WO2022124244A2 - Winch system for self-propelled device that adheres to wall surface by suction - Google Patents

Winch system for self-propelled device that adheres to wall surface by suction Download PDF

Info

Publication number
WO2022124244A2
WO2022124244A2 PCT/JP2021/044593 JP2021044593W WO2022124244A2 WO 2022124244 A2 WO2022124244 A2 WO 2022124244A2 JP 2021044593 W JP2021044593 W JP 2021044593W WO 2022124244 A2 WO2022124244 A2 WO 2022124244A2
Authority
WO
WIPO (PCT)
Prior art keywords
wire rope
wall surface
self
propelled device
tension
Prior art date
Application number
PCT/JP2021/044593
Other languages
French (fr)
Japanese (ja)
Other versions
WO2022124244A3 (en
Inventor
不可止 浦上
Original Assignee
ウラカミ合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウラカミ合同会社 filed Critical ウラカミ合同会社
Publication of WO2022124244A2 publication Critical patent/WO2022124244A2/en
Publication of WO2022124244A3 publication Critical patent/WO2022124244A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L1/00Cleaning windows
    • A47L1/02Power-driven machines or devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/38Machines, specially adapted for cleaning walls, ceilings, roofs, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/42Control devices non-automatic
    • B66D1/46Control devices non-automatic electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/48Control devices automatic
    • B66D1/50Control devices automatic for maintaining predetermined rope, cable, or chain tension, e.g. in ropes or cables for towing craft, in chains for anchors; Warping or mooring winch-cable tension control

Definitions

  • the present invention relates to a winch system for a wall surface adsorption self-propelled device.
  • the so-called wall surface adsorption self-propelled device that can be attracted to the wall surface by the action of negative pressure or magnets and can self-propell along the wall surface prevents it from coming off the wall surface and falling to the ground due to an event such as a power failure. It is equipped with a fall protection winch system.
  • the winch system generally consists of two sets of winch units. Each winch unit consists of a wire rope and a wire rope traction machine that pulls the wire rope. One end of the wire rope is attached to the wire rope traction machine, and the other end is connected to the wall surface suction self-propelled device.
  • a drum type wire rope traction machine equipped with a winch drum for winding and storing the wire rope and an endless type wire rope traction machine that only pulls the wire rope.
  • the winch system of the present invention composed of two sets of winch units, two load sensors for detecting the tension of each wire rope of the two wire ropes and each of the two wire ropes. It is equipped with two angle sensors for detecting the angle formed by the wire rope and the gravity line.
  • a first object of the winch system for the wall surface suction self-propelled device of the present invention is to prevent the wall surface suction self-propelled device from coming off the wall surface and falling to the ground due to an event such as a power failure.
  • a second object of the winch system for the wall surface suction self-propelled device of the present invention is the so-called ascending direction self-propelling ability in which the wall surface suction self-propelled device self-propells in a direction parallel to the gravity line and in an ascending direction along the wall surface. This is to apply a force in the ascending direction to the wall surface suction self-propelled device in order to complement it.
  • the winch system not only applies an upward force to the wall surface suction self-propelled device, but also the winch system.
  • the wall surface suction self-propelled device must not interfere with the straightness of the self-propelled device in the ascending direction. That is, in order to achieve the second object of the winch system for the wall surface suction self-propelled device of the present invention, PLC (programmable controller) based on the data obtained from two load sensors and two angle sensors. ) Is calculated by a small computer, and the tension of each of the two wire rope traction machines is automatically controlled.
  • PLC programmable controller
  • the winch system for the wall surface suction self-propelled device of the present invention belongs to the technical field of the winch device having an auto tension function.
  • the winch device having an auto tension function the device described in Patent Publication No. 5-8768 can be mentioned as an example.
  • the winch device having an auto tension function described in Patent Publication No. 5-8768 uses negative pressure, which is used for the purpose of cleaning the wall surface of a structure such as a building wall surface and peeling off deteriorated paint and the like. It is provided to complement the function of the "wall peeling robot" that can be adsorbed to the wall surface and self-propelled along the wall surface.
  • the wall peeling robot is suspended by a pair of auto tension winches 50, 50.
  • the tension of the pair of auto-tension winches 50, 50 is set to such an extent that the rope 51 does not sag and does not hinder the running of the robot body 1, the auto-tension winches 50, 50
  • the tension acts to support all or part of the weight of the robot body 1.
  • the auto tension winches 50 and 50 have a predetermined tension (in the example, the weight of the robot body 1 is 290 kgf and the weight is 15 to 20 kgf), and the wire 51 is always wound up (when energized).
  • the both auto tension winches 50 and 50 are installed at appropriate intervals, and the robot main body 1 is suspended between the two auto tension winches 50 and 50.
  • the wires 51, 51 are guided by pulleys 52, 52 arranged on the rooftop, folded back, and the tips thereof are connected to hanging metal fittings 3, 3 fixed to the main body 10.
  • the auto tension winches 50 and 50 suspend the robot body 1, the auto tension winches 50 and 50 do not actively move the robot body 1 along the wall surface W, but are one of the weights of the robot body 1. Since the main purpose is to reduce the load of the suction force of the suction ring 3 described later by supporting a part or the whole, the tension is such that the wires 51 and 51 do not sag, and the robot body 1 is positively used.
  • Another object of the auto tension winches 50, 50 is to prevent the robot body 1 from falling due to insufficient suction force to the wall surface W of the robot body 1 in the event of a power failure or the like. Then, as shown above, the tension is set to a small value to support the own weight of the robot body 1, and is mainly used for this purpose.
  • Patent Publication No. 5-8768 in the winch system of the present invention is that the wall surface suction self-propelled device is oriented along the wall surface in parallel with the gravity line.
  • a force in the ascending direction is applied to the wall surface suction self-propelled device.
  • the winch system applies an ascending force to the wall surface suction self-propelled device, but also the winch system applies an ascending direction to the wall surface suction self-propelled device. Do not interfere with straightness to.
  • a calculation is performed by a small computer such as a PLC (programmable controller) based on the data obtained from the two load sensors and the two angle sensors.
  • the tension of each of the two wire rope traction machines is automatically controlled.
  • a fall prevention winch system equipped in a so-called wall surface suction self-propelled device that is attracted to a wall surface by the action of negative pressure or a magnet and can self-propell along the wall surface.
  • the winch system consists of a pair of winch units.
  • Each winch unit consists of a wire rope and a wire rope traction machine that pulls the wire rope.
  • One end of the wire rope is attached to the wire rope traction machine located on the upper part of the wall surface or on the ground, and the other end is connected to the wall surface suction self-propelled device.
  • Each winch unit has a load sensor that measures the tension of the wire rope, an angle sensor that measures the angle formed by the wire rope and the gravity line, and data measured by two load sensors and two angle sensors. It is equipped with a calculation system that automatically controls the tension of each wire rope by calculating Each of the tensions of the two wire ropes acting on the wall surface suction self-propelled device is decomposed into a component force in the direction of the gravity line and a component force in the horizontal direction, and the directions of the component forces are different in the two horizontal directions by 180 degrees. The tension of each wire rope is automatically controlled by the arithmetic system so that the force values of the component forces are almost the same.
  • a winch system for a wall surface adsorption self-propelled device characterized by the above, is provided.
  • the tension acting on the wall surface suction self-propelled device of the wire rope 1 of the winch unit 1 is F1
  • the horizontal component force of F1 is f11
  • the vertical component of F1 is vertical.
  • the component force is f12
  • the angle formed by the wire rope 1 and the gravity line is ⁇ 1
  • the maximum tension of the wire rope 1, that is, the rated tension of the wire rope traction machine 1 is F1max
  • the own weight of the wall surface suction self-propelled device is W.
  • the tension acting on the wall surface suction self-propelled device of the wire rope 2 of the winch unit 2 is set to F2
  • the horizontal component force of F2 is set to f21
  • the vertical component of F2 is set.
  • the component force is f22
  • the angle formed by the wire rope 1 and the gravity line is ⁇ 2
  • the maximum tension of the wire rope 2, that is, the rated tension of the wire rope traction machine 2 is F2max
  • the own weight of the wall surface suction self-propelled device is W.
  • If f11 f21;
  • the winch system for the wall surface adsorption self-propelled device according to claim 1, wherein the following equations 1 to 5 are satisfied is provided.
  • the winch system complements the ability of the wall surface suction self-propelled device to self-propell in the ascending direction without impairing the straightness of the wall surface suction self-propelled device.
  • the self-propelled ability of the wall surface suction self-propelled device in the ascending direction is increased, so that the mass of the working device mounted on the wall surface suction self-propelled device can be increased, and the working capacity is increased.
  • the illustrated device includes a bogie frame 11, four wheel drive motors 13 arranged at four corners of the bogie frame 11, wheels 12 mounted on each output shaft of the wheel drive motor 13, suction cups, magnets, and the like.
  • the wall surface suction self-propelled device 10 composed of means (not shown) for sucking to the wall surface 1;
  • a drum type wire rope traction machine 31 equipped with a wire rope winding drum, and a winch unit 1 composed of a wire rope 32 wound by the wire rope traction machine 31 and arranged on the ground on the left side facing the wall surface 1;
  • a slide 38 arranged on the upper wall surface on the left side facing the wall surface 1;
  • a sheave 35 arranged on the upper left side of the trolley frame 11; and a wire rope guide swing arm oscillatingly mounted on the shaft of the sheave 35.
  • a drum type wire rope traction machine 41 equipped with a wire rope winding drum, and a winch unit 2 composed of a wire rope 42 wound by the wire rope traction machine 41 and arranged on the ground on the right side facing the wall surface 1;
  • a slide 48 arranged on the upper wall surface on the right side facing the wall surface 1;
  • a sheave 45 arranged on the upper right side of the trolley frame 11; and a wire rope guide swing arm oscillatingly mounted on the shaft of the sheave 45.
  • the wall surface suction self-propelled device 10 is attracted to the wall surface 1 in a posture in which the rotation axis of the wheel 12 is orthogonal to the center line 2, and the suction force thereof is the wall surface suction self-propelled device 10.
  • the vertical component force of is f12, the angle formed by the wire rope 1 and the gravity line is ⁇ 1, and the maximum tension of the wire rope 1, that is, the rated tension of the wire rope traction machine 1 is F1max;
  • the tension acting on the wall surface suction self-propelled device 10 of the wire rope 2 is F2
  • the horizontal component force of F2 is f21
  • the vertical component force of F2 is f21.
  • the winch system of the present invention Before explaining the operation of the above-mentioned device, The purpose of the winch system of the present invention and the means for achieving the same are summarized. That is, in the winch system of the present invention, two load sensors for detecting the tension of each wire rope of the two wire ropes, and each wire rope and the gravity line of the two wire ropes form. Two angle sensors for detecting the angle are provided, and in the winch system of the present invention, the wall surface suction self-propelled device self-propells along the wall surface in a direction parallel to the gravity line and in an ascending direction. In order to complement the directional self-propelled ability, an ascending force is applied to the wall surface suction self-propelled device.
  • calculations are performed by a small computer such as a PLC (programmable controller) based on data obtained from two load sensors and two angle sensors, and two wire rope traction machines are used. Each tension of is automatically controlled.
  • FIG. 4 illustrates the tension F1 of the wire rope 32 and its component force acting on the wall surface suction self-propelled device, and the tension F2 of the wire rope 42 and its component force.
  • the target digital value of the tension F1 of the wire rope 32 is compared with the actual digital value of the wire rope 32 by a computer, and if the actual digital value is smaller than the target digital value, the computer is referred to the actual digital value.
  • the wire rope traction machine 31 is made to perform the winding operation of the wire rope 32 until the target digital value becomes the same value, and when the actual digital value is larger than the target digital value, the computer is subjected to the actual digital value.
  • the wire rope traction machine 31 is made to perform the rewinding operation of the wire rope 32 until the digital value and the target digital value become the same value.
  • the analog value measured by the angle sensor 47 is converted into a digital value by the A / D converter and then input to a small computer for calculation, so that the target digital value of the tension F2 of the wire rope 42 is set.
  • the analog value of the tension of the actual wire rope 42 measured by the load sensor 44 is converted into a digital value by the A / D converter, and the actual digital value of the wire rope 42 is input to the computer.
  • the target digital value of the tension F2 of the wire rope 42 and the actual digital value of the wire rope 42 are compared by the computer, and if the actual digital value is smaller than the target digital value, the computer is in the actual state.
  • the wire rope traction machine 41 is made to perform the winding operation of the wire rope 42 until the digital value and the target digital value become the same value, and when the actual digital value is larger than the target digital value, the computer is used.
  • the wire rope traction machine 41 is made to perform the rewinding operation of the wire rope 42 until the actual digital value and the target digital value become the same value.
  • f12 and f22 which are forces in the ascending direction, are applied to the wall surface suction self-propelled device 10.
  • the distance between the action point of f12 and the action point of f22 by arranging the swing arm 36 so that the sheave 45 and the wire rope guide swing arm 46 are close to each other, that is, by arranging two sheaves 35 and two sheaves 45. It is arranged so that L is minimized.
  • the first preferred embodiment of the apparatus configured according to the present invention and the second preferred embodiment of the apparatus configured according to the present invention are used.
  • the endless wire rope traction machine (1) 31E and the endless wire rope traction machine (2) 41E are provided on the left side portion and the right side portion of the wall surface suction self-propelled device 10, respectively.
  • one end of the wire rope 32 is fixed to the upper portion 39 of the wall surface 1, and the other end is attached to the endless wire rope traction machine (1) 31E. After that, it extends downward and hangs down.
  • the load sensor 34 provided on the lower left side of the wall surface suction self-propelled device 10 is connected to the main body of the endless wire rope traction machine (1) 31E via a hook 33. Further, one end of the wire rope 42 is fixed to the upper portion 49 of the wall surface 1, and the other end is attached to the endless wire rope traction machine (2) 41E and then extends downward and hangs down.
  • the load sensor 44 provided on the lower right side of the wall surface suction self-propelled device 10 is connected to the main body of the endless wire rope traction machine (2) 41E via the hook 43.
  • the winch system complements the ability of the wall surface suction self-propelled device to self-propell in the ascending direction without impairing the straightness of the wall surface suction self-propelled device.
  • the self-propelled ability of the wall surface suction self-propelled device in the ascending direction is increased, so that the mass of the working device mounted on the wall surface suction self-propelled device can be increased, and the working capacity is increased. be.
  • various embodiments of the apparatus of the present invention can be considered in accordance with the claims in addition to the preferred embodiments.
  • an angle sensor for measuring the angle formed by the wire rope and the gravitational line it is possible to use an angle measurement system using a laser beam or a position measurement system using an inertial sensor instead of the potential meter.
  • the winch system for the wall suction self-propelled device in this street is As illustrated in the "Background Technology" section, it is conveniently used as a system that complements the functions of the wall adsorption self-propelled device that cleans and paints the walls of oil storage tanks and hulls, and enhances the performance. Can be done.
  • the whole view which shows the apparatus composition of the 1st preferred embodiment of the apparatus configured according to this invention The enlarged front view of the wall surface adsorption self-propelled apparatus of the 1st preferred embodiment of the apparatus configured according to this invention.
  • the right side view of the apparatus shown in FIG. In the apparatus shown in FIG. 2, a vector diagram showing a state in which each tension of two wire ropes acts.

Abstract

[Problem] The present invention comprises two load sensors for detecting the tensile force of each of two wire ropes respectively, and two angle sensors for detecting the angle formed by the line of gravity and each of the two wire ropes respectively. By using a microcomputer to perform calculations on the basis of data obtained from the two load sensors and the two angle sensors under conditions in which the horizontal direction components of the respective tensile forces of the two wire ropes are set to the same value, the tensile force applied by each of two wire rope towing machines is controlled automatically so as to impart a raising-direction force to a self-propelled device that adheres to a wall surface by suction.

Description

壁面吸着自走装置のためのウインチシステムWinch system for wall suction self-propelled equipment
本発明は、壁面吸着自走装置のためのウインチシステムに関する。
従来、負圧または磁石などの作用により壁面へ吸着し且つその壁面に沿って自走可能ないわゆる壁面吸着自走装置には、停電などの事象により壁面から離脱して地上へ落下することを防止するために、落下防止用のウインチシステムが装備されている。
該ウインチシステムは、一般的に2式のウインチユニットから構成されている。
各々のウインチユニットは、ワイヤロープと、該ワイヤロープを引っ張るワイヤロープ牽引機から構成されている。
該ワイヤロープの一方の端部は該ワイヤロープ牽引機に装着されており、他方の端部は該壁面吸着自走装置に連結されている。
なお、該ワイヤロープ牽引機が地上に配置される場合には、該ワイヤロープの他方の端部は、壁面の上部に配置された滑車を経由して該壁面吸着自走装置に連結されている。
なお、該ワイヤロープ牽引機の種類について、一般的に、該ワイヤロープを巻き取って収納するウインチドラムを具備したドラム式ワイヤロープ牽引機と、該ワイヤロープを牽引するだけのエンドレス式ワイヤロープ牽引機の2種類がある。
2式のウインチユニットから構成されている本発明のウインチシステムにおいては、2本のワイヤロープの各々のワイヤロープの張力を検出するための2個の荷重センサーと、2本のワイヤロープの各々のワイヤロープと重力線とがなす角度を検出するための2個の角度センサーが具備されている。
本発明の壁面吸着自走装置のためのウインチシステムの第1の目的は、壁面吸着自走装置が停電などの事象により壁面から離脱して地上へ落下することを防止するためである。
本発明の壁面吸着自走装置のためのウインチシステムの第2の目的は、壁面吸着自走装置が壁面に沿って重力線と平行な方向かつ上昇方向へ自走するいわゆる上昇方向自走能力を補完するために、壁面吸着自走装置へ上昇方向への力を付与するためである。
本発明の壁面吸着自走装置のためのウインチシステムの第2の目的を達成するためには、該ウインチシステムが壁面吸着自走装置へ上昇方向への力を付与するだけではなく、該ウインチシステムが壁面吸着自走装置の上昇方向への直進性を阻害してはならない。
すなわち、本発明の壁面吸着自走装置のためのウインチシステムの第2の目的を達成するために、2個の荷重センサーと2個の角度センサーから得られたデータを基にしてPLC(プログラマブルコントローラ)などの小型のコンピュータにより演算を行い、2個のワイヤロープ牽引機の各々の張力を自動制御するものである。
The present invention relates to a winch system for a wall surface adsorption self-propelled device.
Conventionally, the so-called wall surface adsorption self-propelled device that can be attracted to the wall surface by the action of negative pressure or magnets and can self-propell along the wall surface prevents it from coming off the wall surface and falling to the ground due to an event such as a power failure. It is equipped with a fall protection winch system.
The winch system generally consists of two sets of winch units.
Each winch unit consists of a wire rope and a wire rope traction machine that pulls the wire rope.
One end of the wire rope is attached to the wire rope traction machine, and the other end is connected to the wall surface suction self-propelled device.
When the wire rope traction machine is placed on the ground, the other end of the wire rope is connected to the wall surface suction self-propelled device via a pulley arranged on the upper part of the wall surface. ..
Regarding the types of the wire rope traction machine, generally, a drum type wire rope traction machine equipped with a winch drum for winding and storing the wire rope and an endless type wire rope traction machine that only pulls the wire rope. There are two types of machines.
In the winch system of the present invention composed of two sets of winch units, two load sensors for detecting the tension of each wire rope of the two wire ropes and each of the two wire ropes. It is equipped with two angle sensors for detecting the angle formed by the wire rope and the gravity line.
A first object of the winch system for the wall surface suction self-propelled device of the present invention is to prevent the wall surface suction self-propelled device from coming off the wall surface and falling to the ground due to an event such as a power failure.
A second object of the winch system for the wall surface suction self-propelled device of the present invention is the so-called ascending direction self-propelling ability in which the wall surface suction self-propelled device self-propells in a direction parallel to the gravity line and in an ascending direction along the wall surface. This is to apply a force in the ascending direction to the wall surface suction self-propelled device in order to complement it.
In order to achieve the second object of the winch system for the wall surface suction self-propelled device of the present invention, the winch system not only applies an upward force to the wall surface suction self-propelled device, but also the winch system. However, the wall surface suction self-propelled device must not interfere with the straightness of the self-propelled device in the ascending direction.
That is, in order to achieve the second object of the winch system for the wall surface suction self-propelled device of the present invention, PLC (programmable controller) based on the data obtained from two load sensors and two angle sensors. ) Is calculated by a small computer, and the tension of each of the two wire rope traction machines is automatically controlled.
本発明の壁面吸着自走装置のためのウインチシステムは、オートテンション機能を有するウィンチ装置の技術分野に属する。
オートテンション機能を有するウィンチ装置としては、特許公開平5-8768号に記載の装置を一例として挙げることができる。
特許公開平5-8768号に記載のオートテンション機能を有するウィンチ装置は、ビルディング壁面等の構造物の壁面を清掃したり、劣化した塗料等を剥離する目的で使用される、負圧を利用して壁面に吸着し且つ壁面に沿って自走することができる「壁面剥離ロボット」の機能を補完するために提供されるものである。
特許公開平5-8768号においては、該壁面剥離ロボットにおけるオートテンション機能を有するウィンチ装置の適用例として、下記が記載されている。
「該壁面剥離ロボットは一対のオートテンションウィンチ50,50によって吊り下げられている。
該一対のオートテンションウィンチ50,50は、そのテンションをロープ51にたるみが生じない程度で、ロボット本体1の走行に支障を生じない程度に設定しておくと、該オートテンションウィンチ50,50のテンションがロボット本体1の自重の全部または一部を支承する作用を呈する。
このオートテンションウィンチ50,50は所定のテンション(実施例としては、ロボット本体1の重量を290Kgfとして15~20Kgf)を有して常時(通電時)ワイヤ51を巻上げるようになしてある。そして、両オートテンションウィンチ50,50は、適宜の間隔を有して設置され、両オートテンションウィンチ50,50間にロボット本体1を吊下げるもので、
そのワイヤ51,51を屋上側に配した滑車52,52で案内して折返しその先端を、本体部10に固定した吊下げ金具3,3に連結している。
上記オートテンションウィンチ50,50は、ロボット本体1を吊下げるも、このオートテンションウィンチ50,50によってロボット本体1を壁面Wに添って積極的に移動させるものではなく、ロボット本体1の自重の一部または全部を支承して、後述吸着リング3の吸着力の負担を低減するのが主目的であるため、そのテンションは上記ワイヤ51,51がたるまない程度で、かつ、ロボット本体1を積極的に引上げない程度に設定される。
また、上記オートテンションウィンチ50,50の他の目的は停電等の万が一の場合に、ロボット本体1の壁面Wへの吸着力不足による該ロボット本体1の落下を防止することにあり、本実施例では、上記に示したごとくテンションはロボット本体1の自重を支えるには小さい値に設定し、主にこの目的のために使用している。」
The winch system for the wall surface suction self-propelled device of the present invention belongs to the technical field of the winch device having an auto tension function.
As an example of the winch device having an auto tension function, the device described in Patent Publication No. 5-8768 can be mentioned as an example.
The winch device having an auto tension function described in Patent Publication No. 5-8768 uses negative pressure, which is used for the purpose of cleaning the wall surface of a structure such as a building wall surface and peeling off deteriorated paint and the like. It is provided to complement the function of the "wall peeling robot" that can be adsorbed to the wall surface and self-propelled along the wall surface.
In Japanese Patent Publication No. 5-8768, the following is described as an application example of a winch device having an auto tension function in the wall surface peeling robot.
"The wall peeling robot is suspended by a pair of auto tension winches 50, 50.
When the tension of the pair of auto-tension winches 50, 50 is set to such an extent that the rope 51 does not sag and does not hinder the running of the robot body 1, the auto-tension winches 50, 50 The tension acts to support all or part of the weight of the robot body 1.
The auto tension winches 50 and 50 have a predetermined tension (in the example, the weight of the robot body 1 is 290 kgf and the weight is 15 to 20 kgf), and the wire 51 is always wound up (when energized). The both auto tension winches 50 and 50 are installed at appropriate intervals, and the robot main body 1 is suspended between the two auto tension winches 50 and 50.
The wires 51, 51 are guided by pulleys 52, 52 arranged on the rooftop, folded back, and the tips thereof are connected to hanging metal fittings 3, 3 fixed to the main body 10.
Although the auto tension winches 50 and 50 suspend the robot body 1, the auto tension winches 50 and 50 do not actively move the robot body 1 along the wall surface W, but are one of the weights of the robot body 1. Since the main purpose is to reduce the load of the suction force of the suction ring 3 described later by supporting a part or the whole, the tension is such that the wires 51 and 51 do not sag, and the robot body 1 is positively used. It is set to the extent that it will not be pulled up.
Another object of the auto tension winches 50, 50 is to prevent the robot body 1 from falling due to insufficient suction force to the wall surface W of the robot body 1 in the event of a power failure or the like. Then, as shown above, the tension is set to a small value to support the own weight of the robot body 1, and is mainly used for this purpose. "
特許公開平5-8768号公報Patent Publication No. 5-8768 Gazette
上述した特許公開平5-8768号公報においては、
「上記オートテンションウィンチ50,50は、ロボット本体1を吊下げるも、このオートテンションウィンチ50,50によってロボット本体1を壁面Wに添って積極的に移動させるものではなく、ロボット本体1の自重の一部または全部を支承して、後述吸着リング3の吸着力の負担を低減するのが主目的であるため、そのテンションは上記ワイヤ51,51がたるまない程度で、かつ、ロボット本体1を積極的に引上げない程度に設定される。」と記載されているが、
本発明のウインチシステムにおいては、2本のワイヤロープの各々のワイヤロープの張力を検出するための2個の荷重センサーと、2本のワイヤロープの各々のワイヤロープと重力線とがなす角度を検出するための2個の角度センサーが具備されており、本発明のウインチシステムにおける特許公開平5-8768号公報と異なる目的は、壁面吸着自走装置が壁面に沿って重力線と平行な方向かつ上昇方向へ自走するいわゆる上昇方向自走能力を補完するために、壁面吸着自走装置へ上昇方向への力を付与するためである。
本発明のウインチシステムの上記の目的を達成するためには、該ウインチシステムが壁面吸着自走装置へ上昇方向への力を付与するだけではなく、該ウインチシステムが壁面吸着自走装置の上昇方向への直進性を阻害してはならない。
すなわち、本発明のウインチシステムの該目的を達成するために、2個の荷重センサーと2個の角度センサーから得られたデータを基にしてPLC(プログラマブルコントローラ)などの小型のコンピュータにより演算を行い、2個のワイヤロープ牽引機の各々の張力を自動制御するものである。
In the above-mentioned Japanese Patent Publication No. 5-8768,
"Although the auto tension winches 50 and 50 suspend the robot body 1, the auto tension winches 50 and 50 do not actively move the robot body 1 along the wall surface W, but the weight of the robot body 1 itself. Since the main purpose is to reduce the load of the suction force of the suction ring 3 described later by supporting a part or all of it, the tension is such that the wires 51 and 51 do not sag, and the robot body 1 is positively used. It is set to the extent that it will not be pulled up. "
In the winch system of the present invention, two load sensors for detecting the tension of each wire rope of the two wire ropes, and the angle formed by each wire rope of the two wire ropes and the gravity line are determined. It is equipped with two angle sensors for detection, and the purpose different from Patent Publication No. 5-8768 in the winch system of the present invention is that the wall surface suction self-propelled device is oriented along the wall surface in parallel with the gravity line. In addition, in order to supplement the so-called ascending self-propelled ability of self-propelling in the ascending direction, a force in the ascending direction is applied to the wall surface suction self-propelled device.
In order to achieve the above object of the winch system of the present invention, not only the winch system applies an ascending force to the wall surface suction self-propelled device, but also the winch system applies an ascending direction to the wall surface suction self-propelled device. Do not interfere with straightness to.
That is, in order to achieve the object of the winch system of the present invention, a calculation is performed by a small computer such as a PLC (programmable controller) based on the data obtained from the two load sensors and the two angle sensors. The tension of each of the two wire rope traction machines is automatically controlled.
以下、上記の課題を達成するための手段を説明する。
上記の課題を達成するために、本発明によれば、特許請求の範囲の請求項1に記載されているように、
負圧または磁石などの作用により壁面へ吸着し且つその壁面に沿って自走可能ないわゆる壁面吸着自走装置に装備された落下防止用のウインチシステムにおいて、
該ウインチシステムは一対のウインチユニットから構成されており、
各々のウインチユニットは、ワイヤロープと、該ワイヤロープを引っ張るワイヤロープ牽引機から構成されており、
該ワイヤロープの一方の端部は壁面の上部もしくは地上に配置された該ワイヤロープ牽引機に装着されており、他方の端部は該壁面吸着自走装置に連結されており、
あるいは、該ワイヤロープの一方の端部は該壁面吸着自走装置に具備された該ワイヤロープ牽引機に装着されており、他方の端部は壁面の上部に固定されており、
各々のウインチユニットは、該ワイヤロープの張力を計測する荷重センサーと、該ワイヤロープと重力線とが成す角度を計測する角度センサーと、2個の荷重センサーと2個の角度センサーが計測したデータを演算して各々のワイヤロープの張力を自動制御する演算システムを具備しており、
該壁面吸着自走装置に作用する2本のワイヤロープの張力のそれぞれを、重力線方向の分力と水平方向の分力に分解して、分力の方向が180度異なる2個の水平方向の分力の力の値がほぼ同一になるように、該演算システムにより各々のワイヤロープの張力を自動制御している、
ことを特徴とする、壁面吸着自走装置のためのウインチシステム、が提供される。
Hereinafter, the means for achieving the above-mentioned problems will be described.
In order to achieve the above object, according to the present invention, as described in claim 1, as described in claim 1.
In a fall prevention winch system equipped in a so-called wall surface suction self-propelled device that is attracted to a wall surface by the action of negative pressure or a magnet and can self-propell along the wall surface.
The winch system consists of a pair of winch units.
Each winch unit consists of a wire rope and a wire rope traction machine that pulls the wire rope.
One end of the wire rope is attached to the wire rope traction machine located on the upper part of the wall surface or on the ground, and the other end is connected to the wall surface suction self-propelled device.
Alternatively, one end of the wire rope is attached to the wire rope traction machine provided in the wall surface suction self-propelled device, and the other end is fixed to the upper part of the wall surface.
Each winch unit has a load sensor that measures the tension of the wire rope, an angle sensor that measures the angle formed by the wire rope and the gravity line, and data measured by two load sensors and two angle sensors. It is equipped with a calculation system that automatically controls the tension of each wire rope by calculating
Each of the tensions of the two wire ropes acting on the wall surface suction self-propelled device is decomposed into a component force in the direction of the gravity line and a component force in the horizontal direction, and the directions of the component forces are different in the two horizontal directions by 180 degrees. The tension of each wire rope is automatically controlled by the arithmetic system so that the force values of the component forces are almost the same.
A winch system for a wall surface adsorption self-propelled device, characterized by the above, is provided.
更に、上記の課題を達成するための別の手段として、特許請求の範囲の請求項2に記載されているように、
壁面に向かって左側にあるウインチユニット1において、ウインチユニット1のワイヤロープ1の該壁面吸着自走装置に作用する張力をF1とし、F1の水平方向の分力をf11とし、F1の垂直方向の分力をf12とし、ワイヤロープ1と重力線とが成す角度をθ1とし、ワイヤロープ1の最大張力すなわちワイヤロープ牽引機1の定格張力をF1maxとし、該壁面吸着自走装置の自重をWとし;
壁面に向かって右側にあるウインチユニット2において、ウインチユニット2のワイヤロープ2の該壁面吸着自走装置に作用する張力をF2とし、F2の水平方向の分力をf21とし、F2の垂直方向の分力をf22とし、ワイヤロープ1と重力線とが成す角度をθ2とし、ワイヤロープ2の最大張力すなわちワイヤロープ牽引機2の定格張力をF2maxとし、該壁面吸着自走装置の自重をWとし;
f11=f21とすれば;
下記式1乃至式5が成立する、ことを特徴とする、請求項1に記載の壁面吸着自走装置のためのウインチシステム、が提供される。
(数1)
(式1)
F1*sinθ1=F2*sinθ2
(式2)
F1≦F1max
(式3)
F2≦F2max
(式4)
f12=F1*cosθ1
(式5)
f22=F2*cosθ2
Furthermore, as another means for achieving the above-mentioned problems, as described in claim 2, of the scope of claims, as described in claim 2.
In the winch unit 1 on the left side facing the wall surface, the tension acting on the wall surface suction self-propelled device of the wire rope 1 of the winch unit 1 is F1, the horizontal component force of F1 is f11, and the vertical component of F1 is vertical. The component force is f12, the angle formed by the wire rope 1 and the gravity line is θ1, the maximum tension of the wire rope 1, that is, the rated tension of the wire rope traction machine 1 is F1max, and the own weight of the wall surface suction self-propelled device is W. ;
In the winch unit 2 on the right side facing the wall surface, the tension acting on the wall surface suction self-propelled device of the wire rope 2 of the winch unit 2 is set to F2, the horizontal component force of F2 is set to f21, and the vertical component of F2 is set. The component force is f22, the angle formed by the wire rope 1 and the gravity line is θ2, the maximum tension of the wire rope 2, that is, the rated tension of the wire rope traction machine 2 is F2max, and the own weight of the wall surface suction self-propelled device is W. ;
If f11 = f21;
The winch system for the wall surface adsorption self-propelled device according to claim 1, wherein the following equations 1 to 5 are satisfied is provided.
(Number 1)
(Equation 1)
F1 * sinθ1 = F2 * sinθ2
(Equation 2)
F1 ≤ F1max
(Equation 3)
F2 ≤ F2max
(Equation 4)
f12 = F1 * cosθ1
(Equation 5)
f22 = F2 * cosθ2
更に、上記の課題を達成するための別の手段として、特許請求の範囲の請求項3に記載されているように、
θ1≧θ2の時、f22のプリセット値としてf22≦F2max*cosθ2の任意の値をf22のプリセット値として設定し、
θ1<θ2の時、f12のプリセット値としてf12≦F1max*cosθ1の任意の値をf12のプリセット値として設定する、ことを特徴とする、請求項1乃至請求項2に記載の壁面吸着自走装置のためのウインチシステム、が提供される。
Furthermore, as another means for achieving the above-mentioned problems, as described in claim 3, of the scope of claims, as described in claim 3.
When θ1 ≧ θ2, an arbitrary value of f22 ≦ F2max * cos θ2 is set as the preset value of f22, and the preset value of f22 is set.
The wall surface adsorption self-propelled device according to claim 1 to 2, wherein when θ1 <θ2, an arbitrary value of f12 ≦ F1max * cos θ1 is set as a preset value of f12. A winch system, for which is provided.
本発明は下記の効果をもたらすものである。
本発明のウインチシステムにおいては、壁面吸着自走装置の直進性が阻害されることなく、当該壁面吸着自走装置の上昇方向への自走する能力が当該ウインチシステムにより補完されるために、当該壁面吸着自走装置の上昇方向への自走能力が増大され、よって当該壁面吸着自走装置に搭載される作業装置の質量を増加させることが可能となり、作業能力が増大される。
The present invention has the following effects.
In the winch system of the present invention, the winch system complements the ability of the wall surface suction self-propelled device to self-propell in the ascending direction without impairing the straightness of the wall surface suction self-propelled device. The self-propelled ability of the wall surface suction self-propelled device in the ascending direction is increased, so that the mass of the working device mounted on the wall surface suction self-propelled device can be increased, and the working capacity is increased.
以下、本発明に従って構成された装置の好適実施例について、添付図を参照して説明する。 Hereinafter, preferred embodiments of the apparatus configured according to the present invention will be described with reference to the attached drawings.
以下、本発明に従って構成された装置の第1の好適実施例について、添付図を参照して説明する。
図1乃至図4を参照して説明すると、
図示の装置は、台車フレーム11と、台車フレーム11の4隅に配置された4個の車輪駆動モータ13と、車輪駆動モータ13の各々の出力軸に装着された車輪12と、吸盤または磁石などの壁面1へ吸着する手段(図示せず)から構成された壁面吸着自走装置10と;
ワイヤロープ巻取ドラムを備えたドラム式ワイヤロープ牽引機31と、ワイヤロープ牽引機31に巻き取られるワイヤロープ32から構成され、壁面1に向かって左側の地上に配置されたウインチユニット1と;壁面1に向かって左側の上部壁面に配置された滑車38と;台車フレーム11の左側の上部に配置されたシーブ35と;シーブ35の軸に揺動自在に装着されたワイヤロープ案内揺動アーム36と;回転軸がシーブ35の軸に装着され、ハウジングがワイヤロープ案内揺動アーム36に装着され、ワイヤロープ案内揺動アーム36の揺動角度を計測する角度センサー37と;台車フレーム11の左側の下部に配置され、ワイヤロープ32の端部のフック33に連結された荷重センサー34と;
ワイヤロープ巻取ドラムを備えたドラム式ワイヤロープ牽引機41と、ワイヤロープ牽引機41に巻き取られるワイヤロープ42から構成され、壁面1に向かって右側の地上に配置されたウインチユニット2と;壁面1に向かって右側の上部壁面に配置された滑車48と;台車フレーム11の右側の上部に配置されたシーブ45と;シーブ45の軸に揺動自在に装着されたワイヤロープ案内揺動アーム46と;回転軸がシーブ45の軸に装着され、ハウジングがワイヤロープ案内揺動アーム46に装着され、ワイヤロープ案内揺動アーム46の揺動角度を計測する角度センサー47と;台車フレーム11の右側の下部に配置され、ワイヤロープ42の端部のフック43に連結された荷重センサー44;
から構成されている。
図1乃至図4において、壁面吸着自走装置10は、その車輪12の回転軸が重心線2に直交した姿勢で壁面1に吸着しており、その吸着力については、壁面吸着自走装置10の自重Wを壁面上に保持可能な吸着力を具備しており、車輪駆動モータ13が駆動されることにより壁面吸着自走装置10は壁面に沿って重力線に平行な方向に上昇または下降することが出来る。
図1乃至図4において、壁面1に向かって左側にあるウインチユニット1において、ワイヤロープ1の壁面吸着自走装置10に作用する張力をF1とし、F1の水平方向の分力をf11とし、F1の垂直方向の分力をf12とし、ワイヤロープ1と重力線とが成す角度をθ1とし、ワイヤロープ1の最大張力すなわちワイヤロープ牽引機1の定格張力をF1maxとし;
壁面1に向かって右側にあるウインチユニット2において、ワイヤロープ2の壁面吸着自走装置10に作用する張力をF2とし、F2の水平方向の分力をf21とし、F2の垂直方向の分力をf22とし、ワイヤロープ1と重力線とが成す角度をθ2とし、ワイヤロープ2の最大張力すなわちワイヤロープ牽引機2の定格張力をF2maxとし;
f11=f21とすれば;
下記の式1乃至式4が成立する。
(数2)
(式1)
f11=f21
(式2)
f11=F1*sinθ1
(式3)
f21=F2*sinθ2
(式2)(式3)を(式1)に代入すると、
(式4)
F1*sinθ1=F2*sinθ2
また、本発明のウインチシステムにおいては、下記の式1乃至式2に示す条件と、下記の式3乃至式4が成立する。
(数3)
(式1)
F1≦F1max
(式2)
F2≦F2max
(式3)
f12=F1*cosθ1
(式4)
f22=F2*cosθ2
また、本発明のウインチシステムにおいては、θ1≧θ2の時、f22のプリセット値としてf22≦F2max*cosθ2の任意の値がf22のプリセット値として設定され、
θ1<θ2の時、f12のプリセット値としてf12≦F1max*cosθ1の任意の値がf12のプリセット値として設定される。
Hereinafter, a first preferred embodiment of the apparatus configured according to the present invention will be described with reference to the attached drawings.
Explaining with reference to FIGS. 1 to 4,
The illustrated device includes a bogie frame 11, four wheel drive motors 13 arranged at four corners of the bogie frame 11, wheels 12 mounted on each output shaft of the wheel drive motor 13, suction cups, magnets, and the like. With the wall surface suction self-propelled device 10 composed of means (not shown) for sucking to the wall surface 1;
A drum type wire rope traction machine 31 equipped with a wire rope winding drum, and a winch unit 1 composed of a wire rope 32 wound by the wire rope traction machine 31 and arranged on the ground on the left side facing the wall surface 1; A slide 38 arranged on the upper wall surface on the left side facing the wall surface 1; a sheave 35 arranged on the upper left side of the trolley frame 11; and a wire rope guide swing arm oscillatingly mounted on the shaft of the sheave 35. 36; the rotation shaft is mounted on the axis of the sheave 35, the housing is mounted on the wire rope guide swing arm 36, and the angle sensor 37 that measures the swing angle of the wire rope guide swing arm 36; With the load sensor 34 located at the bottom on the left side and connected to the hook 33 at the end of the wire rope 32;
A drum type wire rope traction machine 41 equipped with a wire rope winding drum, and a winch unit 2 composed of a wire rope 42 wound by the wire rope traction machine 41 and arranged on the ground on the right side facing the wall surface 1; A slide 48 arranged on the upper wall surface on the right side facing the wall surface 1; a sheave 45 arranged on the upper right side of the trolley frame 11; and a wire rope guide swing arm oscillatingly mounted on the shaft of the sheave 45. 46; the rotation shaft is mounted on the shaft of the sheave 45, the housing is mounted on the wire rope guide swing arm 46, and the angle sensor 47 that measures the swing angle of the wire rope guide swing arm 46; A load sensor 44 located at the bottom on the right side and connected to a hook 43 at the end of the wire rope 42;
It is composed of.
In FIGS. 1 to 4, the wall surface suction self-propelled device 10 is attracted to the wall surface 1 in a posture in which the rotation axis of the wheel 12 is orthogonal to the center line 2, and the suction force thereof is the wall surface suction self-propelled device 10. It has a suction force that can hold its own weight W on the wall surface, and when the wheel drive motor 13 is driven, the wall surface suction self-propelled device 10 rises or falls in a direction parallel to the gravity line along the wall surface. Can be done.
In FIGS. 1 to 4, in the winch unit 1 on the left side facing the wall surface 1, the tension acting on the wall surface suction self-propelled device 10 of the wire rope 1 is F1, the horizontal component force of F1 is f11, and F1. The vertical component force of is f12, the angle formed by the wire rope 1 and the gravity line is θ1, and the maximum tension of the wire rope 1, that is, the rated tension of the wire rope traction machine 1 is F1max;
In the winch unit 2 on the right side of the wall surface 1, the tension acting on the wall surface suction self-propelled device 10 of the wire rope 2 is F2, the horizontal component force of F2 is f21, and the vertical component force of F2 is f21. Let f22, the angle formed by the wire rope 1 and the gravity line be θ2, and the maximum tension of the wire rope 2, that is, the rated tension of the wire rope traction machine 2 be F2max;
If f11 = f21;
The following equations 1 to 4 hold.
(Number 2)
(Equation 1)
f11 = f21
(Equation 2)
f11 = F1 * sinθ1
(Equation 3)
f21 = F2 * sinθ2
Substituting (Equation 2) (Equation 3) into (Equation 1)
(Equation 4)
F1 * sinθ1 = F2 * sinθ2
Further, in the winch system of the present invention, the conditions shown in the following formulas 1 and 2 and the following formulas 3 to 4 are satisfied.
(Number 3)
(Equation 1)
F1 ≤ F1max
(Equation 2)
F2 ≤ F2max
(Equation 3)
f12 = F1 * cosθ1
(Equation 4)
f22 = F2 * cosθ2
Further, in the winch system of the present invention, when θ1 ≧ θ2, an arbitrary value of f22 ≦ F2max * cos θ2 is set as a preset value of f22.
When θ1 <θ2, an arbitrary value of f12 ≦ F1max * cos θ1 is set as a preset value of f12 as a preset value of f12.
上述した装置の作用について説明する前に、
本発明のウインチシステムの目的とその達成手段について整理する。
すなわち、本発明のウインチシステムにおいては、2本のワイヤロープの各々のワイヤロープの張力を検出するための2個の荷重センサーと、2本のワイヤロープの各々のワイヤロープと重力線とがなす角度を検出するための2個の角度センサーが具備されており、本発明のウインチシステムにおいては、壁面吸着自走装置が壁面に沿って重力線と平行な方向かつ上昇方向へ自走するいわゆる上昇方向自走能力を補完するために、壁面吸着自走装置へ上昇方向への力を付与する。
本発明のウインチシステムの上記の目的を達成するためには、該ウインチシステムが壁面吸着自走装置へ上昇方向への力を付与するだけではなく、該ウインチシステムが壁面吸着自走装置の上昇方向への直進性を阻害してはならない。
すなわち、該直進性を阻害させないために、壁面吸着自走装置へ作用する2本のワイヤロープの各張力の水平方向の分力は同一の値とし、すなわちf11=f21とすることにより、2本のワイヤロープの各張力の水平方向の分力が互いに打ち消しあって壁面吸着自走装置へ作用しないようにする。
本発明のウインチシステムにおいては、2個の荷重センサーと2個の角度センサーから得られたデータを基にしてPLC(プログラマブルコントローラ)などの小型のコンピュータにより演算を行い、2個のワイヤロープ牽引機の各々の張力が自動制御される。
Before explaining the operation of the above-mentioned device,
The purpose of the winch system of the present invention and the means for achieving the same are summarized.
That is, in the winch system of the present invention, two load sensors for detecting the tension of each wire rope of the two wire ropes, and each wire rope and the gravity line of the two wire ropes form. Two angle sensors for detecting the angle are provided, and in the winch system of the present invention, the wall surface suction self-propelled device self-propells along the wall surface in a direction parallel to the gravity line and in an ascending direction. In order to complement the directional self-propelled ability, an ascending force is applied to the wall surface suction self-propelled device.
In order to achieve the above object of the winch system of the present invention, not only the winch system applies an ascending force to the wall surface suction self-propelled device, but also the winch system applies an ascending direction to the wall surface suction self-propelled device. Do not interfere with straightness to.
That is, in order not to impede the straightness, the horizontal component forces of the tensions of the two wire ropes acting on the wall surface suction self-propelled device are set to the same value, that is, by setting f11 = f21, the two wires are used. The horizontal component forces of each tension of the wire rope cancel each other out so as not to act on the wall surface suction self-propelled device.
In the winch system of the present invention, calculations are performed by a small computer such as a PLC (programmable controller) based on data obtained from two load sensors and two angle sensors, and two wire rope traction machines are used. Each tension of is automatically controlled.
以下に、上述の、本発明に従って構成された装置の第1の好適実施例の装置の作用について説明する。
図4は、壁面吸着自走装置へ作用するワイヤロープ32の張力F1とその分力、およびワイヤロープ42の張力F2とその分力を図示している。
角度センサー37により計測されたアナログ値がA/D変換器によりデジタル値に変換された後に小型のコンピュータへ入力されて演算が行われ、よってワイヤロープ32の張力F1の目標デジタル値が算出され、一方、荷重センサー34により計測された実際のワイヤロープ32の張力のアナログ値がA/D変換器によりデジタル値に変換されたワイヤロープ32の実デジタル値が該コンピュータへ入力され、次に、該コンピュータにてワイヤロープ32の張力F1の目標デジタル値とワイヤロープ32の実デジタル値とが比較され、該実デジタル値が該目標デジタル値より小さい場合には、該コンピュータは、該実デジタル値と該目標デジタル値とが同一値になるまで、ワイヤロープ牽引機31にワイヤロープ32の巻取り動作を実行させ、該実デジタル値が該目標デジタル値より大きい場合には、該コンピュータは、該実デジタル値と該目標デジタル値とが同一値になるまで、ワイヤロープ牽引機31にワイヤロープ32の巻戻し動作を実行させる。
同様に、角度センサー47により計測されたアナログ値がA/D変換器によりデジタル値に変換された後に小型のコンピュータへ入力されて演算が行われ、よってワイヤロープ42の張力F2の目標デジタル値が算出され、一方、荷重センサー44により計測された実際のワイヤロープ42の張力のアナログ値がA/D変換器によりデジタル値に変換されたワイヤロープ42の実デジタル値が該コンピュータへ入力され、次に、該コンピュータにてワイヤロープ42の張力F2の目標デジタル値とワイヤロープ42の実デジタル値とが比較され、該実デジタル値が該目標デジタル値より小さい場合には、該コンピュータは、該実デジタル値と該目標デジタル値とが同一値になるまで、ワイヤロープ牽引機41にワイヤロープ42の巻取り動作を実行させ、該実デジタル値が該目標デジタル値より大きい場合には、該コンピュータは、該実デジタル値と該目標デジタル値とが同一値になるまで、ワイヤロープ牽引機41にワイヤロープ42の巻戻し動作を実行させる。
上述のように、本発明のウインチシステムにおいては、壁面吸着自走装置10に対して、上昇方向への力であるf12とf22が付与されるものである。
Hereinafter, the operation of the device of the first preferred embodiment of the device configured according to the present invention described above will be described.
FIG. 4 illustrates the tension F1 of the wire rope 32 and its component force acting on the wall surface suction self-propelled device, and the tension F2 of the wire rope 42 and its component force.
After the analog value measured by the angle sensor 37 is converted into a digital value by the A / D converter, it is input to a small computer and calculated, so that the target digital value of the tension F1 of the wire rope 32 is calculated. On the other hand, the analog value of the tension of the actual wire rope 32 measured by the load sensor 34 is converted into a digital value by the A / D converter, and the actual digital value of the wire rope 32 is input to the computer, and then the computer is used. The target digital value of the tension F1 of the wire rope 32 is compared with the actual digital value of the wire rope 32 by a computer, and if the actual digital value is smaller than the target digital value, the computer is referred to the actual digital value. The wire rope traction machine 31 is made to perform the winding operation of the wire rope 32 until the target digital value becomes the same value, and when the actual digital value is larger than the target digital value, the computer is subjected to the actual digital value. The wire rope traction machine 31 is made to perform the rewinding operation of the wire rope 32 until the digital value and the target digital value become the same value.
Similarly, the analog value measured by the angle sensor 47 is converted into a digital value by the A / D converter and then input to a small computer for calculation, so that the target digital value of the tension F2 of the wire rope 42 is set. On the other hand, the analog value of the tension of the actual wire rope 42 measured by the load sensor 44 is converted into a digital value by the A / D converter, and the actual digital value of the wire rope 42 is input to the computer. In addition, the target digital value of the tension F2 of the wire rope 42 and the actual digital value of the wire rope 42 are compared by the computer, and if the actual digital value is smaller than the target digital value, the computer is in the actual state. The wire rope traction machine 41 is made to perform the winding operation of the wire rope 42 until the digital value and the target digital value become the same value, and when the actual digital value is larger than the target digital value, the computer is used. The wire rope traction machine 41 is made to perform the rewinding operation of the wire rope 42 until the actual digital value and the target digital value become the same value.
As described above, in the winch system of the present invention, f12 and f22, which are forces in the ascending direction, are applied to the wall surface suction self-propelled device 10.
なお、壁面吸着自走装置10の左側の上部に作用点があるf12の力の大きさと、壁面吸着自走装置10の右側の上部に作用点があるf22の力の大きさとを比較すると、それらの力の大きさに違いがあることに起因して壁面吸着自走装置10の直進性が阻害される可能性がある。
よって、図5に図示する本発明に従って構成された装置の第2の好適実施例の装置においては、f12の作用点とf22の作用点とが近接するように、すなわち、シーブ35およびワイヤロープ案内揺動アーム36と、シーブ45およびワイヤロープ案内揺動アーム46とが近接するように、つまり、シーブ35とシーブ45を2個ずつ配置することによりf12の作用点とf22の作用点との距離Lが最小になるように配置されている。
Comparing the magnitude of the force of f12 having an action point on the upper left side of the wall surface adsorption self-propelled device 10 with the magnitude of the force of f22 having an action point on the upper right side of the wall surface adsorption self-propelled device 10. There is a possibility that the straightness of the wall surface suction self-propelled device 10 may be hindered due to the difference in the magnitude of the force.
Therefore, in the device of the second preferred embodiment of the device configured according to the present invention shown in FIG. 5, the point of action of f12 and the point of action of f22 are close to each other, that is, the sheave 35 and the wire rope guide. The distance between the action point of f12 and the action point of f22 by arranging the swing arm 36 so that the sheave 45 and the wire rope guide swing arm 46 are close to each other, that is, by arranging two sheaves 35 and two sheaves 45. It is arranged so that L is minimized.
図6に図示する本発明に従って構成された装置の第3の好適実施例の装置においては、本発明に従って構成された装置の第1の好適実施例や本発明に従って構成された装置の第2の好適実施例とは異なって、エンドレス式ワイヤロープ牽引機(1)31Eとエンドレス式ワイヤロープ牽引機(2)41Eが、壁面吸着自走装置10の左側の部分と右側の部分にそれぞれ具備されている。
本発明の第3の好適実施例の装置においては、ワイヤロープ32の一方の端部は壁面1の上部39に固定され、他方の端部はエンドレス式ワイヤロープ牽引機(1)31Eに装着された後に下方に延びて垂れ下がっている。なお、壁面吸着自走装置10の左側下部に具備された荷重センサー34はフック33を介してエンドレス式ワイヤロープ牽引機(1)31Eの本体に連結されている。
 
また、ワイヤロープ42の一方の端部は壁面1の上部49に固定され、他方の端部はエンドレス式ワイヤロープ牽引機(2)41Eに装着された後に下方に延びて垂れ下がっている。なお、壁面吸着自走装置10の右側下部に具備された荷重センサー44はフック43を介してエンドレス式ワイヤロープ牽引機(2)41Eの本体に連結されている。
In the apparatus of the third preferred embodiment of the apparatus configured according to the present invention shown in FIG. 6, the first preferred embodiment of the apparatus configured according to the present invention and the second preferred embodiment of the apparatus configured according to the present invention are used. Unlike the preferred embodiment, the endless wire rope traction machine (1) 31E and the endless wire rope traction machine (2) 41E are provided on the left side portion and the right side portion of the wall surface suction self-propelled device 10, respectively. There is.
In the device of the third preferred embodiment of the present invention, one end of the wire rope 32 is fixed to the upper portion 39 of the wall surface 1, and the other end is attached to the endless wire rope traction machine (1) 31E. After that, it extends downward and hangs down. The load sensor 34 provided on the lower left side of the wall surface suction self-propelled device 10 is connected to the main body of the endless wire rope traction machine (1) 31E via a hook 33.

Further, one end of the wire rope 42 is fixed to the upper portion 49 of the wall surface 1, and the other end is attached to the endless wire rope traction machine (2) 41E and then extends downward and hangs down. The load sensor 44 provided on the lower right side of the wall surface suction self-propelled device 10 is connected to the main body of the endless wire rope traction machine (2) 41E via the hook 43.
本発明に従って構成された好適実施例の装置の効果を説明すると、
本発明のウインチシステムにおいては、壁面吸着自走装置の直進性が阻害されることなく、当該壁面吸着自走装置の上昇方向への自走する能力が当該ウインチシステムにより補完されるために、当該壁面吸着自走装置の上昇方向への自走能力が増大され、よって当該壁面吸着自走装置に搭載される作業装置の質量を増加させることが可能となり、作業能力が増大される、といった効果がある。
以上に本発明の装置の好適実施例について説明したが、本発明の装置は該好適実施例の他にも特許請求の範囲に従って種々実施例を考えることができる。
例えば、ワイヤロープと重力線とが成す角度を計測する角度センサーとして、ポテンショメーターの代わりに、レーザー光を使用した角度計測システムや、慣性センサーを使用した位置計測システムを使用することも可能である。
The effect of the apparatus of the preferred embodiment configured according to the present invention will be described.
In the winch system of the present invention, the winch system complements the ability of the wall surface suction self-propelled device to self-propell in the ascending direction without impairing the straightness of the wall surface suction self-propelled device. The self-propelled ability of the wall surface suction self-propelled device in the ascending direction is increased, so that the mass of the working device mounted on the wall surface suction self-propelled device can be increased, and the working capacity is increased. be.
Although the preferred embodiments of the apparatus of the present invention have been described above, various embodiments of the apparatus of the present invention can be considered in accordance with the claims in addition to the preferred embodiments.
For example, as an angle sensor for measuring the angle formed by the wire rope and the gravitational line, it is possible to use an angle measurement system using a laser beam or a position measurement system using an inertial sensor instead of the potential meter.
かくの通りの、壁面吸着自走装置のためのウインチシステムは、
「背景技術」の項において例示したように、貯油タンクや船体などの壁面を清掃したり、塗装したりする壁面吸着自走装置の機能を補完し、かつ性能を増大させるシステムとして好都合に用いることができる。
The winch system for the wall suction self-propelled device in this street is
As illustrated in the "Background Technology" section, it is conveniently used as a system that complements the functions of the wall adsorption self-propelled device that cleans and paints the walls of oil storage tanks and hulls, and enhances the performance. Can be done.
本発明に従って構成された装置の第1の好適実施例の装置構成を示す全体図。The whole view which shows the apparatus composition of the 1st preferred embodiment of the apparatus configured according to this invention. 本発明に従って構成された装置の第1の好適実施例の壁面吸着自走装置の拡大正面図。The enlarged front view of the wall surface adsorption self-propelled apparatus of the 1st preferred embodiment of the apparatus configured according to this invention. 図2に示す装置における右側面図。The right side view of the apparatus shown in FIG. 図2に示す装置において、2本のワイヤロープの各張力が作用する状態を示すベクトル図。In the apparatus shown in FIG. 2, a vector diagram showing a state in which each tension of two wire ropes acts. 本発明に従って構成された装置の第2の好適実施例の装置構成を示す全体図。The whole view which shows the apparatus composition of the 2nd preferred embodiment of the apparatus configured according to this invention. 本発明に従って構成された装置の第3の好適実施例の装置構成を示す全体図。The whole view which shows the apparatus composition of the 3rd preferred embodiment of the apparatus configured according to this invention.
壁面1
重力線2
壁面吸着自走装置10
台車フレーム11
車輪12
車輪駆動モータ13
ドラム式ワイヤロープ牽引機(1)31
ワイヤロープ32
フック33
荷重センサー34
シーブ35
ワイヤロープ案内揺動アーム36
角度センサー37
滑車38
ドラム式ワイヤロープ牽引機(2)41
ワイヤロープ42
フック43
荷重センサー44
シーブ45
ワイヤロープ案内揺動アーム46
角度センサー47
滑車48
ワイヤロープ32の張力F1
F1の水平方向の分力f11
F1の垂直方向の分力f12
ワイヤロープ32と重力線2とが成す角度θ1
ワイヤロープ42の張力F2
F2の水平方向の分力f21
F2の垂直方向の分力f22
ワイヤロープ42と重力線2とが成す角度θ2
エンドレス式ワイヤロープ牽引機(1)31E
エンドレス式ワイヤロープ牽引機(2)41E
 

 
Wall 1
Gravity line 2
Wall adsorption self-propelled device 10
Bogie frame 11
Wheel 12
Wheel drive motor 13
Drum type wire rope towing machine (1) 31
Wire rope 32
Hook 33
Load sensor 34
Sheave 35
Wire rope guide swing arm 36
Angle sensor 37
Pulley 38
Drum type wire rope towing machine (2) 41
Wire rope 42
Hook 43
Load sensor 44
Sheave 45
Wire rope guide swing arm 46
Angle sensor 47
Pulley 48
Tension F1 of wire rope 32
Horizontal component force f11 of F1
Vertical component force f12 of F1
The angle θ1 formed by the wire rope 32 and the gravitational line 2
Tension F2 of wire rope 42
Horizontal component force f21 of F2
Vertical component of F2 f22
The angle θ2 formed by the wire rope 42 and the gravity line 2
Endless wire rope towing machine (1) 31E
Endless wire rope towing machine (2) 41E


Claims (4)

  1. 負圧または磁石などの作用により壁面へ吸着し且つその壁面に沿って自走可能ないわゆる壁面吸着自走装置に装備された落下防止用のウインチシステムにおいて、
    該ウインチシステムは一対のウインチユニットから構成されており、
    各々のウインチユニットは、ワイヤロープと、該ワイヤロープを引っ張るワイヤロープ牽引機から構成されており、
    該ワイヤロープの一方の端部は壁面の上部もしくは地上に配置された該ワイヤロープ牽引機に装着されており、他方の端部は該壁面吸着自走装置に連結されており、
    あるいは、該ワイヤロープの一方の端部は該壁面吸着自走装置に具備された該ワイヤロープ牽引機に装着されており、他方の端部は壁面の上部に固定されており、
    各々のウインチユニットは、該ワイヤロープの張力を計測する荷重センサーと、該ワイヤロープと重力線とが成す角度を計測する角度センサーと、2個の荷重センサーと2個の角度センサーが計測したデータを演算して各々のワイヤロープの張力を自動制御する演算システムを具備しており、
    該壁面吸着自走装置に作用する2本のワイヤロープの張力のそれぞれを、重力線方向の分力と水平方向の分力に分解して、分力の方向が180度異なる2個の水平方向の分力の力の値がほぼ同一になるように、該演算システムにより各々のワイヤロープの張力を自動制御している、
    ことを特徴とする、壁面吸着自走装置のためのウインチシステム。
    In a fall prevention winch system equipped in a so-called wall surface suction self-propelled device that is attracted to a wall surface by the action of negative pressure or a magnet and can self-propell along the wall surface.
    The winch system consists of a pair of winch units.
    Each winch unit consists of a wire rope and a wire rope traction machine that pulls the wire rope.
    One end of the wire rope is attached to the wire rope traction machine located on the upper part of the wall surface or on the ground, and the other end is connected to the wall surface suction self-propelled device.
    Alternatively, one end of the wire rope is attached to the wire rope traction machine provided in the wall surface suction self-propelled device, and the other end is fixed to the upper part of the wall surface.
    Each winch unit has a load sensor that measures the tension of the wire rope, an angle sensor that measures the angle formed by the wire rope and the gravity line, and data measured by two load sensors and two angle sensors. It is equipped with a calculation system that automatically controls the tension of each wire rope by calculating
    Each of the tensions of the two wire ropes acting on the wall surface suction self-propelled device is decomposed into a component force in the direction of the gravity line and a component force in the horizontal direction, and the directions of the component forces are different in the two horizontal directions by 180 degrees. The tension of each wire rope is automatically controlled by the arithmetic system so that the values of the component forces of the above are almost the same.
    A winch system for wall suction self-propelled devices.
  2. 壁面に向かって左側にあるウインチユニット1において、ウインチユニット1のワイヤロープ1の該壁面吸着自走装置に作用する張力をF1とし、F1の水平方向の分力をf11とし、F1の垂直方向の分力をf12とし、ワイヤロープ1と重力線とが成す角度をθ1とし、ワイヤロープ1の最大張力すなわちワイヤロープ牽引機1の定格張力をF1maxとし、該壁面吸着自走装置の自重をWとし;
    壁面に向かって右側にあるウインチユニット2において、ウインチユニット2のワイヤロープ2の該壁面吸着自走装置に作用する張力をF2とし、F2の水平方向の分力をf21とし、F2の垂直方向の分力をf22とし、ワイヤロープ1と重力線とが成す角度をθ2とし、ワイヤロープ2の最大張力すなわちワイヤロープ牽引機2の定格張力をF2maxとし、該壁面吸着自走装置の自重をWとし;
    f11=f21とすれば;
    下記式1乃至式5が成立する、ことを特徴とする、請求項1に記載の壁面吸着自走装置のためのウインチシステム。
    (数1)
    (式1)
    F1*sinθ1=F2*sinθ2
    (式2)
    F1≦F1max
    (式3)
    F2≦F2max
    (式4)
    f12=F1*cosθ1
    (式5)
    f22=F2*cosθ2
    In the winch unit 1 on the left side facing the wall surface, the tension acting on the wall surface suction self-propelled device of the wire rope 1 of the winch unit 1 is F1, the horizontal component force of F1 is f11, and the vertical component of F1 is vertical. The component force is f12, the angle formed by the wire rope 1 and the gravity line is θ1, the maximum tension of the wire rope 1, that is, the rated tension of the wire rope traction machine 1 is F1max, and the own weight of the wall surface suction self-propelled device is W. ;
    In the winch unit 2 on the right side facing the wall surface, the tension acting on the wall surface suction self-propelled device of the wire rope 2 of the winch unit 2 is set to F2, the horizontal component force of F2 is set to f21, and the vertical component of F2 is set. The component force is f22, the angle formed by the wire rope 1 and the gravity line is θ2, the maximum tension of the wire rope 2, that is, the rated tension of the wire rope traction machine 2 is F2max, and the own weight of the wall surface suction self-propelled device is W. ;
    If f11 = f21;
    The winch system for a wall surface adsorption self-propelled device according to claim 1, wherein the following equations 1 to 5 are satisfied.
    (Number 1)
    (Equation 1)
    F1 * sinθ1 = F2 * sinθ2
    (Equation 2)
    F1 ≤ F1max
    (Equation 3)
    F2 ≤ F2max
    (Equation 4)
    f12 = F1 * cosθ1
    (Equation 5)
    f22 = F2 * cosθ2
  3. θ1≧θ2の時、f22のプリセット値としてf22≦F2max*cosθ2の任意の値をf22のプリセット値として設定し、
    θ1<θ2の時、f12のプリセット値としてf12≦F1max*cosθ1の任意の値をf12のプリセット値として設定する、ことを特徴とする、請求項1乃至請求項2に記載の壁面吸着自走装置のためのウインチシステム。
    When θ1 ≧ θ2, an arbitrary value of f22 ≦ F2max * cos θ2 is set as the preset value of f22, and the preset value of f22 is set.
    The wall surface adsorption self-propelled device according to claim 1 to 2, wherein when θ1 <θ2, an arbitrary value of f12 ≦ F1max * cos θ1 is set as a preset value of f12. Winch system for.
  4. f12の作用点とf22の作用点とを近接して配置した、ことを特徴とする、請求項1乃至請求項3に記載の壁面吸着自走装置のためのウインチシステム。

     
    The winch system for a wall surface adsorption self-propelled device according to claim 1 to 3, wherein the action point of f12 and the action point of f22 are arranged close to each other.

PCT/JP2021/044593 2020-12-09 2021-12-04 Winch system for self-propelled device that adheres to wall surface by suction WO2022124244A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020204632A JP2022091648A (en) 2020-12-09 2020-12-09 Winch system for wall surface suction self-propellent apparatus
JP2020-204632 2020-12-09

Publications (2)

Publication Number Publication Date
WO2022124244A2 true WO2022124244A2 (en) 2022-06-16
WO2022124244A3 WO2022124244A3 (en) 2022-08-18

Family

ID=81974841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044593 WO2022124244A2 (en) 2020-12-09 2021-12-04 Winch system for self-propelled device that adheres to wall surface by suction

Country Status (2)

Country Link
JP (1) JP2022091648A (en)
WO (1) WO2022124244A2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02252859A (en) * 1989-03-27 1990-10-11 Takenaka Komuten Co Ltd Movement control system of wall surface working robot
JPH058768A (en) * 1991-06-28 1993-01-19 Nishimatsu Constr Co Ltd Wall surface peel-off robot
JPH0655976U (en) * 1993-01-19 1994-08-02 トキコ株式会社 Wall mobile robot
JPH10265179A (en) * 1997-03-19 1998-10-06 Tokyu Constr Co Ltd Traction assisting device for moving body
CN103169419A (en) * 2013-03-25 2013-06-26 昆山瑞泰智能科技有限公司 High-rise wall surface cleaning robot moving device
JP2018095433A (en) * 2016-12-14 2018-06-21 株式会社タダノ Crane
CN209795648U (en) * 2019-04-26 2019-12-17 上海酷酷机器人有限公司 Anti-falling device of wall-climbing robot

Also Published As

Publication number Publication date
JP2022091648A (en) 2022-06-21
WO2022124244A3 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
CN102132036B (en) The equipment of wind turbine can be arrived
JP2006501115A (en) Cargo positioning method and equipment
JPWO2010013597A1 (en) Elevator equipment
US20040143364A1 (en) Methods and apparatus for eliminating instability in intelligent assist devices
TW200812903A (en) Device for preventing sway of suspended load
JP2014005117A (en) Device and method for inspecting long object in elevator hoistway
WO2007069311A1 (en) Elevator device
WO2022124244A2 (en) Winch system for self-propelled device that adheres to wall surface by suction
JP3868789B2 (en) Elevator equipment
JP2011184114A (en) Rope tension measuring device of elevator
US20220185635A1 (en) Apparatus for controlling a load suspended on a cord
JP3148168B2 (en) Swivel swing angle measuring device for club swing type crane lifting gear
JP2007145589A (en) Elevator control device
JP2000351548A (en) Passenger rescue operation device and passenger rescue operation method for elevator
JP2010215391A (en) Elevator device
JP2021042069A (en) Main rope swing suppression device
JP2016120995A (en) Swing angle detection method and device of crane
US11542126B2 (en) Crane and method for acquiring length of slinging tool
CN111620256A (en) Hoisting device and hoisting system
WO2020213090A1 (en) Elevator device and method of diagnosing wear of pulley thereof
JP4481031B2 (en) Trolley crane and its steadying method
JP3131429B1 (en) Crane runout detector
JP6280395B2 (en) Rope trolley crane runout angle measuring device
JP6988946B2 (en) Main rope runout suppression device
JP3691355B2 (en) Loading device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903347

Country of ref document: EP

Kind code of ref document: A2