WO2022124200A1 - Method for propagating vegetative-reproduction plant, and method for cultivating same - Google Patents

Method for propagating vegetative-reproduction plant, and method for cultivating same Download PDF

Info

Publication number
WO2022124200A1
WO2022124200A1 PCT/JP2021/044337 JP2021044337W WO2022124200A1 WO 2022124200 A1 WO2022124200 A1 WO 2022124200A1 JP 2021044337 W JP2021044337 W JP 2021044337W WO 2022124200 A1 WO2022124200 A1 WO 2022124200A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
medium
container
vegetatively
propagating
Prior art date
Application number
PCT/JP2021/044337
Other languages
French (fr)
Japanese (ja)
Inventor
慎也 牧
Original Assignee
国立大学法人長岡技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人長岡技術科学大学 filed Critical 国立大学法人長岡技術科学大学
Publication of WO2022124200A1 publication Critical patent/WO2022124200A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G2/00Vegetative propagation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/25Root crops, e.g. potatoes, yams, beet or wasabi
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/04Plant cells or tissues

Definitions

  • the present invention relates to a method for growing and cultivating a vegetatively propagating plant.
  • the present invention relates to a method for growing and cultivating a vegetatively propagating plant, which comprises a step of culturing a virus-free plant in a medium prepared in a light-transmitting container.
  • Vegetatively propagating plants such as potatoes, along with wheat, barley, and rice, have become extremely important as edible crops in recent years. Seed-breeding plants such as wheat, barley, and rice can harvest as many as 100 to 1,000 seeds from a single seed. On the other hand, vegetatively propagating plants can only harvest about 4 to 15 new individuals from one vegetative body. Therefore, research aimed at increasing the yield or improving the efficiency of cultivation has been conducted.
  • Non-Patent Document 1 describes a technique for mass breeding potatoes using a microtuber.
  • a cultivation technique using a microtuber there is a need for irradiation with artificial light and appropriate temperature control in the growth of plants.
  • a method for growing and cultivating a vegetatively propagating plant capable of efficiently achieving a high yield is provided.
  • the present inventors have conducted diligent research to solve the above problems, and by culturing virus-free plants together with a medium containing an inorganic component in a light-transmitting container, efficient and high-yield nutritional propagation is carried out. We found that we could harvest sex plants.
  • the present invention is: [1] A placement step of placing a virus-free plant of a vegetative propagating plant and a medium containing an inorganic component in a light-transmitting container, and A method for propagating a vegetatively propagated plant, which comprises a culturing step of culturing the plant placed in the light-transmitting container in a field environment to obtain seedlings of the vegetatively propagated plant; [2]
  • the molar concentration of calcium ions in the medium is 1.0 to 10.5 mmol / L.
  • the molar concentration of phosphate ion in the medium is 0.4 to 4.4 mmol / L.
  • the inorganic component is ⁇ Calcium chloride, -Proliferation of the nutritionally fertile plant according to any one of [1] to [3], which is a dihydrogen phosphate salt selected from potassium dihydrogen phosphate and sodium dihydrogen phosphate, and magnesium sulfate.
  • the propagation and cultivation of vegetatively propagated plants according to this embodiment relates to the vegetatively propagated plants exemplified below.
  • the "vegetatively propagating plant” is a plant that propagates the next generation of plants and propagates individuals by vegetative propagation derived from vegetative organs.
  • the nutritional organ include rhizomes, tubers, corms, rhizomes, liners and the like derived from rhizomes, root masses derived from roots, and transverse roots.
  • the vegetative and fertile plant used in the present invention is preferably a plant derived from a rhizome such as a bulb, a tuber, a bulb, or a rhizome, and more preferably a plant derived from a tuber.
  • vegetatively propagating plants include potatoes, taros, garlic and sweet potatoes.
  • the vegetatively propagating plant is preferably potato or sweet potato, most preferably potato.
  • the breeding method and cultivation method according to the present invention are preferably applied to the cultivation of crops cultivated for food or feed among the vegetatively propagating plants exemplified above.
  • One aspect of the present invention relates to a method for propagating a vegetatively propagating plant, which method comprises the following steps: (I) A placement step of placing a virus-free plant of a vegetatively propagating plant and a medium containing an inorganic component in a light-transmitting container. (Ii) A culture step of culturing the plant placed on the light-transmitting container in a field environment to obtain seedlings of the vegetatively propagating plant.
  • virus-free plants are used as virus-free plants.
  • virus-free refers to a state in which the plant body is not infected with a virus, and it is known in the art that the plant body is virus-free. It can be confirmed by means, for example, by antigen-antibody reaction and PCR.
  • the method for obtaining a virus-free plant is not particularly limited, and the virus-free plant can be obtained by artificially growing the growth point of the plant by, for example, a known growth point culture technique.
  • growth point culture a tissue called growth point, in which cell division is actively performed in a plant, is taken out and cultured in a medium for growth point culture.
  • a tissue called growth point in which cell division is actively performed in a plant, is taken out and cultured in a medium for growth point culture.
  • the vegetatively propagated plant is a potato
  • the stem apex is mainly used for its culture. By performing this growth point culture, it becomes possible to produce a virus-free plant.
  • MS Middlerashige and Skoog
  • the medium contains water, major inorganic components, trace inorganic components, vitamins, organic compounds, agar, and a buffer for adjusting the pH within a range suitable for culture.
  • the MS medium contains calcium chloride dihydrate (440 mg / L), potassium dihydrogen phosphate (170 mg / L), magnesium sulfate heptahydrate (370 mg / L), and ammonium nitrate as the main inorganic components. It contains at least one of (1650 mg / L) and potassium nitrate (1900 mg / L).
  • the MS medium contains manganese sulfate pentahydrate (24.1 mg / L), zinc sulfate heptahydrate (8.6 mg / L), and copper sulfate pentahydrate (0.025 mg / L) as trace inorganic components.
  • L boric acid (6.2 mg / L), potassium iodide (0.83 mg / L), sodium molybdenate dihydrate (0.25 mg / L), cobalt chloride (II) hexahydrate (0) .025 mg / L), iron sulfate heptahydrate (27.8 mg / L), ethylenediamine tetraacetic acid-sodium (37.3 mg / L), and the like.
  • the above component is an example, and other components may or may not be added depending on the intended use.
  • the MS medium used for growth point culture is preferably a solid medium from the viewpoint of facilitating the intake of oxygen necessary for the growth of plants.
  • the MS medium contains, for example, 8 g / L to 15 g / L agar.
  • the MS medium may be used as a liquid medium as long as the node section can be kept in a stationary state in which sufficient oxygen can be ingested so as not to hinder the growth of the plant.
  • the node section is placed on a table so that the node section is not completely buried in the liquid medium, and a part of the node section is always in contact with the liquid medium. Be done.
  • growth point culture is performed by the following procedure. First, a piece of tissue containing a shoot apex, which is a growth point, is aseptically removed from a vegetatively propagated plant surface-sterilized with ethyl alcohol or a solution of sodium hypochlorite. Next, the removed tissue pieces are placed on the above-mentioned medium dispensed in a culture vessel and cultured for a predetermined period to grow a plant. Among the grown plants, the stem and leaf parts derived from one shoot apical meristem are called “shoots", and the plants composed of multiple shoots are called “multiple shoots" or “multi-buds”. Call.
  • the shoots or polyblasts are cultured for an appropriate period until the size of each shoot is about 5 to 10 cm, the work of placing the shoots in a light-transmitting container becomes easy, and the work efficiency and yield are improved. be able to.
  • the culture period of the growth point culture is too long, the amount of nutrients in the medium required for the growth of the polyblasts is insufficient and the polyblasts die, so the culture is completed in less than the period during which the polyblasts do not die. Must be placed in a light-transmitting container.
  • the culture vessel In growth point culture, it is desirable that the culture vessel is sealed in order to prevent contamination by germs that interfere with the culture. However, it is not always necessary to seal the culture vessel if measures are taken to prevent contamination by germs, such as adding pesticides to suppress the growth of germs.
  • a virus-free plant (that is, shoot) can be obtained by cutting, plucking, or cutting with scissors a shoot containing one or more buds from a shoot obtained by performing growth point culture as described above or a shoot containing one or more buds. Obtainable.
  • the virus-free plant of the vegetatively propagated plant used in the placement step is obtained from the shoot or polyblast of the vegetatively propagated plant cultured using the MS medium.
  • a virus-free plant body of a vegetatively propagating plant and a medium containing an inorganic component are placed in a light-transmitting container.
  • the light-transmitting container is used as a growth chamber.
  • the virus-free plant is placed on a medium dispensed in a light-transmitting container.
  • the plants placed on the medium are then subjected to growth for a predetermined period of time.
  • the shoots are placed at a density of 1 to 40, preferably 5 to 20, more preferably 10 to 15 per container.
  • the shoots have a density of, for example, 0.02 to 0.67 / cm 2 , preferably 0.08 to 0.34 / cm 2 , and more preferably 0.17 to 0.25 / cm 2 in the container. It is placed in.
  • the container used in this step is, for example, a magenta box (Merck & Co., Magenta TM vessel GA-7).
  • the medium placed in the light-transmitting container in the medium placing step is, for example, an improved MS medium.
  • the improved MS medium contains the same components as the MS medium, and specifically, in addition to water, major inorganic components, trace inorganic components, vitamins, and organic compounds, the pH is adjusted to a range suitable for culture. Contains a buffer for the purpose. As with the MS medium, other components may be added to the improved MS medium depending on the intended use, and not all the components contained in the MS medium may be added.
  • the improved MS medium contains an inorganic component selected from the group consisting of calcium ion, phosphate ion and magnesium ion.
  • the improved MS medium preferably contains all of calcium, phosphate and magnesium ions.
  • the inorganic component is selected from the group consisting of calcium chloride, phosphate (eg potassium dihydrogen phosphate and sodium dihydrogen phosphate), magnesium sulfate, ammonium nitrate and potassium nitrate.
  • the inorganic component is preferably calcium chloride, dihydrogen phosphate (selected from potassium dihydrogen phosphate and sodium dihydrogen phosphate) and magnesium sulfate.
  • the medium contains all of calcium chloride, potassium dihydrogen phosphate and magnesium sulfate as inorganic components.
  • the calcium ion concentration in the improved MS medium is -For example, 1.0 mmol / L to 10.5 mmol / L, -Preferably more than 3.0 mmol / L and 10.5 mmol / L or less, -More preferably 3.3 mmol / L to 9.0 mmol / L, -Especially more preferably 4.5 mmol / L to 9.0 mmol / L Is.
  • the improved MS medium preferably contains calcium chloride as an inorganic component.
  • Calcium chloride is preferably contained in the medium as calcium chloride dihydrate.
  • the concentration of calcium chloride dihydrate in the medium is -For example, 146 mg / L to 1540 mg / L, -Preferably more than 440 mg / L and 1540 mg / L or less, -More preferably, 484 mg / L to 1320 mg / L, -Especially more preferably 660 mg / L to 1320 mg / L Is.
  • Phosphate ion concentration in the improved MS medium -For example, 0.4 mmol / L to 4.4 mmol / L, -Preferably more than 1.2 mmol / L and 4.4 mmol / L or less, -More preferably 1.4 mmol / L to 3.7 mmol / L or less, -Especially more preferably 1.9 mmol / L to 3.7 mmol / L Is.
  • the improved MS medium preferably contains phosphate as an inorganic component.
  • the phosphate is preferably contained in the medium as potassium dihydrogen phosphate or sodium dihydrogen phosphate.
  • the concentration of potassium dihydrogen phosphate or sodium dihydrogen phosphate in the medium is -For example, 56 mg / L to 595 mg / L, -Preferably more than 170 mg / L and 595 mg / L or less, -More preferably, 187 mg / L to 510 mg / L, -Especially more preferably 255 mg / L to 510 mg / L Is.
  • the magnesium ion concentration in the improved MS medium is -For example, 0.5 mmol / L to 5.3 mmol / L, -Preferably more than 1.5 mmol / L and 5.3 mmol / L or less, -More preferably 1.7 mmol / L to 4.5 mmol / L, -Especially more preferably 2.3 mmol / L to 4.5 mmol / L Is.
  • the improved MS medium preferably contains magnesium sulfate as an inorganic component.
  • Magnesium sulfate is preferably contained in the medium as magnesium sulfate heptahydrate.
  • the concentration of magnesium sulfate in the medium is -For example, 123 mg / L to 1295 mg / L, -Preferably more than 370 mg / L and 1295 mg / L or less, -More preferably, 407 mg / L to 1110 mg / L, -Especially more preferably 555 mg / L to 1110 mg / L Is.
  • the components in the improved MS medium other than calcium chloride dihydrate, dihydrogen phosphate, and magnesium sulfate heptahydrate are contained in the same concentration as the MS medium.
  • the yield of vegetative and fertile plants can be further increased by keeping the ratio of the three components constant.
  • the molar concentration ratio of calcium ion, phosphate ion, and magnesium ion is preferably 30:12:15.
  • the weight ratio of calcium chloride dihydrate, potassium dihydrogen phosphate, and magnesium sulfate heptahydrate is as follows: calcium chloride dihydrate: potassium dihydrogen phosphate: magnesium sulfate at a ratio of 44:17:37. It is preferably contained. This molar concentration ratio or weight ratio is not strict, and it is possible to increase the yield by maintaining the above ratio.
  • the concentrations of these three components are not limited as long as the above-mentioned molar concentration ratio or weight ratio is maintained, and are higher than those of the conventional MS medium. It may be low concentration or high concentration. However, if the concentration is too low, the nutrients required for culturing will be insufficient and the plant may not grow to the specified size or die, so specifically up to about 1/3 of the MS medium. Concentration is preferred. If the concentration is too high, growth failure will occur and the growth of the plant will be slowed down. Therefore, the concentration is preferably up to about 3.5 times. More preferably, the concentration of the above three components is higher than that of the MS medium.
  • the medium may contain at least one of boric acid, cobalt chloride, copper sulfate, iron sulfate, manganese sulfate, potassium iodide, sodium molybdate, zinc sulfate and the like as trace inorganic components.
  • trace inorganic components can be appropriately adjusted according to the desired culture environment and the type and variety of vegetatively propagating plants to be cultured.
  • the virus-free plant is placed in a light-transmitting container.
  • the light-transmitting container has a transmittance of 5% or more, more preferably 60% or more, and even more preferably 70% or more with respect to natural light.
  • the transmittance of the container is measured by a method known in the art.
  • the material of the light-transmitting container may be any material as long as a material sufficient for growing the chute is transmitted through the container to irradiate the chute, and examples of the material of the container include glass, resin, and rubber.
  • the resin container may be a polyethylene resin, a cyclic polyolefin resin, a fluororesin, a polystyrene resin, a polypropylene resin, or an acrylonitrile-butadiene-.
  • ABS resin Stylium copolymer
  • AS resin acrylonitrile-styrene copolymer
  • polyvinyl chloride resin fluororesin, poly (meth) acrylic resin, polycarbonate resin, polyester resin, polysulfone resin, Polyphenylene sulfide resin, polyether sulfone resin, polyamide resin, polyimide resin, polyamideimide resin, polyarylphthalate resin, silicone resin, polyurethane resin, acetal resin, cellulose resin, and mixtures thereof.
  • a container containing a polyethylene-based resin, a polypropylene-based resin, a polyvinyl chloride-based resin, and more preferably a polyethylene-based resin as a main component is preferably used.
  • the shape, size and thickness of the resin container may be any shape and size that does not hinder the growth of the chute and that is not physically damaged.
  • the resin container has a size of, for example, 50 mm to 2,000 mm square, more preferably 700 mm to 1,000 mm square, still more preferably 100 mm to 500 mm square, and, for example, 1 ⁇ m to 2,000 ⁇ m, more preferably 5 ⁇ m to.
  • It is a bag-shaped container having a thickness of 500 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m.
  • a so-called plastic bag is typically used as the bag-shaped container.
  • the culturing step includes a plurality of culturing steps, that is, the proliferation can be divided into a plurality of steps.
  • a glass container or a hard resin container that can easily maintain a sealed state may be used as a light-transmitting container from the viewpoint of preventing contamination by various germs.
  • a soft resin container can be used from the viewpoint of cost.
  • 10 mL to 5,000 mL, more preferably 50 mL to 1,000 mL, and even more preferably 100 mL to 500 mL of the improved MS medium are dispensed into the light transmission container.
  • Virus-free plants are placed on the dispensed medium.
  • the "field environment” refers to the same environment as the natural environment in which the temperature and the amount of solar radiation are not artificially controlled. Examples of the field include a house and an open field, and therefore the field environment is, for example, a house environment and an open field environment.
  • the culture step may include multiple stages. By dividing the growth into a plurality of stages, it is possible to efficiently culture and grow by using an appropriate light-transmitting container according to the growth condition such as the number and size of shoots. Specifically, a container that is too large for the size of a plant (specifically, a shoot) uses more medium than necessary, and in addition, workability is poor. On the other hand, the plant stops growing when it reaches the size of the container. Therefore, it is possible to efficiently cultivate and proliferate a plant by selecting a container having an appropriate size according to the growth condition of the plant at each stage.
  • Culturing is carried out for a period of 1 to 250 days, preferably 3 to 180 days, and more preferably 7 to 100 days.
  • the culture period is the total period of each step when the culture step is divided into a plurality of steps.
  • Culturing is carried out in a field environment with the plant placed in a light-transmitting container.
  • the work of shifting to the cultivation process becomes easy, and the work efficiency and yield can be improved. If the period of the culturing process is too short, the plants that have undergone major environmental changes may die without adapting to the natural environment when the cultivation process is started. If the duration of the culturing process is too long, the plant may die due to lack of the components in the medium required for the growth of the plant.
  • the light-transmitting container be sealed to prevent contamination by germs that hinder the culture and growth.
  • measures are taken to prevent contamination by germs, such as adding pesticides that suppress the growth of germs, it is not always necessary to seal the light-transmitting container.
  • normal house cultivation is not required without special temperature control equipment such as a heater and cooling, and sunshine duration control equipment such as LED lights.
  • special temperature control equipment such as a heater and cooling, and sunshine duration control equipment such as LED lights.
  • it can be cultivated in a field environment such as open field cultivation.
  • the virus-free plant (specifically, shoot) obtained by the above-mentioned vegetative point culture is placed in a light-transmitting container containing a medium having a predetermined composition, and is placed in a field.
  • a predetermined composition a medium having a predetermined composition
  • seedlings of vegetatively propagating plants are obtained.
  • the seedlings of vegetatively propagated plants thus obtained can be directly planted in the field and used for cultivation without performing the usual acclimation step.
  • Another aspect of the present invention relates to a method for cultivating a vegetatively propagated plant, which comprises a cultivation step for cultivating a plant body propagated by the above-mentioned breeding method, that is, a seedling of a vegetatively propagated plant.
  • a cultivation step for cultivating a plant body propagated by the above-mentioned breeding method that is, a seedling of a vegetatively propagated plant.
  • seedlings of vegetatively propagating plants can be directly planted and used for cultivation without performing an acclimation step.
  • seedlings of vegetatively propagated plants are cultivated in a field environment such as an open field or a house environment.
  • the seedlings of the vegetatively propagating plant obtained by the above-mentioned culture step are planted in a field environment such as an open field cultivation or a house cultivation environment and cultivated. More specifically, in this step, one or more seedlings obtained by the culturing step are collected and planted in the field respectively.
  • the cultivation environment and cultivation period it is possible to adopt a normal cultivation period in a known cultivation environment such as open field cultivation or house cultivation. When the cultivation period is reached, the harvested product is appropriately harvested by a harvesting method according to the type and variety of vegetatively propagating plants.
  • acclimation means that when a plant is moved to a different environment, the plant is adapted to the different environment for a certain period of time. This is done to reduce the stress on the seedlings from major environmental changes when transferring the seedlings from an in vitro environment to a field environment.
  • acclimation usually covers the plant (specifically chute) with a light-transmitting vinyl or plastic container to maintain humidity. At this time, in order to maintain the humidity, water is sprayed into the container by using a mist or the like.
  • the plant can grow without dying by directly placing the plant in a new environment without performing "acclimation".
  • watering is not essential for plants in a new environment, but watering increases the retention rate, and watering can grow twice as much as without watering. know. Therefore, according to the breeding method or cultivation method according to the present invention, it is possible to increase the yield of vegetatively propagating plants in a short period of time, and it is possible to efficiently realize a high yield.
  • a virus-free plant is grown in a field environment using a light-transmitting container dispensed with a medium having a specific ionic composition or component composition. Therefore, it is possible to efficiently increase the yield as compared with the conventional cultivation that requires a culture facility such as a microtuber or a minituber. Further, in the culturing step, it is possible to increase the yield more efficiently by using a medium containing a specific inorganic component in a certain ratio.
  • the numerical range indicated by using “-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper or lower limit of the numerical range at one stage may be optionally combined with the upper or lower limit of the numerical range at another stage.
  • ⁇ 1> Acquisition of plants by growth point culture In order to obtain virus-free plants (specifically, shoots), growth point culture was first performed.
  • Potato Solanum tuberosum
  • the composition of the MS solid medium used is shown in Table 1 below.
  • Table 2 shows the concentrations of the three major ions of calcium ion, phosphate ion, and magnesium ion among the components of this MS solid medium.
  • the virus-free shoot obtained by the growth point culture in ⁇ 1> above was placed on a medium in which 40 mL was dispensed in a light-transmitting container and cultured for 21 days (first culture).
  • MS solid medium was used for Comparative Example, and improved MS solid medium was used for Examples 1 to 6.
  • virus-free shoots were cultured using a medium having the same composition as the MS solid medium shown in Table 1, and shoots used in the second culture were obtained.
  • Example 1 the concentrations of calcium chloride dihydrate, potassium dihydrogen phosphate, and magnesium sulfate heptahydrate are as shown in Table 3, and the concentrations of other components are as shown in Table 1.
  • a virus-free shoot was cultured using the improved MS solid medium, and the shoot used in the second culture was obtained.
  • a magenta box manufactured by Merck, Magenta (trademark) vessel GA-7 of 77 mm ⁇ 77 mm ⁇ 97 mm, which is a container made of hard resin, was used as a light-transmitting container during the first culture, and a chute was used. After placing, the container was sealed.
  • Example 5 a glass container was used as the light-transmitting container during the first culture.
  • Example 5 after the chute was placed, the first culture was performed in an open system without sealing the container, and in Example 6, after the chute was placed, the first culture was performed with the container sealed. ..
  • Comparative Examples and Examples 1 to 6 were shots, which are a mass of plants (polyblasts) obtained in the first culture, and 150 mm ⁇ 260 mm containing 100 mL of medium.
  • the cells were placed in a polyethylene bag (colorless and transparent) having a thickness of 30 ⁇ m on all sides. At this time, a 60 mm ⁇ 40 mm polystyrene container was used in the polyethylene bag to support the chute.
  • the same medium as in the first culture was used in all of Comparative Examples and Examples 1 to 6.
  • the seedlings could be cultivated in all the examples and comparative examples, although the growth condition of the shoots was different.
  • Table 3 shows the molar concentrations of each substance and each ion corresponding to the medium concentrations of Comparative Examples and Examples 1 to 6.
  • Examples 1 and 3 cultivated by the cultivation method according to the present invention were able to harvest a large amount of tubers.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Forests & Forestry (AREA)
  • Ecology (AREA)
  • Medicinal Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Sustainable Development (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Cultivation Of Plants (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

[Problem] To provide a method for propagating a vegetative-reproduction plant, and a method for cultivating said plant, with which it is possible to efficiently achieve a high yield. [Solution] This method for propagating a vegetative-reproduction plant includes: a placement step for placing a virus-free plant body of the vegetative-reproduction plant, and a medium including an inorganic component, in a light-transmitting container; and a cultivation step for cultivating the plant body placed in the light-transmitting container in a field environment and obtaining a seedling of the vegetative-reproduction plant.

Description

栄養繁殖性植物の増殖方法および栽培方法How to propagate and cultivate vegetatively propagating plants
 本発明は、栄養繁殖性植物の増殖方法および栽培方法に関する。特に、ウィルスフリーの植物体を、光透過性容器中に用意された培地中で培養する工程を含む、栄養繁殖性植物の増殖方法および栽培方法に関する。 The present invention relates to a method for growing and cultivating a vegetatively propagating plant. In particular, the present invention relates to a method for growing and cultivating a vegetatively propagating plant, which comprises a step of culturing a virus-free plant in a medium prepared in a light-transmitting container.
 ジャガイモに代表される栄養繁殖性の植物は、小麦、大麦、及び米と並んで、食用の作物としてその重要性が近年非常に高まっている。小麦、大麦、及び米などの種子繁殖性の植物は、1個の種子から100個~1,000個もの種子を収穫することが可能である。他方、栄養繁殖性の植物は、1個の栄養体からせいぜい4~15個程度の新個体を収穫できるにとどまる。したがって、その収量の増加又は栽培の効率化を目指した研究が行われるようになってきた。 Vegetatively propagating plants such as potatoes, along with wheat, barley, and rice, have become extremely important as edible crops in recent years. Seed-breeding plants such as wheat, barley, and rice can harvest as many as 100 to 1,000 seeds from a single seed. On the other hand, vegetatively propagating plants can only harvest about 4 to 15 new individuals from one vegetative body. Therefore, research aimed at increasing the yield or improving the efficiency of cultivation has been conducted.
 非特許文献1は、マイクロチューバーを利用したジャガイモの大量増殖技術が記載されている。しかし、このようなマイクロチューバーを用いた栽培技術においては、植物体の増殖において、人工光の照射や適切な温度管理の必要性があった。 Non-Patent Document 1 describes a technique for mass breeding potatoes using a microtuber. However, in such a cultivation technique using a microtuber, there is a need for irradiation with artificial light and appropriate temperature control in the growth of plants.
 そこで、本発明においては、効率的に高い収量を実現することが可能な栄養繁殖性植物の増殖方法および栽培方法を提供する。 Therefore, in the present invention, a method for growing and cultivating a vegetatively propagating plant capable of efficiently achieving a high yield is provided.
 本発明者らは、上記課題を解決するために鋭意研究を行い、ウィルスフリーの植物体を、無機成分を含む培地とともに光透過性容器内で培養することで、効率的に高い収量で栄養繁殖性植物を収穫できることを見出した。すなわち、本発明は:
[1]栄養繁殖性植物のウィルスフリーの植物体、および、無機成分を含む培地を、光透過性容器内に載置する載置工程と、
 前記光透過性容器に載置された前記植物体を圃場環境下で培養して前記栄養繁殖性植物の苗を得る培養工程と
を含む栄養繁殖性植物の増殖方法;
[2]前記培地中のカルシウムイオンのモル濃度が、1.0~10.5mmol/Lであり、
 前記培地中のリン酸イオンのモル濃度が、0.4~4.4mmol/Lであり、
 前記培地中のマグネシウムイオンのモル濃度が、0.5~5.3mmol/Lである、[1]に記載の増殖方法;
[3]前記培地中のカルシウムイオン:リン酸イオン:マグネシウムイオンのモル濃度比が、30:12:15である、[1]または[2]に記載の増殖方法;
[4]前記無機成分が、
・塩化カルシウム、
・リン酸二水素カリウムおよびリン酸二水素ナトリウムから選択されるリン酸二水素塩、および
・硫酸マグネシウム
である、[1]~[3]のいずれか1項に記載の栄養繁殖性植物の増殖方法;
[5]前記無機成分が、塩化カルシウム二水和物、リン酸二水素カリウムおよび硫酸マグネシウム七水和物である、[1]~[4]のいずれか1項に記載の栄養繁殖性植物の増殖方法;
[6]前記塩化カルシウム二水和物:前記リン酸二水素カリウム:前記硫酸マグネシウム七水和物の重量比が、44:17:37である、[5]に記載の増殖方法;
[7]前記光透過性容器が、ガラス製容器又は樹脂製容器である、[1]~[6]のいずれか1項に記載の栄養繁殖性植物の増殖方法;
[8]前記樹脂製容器は、ポリエチレン系樹脂、ポリプロピレン系樹脂およびポリ塩化ビニル系樹脂から選択される少なくとも一つを含み、かつ、袋状容器である、[1]~[7]のいずれか一項に記載の増殖方法;
[9]前記植物体を、圃場環境下で、1日~250日間培養する、[1]~[8]のいずれか1項に記載の増殖方法;
[10][1]~[9]のいずれか1項に記載の増殖方法により得られた前記栄養繁殖性植物の苗を順化させずに圃場環境下に植え付け栽培する工程を含む、栄養繁殖性植物の栽培方法;
[11]前記栄養繁殖性植物が、地下茎由来の植物である、[10]に記載の栽培方法;
[12]前記栄養繁殖性植物が、ジャガイモ又はサツマイモである、[10]または[11]に記載の栽培方法
に関する。
The present inventors have conducted diligent research to solve the above problems, and by culturing virus-free plants together with a medium containing an inorganic component in a light-transmitting container, efficient and high-yield nutritional propagation is carried out. We found that we could harvest sex plants. That is, the present invention is:
[1] A placement step of placing a virus-free plant of a vegetative propagating plant and a medium containing an inorganic component in a light-transmitting container, and
A method for propagating a vegetatively propagated plant, which comprises a culturing step of culturing the plant placed in the light-transmitting container in a field environment to obtain seedlings of the vegetatively propagated plant;
[2] The molar concentration of calcium ions in the medium is 1.0 to 10.5 mmol / L.
The molar concentration of phosphate ion in the medium is 0.4 to 4.4 mmol / L.
The growth method according to [1], wherein the molar concentration of magnesium ions in the medium is 0.5 to 5.3 mmol / L;
[3] The growth method according to [1] or [2], wherein the molar concentration ratio of calcium ion: phosphate ion: magnesium ion in the medium is 30:12:15;
[4] The inorganic component is
・ Calcium chloride,
-Proliferation of the nutritionally fertile plant according to any one of [1] to [3], which is a dihydrogen phosphate salt selected from potassium dihydrogen phosphate and sodium dihydrogen phosphate, and magnesium sulfate. Method;
[5] The nutrient-fertile plant according to any one of [1] to [4], wherein the inorganic component is calcium chloride dihydrate, potassium dihydrogen phosphate and magnesium sulfate heptahydrate. Proliferation method;
[6] The growth method according to [5], wherein the weight ratio of the calcium chloride dihydrate: the potassium dihydrogen phosphate: the magnesium sulfate heptahydrate is 44:17:37;
[7] The method for propagating a vegetatively propagating plant according to any one of [1] to [6], wherein the light-transmitting container is a glass container or a resin container;
[8] The resin container is any one of [1] to [7], which contains at least one selected from polyethylene-based resin, polypropylene-based resin, and polyvinyl chloride-based resin, and is a bag-shaped container. The proliferation method according to paragraph 1;
[9] The growth method according to any one of [1] to [8], wherein the plant is cultured in a field environment for 1 to 250 days;
[10] Vegetative propagation including a step of planting and cultivating seedlings of the vegetatively propagating plant obtained by the propagation method according to any one of [1] to [9] in a field environment without acclimatization. Cultivation method of sex plants;
[11] The cultivation method according to [10], wherein the vegetatively propagated plant is a plant derived from a rhizome;
[12] The cultivation method according to [10] or [11], wherein the vegetatively propagating plant is a potato or a sweet potato.
 本発明により、効率的に高い収量を実現することが可能な栄養繁殖性植物の増殖方法および栽培方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for growing and cultivating a vegetatively propagating plant that can efficiently achieve a high yield.
 以下では、本発明の増殖方法および栽培方法を実施する形態を詳細に説明する。ただし、その実施形態は本発明を説明するための一例であり、本発明を当該実施形態のみに限定することを意図するものではない。 Hereinafter, embodiments in which the breeding method and cultivation method of the present invention are carried out will be described in detail. However, the embodiment is an example for explaining the present invention, and the present invention is not intended to be limited only to the embodiment.
 本実施形態にかかる栄養繁殖性植物の増殖および栽培は、以下で例示する栄養繁殖性植物に関するものである。 The propagation and cultivation of vegetatively propagated plants according to this embodiment relates to the vegetatively propagated plants exemplified below.
 本明細書において、「栄養繁殖性植物」は、栄養器官由来の栄養繁殖によって次の世代の植物を繁殖させ個体を増殖させる植物である。栄養器官としては、地下茎に由来する鱗茎、塊茎、球茎、根茎、及びライナーなど、根に由来する根塊、及び横走根などが挙げられる。本発明において用いられる栄養繁殖性植物は、好ましくは鱗茎、塊茎、球茎、根茎などの地下茎由来の植物であり、より好ましくは、塊茎由来の植物である。栄養繁殖性植物としては、例えば、ジャガイモ、サトイモ、ニンニク、サツマイモが挙げられる。本明細書において、栄養繁殖性植物は、好ましくは、ジャガイモ又はサツマイモであり、最も好ましくはジャガイモである。本発明にかかる増殖方法および栽培方法は、上記のとおり例示した栄養繁殖性植物のうち、食用又は飼料用に栽培される作物の栽培に適用するのが好ましい。 In the present specification, the "vegetatively propagating plant" is a plant that propagates the next generation of plants and propagates individuals by vegetative propagation derived from vegetative organs. Examples of the nutritional organ include rhizomes, tubers, corms, rhizomes, liners and the like derived from rhizomes, root masses derived from roots, and transverse roots. The vegetative and fertile plant used in the present invention is preferably a plant derived from a rhizome such as a bulb, a tuber, a bulb, or a rhizome, and more preferably a plant derived from a tuber. Examples of vegetatively propagating plants include potatoes, taros, garlic and sweet potatoes. As used herein, the vegetatively propagating plant is preferably potato or sweet potato, most preferably potato. The breeding method and cultivation method according to the present invention are preferably applied to the cultivation of crops cultivated for food or feed among the vegetatively propagating plants exemplified above.
 本発明の一側面は、栄養繁殖性植物の増殖方法に関し、当該増殖方法は、以下の工程を含む:
(i)栄養繁殖性植物のウィルスフリーの植物体、および、無機成分を含む培地を、光透過性容器内に載置する載置工程と、
(ii)前記光透過性容器に載置された前記植物体を圃場環境下で培養して前記栄養繁殖性植物の苗を得る培養工程。
One aspect of the present invention relates to a method for propagating a vegetatively propagating plant, which method comprises the following steps:
(I) A placement step of placing a virus-free plant of a vegetatively propagating plant and a medium containing an inorganic component in a light-transmitting container.
(Ii) A culture step of culturing the plant placed on the light-transmitting container in a field environment to obtain seedlings of the vegetatively propagating plant.
1.載置工程
1.1.植物体
 本工程において、栄養繁殖性植物は、ウィルスフリーの植物体として用いられる。ここで、栄養繁殖性植物の植物体に関し、「ウィルスフリー」の語は、植物体がウイルスに感染していない状態のことを言い、植物体がウィルスフリーであることは、当該分野で既知の手段によって、例えば、抗原抗体反応およびPCRによって確認することができる。ウィルスフリーの植物体の入手方法は、特に限定されず、ウィルスフリーの植物体は、例えば、公知の生長点培養技術によって植物体の生長点を人工的に成長させて入手することができる。
1. 1. Placement process 1.1. Plants In this step, vegetatively propagated plants are used as virus-free plants. Here, with respect to the plant body of a vegetative breeding plant, the term "virus-free" refers to a state in which the plant body is not infected with a virus, and it is known in the art that the plant body is virus-free. It can be confirmed by means, for example, by antigen-antibody reaction and PCR. The method for obtaining a virus-free plant is not particularly limited, and the virus-free plant can be obtained by artificially growing the growth point of the plant by, for example, a known growth point culture technique.
 生長点培養では、植物において細胞分裂が盛んに行われている生長点と呼ばれる組織を取り出して、生長点培養用の培地で培養する。例えば、栄養繁殖性植物がジャガイモである場合、主に茎頂がその培養に用いられる。この生長点培養を行うことによって、ウィルスフリー化された植物体を作製することが可能となる。 In growth point culture, a tissue called growth point, in which cell division is actively performed in a plant, is taken out and cultured in a medium for growth point culture. For example, if the vegetatively propagated plant is a potato, the stem apex is mainly used for its culture. By performing this growth point culture, it becomes possible to produce a virus-free plant.
 生長点培養には、例えばMS(ムラシゲスクーグ)培地が用いられる。当該培地には、水、主要無機成分、微量無機成分、ビタミン類、有機化合物、寒天に加えて、培養に好適な範囲にpHを調整するためのバッファー等が含まれる。具体的には、MS培地は、主要無機成分として、塩化カルシウム二水和物(440mg/L)、リン酸二水素カリウム(170mg/L)、硫酸マグネシウム七水和物(370mg/L)、硝酸アンモニウム(1650mg/L)及び硝酸カリウム(1900mg/L)のうちの少なくともいずれか一つを含む。また、MS培地は、微量無機成分として、硫酸マンガン五水和物(24.1mg/L)、硫酸亜鉛七水和物(8.6mg/L)、硫酸銅五水和物(0.025mg/L)、ホウ酸(6.2mg/L)、ヨウ化カリウム(0.83mg/L)、モリブデン酸ナトリウム二水和物(0.25mg/L)、塩化コバルト(II)六水和物(0.025mg/L)、硫酸鉄七水和物(27.8mg/L)、エチレンジアミン四酢酸-ナトリウム(37.3mg/L)などのうちの少なくともいずれか一つを含む。なお、上記成分は一例であり、用途に応じて他の成分を添加してもよいし、上記成分の添加をしなくてもよい。 For growth point culture, for example, MS (Murashige and Skoog) medium is used. The medium contains water, major inorganic components, trace inorganic components, vitamins, organic compounds, agar, and a buffer for adjusting the pH within a range suitable for culture. Specifically, the MS medium contains calcium chloride dihydrate (440 mg / L), potassium dihydrogen phosphate (170 mg / L), magnesium sulfate heptahydrate (370 mg / L), and ammonium nitrate as the main inorganic components. It contains at least one of (1650 mg / L) and potassium nitrate (1900 mg / L). The MS medium contains manganese sulfate pentahydrate (24.1 mg / L), zinc sulfate heptahydrate (8.6 mg / L), and copper sulfate pentahydrate (0.025 mg / L) as trace inorganic components. L), boric acid (6.2 mg / L), potassium iodide (0.83 mg / L), sodium molybdenate dihydrate (0.25 mg / L), cobalt chloride (II) hexahydrate (0) .025 mg / L), iron sulfate heptahydrate (27.8 mg / L), ethylenediamine tetraacetic acid-sodium (37.3 mg / L), and the like. The above component is an example, and other components may or may not be added depending on the intended use.
 生長点培養で用いるMS培地は、植物体の成長に必要な酸素摂取を容易にする観点から、固形培地であることが望ましい。MS培地を固形培地として用いる場合には、MS培地は例えば、8g/L~15g/Lの寒天を含む。MS培地は、植物体の成長を妨げないよう節部切片が十分に酸素を摂取できる静置状態を保つことができれば、液体培地として用いても良い。液体培地の形態としては、節部切片が完全に液体培地の中に埋まらないよう、節部切片を台上に静置し節部切片の一部が常に液体培地に接触させる形態が一例としてあげられる。 The MS medium used for growth point culture is preferably a solid medium from the viewpoint of facilitating the intake of oxygen necessary for the growth of plants. When the MS medium is used as a solid medium, the MS medium contains, for example, 8 g / L to 15 g / L agar. The MS medium may be used as a liquid medium as long as the node section can be kept in a stationary state in which sufficient oxygen can be ingested so as not to hinder the growth of the plant. As an example of the form of the liquid medium, the node section is placed on a table so that the node section is not completely buried in the liquid medium, and a part of the node section is always in contact with the liquid medium. Be done.
 典型的には、生長点培養は、以下の手順で行われる。まず、エチルアルコールや次亜塩素酸ナトリウム溶液を用いて表面殺菌された栄養繁殖性植物から、生長点である茎頂を含む組織片を無菌的に取り出す。次いで、取り出された組織片を、培養用容器内に分注された上記培地上に置床し、所定期間培養することで植物体を成長させる。成長した植物体の中で、1つの茎頂分裂組織に由来する茎と葉の部位を「シュート」と称し、複数のシュートから構成される植物体を「マルチプルシュート」または「多芽体」と呼ぶ。 Typically, growth point culture is performed by the following procedure. First, a piece of tissue containing a shoot apex, which is a growth point, is aseptically removed from a vegetatively propagated plant surface-sterilized with ethyl alcohol or a solution of sodium hypochlorite. Next, the removed tissue pieces are placed on the above-mentioned medium dispensed in a culture vessel and cultured for a predetermined period to grow a plant. Among the grown plants, the stem and leaf parts derived from one shoot apical meristem are called "shoots", and the plants composed of multiple shoots are called "multiple shoots" or "multi-buds". Call.
 シュート又は多芽体の培養期間は、各シュートの大きさが5~10cm程度となるまで適切な期間で培養すると、光透過性容器への載置作業が容易となり、作業効率や収率を高めることができる。ただし、生長点培養の培養期間が長すぎると、多芽体の成長に必要な培地中の栄養素の量が不足して多芽体が枯れるため、多芽体が枯れない期間未満で培養を終え光透過性容器に載置する必要がある。 When the shoots or polyblasts are cultured for an appropriate period until the size of each shoot is about 5 to 10 cm, the work of placing the shoots in a light-transmitting container becomes easy, and the work efficiency and yield are improved. be able to. However, if the culture period of the growth point culture is too long, the amount of nutrients in the medium required for the growth of the polyblasts is insufficient and the polyblasts die, so the culture is completed in less than the period during which the polyblasts do not die. Must be placed in a light-transmitting container.
 生長点培養においては、培養の妨げとなる雑菌による汚染を防ぐために、培養容器は密閉されていることが望ましい。ただし、例えば雑菌繁殖を抑制するための農薬を加えるなど、雑菌による汚染を防ぐ対策を行えば必ずしも培養容器を密閉する必要はない。 In growth point culture, it is desirable that the culture vessel is sealed in order to prevent contamination by germs that interfere with the culture. However, it is not always necessary to seal the culture vessel if measures are taken to prevent contamination by germs, such as adding pesticides to suppress the growth of germs.
 上記のように生長点培養を行うことによって得られたシュートまたは多芽体から1芽以上を含むシュートを、切り出す、摘み取る、または、はさみで切り取ることにより、ウィルスフリーの植物体(すなわちシュート)を得ることができる。このように、載置工程で用いられる栄養繁殖性植物のウィルスフリーの植物体は、MS培地を用いて培養した栄養繁殖性植物のシュートまたは多芽体から得られる。 A virus-free plant (that is, shoot) can be obtained by cutting, plucking, or cutting with scissors a shoot containing one or more buds from a shoot obtained by performing growth point culture as described above or a shoot containing one or more buds. Obtainable. Thus, the virus-free plant of the vegetatively propagated plant used in the placement step is obtained from the shoot or polyblast of the vegetatively propagated plant cultured using the MS medium.
 次いで、栄養繁殖性植物のウィルスフリーの植物体、および、無機成分を含む培地を、光透過性容器内に載置する。ここで、光透過性容器は、成長チャンバーとして用いられる。具体的には、ウィルスフリーの植物体は、光透過性容器内に分注された培地上に載置される。培地に載置された植物体は、その後、所定期間増殖に供される。本工程において、シュートは、当該容器1つ当たり、1~40個、好ましくは5~20個、より好ましくは10~15個の密度で載置する。シュートは、当該容器において、例えば0.02~0.67本/cm、好ましくは0.08~0.34本/cm、より好ましくは0.17~0.25本/cmの密度で載置される。本工程で使用する容器は、例えば、マゼンタボックス(メルク社製、Magenta(商標) vessel GA-7)である。 Next, a virus-free plant body of a vegetatively propagating plant and a medium containing an inorganic component are placed in a light-transmitting container. Here, the light-transmitting container is used as a growth chamber. Specifically, the virus-free plant is placed on a medium dispensed in a light-transmitting container. The plants placed on the medium are then subjected to growth for a predetermined period of time. In this step, the shoots are placed at a density of 1 to 40, preferably 5 to 20, more preferably 10 to 15 per container. The shoots have a density of, for example, 0.02 to 0.67 / cm 2 , preferably 0.08 to 0.34 / cm 2 , and more preferably 0.17 to 0.25 / cm 2 in the container. It is placed in. The container used in this step is, for example, a magenta box (Merck & Co., Magenta ™ vessel GA-7).
1.2.培地
 載置工程において光透過性容器内に載置される培地は、例えば、改良MS培地である。改良MS培地には、MS培地と同様の成分が含まれ、具体的には、水、主要無機成分、微量無機成分、ビタミン類、有機化合物に加えて、培養に好適な範囲にpHを調整するためのバッファー等が含まれる。なお、上記改良MS培地にはMS培地と同様、用途に応じて他の成分を添加してもよいし、必ずしもMS培地に含まれる全ての成分を添加しなくてもよい。
1.2. The medium placed in the light-transmitting container in the medium placing step is, for example, an improved MS medium. The improved MS medium contains the same components as the MS medium, and specifically, in addition to water, major inorganic components, trace inorganic components, vitamins, and organic compounds, the pH is adjusted to a range suitable for culture. Contains a buffer for the purpose. As with the MS medium, other components may be added to the improved MS medium depending on the intended use, and not all the components contained in the MS medium may be added.
 改良MS培地は、カルシウムイオン、リン酸イオンおよびマグネシウムイオンからなる群より選択される無機成分を含む。改良MS培地は、好ましくは、カルシウムイオン、リン酸イオンおよびマグネシウムイオンのすべてを含む。かかるイオンを含むことにより、栽培に先立って順化を行うことなく栽培を行うことができるので、栽培期間を短縮し、効率を高め、且つ、収量を高めることができる。 The improved MS medium contains an inorganic component selected from the group consisting of calcium ion, phosphate ion and magnesium ion. The improved MS medium preferably contains all of calcium, phosphate and magnesium ions. By containing such ions, cultivation can be carried out without acclimatization prior to cultivation, so that the cultivation period can be shortened, efficiency can be improved, and yield can be increased.
 無機成分は、塩化カルシウム、リン酸塩(例えばリン酸二水素カリウムおよびリン酸二水素ナトリウム)、硫酸マグネシウム、硝酸アンモニウム及び硝酸カリウムからなる群より選択される。無機成分は、好ましくは、塩化カルシウム、リン酸二水素塩(リン酸二水素カリウムおよびリン酸二水素ナトリウムから選択される)及び硫酸マグネシウムである。一態様において、培地は、無機成分として、塩化カルシウム、リン酸二水素カリウム及び硫酸マグネシウムのすべてを含む。 The inorganic component is selected from the group consisting of calcium chloride, phosphate (eg potassium dihydrogen phosphate and sodium dihydrogen phosphate), magnesium sulfate, ammonium nitrate and potassium nitrate. The inorganic component is preferably calcium chloride, dihydrogen phosphate (selected from potassium dihydrogen phosphate and sodium dihydrogen phosphate) and magnesium sulfate. In one embodiment, the medium contains all of calcium chloride, potassium dihydrogen phosphate and magnesium sulfate as inorganic components.
 改良MS培地中のカルシウムイオン濃度は、
・例えば1.0mmol/L~10.5mmol/L、
・好ましくは3.0mmol/L超10.5mmol/L以下、
・より好ましくは3.3mmol/L~9.0mmol/L、
・さらにより好ましくは4.5mmol/L~9.0mmol/L
である。
The calcium ion concentration in the improved MS medium is
-For example, 1.0 mmol / L to 10.5 mmol / L,
-Preferably more than 3.0 mmol / L and 10.5 mmol / L or less,
-More preferably 3.3 mmol / L to 9.0 mmol / L,
-Especially more preferably 4.5 mmol / L to 9.0 mmol / L
Is.
 改良MS培地には好ましくは、無機成分として塩化カルシウムが含まれる。塩化カルシウムは、好ましくは、塩化カルシウム二水和物として培地に含まれる。培地中の塩化カルシウム二水和物の濃度は、
・例えば146mg/L~1540mg/L、
・好ましくは440mg/L超1540mg/L以下、
・より好ましくは484mg/L~1320mg/L、
・さらにより好ましくは660mg/L~1320mg/L
である。
The improved MS medium preferably contains calcium chloride as an inorganic component. Calcium chloride is preferably contained in the medium as calcium chloride dihydrate. The concentration of calcium chloride dihydrate in the medium is
-For example, 146 mg / L to 1540 mg / L,
-Preferably more than 440 mg / L and 1540 mg / L or less,
-More preferably, 484 mg / L to 1320 mg / L,
-Especially more preferably 660 mg / L to 1320 mg / L
Is.
 改良MS培地中のリン酸イオン濃度は、
・例えば0.4mmol/L~4.4mmol/L、
・好ましくは1.2mmol/L超4.4mmol/L以下、
・より好ましくは1.4mmol/L~3.7mmol/L以下、
・さらにより好ましくは1.9mmol/L~3.7mmol/L
である。
Phosphate ion concentration in the improved MS medium
-For example, 0.4 mmol / L to 4.4 mmol / L,
-Preferably more than 1.2 mmol / L and 4.4 mmol / L or less,
-More preferably 1.4 mmol / L to 3.7 mmol / L or less,
-Especially more preferably 1.9 mmol / L to 3.7 mmol / L
Is.
 改良MS培地には好ましくは、無機成分としてリン酸塩が含まれる。リン酸塩は、好ましくは、リン酸二水素カリウムまたはリン酸二水素ナトリウムとして培地に含まれる。培地中のリン酸二水素カリウムまたはリン酸二水素ナトリウムの濃度は、
・例えば56mg/L~595mg/L、
・好ましくは170mg/L超595mg/L以下、
・より好ましくは187mg/L~510mg/L、
・さらにより好ましくは255mg/L~510mg/L
である。
The improved MS medium preferably contains phosphate as an inorganic component. The phosphate is preferably contained in the medium as potassium dihydrogen phosphate or sodium dihydrogen phosphate. The concentration of potassium dihydrogen phosphate or sodium dihydrogen phosphate in the medium is
-For example, 56 mg / L to 595 mg / L,
-Preferably more than 170 mg / L and 595 mg / L or less,
-More preferably, 187 mg / L to 510 mg / L,
-Especially more preferably 255 mg / L to 510 mg / L
Is.
 改良MS培地中のマグネシウムイオン濃度は、
・例えば0.5mmol/L~5.3mmol/L、
・好ましくは1.5mmol/L超5.3mmol/L以下、
・より好ましくは1.7mmol/L~4.5mmol/L、
・さらにより好ましくは2.3mmol/L~4.5mmol/L
である。
The magnesium ion concentration in the improved MS medium is
-For example, 0.5 mmol / L to 5.3 mmol / L,
-Preferably more than 1.5 mmol / L and 5.3 mmol / L or less,
-More preferably 1.7 mmol / L to 4.5 mmol / L,
-Especially more preferably 2.3 mmol / L to 4.5 mmol / L
Is.
 改良MS培地には好ましくは、無機成分として硫酸マグネシウムが含まれる。硫酸マグネシウムは、好ましくは、硫酸マグネシウム七水和物として培地に含まれる。培地中の硫酸マグネシウムの濃度は、
・例えば123mg/L~1295mg/L、
・好ましくは370mg/L超1295mg/L以下、
・より好ましくは407mg/L~1110mg/L、
・さらにより好ましくは555mg/L~1110mg/L
である。
The improved MS medium preferably contains magnesium sulfate as an inorganic component. Magnesium sulfate is preferably contained in the medium as magnesium sulfate heptahydrate. The concentration of magnesium sulfate in the medium is
-For example, 123 mg / L to 1295 mg / L,
-Preferably more than 370 mg / L and 1295 mg / L or less,
-More preferably, 407 mg / L to 1110 mg / L,
-Especially more preferably 555 mg / L to 1110 mg / L
Is.
 一態様において、塩化カルシウム二水和物、リン酸二水素塩、硫酸マグネシウム七水和物以外の改良MS培地内の成分についてはMS培地と同じ濃度で含まれる。 In one embodiment, the components in the improved MS medium other than calcium chloride dihydrate, dihydrogen phosphate, and magnesium sulfate heptahydrate are contained in the same concentration as the MS medium.
 上記3成分が規定の量で含まれる改良MS培地を用いることによって、栄養繁殖性植物の収量をより効果的に高めることが可能となる。 By using an improved MS medium containing the above three components in a specified amount, it is possible to more effectively increase the yield of vegetatively propagating plants.
 当該改良MS培地の主要無機成分として少なくとも塩化カルシウム、リン酸カリウム、硫酸マグネシウムの全てを含む場合、3成分の割合を一定にすることでさらに栄養繁殖性植物の収量をより効果的に高めることが可能となる。具体的には、カルシウムイオン、リン酸イオン、マグネシウムイオンのモル濃度比として、30:12:15の割合で含まれることが好ましい。あるいは、塩化カルシウム二水和物、リン酸二水素カリウム、硫酸マグネシウム七水和物の重量比として、塩化カルシウム二水和物:リン酸二水素カリウム:硫酸マグネシウムが44:17:37の割合で含まれることが好ましい。このモル濃度比又は重量割合は厳密なものではなく、おおよそ上記の割合を保てば収量を高めることが可能となる。 When at least calcium chloride, potassium phosphate, and magnesium sulfate are contained as the main inorganic components of the improved MS medium, the yield of vegetative and fertile plants can be further increased by keeping the ratio of the three components constant. It will be possible. Specifically, the molar concentration ratio of calcium ion, phosphate ion, and magnesium ion is preferably 30:12:15. Alternatively, the weight ratio of calcium chloride dihydrate, potassium dihydrogen phosphate, and magnesium sulfate heptahydrate is as follows: calcium chloride dihydrate: potassium dihydrogen phosphate: magnesium sulfate at a ratio of 44:17:37. It is preferably contained. This molar concentration ratio or weight ratio is not strict, and it is possible to increase the yield by maintaining the above ratio.
 塩化カルシウム、リン酸二水素カリウム、硫酸マグネシウムの全てを培地に含む場合、これら3成分の濃度は、上述のモル濃度比又は重量割合が保たれていれば限定されず、従来のMS培地よりも低濃度であっても高濃度であっても良い。但し、濃度が薄過ぎる場合には培養に必要となる栄養素が不足し植物体が所定の大きさまで成長しなかったり枯れたりする可能性があるため、具体的にはMS培地の1/3程度までの濃度が好ましい。また濃度が濃過ぎる場合には成長障害が起きて植物体の成長が遅くなるため、具体的には3.5倍程度までの濃度が好ましい。より好ましくは上述3成分の濃度はMS培地よりも高濃度である。 When calcium chloride, potassium dihydrogen phosphate, and magnesium sulfate are all contained in the medium, the concentrations of these three components are not limited as long as the above-mentioned molar concentration ratio or weight ratio is maintained, and are higher than those of the conventional MS medium. It may be low concentration or high concentration. However, if the concentration is too low, the nutrients required for culturing will be insufficient and the plant may not grow to the specified size or die, so specifically up to about 1/3 of the MS medium. Concentration is preferred. If the concentration is too high, growth failure will occur and the growth of the plant will be slowed down. Therefore, the concentration is preferably up to about 3.5 times. More preferably, the concentration of the above three components is higher than that of the MS medium.
 当該培地は、微量無機成分として、ホウ酸、塩化コバルト、硫酸銅、硫酸鉄、硫酸マンガン、ヨウ化カリウム、モリブデン酸ナトリウム、硫酸亜鉛などのうちの少なくともいずれか一つを含んでよい。これらの微量無機成分は、所望の培養環境や培養する栄養繁殖性植物の種類および品種に応じて適宜調整することが可能である。 The medium may contain at least one of boric acid, cobalt chloride, copper sulfate, iron sulfate, manganese sulfate, potassium iodide, sodium molybdate, zinc sulfate and the like as trace inorganic components. These trace inorganic components can be appropriately adjusted according to the desired culture environment and the type and variety of vegetatively propagating plants to be cultured.
1.3.容器
 上記のように、ウィルスフリーの植物体は、光透過性容器内に載置される。光透過性容器は、自然光に対して5%以上の透過率、より好ましくは60%以上の透過率、さらに好ましくは70%以上の透過率を有する。このような透過率を有する光透過性容器を用いることで、栄養繁殖性植物の収量をより効果的に高めることが可能である。容器の透過率は、当該分野で公知の方法によって測定される。
1.3. Container As described above, the virus-free plant is placed in a light-transmitting container. The light-transmitting container has a transmittance of 5% or more, more preferably 60% or more, and even more preferably 70% or more with respect to natural light. By using a light-transmitting container having such a transmittance, it is possible to more effectively increase the yield of vegetatively propagating plants. The transmittance of the container is measured by a method known in the art.
 光透過性容器の材質は、シュートの育成に十分な量の自然光が容器を透過してシュートに照射される材質であれば良く、容器の材質としては例えば、ガラス、樹脂、ゴムが挙げられる。 The material of the light-transmitting container may be any material as long as a material sufficient for growing the chute is transmitted through the container to irradiate the chute, and examples of the material of the container include glass, resin, and rubber.
 光透過性容器の少なくとも一部が樹脂からなる樹脂製容器の場合、当該樹脂製容器には、ポリエチレン系樹脂、環状ポリオレフィン系樹脂、フッ素系樹脂、ポリスチレン系樹脂、ポリプロピレン系樹脂、アクリロニトリル‐ブタジエン‐スチレン共重合体(ABS樹脂)、アクリロニトリル‐スチレン共重合体(AS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂、及びこれらの混合物を主成分として含む容器が用いられることができる。これらのうち、好ましくは、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリ塩化ビニル系樹脂、より好ましくはポリエチレン系樹脂を主成分として含む容器が用いられる。 When at least a part of the light-transmitting container is a resin container made of resin, the resin container may be a polyethylene resin, a cyclic polyolefin resin, a fluororesin, a polystyrene resin, a polypropylene resin, or an acrylonitrile-butadiene-. Stylium copolymer (ABS resin), acrylonitrile-styrene copolymer (AS resin), polyvinyl chloride resin, fluororesin, poly (meth) acrylic resin, polycarbonate resin, polyester resin, polysulfone resin, Polyphenylene sulfide resin, polyether sulfone resin, polyamide resin, polyimide resin, polyamideimide resin, polyarylphthalate resin, silicone resin, polyurethane resin, acetal resin, cellulose resin, and mixtures thereof. Can be used as a container containing the above as a main component. Of these, a container containing a polyethylene-based resin, a polypropylene-based resin, a polyvinyl chloride-based resin, and more preferably a polyethylene-based resin as a main component is preferably used.
 当該樹脂製容器の形状、大きさ及び厚みは、シュートの成長を妨げない形状および大きさで有り、かつ、物理的に破損しない厚みであれば良い。樹脂製容器は、例えば50mm~2,000mm四方、より好ましくは700mm~1,000mm四方、さらに好ましくは100mm~500mm四方の大きさであり、かつ、例えば1μm~2,000μm、より好ましくは5μm~500μm、さらに好ましくは10μm~100μmの厚みを有する袋状容器である。袋状容器としては、典型的には、いわゆるポリ袋が用いられる。上記のような光透過性容器を増殖に用いることによって、栄養繁殖性植物の収量を効率的に高めることが可能である。 The shape, size and thickness of the resin container may be any shape and size that does not hinder the growth of the chute and that is not physically damaged. The resin container has a size of, for example, 50 mm to 2,000 mm square, more preferably 700 mm to 1,000 mm square, still more preferably 100 mm to 500 mm square, and, for example, 1 μm to 2,000 μm, more preferably 5 μm to. It is a bag-shaped container having a thickness of 500 μm, more preferably 10 μm to 100 μm. As the bag-shaped container, a so-called plastic bag is typically used. By using the above-mentioned light-transmitting container for breeding, it is possible to efficiently increase the yield of vegetatively propagating plants.
 後述するとおり、培養工程は複数の培養工程を含む、すなわち、増殖を複数の工程に分けて行うことができる。例えば、2つの工程に分けて培養を行う場合、第1培養工程においては、雑菌汚染防止の観点から、光透過性容器として、密閉状態を保ちやすいガラス製容器やハード樹脂製容器を用いることができ、第2培養工程では、コストの観点から、ソフト樹脂製容器を用いることができる。 As will be described later, the culturing step includes a plurality of culturing steps, that is, the proliferation can be divided into a plurality of steps. For example, when culturing is divided into two steps, in the first culturing step, a glass container or a hard resin container that can easily maintain a sealed state may be used as a light-transmitting container from the viewpoint of preventing contamination by various germs. In the second culture step, a soft resin container can be used from the viewpoint of cost.
 培養工程を複数工程に分けずに1つの工程で行う場合には、ウィルスフリーのシュートをソフト樹脂製容器に入れ増殖させることで更にコストを抑え多芽体を得ることが可能となる。 When the culturing process is performed in one step without dividing into a plurality of steps, it is possible to further reduce the cost and obtain polyblasts by putting the virus-free shoots in a soft resin container and multiplying them.
 光透過容器には、10mL~5,000mL、より好ましくは50mL~1,000mL、さらに好ましくは100mL~500mLの改良MS培地が分注される。分注された培地には、ウィルスフリーの植物体が載置される。 10 mL to 5,000 mL, more preferably 50 mL to 1,000 mL, and even more preferably 100 mL to 500 mL of the improved MS medium are dispensed into the light transmission container. Virus-free plants are placed on the dispensed medium.
2.培養工程
 本工程では、光透過性容器に載置されたウィルスフリーの植物体を、圃場環境下で培養する。「圃場環境」とは、特に温度と日射量が人工的に制御されていない自然環境と同じ環境をいう。圃場としては、例えば、ハウス、露地が挙げられ、したがって、圃場環境は例えば、ハウス環境、露地環境である。
2. 2. Culturing step In this step, virus-free plants placed in a light-transmitting container are cultivated in a field environment. The "field environment" refers to the same environment as the natural environment in which the temperature and the amount of solar radiation are not artificially controlled. Examples of the field include a house and an open field, and therefore the field environment is, for example, a house environment and an open field environment.
 培養工程は複数の段階を含んでいてもよい。増殖を複数段階に分けることで、シュートの数や大きさ等、成長具合に応じて適切な光透過性容器を使い分けて効率的に培養および増殖させることができる。具体的には、植物体(具体的にはシュート)の大きさに対して大きすぎる容器は必要以上の培地を使用してしまい、加えて作業性が悪い。一方で、植物体は容器の大きさに達すると成長が止まる。そのため、段階ごとに、植物体の成長具合に応じて適切な大きさの容器を選択し、効率的に植物体を培養および増殖させることが可能である。 The culture step may include multiple stages. By dividing the growth into a plurality of stages, it is possible to efficiently culture and grow by using an appropriate light-transmitting container according to the growth condition such as the number and size of shoots. Specifically, a container that is too large for the size of a plant (specifically, a shoot) uses more medium than necessary, and in addition, workability is poor. On the other hand, the plant stops growing when it reaches the size of the container. Therefore, it is possible to efficiently cultivate and proliferate a plant by selecting a container having an appropriate size according to the growth condition of the plant at each stage.
 培養は、1日間~250日間、好ましくは3日間~180日間、より好ましくは7日間~100日間の期間行われる。ここで、培養の期間は、培養工程を複数工程に分ける場合は、各工程の合計期間とする。上記のような期間、植物体を培養することで、後続の栽培工程に用いるために十分成長した苗を得ることができる。培養は、植物体を光透過性容器内に載置した状態で、圃場環境下で行う。適切な期間、圃場環境下で培養すると栽培工程への移行作業が容易となり、作業効率や収率を高めることができる。培養工程の期間が短すぎる場合、栽培工程に移行したときに、大きな環境変化をうけた植物体がその自然環境になじまず枯れてしまうことがある。培養工程の期間が長すぎる場合、植物体の成長に必要な量の培地中成分が不足して植物体が枯れることがある。 Culturing is carried out for a period of 1 to 250 days, preferably 3 to 180 days, and more preferably 7 to 100 days. Here, the culture period is the total period of each step when the culture step is divided into a plurality of steps. By culturing the plant for the above period, seedlings sufficiently grown for use in the subsequent cultivation step can be obtained. Culturing is carried out in a field environment with the plant placed in a light-transmitting container. By culturing in a field environment for an appropriate period, the work of shifting to the cultivation process becomes easy, and the work efficiency and yield can be improved. If the period of the culturing process is too short, the plants that have undergone major environmental changes may die without adapting to the natural environment when the cultivation process is started. If the duration of the culturing process is too long, the plant may die due to lack of the components in the medium required for the growth of the plant.
 培養の期間中、培養および増殖の妨げとなる雑菌による汚染を防ぐために、光透過性容器は密閉されていることが望ましい。ただし、例えば雑菌繁殖を抑制する農薬を加えるなど、雑菌による汚染を防ぐ対策を行えば、必ずしも光透過性容器を密閉する必要はない。 During the culture period, it is desirable that the light-transmitting container be sealed to prevent contamination by germs that hinder the culture and growth. However, if measures are taken to prevent contamination by germs, such as adding pesticides that suppress the growth of germs, it is not always necessary to seal the light-transmitting container.
 本実施形態においては、特に温度と日射量が自然と同じ圃場環境下であれば、ヒーターや冷房などの温度制御設備や、LEDライトなどの日照時間制御設備を特段要することなく、通常のハウス栽培又は露地栽培などの圃場環境下で培養することが可能である。 In this embodiment, especially in a field environment where the temperature and the amount of solar radiation are the same as in nature, normal house cultivation is not required without special temperature control equipment such as a heater and cooling, and sunshine duration control equipment such as LED lights. Alternatively, it can be cultivated in a field environment such as open field cultivation.
 本実施形態においては、上記のとおり、上記生長点培養によって得られたウィルスフリーの植物体(具体的にはシュート)を所定の組成の培地を入れた光透過性容器に載置して、圃場環境下で所定期間培養することによって、栄養繁殖性植物の苗を得る。このようにして得られた栄養繁殖性植物の苗は、通常行われる順化工程を行うことなく、直接圃場に植え付けて栽培に供することができる。 In the present embodiment, as described above, the virus-free plant (specifically, shoot) obtained by the above-mentioned vegetative point culture is placed in a light-transmitting container containing a medium having a predetermined composition, and is placed in a field. By culturing in an environment for a predetermined period, seedlings of vegetatively propagating plants are obtained. The seedlings of vegetatively propagated plants thus obtained can be directly planted in the field and used for cultivation without performing the usual acclimation step.
 本発明の別の側面は、上記増殖方法によって増殖した植物体、すなわち、栄養繁殖性植物の苗を栽培する栽培工程を含む、栄養繁殖性植物の栽培方法に関する。本栽培方法では、上記に述べたとおり、栄養繁殖性植物の苗は、順化工程を行うことなく、直接植え付けて栽培に供することができる。 Another aspect of the present invention relates to a method for cultivating a vegetatively propagated plant, which comprises a cultivation step for cultivating a plant body propagated by the above-mentioned breeding method, that is, a seedling of a vegetatively propagated plant. In this cultivation method, as described above, seedlings of vegetatively propagating plants can be directly planted and used for cultivation without performing an acclimation step.
3.栽培工程
 栽培工程において、栄養繁殖性植物の苗は、露地やハウス環境等の圃場環境下で栽培される。本工程では、具体的には、上記培養工程によって得られた栄養繁殖性植物の苗を、露地栽培又はハウス栽培環境等の圃場環境に植え付けて、栽培する。より具体的には、本工程においては、培養工程によって得られた苗を、1又は複数本ずつ採取し、それぞれ圃場に植え付ける。なお、その栽培環境、及び栽培期間は、露地栽培やハウス栽培などの公知の栽培環境で、通常の栽培期間を採用することが可能である。当該栽培期間に達すると、栄養繁殖性植物の種類および品種に応じた収穫方法で適宜収穫物の収穫を行う。
3. 3. Cultivation process In the cultivation process, seedlings of vegetatively propagated plants are cultivated in a field environment such as an open field or a house environment. In this step, specifically, the seedlings of the vegetatively propagating plant obtained by the above-mentioned culture step are planted in a field environment such as an open field cultivation or a house cultivation environment and cultivated. More specifically, in this step, one or more seedlings obtained by the culturing step are collected and planted in the field respectively. As the cultivation environment and cultivation period, it is possible to adopt a normal cultivation period in a known cultivation environment such as open field cultivation or house cultivation. When the cultivation period is reached, the harvested product is appropriately harvested by a harvesting method according to the type and variety of vegetatively propagating plants.
 マイクロチューバーやミニチューバーを使ったインビトロ環境下で植物体を増殖させる場合、通常の圃場環境下で栽培するにあたって、苗を前もって順化が必須である。ここで、「順化」とは、植物体が、異なる環境に移された場合、当該異なる環境で、一定期間、植物体を適応させることをいう。これは、インビトロ環境下から圃場環境下に苗を移すにあたって、苗が、大きな環境変化からストレスを受けるのを軽減するために行われる。例えば、順化は通常、光透過性のビニール容器またはプラスチック容器で植物体(具体的にはシュート)を覆い、湿度を保つ。このとき、湿度を保つために、容器内には、霧吹きなどを用いて水が噴霧される。順化が終了すると、植物体に水を供給する。一方、本発明においては、所定の成分を含んだ培地を用い、且つ、光透過性容器内で、圃場環境下で培養することにより、このような順化の工程を実施する必要はない。具体的には、本発明においては、「順化」を行わずとも、直接、植物体を新しい環境に置くことで、植物体が枯れずに成長することができる。なお、ここで、新しい環境においた植物体に水やりは必須ではないが、水をやるとことで定着率が上がり、水やりを行うことで、水やりをしない場合の2倍成長することがわかっている。したがって、本発明にかかる増殖方法または栽培方法によれば、短期間で栄養繁殖性植物の収穫量を高めることが可能となり、効率的に高い収量を実現することができる。 When growing plants in an in vitro environment using a microtuber or minituber, it is essential to acclimatize the seedlings in advance when cultivating in a normal field environment. Here, "acclimation" means that when a plant is moved to a different environment, the plant is adapted to the different environment for a certain period of time. This is done to reduce the stress on the seedlings from major environmental changes when transferring the seedlings from an in vitro environment to a field environment. For example, acclimation usually covers the plant (specifically chute) with a light-transmitting vinyl or plastic container to maintain humidity. At this time, in order to maintain the humidity, water is sprayed into the container by using a mist or the like. When the acclimation is completed, water is supplied to the plant. On the other hand, in the present invention, it is not necessary to carry out such an acclimation step by using a medium containing a predetermined component and culturing in a light-transmitting container in a field environment. Specifically, in the present invention, the plant can grow without dying by directly placing the plant in a new environment without performing "acclimation". Here, watering is not essential for plants in a new environment, but watering increases the retention rate, and watering can grow twice as much as without watering. know. Therefore, according to the breeding method or cultivation method according to the present invention, it is possible to increase the yield of vegetatively propagating plants in a short period of time, and it is possible to efficiently realize a high yield.
 上記のとおり、本発明にかかる増殖方法または栽培方法において、ウィルスフリーの植物体を、特定のイオン組成または成分組成を有する培地を分注した光透過性容器を用いて圃場環境下で増殖させることで、マイクロチューバーやミニチューバーなどの培養設備を必要とする従来の栽培に比して、効率的に収量を高めることが可能となる。また、培養工程において、特定の無機成分が一定の割合で含まれる培地を利用することによって、さらに効率的に収量を高めることが可能となる。 As described above, in the growth method or cultivation method according to the present invention, a virus-free plant is grown in a field environment using a light-transmitting container dispensed with a medium having a specific ionic composition or component composition. Therefore, it is possible to efficiently increase the yield as compared with the conventional cultivation that requires a culture facility such as a microtuber or a minituber. Further, in the culturing step, it is possible to increase the yield more efficiently by using a medium containing a specific inorganic component in a certain ratio.
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。 In the present specification, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively. Within the numerical range described stepwise herein, the upper or lower limit of the numerical range at one stage may be optionally combined with the upper or lower limit of the numerical range at another stage.
<1>生長点培養による植物体の取得
 ウィルスフリーの植物体(具体的にはシュート)を得るため、まず生長点培養を行った。
<1> Acquisition of plants by growth point culture In order to obtain virus-free plants (specifically, shoots), growth point culture was first performed.
 栄養繁殖性植物として、ジャガイモ(Solanum tuberosum)を用いた。当該ジャガイモの塊茎から発芽した芽の先端部分(茎頂)の組織片を無菌的に切り取り採取した。そして、採取した組織片を試験管内に15mL分注したMS固形培地上に置床し、21日間培養しウィルスフリーシュートを得た。使用したMS固形培地の組成を下記表1に示す。このMS固形培地の成分のうち、カルシウムイオン、リン酸イオン、及びマグネシウムイオンの主要3イオンの各濃度について、表2に示した。 Potato (Solanum tuberosum) was used as a vegetatively propagating plant. A tissue piece at the tip (stem apex) of the bud germinated from the tuber of the potato was aseptically cut and collected. Then, the collected tissue pieces were placed in a test tube on an MS solid medium in which 15 mL was dispensed, and cultured for 21 days to obtain virus-free shoots. The composition of the MS solid medium used is shown in Table 1 below. Table 2 shows the concentrations of the three major ions of calcium ion, phosphate ion, and magnesium ion among the components of this MS solid medium.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<2>光透過性容器内への載置および培養
[比較例、実施例1~6]
 比較例および実施例1~6として、以下の材料及び方法を用いた。培養は、以下で述べるとおり、第1培養および第2培養の2つの工程に分けて増殖を行った。
<2> Placement and culture in a light-transmitting container [Comparative Examples, Examples 1 to 6]
The following materials and methods were used as Comparative Examples and Examples 1 to 6. As described below, the culture was divided into two steps, a first culture and a second culture, and the culture was carried out.
 上記<1>で生長点培養によって得られたウィルスフリーのシュートを光透過性容器内に40mL分注した培地上に載置し、21日間培養した(第1培養)。 The virus-free shoot obtained by the growth point culture in <1> above was placed on a medium in which 40 mL was dispensed in a light-transmitting container and cultured for 21 days (first culture).
 培地として、比較例にはMS固形培地を、実施例1~6には改良MS固形培地を用いた。 As the medium, MS solid medium was used for Comparative Example, and improved MS solid medium was used for Examples 1 to 6.
 比較例では、表1に示したMS固形培地の組成と同じ組成を有する培地を使用してウィルスフリーのシュートを培養し、第2培養において用いるシュートを得た。 In the comparative example, virus-free shoots were cultured using a medium having the same composition as the MS solid medium shown in Table 1, and shoots used in the second culture were obtained.
 実施例1~6では、塩化カルシウム二水和物、リン酸二水素カリウム、及び硫酸マグネシウム七水和物の濃度が、表3に示すとおりであり、その他の成分の濃度が表1に示すとおりである改良MS固形培地を使用してウィルスフリーのシュートを培養し、第2培養において用いるシュートを得た。 In Examples 1 to 6, the concentrations of calcium chloride dihydrate, potassium dihydrogen phosphate, and magnesium sulfate heptahydrate are as shown in Table 3, and the concentrations of other components are as shown in Table 1. A virus-free shoot was cultured using the improved MS solid medium, and the shoot used in the second culture was obtained.
 実施例1~4では、第1培養時の光透過性容器としてハード樹脂製の容器である77mm×77mm×97mmのマゼンタボックス(メルク社製、Magenta(商標) vessel GA-7)を用い、シュートを載置後、容器を密閉した。 In Examples 1 to 4, a magenta box (manufactured by Merck, Magenta (trademark) vessel GA-7) of 77 mm × 77 mm × 97 mm, which is a container made of hard resin, was used as a light-transmitting container during the first culture, and a chute was used. After placing, the container was sealed.
 実施例5および実施例6では、第1培養時の光透過性容器としてガラス製の容器を用いた。このうち、実施例5は、シュートを載置後、容器を密閉せず開放系で第1培養を行い、実施例6は、シュートを載置後、容器を密閉したまま第1培養を行った。 In Examples 5 and 6, a glass container was used as the light-transmitting container during the first culture. Of these, in Example 5, after the chute was placed, the first culture was performed in an open system without sealing the container, and in Example 6, after the chute was placed, the first culture was performed with the container sealed. ..
 第1培養は、比較例及び実施例1~6の全てにおいて、ジャガイモのハウス栽培用に設置されたハウス内に、培地に接触しているシュートが入った光透過性容器を安置した。なお、このとき、ハウス内でヒーターや冷房を用いず、またLED照明などを用いた照度時間調整などは行わなかった。 In the first culture, in all of Comparative Examples and Examples 1 to 6, a light-transmitting container containing a chute in contact with the medium was placed in a house installed for growing potatoes in a house. At this time, no heater or cooling was used in the house, and the illuminance time was not adjusted by using LED lighting or the like.
 培養工程の第2培養段階では、比較例及び実施例1~6の全て、第1培養で得られた植物体(多芽体)の一塊であるシュートを、100mLの培地が入った150mm×260mm四方で厚さ30μmのポリエチレン製の袋(無色透明)に載置した。なお、このとき、60mm×40mmのポリスチレン製の容器を、シュートを支持するために上記ポリエチレン製の袋内で用いた。培地は比較例及び実施例1~6の全てにおいて、第1培養時と同じものを使用した。 In the second culture step of the culture step, all of Comparative Examples and Examples 1 to 6 were shots, which are a mass of plants (polyblasts) obtained in the first culture, and 150 mm × 260 mm containing 100 mL of medium. The cells were placed in a polyethylene bag (colorless and transparent) having a thickness of 30 μm on all sides. At this time, a 60 mm × 40 mm polystyrene container was used in the polyethylene bag to support the chute. The same medium as in the first culture was used in all of Comparative Examples and Examples 1 to 6.
 第2培養は、比較例及び実施例1~6の全てにおいて、ジャガイモのハウス栽培用に設置されたハウス内に、培地に接触しているシュートが入ったポリエチレン袋を安置し、30日~90日間増殖培養した。なお、このとき、ハウス内でヒーターや冷房を用いず、またLED照明などを用いた照度時間調整などは行わなかった。 In the second culture, in all of Comparative Examples and Examples 1 to 6, a polyethylene bag containing a chute in contact with the medium was placed in a house installed for growing potatoes in a house, and 30 days to 90 days. It was grown and cultured for days. At this time, no heater or cooling was used in the house, and the illuminance time was not adjusted by using LED lighting or the like.
 第2培養の結果、シュートの増殖具合に差を生じながらも、全ての実施例および比較例で苗を培養することができた。 As a result of the second culture, the seedlings could be cultivated in all the examples and comparative examples, although the growth condition of the shoots was different.
 表3には比較例および実施例1~6の培地濃度に対応する、各物質および各イオンのモル濃度を示す。 Table 3 shows the molar concentrations of each substance and each ion corresponding to the medium concentrations of Comparative Examples and Examples 1 to 6.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<3>苗の栽培
 上記増殖によって得られた苗のうち、比較例、実施例1、実施例3で得られた苗を、表面を0.05メッシュのマルチで被覆したハウス栽培環境下の圃場に植え付けた。このとき、実施例1と3は、培養工程から当該栽培工程に至る過程で、順化工程を経ることなく行った。そして、60日間、自然環境で栽培し、成長したジャガイモの塊茎を収穫し、その収量を測定した(表4)。尚、比較例は7日間の順化工程を経てから自然環境下での栽培を60日間行った。
<3> Cultivation of seedlings Among the seedlings obtained by the above growth, the seedlings obtained in Comparative Example, Example 1 and Example 3 are covered with a 0.05 mesh mulch on the surface of a field under a house cultivation environment. Planted in. At this time, Examples 1 and 3 were carried out in the process from the culture step to the cultivation step without going through the acclimation step. Then, the tubers of the grown potatoes, which were cultivated in a natural environment for 60 days, were harvested and the yields were measured (Table 4). In the comparative example, cultivation in a natural environment was carried out for 60 days after undergoing a acclimation process for 7 days.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すとおり、比較例に示す従来の栽培方法と比較して、本発明に係る栽培方法で栽培した実施例1と3は、多量の塊茎を収穫することができた。 As shown in Table 4, compared with the conventional cultivation method shown in the comparative example, Examples 1 and 3 cultivated by the cultivation method according to the present invention were able to harvest a large amount of tubers.
 実施例1および3の栽培においては、生長点培養で得られたシュートを最終的に袋状樹脂製容器に入れ圃場環境下で増殖させた。したがって、実施例1~6の栽培方法では、従来のマイクロチューバーやミニチューバーによる増殖やそのための設備の必要がなく、さらには従来方法や比較例の栽培方法のように、順化やそのための設備も必要がなく、極めて効率的に、かつ安価に多量の塊茎を収穫することができた。 In the cultivation of Examples 1 and 3, the shoots obtained by the growth point culture were finally put into a bag-shaped resin container and grown in a field environment. Therefore, in the cultivation methods of Examples 1 to 6, there is no need for breeding by a conventional microtuber or a minituber and equipment for that purpose, and further, as in the conventional method and the cultivation method of the comparative example, acclimatization and equipment for that purpose are not required. It was possible to harvest a large amount of tubers very efficiently and inexpensively.

Claims (12)

  1.  栄養繁殖性植物のウィルスフリーの植物体、および、無機成分を含む培地を、光透過性容器内に載置する載置工程と、
     前記光透過性容器に載置された前記植物体を圃場環境下で培養して前記栄養繁殖性植物の苗を得る培養工程と
    を含む栄養繁殖性植物の増殖方法。
    A placement step of placing a virus-free plant of a vegetatively propagating plant and a medium containing an inorganic component in a light-transmitting container, and
    A method for propagating a vegetatively propagating plant, which comprises a culturing step of culturing the plant placed in the light transmissive container in a field environment to obtain seedlings of the vegetatively propagating plant.
  2.  前記培地中のカルシウムイオンのモル濃度が、1.0~10.5mmol/Lであり、
     前記培地中のリン酸イオンのモル濃度が、0.4~4.4mmol/Lであり、
     前記培地中のマグネシウムイオンのモル濃度が、0.5~5.3mmol/Lである、請求項1に記載の増殖方法。
    The molar concentration of calcium ions in the medium is 1.0 to 10.5 mmol / L.
    The molar concentration of phosphate ion in the medium is 0.4 to 4.4 mmol / L.
    The growth method according to claim 1, wherein the molar concentration of magnesium ions in the medium is 0.5 to 5.3 mmol / L.
  3.  前記培地中のカルシウムイオン:リン酸イオン:マグネシウムイオンのモル濃度比が、30:12:15である、請求項1または2に記載の増殖方法。 The growth method according to claim 1 or 2, wherein the molar concentration ratio of calcium ion: phosphate ion: magnesium ion in the medium is 30:12:15.
  4.  前記無機成分が、
    ・塩化カルシウム、
    ・リン酸二水素カリウムおよびリン酸二水素ナトリウムから選択されるリン酸二水素塩、および
    ・硫酸マグネシウム
    である、請求項1~3のいずれか1項に記載の栄養繁殖性植物の増殖方法。
    The inorganic component is
    ・ Calcium chloride,
    The method for growing a nutritionally fertile plant according to any one of claims 1 to 3, wherein the dihydrogen phosphate is selected from potassium dihydrogen phosphate and sodium dihydrogen phosphate, and magnesium sulfate.
  5.  前記無機成分が、塩化カルシウム二水和物、リン酸二水素カリウムおよび硫酸マグネシウム七水和物である、請求項1~4のいずれか1項に記載の栄養繁殖性植物の増殖方法。 The method for growing a nutritionally fertile plant according to any one of claims 1 to 4, wherein the inorganic component is calcium chloride dihydrate, potassium dihydrogen phosphate and magnesium sulfate heptahydrate.
  6.  前記塩化カルシウム二水和物:前記リン酸二水素カリウム:前記硫酸マグネシウム七水和物の重量比が、44:17:37である、請求項5に記載の増殖方法。 The growth method according to claim 5, wherein the weight ratio of the calcium chloride dihydrate: the potassium dihydrogen phosphate: the magnesium sulfate heptahydrate is 44:17:37.
  7.  前記光透過性容器が、ガラス製容器又は樹脂製容器である、請求項1~6のいずれか1項に記載の栄養繁殖性植物の増殖方法。 The method for growing a vegetatively propagating plant according to any one of claims 1 to 6, wherein the light-transmitting container is a glass container or a resin container.
  8.  前記樹脂製容器は、ポリエチレン系樹脂、ポリプロピレン系樹脂およびポリ塩化ビニル系樹脂から選択される少なくとも一つを含み、かつ、袋状容器である、請求項1~7のいずれか一項に記載の増殖方法。 The resin container according to any one of claims 1 to 7, wherein the resin container contains at least one selected from polyethylene-based resin, polypropylene-based resin, and polyvinyl chloride-based resin, and is a bag-shaped container. Proliferation method.
  9.  前記植物体を、圃場環境下で、1日~250日間培養する、請求項1~8のいずれか1項に記載の増殖方法。 The growth method according to any one of claims 1 to 8, wherein the plant is cultured in a field environment for 1 to 250 days.
  10.  請求項1~9のいずれか1項に記載の増殖方法により得られた前記栄養繁殖性植物の苗を順化させずに圃場環境下に植え付け栽培する工程を含む、栄養繁殖性植物の栽培方法。 A method for cultivating a vegetatively propagated plant, which comprises a step of planting and cultivating the seedlings of the vegetatively propagated plant obtained by the breeding method according to any one of claims 1 to 9 in a field environment without acclimatization. ..
  11.  前記栄養繁殖性植物が、地下茎由来の植物である、請求項10に記載の栽培方法。 The cultivation method according to claim 10, wherein the vegetatively propagated plant is a plant derived from a rhizome.
  12.  前記栄養繁殖性植物が、ジャガイモ又はサツマイモである、請求項10または11に記載の栽培方法。 The cultivation method according to claim 10 or 11, wherein the vegetatively propagated plant is potato or sweet potato.
PCT/JP2021/044337 2020-12-08 2021-12-02 Method for propagating vegetative-reproduction plant, and method for cultivating same WO2022124200A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020203470A JP2022090894A (en) 2020-12-08 2020-12-08 Method for propagating vegetative-reproduction plant, and method for cultivating the same
JP2020-203470 2020-12-08

Publications (1)

Publication Number Publication Date
WO2022124200A1 true WO2022124200A1 (en) 2022-06-16

Family

ID=81974398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044337 WO2022124200A1 (en) 2020-12-08 2021-12-02 Method for propagating vegetative-reproduction plant, and method for cultivating same

Country Status (2)

Country Link
JP (1) JP2022090894A (en)
WO (1) WO2022124200A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070943A (en) * 1996-06-27 1998-03-17 Idemitsu Kosan Co Ltd Preparation of clone seedling
JP2001086890A (en) * 1999-07-21 2001-04-03 Nisshinbo Ind Inc Method for culturing plant tissue
JP2010535476A (en) * 2007-08-10 2010-11-25 ニュープラント・プロプライエタリー・リミテッド Plant breeding transfer method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070943A (en) * 1996-06-27 1998-03-17 Idemitsu Kosan Co Ltd Preparation of clone seedling
JP2001086890A (en) * 1999-07-21 2001-04-03 Nisshinbo Ind Inc Method for culturing plant tissue
JP2010535476A (en) * 2007-08-10 2010-11-25 ニュープラント・プロプライエタリー・リミテッド Plant breeding transfer method

Also Published As

Publication number Publication date
JP2022090894A (en) 2022-06-20

Similar Documents

Publication Publication Date Title
KR101587707B1 (en) Producing method of orchid seedlings
CN102550411B (en) Method for producing pre-basic seeds of potatoes
CN102422816A (en) Method for quickly culturing shoot tips in vitro
CN101810145B (en) In-vitro rapid culture method for tender stem segments of blueberries
WO2017089958A1 (en) Method for propagation of poplar tree from leaf cuttings
CN104719163B (en) A kind of method for improving blueberry tissue culture test tube seedling seedling exercising planting percent
CN102668979A (en) Rooting culture method for poplar tissue culture seedlings
CN104322375A (en) Method for rapidly propagating dendrobium chrysotoxumLindl. seeds by tissue culture
CN105706873B (en) The engrafting method of one mode arabidopsis
Nieves et al. Callus induction in cotyledons of Moringa oleifera Lam.
Singh et al. Identification of the suitable hardening protocol and hardening medium in micropropagation of gerbera (Gerbera jamesonii Bolus)
KR20080070106A (en) Mass propagation method through in vitro aseptic germination of calanthe spp
Gami et al. Microtuberization, minitubers formation and in vitro shoot regeneration from bud sprout of potato (Solanum tuberosum L.) cultivar K. badshah
CN105557522A (en) Detached leaf somatic embryo induction-based rapid-propagation cultivation method for pear trees
CN105028192A (en) Culture medium series for rapidly breeding dendrobium nobile seedlings and tissue culture method
Huang et al. Developing an improved in vitro propagation system for slow-growing species using Garcinia mangostana L.(mangosteen)
WO2022124200A1 (en) Method for propagating vegetative-reproduction plant, and method for cultivating same
CN1324947C (en) Potato seed breeding method
CN106613933A (en) Method for inducing rooting of apple dwarf rootstock tissue culture seedling
CN108401900A (en) A kind of propagating culture medium and application process of potato stem section
KR102310362B1 (en) Method of producing seed potatoe using red and blue LED of low light intensity as light source
Beruto et al. Micropropagation of Helleborus through axillary budding
Singh et al. Micro-propagation and bio-priming in pomegranate imperative for quality planting material
Levy Propagation of potato by direct transfer of in vitro proliferated shoot cuttings into the field
RU2785462C1 (en) Method for in vitro adaptation of strawberries in a two-layer substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903304

Country of ref document: EP

Kind code of ref document: A1