as LPWA (Low Power Wide Area), WiFi (registered trademark) or Bluetooth (registered trademark) can be used, which will be described later. It can be selected according to the distance from the management center.
  • the first network 20 may be further connected to the second network 25.
  • the second network 25 can use a dedicated line or a general public line.
  • the second network 25 may be a cloud network.
  • the management center 30 is connected to the first network 20 via the cloud operated by Sigfox (registered trademark), which is the second network 25.
  • the management center 30 is not limited to the cloud operated by Sigfox (registered trademark), but also other than the cloud operated by Sigfox (registered trademark) which directly becomes the first network 20 or the second network 25. You may connect to the cloud.
  • the ozone concentration measuring device 16 is referred to as a transmission / reception unit 16a connected to the first network 20 in the main body unit 16A, and various programs and applications (hereinafter referred to as “programs” or ozone concentration measuring programs”. ),
  • a control unit 16c that reads and executes an ozone concentration measurement program from the storage unit 16b, an input unit 16d such as a keyboard used by the administrator, and an output unit 16e such as a display. , 16f, 16g and the like are provided with an interface unit (I / O unit) required for input and output.
  • the transmission / reception unit 16a is connected to the control unit 16c.
  • the control unit 16c is a CPU and includes a microcomputer and the like.
  • the ozone concentration measuring device 16 is connected to an ozone sensor 15 and further connected to an environment sensor 19 that measures any of ambient temperature, humidity, and atmospheric pressure.
  • the environment sensor 19 may be a sensor that measures a parameter that has a particularly influence among the parameters that are dependent on the ambient temperature, humidity, and atmospheric pressure, depending on the characteristics of the ozone sensor 15.
  • the environment sensor 19 may include a temperature sensor 19a and a humidity sensor 19b.
  • control unit 16c has a function of measuring the voltage applied to the heater for driving the ozone sensor 15 (not shown) and the resistance change of the ozone sensor 15 which changes depending on the ozone concentration as a voltage. It may be configured in preparation.
  • the control unit 16c calculates the ozone concentration from the data obtained by measuring the ozone concentration in the predetermined space with the ozone sensor 15, stores the measurement data regarding the ozone concentration thus acquired in the storage unit 16b, and relates to the ozone concentration stored in the storage unit 16b.
  • the measurement data is transmitted to the network by the transmission / reception unit 16a.
  • the management center 30 described later is a short distance
  • the first network 20 for a short distance can be used.
  • the measurement data regarding the ozone concentration is information such as an address, a building name, or an identification number (ID) for specifying a predetermined space in which the ozone concentration is measured, and a measurement date, time, ozone concentration, and the like. Is shown.
  • the transceiver 16a used for connection with the first network 20 is installed in a predetermined space such as a room or a building to be measured, and is connected to the line of the second network 25 via the first network 20. Will be done.
  • the ozone concentration measuring device 16 including the transmitter / receiver 16a is configured as a so-called Internet of Things (called IoT), and is, for example, a small, lightweight, and low power consumption device.
  • IoT Internet of Things
  • An ozone generation control unit 18 that controls the ozone generation time, ozone generation amount, and ozone concentration of the ozone generator 11 is inserted between the control unit 16c of the ozone concentration measuring device 16 and the ozone generator 11 shown in FIG. May be. This makes it possible to control the ozone concentration and the operating time generated by the ozone generator 11 from the control unit 16c via the ozone generation control unit 18.
  • the ozone generation control unit 18 includes a control device such as a microcomputer, and a digital circuit and / or an analog circuit that turns on and off the power of the ozone generation device 11.
  • the ozone generation control unit 18 may be built in the ozone generator 11 or may be externally provided.
  • the ozone generation control unit 18 may be arranged integrally with or separately from the ozone generator 11.
  • the control of the ozone generation amount and / or the ozone concentration by the ozone generator 11 and the ozone generation control unit 18 is controlled not by the control unit 16c of the ozone concentration measuring device 16 but by the control unit 33 of the management center 30 described later. May be good.
  • the management center 30 is composed of information processing devices such as workstations, cloud servers, and server computers.
  • the processing in the management center 30 is executed by an information processing device controlled by an information processing device controlled by an ozone concentration measurement program described later, and as the recording medium, for example, a magnetic disk, a semiconductor memory, or any other computer-readable one is used. Will be done.
  • the program recorded on the recording medium may be read by the computer by directly mounting the recording medium on the computer, or may be read by the computer via various networks.
  • the management center 30 has a transmission / reception unit 31 connected to the second network 25, and a storage unit that stores various programs and applications (hereinafter referred to as “programs” or ozone concentration measurement programs).
  • programs programs and applications
  • 32 a control unit 33 that reads and executes a program from the storage unit 32, an input unit 34 such as a keyboard used by an administrator, an output unit 35 such as a display, and an interface unit (I / O) required for input and output. Part) 36, 37, etc. are provided.
  • the control unit 33 is a CPU and includes a microcomputer and the like.
  • the second network 25 can use a cloud operated by Sigfox (registered trademark).
  • the network may be composed of a short-distance first network 20 connected to the ozone concentration measuring device 16 and a wideband second network 30 connected to the first network 20.
  • the management center 30 may be connected to the management room of the building in which the ozone concentration monitoring system 1 is installed and the third network 40 by a dedicated line or a general public line. In this case, the management center 30 is further provided with a transmission / reception unit 38 connected to the third network 40.
  • ozone generation control unit 18 When the ozone generation control unit 18 is started for the first time, ozone is generated in a short time that does not interfere with the measurement in consideration of the response time of the ozone sensor 15, and the ozone concentration by the ozone sensor 15 is confirmed at that time. You may.
  • the ozone concentration is measured by the ozone sensor 15, and when the ozone concentration is a predetermined value, the ozone generation control unit 18 is controlled by the control unit 16c so that the ozone exposure amount becomes a predetermined exposure amount according to the daily schedule.
  • the ozone concentration acquired by the ozone sensor 15 fluctuates with time due to changes in the temperature and humidity of the room 12.
  • the resistance value from the ozone sensor 15 changes due to this environmental change, and the output voltage of the ozone sensor 15 fluctuates with time due to the change in the resistance value, so-called drift occurs.
  • the clean air blower 17 can generate a state in which the ozone concentration is zero, that is, a state in which there is no ozone so that this drift does not occur.
  • the ozone generator 11 is stopped by the ozone generation control unit 18, the air in the room 12 is blown to the ozone sensor 15 by the clean air blower 17, and the air having an ozone concentration of zero is discharged by the ozone sensor 15. It may be detected and the resistance or output voltage of the ozone sensor 15 at that time may be set to the zero point.
  • the measurement of the ozone concentration in the room 12 can be accurately obtained by measuring the resistance or the output voltage of the ozone sensor 15 with reference to the zero point of the ozone concentration.
  • control unit 16c blows clean air to the ozone sensor 15 to acquire the zero point of the ozone concentration, and refers to the zero point to obtain the ozone concentration in a predetermined space. You may acquire the measurement data by measuring with.
  • the clean air blower 17 By stopping the ozone generator 11 and blowing the air in the room 12 to the ozone sensor 15 with the clean air blower 17, the clean air adsorbed by the filter 17b is directly blown to the ozone sensor 15, so that the ozone sensor 15 is always blown. The zero point of ozone concentration can be measured. Further, the clean air blower 17 is a small device because it only blows air to the ozone sensor 15, and the cost is lower than that of the case where the clean air blower 17 is provided with a pipe and a blower for blowing fresh air from the outside of the room 12. It can be realized.
  • the ozone concentration monitoring system 1 monitors the ozone concentration of the ozone generator 11 arranged in the defined predetermined space to be managed. For example, in the ozone concentration monitoring system 1, the control unit 16c of the ozone concentration measuring device 16 or the control unit of the management center 30 so that the ozone exposure amount of each room 12 of the business establishment or each room 12 of the hotel is within a predetermined range. The amount of ozone generated is controlled by 33. Specifically, the ozone exposure amount of each room is transmitted in advance from the second network 25 to the control unit 16c of the ozone concentration measuring device 16 via the first network 20 by the control unit 33 of the management center 30.
  • the control unit 16c controls the ozone generation control unit 18 in each room based on the ozone exposure amount in each room.
  • the ozone generation control unit 18 can control the amount of ozone generated by changing the duty cycle of the power supply of the ozone generator 11.
  • the ozone generation control unit 18 can use a switch such as a transistor, a relay, an inverter using PWM control, or the like.
  • the control unit 33 of the control center 30 qualitatively instructs the control unit 16c of the ozone concentration measuring device 16 to increase the ozone generation amount when the ozone exposure amount is low, and conversely, the ozone exposure amount is high. In that case, the ozone exposure amount is controlled by instructing the ozone generation amount to be low.
  • the ozone generation amount or the exposure amount of each room may be registered in advance in the storage unit 16b of the ozone concentration measuring device 16.
  • the ozone generation amount is controlled by the ozone generation control unit 18 according to the ozone generation amount registered in the storage unit 16b.
  • the control unit 33 of the control center 30 may notify the ozone concentration measuring device 16 of the change in the ozone generation amount or the ozone exposure amount.
  • control unit 33 of the management center 30 can reduce the ozone exposure amount to zero when the room 12 is not used, that is, the ozone generator 11 can be stopped. Further, the control unit 33 of the management center 30 can also monitor the failure of the ozone generator 11. For example, if a predetermined ozone concentration is not detected when the ozone generator 11 is instructed to generate ozone, it is determined that the ozone generator 11 has failed. In this case, the failure of the ozone generator 11 may be displayed on the monitoring screen of the display of the server computer of the management center 30, or an alarm sound may be emitted from the speaker.
  • the ozone generator 11 is subjected to ozone by the control unit 16c of the ozone concentration measuring device 16 or the control unit 33 of the control center 30 so that the ozone exposure amount in the predetermined space is within the predetermined range.
  • the amount of ozone generated is controlled.
  • FIG. 4 is a diagram showing an example of ozone concentration measurement.
  • the horizontal axis of FIG. 4 shows time (arbitrary scale), and the vertical axis shows the ozone concentration measured by the ozone sensor 15 (arbitrary scale).
  • TON is the time when the ozone generator 11 is stopped and the clean air is blown by the clean air blower 17, and the point where the ozone concentration is zero by the clean air during the TON period is measured. Will be done.
  • the other time indicates TOFF , which is the time when air having a predetermined ozone concentration is blown by the ozone generator 11.
  • the ozone concentration measured during the T OFF period is the ozone concentration supplied to the room 12.
  • the T ON and T OFF times may be the same, for example, and may be about 10 to 20 minutes. In the following description, it will be described as 15 minutes.
  • Drift in which the output voltage of the ozone sensor 15 fluctuates due to fluctuations in the temperature and humidity around the ozone sensor 15 can be corrected by measuring the temperature sensor 19a and the humidity sensor 19b connected to the control unit 16c. good.
  • the sensitivity curve when the temperature and humidity of the output voltage of the ozone sensor 15 with respect to the ozone concentration are variously changed may be acquired and used as calibration data.
  • the calibration data may be stored in the storage unit 16b as calibration data by acquiring a sensitivity curve when the temperature and humidity with respect to the ozone concentration are variously changed.
  • the temperature data is acquired from the temperature sensor 19a
  • the humidity data is acquired from the humidity sensor 19b
  • the calibration data corresponding to the acquired temperature and humidity data is read out from the storage unit 16b for accuracy. Ozone concentration can be obtained.
  • FIG. 5 schematically shows a waveform in which information such as the output voltage of the ozone sensor 15 regarding the ozone concentration measured by the ozone concentration monitoring system 1, that is, data regarding the ozone concentration is transmitted to the first network 20.
  • a point where the ozone concentration is zero in a cycle of approximately T OFF and an ozone concentration measured in a cycle of approximately TON can be obtained.
  • the ozone concentration is transmitted every 15 minutes.
  • the points indicated by the arrows are the times when the ozone generator 11 is stopped and the clean air is sent by the clean air blower 17, and the other times indicate the time when the air having a predetermined ozone concentration is blown by the ozone generator 11. ing.
  • Example 1 The ozone concentration monitoring system 1 shown in FIG. 1 was manufactured.
  • a rechargeable ozone deodorizer (Ozone Air Salas) manufactured by Niyodo Dentsu Co., Ltd. was used.
  • the amount of ozone generated in the weak mode and the strong mode of the rechargeable ozone deodorizer is 1 mg / h and 3 mg / h, respectively.
  • ozone sensor 15 As the ozone sensor 15, an ozone sensor using WO 3 manufactured by Zhengzhou Winsen Electronics Technology Co., Ltd. (model number: MQ131, see Non-Patent Document 3) was used.
  • the ozone concentration measuring device 16 includes an chicken Uno Rev3 as a microcomputer serving as a control circuit 16c, a driver circuit of an ozone sensor MQ131 (see Non-Patent Document 4), and a transmission / reception unit 16a connected to Sigfox (registered trademark) as a first network. It was manufactured by Sigfox Shield for chicken V2S (see Non-Patent Document 5) and an environment sensor 19 and the like. As the environment sensor 19, a temperature sensor 19a, a humidity sensor 19b, and a pressure sensor 19c (manufactured by BOSCH, model number: BME-280) mounted on the Sigfox Shield for chicken V2S were used.
  • FIG. 6 shows a test circuit of the ozone sensor MQ131 of the first embodiment
  • FIG. 7 is a circuit diagram showing a connection between the ozone sensor MQ131 of the first embodiment, a driver circuit, and a control circuit 16c.
  • DC 5V is applied to the heater terminal H1 of the ozone sensor MQ131, and the heater terminal H2 is connected to the ground terminal (GND).
  • DC 5V is applied to the terminal A1 of the ozone sensor MQ131, a load resistance 15a is connected to the terminal B1 of the ozone sensor MQ131 and the ground (GND), and the voltage VRL generated in the load resistance 15a is the output of the ozone sensor MQ131 . Detected as voltage.
  • the value of the load resistance 15a is 1 M ⁇ .
  • the output voltage of the ozone sensor MQ131 is connected to the analog input A0 of the chicken Uno Rev3 which is the control circuit 16c, and the heating of the heater is controlled between the heater terminal H2 and the ground (GND).
  • a MOSFET 15b for this is connected.
  • the clean air blower 17 includes a fan 17a (manufactured by KAIMEI ELECTRONIC CORP, model number JF0825SIM-R) driven by a small DC voltage (12V, 0.15A) and a filter 17b (manufactured by Kokubo Kogyo Co., Ltd.) using activated carbon. Model number Bamboo charcoal-for shoes).
  • the ozone generation control unit 18 controlled the on and off of the ozone generator 11. When the ozone generator 11 was on, the intensity of ozone generated from the ozone generator 11 was switched between the weak mode and the strong mode as needed.
  • the management center 30 used a personal computer to access the cloud or the like operated by Sigfox (registered trademark) as a second network 25 via the Internet.
  • the data on the ozone concentration measured by the ozone concentration measuring device 16 was transmitted to Sigma (registered trademark) as the first network 20.
  • the management center 30 accessed the cloud or the like operated by Sigfox (registered trademark) as the second network 25, and collected and analyzed the data.
  • ThingSpeak® manufactured by MathWorks, which is an IoT platform, was used (see Non-Patent Document 6).
  • the time change of ozone concentration, temperature, humidity, and atmospheric pressure acquired by the ozone concentration measuring device 16 or the like having the above configuration is transmitted to the first network 20, and the cloud of the second network 25 becomes a cloud from the first network 20.
  • Sent to ThingSpeak® The data collected by ThingSpeak® is acquired by accessing the second network 25 by the personal computer of the management center 30.
  • the downloaded data was analyzed using MATLAB (registered trademark) (see Non-Patent Document 6) of software stored in a personal computer.
  • MATLAB registered trademark
  • the graph of the voltage applied to the ozone sensor MQ131, the output voltage of the ozone sensor MQ131, the temperature, the humidity, and the time change of the atmospheric pressure, and the ozone concentration were acquired.
  • the ozone concentration was acquired from the output voltage, temperature and humidity data of the ozone sensor MQ131 and the sensitivity curve acquired in advance and stored in the storage unit 16b.
  • FIG. 8 is a graph of the voltage applied to the ozone sensor MQ131 acquired at the control center of Example 1
  • FIG. 9 is a graph of the output voltage of the ozone sensor MQ131 acquired at the control center of Example 1
  • FIG. 10 is a graph of the output voltage of the ozone sensor MQ131.
  • 11 is a graph of humidity acquired at the control center of Example 1
  • FIG. 12 is a graph of atmospheric pressure acquired at the control center of Example 1.
  • the vertical axis of FIGS. 8 and 9 is the voltage (V) multiplied by 10, and 50 corresponds to 5V.
  • the horizontal axis of FIGS. 8 and 9 indicates the time every 4 hours. As shown in FIG. 8, it can be seen that a voltage of 5 V is applied to the ozone sensor MQ131 in terms of conversion.
  • the arrow A is the output voltage corresponding to the ozone concentration when the ozone generator 11 is ON
  • the arrow B is the output voltage corresponding to the ozone concentration when the ozone generator 11 is OFF.
  • the change in the temperature (° C.) around the ozone concentration measuring device 16 can be seen, from FIG. 11, the change in the relative humidity (%) around the ozone concentration measuring device 16 can be seen, and from FIG. 12, the change in the ozone concentration measuring device 16 can be seen. It can be seen that the ambient pressure is almost constant from 1006 hPa to 1007 hPa.
  • FIG. 13 shows the measurement results of the ozone concentration when the rechargeable ozone deodorizer of Example 1 is set to the weak mode and the strong mode.
  • the horizontal axis of the figure is the measurement point, and the vertical axis is the ozone concentration. It can be seen that the weak mode of arrow C is about 2150 ppb and the strong mode of arrow D is about 2930 ppb.
  • the weak mode of arrow C is about 2150 ppb
  • the strong mode of arrow D is about 2930 ppb.
  • the ozone concentration in the strong mode was about three times that in the weak mode, which was about the same as the ratio of the ozone generation amount in the weak mode and the strong mode of the rechargeable ozone deodorizer.
  • the ozone generator 11 is stopped and the clean air blower is repeatedly blown, and the information on the ozone concentration measured by the ozone concentration monitoring system 1 is transmitted to the first network 20, the ozone concentration is transmitted to the first network 20. From the ozone concentration data acquired at the management center, it was found that the ON and T OFF times are, for example, about 15 minutes, and accurate ozone concentration can be monitored.
  • Example 2 As the ozone generator 11, an ozone generator module (manufactured by Ornit Co., Ltd., SFG1210KH) based on a silent discharge method was used. Examples except that the duty cycle of the ozone generator 11 is set in the program and the ozone generation control unit 18 that controls the on / off of the power supply of the ozone generator module by the relay is controlled based on the set duty cycle.
  • the ozone concentration monitoring system 1 was manufactured in the same manner as in 1.
  • the amount of ozone generated by the ozone generator 11 is 10 mg / h ⁇ 25%.
  • the operation stabilization time is within 10 msec from turning on or off until the current value stabilizes.
  • the on time and the off time were both set to 1 second or longer. Assuming that the amount of ozone generated is 10 mg / h, the volume of ozone gas generated per second is 1.28 ⁇ 10 -3 cm 3 in the standard state (0 ° C., 1 atm).
  • FIG. 14 is a diagram showing the amount of ozone generated when the duty cycle is changed from 0.1 (10%) to 1 (100%) by the ozone generation control unit 18 of the second embodiment.
  • the horizontal axis of FIG. 14 is the duty cycle, and the vertical axis is the ozone generation amount (mg / h).
  • the duty cycle (%) is a value obtained by dividing the on-time by (on-time + off-time). As shown in FIG. 14, it can be seen that when the duty cycle is changed from 0.1 to 1, the ozone generation amount changes from 1 mg / h to 10 mg / h.
  • the ozone concentration monitoring system 1 produced in Example 2 was installed in Room 408 (called a laboratory) of Building No. 1 of Hiroshima Institute of Technology to which the inventor belongs, and the ozone concentration was set to 15 minutes as shown in FIGS. 4 and 5.
  • the average daily ozone concentration was determined by measuring at intervals.
  • the size of the laboratory is 3.17 m in width ⁇ 7.4 m in length ⁇ 2.6 m in height, and the volume is 61.4 m 3 .
  • FIG. 15 is a diagram showing an example of measuring the ozone concentration by the ozone concentration monitoring system 1 of the second embodiment.
  • the horizontal axis of FIG. 15 is the amount of ozone generated (mg / h), and the vertical axis is the average daily ozone concentration.
  • the ozone generator 11 and the ozone generation control unit 18 can change the duty cycle to generate ozone of 10 ppb or less of 3 to 9 ppb.
  • the resistance value which is the output value of the ozone sensor MQ131
  • the ozone concentration was corrected based on the sensitivity curve when the temperature and humidity changed (see Non-Patent Document 3).
  • the value of Rs / R0 which is the ratio of the resistance value Rs when ozone is measured by the ozone sensor MQ131 and the resistance value R0 when the ozone sensor MQ131 is made into a clean air atmosphere, increases with increasing humidity. It decreases as the temperature increases.
  • the measured data was corrected using this graph.
  • Ozone concentration corrected in this way for the output value of the ozone sensor MQ131 and a high-precision ozone gas monitor (manufactured by Ebara Jitsugyo Co., Ltd., model number: EG-3000F) was compared with the ozone concentration measured by.
  • FIG. 16 is a diagram showing the correlation between the measured value of the ozone concentration by the ozone sensor MQ131 of Example 2 and the ozone concentration measured by the high-precision ozone gas monitor, and the horizontal axis is the ozone concentration (ppb) by the ozone sensor MQ131 of Example 2. ), And the vertical axis is the ozone concentration (ppm) measured by a high-precision ozone gas monitor.
  • the ozone sensor MQ131 and the measured value of the ozone concentration measured by the high-precision ozone gas monitor show a high correlation, and it can be seen that the ozone sensor MQ131 can measure the ozone concentration of about 10 ppb to 100 ppb. ..
  • the ozone concentration of 100 ppb or less, that is, 0.1 ppm or less is a recommended value by the Japan Society for Occupational Health as a safe ozone concentration to be maintained (see Non-Patent Document 7).
  • FIG. 17 is a diagram showing the results of daily measurement of the average daily ozone concentration when 4 mg / h ozone is released into the laboratory in Example 2, where the horizontal axis is the month and day and the vertical axis is the ozone sensor. It is the daily average ozone concentration (ppb) measured by MQ131. As shown in FIG. 17, it was found that the average daily ozone concentration can be controlled to less than 20 ppb for about 3 months from September 11, 2021 to December 7, 2021.
  • the duty cycle is changed by the ozone generator 11 and the ozone generation control unit 18 having an ozone generation amount of about 10 mg / h, and the ozone gas concentration value of 0.1 ppm or less of the safe ozone concentration is set in 5 steps. It has been found that the ozone sensor MQ131 can generate ozone at a certain level, and the ozone concentration measurement accuracy that can replace the high-precision ozone gas monitor is achieved.
  • the present invention can be implemented in various forms without departing from the spirit of the present invention.
  • Sigfox registered trademark
  • a case where the transmission data is performed at predetermined time intervals has been described, but clean air for correcting the zero point has been described.
  • the air may be blown when the temperature and / or humidity detected by the temperature sensor 19a and the humidity sensor 19b detects a change.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

This ozone concentration measurement device 16 comprises a storage unit 16b that stores an ozone concentration measurement program, a control unit 16c that reads out the program from the storage unit and executes the program, an ozone sensor 15 that is connected to the control unit and that measures the ozone concentration, a pure-air blower device 17 that blows pure air to the ozone sensor, and a transceiver 16a that is connected to the control unit 16c. The control unit 16c acquires the ozone concentration from data obtained through the ozone concentration in a prescribed space being measured by the ozone sensor, stores the ozone concentration in the storage unit, and transmits measurement data relating to the ozone concentration stored in the storage unit to a management center 30 via a network by using the transceiver. This ozone concentration monitoring system 1 is configured from: an ozone generation device 11 that is disposed within the prescribed space; the ozone concentration measurement device 16; and the management center 30, which is connected to the ozone concentration measurement device via the network. In the ozone concentration monitoring system 1, measurement data relating to the ozone concentration measured by the ozone concentration measurement device is transmitted from the transceiver 16a to the management center via the network, and the amount of ozone exposure in the prescribed space is monitored by the management center.

Description

オゾン濃度測定装置及びそれを用いたオゾン濃度監視システムOzone concentration measuring device and ozone concentration monitoring system using it
 本発明は、居室や事業所或いは劇場・ホテル等の所定空間のオゾン濃度を測定するオゾン濃度測定装置及び画成された所定空間のオゾン濃度を監視するオゾン濃度監視システムに関する。 The present invention relates to an ozone concentration measuring device for measuring the ozone concentration in a predetermined space such as a living room, a business establishment, a theater or a hotel, and an ozone concentration monitoring system for monitoring the ozone concentration in the defined predetermined space.
 2019年末から2020年にかけて世界中で流行し始めた新型コロナウイルスによる感染を防止するため、医院の診察室、集会室、ビルやホテルの部屋など人が居る室内(以下、これらを総称して所定空間と言う。)の空気中の新型コロナウイルスを不活性する方法が探索されている。2020年には、オゾンが空気中の新型コロナウイルスを不活性することが報告された(非特許文献1及び2参照)。 In order to prevent infection by the new coronavirus that began to spread around the world from the end of 2019 to 2020, rooms with people such as doctor's offices, meeting rooms, buildings and hotel rooms (hereinafter, these are collectively designated) A method for inactivating the new coronavirus in the air (called space) is being sought. In 2020, it was reported that ozone inactivates the new coronavirus in the air (see Non-Patent Documents 1 and 2).
 非特許文献1では、オゾンの暴露量(CT値=オゾン濃度(ppm)×暴露時間(分))として、CT値が60(オゾン濃度1ppmで60分暴露)では、新型コロナウイルスが1/10から1/100まで不活性できることが報告されている。さらに、CT値を330(オゾン濃度6ppmで55分暴露)に増加させると、新型コロナウイルスが1/10,000(1万分の1)から1/100,000(10万分の1)まで不活性化できることが報告されている。 In Non-Patent Document 1, when the CT value is 60 (exposure for 60 minutes at an ozone concentration of 1 ppm) as the ozone exposure amount (CT value = ozone concentration (ppm) x exposure time (minutes)), the new coronavirus is 1/10. It has been reported that it can be inactivated from 1 to 1/100. Furthermore, when the CT value is increased to 330 (exposure for 55 minutes at an ozone concentration of 6 ppm), the new coronavirus is inactive from 1 / 10,000 (1 / 10,000) to 1 / 100,000 (1 / 100,000). It has been reported that it can be transformed into.
 非特許文献2により、人体に安全な低濃度のオゾンガス、例えば、0.05ppm又は0.1ppmで新型コロナウイルスを不活性することが報告された。報告されたオゾンガスは、50ppb~100ppbという低濃度である。 Non-Patent Document 2 reported that the new coronavirus is inactivated with a low concentration of ozone gas that is safe for the human body, for example, 0.05 ppm or 0.1 ppm. The reported ozone gas has a low concentration of 50 ppb to 100 ppb.
 オゾンガスの濃度測定には、光学式のオゾンセンサや酸化膜を用いたオゾンセンサが使用されている。光学式のオゾンセンサは、低濃度のオゾンを測定する際の精度は高いが高価である。一方、酸化膜を用いたオゾンセンサは、オゾンの濃度変化による抵抗変化を電圧の変化に変換して検出しているが、周囲の温度や湿度により抵抗値が変化し易いという課題がある。 An optical ozone sensor or an ozone sensor using an oxide film is used to measure the concentration of ozone gas. Optical ozone sensors are highly accurate but expensive when measuring low concentrations of ozone. On the other hand, an ozone sensor using an oxide film converts a change in resistance due to a change in ozone concentration into a change in voltage and detects it, but there is a problem that the resistance value is likely to change depending on the ambient temperature and humidity.
 さらに、正確にオゾンの濃度を測定するためには、オゾンがない状態、つまりゼロ点を決定することが必要になる。 Furthermore, in order to accurately measure the ozone concentration, it is necessary to determine the state without ozone, that is, the zero point.
 新型コロナウイルスに感染しないためには、人が居る部屋などの所定空間において、空気中の新型コロナウイルスを不活性にするために、空気中を常時オゾンにより満たすことが有効であり、そのために、空気中のオゾン濃度を測定することが重要であると共に、常に安全な所定の濃度となるように監視するオゾン濃度監視システムが必要となる。しかしながら、現状では、安価なオゾンセンサにより低濃度のオゾンを24時間連続して、精度良く、かつ、安定に測定できるオゾン濃度の測定装置も、これを適切に監視するオゾン濃度監視システムの何れも得られていない。 In order to prevent infection with the new coronavirus, it is effective to constantly fill the air with ozone in order to inactivate the new coronavirus in the air in a predetermined space such as a room where people are present. It is important to measure the ozone concentration in the air, and an ozone concentration monitoring system that constantly monitors the ozone concentration so that it is safe and predetermined is required. However, at present, both the ozone concentration measuring device that can measure low concentration ozone continuously for 24 hours with an inexpensive ozone sensor with high accuracy and stability, and the ozone concentration monitoring system that appropriately monitors this. Not obtained.
 本発明は、上記課題に鑑み、安価なオゾンセンサにより精度良くオゾンの濃度を測定できるオゾン濃度測定装置を提供することを第1の目的とし、オゾン濃度測定装置を用いたオゾン濃度監視システムを提供することを第2の目的とする。 In view of the above problems, the first object of the present invention is to provide an ozone concentration measuring device capable of accurately measuring the ozone concentration with an inexpensive ozone sensor, and to provide an ozone concentration monitoring system using the ozone concentration measuring device. The second purpose is to do.
 本発明のオゾン濃度測定装置は、上記第1の目的を達成するため、オゾン濃度測定用プログラムを格納する記憶部と、記憶部からプログラムを読み出して該プログラムを実行する制御部と、制御部に接続されてオゾン濃度を測定するオゾンセンサと、オゾンセンサに清浄空気を送風する清浄空気送風装置と、制御部に接続され送受信部と、を備え、制御部は、オゾンセンサで所定空間のオゾン濃度を測定したデータからオゾン濃度を取得して記憶部に格納し、記憶部に格納したオゾン濃度に関する測定データを送受信部によりネットワークを介して管理センターに送信するようにしたことを特徴とする。 In order to achieve the first object, the ozone concentration measuring device of the present invention has a storage unit for storing an ozone concentration measuring program, a control unit for reading a program from the storage unit and executing the program, and a control unit. It is equipped with an ozone sensor that is connected to measure the ozone concentration, a clean air blower that blows clean air to the ozone sensor, and a transmission / reception unit that is connected to the control unit. The control unit uses an ozone sensor to measure the ozone concentration in a predetermined space. The ozone concentration is acquired from the measured data and stored in the storage unit, and the measurement data regarding the ozone concentration stored in the storage unit is transmitted to the management center via the network by the transmission / reception unit.
 オゾンセンサは、好ましくは金属酸化膜からなる。制御部は、好ましくは、オゾンセンサに清浄空気を送風してオゾン濃度のゼロ点を取得し、該ゼロ点を参照して所定空間のオゾン濃度をオゾンセンサで測定して測定データを取得する。清浄空気送風装置は、好ましくは、ファンとオゾンを吸着するフィルタとからなる。オゾン濃度測定装置は、好ましくは、さらに温度センサ及び湿度センサを備える。制御部は、好ましくは、オゾンセンサで測定したオゾン濃度を所定の第1の時間毎に第1のネットワークに送信すると共に、オゾンセンサに清浄空気を送風して測定したゼロ点となるオゾン濃度を所定の第2の時間毎に、第1の時間と交互に第1のネットワークに送信する。 The ozone sensor is preferably made of a metal oxide film. The control unit preferably blows clean air to the ozone sensor to acquire the zero point of the ozone concentration, and measures the ozone concentration in a predetermined space with the ozone sensor with reference to the zero point to acquire the measurement data. The clean air blower preferably comprises a fan and a filter that adsorbs ozone. The ozone concentration measuring device preferably further includes a temperature sensor and a humidity sensor. The control unit preferably transmits the ozone concentration measured by the ozone sensor to the first network at predetermined first time intervals, and blows clean air to the ozone sensor to measure the ozone concentration at the zero point. Every predetermined second time, the transmission is performed to the first network alternately with the first time.
 本発明のオゾン濃度監視システムは、上記第2の目的を達成するため、画成された所定空間内に配置するオゾン発生装置と、オゾン発生装置が発生するオゾン濃度を測定するオゾン濃度測定装置と、オゾン濃度測定装置にネットワークを介して接続される管理センターと、を含み、所定空間内のオゾン濃度を監視するオゾン濃度監視システムであって、オゾン濃度測定装置が、オゾン濃度測定用プログラムを格納する記憶部と、記憶部からプログラムを読み出して該プログラムを実行する制御部と、制御部に接続されるオゾンセンサと、制御部に接続される送受信部と、を備え、制御部は、オゾンセンサで所定空間のオゾン濃度を測定したデータからオゾン濃度を算出し、取得したオゾン濃度を記憶部に格納し、記憶部に格納したオゾン濃度に関する測定データを送受信部によりネットワークを介して管理センターに送信し、測定データが、ネットワークを介して管理センターで取得されるように構成した。
 上記構成において、オゾン濃度測定装置は、好ましくは、オゾンセンサに清浄空気を送風する清浄空気送風装置を備える。ネットワークは、好ましくは、オゾン濃度測定装置に接続される近距離用の第1のネットワークと、該第1のネットワークに接続される広帯域の第2のネットワークからなる。
 好ましくは、オゾン発生装置は、オゾン発生制御部を備え、該オゾン発生制御部はオゾン濃度測定装置の制御部又は管理センターの制御部によりオゾンの発生量を制御する。好ましくは、オゾン発生制御部は、オゾン発生装置の一体又は別体に配置されると共に、オゾン発生装置は、空調機の内部又は空調機のダクト内に配置される。オゾン発生装置は、好ましくは、所定空間内のオゾン暴露量が所定の範囲内となるようにオゾン濃度測定装置の制御部又は管理センターの制御部によりオゾン発生量が制御される。
The ozone concentration monitoring system of the present invention includes an ozone generator arranged in a defined predetermined space and an ozone concentration measuring device for measuring the ozone concentration generated by the ozone generator in order to achieve the second object. , A management center connected to the ozone concentration measuring device via a network, and an ozone concentration monitoring system that monitors the ozone concentration in a predetermined space. The ozone concentration measuring device stores a program for measuring the ozone concentration. A storage unit, a control unit that reads a program from the storage unit and executes the program, an ozone sensor connected to the control unit, and a transmission / reception unit connected to the control unit, and the control unit is an ozone sensor. The ozone concentration is calculated from the data obtained by measuring the ozone concentration in the predetermined space, the acquired ozone concentration is stored in the storage unit, and the measurement data related to the ozone concentration stored in the storage unit is transmitted to the management center via the network by the transmission / reception unit. Then, the measurement data was configured to be acquired at the management center via the network.
In the above configuration, the ozone concentration measuring device preferably includes a clean air blower that blows clean air to the ozone sensor. The network preferably comprises a short-range first network connected to the ozone concentration measuring device and a wideband second network connected to the first network.
Preferably, the ozone generation device includes an ozone generation control unit, and the ozone generation control unit controls the amount of ozone generated by the control unit of the ozone concentration measuring device or the control unit of the control center. Preferably, the ozone generation control unit is arranged integrally or separately from the ozone generator, and the ozone generator is arranged inside the air conditioner or inside the duct of the air conditioner. In the ozone generator, the ozone generation amount is preferably controlled by the control unit of the ozone concentration measuring device or the control unit of the management center so that the ozone exposure amount in the predetermined space is within the predetermined range.
 本発明によれば、安価なオゾンセンサにより精度良くオゾンの濃度を測定できるオゾン濃度測定装置及びそれを用いたオゾン濃度監視システムを提供することができる。 According to the present invention, it is possible to provide an ozone concentration measuring device capable of accurately measuring the ozone concentration with an inexpensive ozone sensor and an ozone concentration monitoring system using the same.
本発明の一実施形態に係るオゾン濃度監視システムの構成を示す図である。It is a figure which shows the structure of the ozone concentration monitoring system which concerns on one Embodiment of this invention. オゾン濃度監視システムに使用するオゾン濃度測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the ozone concentration measuring apparatus used in the ozone concentration monitoring system. 管理センターの構成を示すブロック図である。It is a block diagram which shows the structure of a management center. オゾン濃度測定の一例を示す図である。It is a figure which shows an example of ozone concentration measurement. オゾン濃度監視システムで測定されたオゾン濃度に関する情報が、第1のネットワークに送信される波形を模式的に示す図である。It is a figure which shows typically the waveform which the information about the ozone concentration measured by the ozone concentration monitoring system is transmitted to the first network. 実施例1のオゾンセンサMQ131のテスト回路を示す図である。It is a figure which shows the test circuit of the ozone sensor MQ131 of Example 1. 実施例1のオゾンセンサMQ131と、ドライバー回路と、制御回路との接続を示す回路図である。It is a circuit diagram which shows the connection of the ozone sensor MQ131 of Example 1, a driver circuit, and a control circuit. 実施例1の管理センターで取得したオゾンセンサMQ131に印加される電圧のグラフを示す図である。It is a figure which shows the graph of the voltage applied to the ozone sensor MQ131 acquired in the management center of Example 1. FIG. 実施例1の管理センターで取得したオゾンセンサMQ131の出力電圧のグラフを示す図である。It is a figure which shows the graph of the output voltage of the ozone sensor MQ131 acquired in the management center of Example 1. FIG. 実施例1の管理センターで取得した温度のグラフを示す図である。It is a figure which shows the graph of the temperature acquired in the management center of Example 1. FIG. 実施例1の管理センターで取得した湿度のグラフを示す図である。It is a figure which shows the graph of the humidity acquired in the management center of Example 1. FIG. 実施例1の管理センターで取得した気圧のグラフを示す図である。It is a figure which shows the graph of the atmospheric pressure acquired in the management center of Example 1. FIG. 実施例1の充電式オゾン脱臭器の弱モード及び強モードにしたときのオゾン濃度の測定結果を示す図である。It is a figure which shows the measurement result of the ozone concentration in the weak mode and the strong mode of the rechargeable ozone deodorizer of Example 1. 実施例2のオゾン発生制御部によりデューティサイクルを0.1から1まで変化させたときのオゾン発生量を示す図である。It is a figure which shows the ozone generation amount when the duty cycle is changed from 0.1 to 1 by the ozone generation control part of Example 2. FIG. 実施例2のオゾン濃度監視システムによるオゾン濃度の測定例を示す図である。It is a figure which shows the measurement example of the ozone concentration by the ozone concentration monitoring system of Example 2. 実施例2のオゾンセンサMQ131によるオゾン濃度の測定値と、高精度オゾンガスモニタにより測定したオゾン濃度との相関を示す図である。It is a figure which shows the correlation between the measured value of the ozone concentration by the ozone sensor MQ131 of Example 2 and the ozone concentration measured by the high-precision ozone gas monitor. 実施例2において、実験室内に4mg/hのオゾンを放出したときの1日の平均オゾン濃度を日毎に測定した結果を示す図である。In Example 2, it is a figure which shows the result of having measured the average ozone concentration in one day at the time of releasing ozone of 4 mg / h into a laboratory every day.
 以下、本発明のオゾン濃度監視システムとこれに用いるオゾン濃度測定装置について詳細に説明するが、本発明はここに例示する態様に限られることなく、情報通信技術に関する技術進歩や、適用される法律及び制度に応じて適宜変更されるものも含まれる。 Hereinafter, the ozone concentration monitoring system of the present invention and the ozone concentration measuring device used therein will be described in detail, but the present invention is not limited to the embodiments exemplified here, and technological advances related to information and communication technology and applicable laws and regulations are described. And those that are changed as appropriate according to the system are also included.
(第1の実施形態)
 図1乃至図3は、本発明の一実施形態に係るオゾン濃度監視システム1の構成を示し、図1はオゾン濃度監視システム1の概略構成、図2はオゾン濃度測定装置16の概略構成、図3は管理センター30の構成を示す。本発明の実施形態に係るオゾン濃度監視システム1は、図1に示すように、画成された所定空間内に配置するオゾン発生装置11と、オゾン発生装置11が発生するオゾン濃度を測定するオゾン濃度測定装置16と、オゾン濃度測定装置16にネットワークを介して接続される管理センター30と、を含み、所定空間内のオゾン濃度を監視する。オゾン発生装置11とオゾン濃度測定装置16は、例えば、所定空間となる部屋12の空調機10の内部又は空調機10のダクト内に配置され、空調機10によりオゾンを含む空気が部屋12の天井から部屋12の内部に送風される。
(First Embodiment)
1 to 3 show the configuration of the ozone concentration monitoring system 1 according to the embodiment of the present invention, FIG. 1 is a schematic configuration of the ozone concentration monitoring system 1, and FIG. 2 is a schematic configuration of the ozone concentration measuring device 16. 3 shows the configuration of the management center 30. As shown in FIG. 1, the ozone concentration monitoring system 1 according to the embodiment of the present invention includes an ozone generator 11 arranged in a defined predetermined space and ozone for measuring the ozone concentration generated by the ozone generator 11. It includes a concentration measuring device 16 and a control center 30 connected to the ozone concentration measuring device 16 via a network, and monitors the ozone concentration in a predetermined space. The ozone generator 11 and the ozone concentration measuring device 16 are arranged, for example, inside the air conditioner 10 of the room 12 which is a predetermined space or in the duct of the air conditioner 10, and the air containing ozone is discharged by the air conditioner 10 to the ceiling of the room 12. Is blown into the interior of the room 12.
 オゾン濃度測定装置16は、本体部16Aと、本体部16Aに接続されオゾン濃度を測定するオゾンセンサ15と、オゾンセンサ15にゼロ点測定用の清浄空気を送風する清浄空気送風装置17と、を含む。このオゾン濃度監視システム1では、例えば、オゾン濃度測定装置16に接続される第1のネットワーク20と、第1のネットワーク20に接続される第2のネットワーク25を介して、少なくとも一つ以上のオゾン濃度測定装置16が管理センター30に接続されるように構成されている。図1では、一台の空調機10により一つの部屋12に送風しているが、空調機10や部屋12は複数であってもよい。ここで、所定空間とは、例えば建物内の部屋12であり、空調機10によりオゾンを含む空気が送風される一つの区画を意味する。部屋12は人が使用するビルや家屋内の部屋であり、商業用ビル、大型商業施設、官公庁等の公共施設、ホテルや旅館等の観光施設、学校、病院、介護施設、福祉施設、店舗や大型商業施設、大型住宅施設等を含むが、これに限定されるものではない。 The ozone concentration measuring device 16 includes a main body 16A, an ozone sensor 15 connected to the main body 16A to measure the ozone concentration, and a clean air blowing device 17 for blowing clean air for zero point measurement to the ozone sensor 15. include. In this ozone concentration monitoring system 1, for example, at least one or more ozone is passed through a first network 20 connected to the ozone concentration measuring device 16 and a second network 25 connected to the first network 20. The concentration measuring device 16 is configured to be connected to the control center 30. In FIG. 1, one air conditioner 10 blows air into one room 12, but there may be a plurality of air conditioners 10 and rooms 12. Here, the predetermined space means, for example, a room 12 in a building, and one section in which air containing ozone is blown by the air conditioner 10. Room 12 is a room used by people in a building or a house, such as a commercial building, a large commercial facility, a public facility such as a government office, a tourist facility such as a hotel or an inn, a school, a hospital, a nursing facility, a welfare facility, a store, or the like. It includes, but is not limited to, large commercial facilities, large residential facilities, etc.
 オゾン発生装置11は、オゾン濃度として、例えば10ppbオーダーから1000ppb、又は1ppmから10ppmオーダーの範囲のオゾンを発生できる装置であり、オゾン濃度を変化させて発生する機能を備えていてもよい。空調機10はビル内の冷暖房を行う装置であり、パッケージエアコン等を使用できる。空調機10の制御はビル内に設置される管理室により制御されるか、オゾン濃度監視システム1内の図示しない空調制御部により制御されてもよい。 The ozone generator 11 is a device capable of generating ozone in the range of, for example, 10 ppb order to 1000 ppb, or 1 ppm to 10 ppm order as the ozone concentration, and may have a function of changing the ozone concentration to generate ozone. The air conditioner 10 is a device for heating and cooling the inside of a building, and a packaged air conditioner or the like can be used. The control of the air conditioner 10 may be controlled by a control room installed in the building, or may be controlled by an air conditioning control unit (not shown) in the ozone concentration monitoring system 1.
 オゾンセンサ15は、WO、SnO、In、TiO等の金属酸化膜からなるオゾンセンサを用いることができる。オゾンセンサ15は、オゾン発生装置11から発生するオゾンの濃度を正確に測定するためにオゾン発生装置11に近い位置に配置されるのが好ましい。 As the ozone sensor 15, an ozone sensor made of a metal oxide film such as WO 3 , SnO 2 , In 2 O 3 , and TiO 2 can be used. The ozone sensor 15 is preferably arranged at a position close to the ozone generator 11 in order to accurately measure the concentration of ozone generated from the ozone generator 11.
 図1に示すように、清浄空気送風装置17は、部屋12内の空気からオゾンを除去した新鮮な空気17cをオゾンセンサ15だけに局所的に送風する装置である。図1に示すように、清浄空気送風装置17は、ファン17aとオゾンを吸着するフィルタ17bから構成されている。フィルタ17bとしては例えば活性炭フィルタを用いることができる。 As shown in FIG. 1, the clean air blower 17 is a device that locally blows fresh air 17c from which ozone is removed from the air in the room 12 only to the ozone sensor 15. As shown in FIG. 1, the clean air blower 17 includes a fan 17a and a filter 17b that adsorbs ozone. As the filter 17b, for example, an activated carbon filter can be used.
 オゾン濃度測定装置16は第1のネットワーク20に接続され、さらに、第1のネットワーク20は第2のネットワーク25に接続され、第2のネットワーク25が管理センター30と接続されている。 The ozone concentration measuring device 16 is connected to the first network 20, the first network 20 is connected to the second network 25, and the second network 25 is connected to the management center 30.
 第1のネットワーク20として、920MHz帯のアクティブ系小電力無線通信システムやLPWA(Low Power Wide Area)、WiFi(登録商標)やブルートゥス(登録商標)のような無線LAN等を用いることができ、後述する管理センターとの距離により選定することができる。第1のネットワーク20は、さらに第2のネットワーク25に接続されてもよい。第2のネットワーク25は専用回線又は一般公衆回線を用いることができる。例えば、第2のネットワーク25はクラウドネットワークでもよい。これにより、オゾン濃度監視システム1から例えばオゾン濃度の異常警報が発せられた場合には、第1のネットワーク20及び第2のネットワーク25を介して管理センター30に通知される。 As the first network 20, an active low-power wireless communication system in the 920 MHz band, a wireless LAN such as LPWA (Low Power Wide Area), WiFi (registered trademark) or Bluetooth (registered trademark) can be used, which will be described later. It can be selected according to the distance from the management center. The first network 20 may be further connected to the second network 25. The second network 25 can use a dedicated line or a general public line. For example, the second network 25 may be a cloud network. As a result, when, for example, an ozone concentration abnormality alarm is issued from the ozone concentration monitoring system 1, the management center 30 is notified via the first network 20 and the second network 25.
 第1のネットワーク20をLPWAとした場合にはSigfox(登録商標)を用いることができる。この場合には、第2のネットワーク25としては、インターネット又はLTE等の携帯電話の公衆回線やLPWAのためのSigfox(登録商標)の運用するクラウドを用いることができる。Sigfox(登録商標)を用いた場合の通信範囲は、大凡1~2km程度である。この場合、管理センター30は、第2のネットワーク25となるSigfox(登録商標)の運用するクラウドを介して、第1のネットワーク20に接続される。ここで、管理センター30は、Sigfox(登録商標)の運用するクラウドだけでなく、直接に第1のネットワーク20又は、第2のネットワーク25となるSigfox(登録商標)の運用するクラウド以外の他のクラウドに接続してもよい。 When the first network 20 is LPWA, Sigfox (registered trademark) can be used. In this case, as the second network 25, a public line of a mobile phone such as the Internet or LTE, or a cloud operated by Sigfox® for LPWA can be used. When Sigfox (registered trademark) is used, the communication range is about 1 to 2 km. In this case, the management center 30 is connected to the first network 20 via the cloud operated by Sigfox (registered trademark), which is the second network 25. Here, the management center 30 is not limited to the cloud operated by Sigfox (registered trademark), but also other than the cloud operated by Sigfox (registered trademark) which directly becomes the first network 20 or the second network 25. You may connect to the cloud.
 図2に示すように、オゾン濃度測定装置16は、本体部16A内に第1のネットワーク20に接続する送受信部16aと、各種プログラムやアプリケーション(以下「プログラム」又はオゾン濃度測定用プログラムと呼ぶ。)を格納する記憶部16bと、記憶部16bからオゾン濃度測定用プログラムを読み出して実行する制御部16cと、必要に応じて管理者が用いるキーボード等の入力部16d及びディスプレイ等の出力部16eと、入力と出力に必要なインターフェース部(I/O部)16f,16g等とを備えている。送受信部16aは、制御部16cに接続される。制御部16cはCPUでありマイクロコンピュータ等を含む。オゾン濃度測定装置16は、オゾンセンサ15に接続され、さらに、周囲の温度と湿度と気圧の何れかを測定する環境センサ19に接続されている。 As shown in FIG. 2, the ozone concentration measuring device 16 is referred to as a transmission / reception unit 16a connected to the first network 20 in the main body unit 16A, and various programs and applications (hereinafter referred to as “programs” or ozone concentration measuring programs”. ), A control unit 16c that reads and executes an ozone concentration measurement program from the storage unit 16b, an input unit 16d such as a keyboard used by the administrator, and an output unit 16e such as a display. , 16f, 16g and the like are provided with an interface unit (I / O unit) required for input and output. The transmission / reception unit 16a is connected to the control unit 16c. The control unit 16c is a CPU and includes a microcomputer and the like. The ozone concentration measuring device 16 is connected to an ozone sensor 15 and further connected to an environment sensor 19 that measures any of ambient temperature, humidity, and atmospheric pressure.
 環境センサ19は、オゾンセンサ15の特徴に応じて、周囲の温度と湿度と気圧に対する依存性のあるパラメータの内、特に影響のあるパラメータを測定するセンサとしてもよい。例えば、環境センサ19として、温度センサ19a及び湿度センサ19bを備えてもよい。 The environment sensor 19 may be a sensor that measures a parameter that has a particularly influence among the parameters that are dependent on the ambient temperature, humidity, and atmospheric pressure, depending on the characteristics of the ozone sensor 15. For example, the environment sensor 19 may include a temperature sensor 19a and a humidity sensor 19b.
 オゾンセンサ15の種類にもよるが、制御部16cは、図示しないオゾンセンサ15を駆動するためにヒーターに印加する電圧と、オゾン濃度により変化するオゾンセンサ15の抵抗変化を電圧として測定する機能を備えて構成されてもよい。 Although it depends on the type of the ozone sensor 15, the control unit 16c has a function of measuring the voltage applied to the heater for driving the ozone sensor 15 (not shown) and the resistance change of the ozone sensor 15 which changes depending on the ozone concentration as a voltage. It may be configured in preparation.
 制御部16cは、オゾンセンサ15で所定空間のオゾン濃度を測定したデータからオゾン濃度を算出し、こうして取得したオゾン濃度に関する測定データを記憶部16bに格納し、記憶部16bに格納したオゾン濃度に関する測定データを送受信部16aによりネットワークに送信する。後述する管理センター30が、近距離の場合には、近距離用の第1のネットワーク20を用いることができる。ここで、オゾン濃度に関する測定データとは、オゾン濃度が測定された所定空間を特定するための住所、建物の名称、又は識別番号(ID)と、測定年月日、時刻、オゾン濃度等の情報を示す。 The control unit 16c calculates the ozone concentration from the data obtained by measuring the ozone concentration in the predetermined space with the ozone sensor 15, stores the measurement data regarding the ozone concentration thus acquired in the storage unit 16b, and relates to the ozone concentration stored in the storage unit 16b. The measurement data is transmitted to the network by the transmission / reception unit 16a. When the management center 30 described later is a short distance, the first network 20 for a short distance can be used. Here, the measurement data regarding the ozone concentration is information such as an address, a building name, or an identification number (ID) for specifying a predetermined space in which the ozone concentration is measured, and a measurement date, time, ozone concentration, and the like. Is shown.
 第1のネットワーク20との接続に使用する送受信機16aは、例えば測定する室内又は建物などの所定の空間に据置し、この第1のネットワーク20を経由して第2のネットワーク25の回線に接続される。送受信機16aを含むオゾン濃度測定装置16は所謂物のインターターネット(Internet of Things、IoTと呼ばれている)として構成され、例えば小型、軽量及び低消費電力の装置である。オゾン濃度測定装置16が据置される所定の空間としては、例えば空調機10の内部又は空調機10のダクト内に配置され得る。 The transceiver 16a used for connection with the first network 20 is installed in a predetermined space such as a room or a building to be measured, and is connected to the line of the second network 25 via the first network 20. Will be done. The ozone concentration measuring device 16 including the transmitter / receiver 16a is configured as a so-called Internet of Things (called IoT), and is, for example, a small, lightweight, and low power consumption device. As a predetermined space in which the ozone concentration measuring device 16 is installed, it may be arranged, for example, inside the air conditioner 10 or in the duct of the air conditioner 10.
 オゾン濃度測定装置16の制御部16cと図2に示すオゾン発生装置11との間には、オゾン発生装置11のオゾン発生時間、オゾン発生量やオゾン濃度を制御するオゾン発生制御部18が挿入されていてもよい。これにより、制御部16cからオゾン発生制御部18を介してオゾン発生装置11で発生するオゾン濃度や運転時間を制御することができる。オゾン発生制御部18は、マイコン等の制御装置と、オゾン発生装置11の電源のオンとオフを行うデジタル回路及び/又はアナログ回路により構成されている。オゾン発生制御部18は、オゾン発生装置11に内蔵されていても、外部に外付けで設けてもよい。すなわち、オゾン発生制御部18は、オゾン発生装置11と一体又は別体に配置されてもよい。なお、オゾン発生装置11及びオゾン発生制御部18によるオゾン発生量及び/又はオゾン濃度に関する制御は、オゾン濃度測定装置16の制御部16cではなく、後述する管理センター30の制御部33により制御されてもよい。 An ozone generation control unit 18 that controls the ozone generation time, ozone generation amount, and ozone concentration of the ozone generator 11 is inserted between the control unit 16c of the ozone concentration measuring device 16 and the ozone generator 11 shown in FIG. May be. This makes it possible to control the ozone concentration and the operating time generated by the ozone generator 11 from the control unit 16c via the ozone generation control unit 18. The ozone generation control unit 18 includes a control device such as a microcomputer, and a digital circuit and / or an analog circuit that turns on and off the power of the ozone generation device 11. The ozone generation control unit 18 may be built in the ozone generator 11 or may be externally provided. That is, the ozone generation control unit 18 may be arranged integrally with or separately from the ozone generator 11. The control of the ozone generation amount and / or the ozone concentration by the ozone generator 11 and the ozone generation control unit 18 is controlled not by the control unit 16c of the ozone concentration measuring device 16 but by the control unit 33 of the management center 30 described later. May be good.
 管理センター30は、ワークステーション、クラウドサーバ又はサーバコンピュータ等の情報処理装置から構成されている。管理センター30での処理は、後述するオゾン濃度測定用プログラムに制御された情報処理装置により実行され、記録媒体としては、例えば磁気ディスク,半導体メモリ,その他の任意のコンピュータで読取り可能なものが使用される。また、記録媒体に記録されたプログラムは、記録媒体を直接コンピュータに装着して当該コンピュータに読み込ませてもよく、各種ネットワークを介してコンピュータに読み込ませるようにしてもよい。 The management center 30 is composed of information processing devices such as workstations, cloud servers, and server computers. The processing in the management center 30 is executed by an information processing device controlled by an information processing device controlled by an ozone concentration measurement program described later, and as the recording medium, for example, a magnetic disk, a semiconductor memory, or any other computer-readable one is used. Will be done. Further, the program recorded on the recording medium may be read by the computer by directly mounting the recording medium on the computer, or may be read by the computer via various networks.
 図3に示すように、管理センター30は、第2のネットワーク25に接続される送受信部31と、各種プログラムやアプリケーション(以下「プログラム」又はオゾン濃度測定用プログラムと呼ぶ。)を格納する記憶部32と、記憶部32からプログラムを読み出して実行する制御部33と、管理者が用いるキーボード等の入力部34と、ディスプレイ等の出力部35と、入力と出力に必要なインターフェース部(I/O部)36,37等を備えている。制御部33は、CPUでありマイクロコンピュータ等を含む。ここで、第2のネットワーク25は、Sigfox(登録商標)の運用するクラウドを用いることができる。ネットワークは、オゾン濃度測定装置16に接続される近距離用の第1のネットワーク20と、該第1のネットワーク20に接続される広帯域の第2のネットワーク30から構成してもよい。さらに、管理センター30は、オゾン濃度監視システム1が設置されているビルの管理室と、専用回線又は一般公衆回線による第3のネットワーク40に接続されてもよい。この場合には、管理センター30は、第3のネットワーク40に接続される送受信部38をさらに備えて構成される。 As shown in FIG. 3, the management center 30 has a transmission / reception unit 31 connected to the second network 25, and a storage unit that stores various programs and applications (hereinafter referred to as “programs” or ozone concentration measurement programs). 32, a control unit 33 that reads and executes a program from the storage unit 32, an input unit 34 such as a keyboard used by an administrator, an output unit 35 such as a display, and an interface unit (I / O) required for input and output. Part) 36, 37, etc. are provided. The control unit 33 is a CPU and includes a microcomputer and the like. Here, the second network 25 can use a cloud operated by Sigfox (registered trademark). The network may be composed of a short-distance first network 20 connected to the ozone concentration measuring device 16 and a wideband second network 30 connected to the first network 20. Further, the management center 30 may be connected to the management room of the building in which the ozone concentration monitoring system 1 is installed and the third network 40 by a dedicated line or a general public line. In this case, the management center 30 is further provided with a transmission / reception unit 38 connected to the third network 40.
(オゾン濃度監視システムの動作)
 次に、オゾン濃度監視システム1の動作について説明する。
 オゾン濃度監視システム1を構成するオゾン濃度測定装置16の制御部16cには予め部屋12のオゾン暴露量の日毎、週毎又は月毎の計画が記憶部16bに記録されている。制御部16cからオゾン発生制御部18を介してオゾン発生装置11で発生させるオゾン濃度と運転時間を制御することにより、部屋12のオゾン暴露量であるCT値を制御することができる。オゾン発生制御部18を最初に起動する場合には、オゾンセンサ15の応答時間を考慮して、測定に支障を生じない短時間でオゾンを発生させ、そのときにオゾンセンサ15によるオゾン濃度を確認してもよい。オゾンセンサ15によりオゾン濃度を測定し、所定のオゾン濃度である場合に、オゾン暴露量の日毎の予定により所定の暴露量となるように制御部16cによりオゾン発生制御部18を制御する。
(Operation of ozone concentration monitoring system)
Next, the operation of the ozone concentration monitoring system 1 will be described.
In the control unit 16c of the ozone concentration measuring device 16 constituting the ozone concentration monitoring system 1, a daily, weekly or monthly plan of the ozone exposure amount of the room 12 is recorded in the storage unit 16b in advance. By controlling the ozone concentration and the operating time generated by the ozone generator 11 from the control unit 16c via the ozone generation control unit 18, the CT value, which is the ozone exposure amount of the room 12, can be controlled. When the ozone generation control unit 18 is started for the first time, ozone is generated in a short time that does not interfere with the measurement in consideration of the response time of the ozone sensor 15, and the ozone concentration by the ozone sensor 15 is confirmed at that time. You may. The ozone concentration is measured by the ozone sensor 15, and when the ozone concentration is a predetermined value, the ozone generation control unit 18 is controlled by the control unit 16c so that the ozone exposure amount becomes a predetermined exposure amount according to the daily schedule.
 部屋12の温度や湿度の変化によりオゾンセンサ15により取得されるオゾン濃度は時間と共に変動する。オゾンセンサ15により取得されるオゾン濃度は、この環境変化によりオゾンセンサ15からの抵抗値が変化し、この抵抗値の変化によってオゾンセンサ15の出力電圧は時間と共に変動し、所謂ドリフトが生じる。このドリフトが生じないように、オゾン濃度がゼロの状態、即ちオゾンがない状態を清浄空気送風装置17により生成することができる。具体的には、オゾン発生制御部18によりオゾン発生装置11を停止して、オゾンセンサ15に清浄空気送風装置17により部屋12の空気を送風し、オゾン濃度をゼロとした空気をオゾンセンサ15で検知し、そのときのオゾンセンサ15の抵抗又は出力電圧をゼロ点とすればよい。部屋12のオゾン濃度の測定は、オゾン濃度のゼロ点を参照してオゾンセンサ15の抵抗又は出力電圧を測定することにより正確に取得することができる。制御部16cは、ゼロ点の取得が必要なときに、オゾンセンサ15に清浄空気を送風してオゾン濃度のゼロ点を取得し、該ゼロ点を参照して所定空間のオゾン濃度をオゾンセンサ15で測定して測定データを取得してもよい。 The ozone concentration acquired by the ozone sensor 15 fluctuates with time due to changes in the temperature and humidity of the room 12. As for the ozone concentration acquired by the ozone sensor 15, the resistance value from the ozone sensor 15 changes due to this environmental change, and the output voltage of the ozone sensor 15 fluctuates with time due to the change in the resistance value, so-called drift occurs. The clean air blower 17 can generate a state in which the ozone concentration is zero, that is, a state in which there is no ozone so that this drift does not occur. Specifically, the ozone generator 11 is stopped by the ozone generation control unit 18, the air in the room 12 is blown to the ozone sensor 15 by the clean air blower 17, and the air having an ozone concentration of zero is discharged by the ozone sensor 15. It may be detected and the resistance or output voltage of the ozone sensor 15 at that time may be set to the zero point. The measurement of the ozone concentration in the room 12 can be accurately obtained by measuring the resistance or the output voltage of the ozone sensor 15 with reference to the zero point of the ozone concentration. When it is necessary to acquire a zero point, the control unit 16c blows clean air to the ozone sensor 15 to acquire the zero point of the ozone concentration, and refers to the zero point to obtain the ozone concentration in a predetermined space. You may acquire the measurement data by measuring with.
 オゾン発生装置11を停止し、オゾンセンサ15に清浄空気送風装置17で部屋12の空気を送風することにより、フィルタ17bでオゾンが吸着された清浄空気が直接オゾンセンサ15に送風されるので、常にオゾン濃度のゼロ点を測定することができる。さらに、清浄空気送風装置17は、オゾンセンサ15に送風するだけなので小型の装置で済み、部屋12の外部から新鮮な空気を送風するための配管と送風装置により行う場合に比較して低コストで実現することができる。 By stopping the ozone generator 11 and blowing the air in the room 12 to the ozone sensor 15 with the clean air blower 17, the clean air adsorbed by the filter 17b is directly blown to the ozone sensor 15, so that the ozone sensor 15 is always blown. The zero point of ozone concentration can be measured. Further, the clean air blower 17 is a small device because it only blows air to the ozone sensor 15, and the cost is lower than that of the case where the clean air blower 17 is provided with a pipe and a blower for blowing fresh air from the outside of the room 12. It can be realized.
 オゾン濃度監視システム1は、管理すべき画成された所定空間内に配置するオゾン発生装置11のオゾン濃度を監視する。例えば、オゾン濃度監視システム1は、事業所の各部屋12又はホテルの各部屋12のオゾン暴露量が所定の範囲内となるようにオゾン濃度測定装置16の制御部16c又は管理センター30の制御部33によりオゾン発生量を制御する。具体的には、管理センター30の制御部33により各部屋のオゾン暴露量が予め第2のネットワーク25から第1のネットワーク20を介してオゾン濃度測定装置16の制御部16cに送信される。これを受けて、制御部16cは、各部屋のオゾン暴露量に基づいて、各部屋のオゾン発生制御部18を制御する。オゾン発生制御部18は、オゾン発生装置11の電源のデューティサイクルを変化することによりオゾン発生量を制御することができる。オゾン発生制御部18は、トランジスタ等のスイッチ、リレー又はPWM制御を用いたインバータ等を用いることができる。管理センター30の制御部33は、定性的には、オゾン暴露量が低い場合には、オゾン濃度測定装置16の制御部16cにオゾン発生量を高めるように指示し、逆にオゾン暴露量が高い場合には、オゾン発生量を低くするように指示をすることで、オゾン暴露量が制御される。
 さらに、オゾン濃度測定装置16の記憶部16bに各部屋のオゾン発生量又は暴露量が予め登録されていてもよい。この場合には、記憶部16bに登録されたオゾン発生量に従って、オゾン発生制御部18によりオゾン発生量が制御される。また、オゾン発生量又はオゾン暴露量の変更がある場合のみ管理センター30の制御部33からオゾン濃度測定装置16にオゾン発生量又はオゾン暴露量の変更が通知されてもよい。
The ozone concentration monitoring system 1 monitors the ozone concentration of the ozone generator 11 arranged in the defined predetermined space to be managed. For example, in the ozone concentration monitoring system 1, the control unit 16c of the ozone concentration measuring device 16 or the control unit of the management center 30 so that the ozone exposure amount of each room 12 of the business establishment or each room 12 of the hotel is within a predetermined range. The amount of ozone generated is controlled by 33. Specifically, the ozone exposure amount of each room is transmitted in advance from the second network 25 to the control unit 16c of the ozone concentration measuring device 16 via the first network 20 by the control unit 33 of the management center 30. In response to this, the control unit 16c controls the ozone generation control unit 18 in each room based on the ozone exposure amount in each room. The ozone generation control unit 18 can control the amount of ozone generated by changing the duty cycle of the power supply of the ozone generator 11. The ozone generation control unit 18 can use a switch such as a transistor, a relay, an inverter using PWM control, or the like. The control unit 33 of the control center 30 qualitatively instructs the control unit 16c of the ozone concentration measuring device 16 to increase the ozone generation amount when the ozone exposure amount is low, and conversely, the ozone exposure amount is high. In that case, the ozone exposure amount is controlled by instructing the ozone generation amount to be low.
Further, the ozone generation amount or the exposure amount of each room may be registered in advance in the storage unit 16b of the ozone concentration measuring device 16. In this case, the ozone generation amount is controlled by the ozone generation control unit 18 according to the ozone generation amount registered in the storage unit 16b. Further, only when there is a change in the ozone generation amount or the ozone exposure amount, the control unit 33 of the control center 30 may notify the ozone concentration measuring device 16 of the change in the ozone generation amount or the ozone exposure amount.
 また、管理センター30の制御部33は、部屋12が使用されない場合にはオゾン暴露量をゼロ、つまり、オゾン発生装置11を停止することもできる。さらに、管理センター30の制御部33は、オゾン発生装置11の故障等を監視することもできる。例えば、オゾン発生装置11のオゾンの発生を指示したときに所定のオゾン濃度が検出されない場合には、オゾン発生装置11の故障と判断する。この場合は、管理センター30のサーバコンピュータのディスプレイの監視画面にオゾン発生装置11の故障を表示し、或いは警報音をスピーカから発報してもよい。 Further, the control unit 33 of the management center 30 can reduce the ozone exposure amount to zero when the room 12 is not used, that is, the ozone generator 11 can be stopped. Further, the control unit 33 of the management center 30 can also monitor the failure of the ozone generator 11. For example, if a predetermined ozone concentration is not detected when the ozone generator 11 is instructed to generate ozone, it is determined that the ozone generator 11 has failed. In this case, the failure of the ozone generator 11 may be displayed on the monitoring screen of the display of the server computer of the management center 30, or an alarm sound may be emitted from the speaker.
 オゾン濃度監視システム1によれば、オゾン発生装置11は、所定空間内のオゾン暴露量が所定の範囲内となるようにオゾン濃度測定装置16の制御部16c又は管理センター30の制御部33によりオゾン発生量が制御される。 According to the ozone concentration monitoring system 1, the ozone generator 11 is subjected to ozone by the control unit 16c of the ozone concentration measuring device 16 or the control unit 33 of the control center 30 so that the ozone exposure amount in the predetermined space is within the predetermined range. The amount of ozone generated is controlled.
 図4はオゾン濃度測定の一例を示す図である。図4の横軸は時間(任意目盛)、縦軸はオゾンセンサ15で測定したオゾン濃度(任意目盛)を示す。図4に示すように、TONは、オゾン発生装置11を停止し、清浄空気送風装置17により清浄空気を送風した時間であり、TONの期間に清浄空気によりオゾン濃度がゼロの点が測定される。その他の時間はオゾン発生装置11により所定のオゾン濃度の空気が送風された時間であるTOFFを示している。TOFFの期間に測定されるオゾン濃度が部屋12に供給されるオゾン濃度である。TONとTOFFの時間は例えば同じにしてもよく、10~20分程度とすることができる。以下の説明では15分として説明する。 FIG. 4 is a diagram showing an example of ozone concentration measurement. The horizontal axis of FIG. 4 shows time (arbitrary scale), and the vertical axis shows the ozone concentration measured by the ozone sensor 15 (arbitrary scale). As shown in FIG. 4, TON is the time when the ozone generator 11 is stopped and the clean air is blown by the clean air blower 17, and the point where the ozone concentration is zero by the clean air during the TON period is measured. Will be done. The other time indicates TOFF , which is the time when air having a predetermined ozone concentration is blown by the ozone generator 11. The ozone concentration measured during the T OFF period is the ozone concentration supplied to the room 12. The T ON and T OFF times may be the same, for example, and may be about 10 to 20 minutes. In the following description, it will be described as 15 minutes.
(ドリフト低減の別の方法)
 オゾンセンサ15の周囲の温度及び湿度の変動によりオゾンセンサ15の出力電圧が変動するドリフトに対しては、制御部16cに接続される温度センサ19aと湿度センサ19bを測定することにより補正してもよい。オゾンセンサ15の出力電圧のオゾン濃度に対する温度及び湿度を種々変化させたときの感度曲線を取得して、校正用のデータとしてもよい。
(Another method of drift reduction)
Drift in which the output voltage of the ozone sensor 15 fluctuates due to fluctuations in the temperature and humidity around the ozone sensor 15 can be corrected by measuring the temperature sensor 19a and the humidity sensor 19b connected to the control unit 16c. good. The sensitivity curve when the temperature and humidity of the output voltage of the ozone sensor 15 with respect to the ozone concentration are variously changed may be acquired and used as calibration data.
 校正用のデータを、オゾン濃度に対する温度及び湿度を種々変化させたときの感度曲線を取得して、校正用のデータとして記憶部16bに保存してもよい。この場合には、温度センサ19aから温度のデータを取得し、湿度センサ19bから湿度のデータを取得し、取得した温度及び湿度のデータに対応する校正用のデータを記憶部16bから読み出すことにより正確なオゾン濃度を取得することができる。 The calibration data may be stored in the storage unit 16b as calibration data by acquiring a sensitivity curve when the temperature and humidity with respect to the ozone concentration are variously changed. In this case, the temperature data is acquired from the temperature sensor 19a, the humidity data is acquired from the humidity sensor 19b, and the calibration data corresponding to the acquired temperature and humidity data is read out from the storage unit 16b for accuracy. Ozone concentration can be obtained.
 図5は、オゾン濃度監視システム1で測定されたオゾン濃度に関するオゾンセンサ15の出力電圧等の情報、つまりオゾン濃度に関するデータが、第1のネットワーク20に送信される波形を模式的に示す。オゾン濃度監視システム1においては、ほぼTOFFの周期でオゾン濃度がゼロの点と、ほぼTONの周期で測定したオゾン濃度が得られる。例えば、図5に示すように15分毎に、オゾン濃度が送信される。矢印で示す点はオゾン発生装置11を停止し、清浄空気送風装置17により清浄空気を送付した時間であり、その他の時間はオゾン発生装置11により所定のオゾン濃度の空気が送風された時間を示している。次に実施例について、詳細に説明する。 FIG. 5 schematically shows a waveform in which information such as the output voltage of the ozone sensor 15 regarding the ozone concentration measured by the ozone concentration monitoring system 1, that is, data regarding the ozone concentration is transmitted to the first network 20. In the ozone concentration monitoring system 1, a point where the ozone concentration is zero in a cycle of approximately T OFF and an ozone concentration measured in a cycle of approximately TON can be obtained. For example, as shown in FIG. 5, the ozone concentration is transmitted every 15 minutes. The points indicated by the arrows are the times when the ozone generator 11 is stopped and the clean air is sent by the clean air blower 17, and the other times indicate the time when the air having a predetermined ozone concentration is blown by the ozone generator 11. ing. Next, an embodiment will be described in detail.
(実施例1)
 図1に示すオゾン濃度監視システム1を製作した。
 オゾン発生装置11として、株式会社仁淀デンツウ製の充電式オゾン脱臭器(Ozone Air Salas)を用いた。充電式オゾン脱臭器の弱モード及び強モードのオゾン発生量は、それぞれ1mg/h、3mg/hである。
(Example 1)
The ozone concentration monitoring system 1 shown in FIG. 1 was manufactured.
As the ozone generator 11, a rechargeable ozone deodorizer (Ozone Air Salas) manufactured by Niyodo Dentsu Co., Ltd. was used. The amount of ozone generated in the weak mode and the strong mode of the rechargeable ozone deodorizer is 1 mg / h and 3 mg / h, respectively.
 オゾンセンサ15としては、Zhengzhou Winsen Electronics Technology Co., Ltd製のWOを用いたオゾンセンサ(型番:MQ131、非特許文献3参照)を使用した。 As the ozone sensor 15, an ozone sensor using WO 3 manufactured by Zhengzhou Winsen Electronics Technology Co., Ltd. (model number: MQ131, see Non-Patent Document 3) was used.
 オゾン濃度測定装置16は、制御回路16cとなるマイコンとしてArduino Uno Rev3と、オゾンセンサMQ131のドライバー回路(非特許文献4参照)と、第1のネットワークとしてSigfox(登録商標)に接続する送受信部16aとしてSigfox Shield for Arduino V2S(非特許文献5参照)と、環境センサ19等により製作した。環境センサ19としては、Sigfox Shield for Arduino V2Sに搭載されている温度センサ19a、湿度センサ19b、気圧センサ19c(BOSCH社製、型番:BME-280)を用いた。 The ozone concentration measuring device 16 includes an Arduino Uno Rev3 as a microcomputer serving as a control circuit 16c, a driver circuit of an ozone sensor MQ131 (see Non-Patent Document 4), and a transmission / reception unit 16a connected to Sigfox (registered trademark) as a first network. It was manufactured by Sigfox Shield for Arduino V2S (see Non-Patent Document 5) and an environment sensor 19 and the like. As the environment sensor 19, a temperature sensor 19a, a humidity sensor 19b, and a pressure sensor 19c (manufactured by BOSCH, model number: BME-280) mounted on the Sigfox Shield for Arduino V2S were used.
 図6は実施例1のオゾンセンサMQ131のテスト回路を示し、図7は実施例1のオゾンセンサMQ131とドライバー回路と制御回路16cとの接続を示す回路図である。図6に示すように、オゾンセンサMQ131のヒーター端子H1には直流5Vが印加され、ヒーター端子H2がグランド端子(GND)に接続される。オゾンセンサMQ131の端子A1には直流5Vが印加され、オゾンセンサMQ131の端子B1とグランド(GND)とには、負荷抵抗15aが接続され、負荷抵抗15aに生じる電圧VRLがオゾンセンサMQ131の出力電圧として検出される。負荷抵抗15aの値は1MΩである。 FIG. 6 shows a test circuit of the ozone sensor MQ131 of the first embodiment, and FIG. 7 is a circuit diagram showing a connection between the ozone sensor MQ131 of the first embodiment, a driver circuit, and a control circuit 16c. As shown in FIG. 6, DC 5V is applied to the heater terminal H1 of the ozone sensor MQ131, and the heater terminal H2 is connected to the ground terminal (GND). DC 5V is applied to the terminal A1 of the ozone sensor MQ131, a load resistance 15a is connected to the terminal B1 of the ozone sensor MQ131 and the ground (GND), and the voltage VRL generated in the load resistance 15a is the output of the ozone sensor MQ131 . Detected as voltage. The value of the load resistance 15a is 1 MΩ.
 図7に示すように、オゾンセンサMQ131の出力電圧は、制御回路16cとなるArduino Uno Rev3のアナログ入力A0に接続され、ヒーター端子H2とグランド(GND)との間には、ヒーターの加熱を制御するためのMOSFET15bが接続されている。 As shown in FIG. 7, the output voltage of the ozone sensor MQ131 is connected to the analog input A0 of the Arduino Uno Rev3 which is the control circuit 16c, and the heating of the heater is controlled between the heater terminal H2 and the ground (GND). A MOSFET 15b for this is connected.
 清浄空気送風装置17は、小型の直流電圧(12V、0.15A)で駆動するファン17a(KAIMEI ELECTRONIC CORP製、型番JF0825SIM-R)と、活性炭を用いたフィルタ17b(株式会社小久保工業所製、型番竹炭-シューズ用)により製作した。 The clean air blower 17 includes a fan 17a (manufactured by KAIMEI ELECTRONIC CORP, model number JF0825SIM-R) driven by a small DC voltage (12V, 0.15A) and a filter 17b (manufactured by Kokubo Kogyo Co., Ltd.) using activated carbon. Model number Bamboo charcoal-for shoes).
 オゾン発生制御部18によりオゾン発生装置11のオン及びオフを制御した。オゾン発生装置11がオンの場合には、必要に応じてオゾン発生装置11から発生するオゾンの強度を弱モード及び強モードに切り替えた。 The ozone generation control unit 18 controlled the on and off of the ozone generator 11. When the ozone generator 11 was on, the intensity of ozone generated from the ozone generator 11 was switched between the weak mode and the strong mode as needed.
 管理センター30は、パーソナルコンピュータを使用し、インターネットを介して第2のネットワーク25としてSigfox(登録商標)の運用するクラウド等にアクセスした。 The management center 30 used a personal computer to access the cloud or the like operated by Sigfox (registered trademark) as a second network 25 via the Internet.
 上記構成のオゾン濃度監視システム1において、オゾン濃度測定装置16により測定したオゾン濃度に関するデータを、第1のネットワーク20としてSigfox(登録商標)に送信した。管理センター30は、第2のネットワーク25としてSigfox(登録商標)の運用するクラウド等にアクセスして、データの収集と分析を行った。 In the ozone concentration monitoring system 1 having the above configuration, the data on the ozone concentration measured by the ozone concentration measuring device 16 was transmitted to Sigma (registered trademark) as the first network 20. The management center 30 accessed the cloud or the like operated by Sigfox (registered trademark) as the second network 25, and collected and analyzed the data.
 データの収集には、IoTのプラッフォームであるMathWork社製のThingSpeak(登録商標)を用いた(非特許文献6参照)。 For data collection, ThingSpeak® manufactured by MathWorks, which is an IoT platform, was used (see Non-Patent Document 6).
 上記構成のオゾン濃度測定装置16等で取得したオゾン濃度、温度、湿度、気圧の時間変化を第1のネットワーク20に送信し、第1のネットワーク20からクラウドとなる第2のネットワーク25のクラウド中のThingSpeak(登録商標)に送信した。ThingSpeak(登録商標)で収集したデータは、管理センター30のパーソナルコンピュータにより第2のネットワーク25にアクセスして取得される。ダウンロードしたデータを、パーソナルコンピュータに格納したソフトウェアのMATLAB(登録商標)(非特許文献6参照)を用いて分析した。これにより、オゾンセンサMQ131に印加される電圧及びオゾンセンサMQ131の出力電圧、温度、湿度、気圧の時間変化のグラフ及びオゾン濃度を取得した。 The time change of ozone concentration, temperature, humidity, and atmospheric pressure acquired by the ozone concentration measuring device 16 or the like having the above configuration is transmitted to the first network 20, and the cloud of the second network 25 becomes a cloud from the first network 20. Sent to ThingSpeak®. The data collected by ThingSpeak® is acquired by accessing the second network 25 by the personal computer of the management center 30. The downloaded data was analyzed using MATLAB (registered trademark) (see Non-Patent Document 6) of software stored in a personal computer. As a result, the graph of the voltage applied to the ozone sensor MQ131, the output voltage of the ozone sensor MQ131, the temperature, the humidity, and the time change of the atmospheric pressure, and the ozone concentration were acquired.
 オゾン濃度は、オゾンセンサMQ131の出力電圧と温度及び湿度のデータと予め取得して記憶部16bに格納した感度曲線により取得した。 The ozone concentration was acquired from the output voltage, temperature and humidity data of the ozone sensor MQ131 and the sensitivity curve acquired in advance and stored in the storage unit 16b.
 図8は実施例1の管理センターで取得したオゾンセンサMQ131に印加される電圧のグラフ、図9は実施例1の管理センターで取得したオゾンセンサMQ131の出力電圧のグラフ、図10は実施例1の管理センターで取得した温度のグラフ、図11は実施例1の管理センターで取得した湿度のグラフ、図12は実施例1の管理センターで取得した気圧のグラフである。 FIG. 8 is a graph of the voltage applied to the ozone sensor MQ131 acquired at the control center of Example 1, FIG. 9 is a graph of the output voltage of the ozone sensor MQ131 acquired at the control center of Example 1, and FIG. 10 is a graph of the output voltage of the ozone sensor MQ131. 11 is a graph of humidity acquired at the control center of Example 1, and FIG. 12 is a graph of atmospheric pressure acquired at the control center of Example 1.
 図8及び図9の縦軸は、10倍した電圧(V)であり50が5Vに相当する。図8及び図9の横軸は4時間毎の時間を示している。図8に示すように、オゾンセンサMQ131には換算すると5Vの電圧が印加されていることが分かる。図9において、矢印Aはオゾン発生装置11がONのときのオゾン濃度に対応する出力電圧であり、矢印Bはオゾン発生装置11がOFFのときのオゾン濃度に対応する出力電圧である。 The vertical axis of FIGS. 8 and 9 is the voltage (V) multiplied by 10, and 50 corresponds to 5V. The horizontal axis of FIGS. 8 and 9 indicates the time every 4 hours. As shown in FIG. 8, it can be seen that a voltage of 5 V is applied to the ozone sensor MQ131 in terms of conversion. In FIG. 9, the arrow A is the output voltage corresponding to the ozone concentration when the ozone generator 11 is ON, and the arrow B is the output voltage corresponding to the ozone concentration when the ozone generator 11 is OFF.
 図10からオゾン濃度測定装置16の周囲の温度(℃)の変化が分かり、図11からオゾン濃度測定装置16の周囲の相対湿度(%)の変化が分かり、図12からオゾン濃度測定装置16の周囲の気圧は、1006hPaから1007hPaでほぼ一定であることが分かる。 From FIG. 10, the change in the temperature (° C.) around the ozone concentration measuring device 16 can be seen, from FIG. 11, the change in the relative humidity (%) around the ozone concentration measuring device 16 can be seen, and from FIG. 12, the change in the ozone concentration measuring device 16 can be seen. It can be seen that the ambient pressure is almost constant from 1006 hPa to 1007 hPa.
 図13に、実施例1の充電式オゾン脱臭器の弱モード及び強モードにしたときのオゾン濃度の測定結果を示す。図の横軸は測定点、縦軸はオゾン濃度である。矢印Cの弱モードでは約2150ppbであり、矢印Dの強モードでは約2930ppbであることが分かる。オゾンセンサMQ131に清浄空気を送風してゼロ点を補正すると弱モードでは約700ppb、強モードでは約2100ppbとなった。強モードと弱モードを比較すると強モードのオゾン濃度は、弱モードの約3倍となり、充電式オゾン脱臭器の弱モード及び強モードのオゾン発生量の比と同程度であることが判明した。 FIG. 13 shows the measurement results of the ozone concentration when the rechargeable ozone deodorizer of Example 1 is set to the weak mode and the strong mode. The horizontal axis of the figure is the measurement point, and the vertical axis is the ozone concentration. It can be seen that the weak mode of arrow C is about 2150 ppb and the strong mode of arrow D is about 2930 ppb. When clean air was blown to the ozone sensor MQ131 to correct the zero point, it was about 700 ppb in the weak mode and about 2100 ppb in the strong mode. Comparing the strong mode and the weak mode, it was found that the ozone concentration in the strong mode was about three times that in the weak mode, which was about the same as the ratio of the ozone generation amount in the weak mode and the strong mode of the rechargeable ozone deodorizer.
 さらに、オゾン発生装置11の停止と、清浄空気送風装置17により清浄空気の送風とを繰り返し行い、オゾン濃度監視システム1で測定されたオゾン濃度に関する情報を第1のネットワーク20に送信したときに、管理センターで取得したオゾン濃度のデータから、TONとTOFFの時間は例えば15分程度で、正確なオゾン濃度を監視できることが判明した。 Further, when the ozone generator 11 is stopped and the clean air blower is repeatedly blown, and the information on the ozone concentration measured by the ozone concentration monitoring system 1 is transmitted to the first network 20, the ozone concentration is transmitted to the first network 20. From the ozone concentration data acquired at the management center, it was found that the ON and T OFF times are, for example, about 15 minutes, and accurate ozone concentration can be monitored.
(実施例2)
 オゾン発生装置11として、無声放電方式に基づくオゾン発生体モジュール(オーニット株式会社製、SFG1210KH)を用いた。プログラムでオゾン発生装置11のデューティサイクルを設定し、設定したデューティサイクルに基づいてリレーによりオゾン発生体モジュールの電源のオンとオフを制御するオゾン発生制御部18を用いる制御をした以外は、実施例1と同様にオゾン濃度監視システム1を製作した。
(Example 2)
As the ozone generator 11, an ozone generator module (manufactured by Ornit Co., Ltd., SFG1210KH) based on a silent discharge method was used. Examples except that the duty cycle of the ozone generator 11 is set in the program and the ozone generation control unit 18 that controls the on / off of the power supply of the ozone generator module by the relay is controlled based on the set duty cycle. The ozone concentration monitoring system 1 was manufactured in the same manner as in 1.
 このオゾン発生装置11によるオゾン発生量は、10mg/h±25%である。動作安定時間は、オン或いはオフしてから電流値の安定までは10msec以内である。また、オンの時間及びオフの時間は、共に1秒間以上とした。オゾン発生量を、10mg/hとすると、1秒間当たりに生成されるオゾンガス体積量は,標準状態(0℃,1気圧)で、1.28×10-3cmとなる。 The amount of ozone generated by the ozone generator 11 is 10 mg / h ± 25%. The operation stabilization time is within 10 msec from turning on or off until the current value stabilizes. The on time and the off time were both set to 1 second or longer. Assuming that the amount of ozone generated is 10 mg / h, the volume of ozone gas generated per second is 1.28 × 10 -3 cm 3 in the standard state (0 ° C., 1 atm).
 図14は、実施例2のオゾン発生制御部18によりデューティサイクルを0.1(10%)から1(100%)まで変化させたときのオゾン発生量を示す図である。図14の横軸はデューティサイクルであり、縦軸はオゾン発生量(mg/h)である。デューティサイクル(%)は、オン時間を(オン時間+オフ時間)で割った値である。図14に示すように、デューティサイクルを0.1から1に変化させると、オゾン発生量が、1mg/hから10mg/hまで変化することが分かる。 FIG. 14 is a diagram showing the amount of ozone generated when the duty cycle is changed from 0.1 (10%) to 1 (100%) by the ozone generation control unit 18 of the second embodiment. The horizontal axis of FIG. 14 is the duty cycle, and the vertical axis is the ozone generation amount (mg / h). The duty cycle (%) is a value obtained by dividing the on-time by (on-time + off-time). As shown in FIG. 14, it can be seen that when the duty cycle is changed from 0.1 to 1, the ozone generation amount changes from 1 mg / h to 10 mg / h.
 実施例2により作製したオゾン濃度監視システム1を、発明者が所属する広島工業大学の1号館408号室(実験室と呼ぶ)に設置し、図4及び図5に示すようにオゾン濃度を15分間隔で測定し、1日の平均オゾン濃度を求めた。実験室の大きさは、横3.17m×縦7.4m×高さ2.6mで、体積は61.4mである。
 図15は、実施例2のオゾン濃度監視システム1によるオゾン濃度の測定例を示す図である。図15の横軸はオゾン発生量(mg/h)であり、縦軸は1日の平均オゾン濃度である。図15に示すように、オゾン発生装置11及びオゾン発生制御部18によりデューティサイクルを変化させて、3~9ppbの10ppb以下のオゾンを発生できることが分かる。
The ozone concentration monitoring system 1 produced in Example 2 was installed in Room 408 (called a laboratory) of Building No. 1 of Hiroshima Institute of Technology to which the inventor belongs, and the ozone concentration was set to 15 minutes as shown in FIGS. 4 and 5. The average daily ozone concentration was determined by measuring at intervals. The size of the laboratory is 3.17 m in width × 7.4 m in length × 2.6 m in height, and the volume is 61.4 m 3 .
FIG. 15 is a diagram showing an example of measuring the ozone concentration by the ozone concentration monitoring system 1 of the second embodiment. The horizontal axis of FIG. 15 is the amount of ozone generated (mg / h), and the vertical axis is the average daily ozone concentration. As shown in FIG. 15, it can be seen that the ozone generator 11 and the ozone generation control unit 18 can change the duty cycle to generate ozone of 10 ppb or less of 3 to 9 ppb.
 オゾンセンサMQ131の出力値である抵抗値を測定し、温度及び湿度が変化したときの感度曲線(非特許文献3参照)に基づき、オゾン濃度を補正した。オゾンセンサMQ131によりオゾンを測定したときの抵抗値Rsと、オゾンセンサMQ131を清浄空気の雰囲気にしたときの抵抗値R0との比であるRs/R0の値は、湿度の増加に伴い増加し、温度の増加に伴い減少する。このグラフを用いて、測定したデータを補正した。オゾンセンサMQ131の出力値をこのように補正したオゾン濃度と、高精度オゾンガスモニタ(荏原実業株式会社製、型番:EG-3000F) により測定したオゾン濃度と、を比較した。 The resistance value, which is the output value of the ozone sensor MQ131, was measured, and the ozone concentration was corrected based on the sensitivity curve when the temperature and humidity changed (see Non-Patent Document 3). The value of Rs / R0, which is the ratio of the resistance value Rs when ozone is measured by the ozone sensor MQ131 and the resistance value R0 when the ozone sensor MQ131 is made into a clean air atmosphere, increases with increasing humidity. It decreases as the temperature increases. The measured data was corrected using this graph. Ozone concentration corrected in this way for the output value of the ozone sensor MQ131 and a high-precision ozone gas monitor (manufactured by Ebara Jitsugyo Co., Ltd., model number: EG-3000F) Was compared with the ozone concentration measured by.
 図16は、実施例2のオゾンセンサMQ131によるオゾン濃度の測定値と高精度オゾンガスモニタにより測定したオゾン濃度との相関を示す図で、横軸は実施例2のオゾンセンサMQ131によるオゾン濃度(ppb)であり、縦軸は高精度オゾンガスモニタにより測定したオゾン濃度(ppm)である。図16に示すように、オゾンセンサMQ131と高精度オゾンガスモニタにより測定したオゾン濃度の測定値とは高い相関性を示すことが分かり、オゾンセンサMQ131により10ppbから100ppb程度のオゾン濃度を測定できることがわかる。100ppb以下つまり、0.1ppm以内のオゾン濃度は、維持すべき安全域オゾン濃度として、日本産業衛生学会による勧告値である(非特許文献7参照)。 FIG. 16 is a diagram showing the correlation between the measured value of the ozone concentration by the ozone sensor MQ131 of Example 2 and the ozone concentration measured by the high-precision ozone gas monitor, and the horizontal axis is the ozone concentration (ppb) by the ozone sensor MQ131 of Example 2. ), And the vertical axis is the ozone concentration (ppm) measured by a high-precision ozone gas monitor. As shown in FIG. 16, it can be seen that the ozone sensor MQ131 and the measured value of the ozone concentration measured by the high-precision ozone gas monitor show a high correlation, and it can be seen that the ozone sensor MQ131 can measure the ozone concentration of about 10 ppb to 100 ppb. .. The ozone concentration of 100 ppb or less, that is, 0.1 ppm or less is a recommended value by the Japan Society for Occupational Health as a safe ozone concentration to be maintained (see Non-Patent Document 7).
 上記の実験室内にオゾン発生量を4mg/hとして放出し、1日の平均オゾン濃度を測定した。図17は、実施例2において、実験室内に4mg/hのオゾンを放出したときの1日の平均オゾン濃度を日毎に測定した結果を示す図で、横軸は月日、縦軸はオゾンセンサMQ131により測定した1日の平均オゾン濃度(ppb)である。図17に示すように、2021年9月11日から2021年12月7日の約3カ月にわたり、1日の平均オゾン濃度を20ppb未満に制御できることが判明した。 The amount of ozone generated was 4 mg / h and released into the above laboratory, and the average daily ozone concentration was measured. FIG. 17 is a diagram showing the results of daily measurement of the average daily ozone concentration when 4 mg / h ozone is released into the laboratory in Example 2, where the horizontal axis is the month and day and the vertical axis is the ozone sensor. It is the daily average ozone concentration (ppb) measured by MQ131. As shown in FIG. 17, it was found that the average daily ozone concentration can be controlled to less than 20 ppb for about 3 months from September 11, 2021 to December 7, 2021.
 実施例2によれば、オゾン発生量が10mg/h程度のオゾン発生装置11及びオゾン発生制御部18によりデューティサイクルを変化させて、安全域オゾン濃度の0.1ppm以下のオゾンガス濃度値を5段階程度のレベルで発生することが可能になると共に、安価なオゾンセンサMQ131により高精度オゾンガスモニタに代替し得るオゾン濃度の測定精度が達成されることが判明した。 According to Example 2, the duty cycle is changed by the ozone generator 11 and the ozone generation control unit 18 having an ozone generation amount of about 10 mg / h, and the ozone gas concentration value of 0.1 ppm or less of the safe ozone concentration is set in 5 steps. It has been found that the ozone sensor MQ131 can generate ozone at a certain level, and the ozone concentration measurement accuracy that can replace the high-precision ozone gas monitor is achieved.
 本発明は、その趣旨を逸脱しない範囲において様々な形態で実施することができる。例えば、上述した実施形態においては、第1のネットワーク20のSigfox(登録商標)への送信データの送信例として、所定の時間毎に行う場合を説明したが、ゼロ点を補正するための清浄空気の送風は、温度センサ19a及び湿度センサ19bで検知した温度及び又は湿度が変化を検出したときに行ってもよい。 The present invention can be implemented in various forms without departing from the spirit of the present invention. For example, in the above-described embodiment, as an example of transmission of transmission data to Sigfox (registered trademark) of the first network 20, a case where the transmission data is performed at predetermined time intervals has been described, but clean air for correcting the zero point has been described. The air may be blown when the temperature and / or humidity detected by the temperature sensor 19a and the humidity sensor 19b detects a change.
 上述した実施形態においてはオゾン濃度の監視について説明したが、オゾンの暴露量を測定して監視することもできる。 Although monitoring of ozone concentration has been described in the above-described embodiment, it is also possible to measure and monitor the amount of ozone exposure.
1  オゾン濃度監視システム
10  空調機
11  オゾン発生装置
12  部屋
15  オゾンセンサ
16  オゾン濃度測定装置
16A 本体部
16a 送受信部
16b 記憶部
16c 制御部
16d 入力部
16e 出力部
16f,16g インターフェース部(I/O部)
17  清浄空気送風装置
17a ファン
17b フィルタ
17c オゾンを除去した新鮮な空気
18  オゾン発生制御部
19  環境センサ
19a 温度センサ
19b 湿度センサ
19c 気圧センサ
20  第1のネットワーク
25  第2のネットワーク
30  管理センター
31,38  送受信部
32  記憶部
33  制御部
34  入力部
35  出力部
36,37 インターフェース部(I/O部)
40  第3のネットワーク
1 Ozone concentration monitoring system 10 Air conditioner 11 Ozone generator 12 Room 15 Ozone sensor 16 Ozone concentration measuring device 16A Main unit 16a Transmission / reception unit 16b Storage unit 16c Control unit 16d Input unit 16e Output unit 16f, 16g Interface unit (I / O unit) )
17 Clean air blower 17a Fan 17b Filter 17c Ozone-free fresh air 18 Ozone generation control unit 19 Environment sensor 19a Temperature sensor 19b Humidity sensor 19c Pressure sensor 20 First network 25 Second network 30 Management center 31, 38 Transmission / reception unit 32 Storage unit 33 Control unit 34 Input unit 35 Output unit 36, 37 Interface unit (I / O unit)
40 Third network

Claims (12)

  1.  オゾン濃度測定用プログラムを格納する記憶部と、前記記憶部から前記プログラムを読み出して該プログラムを実行する制御部と、前記制御部に接続されてオゾン濃度を測定するオゾンセンサと、前記オゾンセンサに清浄空気を送風する清浄空気送風装置と、前記制御部に接続される送受信部と、
    を備え、
     前記制御部は、
     前記オゾンセンサで所定空間のオゾン濃度を測定したデータからオゾン濃度を取得して前記記憶部に格納し、
     前記記憶部に格納したオゾン濃度に関する測定データを前記送受信部によりネットワークを介して管理センターに送信する、オゾン濃度測定装置。
    The storage unit that stores the ozone concentration measurement program, the control unit that reads the program from the storage unit and executes the program, the ozone sensor that is connected to the control unit to measure the ozone concentration, and the ozone sensor. A clean air blower that blows clean air, a transmission / reception unit connected to the control unit, and
    Equipped with
    The control unit
    The ozone concentration is acquired from the data obtained by measuring the ozone concentration in a predetermined space with the ozone sensor and stored in the storage unit.
    An ozone concentration measuring device that transmits measurement data related to ozone concentration stored in the storage unit to a management center via a network by the transmitting / receiving unit.
  2.  前記オゾンセンサは、金属酸化膜からなる、請求項1に記載のオゾン濃度測定装置。 The ozone concentration measuring device according to claim 1, wherein the ozone sensor is made of a metal oxide film.
  3.  前記制御部は、前記オゾンセンサに清浄空気を送風してオゾン濃度のゼロ点を取得し、該ゼロ点を参照して所定空間のオゾン濃度を前記オゾンセンサで測定して前記測定データを取得する、請求項1に記載のオゾン濃度測定装置。 The control unit blows clean air to the ozone sensor to acquire the zero point of the ozone concentration, refers to the zero point, measures the ozone concentration in a predetermined space with the ozone sensor, and acquires the measurement data. , The ozone concentration measuring apparatus according to claim 1.
  4.  前記清浄空気送風装置は、ファンとオゾンを吸着するフィルタとからなる、請求項1に記載のオゾン濃度測定装置。 The ozone concentration measuring device according to claim 1, wherein the clean air blower comprises a fan and a filter that adsorbs ozone.
  5.  前記オゾン濃度測定装置は、さらに温度センサ及び湿度センサを備える、請求項1に記載のオゾン濃度測定装置。 The ozone concentration measuring device according to claim 1, further comprising a temperature sensor and a humidity sensor.
  6.  前記制御部は、前記オゾンセンサで測定したオゾン濃度を所定の第1の時間毎に前記ネットワークに送信すると共に、前記オゾンセンサに前記清浄空気を送風して測定したゼロ点となるオゾン濃度を所定の第2の時間毎に前記第1の時間と交互に前記ネットワークに送信する、請求項3に記載のオゾン濃度測定装置。 The control unit transmits the ozone concentration measured by the ozone sensor to the network at predetermined first time intervals, and blows the clean air to the ozone sensor to determine the ozone concentration which is the zero point measured. The ozone concentration measuring apparatus according to claim 3, wherein the ozone concentration measuring device alternately transmits the ozone concentration to the network every second time.
  7.  画成された所定空間内に配置するオゾン発生装置と、
     前記オゾン発生装置が発生するオゾン濃度を測定するオゾン濃度測定装置と、
     前記オゾン濃度測定装置にネットワークを介して接続される管理センターと、
    を含み、前記所定空間内のオゾン濃度を監視するオゾン濃度監視システムであって、
     前記オゾン濃度測定装置は、
     オゾン濃度測定用プログラムを格納する記憶部と、前記記憶部から前記プログラムを読み出して該プログラムを実行する制御部と、前記制御部に接続されるオゾンセンサと、前記制御部に接続される送受信部と、
    を備え、
     前記制御部は、
     前記オゾンセンサで所定空間のオゾン濃度を測定したデータからオゾン濃度を算出し、
     取得したオゾン濃度を前記記憶部に格納し、
     前記記憶部に格納したオゾン濃度に関する測定データを前記送受信部により前記ネットワークを介して前記管理センターに送信し、
     前記測定データが、前記ネットワークを介して前記管理センターで取得される、オゾン濃度監視システム。
    An ozone generator placed in the defined space,
    An ozone concentration measuring device that measures the ozone concentration generated by the ozone generator, and an ozone concentration measuring device.
    A management center connected to the ozone concentration measuring device via a network,
    It is an ozone concentration monitoring system that monitors the ozone concentration in the predetermined space.
    The ozone concentration measuring device is
    A storage unit that stores an ozone concentration measurement program, a control unit that reads the program from the storage unit and executes the program, an ozone sensor connected to the control unit, and a transmission / reception unit connected to the control unit. When,
    Equipped with
    The control unit
    The ozone concentration is calculated from the data obtained by measuring the ozone concentration in a predetermined space with the ozone sensor.
    The acquired ozone concentration is stored in the storage unit and stored.
    The measurement data regarding the ozone concentration stored in the storage unit is transmitted to the management center via the network by the transmission / reception unit.
    An ozone concentration monitoring system in which the measurement data is acquired at the control center via the network.
  8.  前記オゾン濃度測定装置は、前記オゾンセンサに清浄空気を送風する清浄空気送風装置を備える、請求項7に記載のオゾン濃度監視システム。 The ozone concentration monitoring system according to claim 7, wherein the ozone concentration measuring device includes a clean air blower that blows clean air to the ozone sensor.
  9.  前記ネットワークは、前記オゾン濃度測定装置に接続される近距離用の第1のネットワークと、該第1のネットワークに接続される広帯域の第2のネットワークからなる、請求項7に記載のオゾン濃度監視システム。 The ozone concentration monitoring according to claim 7, wherein the network includes a first network for a short distance connected to the ozone concentration measuring device and a wideband second network connected to the first network. system.
  10.  前記オゾン発生装置は、オゾン発生制御部を備え、該オゾン発生制御部は前記オゾン濃度測定装置の制御部又は前記管理センターの制御部によりオゾンの発生量を制御する、請求項7に記載のオゾン濃度監視システム。 The ozone according to claim 7, wherein the ozone generation device includes an ozone generation control unit, and the ozone generation control unit controls the amount of ozone generated by the control unit of the ozone concentration measuring device or the control unit of the control center. Concentration monitoring system.
  11.  前記オゾン発生制御部は、前記オゾン発生装置の一体又は別体に配置されると共に、前記オゾン発生装置は、空調機の内部又は空調機のダクト内に配置される、請求項7に記載のオゾン濃度監視システム。 The ozone according to claim 7, wherein the ozone generation control unit is arranged integrally or separately from the ozone generator, and the ozone generator is arranged inside the air conditioner or inside the duct of the air conditioner. Concentration monitoring system.
  12.  前記オゾン発生装置は、前記所定空間内のオゾン暴露量が所定の範囲内となるように前記オゾン濃度測定装置の制御部又は前記管理センターの制御部により前記オゾン発生量が制御される、請求項10に記載のオゾン濃度監視システム。
     
    The ozone generator is claimed, wherein the ozone generation amount is controlled by the control unit of the ozone concentration measuring device or the control unit of the management center so that the ozone exposure amount in the predetermined space is within a predetermined range. 10. The ozone concentration monitoring system according to 10.
PCT/JP2021/045717 2020-12-11 2021-12-10 Ozone concentration measurement device, and ozone concentration monitoring system in which same is used WO2022124421A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022568366A JPWO2022124421A1 (en) 2020-12-11 2021-12-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-206356 2020-12-11
JP2020206356 2020-12-11

Publications (1)

Publication Number Publication Date
WO2022124421A1 true WO2022124421A1 (en) 2022-06-16

Family

ID=81974609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045717 WO2022124421A1 (en) 2020-12-11 2021-12-10 Ozone concentration measurement device, and ozone concentration monitoring system in which same is used

Country Status (2)

Country Link
JP (1) JPWO2022124421A1 (en)
WO (1) WO2022124421A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681702U (en) * 1992-09-18 1994-11-22 永一 梅原 Rotary type 1/4 round processing jig
JP2003146624A (en) * 2001-11-08 2003-05-21 Mitsubishi Electric Corp Apparatus for controlling ozone concentration
JP2004332959A (en) * 2003-04-30 2004-11-25 Shimoike Masanori Air environment control system and data center for providing optimization data
JP2008045823A (en) * 2006-08-17 2008-02-28 Toshiba Kyaria Kk Indoor unit of air conditioner
JP2008089290A (en) * 2006-10-05 2008-04-17 Takasago Thermal Eng Co Ltd Air conditioning system
JP2017227590A (en) * 2016-06-24 2017-12-28 ウシオ電機株式会社 Ozone concentration control system and zero point correction method for semiconductor type ozone sensor
JP2019090805A (en) * 2017-11-13 2019-06-13 富士通株式会社 Processor for detection data of environmental sensor, method for processing detection data of environmental sensor, computer-readable storage medium, and environment sensor system
JP2019099398A (en) * 2017-11-29 2019-06-24 日本特殊陶業株式会社 Ozone generating system
CN111265694A (en) * 2020-03-19 2020-06-12 无锡市昱淞环保科技有限公司 Indoor ozone disinfection system
CN111420094A (en) * 2020-04-27 2020-07-17 中国科学院地球环境研究所 Indoor air SOE (System on insulator) disinfection and purification system and method for novel coronavirus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681702U (en) * 1992-09-18 1994-11-22 永一 梅原 Rotary type 1/4 round processing jig
JP2003146624A (en) * 2001-11-08 2003-05-21 Mitsubishi Electric Corp Apparatus for controlling ozone concentration
JP2004332959A (en) * 2003-04-30 2004-11-25 Shimoike Masanori Air environment control system and data center for providing optimization data
JP2008045823A (en) * 2006-08-17 2008-02-28 Toshiba Kyaria Kk Indoor unit of air conditioner
JP2008089290A (en) * 2006-10-05 2008-04-17 Takasago Thermal Eng Co Ltd Air conditioning system
JP2017227590A (en) * 2016-06-24 2017-12-28 ウシオ電機株式会社 Ozone concentration control system and zero point correction method for semiconductor type ozone sensor
JP2019090805A (en) * 2017-11-13 2019-06-13 富士通株式会社 Processor for detection data of environmental sensor, method for processing detection data of environmental sensor, computer-readable storage medium, and environment sensor system
JP2019099398A (en) * 2017-11-29 2019-06-24 日本特殊陶業株式会社 Ozone generating system
CN111265694A (en) * 2020-03-19 2020-06-12 无锡市昱淞环保科技有限公司 Indoor ozone disinfection system
CN111420094A (en) * 2020-04-27 2020-07-17 中国科学院地球环境研究所 Indoor air SOE (System on insulator) disinfection and purification system and method for novel coronavirus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANAKA TAKESHI, OKAMITSU NOBUHARU, NAKAMOTO MASAHIKO: "Fabrication of IoT with built-in ozone sensor and its application", BULLETIN OF HIROSHIMA INSTITUTE OF TECHNOLOGY. RESEARCH VOLUME, 25 March 2021 (2021-03-25), pages 31 - 39, XP055941746, Retrieved from the Internet <URL:http://harp.lib.hiroshima-u.ac.jp/it-hiroshima/metadata/12387> *

Also Published As

Publication number Publication date
JPWO2022124421A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
US20220010996A1 (en) Cloud based hvac management apparatus and system for air purification, indoor air quality monitoring, and methods for implementing the same
EP1943569B1 (en) Application of microsystems for real time ieq control
GB2544916A (en) Air quality notifying device connecting air quality measurement device and wireless terminal, and air quality notifying method therefor
US20120022710A1 (en) Energy consumption management system and energy consumption management apparatus
EP1990080A1 (en) Air purifier
KR102174633B1 (en) Lighting system with indoor air quality sensor
JPH09512629A (en) Indoor air quality sensor and indoor air quality detection method
KR20110074222A (en) Method for analysing and controlling indoor air quality environment based on sensors using wireless communications
CN111829134A (en) Control method, control system, controller and storage medium for indoor air environment
KR20160049558A (en) Monitoring system of Indoor air quality
KR20160150364A (en) Indoor air quality and condition monitoring system and method thereof
CN110694087B (en) Sterilizer and sterilization method
KR20100136829A (en) Interior environment system and method of individually controlling the equipment for adjusting the surroundings
US6494777B1 (en) Carbon dioxide concentration modulating device
WO2020075189A1 (en) Intelligent indoor air quality monitoring, controlling, and alerting system
CN113841013B (en) Indoor environment control system and indoor environment control method
CN111632178A (en) Distributed free radical exciter control method and control system thereof
Baqer et al. Development of a real-time monitoring and detection indoor air quality system for intensive care unit and emergency department.
WO2022124421A1 (en) Ozone concentration measurement device, and ozone concentration monitoring system in which same is used
CN110957026B (en) Medical equipment operation environment adjusting method, terminal and storage medium
KR20210063688A (en) System for management of air quality
WO2022256493A1 (en) Systems, devices, and methods for disinfection or deodorization of defined areas
Biondo Real-time indoor air quality (IAQ) monitoring system for smart buildings
US11604004B2 (en) Method and system to measure and control indoor environment using IoT and AI
KR20240004121A (en) IoT-based comprehensive indoor air quality management system using MediAir-linked air quality sensing technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022568366

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903517

Country of ref document: EP

Kind code of ref document: A1