WO2022123902A1 - Communication device, communication method, and communication system - Google Patents

Communication device, communication method, and communication system Download PDF

Info

Publication number
WO2022123902A1
WO2022123902A1 PCT/JP2021/038067 JP2021038067W WO2022123902A1 WO 2022123902 A1 WO2022123902 A1 WO 2022123902A1 JP 2021038067 W JP2021038067 W JP 2021038067W WO 2022123902 A1 WO2022123902 A1 WO 2022123902A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
terminal
receiving station
satellite receiving
reception
Prior art date
Application number
PCT/JP2021/038067
Other languages
French (fr)
Japanese (ja)
Inventor
沢子 桐山
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2022568078A priority Critical patent/JPWO2022123902A1/ja
Publication of WO2022123902A1 publication Critical patent/WO2022123902A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/328Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by altitude
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the technique disclosed in the present specification (hereinafter referred to as "the present disclosure”) relates to a communication device and a communication method for receiving a frame wirelessly transmitted from a terminal on the ground, and a communication system including a terminal and a receiving station.
  • wireless sensor network it is possible to create new services by attaching wireless sensor terminals to people and things and periodically transmitting information acquired from the sensors. For example, by attaching a wireless sensor terminal with GPS (Global Positioning System) to elderly people and children and periodically transmitting location information, a monitoring service becomes possible.
  • GPS Global Positioning System
  • An object of the present disclosure is to provide a communication device and a communication method that operate as a satellite receiving station that orbits the earth in a predetermined orbit and receives a frame from a terminal on the ground, and a communication system consisting of a terminal on the ground and a satellite receiving station. To provide.
  • the first aspect of the present disclosure is to orbit the earth in a predetermined orbit and operate as one of the satellite receiving stations that receive frames from terminals on the ground.
  • a receiving unit that receives and processes frames from the terminal, Based on the frame reception information at the time of receiving a frame from the terminal, the frame transmission interval of the terminal, and the positional relationship of the surrounding satellite receiving stations, a satellite receiving station suitable for receiving the frame to be transmitted next by the terminal is determined.
  • Judgment unit and It is a communication device provided with.
  • the frame reception information includes the frequency error estimation result and the propagation delay estimation result at the time of frame reception.
  • the frame reception information includes the position information of the terminal.
  • the communication device exchanges frame reception information with surrounding satellite receiving stations.
  • the determination unit further determines a satellite receiving station suitable for receiving the frame to be transmitted next by the terminal based on the frame reception information from the surrounding satellite receiving stations.
  • the communication device notifies the peripheral satellite receiving stations of the information of the terminals added to the receiving target terminal list based on the frame reception information from the surrounding satellite receiving stations. Further, the communication device according to the first aspect deletes the information of the corresponding terminal from the reception target terminal list of its own station based on the notification from the surrounding satellite receiving stations.
  • the communication device notifies the peripheral satellite receiving stations that the determination unit has determined to be suitable for receiving the next frame transmitted from the terminal, and also notifies the reception target terminal registration.
  • the terminal that notified the reception target terminal registration to the nearby satellite receiving stations is excluded from the reception target of the own station.
  • the communication device targets the terminal to which the reception target terminal registration is notified from the surrounding satellite receiving stations as the reception target of the own station.
  • the determination unit predicts the reception of the next frame transmitted from the terminal based on the frame transmission interval and the frequency error estimation result at the time of frame reception.
  • the time is estimated, and a satellite receiving station suitable for receiving the next frame transmitted by the terminal is determined based on the estimated reception time of the frame and the positional relationship of the surrounding satellite receiving stations.
  • the second aspect of the present disclosure is a communication method that orbits the earth in a predetermined orbit and operates as a satellite receiving station that receives a frame from a terminal on the ground.
  • Judgment step to do and It is a communication method having.
  • the third aspect of the present disclosure consists of a terminal installed on the ground and a plurality of satellite receiving stations each orbiting the earth in a predetermined orbit.
  • Each of the plurality of satellite receiving stations is based on a receiving unit that receives and processes a frame from the terminal, frame reception information at the time of receiving a frame from the terminal, a frame transmission interval of the terminal, and a positional relationship of surrounding satellite receiving stations.
  • the terminal is provided with a determination unit for determining a satellite receiving station suitable for receiving the next frame to be transmitted. It is a communication system.
  • system here means a logical assembly of a plurality of devices (or functional modules that realize a specific function), and each device or functional module is in a single housing. It does not matter whether or not it is.
  • a communication device and a communication method that operates as a satellite receiving station, efficiently acquires information on radio resources of a terminal on the ground, suppresses unnecessary reception and demodulation processing, and receives a frame from the terminal. Further, it is possible to provide a communication system including a terminal on the ground and a satellite receiving station that suppresses unnecessary reception and demodulation processing and receives a frame from the terminal.
  • FIG. 1 is a diagram showing a configuration example of an LPWA wireless communication system.
  • FIG. 2 is a diagram showing an example of a communication sequence between a terminal and a receiving station.
  • FIG. 3 is a diagram showing a functional configuration example of the terminal 100.
  • FIG. 4 is a diagram showing a functional configuration example of the receiving station 200.
  • FIG. 5 is a diagram showing a configuration example of the frame.
  • FIG. 6 is a diagram showing a method of generating a radio resource, preamble and synchronization information, and a scramble pattern used for frame transmission.
  • FIG. 7 is a diagram showing a configuration example of an LPWA wireless communication system using a satellite receiving station.
  • FIG. 8 is a diagram showing an example of a communication sequence between a terminal and a satellite receiving station.
  • FIG. 9 is a diagram showing an example of a communication sequence (first embodiment) between a terminal and a satellite receiving station.
  • FIG. 10 is a diagram showing a functional configuration example of the satellite receiving station 1000.
  • FIG. 11 is a diagram showing a frame configuration example (first embodiment) of the data portion of the frame reception information frame.
  • FIG. 12 is a flowchart showing the processing operation performed by the terminal.
  • FIG. 13 is a flowchart showing a processing procedure (first embodiment) for the satellite receiving station to receive the notification frame.
  • FIG. 14 is a flowchart showing a processing procedure (first embodiment) for the satellite receiving station to receive a data frame.
  • FIG. 15 is a flowchart showing a processing procedure (first embodiment) for the satellite receiving station to receive a frame reception information frame.
  • FIG. 10 is a diagram showing a functional configuration example of the satellite receiving station 1000.
  • FIG. 11 is a diagram showing a frame configuration example (first embodiment) of the data portion of the frame reception information frame.
  • FIG. 16 is a diagram showing an example of time change of frequency error and propagation delay when the altitude of the satellite is 600 km and the frequency is 2 GHz.
  • FIG. 17 is a diagram showing a frame configuration example (second embodiment) of the data portion of the frame reception information frame.
  • FIG. 18 is a flowchart showing a processing procedure (second embodiment) for the satellite receiving station to receive the frame reception information frame.
  • FIG. 19 is a diagram showing an example of a communication sequence between a terminal and a satellite receiving station (third embodiment).
  • FIG. 20 is a diagram showing a frame configuration example of the data portion of the reception target terminal list registration notification frame.
  • FIG. 21 is a flowchart showing a processing procedure (third embodiment) for the satellite receiving station to receive the frame reception information frame.
  • FIG. 22 is a flowchart showing a processing procedure for the satellite receiving station to receive the reception target terminal list registration notification frame.
  • FIG. 23 is a diagram showing an example of a communication sequence between a terminal and a satellite receiving station (fourth embodiment).
  • FIG. 24 is a diagram showing a frame configuration example (fourth embodiment) of the data portion of the frame reception information frame.
  • FIG. 25A is a flowchart showing a processing procedure (fourth embodiment) for the satellite receiving station to receive the frame reception information frame.
  • FIG. 25B is a flowchart showing a processing procedure (fourth embodiment) for the satellite receiving station to receive the frame reception information frame.
  • FIG. 26 is a diagram showing an example of an adjacent satellite receiving station information list held by the satellite receiving station.
  • FIG. 27 is a diagram showing an example of a communication sequence between a terminal and a satellite receiving station (fifth embodiment).
  • FIG. 28 is a diagram showing a frame configuration example of the data portion of the reception target terminal registration frame.
  • FIG. 29 is a flowchart showing a processing procedure (fifth embodiment) for the satellite receiving station to receive the notification frame.
  • FIG. 30 is a flowchart showing a processing procedure (fifth embodiment) for the satellite receiving station to receive a data frame.
  • FIG. 31 is a flowchart showing a processing procedure for the satellite receiving station to receive the reception target terminal list registration frame.
  • FIG. 32 is a diagram showing an example of a communication sequence between a terminal and a receiving station in a system in which the terminal can arbitrarily transmit a data frame.
  • FIG. 33 is a diagram showing a configuration example (sixth embodiment) of an LPWA wireless communication system using a satellite receiving station.
  • FIG. 34 is a diagram showing an example of a communication sequence between a terminal and a satellite receiving station (sixth embodiment).
  • FIG. 35 is a diagram showing a functional configuration example of the satellite receiving station 3500.
  • FIG. 36 is a diagram showing a configuration example of a data frame.
  • FIG. 37 is a diagram showing a frame configuration example of the data portion of the reception target radio resource information notification frame.
  • FIG. 38 is a flowchart showing the processing operation performed by the terminal.
  • FIG. 39 is a flowchart showing a processing operation for the satellite receiving station to receive the initial data frame.
  • FIG. 40 is a flowchart showing a processing procedure for the satellite receiving station to receive a normal data frame.
  • FIG. 41 is a flowchart showing a processing procedure for the satellite receiving station to receive the reception target radio resource information notification frame.
  • the receiving station in order to demodulate the data transmitted by the terminal, the receiving station has information necessary for demodulation such as modulation method, modulation rate, code, and encryption key, and wireless resources used for data transmission. It is necessary to know (time / frequency) for each terminal.
  • the receiving station transmits data to the terminal by performing signaling to exchange necessary information between the terminal and the receiving station before data transmission. It is possible to specify the radio resource (time / frequency) to be used, and then perform demodulation using the modulation method and modulation rate stored in the data transmitted by the specified radio resource (time / frequency). ..
  • LPWA which is a wireless communication method for IoT
  • FIG. 1 schematically shows a configuration example of an LPWA wireless communication system.
  • the system is composed of a receiving station and a plurality of terminals.
  • the terminal is a transmitter that periodically transmits information sensed by a built-in sensor or the like.
  • the receiving station receives the data transmitted by the terminal and performs demodulation processing.
  • the receiving station transmits the demodulation result (user data) to the application server (not shown) on the cloud as needed.
  • the time is synchronized in the system (between the receiving station and each terminal). It is conceivable to use GPS information as a method of time synchronization.
  • FIG. 2 shows an example of a communication sequence between a terminal and a receiving station in the system shown in FIG.
  • the terminal transmits a notification frame in order to notify its own ID (SEQ201).
  • a radio resource time / frequency randomly selected from the radio resources (time / frequency) allocated in advance for the notification frame transmission in the system is used.
  • the receiving station executes the reception and demodulation processing of the notification frame for the radio resource for transmitting the notification frame (SEQ202). Then, when the demodulation process is successful, the receiving station registers the ID acquired from the notification frame in the reception target terminal list (SEQ203).
  • the terminal calculates the radio resource (time / frequency) for transmitting the data frame even using its own ID and the code required for data frame generation based on the rules (described later) determined in advance in the system. Generate and transmit a data frame (SEQ204).
  • the receiving station uses the ID registered in the list of terminals to be received, and based on the same rules as the terminal, the receiving station uses the radio resource (time / frequency) and the data frame from which the terminal transmits the data frame from the terminal ID.
  • the code required for demodulation is calculated, and the data frame is received and demodulated (SEQ205).
  • the receiving station transmits the demodulation result (user data) to the application server (not shown) on the cloud as needed.
  • FIG. 3 shows a functional configuration example of a communication device 100 (hereinafter referred to as a terminal 100) that operates as a terminal in the system shown in FIG.
  • the illustrated terminal 100 includes a wireless communication unit 101, a wireless control unit 102, a frame generation unit 103, a sensor 104, a wireless resource determination unit 105, and a storage unit 106.
  • the functional configuration of the terminal 100 may be the same regardless of whether the receiving station is a ground station or a satellite receiving station.
  • the wireless communication unit 101 transmits a wireless signal.
  • the wireless communication unit 101 converts the frame generated by the frame generation unit 103 into a wireless signal and transmits it under the control of the wireless control unit 102.
  • the wireless control unit 102 controls the wireless communication unit 101 so as to transmit a frame at the transmission time and transmission frequency obtained from the wireless resource determination unit 105.
  • the frame generation unit 103 generates a frame to be transmitted by the terminal 100.
  • the frame generation unit 103 acquires the preamble, synchronization information, and scramble pattern necessary for frame generation from the radio resource determination unit 105. Further, the frame generation unit 103 describes, for example, the sensor information acquired by the sensor unit 104 in the payload of the frame.
  • the sensor 104 is a sensor that acquires external or internal information of the terminal 100, for example, a temperature sensor or an acceleration sensor.
  • the radio resource determination unit 105 uses the ID and initial value of the terminal 100 itself obtained from the storage unit 106 to transmit a radio resource (time / frequency) and a preamble required for frame generation necessary for frame generation. Generate synchronization information and scramble pattern.
  • the storage unit 106 holds the ID and initial value of the terminal 100 itself, which is information necessary for determining the wireless resource. Of course, the storage unit 106 may hold other information.
  • FIG. 4 shows a functional configuration example of a communication device 200 (hereinafter referred to as a receiving station 200) that operates as a receiving station in the system shown in FIG.
  • the illustrated receiving station 200 includes a radio communication unit 201, a radio control unit 202, a frame detection / demodulation unit 203, a radio resource determination unit 204, and a storage unit 205.
  • the illustrated receiving station 200 assumes a ground station installed on the ground.
  • the wireless communication unit 201 receives the wireless signal.
  • the wireless communication unit 201 receives radio waves under the control of the wireless control unit 202, converts them into radio signals, and passes them to the frame detection / demodulation unit 203.
  • the radio control unit 202 controls the radio communication unit 201 so that the frame is received at the reception time and reception frequency obtained from the radio resource determination unit 204.
  • the frame detection / demodulation unit 203 detects a frame from the received signal and demodulates it. Specifically, the frame detection / demodulation unit 203 generates a known pattern from the preamble, synchronization information, and scramble pattern acquired from the radio resource determination unit 204, calculates the correlation value between the received signal and the known pattern, and correlates. When the value exceeds a certain value, it is determined that the frame has been detected. Then, when the frame detection / demodulation unit 203 succeeds in frame detection, the signal of the portion corresponding to the frame is taken out from the received signal, scrambled, and then the payload is taken out, and the error correction code decoding process and CRC are performed.
  • the radio resource determination unit 204 uses the ID and initial value of the terminal 100 obtained from the storage unit 205 to transmit a radio resource (time / frequency) for which the terminal 100 transmits a frame, a preamble required for frame demodulation, synchronization information, and the like. And generate a scramble pattern.
  • the storage unit 205 holds the ID and initial value of the terminal 100, which is information necessary for determining the wireless resource. Further, the storage unit 205 holds a reception target terminal list holding the ID of the terminal 100 to be received by the reception station 200.
  • FIG. 5 shows a configuration example of a frame used in the system shown in FIG.
  • the frame contains ID, DATA, and CRC fields. It is assumed that both the notification frame and the data frame transmitted from the terminal have the frame configuration shown in FIG.
  • an ID which is a unique identifier of the terminal 100 which is the transmission source is stored.
  • Transmission data is stored in the DATA field.
  • DATA field In the case of a data frame, data acquired from the sensor 104 or the like is stored.
  • notification frame In the case of a notification frame, the transmission interval from the notification frame transmission to the data frame transmission, the transmission interval of the data frame transmitted periodically, and the like are stored.
  • CRC field the CRC value calculated for the information stored in the ID field and the DATA field is stored. On the receiving side, the demodulation success determination is performed using the CRC value.
  • FEC Forward Error Correction
  • a frame is generated by concatenating the preamble, which is a known pattern used for frame detection and synchronization acquisition, and synchronization information at the beginning of the payload, and then taking an exclusive OR (XOR) with the scramble pattern for each bit.
  • XOR exclusive OR
  • radio resources time / frequency used for frame transmission, preamble and synchronization information required for frame generation, and the scramble pattern generation method will be described with reference to FIG.
  • the radio resources (time / frequency) used for frame transmission, the preamble and synchronization information required for frame generation, and the rules 1 to 4 for determining the scramble pattern generation method are predetermined. ..
  • the time (Time) used for frame transmission is determined by inputting two initial values Seed (T) -1 and Seed (T) -2 for time calculation in Rule 1.
  • the frequency (Freq) used for frame transmission is determined by inputting two initial values Seed (F) -1 and Seed (F) -2 for frequency calculation in Rule 2.
  • the preamble / synchronization information (Preamble / Sync) is determined by inputting two initial values Seed (P) -1 and Seed (P) -2 for calculating the preamble and synchronization information in Rule 3.
  • the scramble pattern is determined by inputting two initial values Seed (S) -1 and Seed (S) -2 for the scramble pattern in Rule 4.
  • Each initial value is determined in advance in the system, and is held in the storage unit 106 in the terminal 100 and the storage unit 205 in the receiving station 200, respectively.
  • the terminal of the data frame source is set to the second initial value (Seed (T) -2, Seed (F) -2, Seed (P) -2, Seed (S) -2). Enter IDs that are 100 unique identifiers.
  • the second initial value Seed (T) -2, Seed (F) -2, Seed (P) -2, Seed (S) -2) is set in advance for the notification frame. Randomly selected from several assigned initial values and entered.
  • the radio resource (time / frequency) used for frame transmission and the information required for frame demodulation can be obtained only by notifying the terminal ID from the terminal 100 to the receiving station 200.
  • FIG. 7 schematically shows a configuration example of an LPWA wireless communication system using a satellite receiving station.
  • a plurality of receiving stations installed on the ground hereinafter referred to as "ground stations”
  • a plurality of satellite receiving stations orbiting the earth hereinafter, also simply referred to as "satellite receiving stations”
  • it is composed of innumerable terminals scattered on the ground.
  • all terminals and receiving stations are time-synchronized. It is conceivable to use GPS information as a method of time synchronization.
  • each satellite receiving station is close to the polar orbit that passes over the sky near the pole, the angle of the light from the sun incident on the orbital plane of the satellite is the same, and the sun that always passes through the equator at the same local time. It orbits the earth in a synchronized orbit.
  • the terminal is a transmitter that periodically transmits information sensed by the on-board sensor or the like.
  • the satellite receiving station receives the data transmitted by the terminal and performs demodulation processing. Further, the satellite receiving station transmits the demodulation result (user data) to the application server (not shown) on the cloud as needed.
  • the satellite receiving station enables inter-satellite communication.
  • the communication method between satellite receiving stations is not limited, but it is desirable to use constant connection and high-speed communication.
  • a ground station is a transceiver that communicates with a satellite receiver. The communication method between the satellite receiving station and the ground station is not limited, but high-speed communication is desirable.
  • the terminal In the case of a terrestrial receiving station, if the terminal is a stationary terminal or the movement range is narrow, the receiving station that can receive the data (radio wave) transmitted by the terminal is always the same. Therefore, there is no problem if the terminal transmits the notification frame at a low frequency of about once every few days when the power is turned on and thereafter.
  • low earth orbit satellites continue to move in orbit at a speed of several kilometers per second, so the receiving station that can receive the data transmitted by the terminal is not fixed.
  • the satellite receiver 701 will be in the receivable range 711 of the satellite receiver 701 where the terminal is located.
  • the data frame transmitted by the terminal can be received and demodulated.
  • the satellite The receiving station 701 cannot receive and demodulate the data frame transmitted by the terminal.
  • the network design is such that the receivable range 711 and the receivable range 712 of the satellite receiving station 701 and the satellite receiving station 702 adjacent to each other in the satellite orbit do not overlap.
  • the satellite receiving station 701 and the satellite receiving station 702 orbit the same orbit, but may orbit adjacent to each other.
  • FIG. 8 shows an example of a communication sequence between the satellite receiving station 701 and the satellite receiving station 702 and the terminal 801 adjacent to each other in the satellite orbit. Since the satellite receiving station 701 and the satellite receiving station 702 continue to move in the satellite orbit at a speed of several km per second, the time zone where the terminal 801 is located is the receivable range 711 of the satellite receiving station 701. And, there is a time zone that deviates from the receivable range 711 of the satellite receiving station 701 and becomes the receivable range 712 of the satellite receiving station 702.
  • the terminal 801 transmits (broadcasts) a notification frame in order to notify its own ID (SEQ801).
  • the radio resource time / frequency allocated in advance for the notification frame transmission in the system is used.
  • the terminal 801 is in the receivable range 711 of the satellite receiving station 701. Therefore, the satellite receiving station 701 executes the reception and demodulation processing of the notification frame for the radio resource for transmitting the notification frame (SEQ811), and registers the ID acquired from the notification frame in the reception target terminal list (SEQ812). ).
  • the satellite receiving station 702 since the notification frame from the terminal 801 does not reach the satellite receiving station 702, the satellite receiving station 702 does not register the ID of the terminal 801 in the reception target terminal list.
  • the terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system.
  • a data frame is generated and transmitted (broadcast) (SEQ802).
  • the satellite receiving station 701 uses the ID registered in the reception target terminal list, and is a radio resource (time / frequency) at which the terminal 801 transmits a data frame from the terminal ID based on the same rules 1 to 4 as the terminal 801. ) And the code required for demodulation of the data frame is calculated, and the data frame is received and demodulated (SEQ813).
  • the terminal 801 calculates the radio resource (time / frequency) for transmitting the next data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system. Then, the next data frame is generated and transmitted (broadcast) (SEQ803).
  • the satellite receiving station 701 uses the ID registered in the reception target terminal list, and is a radio resource (time / frequency) at which the terminal 801 transmits a data frame from the terminal ID based on the same rules 1 to 4 as the terminal 801. ) And the code required for demodulation of the data frame are calculated, and the reception and demodulation processing of the data frame is attempted (SEQ814). However, since the location where the terminal 801 is located is out of the receivable range 711 and is in the receivable range 712 of the satellite receiving station 702, the demodulation process of the data frame from the terminal 801 fails.
  • the data frame from the terminal 801 reaches the satellite receiving station 702, but since the satellite receiving station 702 does not register the ID of the terminal 801 in the reception target terminal list, the data frame reception / demodulation processing from the terminal 801 is performed. Do not do.
  • the terminal transmits the notification frame with high frequency.
  • the satellite receiving station moves in the satellite orbit, even if the terminal does not transmit the notification frame frequently, the place where the terminal is located when the terminal transmits the data frame is determined.
  • FIG. 9 shows an example of a communication sequence between the satellite receiving station 701 and the satellite receiving station 702 and the terminal 801 when the method according to the present disclosure is applied. Since the satellite receiving station 701 and the satellite receiving station 702 continue to move in the satellite orbit at a speed of several km per second, the time zone where the terminal 801 is located is the receivable range 711 of the satellite receiving station 701. And, there is a time zone that deviates from the receivable range 711 of the satellite receiving station 701 and becomes the receivable range 712 of the satellite receiving station 702.
  • the terminal 801 transmits (broadcasts) a notification frame in order to notify its own ID (SEQ901).
  • the terminal 801 uses a radio resource (time / frequency) previously allocated for notification frame transmission in the system for transmission of the notification frame.
  • the terminal 801 is in the receivable range 711 of the satellite receiving station 701. Therefore, the satellite receiving station 701 executes the reception and demodulation processing of the notification frame for the radio resource for transmitting the notification frame (SEQ911), and registers the ID acquired from the notification frame in the reception target terminal list (SE912). ).
  • the satellite receiving station 701 transmits the frame reception information regarding the notification frame received from the terminal 801 to the satellite receiving station 702 located following the same satellite orbit (SEQ913).
  • the frame reception information includes the terminal ID of the transmission source of the notification frame, the data transmission interval, the frequency error estimation result and the propagation delay estimation result measured at the time of receiving the notification frame. The processing procedure for the satellite receiving station to receive the notification frame will be described later (see FIG. 13).
  • the satellite receiving station 702 since the notification frame from the terminal 801 does not reach the satellite receiving station 702, the satellite receiving station 702 does not register the ID of the terminal 801 in the reception target terminal list. Further, the satellite receiving station 702 determines whether or not the terminal 801 should be registered in its own reception target terminal list based on the frame reception information received from the satellite receiving station 701 located in front of the same satellite orbit (). SEQ921). The processing procedure for the satellite receiving station to receive the frame reception information frame and the specific determination conditions will be described later (see FIG. 15). In the communication sequence example shown in FIG. 9, since the location where the terminal 801 is located is still outside the receivable range 712 at the timing when the terminal 801 transmits the next data frame, the determination condition is not satisfied. The receiving station 702 does not register the terminal 801 in the receiving target terminal list.
  • the terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system.
  • a data frame is generated and transmitted (broadcast) (SEQ902).
  • the satellite receiving station 701 uses the ID registered in the reception target terminal list, and is a radio resource (time / frequency) at which the terminal 801 transmits a data frame from the terminal ID based on the same rules 1 to 4 as the terminal 801. ) And the code required for demodulation of the data frame is calculated, and the data frame is received and demodulated (SEQ 914). Then, the satellite receiving station 701 transmits the frame reception information regarding the data frame received from the terminal 801 to the satellite receiving station 702 located following the same satellite orbit (SEQ915). The processing procedure for the satellite receiving station to receive the data frame will be described later (see FIG. 14).
  • the satellite receiving station 702 determines whether or not the terminal 801 should be registered in its own reception target terminal list based on the frame reception information received from the satellite receiving station 701 located in front of the same satellite orbit (SEQ922). .. Here, since the location where the terminal 801 is located is within the receivable range 712 at the transmission timing of the next data frame and other determination conditions are satisfied, the satellite receiving station 702 registers the terminal 801 in the reception target terminal list.
  • the terminal 801 calculates the radio resource (time / frequency) for transmitting the next data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system. Then, the next data frame is generated and transmitted (broadcast) (SEQ903).
  • the satellite receiving station 701 uses the ID registered in the reception target terminal list, and is a radio resource (time / frequency) at which the terminal 801 transmits a data frame from the terminal ID based on the same rules 1 to 4 as the terminal 801. ) And the code required for demodulation of the data frame are calculated, and the reception and demodulation processing of the data frame is attempted (SEQ915). However, since the location where the terminal 801 is located is out of the receivable range 711 and is in the receivable range 712 of the satellite receiving station 702, the demodulation process of the data frame from the terminal 801 fails.
  • the data frame from the terminal 801 reaches the satellite receiving station 702. Since the satellite receiving station 702 registers the ID of the terminal 801 in its own reception target terminal list based on the frame reception information received from the terminal 801, the terminal ID is based on the same rules 1 to 4 as the terminal 801.
  • the terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame and the code required for demodulating the data frame, and attempts to receive and demolish the data frame. Since the location where the terminal 801 is located is within the receivable range 712, the satellite receiving station 702 succeeds in demodulating the data frame from the terminal 801 (SEQ 924).
  • the terminal configuration may be the same as in FIG. 3, and therefore, the description of the terminal configuration will be omitted in this section C.
  • FIG. 10 shows an example of a functional configuration of the satellite receiving station 1000 in a system that shares frame reception information.
  • the satellite receiving station 1000 is used by being mounted on a low earth orbit satellite orbiting the earth in any of the satellite orbits shown in FIG.
  • the satellite receiving station 1000 includes an LPWA unit 1200 and an intersatellite communication unit 1300.
  • the LPWA unit 1200 receives the frame transmitted by the terminal on the ground.
  • the LPWA unit 1200 has the same reference number as that of FIG. 4 for the same components as the receiving station 200 shown in FIG.
  • the LPWA unit 1200 further includes a target terminal determination unit 206.
  • the target terminal determination unit 206 determines whether or not the target terminal should be registered in its own reception target terminal list based on the frame reception information received from the satellite receiving station in front of the same satellite orbit.
  • the frame detection / demodulation unit 203 uses the intersatellite communication unit to obtain the terminal ID of the source of the received notification frame or data frame, the frame transmission interval, the frequency error estimation result and the propagation delay estimation result measured at the time of receiving the notification frame. It is output to the frame generation unit 1303 on the 1300 side.
  • the intersatellite communication unit 1300 includes a wireless communication unit 1301, a wireless control unit 1302, a frame generation unit 1303, and a frame detection / demodulation unit 1304.
  • the wireless communication unit 1301 transmits and receives wireless signals.
  • the wireless communication unit 1301 receives radio waves under the control of the wireless control unit 1302, converts them into radio signals, and passes them to the frame detection / demodulation unit 1304. Further, the wireless communication unit 1301 converts the frame generated by the frame generation unit 1303 into a wireless signal and transmits it under the control of the wireless control unit 1302.
  • the wireless control unit 1302 controls the wireless communication unit 1301 so that frames can be transmitted and received between satellite receiving stations.
  • the frame generation unit 1303 stores the frame reception information acquired from the frame detection / demodulation unit 203 on the LPWA unit 1200 side in the data, and generates a frame according to a predetermined format.
  • the frame detection / demodulation unit 1304 detects and demodulates a frame from the received signal of the wireless communication unit 1301. When the frame detection / demodulation unit 1304 succeeds in demodulating the frame, the frame detection / demodulation unit 1304 passes the received data, that is, the frame reception information, to the target terminal determination unit 206.
  • FIG. 11 shows a frame configuration example of the data part of the frame reception information frame.
  • the format other than the data part shall be according to the communication method used.
  • the frame reception information frame is a frame for notifying a subsequent satellite receiving station in the same satellite orbit of the frame reception information regarding the frame received from the terminal by the satellite receiving station.
  • nSTA field the number of frame reception information (Frame Rx Info) stored in the data part is stored.
  • the nSTA field is followed by the number of Frame Rx Info fields described in the nSTA field.
  • Frame Rx Info field frame reception information regarding a frame received from each terminal is stored.
  • information indicating the value n is stored in the nSTA field, and n Frame Rx Info fields are stored.
  • Each Frame Rx Info field includes an ID field, an Ftype field, and Freq. It includes an Error field, a Promotion Delay field, a Data Tx Interval field, and a Next Data Tx Interval field, respectively.
  • the ID field the ID (terminal ID) of the terminal that is the source of the received frame is stored.
  • a value indicating the type of received frame is stored in the Ftype field. Specifically, when the value stored in the Ftype field is 0, a notification frame is indicated, and when it is 1, a data frame is indicated. Freq.
  • the error estimation result of the received frame is stored in the Error field.
  • the Promotion Delivery field the propagation delay estimation result of the received frame is stored.
  • the data frame transmission interval is stored in the Data Tx Interval field.
  • the time until the next data frame is transmitted is stored in the Next Data Tx Interval field.
  • the Next Data Tx Interval field is added only when Ftype is 0, that is, when a notification frame is received.
  • FIG. 12 shows the processing operation performed by the terminal in the form of a flowchart.
  • the terminal first determines whether or not ⁇ time has elapsed immediately after the power is turned on or after the previous notification frame is transmitted (step S1201). It is assumed that the transmission interval ⁇ of the notification frame is set in advance.
  • step S1201 Immediately after the power is turned on or when ⁇ time has elapsed since the previous notification frame was transmitted (Yes in step S1201), the terminal executes the notification frame transmission process.
  • the terminal When transmitting a notification frame, the terminal first obtains information such as radio resources (time, frequency) used for transmitting the notification frame, preamble and synchronization information required for frame generation, scramble pattern, and the like, as described in Rules 1 to 4 described above. It is calculated based on (step S1202).
  • information such as radio resources (time, frequency) used for transmitting the notification frame, preamble and synchronization information required for frame generation, scramble pattern, and the like, as described in Rules 1 to 4 described above. It is calculated based on (step S1202).
  • the terminal generates a notification frame using the preamble, synchronization information, and scramble pattern calculated in step S1202 (step S1203).
  • the terminal determines whether or not the transmission time calculated in step S1202 has been reached (step S1204). Then, when the transmission time of the notification frame arrives (Yes in step S1204), the terminal transmits the notification frame generated in step S1203 using the transmission frequency calculated in step S1202 (step S1205).
  • step S1206 if ⁇ time has not elapsed since the power was turned on or the previous notification frame was transmitted (No in step S1201), and after the notification frame was transmitted, the terminal has elapsed ⁇ time since the previous data frame was transmitted. It is determined whether or not it has been done (step S1206).
  • the terminal uses the radio resource (time / frequency) used to transmit the data frame, the preamble and synchronization information required for frame generation, and the scramble pattern. Information such as is calculated based on the rules 1 to 4 (step S1207).
  • the terminal generates a data frame using the preamble, synchronization information, and scramble pattern calculated in step S1207 (step S1208).
  • the terminal determines whether or not the transmission time calculated in step S1207 has been reached (step S1209). Then, when the transmission time arrives (Yes in step S1209), the terminal transmits the data frame generated in step S1208 using the transmission frequency calculated in step S1207 (step S1210).
  • step S1206 If ⁇ time has not elapsed since the last data frame was transmitted (No in step S1206), and after transmitting the data frame, the process returns to step S1201 and the terminal repeatedly executes the transmission of the notification frame.
  • the satellite receiving station can perform the reception processing of the notification frame, the reception processing of the data frame, and the transmission / reception processing of the frame reception information frame in parallel.
  • FIG. 13 shows the processing procedure for the satellite receiving station to receive the notification frame in the form of a flowchart.
  • the satellite receiving station refers to the reception target terminal list, and obtains the radio resource (time / frequency) for receiving the notification frame from the registered terminal and the information necessary for demodulating the notification frame in the above-mentioned rules 1 to 4. It is calculated based on (step S1301).
  • the satellite receiving station determines whether or not the notification frame reception time calculated in step S1301 has been reached (step S1302).
  • the satellite receiving station detects the notification frame from the corresponding terminal using the preamble and synchronization information calculated in step S1301 (step S1303), and calculates it in step S1301.
  • the received notification frame is demodulated using the scramble pattern (step S1304).
  • the satellite receiving station determines whether or not the demodulation of the notification frame is successful (step S1305).
  • the satellite receiving station puts information such as the terminal ID and the data transmission interval stored in the received notification frame into the reception target terminal list. Register (step S1306).
  • the satellite receiving station has the terminal ID stored in the notification frame, the data transmission interval, the frequency error estimation result and the propagation delay estimation result calculated when the notification frame is detected and demodulated in steps S1303 to S1304, and further. Generates a frame reception information frame using the transmission interval from the notification frame transmission to the data frame transmission (step S1307).
  • the satellite receiving station transmits a frame reception information frame to a subsequent satellite receiving station in the same satellite orbit (step S1308).
  • step S1305 the satellite receiving station does not register in the reception target terminal list or transmit the frame reception information frame.
  • the satellite receiving station transmits a frame reception information frame each time it receives a notification frame, but the satellite receiving station receives a plurality of notification frames and then collectively receives the frames.
  • Information frames may be transmitted.
  • FIG. 14 shows the processing procedure for the satellite receiving station to receive the data frame in the form of a flowchart. However, it is assumed that the satellite receiving station can execute the data frame reception processing in parallel for each terminal registered in the reception target terminal list.
  • the satellite receiving station acquires the information of the target terminal such as the terminal ID from the reception target terminal list (step S1401), and performs the radio resource (time / frequency) for receiving the data frame from the target terminal and the data frame demodulation.
  • the required preamble, synchronization information, and scramble pattern are calculated based on the above-mentioned rules 1 to 4 (step S1402).
  • the satellite receiving station determines whether or not the data frame reception time calculated in step S1402 has been reached (step S1403).
  • the satellite receiving station detects the data frame from the corresponding terminal using the preamble and synchronization information calculated in step S1402 (step S1404), and calculates it in step S1402.
  • the received data frame is demodulated using the scramble pattern (step S1405).
  • the satellite receiving station determines whether or not the demodulation of the data frame is successful (step S1406).
  • the satellite receiving station estimates the data transmission interval and the frequency error calculated when the data frame is detected and demodulated in steps S1404 to S1405.
  • a frame reception information frame is generated using the result and the propagation delay estimation result (step S1407).
  • the satellite receiving station transmits a frame reception information frame to a subsequent satellite receiving station in the same satellite orbit (step S1408).
  • step S1406 the satellite receiving station does not transmit the frame reception information frame.
  • the satellite receiving station transmits a frame reception information frame each time a data frame is received, but the satellite receiving station receives a plurality of data frames and then collectively receives the frame.
  • Information frames may be transmitted.
  • FIG. 15 shows the processing procedure for the satellite receiving station to receive the frame reception information frame in the form of a flowchart.
  • the satellite receiving station determines whether or not the frame reception information frame has been received (step S1501). Then, when the satellite receiving station receives the frame reception information frame (Yes in step S1501), the received frame is demodulated (step S1502), and it is determined whether or not the demodulation processing is successful (step S1503). ..
  • step S1503 the satellite receiving station acquires an nSTA indicating the number of frame reception information stored in the frame reception information frame (step S1504). , The processing of each subsequent frame reception information (Frame Rx Info) is repeatedly executed for the number of frame reception information.
  • the satellite receiving station estimates the remaining time that can be received by the satellite receiving station having the same notification frame or data frame from the frequency error estimation result (Freq.Eror) and the propagation delay estimation result (Propagation Delivery) (step S1505). ).
  • step S1506 based on the receivable remaining time estimated in step S1505 and the data transmission interval, it is determined whether or not the data frame transmitted from the corresponding terminal can be received by the same satellite receiving station (step S1506).
  • the value stored in the Next Data Tx Interval field is used when Ftype is 0, that is, the received frame is a notification frame, and when Ftype is 1, that is, the received frame is a data frame.
  • the value stored in the Data Tx Interval field is used for.
  • step S1506 if the data frame transmitted from the corresponding terminal can be received by the same satellite receiving station (Yes in step S1506), the satellite receiving station returns to step S1505 and receives the next frame reception information (Yes).
  • the process of Frame Rx Info) is repeatedly executed.
  • step S1506 if the next data frame transmitted from the corresponding terminal cannot be received by the same satellite receiving station (No in step S1506), the satellite receiving station is stored in the frame receiving information (Frame Rx Info). After registering the terminal ID and the data transmission interval in its own reception target terminal list (step S1507), the process returns to step S1505 and the processing of the next frame reception information (Frame Rx Info) is repeatedly executed.
  • FIG. 16 shows an example of the time change of the frequency error and the propagation delay when the altitude of the satellite is 600 km and the frequency is 2 GHz.
  • FIG. 16 shows an example in which a satellite passes overhead of a terminal, and it is assumed that the satellite receiving station can receive one terminal for 6 minutes from 0 to 6 minutes.
  • the model described in 3GPP TR 38.811 V15.1.0 (Non-Patent Document 1) was referred to.
  • the satellite receiving station is just above the terminal at the third minute, the propagation delay is minimized, and the sign of the frequency error is inverted.
  • the frequency error estimation result and the propagation delay estimation result of the received frame from the terminal By comparing the frequency error estimation result and the propagation delay estimation result of the received frame from the terminal with the chart of FIG. 16, it is possible to determine which time corresponds to the 6 minutes in which the frame from the terminal can be received. .. Further, when the satellite receiving station moves over the terminal in one direction at a predetermined speed, the relative positional relationship between the terminal corresponding to the determined time and the satellite receiving station can be estimated.
  • the frequency error estimation result notified in the frame reception information frame is 30 kHz
  • the propagation delay estimation result is 2.5 milliseconds
  • the next data frame corresponds to the 5th minute of the 6 minutes that can be received, it can be received by the same satellite receiving station.
  • the frequency error estimation result notified in the frame reception information frame is -30 kHz
  • the propagation delay estimation result is 2.5 milliseconds, the 5th minute out of the receivable 6 minutes. Equivalent to. Therefore, since the next data frame corresponds to the time when the receivable 6 minutes have elapsed, it cannot be received by the same receiving station. Considering that the satellite receiving station moves in one direction in the satellite orbit in this way, the remaining time that can be received by the satellite receiving station that received the frame from the terminal is estimated by combining the frequency error and the propagation delay. It is possible to do.
  • each satellite receiving station shares the frame reception information including the frequency error estimation result and the propagation delay estimation result of the frame received from the terminal, and the frequency error estimation result and the propagation delay estimation. Based on the result, the frame transmission interval, and the positional relationship of the adjacent satellite receiving stations, it is determined whether or not the next data frame transmitted from the corresponding terminal can be received by the same satellite receiving station.
  • the satellite receiving station transmits the frame reception information to the succeeding satellite receiving station in the same orbit, so that the terminal can then send the data even if the terminal does not frequently transmit the notification frame.
  • transmitting a frame it is possible to enable a satellite receiving station whose receivable range is the location where the terminal is located to receive and demodulate the data frame from the terminal.
  • FIG. 17 shows a frame configuration example of a data portion of a frame reception information frame when notifying the position coordinates of a terminal.
  • the format other than the data part shall be according to the communication method used.
  • the frame reception information frame is a frame that notifies the subsequent satellite receiving station in the same satellite orbit of the frame reception information regarding the frame received from the terminal by the satellite receiving station.
  • nSTA field the number of frame reception information (Frame Rx Info) stored in the data part is stored.
  • the nSTA field is followed by the number of Frame Rx Info fields described in the nSTA field.
  • Frame Rx Info field frame reception information regarding a frame received from each terminal is stored.
  • information indicating the value n is stored in the nSTA field, and n Frame Rx Info fields are stored.
  • Each Frame Rx Info field includes an ID field, an Ftype field, a Longitude field, a Latitude field, a Frame Rx Time field, a Data Tx Interval field, and a Next Data Tx Interval field, respectively.
  • the ID field the ID (terminal ID) of the terminal that is the source of the received frame is stored.
  • a value indicating the type of received frame is stored in the Ftype field. Specifically, when the value stored in the Ftype field is 0, a notification frame is indicated, and when it is 1, a data frame is indicated.
  • the longitude field in which the terminal is located is stored in the Longitude field.
  • the longitude in which the terminal is located is stored in the Latitude field.
  • the Frame Rx Time field the time when the frame is received from the terminal is stored.
  • the data frame transmission interval is stored in the Data Tx Interval field.
  • the time until the next data frame is transmitted is stored in the Next Data Tx Interval field.
  • the Next Data Tx Interval field is added only when Ftype is 0, that is, when a notification frame is received.
  • FIG. 18 shows a processing procedure for a satellite receiving station to receive a frame reception information frame in the form of a flowchart.
  • the satellite receiving station determines whether or not the frame reception information frame has been received (step S1801). Then, when the satellite receiving station receives the frame reception information frame (Yes in step S1801), the received frame is demodulated (step S1802), and it is determined whether or not the demodulation processing is successful (step S1803). ..
  • step S1803 the satellite receiving station acquires nSTA indicating the number of frame reception information stored in the frame reception information frame.
  • the processing of each subsequent frame reception information (Frame Rx Info) is repeatedly executed for the number of frame reception information.
  • the remaining time that the notification frame or the data frame can be received by the same satellite receiving station is estimated from the position coordinates of the terminal and the frame reception time from the terminal (step S1805).
  • step S1805 based on the receivable remaining time estimated in step S1805 and the data transmission interval, it is determined whether or not the data frame transmitted from the corresponding terminal can be received by the same satellite receiving station (step S1806).
  • the value stored in the Next Data Tx Interval field is used when Ftype is 0, that is, the received frame is a notification frame, and when Ftype is 1, that is, the received frame is a data frame.
  • the value stored in the Data Tx Interval field is used for.
  • step S1806 if the data frame transmitted from the corresponding terminal can be received by the same satellite receiving station (Yes in step S1806), the satellite receiving station returns to step S1805 and returns to the next frame reception information (Yes).
  • the process of Frame Rx Info) is repeatedly executed.
  • step S1806 if the next data frame transmitted from the corresponding terminal cannot be received by the same satellite receiving station (No in step S1806), the satellite receiving station is stored in the frame receiving information (Frame Rx Info). After registering the terminal ID and the data transmission interval in its own reception target terminal list (step S1807), the process returns to step S1805, and the processing of the next frame reception information (Frame Rx Info) is repeatedly executed.
  • the satellite receiving station Since the satellite receiving station transmits the data received by the LPWA to the ground, it is necessary to communicate with the ground station by satellite communication. Therefore, in general, the satellite receiving station grasps its own position coordinates by GPS or the like.
  • the satellite when constructing a satellite constellation, it holds information on satellite receiving stations that orbit in the same satellite orbit. For example, it is assumed that the satellite has information that it passes through the same point on the ground at intervals of 6 minutes with the satellite in front of the satellite orbit.
  • the time when the frame reception information frame is received is 12:00
  • the time when the position information notified by the terminal in the data frame is within the receivable range is 12:05
  • the frame reception time is 11:58
  • the notification frame is 7 minutes.
  • the remaining receivable time at the satellite receiving station that received the data frame is 7 minutes.
  • the data transmission interval is 3 minutes, the next data frame can be received by the same receiving station.
  • the time when the frame reception information frame is received is 12:00
  • the time when the position information notified by the terminal in the data frame is within the receivable range is 12:01
  • the frame reception time is 11:59, the notification frame or the data frame.
  • the remaining receivable time at the satellite receiving station that received the message is 2 minutes. If the data transmission interval is 3 minutes, the next data frame cannot be received by the same receiving station.
  • the position information notified by the terminal and the time when the frame is received are received. From, it is possible to estimate the remaining time that can be received by the receiving station that received the frame.
  • the satellite receiving station 701 uses the terminal 801 even after the place where the terminal 801 is located has passed its own receivable range 711. It remains registered in its own reception target terminal list, and performs unnecessary reception / demodulation processing on the data frame from the terminal 801.
  • a method of preventing the satellite receiving station from performing unnecessary reception / demodulation processing on a terminal that has passed from its own receivable range will be described.
  • FIG. 19 shows an example of a communication sequence between the satellite receiving station 701 and the satellite receiving station 702 and the terminal 801 when the method according to the third embodiment is applied. Since the satellite receiving station 701 and the satellite receiving station 702 continue to move in the satellite orbit at a speed of several km per second, the time zone where the terminal 801 is located is the receivable range 711 of the satellite receiving station 701. And, there is a time zone that deviates from the receivable range 711 of the satellite receiving station 701 and becomes the receivable range 712 of the satellite receiving station 702.
  • the terminal 801 transmits (broadcasts) a notification frame in order to notify its own ID (SEQ1901).
  • the terminal 801 uses a radio resource (time / frequency) previously allocated for notification frame transmission in the system for transmission of the notification frame.
  • the satellite receiving station 701 executes the reception and demodulation processing of the notification frame for the radio resource for transmitting the notification frame (SEQ1911), and registers the ID acquired from the notification frame in the reception target terminal list (SE1912). ). Then, the satellite receiving station 701 transmits the frame reception information regarding the notification frame received from the terminal 801 to the satellite receiving station 702 located following the same satellite orbit (SEQ1913).
  • the frame reception information includes the terminal ID of the transmission source of the notification frame, the data transmission interval, the position coordinates of the corresponding terminal, and the reception time of the notification frame.
  • the satellite receiving station 701 performs reception / demodulation of the notification frame and transmission processing of the notification frame according to the processing procedure shown in FIG.
  • the satellite receiving station 702 since the notification frame from the terminal 801 does not reach the satellite receiving station 702, the satellite receiving station 702 does not register the ID of the terminal 801 in the reception target terminal list. Further, the satellite receiving station 702 receives and processes the frame reception information frame from the satellite receiving station 701 located in front of the same satellite orbit, and determines whether or not the terminal 801 should be registered in its own reception target terminal list. (SEQ1921). The processing procedure for the satellite receiving station to receive the frame reception information frame will be described later (see FIG. 21). Here, the satellite receiving station 702 determines that the next data frame transmitted from the terminal 801 cannot be received from the receivable remaining time and the data transmission interval estimated based on the frequency error estimation result and the propagation delay estimation result. Judging, the terminal 801 is not registered in its own reception target terminal list.
  • the terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system.
  • a data frame is generated and transmitted (broadcast) (SEQ1902).
  • the satellite receiving station 701 uses the ID registered in the reception target terminal list, and is a radio resource (time / frequency) at which the terminal 801 transmits a data frame from the terminal ID based on the same rules 1 to 4 as the terminal 801. ) And the code required for demodulation of the data frame is calculated, and the data frame is received and demodulated (SEQ1914). Then, the satellite receiving station 701 transmits the frame reception information regarding the data frame received from the terminal 801 to the satellite receiving station 702 located following the same satellite orbit (SEQ1915). The satellite receiving station 701 performs reception / demodulation of data frames and transmission processing of notification frames according to the processing procedure shown in FIG.
  • the satellite receiving station 702 receives and processes the frame reception information frame from the satellite receiving station 701 located in front of the same satellite orbit, and determines whether or not the terminal 801 should be registered in its own reception target terminal list ( SEQ1922).
  • the processing procedure for the satellite receiving station to receive the frame reception information frame will be described later (see FIG. 21).
  • the satellite receiving station 702 receives the data frame to be transmitted next from the terminal 801 at the satellite receiving station 702 from the receivable remaining time and the data transmission interval estimated based on the frequency error estimation result and the propagation delay estimation result. It is determined that it is possible, and the terminal 801 is registered in the reception target terminal list (SEQ1923).
  • the satellite receiving station 702 transmits a reception target terminal list registration notification frame to the satellite receiving station 701 located in front of the same satellite orbit, and notifies that the terminal 801 is registered in the reception target terminal list. (SEQ1924).
  • the satellite receiving station 701 receives the reception target terminal list registration notification frame from the satellite receiving station 702, the satellite receiving station 701 deletes the entry of the terminal 801 from its own receiving target terminal list (SEQ1916).
  • the terminal 801 calculates the radio resource (time / frequency) for transmitting the next data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system. Then, the next data frame is generated and transmitted (broadcast) (SEQ1903).
  • the location where the terminal 801 is located is outside the receivable range 711 of the satellite receiving station 701. Since the satellite receiving station 701 has already deleted the terminal 801 from its own list of reception target terminals, it does not perform unnecessary reception / demodulation processing on the data frame from the terminal 801.
  • the satellite receiving station 702 since the satellite receiving station 702 registers the ID of the terminal 801 in its own reception target terminal list based on the frame reception information received from the satellite receiving station 701, it is based on the same rules 1 to 4 as the terminal 801. , The terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame from the terminal ID and the code required for demodulating the data frame, attempts to receive and demolish the data frame, and succeeds in demolishing (SEQ1925). ).
  • the satellite receiving station 701 receives unnecessary reception after the terminal 801 has passed from its own receivable range 711 by the notification from the subsequent satellite receiving station 702 in the same satellite orbit. -It is possible to prevent the demodulation process from being executed.
  • FIG. 20 shows a frame configuration example of the data portion of the reception target terminal list registration notification frame.
  • the format other than the data part shall be according to the communication method used.
  • the reception target terminal list registration notification frame sets the terminal into its own reception target terminal list based on the frame reception information received by the satellite receiving station from the satellite receiving station in front of the same satellite orbit. It is a frame to notify that the registration has been made.
  • nSTA field the number of terminal IDs (STA Rx ID) stored in the data part is stored.
  • the nSTA field is followed by the number of STA ID fields described in the nSTA field.
  • STA ID field information on the terminal ID registered in the reception target terminal list is stored.
  • FIG. 21 shows a processing procedure for the satellite receiving station to receive a frame reception information frame in the form of a flowchart.
  • the satellite receiving station determines whether or not the frame reception information frame has been received (step S2101). Then, when the satellite receiving station receives the frame reception information frame (Yes in step S2101), the received frame is demodulated (step S2102), and it is determined whether or not the demodulation processing is successful (step S2103). ..
  • step S2103 the satellite receiving station acquires nSTA indicating the number of frame reception information stored in the frame reception information frame.
  • the processing of each subsequent frame reception information (Frame Rx Info) is repeatedly executed for the number of frame reception information.
  • the remaining time that the notification frame or the data frame can be received by the same satellite receiving station is estimated from the frequency error estimation result (Freq.Eror) and the propagation delay estimation result (Propagation Delivery) (step S2105).
  • step S2106 based on the receivable remaining time estimated in step S2105 and the data transmission interval, it is determined whether or not the data frame transmitted from the corresponding terminal can be received by the same satellite receiving station (step S2106).
  • the value stored in the Next Data Tx Interval field is used when Ftype is 0, that is, the received frame is a notification frame, and when Ftype is 1, that is, the received frame is a data frame.
  • the value stored in the Data Tx Interval field is used for.
  • step S2106 if the data frame transmitted from the corresponding terminal can be received by the same satellite receiving station (Yes in step S2106), the satellite receiving station returns to step S2105 and receives the next frame reception information (Yes).
  • the process of Frame Rx Info) is repeatedly executed.
  • step S2106 if the next data frame transmitted from the corresponding terminal cannot be received by the same satellite receiving station (No in step S2106), the satellite receiving station is stored in the frame receiving information (Frame Rx Info). After registering the terminal ID and data transmission interval in its own reception target terminal list (step S2107), and then adding the terminal ID of the corresponding terminal to the reception target terminal list registration notification frame (see FIG. 20) (see FIG. 20). Step S2108), returning to step S2105, the processing of the next frame reception information (Frame Rx Info) is repeatedly executed.
  • Step S2109 When the processing is completed for all the nSTA frame reception information stored in the frame reception information frame received in step S2101, whether or not the satellite receiving station needs to transmit the reception target terminal list registration notification frame. Then, when it is necessary to transmit the reception target terminal list registration notification frame (Yes in step S2109), the satellite receiving station stores the number of stored reception target terminal list registration IDs in nSTA and receives the reception. The target terminal list registration notification frame is transmitted (step S2110).
  • FIG. 22 shows a processing procedure for the satellite receiving station to receive the reception target terminal list registration notification frame in the form of a flowchart.
  • the satellite receiving station determines whether or not the reception target terminal list registration notification frame has been received (step S2201). Then, when the satellite receiving station receives the reception target terminal list registration notification frame (Yes in step S2201), the satellite receiving station demodulates the received frame (step S2202) and determines whether or not the demodulation processing is successful (step S2202). Step S2203).
  • the satellite receiving station When the satellite receiving station succeeds in demodulating the reception target terminal list registration notification frame (Yes in step S2203), the satellite receiving station outputs nSTA indicating the number of STA ID fields stored in the reception target terminal list registration notification frame. It is acquired (step S2204), and the subsequent processing of each STA ID field is repeatedly executed for the number of nSTAs. In this iterative process, the entry of the terminal ID stored in the reception target terminal list registration notification frame is deleted from its own reception target terminal list (step S2205).
  • the satellite receiving station receives the terminal newly received by the subsequent satellite receiving station in the same satellite orbit. It can be deleted from the target terminal list.
  • the satellite receiving station can prevent unnecessary reception / demodulation processing for the terminal that has passed its receivable range.
  • the data transmission interval of a terminal is long, such as several hours, the next time the terminal transmits a data frame, it will be several (two or more) behind in the same satellite orbit from the satellite receiving station that is the target of reception. It is also assumed that it has moved to the receivable range of the satellite receiving station of.
  • the fourth embodiment even if the data transmission interval of the terminal is moved to the receivable range of several (two or more) ahead satellite receiving stations in the same satellite orbit, the appropriate satellite is used.
  • the method in which the receiving station can receive the data frame will be described.
  • FIG. 23 shows an example of a communication sequence between the satellite receiving stations 701 to 703 and the terminal 801 when the method according to the fourth embodiment is applied. Since the satellite receiving stations 701 to 703 continue to move in the satellite orbit at a speed of several km per second, the time zone where the terminal 801 is located is in the receivable range 711 of the satellite receiving station 701 and the satellite. Time zone that is out of the receivable range 711 of the receiving station 701 and becomes the receivable range 712 of the satellite receiving station 702, and time that is out of the receivable range 712 of the satellite receiving station 702 and becomes the receivable range 713 of the satellite receiving station 703. There is a band.
  • the terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system, and the data frame. Is generated and transmitted (broadcast) (SEQ2301).
  • the satellite receiving station 701 uses the ID registered in the reception target terminal list, and is a radio resource (time) for which the terminal 801 transmits a data frame from the terminal ID based on the same rules 1 to 4 as the terminal 801. -Frequency) and the code required for demodulation of the data frame are calculated, and the data frame is received and demodulated (SEQ 2311).
  • the satellite receiving station 701 succeeds in receiving and demodulating the data frame.
  • the satellite receiving station 701 transmits the frame reception information regarding the data frame received from the terminal 801 to the satellite receiving station 702 located following the same satellite orbit (SEQ2312).
  • the frame reception information includes information such as the terminal ID that received the data frame, the frequency error estimation result, the propagation delay estimation result, and the received satellite receiving station ID.
  • the satellite receiving station 702 receives and processes the frame reception information frame from the satellite receiving station 701 located in front of the same satellite orbit, and determines whether or not the terminal 801 should be registered in its own reception target terminal list ( SEQ2321). Here, the satellite receiving station 702 determines that the next data frame transmitted from the terminal 801 cannot be received from the receivable remaining time and the data transmission interval estimated based on the frequency error estimation result and the propagation delay estimation result. Judging, the terminal 801 is not registered in its own reception target terminal list.
  • the satellite receiving station 702 determines whether or not this frame receiving information should be transmitted to the satellite receiving station 703 located following the same satellite orbit based on the received frame reception information (SEQ2322). Then, the satellite receiving station 702 transmits the frame reception information to the satellite receiving station 703 based on the determination result (SEQ2323).
  • the satellite receiving station 703 receives and processes a frame reception information frame from the satellite receiving station 702 located in front of the same satellite orbit, and determines whether or not the terminal 801 should be registered in its own reception target terminal list ( SEQ2331).
  • the satellite receiving station 703 receives the data frame to be transmitted next from the terminal 801 at the satellite receiving station 703 from the receivable remaining time and the data transmission interval estimated based on the frequency error estimation result and the propagation delay estimation result. It is determined that it is possible, and the terminal 801 is registered in the reception target terminal list (SEQ2332).
  • the satellite receiving station 703 transmits a reception target terminal list registration notification frame to the satellite receiving station 701 that has received the data frame from the terminal 801 to notify that the terminal 801 has been registered in the reception target terminal list. (SEQ2333).
  • the satellite receiving station 701 receives the reception target terminal list registration notification frame from the satellite receiving station 702
  • the satellite receiving station 701 deletes the entry of the terminal 801 from its own receiving target terminal list (SEQ2313).
  • the terminal 801 calculates the radio resource (time / frequency) for transmitting the next data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system. Then, the next data frame is generated and transmitted (broadcast) (SEQ2302).
  • the location where the terminal 801 is located is outside the receivable range 711 of the satellite receiving station 701 and the receivable range 712 of the satellite receiving station 702. Since the satellite receiving station 701 has already deleted the terminal 801 from its own list of reception target terminals, it does not perform unnecessary reception / demodulation processing on the data frame from the terminal 801. Further, since the satellite receiving station 702 does not register the terminal 801 in its own reception target terminal list, it does not perform reception / demodulation processing on the data frame from the terminal 801.
  • the satellite receiving station 703 since the satellite receiving station 703 registers the ID of the terminal 801 in its own reception target terminal list based on the frame reception information received from the satellite receiving station 702, it is based on the same rules 1 to 4 as the terminal 801. , The terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame from the terminal ID and the code required for demodulating the data frame, attempts to receive and demolish the data frame, and succeeds in demolishing (SEQ2334). ).
  • the receivable range 713 of the satellite receiving station 703 two behind the satellite receiving station 701 whose reception target is the terminal 801 is 713.
  • the satellite receiving station 703 can receive the next data frame from the terminal 801.
  • the satellite receiving station 701 prevents the terminal 801 from executing unnecessary reception / demodulation processing after passing from its own receivable range 711 by the notification from the subsequent satellite receiving station 703 in the same satellite orbit. Can be done.
  • FIG. 24 shows a frame configuration example of the data portion of the frame reception information frame.
  • the format other than the data part shall be according to the communication method used.
  • the frame reception information frame is a frame for notifying a subsequent satellite receiving station in the same satellite orbit of the frame reception information regarding the frame received from the terminal by the satellite receiving station.
  • nSTA field the number of frame reception information (Frame Rx Info) stored in the data part is stored.
  • the nSTA field is followed by the number of Frame Rx Info fields described in the nSTA field.
  • Frame Rx Info field frame reception information regarding a frame received from each terminal is stored.
  • information indicating the value n is stored in the nSTA field, and n Frame Rx Info fields are stored.
  • Each Frame Rx Info field includes an ID field, an Ftype field, and Freq. Includes the Error field, the Propage Delivery field, the Data Tx Interval field, the Next Data Tx Interval field, and the Data Rx SAT ID, respectively.
  • the ID field the ID (terminal ID) of the terminal that is the source of the received frame is stored.
  • a value indicating the type of received frame is stored in the Ftype field. Specifically, when the value stored in the Ftype field is 0, a notification frame is indicated, and when it is 1, a data frame is indicated. Freq.
  • the error estimation result of the received frame is stored in the Error field.
  • the Promotion Delivery field the propagation delay estimation result of the received frame is stored.
  • the data frame transmission interval is stored in the Data Tx Interval field.
  • the time until the next data frame is transmitted is stored in the Next Data Tx Interval field.
  • the Next Data Tx Interval field is added only when Ftype is 0, that is, when a notification frame is received.
  • the ID (SAT ID) of the satellite receiving station that received the corresponding frame is stored.
  • FIGS. 25A and 25B show a processing procedure for a satellite receiving station to receive a frame reception information frame in the form of a flowchart.
  • the satellite receiving station determines whether or not the frame reception information frame has been received (step S2501). Then, when the satellite receiving station receives the frame reception information frame (Yes in step S2501), the received frame is demodulated (step S2502), and it is determined whether or not the demodulation processing is successful (step S2503). ..
  • step S2503 the satellite receiving station acquires nSTA indicating the number of frame reception information stored in the frame reception information frame.
  • the processing of each subsequent frame reception information (Frame Rx Info) is repeatedly executed for the number of frame reception information.
  • the satellite receiving station first, from the frequency error estimation result (Freq.Eror) and the propagation delay estimation result (Propagation Delivery), remains that the notification frame or the data frame can be received by the same satellite receiving station. Estimate the time (step S2505).
  • step S2506 based on the receivable remaining time estimated in step S2505 and the data transmission interval, it is determined whether or not the data frame transmitted from the corresponding terminal can be received by the same satellite receiving station (step S2506).
  • the value stored in the Next Data Tx Interval field is used when Ftype is 0, that is, the received frame is a notification frame, and when Ftype is 1, that is, the received frame is a data frame.
  • the value stored in the Data Tx Interval field is used for.
  • step S2506 if the data frame transmitted from the corresponding terminal can be received by the same satellite receiving station (Yes in step S2506), the satellite receiving station returns to step S2505 and receives the next frame reception information (Yes).
  • the process of Frame Rx Info) is repeatedly executed.
  • step S2506 the satellite receiving station determines the remaining receivable time and data transmission estimated in step S2505. Based on the interval, it is further determined whether or not the own station can receive the data frame transmitted from the corresponding terminal next (step S2507).
  • step S2507 if the own station can receive the data frame transmitted from the corresponding terminal (Yes in step S2507), the satellite receiving station has the terminal ID stored in the frame reception information (Frame Rx Info). , Register the data transmission interval in its own reception target terminal list (step S2508), then add the terminal ID of the corresponding terminal to the reception target terminal list registration notification frame (step S2509), and then return to step S2505 to perform the next step.
  • the processing of the frame reception information (Frame Rx Info) is repeatedly executed.
  • step S2507 the satellite receiving station is a frame for transmitting to a subsequent satellite receiving station in the same satellite orbit.
  • step S2510 After adding the frame reception information to the reception information frame (step S2510), the process returns to step S2505 and the process of the next frame reception information (Frame Rx Info) is repeatedly executed.
  • the satellite receiving station needs to transmit the reception target terminal list registration notification frame. (Step S2511). Then, when it is necessary to transmit the reception target terminal list registration notification frame (Yes in step S2511), the satellite receiving station stores the number of stored reception target terminal list registration IDs in nSTA and receives the reception. The target terminal list registration notification frame is transmitted (step S2512).
  • the satellite receiving station determines whether or not it is necessary to transmit a frame reception information frame to a subsequent satellite receiving station in the same satellite orbit (step S2513). Then, when it is necessary to transmit the reception target terminal list registration notification frame (Yes in step S2513), the satellite receiving station stores the number of stored reception target terminal list registration IDs in nSTA and frames. The received information frame is transmitted (step S2514).
  • FIG. 26 shows an example of an adjacent satellite receiving station information list held by the satellite receiving station.
  • the illustrated adjacent satellite receiving station information list registers information on each adjacent satellite receiving station in which the satellite receiving station orbits in the same satellite orbit.
  • the entry of each adjacent satellite receiving station stores the relative position from the own station, the satellite ID that identifies the satellite receiving station, and the distance from the own station.
  • the relative position is information indicating the position of the satellite in the same satellite orbit with respect to the own station. Negative indicates the front in the satellite orbit, and positive indicates the rear in the satellite orbit.
  • Relative position 0 indicates the own station.
  • the interval is information indicating the position interval from the own station. Negative indicates the front in the satellite orbit, and positive indicates the rear in the satellite orbit. Interval 0 indicates own station.
  • the data transmission interval is 10 min
  • the frequency error estimation result notified in the frame reception information frame is -30 kHz
  • the propagation delay estimation result is 2.5 ms
  • the frame is set.
  • the satellite ID of the received satellite receiving station is 502
  • the next data frame can be received by the own station.
  • the data transmission interval is 10 min
  • the frequency error estimation result notified in the frame reception information frame is -30 kHz
  • the propagation delay estimation result is 2.5 milliseconds
  • the satellite ID of the satellite receiving station that received the frame is 503.
  • the next data frame cannot be received by either the same satellite receiving station or the own station, and it is necessary to transmit the frame reception information to the succeeding satellite receiving station.
  • the terminal does not need to transmit the notification frame frequently, even if the terminal moves to the receivable range of several satellite receiving stations ahead in the long data transmission interval of the terminal.
  • the satellite receiving station whose receivable range is the corresponding terminal can receive and demodulate the data frame from the corresponding terminal.
  • each satellite receiving station needs to process the received frame reception information, so that the processing amount of the satellite receiving station may increase. There is. Therefore, in the fifth embodiment, a method in which the satellite receiving station that has received the notification frame or the data frame determines the satellite receiving station that receives the next data frame will be described.
  • FIG. 27 shows an example of a communication sequence between the satellite receiving stations 701 to 703 and the terminal 801 when the method according to the fifth embodiment is applied. Since the satellite receiving stations 701 to 703 continue to move in the satellite orbit at a speed of several km per second, the time zone where the terminal 801 is located is in the receivable range 711 of the satellite receiving station 701 and the satellite. Time zone that is out of the receivable range 711 of the receiving station 701 and becomes the receivable range 712 of the satellite receiving station 702, and time that is out of the receivable range 712 of the satellite receiving station 702 and becomes the receivable range 713 of the satellite receiving station 703. There is a band.
  • the terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system, and the data frame. Is generated and transmitted (broadcast) (SEQ2701).
  • the satellite receiving station 701 uses the ID registered in the reception target terminal list, and is a radio resource (time) for which the terminal 801 transmits a data frame from the terminal ID based on the same rules 1 to 4 as the terminal 801. -Frequency) and the code required for demodulation of the data frame are calculated, and the data frame is received and demodulated (SEQ2711).
  • the satellite receiving station 701 succeeds in receiving and demodulating the data frame.
  • the satellite receiving station 701 sets the data frame to be transmitted next from the terminal 801 to the satellite receiving station based on the terminal ID at the time of receiving the data frame, the frequency error estimation result, the propagation delay estimation result, and the adjacent satellite receiving station information. It is determined that the 703 is receivable (SEQ2712), and the reception target terminal registration frame is transmitted to the satellite receiving station 703 (SEQ2713).
  • the satellite receiving station 703 registers the terminal ID and the data transmission interval stored in the receiving target terminal registration frame received from the satellite receiving station 701 in its own receiving target terminal list (SEQ2731).
  • the satellite receiving station 701 since the satellite receiving station 701 has determined that the next data frame transmitted from the terminal 801 cannot be received by its own station (SEQ2712), the entry of the terminal 801 is deleted from the list of its own receiving target terminals (SEQ 2712). SEQ2714).
  • the terminal 801 After that, after a lapse of time, the terminal 801 generates and transmits (broadcasts) the next data frame (SEQ2702).
  • the location where the terminal 801 is located is outside the receivable range 711 of the satellite receiving station 701 and the receivable range 712 of the satellite receiving station 702. Since the satellite receiving station 701 has already deleted the terminal 801 from its own list of reception target terminals, it does not perform unnecessary reception / demodulation processing on the data frame from the terminal 801. Further, since the satellite receiving station 702 does not register the terminal 801 in its own reception target terminal list, it does not perform reception / demodulation processing on the data frame from the terminal 801.
  • the satellite receiving station 703 registers the ID of the terminal 801 in its own receiving target terminal list based on the receiving target terminal registration frame received from the satellite receiving station 701, the same rules 1 to 4 as those of the terminal 801 are applied. Based on this, the terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame from the terminal ID and the code required for demolishing the data frame, attempts to receive and demolish the data frame, and succeeds in demolishing. (SEQ2732).
  • the receivable range 713 of the satellite receiving station 703 two behind the satellite receiving station 701 whose reception target is the terminal 801 is 713.
  • the satellite receiving station 703 can receive the next data frame from the terminal 801 based on the determination processing of the receivable satellite receiving station by the satellite receiving station 701.
  • the satellite receiving station 701 prevents the terminal 801 from executing unnecessary reception / demodulation processing after passing from its own receivable range 711 by the notification from the subsequent satellite receiving station 703 in the same satellite orbit. Can be done.
  • FIG. 28 shows a frame configuration example of the data portion of the reception target terminal registration frame.
  • the format other than the data part shall be according to the communication method used.
  • the reception target terminal registration frame is a frame in which the satellite receiving station instructs subsequent satellite receiving stations in the same satellite orbit to register the corresponding terminal in the reception target terminal list.
  • nSTA field the number of terminal information (STA Info) stored in the data part is stored.
  • the nSTA field is followed by the number of STA Info fields described in the nSTA field.
  • STA Info field terminal information regarding a terminal instructing the satellite receiving station of the transmission destination to be registered in the reception target terminal list is stored.
  • information indicating the value n is stored in the nSTA field, and n STA Info fields are stored.
  • Each STA Info field includes an ID field and a Data Tx Interval field, respectively.
  • the ID of the terminal to be received is stored in the ID field.
  • the Data Tx Interval field the data frame transmission interval of the corresponding terminal is stored.
  • FIG. 29 shows a processing procedure for the satellite receiving station to receive a notification frame in the form of a flowchart.
  • the satellite receiving station refers to the reception target terminal list, and obtains the radio resource (time / frequency) for receiving the notification frame from the registered terminal and the information necessary for demodulating the notification frame in the above-mentioned rules 1 to 4. It is calculated based on (step S2901).
  • the satellite receiving station determines whether or not the notification frame reception time calculated in step S2901 has been reached (step S2902).
  • the satellite receiving station detects the notification frame from the corresponding terminal using the preamble and synchronization information calculated in step S2901 (step S2903), and calculates it in step S2901.
  • the received notification frame is demodulated using the scramble pattern (step S2904).
  • the satellite receiving station determines whether or not the demodulation of the notification frame is successful (step S2905). If the demodulation of the notification frame fails (No in step S2905), the process returns to step S2901 and the satellite receiving station tries to receive the next notification frame.
  • step S2905 if the demodulation of the notification frame is successful (Yes in step S2905), the satellite receiving station will transmit the next data frame based on the terminal ID and the data transmission interval stored in the received notification frame. Is determined (step S2906). Then, the satellite receiving station determines whether or not the next data frame transmitted from the corresponding terminal can be received by the own station (step S2907).
  • the satellite receiving station when the data frame to be transmitted next from the corresponding terminal can be received by the satellite receiving station itself (Yes in step S2907), the satellite receiving station has a terminal ID stored in the received notification frame. Information such as the data transmission interval is registered in the reception target terminal list (step S2908).
  • the satellite receiving station If the satellite receiving station itself cannot receive the next data frame transmitted from the corresponding terminal (No in step S2907), the satellite receiving station generates a reception target terminal registration frame (step S2909), and the satellite receiving station generates a reception target terminal registration frame (step S2909).
  • the reception target terminal registration frame is transmitted to another satellite receiving station that can receive the next transmitted data frame (step S2910).
  • the satellite receiving station confirms whether or not the corresponding terminal exists in its own reception target terminal list (step S2911), and if it does exist (Yes in step S2911), it corresponds from its own reception target terminal list. Delete the terminal entry (step S2912).
  • FIG. 30 shows the processing procedure for the satellite receiving station to receive the data frame in the form of a flowchart. However, it is assumed that the satellite receiving station can execute the data frame reception processing in parallel for each terminal registered in the reception target terminal list.
  • the satellite receiving station acquires the information of the target terminal such as the terminal ID from the reception target terminal list (step S3001), and is necessary for the radio resource (time / frequency) for receiving the data frame from the target terminal and the data frame demodulation.
  • Information is calculated based on the above-mentioned rules 1 to 4 (step S3002).
  • the satellite receiving station determines whether or not the data frame reception time calculated in step S3002 has been reached (step S3003).
  • the satellite receiving station detects the data frame from the corresponding terminal using the preamble and synchronization information calculated in step S3002 (step S3004), and calculates it in step S3002.
  • the received data frame is demodulated using the scramble pattern (step S3005).
  • the satellite receiving station determines whether or not the demodulation of the data frame is successful (step S3006). If the demodulation of the data frame fails (No in step S3006), the process returns to step S3001 and the satellite receiving station tries to receive the next notification frame.
  • the satellite receiving station selects the next data frame to be transmitted based on the terminal ID and the data transmission interval stored in the data frame. A receivable satellite receiving station is determined (step S3007). Then, the satellite receiving station determines whether or not the next data frame transmitted from the corresponding terminal can be received by the own station (step S3008).
  • the satellite receiving station when the data frame to be transmitted next from the corresponding terminal can be received by the satellite receiving station itself (Yes in step S3008), the satellite receiving station has a terminal ID stored in the received data frame. Information such as the data transmission interval is registered in the reception target terminal list (step S3009).
  • the satellite receiving station If the satellite receiving station itself cannot receive the next data frame transmitted from the corresponding terminal (No in step S3008), the satellite receiving station generates a reception target terminal registration frame (step S3010), and the satellite receiving station generates a reception target terminal registration frame (step S3010).
  • the reception target terminal registration frame is transmitted to another satellite receiving station that can receive the next transmitted data frame (step S3011).
  • the satellite receiving station confirms whether or not the corresponding terminal exists in its own reception target terminal list (step S3012), and if it exists (Yes in step S3012), it corresponds from its own reception target terminal list.
  • the terminal entry is deleted (step S3013).
  • FIG. 31 shows a processing procedure for the satellite receiving station to receive the reception target terminal list registration frame in the form of a flowchart.
  • the satellite receiving station determines whether or not the reception target terminal list registration frame has been received (step S3101). Then, when the satellite receiving station receives the reception target terminal list registration frame (Yes in step S3101), the satellite receiving station demodulates the received frame (step S3102) and determines whether or not the demodulation processing is successful (step). S3103).
  • the satellite receiving station When the satellite receiving station succeeds in demodulating the reception target terminal list registration frame (Yes in step S3103), the satellite receiving station acquires nSTA indicating the number of STA Info fields stored in the reception target terminal list registration frame. (Step S2204), the subsequent processing of each STA Info field is repeatedly executed for the number of nSTAs. In this iterative process, terminal information such as the terminal ID and the data frame transmission interval stored in the STA Info field is registered in its own reception target terminal list (step S3105).
  • the satellite receiving station can register the newly received terminal in its own reception target terminal list by processing the reception target terminal list registration frame according to the processing procedure shown in FIG. 31.
  • the terminal may move to the receivable range of several satellite receiving stations ahead in the long data transmission interval of the terminal.
  • the satellite receiving station whose receivable range is the corresponding terminal can receive and demodulate the data frame from the corresponding terminal.
  • the terminal does not need to send the notification frame frequently. It is possible for a satellite receiving station that can receive data frames periodically transmitted from the terminal to receive and demodulate. (2) It is possible to prevent the satellite receiving station from performing unnecessary reception and demodulation for a terminal that has passed its receivable range.
  • the satellite receiving station basically selects the terminal that has received the notification frame. Target for reception.
  • the terminal transmits the data frame without transmitting the notification frame.
  • FIG. 32 shows an example of a communication sequence between a terminal and a receiving station in a system in which the terminal can arbitrarily transmit a data frame.
  • the receiving station does not know the radio resource to which the terminal sends the data frame.
  • the radio resource referred to here includes a transmission time, a transmission frequency, and a code used for transmission. Therefore, the receiving station needs to perform reception and demodulation processing for all radio resources (time, frequency, code).
  • the terminal adds information regarding the transmission of the next data frame to the data frame. Then, the satellite receiving station side manages the radio resource that executes the reception and demodulation processing of the next data frame based on the information added to the data frame. Therefore, according to the sixth embodiment, the satellite receiving station can limit the radio resources for performing the reception and demodulation processing, and realizes cost reduction, miniaturization, and low power consumption of the receiving station. It will be easier.
  • the system configuration diagram 33 schematically shows a configuration example of the LPWA wireless communication system according to the sixth embodiment.
  • a plurality of receiving stations installed on the ground hereinafter referred to as "ground stations”
  • a plurality of low earth orbit satellite receiving stations orbiting the earth in a low orbit hereinafter, simply “satellite reception”
  • station also called a "station” and consists of innumerable terminals scattered on the ground.
  • the terminal is a transmitter that periodically transmits information sensed by the on-board sensor or the like.
  • the satellite receiving station receives the data transmitted by the terminal and performs demodulation processing. Further, the satellite receiving station transmits the demodulation result (user data) to the application server (not shown) on the cloud as needed.
  • the satellite receiving station enables inter-satellite communication.
  • the communication method between satellite receiving stations is not limited, but it is desirable to use constant connection and high-speed communication.
  • a ground station is a transceiver that communicates with a satellite receiver. The communication method between the satellite receiving station and the ground station is not limited, but high-speed communication is desirable.
  • the satellite receiving station 3301 and the satellite receiving station 3302 are adjacent satellite receiving stations orbiting in the same satellite orbit. As the satellite receiving station 3301 and the satellite receiving station 3302 move in the satellite orbit, the receivable range 3311 of the satellite receiving station 3301 and the receivable range 3312 of the satellite receiving station 3302 also move on the ground.
  • FIG. 34 shows an example of a communication sequence between the terminal 3401 included in either the receivable range 3311 or the receivable range 3312 and the satellite receiving station 3301 and the satellite receiving station 3302.
  • the terminal 3401 transmits (broadcasts) the first data frame (SEQ3401).
  • the initial data frame refers to the frame when the terminal 3401 transmits for the first time immediately after the power is turned on.
  • the terminal 3401 transmits using the radio resources (time, frequency, and code) that the satellite receiving stations 3301 and 3302 always receive. Further, the terminal 3401 stores the information of the radio resource used for the transmission of the next normal data frame in the initial data frame.
  • the location where the terminal 3401 is located is the receivable range 3311 of the satellite receiving station 3301, so that the satellite receiving station 3301 receives the first data frame and receives the first data frame.
  • Successful demodulation SEQ3411
  • the satellite receiving station 3301 determines a satellite receiving station that can receive the next normal data frame based on the radio resource for transmitting the next normal data frame stored in the initial data frame. Then, since the satellite receiving station 3301 itself can receive the next normal data frame, the satellite receiving station 3301 registers the information of the radio resource of the normal data frame to be transmitted next to the terminal 3401 in its reception list (). SEQ3412).
  • the place where the terminal 3401 is located is outside the receivable range 3312 of the satellite receiving station 3302, so that the satellite receiving station 3302 cannot receive the first data frame.
  • the terminal 3401 transmits a normal data frame using the radio resource stored in the initial data frame (SEQ3402). Further, the terminal 3401 further stores the information of the radio resource used for the transmission of the next normal data frame in the normal data frame.
  • the satellite receiving station 3301 can receive and demodulate the normal data frame transmitted by the terminal 3401 in a pinpoint manner by executing the reception and demodulation processing based on the radio resources registered in its reception list. SEQ 3413).
  • the terminal 3401 transmits this normal data frame
  • the place where the terminal 3401 is located is outside the receivable range 3312 of the satellite receiving station 3302, so that the satellite receiving station 3302 cannot receive this normal data frame.
  • the satellite receiving station 3301 determines a satellite receiving station that can receive the next normal data frame based on the radio resource for transmitting the next normal data frame stored in the received normal data frame. Then, since the satellite receiving station 3301 itself can receive the next normal data frame, the satellite receiving station 3301 re-registers the terminal 3401 in its receiving list (SEQ3414).
  • the terminal 3401 transmits the next normal data frame using the radio resource stored in the previous normal data frame (SEQ3403). Further, the terminal 3401 further stores the information of the radio resource used for the transmission of the next normal data frame in the normal data frame.
  • the satellite receiving station 3301 can receive and demodulate the normal data frame transmitted by the terminal 3401 in a pinpoint manner by executing the reception and demodulation processing based on the radio resources registered in its reception list. SEQ3415).
  • the terminal 3401 transmits this normal data frame
  • the place where the terminal 3401 is located is outside the receivable range 3312 of the satellite receiving station 3302, so that the satellite receiving station 3302 cannot receive this normal data frame.
  • the satellite receiving station 3301 determines a satellite receiving station that can receive the next normal data frame based on the radio resource for transmitting the next normal data frame stored in the received normal data frame. Since the satellite receiving station 3301 cannot receive the next normal data frame, the receiving target radio resource information notification frame is transmitted to the receivable satellite receiving station 3302 (SEQ3416).
  • the satellite receiving station 3302 registers the information of the radio resource stored in the reception target radio resource information notification frame received from the satellite receiving station 3301 in its own reception list (SEQ3421).
  • the terminal 3401 transmits the next normal data frame using the radio resource stored in the previous normal data frame (SEQ3404).
  • the location where the terminal 3401 is located when the next normal data frame is transmitted is within the receivable range 3312 of the satellite receiving station 3302.
  • the satellite receiving station 3302 can receive and demodulate the normal data frame transmitted by the terminal 3401 in a pinpoint manner by executing the reception and demodulation processing based on the radio resource registered in its reception list. SEQ3422).
  • the terminal 3401 transmits this normal data frame the place where the terminal 3401 is located has moved out of the receivable range 3312 of the satellite receiving station 3301, so that the satellite receiving station 3301 uses this normal data frame. I can't receive it.
  • the terminal may transmit the initial data frame not only immediately after the power is turned on but also periodically. Even if the satellite receiving station fails to receive the normal data frame, the terminal will be registered in the receiving list of the satellite receiving station again from the time when the first data frame is successfully received, so that the terminal will periodically receive the first data frame. Is desirable to send.
  • the configuration of the terminal may be the same as that of FIG. 3, and therefore, the description of the terminal configuration will be omitted in this section I.
  • FIG. 35 shows a functional configuration example of the satellite receiving station 3500 in the system according to the sixth embodiment.
  • the satellite receiving station 3500 is used by being mounted on a low earth orbit satellite orbiting the earth in any of the satellite orbits shown in FIG. 33.
  • the satellite receiving station 3500 includes an LPWA unit 3520 and an intersatellite communication unit 3530.
  • the LPWA unit 3520 receives a frame transmitted by a terminal on the ground.
  • the LPWA unit 3520 has the same reference number as that of FIG. 4 for the same components as the receiving station 200 shown in FIG.
  • the LPWA unit 3520 further includes a receivable receiving station determination unit 3526.
  • the receivable receiving station determination unit 3526 determines the receiving station that can receive the next data frame based on the next data frame transmission information stored in the data frame received from the terminal.
  • the intersatellite communication unit 3530 includes a wireless communication unit 3531, a wireless control unit 3532, a frame generation unit 3533, and a frame detection / demodulation unit 3534.
  • the wireless communication unit 3531 transmits and receives wireless signals.
  • the wireless communication unit 353 receives radio waves under the control of the wireless control unit 3532, converts them into radio signals, and passes them to the frame detection / demodulation unit 3534. Further, the wireless communication unit 3531 converts the frame generated by the frame generation unit 3533 into a wireless signal and transmits it under the control of the wireless control unit 3532.
  • the wireless control unit 3532 controls the wireless communication unit 3531 so that frames can be transmitted and received between satellite receiving stations.
  • the frame generation unit 3533 stores the next data frame transmission information acquired from the receivable receiving station determination unit 3526 on the LPWA unit 3520 side, and generates a frame according to a predetermined format.
  • the frame detection / demodulation unit 3534 detects and demodulates a frame from the received signal of the wireless communication unit 3531. When the frame detection / demodulation unit 3534 succeeds in demodulating the frame, the frame detection / demodulation unit 3534 passes the received data to the storage unit 205 in the LPWA unit 3520. Specifically, the information of the radio resource of the reception target terminal received from the satellite receiving station in front of the same orbit is stored in the reception list in the storage unit 205.
  • FIG. 36 shows a configuration example of a data frame transmitted / received between the terminal and the satellite receiving station. However, it is assumed that the frame configuration of the initial data frame and the normal data frame is the same.
  • the data frame includes ID, DATA, Time Interval, Ch, Code, and CRC fields.
  • an ID which is a unique identifier of the terminal 100 which is the transmission source is stored.
  • Transmission data is stored in the DATA field. In the case of a data frame, data acquired from the sensor 104 or the like is stored.
  • the Time Interval field information regarding the transmission interval from the transmission of the data frame to the transmission of the next data frame is stored.
  • the Ch field stores information about the frequency used when transmitting the next data frame.
  • the Code field contains information about the code to be used the next time the data frame is transmitted, specifically preamble, synchronization information (Sync), and information indicating the four initial values needed to generate the scramble pattern. Will be done.
  • the CRC field the CRC value calculated for the information stored in the ID field, the DATA field, the Time Interval field, the Ch field, and the Code field is stored. On the receiving side, the demodulation success determination is performed using the CRC value.
  • FEC coding and order rearrangement are performed on the series in which the above ID, DATA, Time Interval, Ch, Code, and CRC are concatenated to generate a payload. Furthermore, a frame is generated by concatenating the preamble, which is a known pattern used for frame detection and synchronization acquisition, and synchronization information at the beginning of the payload, and then taking an exclusive OR (XOR) with the scramble pattern for each bit.
  • XOR exclusive OR
  • rules for determining the preamble and synchronization information required for frame generation and the scramble pattern generation method are predetermined.
  • the preamble and synchronization information required for frame generation and the scramble pattern generation method follow Rule 3 and Rule 4 shown in FIG. 6, respectively.
  • the preamble / synchronization information (Preamble / Sync) is determined by inputting two initial values Seed (P) -1 and Seed (P) -2 for calculating the preamble and synchronization information in Rule 3.
  • the scramble pattern is determined by inputting two initial values Seed (S) -1 and Seed (S) -2 for the scramble pattern in Rule 4.
  • Each initial value is determined in advance in the system and is held in the storage unit 106 in the terminal 100 and the storage unit 3525 in the satellite receiving station 3500.
  • the initial values that can be used differ between the initial data frame and the normal data frame.
  • FIG. 37 shows a frame configuration example of the data part of the reception target radio resource information notification frame.
  • the format other than the data part shall be according to the communication method used.
  • the reception target radio resource information notification frame provides the radio resource for the next normal data frame transmission to other satellite receiving stations that can be received when the satellite receiving station determines that the next normal data frame cannot be received by itself. It is a frame to notify.
  • the data part of the reception target radio resource information notification frame includes an Rx Time field, a Ch field, and a Code field.
  • Information about the reception time of the next data frame is stored in the RxTime field.
  • Information about the reception frequency of the next data frame is stored in the Ch field.
  • the Code field stores information about the receive code of the next data frame, specifically, preamble, synchronization information (Sync), and information indicating the four initial values required to generate the scramble pattern.
  • the terminal determines the radio resource (time, frequency, code) used for transmitting the initial data frame (step S3801).
  • the terminal determines the radio resource (time, frequency, code) to be used for the transmission of the next normal data frame (step S3802).
  • the terminal generates the initial data frame (step S3803).
  • the Time Interval, Ch, and Code fields of the initial data frame each information of the radio resource used for the transmission of the next normal data frame determined in step S3802 is stored.
  • the terminal transmits the first data frame generated in step S3803 using the transmission frequency calculated in step S3801 (step S3805).
  • the terminal determines whether or not the frame to be transmitted one after another is the first data frame (step S3806).
  • the terminal determines the radio resource (time, frequency, code) used for the transmission of the normal data frame one after another (step S3807).
  • step S3808 the terminal generates a normal data frame (step S3808).
  • each information of the radio resource used for transmission of the next normal data frame determined in step S3807 is stored.
  • each field of Time Interval, Ch, and Code of the normal data frame is filled with 0.
  • the terminal transmits the normal data frame generated in step S3803 using the transmission frequency calculated in step S3802 (step S3801).
  • the terminal determines whether or not the next frame to be transmitted is the first data frame (step S3811). If the frame to be transmitted next time is the first data frame (Yes in step S3811), the terminal returns to step S3801 and repeatedly executes the process for transmitting the first data frame. If the next frame to be transmitted is not the first data frame (No in step S3811), the terminal returns to step S3806 and repeatedly executes the process for transmitting the normal data frame.
  • FIG. 39 shows the processing operation for the satellite receiving station to receive the initial data frame in the form of a flowchart.
  • the satellite receiving station executes reception and demodulation processing for all frequencies and codes assigned to the transmission of the initial data frame (step S3901).
  • step S3902 when the reception and demodulation processing of the initial data frame is successful (Yes in step S3902), the satellite receiving station is based on the transmission interval stored in the Time Interval field in the initial data frame in which the demodulation is successful. , Calculate the expected reception time of the next normal data frame (step S3903).
  • the satellite receiving station determines whether or not the satellite receiving station that can receive the next normal data frame is itself (step S3904).
  • step S3904 If the satellite receiving station that can receive the next normal data frame is itself (Yes in step S3904), the satellite receiving station has the estimated reception time calculated in step S3903, the frequency stored in the first data frame, and the frequency. The code is registered in its own reception list (step S3905).
  • the satellite receiving station that can receive the next normal data frame is not itself (No in step S3904)
  • the satellite receiving station sends the satellite receiving station that can receive the next normal data frame to the radio resource to be received.
  • the information notification frame is transmitted (step S3906).
  • steps S3903 and S3904 in the flowchart shown in FIG. 39 will be described with reference to FIG. 39.
  • the reception time of the first data frame for which the demodulation process was successful in step S3902 is 12:00:01.020 and the Time Interval is 00: 01: 00.000
  • the expected reception time of the next normal data frame is 12. : 01: 01.020.
  • the distance between the ground and the satellite receiving station is as long as several hundred kilometers, a propagation delay occurs.
  • the satellite receiving station moves, it is necessary to consider that the propagation delay amount differs for each data frame.
  • FIG. 16 shows an example of the time change of the frequency error and the propagation delay when the altitude of the satellite is 600 km and the frequency is 2 GHz. This is an example of the case where the satellite passes overhead of the terminal, and it is assumed that the satellite receiving station can receive for 6 minutes for one terminal.
  • the model described in 3GPP TR 38.811 V15.1.0 (Non-Patent Document 1) was referred to.
  • the frequency error estimation result at the time of receiving the data frame is 40 kHz.
  • the propagation delay amount at the time of receiving the next normal data frame is 2.5 ms. Therefore, the expected reception time of the next normal data frame is 12: 01: 01.019.
  • the satellite receiving station capable of receiving the next normal data frame is Be yourself.
  • the satellite receiving station that can receive the next normal data frame orbits the same satellite orbit 1. It will be the satellite receiving station one behind.
  • FIG. 40 shows the processing procedure for the satellite receiving station to receive a normal data frame in the form of a flowchart. However, the satellite receiving station shall execute this process for each reception target radio resource registered in the reception list.
  • the satellite receiving station acquires the radio resource (time, frequency, code) to be received from the reception list (step S4001). Then, the satellite receiving station determines whether or not the reception target time has come (step S4002).
  • the satellite receiving station executes reception and demodulation processing for the reception target frequency using the reception target code (step S4003). Then, the satellite receiving station determines whether or not the demodulation of the normal data frame is successful (step S4004).
  • the satellite receiving station skips all the subsequent processing steps and ends the reception processing of the normal data frame in the radio resource to be received.
  • step S4004 if the demodulation of the normal data frame is successful (Yes in step S4004), does the satellite receiving station store the information of the radio resource used for the transmission of the next normal data frame in the demodulated normal data frame? It is determined whether or not (step S4005).
  • the satellite receiving station skips all subsequent processing steps. The reception processing of the normal data frame in the reception target radio resource is terminated.
  • the satellite receiving station determines the reception time of the normal data frame and the normal data frame. Based on the transmission interval stored in the data frame, the estimated reception time of the next normal data frame is calculated (step S4006).
  • the satellite receiving station determines whether or not the satellite receiving station that can receive the next normal data frame is itself (step S4007).
  • step S4007 the satellite receiving station uses the estimated reception time calculated in step S4006 and the normal data frame demodulated in step S4003. Register the stored frequency and code in its own reception list (step S4008).
  • the satellite receiving station that can receive the next normal data frame If the satellite receiving station that can receive the next normal data frame is not itself (No in step S4007), the satellite receiving station sends the satellite receiving station that can receive the next normal data frame to the radio resource to be received.
  • the information notification frame is transmitted (step S4009).
  • FIG. 41 shows a processing procedure for the satellite receiving station to receive the reception target radio resource information notification frame in the form of a flowchart.
  • the satellite receiving station determines whether or not the reception target radio resource information notification frame has been received from another satellite receiving station (step S4101). Then, when the reception target radio resource information notification frame is received (Yes in step S4101), the satellite receiving station demodulates the reception target radio resource information notification frame (step S4102) and succeeds in demodulating the frame. It is determined whether or not it has been done (step S4103).
  • the satellite receiving station determines whether or not the frame is addressed to its own station (step S4104).
  • the satellite receiving station registers the information stored in the frame in its own reception list (step S4105). ).
  • the satellite receiving station transfers the reception target radio resource information notification frame to the corresponding satellite receiving station (step). S4106).
  • the present specification has mainly described embodiments in which the present disclosure is applied to the LPWA communication method, the gist of the present disclosure is not limited to this.
  • the present disclosure is similarly applicable to various types of communication systems that communicate between terminals on the ground and satellite receivers orbiting the earth.
  • the present specification has described an embodiment specialized for a specific satellite constellation for convenience, the present disclosure can be similarly applied to a communication system using another satellite constellation. It can correspond to any number of satellite receiving stations.
  • a receiving unit that receives and processes frames from the terminal, Based on the frame reception information at the time of receiving a frame from the terminal, the frame transmission interval of the terminal, and the positional relationship of the surrounding satellite receiving stations, a satellite receiving station suitable for receiving the frame to be transmitted next by the terminal is determined. Judgment unit and A communication device equipped with.
  • the frame reception information includes the frequency error estimation result and the propagation delay estimation result at the time of frame reception.
  • the communication device according to (1) above.
  • the frame reception information includes the position information of the terminal.
  • the communication device according to (1) above.
  • the determination unit further determines a satellite receiving station suitable for receiving the frame to be transmitted next by the terminal based on the frame reception information from the surrounding satellite receiving stations.
  • the information of the terminal determined by the determination unit that the own station can receive the next frame to be transmitted is retained in the reception target terminal list, and the information is retained in the reception target terminal list.
  • the frame to be transmitted next by the terminal is received and processed based on the information held in the reception target terminal list.
  • the terminal that has notified the satellite receiving stations in the vicinity of the reception target terminal registration is excluded from the reception target of the own station.
  • the terminal to which the reception target terminal registration is notified from the surrounding satellite receiving stations is set as the reception target of the own station.
  • the communication device according to any one of (10) and (11) above.
  • the frame reception information includes the frame transmission interval notified from the terminal.
  • the determination unit estimates the estimated reception time of the next frame transmitted from the terminal based on the frame transmission interval and the frequency error estimation result at the time of frame reception.
  • the determination unit is a satellite receiving station suitable for receiving the next frame transmitted by the terminal based on the estimated reception time of the next frame transmitted from the terminal and the positional relationship of the surrounding satellite receiving stations. To judge, The communication device according to (13) above.
  • the terminal that the determination unit determines that the next frame to be transmitted can be received by the own station is set as the reception target of the own station.
  • the corresponding terminal In response to the notification of the radio resource information for receiving the frame of the terminal from the surrounding satellite receiving stations, the corresponding terminal is set as the reception target of the own station.
  • the surrounding satellite receiving stations include at least one of a satellite receiving station moving in the same orbit and a satellite receiving station moving in an adjacent orbit.
  • the communication device according to any one of (1) to (17) above.
  • a communication method that orbits the earth in a predetermined orbit and operates as a satellite receiving station that receives frames from terminals on the ground.
  • Judgment step to do and Communication method with.
  • It consists of a terminal installed on the ground and a plurality of satellite receiving stations that orbit the earth in a predetermined orbit. Each of the plurality of satellite receiving stations is based on a receiving unit that receives and processes a frame from the terminal, frame reception information at the time of receiving a frame from the terminal, a frame transmission interval of the terminal, and a positional relationship of surrounding satellite receiving stations.
  • the terminal is provided with a determination unit for determining a satellite receiving station suitable for receiving the next frame to be transmitted. Communications system.

Abstract

Provided is a communication device for receiving a frame from a terrestrial terminal. The communication device, which orbits the Earth in a predetermined orbit and operates as one of satellite receiving stations to receive a frame from a terrestrial terminal, comprises a receiving unit for performing a receiving process for a frame from the terminal, and a determining unit which, on the basis of frame reception information at the time of reception of the frame from the terminal, a frame transmission interval of the terminal, and the positional relationship of surrounding satellite receiving stations, determines a satellite receiving station suitable for receiving a frame transmitted from the terminal next. The frame reception information includes a frequency error estimation result and a propagation delay estimation result at the time of reception of the frame.

Description

通信装置及び通信方法、並びに通信システムCommunication equipment and methods, and communication systems
 本明細書で開示する技術(以下、「本開示」とする)は、地上の端末から無線送信されたフレームを受信する通信装置及び通信方法、並びに、端末と受信局からなる通信システムに関する。 The technique disclosed in the present specification (hereinafter referred to as "the present disclosure") relates to a communication device and a communication method for receiving a frame wirelessly transmitted from a terminal on the ground, and a communication system including a terminal and a receiving station.
 無線センサネットワークにおいて、人や物に無線センサー端末を付与し、センサーから取得した情報を定期的に送信することで、新たなサービスの創出が可能になる。例えば、GPS(Global Positioning System)付きの無線センサー端末を高齢者や子供に装着し、位置情報を定期的に送信することで見守りサービスが可能となる。 In the wireless sensor network, it is possible to create new services by attaching wireless sensor terminals to people and things and periodically transmitting information acquired from the sensors. For example, by attaching a wireless sensor terminal with GPS (Global Positioning System) to elderly people and children and periodically transmitting location information, a monitoring service becomes possible.
 このようなIoT(Internet of Things)向けの無線通信システムでは、さまざまな人・物に付与された多くの無線センサー端末との通信を可能にする必要があり、広域通信を可能にする長距離伝送と基地局1台あたりで多くの端末と通信可能にする多端末収容が重要となる。近年、IoT向け無線通信方式として有力視されているLPWA(Low Power Wide Area)では、長距離伝送・多端末収容を実現可能にしており、端末と地上に設置した受信局間で数km~数百kmの長距離伝送を実現している(例えば、特許文献1を参照のこと)。しかし、受信局の設置は用地確保やクラウド接続のためのネットワーク敷設などが必要であり、コスト及び時間がかかるため、通信サービスの低コスト化や通信エリア拡大の妨げとなっている。 In such a wireless communication system for IoT (Internet of Things), it is necessary to enable communication with many wireless sensor terminals attached to various people and things, and long-distance transmission that enables wide-area communication. It is important to accommodate multiple terminals that enable communication with many terminals per base station. In recent years, LPWA (Low Power Wide Area Area), which has been regarded as a promising wireless communication method for IoT, has made it possible to realize long-distance transmission and multi-terminal accommodation, and it is possible to realize long-distance transmission and multi-terminal accommodation. A long-distance transmission of 100 km is realized (see, for example, Patent Document 1). However, the installation of a receiving station requires securing a site and laying a network for cloud connection, which is costly and time-consuming, which hinders the cost reduction of communication services and the expansion of communication areas.
 一方、近年、民間企業による宇宙開発が盛んに行われており、従来は衛星の打ち上げに数百億円が必要であったが、10分の1~100分の1にコスト削減を目指して開発が進んでいる。また、衛星の小型化も進んでおり、これにより複数の衛星を一度に打ち上げ、コンステレーションを構築することで、地球全体を網羅するようなサービスの実現が検討されている。 On the other hand, in recent years, space development by private companies has been actively carried out, and it used to require tens of billions of yen to launch a satellite, but it was developed with the aim of reducing costs to 1/10 to 1/100. Is progressing. In addition, the miniaturization of satellites is progressing, and it is being considered to realize a service that covers the entire earth by launching multiple satellites at once and building a constellation.
 衛星サービスの実現に伴い、LPWAの通信エリアを拡大する方法として、衛星に受信機を搭載し、地上の端末が送信した電波を衛星上で受信する方法が考えられる。LPWAは、地上でも数百kmの通信を実現しており、低軌道衛星であれば十分に通信可能であると考えられる。また、低軌道衛星は地球上を周回するので、IoTのような数分~数日に1回データを送信するようなユースケースでは、少ない衛星数で地球全体を網羅することが可能である。したがって、地上に多くの受信局を設置するよりも、衛星に受信機を搭載する方がコスト削減となり、通信サービスの低コスト化や素早い通信エリア拡大が期待できる。また、地上では受信局を設置困難な海洋からも情報を取得可能となり新たなサービスの提供も可能となる。 With the realization of satellite services, as a method of expanding the communication area of LPWA, it is conceivable to mount a receiver on the satellite and receive the radio waves transmitted by the terminals on the ground on the satellite. LPWA realizes communication of several hundred kilometers even on the ground, and it is considered that low-earth orbit satellites can sufficiently communicate. In addition, since low earth orbit satellites orbit the earth, it is possible to cover the entire earth with a small number of satellites in use cases such as IoT where data is transmitted once every few minutes to several days. Therefore, it is possible to reduce the cost by installing the receiver on the satellite rather than installing many receiving stations on the ground, and it is expected that the cost of the communication service will be reduced and the communication area will be expanded quickly. In addition, it will be possible to acquire information from the ocean, where it is difficult to install a receiving station on the ground, and it will be possible to provide new services.
特開2019-193306号公報Japanese Unexamined Patent Publication No. 2019-193306
 本開示の目的は、所定の軌道で地球上を周回して地上の端末からフレームを受信する衛星受信局として動作する通信装置及び通信方法、並びに、地上の端末と衛星受信局からなる通信システムを提供することにある。 An object of the present disclosure is to provide a communication device and a communication method that operate as a satellite receiving station that orbits the earth in a predetermined orbit and receives a frame from a terminal on the ground, and a communication system consisting of a terminal on the ground and a satellite receiving station. To provide.
 本開示の第1の側面は、所定の軌道で地球上を周回し、地上の端末からフレームを受信する衛星受信局の1つとして動作し、
 前記端末からフレームを受信処理する受信部と、
 前記端末からフレーム受信時のフレーム受信情報と、前記端末のフレーム送信間隔と、周辺の衛星受信局の位置関係に基づいて、前記端末が次に送信するフレームの受信に適した衛星受信局を判定する判定部と、
を具備する通信装置である。
The first aspect of the present disclosure is to orbit the earth in a predetermined orbit and operate as one of the satellite receiving stations that receive frames from terminals on the ground.
A receiving unit that receives and processes frames from the terminal,
Based on the frame reception information at the time of receiving a frame from the terminal, the frame transmission interval of the terminal, and the positional relationship of the surrounding satellite receiving stations, a satellite receiving station suitable for receiving the frame to be transmitted next by the terminal is determined. Judgment unit and
It is a communication device provided with.
 フレーム受信情報は、フレーム受信時の周波数誤差推定結果及び伝搬遅延推定結果を含む。または、フレーム受信情報は、前記端末の位置情報を含む。 The frame reception information includes the frequency error estimation result and the propagation delay estimation result at the time of frame reception. Alternatively, the frame reception information includes the position information of the terminal.
 また、第1の側面に係る通信装置は、周辺の衛星受信局とフレーム受信情報を交換する。この場合、前記判定部は、さらに周辺の衛星受信局からのフレーム受信情報に基づいて、前記端末が次に送信するフレームの受信に適した衛星受信局を判定する。 Further, the communication device according to the first aspect exchanges frame reception information with surrounding satellite receiving stations. In this case, the determination unit further determines a satellite receiving station suitable for receiving the frame to be transmitted next by the terminal based on the frame reception information from the surrounding satellite receiving stations.
 第1の側面に係る通信装置は、周辺の衛星受信局からのフレーム受信情報に基づいて前記受信対象端末リストに追加した端末の情報を、前記周辺の衛星受信局に通知する。また、第1の側面に係る通信装置は、周辺の衛星受信局からの前記通知に基づいて、自局の受信対象端末リストから該当する端末の情報を削除する。 The communication device according to the first aspect notifies the peripheral satellite receiving stations of the information of the terminals added to the receiving target terminal list based on the frame reception information from the surrounding satellite receiving stations. Further, the communication device according to the first aspect deletes the information of the corresponding terminal from the reception target terminal list of its own station based on the notification from the surrounding satellite receiving stations.
 第1の側面に係る通信装置は、前記判定部が前記端末から次に送信されるフレームの受信に適していると判定した周辺の衛星受信局に対して受信対象端末登録を通知するとともに、前記周辺の衛星受信局に対して受信対象端末登録を通知した端末を自局の受信対象から外す。また、第1の側面に係る通信装置は、周辺の衛星受信局から受信対象端末登録が通知された端末を自局の受信対象とする。 The communication device according to the first aspect notifies the peripheral satellite receiving stations that the determination unit has determined to be suitable for receiving the next frame transmitted from the terminal, and also notifies the reception target terminal registration. The terminal that notified the reception target terminal registration to the nearby satellite receiving stations is excluded from the reception target of the own station. Further, the communication device according to the first aspect targets the terminal to which the reception target terminal registration is notified from the surrounding satellite receiving stations as the reception target of the own station.
 フレーム受信情報が前記端末から通知されるフレーム送信間隔を含む場合、前記判定部は、フレーム送信間隔とフレーム受信時の周波数誤差推定結果に基づいて、前記端末から次に送信されるフレームの受信予想時刻を推定し、フレームの受信予想時刻と周辺の衛星受信局の位置関係に基づいて、前記端末が次に送信するフレームの受信に適した衛星受信局を判定する。 When the frame reception information includes the frame transmission interval notified from the terminal, the determination unit predicts the reception of the next frame transmitted from the terminal based on the frame transmission interval and the frequency error estimation result at the time of frame reception. The time is estimated, and a satellite receiving station suitable for receiving the next frame transmitted by the terminal is determined based on the estimated reception time of the frame and the positional relationship of the surrounding satellite receiving stations.
 また、本開示の第2の側面は、所定の軌道で地球上を周回し、地上の端末からフレームを受信する衛星受信局として動作する通信方法であって、
 前記端末からフレームを受信処理する受信ステップと、
 前記端末からフレーム受信時のフレーム受信情報と、前記端末のフレーム送信間隔と、周辺の衛星受信局の位置関係に基づいて、前記端末が次に送信するフレームの受信に適した衛星受信局を判定する判定ステップと、
を有する通信方法である。
The second aspect of the present disclosure is a communication method that orbits the earth in a predetermined orbit and operates as a satellite receiving station that receives a frame from a terminal on the ground.
A reception step for receiving and processing a frame from the terminal, and
Based on the frame reception information at the time of receiving a frame from the terminal, the frame transmission interval of the terminal, and the positional relationship of the surrounding satellite receiving stations, a satellite receiving station suitable for receiving the frame to be transmitted next by the terminal is determined. Judgment step to do and
It is a communication method having.
 また、本開示の第3の側面は、地上に設置された端末と、それぞれ所定の軌道で地球上を周回する複数の衛星受信局からなり、
 前記複数の衛星受信局はそれぞれ、前記端末からフレームを受信処理する受信部と、前記端末からフレーム受信時のフレーム受信情報と前記端末のフレーム送信間隔と、周辺の衛星受信局の位置関係に基づいて前記端末が次に送信するフレームの受信に適した衛星受信局を判定する判定部を具備する、
通信システムである。
The third aspect of the present disclosure consists of a terminal installed on the ground and a plurality of satellite receiving stations each orbiting the earth in a predetermined orbit.
Each of the plurality of satellite receiving stations is based on a receiving unit that receives and processes a frame from the terminal, frame reception information at the time of receiving a frame from the terminal, a frame transmission interval of the terminal, and a positional relationship of surrounding satellite receiving stations. The terminal is provided with a determination unit for determining a satellite receiving station suitable for receiving the next frame to be transmitted.
It is a communication system.
 但し、ここで言う「システム」とは、複数の装置(又は特定の機能を実現する機能モジュール)が論理的に集合した物のことを言い、各装置や機能モジュールが単一の筐体内にあるか否かは特に問わない。 However, the "system" here means a logical assembly of a plurality of devices (or functional modules that realize a specific function), and each device or functional module is in a single housing. It does not matter whether or not it is.
 本開示によれば、衛星受信局として動作して、地上の端末の無線リソースの情報を効率的に取得し不要な受信及び復調処理を抑制して端末からフレームを受信する通信装置及び通信方法、並びに、地上の端末と、不要な受信及び復調処理を抑制して端末からフレームを受信する衛星受信局からなる通信システムを提供することができる。 According to the present disclosure, a communication device and a communication method that operates as a satellite receiving station, efficiently acquires information on radio resources of a terminal on the ground, suppresses unnecessary reception and demodulation processing, and receives a frame from the terminal. Further, it is possible to provide a communication system including a terminal on the ground and a satellite receiving station that suppresses unnecessary reception and demodulation processing and receives a frame from the terminal.
 なお、本明細書に記載された効果は、あくまでも例示であり、本開示によりもたらされる効果はこれに限定されるものではない。また、本開示が、上記の効果以外に、さらに付加的な効果を奏する場合もある。 It should be noted that the effects described in the present specification are merely examples, and the effects brought about by the present disclosure are not limited thereto. In addition to the above effects, the present disclosure may have additional effects.
 本開示のさらに他の目的、特徴や利点は、後述する実施形態や添付する図面に基づくより詳細な説明によって明らかになるであろう。 Still other objectives, features and advantages of the present disclosure will be clarified by more detailed description based on the embodiments described below and the accompanying drawings.
図1は、LPWA無線通信システムの構成例を示した図である。FIG. 1 is a diagram showing a configuration example of an LPWA wireless communication system. 図2は、端末と受信局間の通信シーケンス例を示した図である。FIG. 2 is a diagram showing an example of a communication sequence between a terminal and a receiving station. 図3は、端末100の機能的構成例を示した図である。FIG. 3 is a diagram showing a functional configuration example of the terminal 100. 図4は、受信局200の機能的構成例を示した図である。FIG. 4 is a diagram showing a functional configuration example of the receiving station 200. 図5は、フレームの構成例を示した図である。FIG. 5 is a diagram showing a configuration example of the frame. 図6は、フレーム送信に用いる無線リソース、プリアンブル及び同期情報、スクランブルパターンの生成方法を示した図である。FIG. 6 is a diagram showing a method of generating a radio resource, preamble and synchronization information, and a scramble pattern used for frame transmission. 図7は、衛星受信局を使用したLPWA無線通信システムの構成例を示した図である。FIG. 7 is a diagram showing a configuration example of an LPWA wireless communication system using a satellite receiving station. 図8は、端末と衛星受信局間の通信シーケンス例を示した図である。FIG. 8 is a diagram showing an example of a communication sequence between a terminal and a satellite receiving station. 図9は、端末と衛星受信局間の通信シーケンス例(第1の実施例)を示した図である。FIG. 9 is a diagram showing an example of a communication sequence (first embodiment) between a terminal and a satellite receiving station. 図10は、衛星受信局1000の機能的構成例を示した図である。FIG. 10 is a diagram showing a functional configuration example of the satellite receiving station 1000. 図11は、フレーム受信情報フレームのデータ部分のフレーム構成例(第1の実施例)を示した図である。FIG. 11 is a diagram showing a frame configuration example (first embodiment) of the data portion of the frame reception information frame. 図12は、端末が行う処理動作を示したフローチャートである。FIG. 12 is a flowchart showing the processing operation performed by the terminal. 図13は、衛星受信局が通知フレームを受信するための処理手順(第1の実施例)を示したフローチャートである。FIG. 13 is a flowchart showing a processing procedure (first embodiment) for the satellite receiving station to receive the notification frame. 図14は、衛星受信局がデータフレームを受信するための処理手順(第1の実施例)を示したフローチャートである。FIG. 14 is a flowchart showing a processing procedure (first embodiment) for the satellite receiving station to receive a data frame. 図15は、衛星受信局がフレーム受信情報フレームを受信するための処理手順(第1の実施例)を示したフローチャートである。FIG. 15 is a flowchart showing a processing procedure (first embodiment) for the satellite receiving station to receive a frame reception information frame. 図16は、衛星の高度が600km、周波数が2GHzの場合の周波数誤差と伝搬遅延の時間変化の一例を示した図である。FIG. 16 is a diagram showing an example of time change of frequency error and propagation delay when the altitude of the satellite is 600 km and the frequency is 2 GHz. 図17は、フレーム受信情報フレームのデータ部分のフレーム構成例(第2の実施例)を示した図である。FIG. 17 is a diagram showing a frame configuration example (second embodiment) of the data portion of the frame reception information frame. 図18は、衛星受信局がフレーム受信情報フレームを受信するための処理手順(第2の実施例)を示したフローチャートである。FIG. 18 is a flowchart showing a processing procedure (second embodiment) for the satellite receiving station to receive the frame reception information frame. 図19は、端末と衛星受信局間の通信シーケンス例(第3の実施例)を示した図である。FIG. 19 is a diagram showing an example of a communication sequence between a terminal and a satellite receiving station (third embodiment). 図20は、受信対象端末リスト登録通知フレームのデータ部分のフレーム構成例を示した図である。FIG. 20 is a diagram showing a frame configuration example of the data portion of the reception target terminal list registration notification frame. 図21は、衛星受信局がフレーム受信情報フレームを受信するための処理手順(第3の実施例)を示したフローチャートである。FIG. 21 is a flowchart showing a processing procedure (third embodiment) for the satellite receiving station to receive the frame reception information frame. 図22は、衛星受信局が受信対象端末リスト登録通知フレームを受信するための処理手順を示したフローチャートである。FIG. 22 is a flowchart showing a processing procedure for the satellite receiving station to receive the reception target terminal list registration notification frame. 図23は、端末と衛星受信局間の通信シーケンス例(第4の実施例)を示した図である。FIG. 23 is a diagram showing an example of a communication sequence between a terminal and a satellite receiving station (fourth embodiment). 図24は、フレーム受信情報フレームのデータ部分のフレーム構成例(第4の実施例)を示した図である。FIG. 24 is a diagram showing a frame configuration example (fourth embodiment) of the data portion of the frame reception information frame. 図25Aは、衛星受信局がフレーム受信情報フレームを受信するための処理手順(第4の実施例)を示したフローチャートである。FIG. 25A is a flowchart showing a processing procedure (fourth embodiment) for the satellite receiving station to receive the frame reception information frame. 図25Bは、衛星受信局がフレーム受信情報フレームを受信するための処理手順(第4の実施例)を示したフローチャートである。FIG. 25B is a flowchart showing a processing procedure (fourth embodiment) for the satellite receiving station to receive the frame reception information frame. 図26は、衛星受信局が保持している隣接衛星受信局情報リストの一例を示した図である。FIG. 26 is a diagram showing an example of an adjacent satellite receiving station information list held by the satellite receiving station. 図27は、端末と衛星受信局間の通信シーケンス例(第5の実施例)を示した図である。FIG. 27 is a diagram showing an example of a communication sequence between a terminal and a satellite receiving station (fifth embodiment). 図28は、受信対象端末登録フレームのデータ部分のフレーム構成例を示した図である。FIG. 28 is a diagram showing a frame configuration example of the data portion of the reception target terminal registration frame. 図29は、衛星受信局が通知フレームを受信するための処理手順(第5の実施例)を示したフローチャートである。FIG. 29 is a flowchart showing a processing procedure (fifth embodiment) for the satellite receiving station to receive the notification frame. 図30は、衛星受信局がデータフレームを受信するための処理手順(第5の実施例)を示したフローチャートである。FIG. 30 is a flowchart showing a processing procedure (fifth embodiment) for the satellite receiving station to receive a data frame. 図31は、衛星受信局が受信対象端末リスト登録フレームを受信するための処理手順を示したフローチャートである。FIG. 31 is a flowchart showing a processing procedure for the satellite receiving station to receive the reception target terminal list registration frame. 図32は、端末が任意にデータフレームを送信可能なシステムにおける、端末と受信局間の通信シーケンス例を示した図である。FIG. 32 is a diagram showing an example of a communication sequence between a terminal and a receiving station in a system in which the terminal can arbitrarily transmit a data frame. 図33は、衛星受信局を使用したLPWA無線通信システムの構成例(第6の実施例)を示した図である。FIG. 33 is a diagram showing a configuration example (sixth embodiment) of an LPWA wireless communication system using a satellite receiving station. 図34は、端末と衛星受信局間の通信シーケンス例(第6の実施例)を示した図である。FIG. 34 is a diagram showing an example of a communication sequence between a terminal and a satellite receiving station (sixth embodiment). 図35は、衛星受信局3500の機能的構成例を示した図である。FIG. 35 is a diagram showing a functional configuration example of the satellite receiving station 3500. 図36は、データフレームの構成例を示した図である。FIG. 36 is a diagram showing a configuration example of a data frame. 図37は、受信対象無線リソース情報通知フレームのデータ部分のフレーム構成例を示した図である。FIG. 37 is a diagram showing a frame configuration example of the data portion of the reception target radio resource information notification frame. 図38は、端末が行う処理動作を示したフローチャートである。FIG. 38 is a flowchart showing the processing operation performed by the terminal. 図39は、衛星受信局が初回データフレームを受信するための処理動作を示したフローチャートである。FIG. 39 is a flowchart showing a processing operation for the satellite receiving station to receive the initial data frame. 図40は、衛星受信局が通常データフレームを受信するための処理手順を示したフローチャートである。FIG. 40 is a flowchart showing a processing procedure for the satellite receiving station to receive a normal data frame. 図41は、衛星受信局が受信対象無線リソース情報通知フレームを受信するための処理手順を示したフローチャートである。FIG. 41 is a flowchart showing a processing procedure for the satellite receiving station to receive the reception target radio resource information notification frame.
 以下、図面を参照しながら本開示について、以下の順に従って説明する。 Hereinafter, this disclosure will be described in the following order with reference to the drawings.
A.前提とするシステム
B.衛星受信局を使用したシステム構成
C.第1の実施例
 C-1.通信シーケンス例
 C-2.装置構成
 C-3.フレーム構成
 C-4.端末の処理動作
 C-5.衛星受信局の処理動作
D.第2の実施例
 D-1.フレーム構成例
 D-2.フレーム受信情報フレームの受信動作
E.第3の実施例
 E-1.通信シーケンス例
 E-2.フレーム構成例
 E-3.衛星受信局の処理動作
F.第4の実施例
 F-1.通信シーケンス例
 F-2.フレーム構成例
 F-3.隣接衛星受信局情報リスト
G.第5の実施例
 G-1.通信シーケンス例
 G-2.フレーム構成例
 G-3.衛星受信局の処理動作
H.効果
I.第6の実施例
 I-1.システム構成
 I-2.通信シーケンス例
 I-3.装置構成
 I-4.フレーム構成例
 I-5.端末の処理動作
 I-6.衛星受信局の処理動作
 I-7.効果
A. Prerequisite system B. System configuration using satellite receiver C. First Example C-1. Communication sequence example C-2. Device configuration C-3. Frame configuration C-4. Terminal processing operation C-5. Processing operation of satellite receiving station D. Second Example D-1. Frame configuration example D-2. Frame reception information Frame reception operation E. Third Example E-1. Communication sequence example E-2. Frame configuration example E-3. Processing operation of satellite receiving station F. Fourth Example F-1. Communication sequence example F-2. Frame configuration example F-3. Adjacent satellite receiving station information list G. Fifth Example G-1. Communication sequence example G-2. Frame configuration example G-3. Processing operation of satellite receiving station H. Effect I. Sixth Example I-1. System configuration I-2. Communication sequence example I-3. Device configuration I-4. Frame configuration example I-5. Terminal processing operation I-6. Processing operation of satellite receiving station I-7. effect
A.前提とするシステム
 無線通信システムにおいて、受信局は、端末が送信したデータを復調するためには、変調方式、変調レート、符号、暗号鍵といった復調に必要な情報や、データ送信に使用する無線リソース(時刻・周波数)を、端末毎に知っている必要がある。
A. In the presupposed system wireless communication system, in order to demodulate the data transmitted by the terminal, the receiving station has information necessary for demodulation such as modulation method, modulation rate, code, and encryption key, and wireless resources used for data transmission. It is necessary to know (time / frequency) for each terminal.
 LTE(Long Term Evolution)のような双方向通信が可能な無線通信システムでは、データ送信前に端末と受信局間で必要な情報を交換するシグナリングを行うことで、受信局は端末にデータを送信する無線リソース(時刻・周波数)を指定し、それ以降は指定した無線リソース(時刻・周波数)で送信されているデータ内に格納されている変調方式や変調レートを用いて復調を行うことができる。 In a wireless communication system capable of bidirectional communication such as LTE (Long Demodulation), the receiving station transmits data to the terminal by performing signaling to exchange necessary information between the terminal and the receiving station before data transmission. It is possible to specify the radio resource (time / frequency) to be used, and then perform demodulation using the modulation method and modulation rate stored in the data transmitted by the specified radio resource (time / frequency). ..
 これに対し、IoT向けの無線通信方式であるLPWAでは、シグナリングを行うことは端末の消費電力の観点から望ましくない。また、端末から受信局への一方向通信しかサポートされていない場合には、シグナリングは成立しない。そこで、LPWA無線通信システムにおいて、端末がデータ送信に使用する無線リソースを受信局側で把握する方法について考察する。 On the other hand, in LPWA, which is a wireless communication method for IoT, it is not desirable to perform signaling from the viewpoint of the power consumption of the terminal. Further, when only one-way communication from the terminal to the receiving station is supported, signaling is not established. Therefore, in the LPWA wireless communication system, a method of grasping the wireless resource used by the terminal for data transmission on the receiving station side will be considered.
 図1には、LPWA無線通信システムの構成例を模式的に示している。同図に示す例では、システムは、受信局と複数の端末で構成される。端末は、搭載するセンサーなどでセンシングした情報を定期的に送信する送信機である。受信局は、端末が送信したデータを受信し、復調処理を行う。また、受信局は、必要に応じて復調結果(ユーザデータ)をクラウド上のアプリケーションサーバ(図示しない)に送信する。図1に示す無線通信システムでは、システム内(受信局と各端末間)で時刻同期していることを前提とする。時刻同期する方法としてGPS情報を用いることなどが考えられる。 FIG. 1 schematically shows a configuration example of an LPWA wireless communication system. In the example shown in the figure, the system is composed of a receiving station and a plurality of terminals. The terminal is a transmitter that periodically transmits information sensed by a built-in sensor or the like. The receiving station receives the data transmitted by the terminal and performs demodulation processing. In addition, the receiving station transmits the demodulation result (user data) to the application server (not shown) on the cloud as needed. In the wireless communication system shown in FIG. 1, it is assumed that the time is synchronized in the system (between the receiving station and each terminal). It is conceivable to use GPS information as a method of time synchronization.
 図2には、図1に示したシステム内での端末と受信局間の通信シーケンス例を示している。 FIG. 2 shows an example of a communication sequence between a terminal and a receiving station in the system shown in FIG.
 まず、端末は、自身のIDを通知するため、通知フレームを送信する(SEQ201)。通知フレームの送信には、あらかじめシステム内で通知フレーム送信用に割り当てられている無線リソース(時刻・周波数)の中からランダムに選択したものを用いる。 First, the terminal transmits a notification frame in order to notify its own ID (SEQ201). For the transmission of the notification frame, a radio resource (time / frequency) randomly selected from the radio resources (time / frequency) allocated in advance for the notification frame transmission in the system is used.
 受信局は、通知フレーム送信用の無線リソースに対して、通知フレームの受信及び復調処理を実行する(SEQ202)。そして、受信局は、復調処理に成功した場合には、通知フレームから取得したIDを受信対象端末リストに登録する(SEQ203)。 The receiving station executes the reception and demodulation processing of the notification frame for the radio resource for transmitting the notification frame (SEQ202). Then, when the demodulation process is successful, the receiving station registers the ID acquired from the notification frame in the reception target terminal list (SEQ203).
 端末は、あらかじめシステム内で決められた規則(後述)に基づいて、自分のIDを用いてもデータフレームを送信する無線リソース(時刻・周波数)及びデータフレーム生成に必要な符号を算出して、データフレームを生成し送信する(SEQ204)。 The terminal calculates the radio resource (time / frequency) for transmitting the data frame even using its own ID and the code required for data frame generation based on the rules (described later) determined in advance in the system. Generate and transmit a data frame (SEQ204).
 ここでは、通知フレーム送信からデータフレーム送信までの時間は十分に短く、次に送信されるデータフレームは同一衛星受信局で受信できると仮定する。 Here, it is assumed that the time from notification frame transmission to data frame transmission is sufficiently short, and the next data frame to be transmitted can be received by the same satellite receiving station.
 受信局は、自分の受信対象端末リストに登録されているIDを用いて、端末と同じ規則に基づいて、端末のIDから端末がデータフレームを送信する無線リソース(時刻・周波数)及びデータフレームの復調に必要な符号を算出して、データフレームを受信し復調する(SEQ205)。また、受信局は、必要に応じて復調結果(ユーザデータ)をクラウド上のアプリケーションサーバ(図示しない)に送信する。 The receiving station uses the ID registered in the list of terminals to be received, and based on the same rules as the terminal, the receiving station uses the radio resource (time / frequency) and the data frame from which the terminal transmits the data frame from the terminal ID. The code required for demodulation is calculated, and the data frame is received and demodulated (SEQ205). In addition, the receiving station transmits the demodulation result (user data) to the application server (not shown) on the cloud as needed.
 図3には、図1に示したシステムにおいて端末として動作する通信装置100(以下、端末100とする)の機能的構成例を示している。図示の端末100は、無線通信部101と、無線制御部102と、フレーム生成部103と、センサー104と、無線資源決定部105と、記憶部106を備えている。なお、受信局が地上局又は衛星受信局のいずれであっても、端末100の機能的構成は同一でよい。 FIG. 3 shows a functional configuration example of a communication device 100 (hereinafter referred to as a terminal 100) that operates as a terminal in the system shown in FIG. The illustrated terminal 100 includes a wireless communication unit 101, a wireless control unit 102, a frame generation unit 103, a sensor 104, a wireless resource determination unit 105, and a storage unit 106. The functional configuration of the terminal 100 may be the same regardless of whether the receiving station is a ground station or a satellite receiving station.
 無線通信部101は、無線信号の送信を行う。無線通信部101は、無線制御部102からの制御により、フレーム生成部103で生成されたフレームを無線信号に変換して送信する。 The wireless communication unit 101 transmits a wireless signal. The wireless communication unit 101 converts the frame generated by the frame generation unit 103 into a wireless signal and transmits it under the control of the wireless control unit 102.
 無線制御部102は、無線資源決定部105から得られる送信時刻及び送信周波数でフレームを送信するように、無線通信部101を制御する。 The wireless control unit 102 controls the wireless communication unit 101 so as to transmit a frame at the transmission time and transmission frequency obtained from the wireless resource determination unit 105.
 フレーム生成部103は、端末100が送信するフレームを生成する。フレーム生成部103は、フレーム生成に必要なプリアンブル、同期情報、及びスクランブルパターンを、無線資源決定部105から取得する。また、フレーム生成部103は、フレームのペイロードに、例えばセンサー部104が取得したセンサー情報を記載する。 The frame generation unit 103 generates a frame to be transmitted by the terminal 100. The frame generation unit 103 acquires the preamble, synchronization information, and scramble pattern necessary for frame generation from the radio resource determination unit 105. Further, the frame generation unit 103 describes, for example, the sensor information acquired by the sensor unit 104 in the payload of the frame.
 センサー104は、端末100の外部又は内部情報を取得するセンサーであり、例えば温度センサーや加速度センサーなどである。 The sensor 104 is a sensor that acquires external or internal information of the terminal 100, for example, a temperature sensor or an acceleration sensor.
 無線資源決定部105は、記憶部106から得た端末100自身のID及び初期値を用いて、フレームを送信する無線リソース(時刻・周波数)や、フレーム生成に必要なフレーム生成に必要なプリアンブル、同期情報、及びスクランブルパターンを生成する。 The radio resource determination unit 105 uses the ID and initial value of the terminal 100 itself obtained from the storage unit 106 to transmit a radio resource (time / frequency) and a preamble required for frame generation necessary for frame generation. Generate synchronization information and scramble pattern.
 記憶部106は、無線資源を決定するために必要な情報である端末100自身のIDと初期値を保持する。もちろん、記憶部106はその他の情報を保持していてもよい。 The storage unit 106 holds the ID and initial value of the terminal 100 itself, which is information necessary for determining the wireless resource. Of course, the storage unit 106 may hold other information.
 図4には、図1に示したシステムにおいて受信局として動作する通信装置200(以下、受信局200とする)の機能的構成例を示している。図示の受信局200は、無線通信部201と、無線制御部202と、フレーム検出・復調部203と、無線資源決定部204と、記憶部205を備えている。図示の受信局200は、地上に設置された地上局を想定している。 FIG. 4 shows a functional configuration example of a communication device 200 (hereinafter referred to as a receiving station 200) that operates as a receiving station in the system shown in FIG. The illustrated receiving station 200 includes a radio communication unit 201, a radio control unit 202, a frame detection / demodulation unit 203, a radio resource determination unit 204, and a storage unit 205. The illustrated receiving station 200 assumes a ground station installed on the ground.
 無線通信部201は、無線信号の受信を行う。無線通信部201は、無線制御部202からの制御により、電波を受信し、無線信号へと変換し、フレーム検出・復調部203へ渡す。 The wireless communication unit 201 receives the wireless signal. The wireless communication unit 201 receives radio waves under the control of the wireless control unit 202, converts them into radio signals, and passes them to the frame detection / demodulation unit 203.
 無線制御部202は、無線資源決定部204から得られる受信時刻及び受信周波数でフレームを受信するように、無線通信部201を制御する。 The radio control unit 202 controls the radio communication unit 201 so that the frame is received at the reception time and reception frequency obtained from the radio resource determination unit 204.
 フレーム検出・復調部203は、受信信号からフレームを検出し復調する。具体的には、フレーム検出・復調部203は、無線資源決定部204から取得したプリアンブル、同期情報、及びスクランブルパターンから既知パターンを生成し、受信信号と既知パターンとの相関値を計算し、相関値が一定以上の値となる場合にフレームを検出したと判定する。そして、フレーム検出・復調部203は、フレーム検出に成功した場合に、受信信号からフレームに該当する部分の信号を取り出し、スクランブルを解除した後、ペイロードを取り出し、誤り訂正符号の復号化処理、CRC(CyclicRedundancy Code)を用いた誤り検出を行う。フレーム検出・復調部203は、フレームの復調に成功した場合、復調されたデータを上位層(図示しない)に通知する。 The frame detection / demodulation unit 203 detects a frame from the received signal and demodulates it. Specifically, the frame detection / demodulation unit 203 generates a known pattern from the preamble, synchronization information, and scramble pattern acquired from the radio resource determination unit 204, calculates the correlation value between the received signal and the known pattern, and correlates. When the value exceeds a certain value, it is determined that the frame has been detected. Then, when the frame detection / demodulation unit 203 succeeds in frame detection, the signal of the portion corresponding to the frame is taken out from the received signal, scrambled, and then the payload is taken out, and the error correction code decoding process and CRC are performed. (CyclicRedundancy Code) is used for error detection. When the frame detection / demodulation unit 203 succeeds in demodulating the frame, the frame detection / demodulation unit 203 notifies the upper layer (not shown) of the demodulated data.
 無線資源決定部204は、記憶部205から得た端末100のID及び初期値を用いて、端末100がフレームを送信する無線リソース(時刻・周波数)や、フレーム復調に必要なプリアンブル、同期情報、及びスクランブルパターンを生成する。 The radio resource determination unit 204 uses the ID and initial value of the terminal 100 obtained from the storage unit 205 to transmit a radio resource (time / frequency) for which the terminal 100 transmits a frame, a preamble required for frame demodulation, synchronization information, and the like. And generate a scramble pattern.
 記憶部205は、無線資源を決定するために必要な情報である端末100のIDと初期値を保持する。また、記憶部205は、受信局200が受信対象とする端末100のIDを保持した受信対象端末リストを保持する。 The storage unit 205 holds the ID and initial value of the terminal 100, which is information necessary for determining the wireless resource. Further, the storage unit 205 holds a reception target terminal list holding the ID of the terminal 100 to be received by the reception station 200.
 図5には、図1に示したシステム内で使用されるフレームの構成例を示している。フレームは、ID、DATA、及びCRCの各フィールドを含む。端末から送信される通知フレーム及びデータフレームはともに、図5に示したフレーム構成であるものとする。 FIG. 5 shows a configuration example of a frame used in the system shown in FIG. The frame contains ID, DATA, and CRC fields. It is assumed that both the notification frame and the data frame transmitted from the terminal have the frame configuration shown in FIG.
 IDフィールドには、送信元である端末100の固有の識別子であるIDが格納される。DATAフィールドには、送信データが格納される。データフレームの場合には、センサー104から取得したデータなどが格納される。通知フレームの場合には、通知フレーム送信からデータフレーム送信までの送信間隔や、定期的に送信されるデータフレームの送信間隔などが格納される。CRCフィールドには、IDフィールドとDATAフィールドに格納された情報に対して計算したCRC値が格納される。受信側では、CRC値を用いて復調成功判定が行われる。 In the ID field, an ID which is a unique identifier of the terminal 100 which is the transmission source is stored. Transmission data is stored in the DATA field. In the case of a data frame, data acquired from the sensor 104 or the like is stored. In the case of a notification frame, the transmission interval from the notification frame transmission to the data frame transmission, the transmission interval of the data frame transmitted periodically, and the like are stored. In the CRC field, the CRC value calculated for the information stored in the ID field and the DATA field is stored. On the receiving side, the demodulation success determination is performed using the CRC value.
 上記のID、DATA、及びCRCを連結した系列に対して、誤り訂正(Forward Error Correction:FEC)符号化や順番の並べ替え(インタリーブ)を行って、ペイロードを生成する。さらにペイロードの先頭に、フレーム検出と同期獲得に使用する既知パターンであるプリアンブルと同期情報を連結した後、ビット毎にスクランブルパターンとの排他的論理和(XOR)をとることによって、フレームが生成される。 For the series in which the above ID, DATA, and CRC are concatenated, error correction (Forward Error Correction: FEC) coding and order rearrangement (interleave) are performed to generate a payload. Furthermore, a frame is generated by concatenating the preamble, which is a known pattern used for frame detection and synchronization acquisition, and synchronization information at the beginning of the payload, and then taking an exclusive OR (XOR) with the scramble pattern for each bit. Or.
 フレーム送信に用いる無線リソース(時刻・周波数)、フレーム生成に必要なプリアンブル及び同期情報、スクランブルパターンの生成方法について、図6を参照しながら説明する。 The radio resources (time / frequency) used for frame transmission, preamble and synchronization information required for frame generation, and the scramble pattern generation method will be described with reference to FIG.
 システム内には、フレーム送信に用いる無線リソース(時刻・周波数)、フレーム生成に必要なプリアンブル及び同期情報、スクランブルパターンの生成方法をそれぞれ決定するための各規則1~4が、あらかじめ決定されている。フレーム送信に用いる時刻(Time)は、規則1に時刻算出用の2つの初期値Seed(T)-1とSeed(T)-2を入力することで決定される。フレーム送信に用いる周波数(Freq)は、規則2に周波数算出用の2つの初期値Seed(F)-1とSeed(F)-2を入力することで決定される。プリアンブル及び同期情報(Preamble/Sync)は、規則3にプリアンブル及び同期情報算出用の2つの初期値Seed(P)-1とSeed(P)-2を入力することで決定される。スクランブルパターンは、規則4にスクランブルパターン用の2つの初期値Seed(S)-1とSeed(S)-2を入力することで決定される。 In the system, the radio resources (time / frequency) used for frame transmission, the preamble and synchronization information required for frame generation, and the rules 1 to 4 for determining the scramble pattern generation method are predetermined. .. The time (Time) used for frame transmission is determined by inputting two initial values Seed (T) -1 and Seed (T) -2 for time calculation in Rule 1. The frequency (Freq) used for frame transmission is determined by inputting two initial values Seed (F) -1 and Seed (F) -2 for frequency calculation in Rule 2. The preamble / synchronization information (Preamble / Sync) is determined by inputting two initial values Seed (P) -1 and Seed (P) -2 for calculating the preamble and synchronization information in Rule 3. The scramble pattern is determined by inputting two initial values Seed (S) -1 and Seed (S) -2 for the scramble pattern in Rule 4.
 各初期値は、あらかじめシステム内で決まっており、端末100内の記憶部106及び受信局200内の記憶部205にそれぞれ保持されている。データフレーム送信時には、各2つ目の初期値(Seed(T)-2、Seed(F)-2、Seed(P)-2、Seed(S)-2)に、データフレームの送信元の端末100の固有の識別子であるIDをそれぞれ入力する。一方、通知フレーム送信時には、各2つ目の初期値(Seed(T)-2、Seed(F)-2、Seed(P)-2、Seed(S)-2)に、あらかじめ通知フレーム用に割り当てられているいくつかの初期値からランダムに選択し、入力される。 Each initial value is determined in advance in the system, and is held in the storage unit 106 in the terminal 100 and the storage unit 205 in the receiving station 200, respectively. At the time of data frame transmission, the terminal of the data frame source is set to the second initial value (Seed (T) -2, Seed (F) -2, Seed (P) -2, Seed (S) -2). Enter IDs that are 100 unique identifiers. On the other hand, when the notification frame is transmitted, the second initial value (Seed (T) -2, Seed (F) -2, Seed (P) -2, Seed (S) -2) is set in advance for the notification frame. Randomly selected from several assigned initial values and entered.
 この方法を用いることで、端末100から受信局200へ端末IDを通知するだけで、フレーム送信に用いる無線リソース(時刻・周波数)及びフレーム復調に必要な情報を得ることができる。 By using this method, the radio resource (time / frequency) used for frame transmission and the information required for frame demodulation can be obtained only by notifying the terminal ID from the terminal 100 to the receiving station 200.
B.衛星受信局を使用したシステム構成
 図7には、衛星受信局を使用したLPWA無線通信システムの構成例を模式的に示している。同図に示す例では、地上に設置された複数の受信局(以下、「地上局」とする)と、地球上を周回する複数の衛星受信局(以下、単に「衛星受信局」とも言う)と、地上に散在する無数の端末で構成される。システム内では、すべての端末及び受信局が時刻同期していることを前提とする。時刻同期する方法としてGPS情報を用いることなどが考えられる。なお、各衛星受信局は、例えば、極近傍の上空を通過する極軌道に近く、衛星の軌道面に入射する太陽からの光の角度が同じになり、赤道を常に同じ現地時間で通過する太陽同期軌道で地球上を周回する。
B. System Configuration Using Satellite Receiving Station FIG. 7 schematically shows a configuration example of an LPWA wireless communication system using a satellite receiving station. In the example shown in the figure, a plurality of receiving stations installed on the ground (hereinafter referred to as "ground stations") and a plurality of satellite receiving stations orbiting the earth (hereinafter, also simply referred to as "satellite receiving stations"). And, it is composed of innumerable terminals scattered on the ground. In the system, it is assumed that all terminals and receiving stations are time-synchronized. It is conceivable to use GPS information as a method of time synchronization. In addition, each satellite receiving station is close to the polar orbit that passes over the sky near the pole, the angle of the light from the sun incident on the orbital plane of the satellite is the same, and the sun that always passes through the equator at the same local time. It orbits the earth in a synchronized orbit.
 端末は、搭載するセンサーなどでセンシングした情報を定期的に送信する送信機である。衛星受信局は、端末が送信したデータを受信し、復調処理を行う。また、衛星受信局は、必要に応じて復調結果(ユーザデータ)をクラウド上のアプリケーションサーバ(図示しない)に送信する。また、衛星受信局は衛星間通信を可能とする。衛星受信局間の通信方式は限定されないが、常時接続及び高速通信であることが望ましい。地上局は衛星受信局と通信を行う送受信機である。衛星受信局と地上局間の通信方式は限定されないが、高速通信であることが望ましい。 The terminal is a transmitter that periodically transmits information sensed by the on-board sensor or the like. The satellite receiving station receives the data transmitted by the terminal and performs demodulation processing. Further, the satellite receiving station transmits the demodulation result (user data) to the application server (not shown) on the cloud as needed. In addition, the satellite receiving station enables inter-satellite communication. The communication method between satellite receiving stations is not limited, but it is desirable to use constant connection and high-speed communication. A ground station is a transceiver that communicates with a satellite receiver. The communication method between the satellite receiving station and the ground station is not limited, but high-speed communication is desirable.
 地上受信局の場合、端末が静止端末又は移動範囲が狭い場合、端末が送信したデータ(電波)を受信可能な受信局は常に同じである。よって、端末は電源オンしたときとそれ以降は数日に1回程度の低頻度で通知フレームを送信すれば問題ない。 In the case of a terrestrial receiving station, if the terminal is a stationary terminal or the movement range is narrow, the receiving station that can receive the data (radio wave) transmitted by the terminal is always the same. Therefore, there is no problem if the terminal transmits the notification frame at a low frequency of about once every few days when the power is turned on and thereafter.
 一方、低軌道衛星は衛星軌道上を毎秒数kmの速さで移動し続けているので、端末が送信したデータを受信可能な受信局は固定されない。例えば、ある端末が通知フレームを送信したときに衛星受信局701が受信可能である場合、その端末が位置する場所が衛星受信局701の受信可能範囲711である間は、衛星受信局701はその端末が送信したデータフレームを受信し復調することができる。一方、時間が経過し、その端末が位置する場所が衛星受信局701の受信可能範囲711から外れ、同じ衛星軌道上の後続の衛星受信局702の受信可能範囲712となった場合には、衛星受信局701はその端末が送信したデータフレームを受信し復調することができない。 On the other hand, low earth orbit satellites continue to move in orbit at a speed of several kilometers per second, so the receiving station that can receive the data transmitted by the terminal is not fixed. For example, if a terminal is receivable by the satellite receiver 701 when it transmits a notification frame, the satellite receiver 701 will be in the receivable range 711 of the satellite receiver 701 where the terminal is located. The data frame transmitted by the terminal can be received and demodulated. On the other hand, when time elapses and the place where the terminal is located deviates from the receivable range 711 of the satellite receiving station 701 and becomes the receivable range 712 of the subsequent satellite receiving station 702 in the same satellite orbit, the satellite The receiving station 701 cannot receive and demodulate the data frame transmitted by the terminal.
 但し、図7に示す例では、衛星軌道上で隣接する衛星受信局701と衛星受信局702のそれぞれの受信可能範囲711と受信可能範囲712が重複しないようなネットワーク設計であるとする。衛星受信局701と衛星受信局702は、例えば同一軌道を周回しているが、隣接軌道を周回していてもよい。 However, in the example shown in FIG. 7, it is assumed that the network design is such that the receivable range 711 and the receivable range 712 of the satellite receiving station 701 and the satellite receiving station 702 adjacent to each other in the satellite orbit do not overlap. The satellite receiving station 701 and the satellite receiving station 702 orbit the same orbit, but may orbit adjacent to each other.
 図8には、衛星軌道上で隣接する衛星受信局701及び衛星受信局702と端末801間の通信シーケンス例を示している。衛星受信局701と衛星受信局702は、それぞれ衛星軌道上を毎秒数kmの速さで移動し続けているので、端末801が位置する場所が衛星受信局701の受信可能範囲711となる時間帯と、衛星受信局701の受信可能範囲711から外れて衛星受信局702の受信可能範囲712となる時間帯がある。 FIG. 8 shows an example of a communication sequence between the satellite receiving station 701 and the satellite receiving station 702 and the terminal 801 adjacent to each other in the satellite orbit. Since the satellite receiving station 701 and the satellite receiving station 702 continue to move in the satellite orbit at a speed of several km per second, the time zone where the terminal 801 is located is the receivable range 711 of the satellite receiving station 701. And, there is a time zone that deviates from the receivable range 711 of the satellite receiving station 701 and becomes the receivable range 712 of the satellite receiving station 702.
 まず、端末801は、自身のIDを通知するため、通知フレームを送信(ブロードキャスト)する(SEQ801)。通知フレームの送信には、あらかじめシステム内で通知フレーム送信用に割り当てられている無線リソース(時刻・周波数)を用いる。この時点で、端末801は衛星受信局701の受信可能範囲711にいる。したがって、衛星受信局701は、通知フレーム送信用の無線リソースに対して、通知フレームの受信及び復調処理を実行して(SEQ811)、通知フレームから取得したIDを受信対象端末リストに登録する(SEQ812)。一方、端末801からの通知フレームは衛星受信局702には届かないので、衛星受信局702は、端末801のIDを受信対象端末リストに登録しない。 First, the terminal 801 transmits (broadcasts) a notification frame in order to notify its own ID (SEQ801). For the transmission of the notification frame, the radio resource (time / frequency) allocated in advance for the notification frame transmission in the system is used. At this point, the terminal 801 is in the receivable range 711 of the satellite receiving station 701. Therefore, the satellite receiving station 701 executes the reception and demodulation processing of the notification frame for the radio resource for transmitting the notification frame (SEQ811), and registers the ID acquired from the notification frame in the reception target terminal list (SEQ812). ). On the other hand, since the notification frame from the terminal 801 does not reach the satellite receiving station 702, the satellite receiving station 702 does not register the ID of the terminal 801 in the reception target terminal list.
 次いで、端末801は、あらかじめシステム内で決められた規則1~4に基づいて、自分のIDからデータフレームを送信する無線リソース(時刻・周波数)及びデータフレーム生成に必要な符号を算出して、データフレームを生成し送信(ブロードキャスト)する(SEQ802)。 Next, the terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system. A data frame is generated and transmitted (broadcast) (SEQ802).
 衛星受信局701は、受信対象端末リストに登録されているIDを用いて、端末801と同じ規則1~4に基づいて、端末のIDから端末801がデータフレームを送信する無線リソース(時刻・周波数)及びデータフレームの復調に必要な符号を算出して、データフレームを受信し復調する(SEQ813)。 The satellite receiving station 701 uses the ID registered in the reception target terminal list, and is a radio resource (time / frequency) at which the terminal 801 transmits a data frame from the terminal ID based on the same rules 1 to 4 as the terminal 801. ) And the code required for demodulation of the data frame is calculated, and the data frame is received and demodulated (SEQ813).
 さらに、端末801は、あらかじめシステム内で決められた規則1~4に基づいて、自分のIDから次のデータフレームを送信する無線リソース(時刻・周波数)及びデータフレーム生成に必要な符号を算出して、次のデータフレームを生成し送信(ブロードキャスト)する(SEQ803)。 Further, the terminal 801 calculates the radio resource (time / frequency) for transmitting the next data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system. Then, the next data frame is generated and transmitted (broadcast) (SEQ803).
 衛星受信局701は、受信対象端末リストに登録されているIDを用いて、端末801と同じ規則1~4に基づいて、端末のIDから端末801がデータフレームを送信する無線リソース(時刻・周波数)及びデータフレームの復調に必要な符号を算出して、データフレームの受信及び復調処理を試みる(SEQ814)。しかしながら、端末801が位置する場所が受信可能範囲711から外れて衛星受信局702の受信可能範囲712となっているため、端末801からのデータフレームの復調処理に失敗する。また、端末801からのデータフレームは衛星受信局702に届くが、衛星受信局702は、端末801のIDを受信対象端末リストに登録していないので、端末801からのデータフレームの受信・復調処理を行わない。 The satellite receiving station 701 uses the ID registered in the reception target terminal list, and is a radio resource (time / frequency) at which the terminal 801 transmits a data frame from the terminal ID based on the same rules 1 to 4 as the terminal 801. ) And the code required for demodulation of the data frame are calculated, and the reception and demodulation processing of the data frame is attempted (SEQ814). However, since the location where the terminal 801 is located is out of the receivable range 711 and is in the receivable range 712 of the satellite receiving station 702, the demodulation process of the data frame from the terminal 801 fails. Further, the data frame from the terminal 801 reaches the satellite receiving station 702, but since the satellite receiving station 702 does not register the ID of the terminal 801 in the reception target terminal list, the data frame reception / demodulation processing from the terminal 801 is performed. Do not do.
 図8に示したような、各衛星受信局の衛星軌道上の移動により端末のデータフレームをいずれの衛星受信局も受信できなくなるという事態を回避するために、端末が高頻度で通知フレームを送信すればよいが、端末の消費電力の観点、及び無線リソースの利用効率の観点から望ましくない。また、衛星受信局が受信可能領域から外れた端末に対して受信・復調処理を実行するのは、衛星受信局のリソース使用効率の観点から望ましくない。 In order to avoid the situation where no satellite receiving station can receive the data frame of the terminal due to the movement of each satellite receiving station in the satellite orbit as shown in FIG. 8, the terminal transmits the notification frame with high frequency. However, it is not desirable from the viewpoint of the power consumption of the terminal and the utilization efficiency of wireless resources. Further, it is not desirable from the viewpoint of resource utilization efficiency of the satellite receiving station to execute the reception / demodulation processing on the terminal outside the receivable area of the satellite receiving station.
 そこで、本開示では、衛星受信局が衛星軌道上を移動することを考慮することで、端末が通知フレームを高頻度で送信しなくても、端末がデータフレーム送信時にその端末が位置する場所を受信可能範囲とする衛星受信局がその端末を受信対象とする方法について提案する。 Therefore, in the present disclosure, by considering that the satellite receiving station moves in the satellite orbit, even if the terminal does not transmit the notification frame frequently, the place where the terminal is located when the terminal transmits the data frame is determined. We propose a method in which the satellite receiving station within the receivable range targets the terminal.
C.第1の実施例
 第1の実施例として、図7に示したようなシステム構成において、複数の衛星受信局間でフレーム受信情報を共有して、端末が位置する場所を受信可能範囲とする衛星受信局がその端末を受信対象とする方法について説明する。
C. First Example As a first embodiment, in the system configuration as shown in FIG. 7, a satellite that shares frame reception information among a plurality of satellite receiving stations and sets a place where a terminal is located as a receivable range. The method in which the receiving station targets the terminal will be described.
C-1.通信シーケンス例
 図9には、本開示に係る方法を適用する場合の衛星受信局701及び衛星受信局702と端末801間の通信シーケンス例を示している。衛星受信局701と衛星受信局702は、それぞれ衛星軌道上を毎秒数kmの速さで移動し続けているので、端末801が位置する場所が衛星受信局701の受信可能範囲711となる時間帯と、衛星受信局701の受信可能範囲711から外れて衛星受信局702の受信可能範囲712となる時間帯がある。
C-1. Example of Communication Sequence FIG. 9 shows an example of a communication sequence between the satellite receiving station 701 and the satellite receiving station 702 and the terminal 801 when the method according to the present disclosure is applied. Since the satellite receiving station 701 and the satellite receiving station 702 continue to move in the satellite orbit at a speed of several km per second, the time zone where the terminal 801 is located is the receivable range 711 of the satellite receiving station 701. And, there is a time zone that deviates from the receivable range 711 of the satellite receiving station 701 and becomes the receivable range 712 of the satellite receiving station 702.
 まず、端末801は、自身のIDを通知するため、通知フレームを送信(ブロードキャスト)する(SEQ901)。端末801は、通知フレームの送信には、あらかじめシステム内で通知フレーム送信用に割り当てられている無線リソース(時刻・周波数)を用いる。 First, the terminal 801 transmits (broadcasts) a notification frame in order to notify its own ID (SEQ901). The terminal 801 uses a radio resource (time / frequency) previously allocated for notification frame transmission in the system for transmission of the notification frame.
 この時点で、端末801は衛星受信局701の受信可能範囲711にいる。したがって、衛星受信局701は、通知フレーム送信用の無線リソースに対して、通知フレームの受信及び復調処理を実行して(SEQ911)、通知フレームから取得したIDを受信対象端末リストに登録する(SE912)。 At this point, the terminal 801 is in the receivable range 711 of the satellite receiving station 701. Therefore, the satellite receiving station 701 executes the reception and demodulation processing of the notification frame for the radio resource for transmitting the notification frame (SEQ911), and registers the ID acquired from the notification frame in the reception target terminal list (SE912). ).
 そして、衛星受信局701は、端末801から受信した通知フレームに関するフレーム受信情報を、同じ衛星軌道上の後続に位置する衛星受信局702に送信する(SEQ913)。フレーム受信情報は、通知フレームの送信元の端末ID、データ送信間隔、通知フレームの受信時に測定した周波数誤差推定結果及び伝搬遅延推定結果を含む。衛星受信局が通知フレームを受信する処理手順については後述する(図13を参照されたい)。 Then, the satellite receiving station 701 transmits the frame reception information regarding the notification frame received from the terminal 801 to the satellite receiving station 702 located following the same satellite orbit (SEQ913). The frame reception information includes the terminal ID of the transmission source of the notification frame, the data transmission interval, the frequency error estimation result and the propagation delay estimation result measured at the time of receiving the notification frame. The processing procedure for the satellite receiving station to receive the notification frame will be described later (see FIG. 13).
 一方、端末801からの通知フレームは衛星受信局702には届かないので、衛星受信局702は、端末801のIDを受信対象端末リストに登録しない。また、衛星受信局702は、同じ衛星軌道上の前方に位置する衛星受信局701から受信したフレーム受信情報に基づいて、端末801を自身の受信対象端末リストに登録すべきか否かを判定する(SEQ921)。衛星受信局がフレーム受信情報フレームを受信する処理手順並びに具体的な判定条件については後述する(図15を参照されたい)。図9に示す通信シーケンス例では、端末801が次にデータフレームを送信するタイミングではまだ端末801が位置する場所が受信可能範囲712の外であることなど、判定条件を満たしていないことから、衛星受信局702は端末801を受信対象端末リストに登録しない。 On the other hand, since the notification frame from the terminal 801 does not reach the satellite receiving station 702, the satellite receiving station 702 does not register the ID of the terminal 801 in the reception target terminal list. Further, the satellite receiving station 702 determines whether or not the terminal 801 should be registered in its own reception target terminal list based on the frame reception information received from the satellite receiving station 701 located in front of the same satellite orbit (). SEQ921). The processing procedure for the satellite receiving station to receive the frame reception information frame and the specific determination conditions will be described later (see FIG. 15). In the communication sequence example shown in FIG. 9, since the location where the terminal 801 is located is still outside the receivable range 712 at the timing when the terminal 801 transmits the next data frame, the determination condition is not satisfied. The receiving station 702 does not register the terminal 801 in the receiving target terminal list.
 次いで、端末801は、あらかじめシステム内で決められた規則1~4に基づいて、自分のIDからデータフレームを送信する無線リソース(時刻・周波数)及びデータフレーム生成に必要な符号を算出して、データフレームを生成し送信(ブロードキャスト)する(SEQ902)。 Next, the terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system. A data frame is generated and transmitted (broadcast) (SEQ902).
 衛星受信局701は、受信対象端末リストに登録されているIDを用いて、端末801と同じ規則1~4に基づいて、端末のIDから端末801がデータフレームを送信する無線リソース(時刻・周波数)及びデータフレームの復調に必要な符号を算出して、データフレームを受信し復調する(SEQ914)。そして、衛星受信局701は、端末801から受信したデータフレームに関するフレーム受信情報を、同じ衛星軌道上の後続に位置する衛星受信局702に送信する(SEQ915)。衛星受信局がデータフレームを受信する処理手順については後述する(図14を参照されたい)。 The satellite receiving station 701 uses the ID registered in the reception target terminal list, and is a radio resource (time / frequency) at which the terminal 801 transmits a data frame from the terminal ID based on the same rules 1 to 4 as the terminal 801. ) And the code required for demodulation of the data frame is calculated, and the data frame is received and demodulated (SEQ 914). Then, the satellite receiving station 701 transmits the frame reception information regarding the data frame received from the terminal 801 to the satellite receiving station 702 located following the same satellite orbit (SEQ915). The processing procedure for the satellite receiving station to receive the data frame will be described later (see FIG. 14).
 衛星受信局702は、同じ衛星軌道上の前方に位置する衛星受信局701から受信したフレーム受信情報に基づいて、端末801を自身の受信対象端末リストに登録すべきか否かを判定する(SEQ922)。ここでは、端末801が位置する場所が次のデータフレームの送信タイミングでは受信可能範囲712内であるなど、判定条件を満たすことから、衛星受信局702は端末801を受信対象端末リストに登録する。 The satellite receiving station 702 determines whether or not the terminal 801 should be registered in its own reception target terminal list based on the frame reception information received from the satellite receiving station 701 located in front of the same satellite orbit (SEQ922). .. Here, since the location where the terminal 801 is located is within the receivable range 712 at the transmission timing of the next data frame and other determination conditions are satisfied, the satellite receiving station 702 registers the terminal 801 in the reception target terminal list.
 さらに、端末801は、あらかじめシステム内で決められた規則1~4に基づいて、自分のIDから次のデータフレームを送信する無線リソース(時刻・周波数)及びデータフレーム生成に必要な符号を算出して、次のデータフレームを生成し送信(ブロードキャスト)する(SEQ903)。 Further, the terminal 801 calculates the radio resource (time / frequency) for transmitting the next data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system. Then, the next data frame is generated and transmitted (broadcast) (SEQ903).
 衛星受信局701は、受信対象端末リストに登録されているIDを用いて、端末801と同じ規則1~4に基づいて、端末のIDから端末801がデータフレームを送信する無線リソース(時刻・周波数)及びデータフレームの復調に必要な符号を算出して、データフレームの受信及び復調処理を試みる(SEQ915)。しかしながら、端末801が位置する場所が受信可能範囲711から外れて衛星受信局702の受信可能範囲712となっているため、端末801からのデータフレームの復調処理に失敗する。 The satellite receiving station 701 uses the ID registered in the reception target terminal list, and is a radio resource (time / frequency) at which the terminal 801 transmits a data frame from the terminal ID based on the same rules 1 to 4 as the terminal 801. ) And the code required for demodulation of the data frame are calculated, and the reception and demodulation processing of the data frame is attempted (SEQ915). However, since the location where the terminal 801 is located is out of the receivable range 711 and is in the receivable range 712 of the satellite receiving station 702, the demodulation process of the data frame from the terminal 801 fails.
 また、端末801からのデータフレームは衛星受信局702に届く。衛星受信局702は、端末801から受信したフレーム受信情報に基づいて端末801のIDを自身の受信対象端末リストに登録しているので、端末801と同じ規則1~4に基づいて、端末のIDから端末801がデータフレームを送信する無線リソース(時刻・周波数)及びデータフレームの復調に必要な符号を算出して、データフレームの受信及び復調処理を試みる。そして、端末801が位置する場所が受信可能範囲712内であることから、衛星受信局702は端末801からのデータフレームの復調処理に成功する(SEQ924)。 Also, the data frame from the terminal 801 reaches the satellite receiving station 702. Since the satellite receiving station 702 registers the ID of the terminal 801 in its own reception target terminal list based on the frame reception information received from the terminal 801, the terminal ID is based on the same rules 1 to 4 as the terminal 801. The terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame and the code required for demodulating the data frame, and attempts to receive and demolish the data frame. Since the location where the terminal 801 is located is within the receivable range 712, the satellite receiving station 702 succeeds in demodulating the data frame from the terminal 801 (SEQ 924).
C-2.装置構成
 フレーム受信情報を共有するシステムでも、端末の構成は図3と同じでよいので、このC項では端末の構成についての説明を省略する。
C-2. Even in a system that shares device configuration frame reception information, the terminal configuration may be the same as in FIG. 3, and therefore, the description of the terminal configuration will be omitted in this section C.
 図10には、フレーム受信情報を共有するシステムにおける衛星受信局1000の機能的構成例を示している。衛星受信局1000は、図7に示した衛星軌道のいずれかで地球上を周回する低軌道衛星に搭載して用いられる。衛星受信局1000は、LPWA部1200と衛星間通信部1300を備えている。 FIG. 10 shows an example of a functional configuration of the satellite receiving station 1000 in a system that shares frame reception information. The satellite receiving station 1000 is used by being mounted on a low earth orbit satellite orbiting the earth in any of the satellite orbits shown in FIG. The satellite receiving station 1000 includes an LPWA unit 1200 and an intersatellite communication unit 1300.
 LPWA部1200は、地上の端末が送信したフレームを受信する。LPWA部1200は、図4に示した受信局200と同一の構成要素については図4と同じ参照番号を付けている。LPWA部1200内はさらに対象端末判定部206を備えている。対象端末判定部206は、同じ衛星軌道上の前方にいる衛星受信局から受信したフレーム受信情報に基づいて、該当端末を自身の受信対象端末リストに登録すべきか否かを判定する。また、フレーム検出・復調部203は、受信した通知フレーム又はデータフレームの送信元の端末ID、フレーム送信間隔、通知フレームの受信時に測定した周波数誤差推定結果及び伝搬遅延推定結果を、衛星間通信部1300側のフレーム生成部1303に出力する。 The LPWA unit 1200 receives the frame transmitted by the terminal on the ground. The LPWA unit 1200 has the same reference number as that of FIG. 4 for the same components as the receiving station 200 shown in FIG. The LPWA unit 1200 further includes a target terminal determination unit 206. The target terminal determination unit 206 determines whether or not the target terminal should be registered in its own reception target terminal list based on the frame reception information received from the satellite receiving station in front of the same satellite orbit. Further, the frame detection / demodulation unit 203 uses the intersatellite communication unit to obtain the terminal ID of the source of the received notification frame or data frame, the frame transmission interval, the frequency error estimation result and the propagation delay estimation result measured at the time of receiving the notification frame. It is output to the frame generation unit 1303 on the 1300 side.
 衛星間通信部1300は、無線通信部1301と、無線制御部1302と、フレーム生成部1303と、フレーム検出・復調部1304を備えている。 The intersatellite communication unit 1300 includes a wireless communication unit 1301, a wireless control unit 1302, a frame generation unit 1303, and a frame detection / demodulation unit 1304.
 無線通信部1301は、無線信号の送受信を行う。無線通信部1301は、無線制御部1302からの制御により、電波を受信し、無線信号へ変換し、フレーム検出・復調部1304に渡す。また、無線通信部1301は、無線制御部1302からの制御により、フレーム生成部1303で生成されたフレームを無線信号に変換し、送信する。 The wireless communication unit 1301 transmits and receives wireless signals. The wireless communication unit 1301 receives radio waves under the control of the wireless control unit 1302, converts them into radio signals, and passes them to the frame detection / demodulation unit 1304. Further, the wireless communication unit 1301 converts the frame generated by the frame generation unit 1303 into a wireless signal and transmits it under the control of the wireless control unit 1302.
 無線制御部1302は、衛星受信局間でフレームを送受信できるように、無線通信部1301を制御する。 The wireless control unit 1302 controls the wireless communication unit 1301 so that frames can be transmitted and received between satellite receiving stations.
 フレーム生成部1303は、LPWA部1200側のフレーム検出・復調部203から取得したフレーム受信情報をデータに格納して、所定のフォーマットに応じたフレームを生成する。 The frame generation unit 1303 stores the frame reception information acquired from the frame detection / demodulation unit 203 on the LPWA unit 1200 side in the data, and generates a frame according to a predetermined format.
 フレーム検出・復調部1304は、無線通信部1301の受信信号からフレームを検出し復調する。フレーム検出・復調部1304は、フレームの復調に成功した場合、受信したデータすなわちフレーム受信情報を対象端末判定部206に渡す。 The frame detection / demodulation unit 1304 detects and demodulates a frame from the received signal of the wireless communication unit 1301. When the frame detection / demodulation unit 1304 succeeds in demodulating the frame, the frame detection / demodulation unit 1304 passes the received data, that is, the frame reception information, to the target terminal determination unit 206.
C-3.フレーム構成
 この項では、本開示に係るLPWA無線通信システムで使用されるフレーム構成について説明する。但し、端末から衛星受信局に送信される通知フレーム及びデータフレームは、図5に示したフレーム構成と同じなので、ここでは詳細な説明を省略する。
C-3. Frame Configuration This section describes the frame configuration used in the LPWA wireless communication system according to the present disclosure. However, since the notification frame and the data frame transmitted from the terminal to the satellite receiving station have the same frame configuration as shown in FIG. 5, detailed description thereof will be omitted here.
 図11には、フレーム受信情報フレームのデータ部分のフレーム構成例を示している。データ部分以外のフォーマットは、使用する通信方式に応じたものとする。フレーム受信情報フレームは、衛星受信局が端末から受信したフレームに関するフレーム受信情報を、同じ衛星軌道上の後続の衛星受信局に通知するフレームである。 FIG. 11 shows a frame configuration example of the data part of the frame reception information frame. The format other than the data part shall be according to the communication method used. The frame reception information frame is a frame for notifying a subsequent satellite receiving station in the same satellite orbit of the frame reception information regarding the frame received from the terminal by the satellite receiving station.
 nSTAフィールドには、データ部分に格納されているフレーム受信情報(Frame Rx Info)の個数が格納される。nSTAフィールドの後に、nSTAフィールドに記載された個数分のFrame Rx Infoフィールドが続く。各Frame Rx Infoフィールドには各端末から受信したフレームに関するフレーム受信情報が格納される。図11に示すフレーム構成例では、nSTAフィールドには値nを示す情報が格納され、n個のFrame Rx Infoフィールドが格納されている。 In the nSTA field, the number of frame reception information (Frame Rx Info) stored in the data part is stored. The nSTA field is followed by the number of Frame Rx Info fields described in the nSTA field. In each Frame Rx Info field, frame reception information regarding a frame received from each terminal is stored. In the frame configuration example shown in FIG. 11, information indicating the value n is stored in the nSTA field, and n Frame Rx Info fields are stored.
 各Frame Rx Infoフィールドは、IDフィールドと、Ftypeフィールドと、Freq.Errorフィールドと、Propagation Delayフィールドと、Data Tx Intervalフィールドと、Next Data Tx Intervalフィールドをそれぞれ含む。 Each Frame Rx Info field includes an ID field, an Ftype field, and Freq. It includes an Error field, a Promotion Delay field, a Data Tx Interval field, and a Next Data Tx Interval field, respectively.
 IDフィールドには、受信したフレームの送信元の端末のID(端末ID)が格納される。Ftypeフィールドには、受信したフレームの種類を示す値が格納される。具体的には、Ftypeフィールドに格納された値が0のときには通知フレームを示し、1のときにはデータフレームを示す。Freq.Errorフィールドには、受信したフレームの周波数誤差推定結果が格納される。Propagation Delayフィールドには、受信したフレームの伝搬遅延推定結果が格納される。Data Tx Intervalフィールドには、データフレーム送信間隔が格納される。Next Data Tx Intervalフィールドには次のデータフレームが送信されるまでの時間が格納される。Ftypeが0、つまり通知フレームを受信したときのみ、Next Data Tx Intervalフィールドが付加される。 In the ID field, the ID (terminal ID) of the terminal that is the source of the received frame is stored. A value indicating the type of received frame is stored in the Ftype field. Specifically, when the value stored in the Ftype field is 0, a notification frame is indicated, and when it is 1, a data frame is indicated. Freq. The error estimation result of the received frame is stored in the Error field. In the Promotion Delivery field, the propagation delay estimation result of the received frame is stored. The data frame transmission interval is stored in the Data Tx Interval field. The time until the next data frame is transmitted is stored in the Next Data Tx Interval field. The Next Data Tx Interval field is added only when Ftype is 0, that is, when a notification frame is received.
C-4.端末の処理動作
 図12には、端末が行う処理動作をフローチャートの形式で示している。
C-4. Processing operation of the terminal FIG. 12 shows the processing operation performed by the terminal in the form of a flowchart.
 端末は、まず電源オン直後又は前回通知フレームを送信してからα時間経過したか否かを判定する(ステップS1201)。通知フレームの送信間隔αはあらかじめ設定されているものとする。 The terminal first determines whether or not α time has elapsed immediately after the power is turned on or after the previous notification frame is transmitted (step S1201). It is assumed that the transmission interval α of the notification frame is set in advance.
 電源オン直後又は前回通知フレームを送信してからα時間経過すると(ステップS1201のYes)、端末は通知フレームの送信処理を実行する。 Immediately after the power is turned on or when α time has elapsed since the previous notification frame was transmitted (Yes in step S1201), the terminal executes the notification frame transmission process.
 通知フレームを送信する場合、端末は、まず、通知フレームの送信に使用する無線リソース(時刻、周波数)、フレーム生成に必要なプリアンブル及び同期情報、スクランブルパターンなどの情報を、上述した規則1~4に基づいて算出する(ステップS1202)。 When transmitting a notification frame, the terminal first obtains information such as radio resources (time, frequency) used for transmitting the notification frame, preamble and synchronization information required for frame generation, scramble pattern, and the like, as described in Rules 1 to 4 described above. It is calculated based on (step S1202).
 次いで、端末は、ステップS1202で算出したプリアンブル及び同期情報、スクランブルパターンを用いて、通知フレームを生成する(ステップS1203)。 Next, the terminal generates a notification frame using the preamble, synchronization information, and scramble pattern calculated in step S1202 (step S1203).
 次いで、端末は、ステップS1202で算出した送信時刻になったか否かを判定する(ステップS1204)。そして、通知フレームの送信時刻が到来すると(ステップS1204のYes)、端末は、ステップS1202で算出した送信周波数を用いて、ステップS1203で生成した通知フレームを送信する(ステップS1205)。 Next, the terminal determines whether or not the transmission time calculated in step S1202 has been reached (step S1204). Then, when the transmission time of the notification frame arrives (Yes in step S1204), the terminal transmits the notification frame generated in step S1203 using the transmission frequency calculated in step S1202 (step S1205).
 一方、電源オン直後又は前回通知フレームを送信してからα時間経過していない場合(ステップS1201のNo)、並びに通知フレームを送信した後に、端末は、前回データフレームを送信してからβ時間経過したか否かを判定する(ステップS1206)。 On the other hand, if α time has not elapsed since the power was turned on or the previous notification frame was transmitted (No in step S1201), and after the notification frame was transmitted, the terminal has elapsed β time since the previous data frame was transmitted. It is determined whether or not it has been done (step S1206).
 前回データフレームを送信してからβ時間経過した場合(ステップS1206のYes)、端末は、データフレームの送信に使用する無線リソース(時刻・周波数)、フレーム生成に必要なプリアンブル及び同期情報、スクランブルパターンなどの情報を、規則1~4に基づいて算出する(ステップS1207)。 When β time has elapsed since the last data frame was transmitted (Yes in step S1206), the terminal uses the radio resource (time / frequency) used to transmit the data frame, the preamble and synchronization information required for frame generation, and the scramble pattern. Information such as is calculated based on the rules 1 to 4 (step S1207).
 次いで、端末は、ステップS1207で算出したプリアンブル及び同期情報、スクランブルパターンを用いて、データフレームを生成する(ステップS1208)。 Next, the terminal generates a data frame using the preamble, synchronization information, and scramble pattern calculated in step S1207 (step S1208).
 次いで、端末は、ステップS1207で算出した送信時刻になったか否かを判定する(ステップS1209)。そして、送信時刻が到来すると(ステップS1209のYes)、端末は、ステップS1207で算出した送信周波数を用いて、ステップS1208で生成したデータフレームを送信する(ステップS1210)。 Next, the terminal determines whether or not the transmission time calculated in step S1207 has been reached (step S1209). Then, when the transmission time arrives (Yes in step S1209), the terminal transmits the data frame generated in step S1208 using the transmission frequency calculated in step S1207 (step S1210).
 前回データフレームを送信してからβ時間経過していない場合(ステップS1206のNo)、並びにデータフレームを送信した後に、ステップS1201に戻り、端末は通知フレームの送信を繰り返し実行する。 If β time has not elapsed since the last data frame was transmitted (No in step S1206), and after transmitting the data frame, the process returns to step S1201 and the terminal repeatedly executes the transmission of the notification frame.
C-5.衛星受信局の処理動作
 本開示では、衛星受信局は、通知フレームの受信処理とデータフレームの受信処理、フレーム受信情報フレームの送受信処理を並行して実施可能であるとする。
C-5. Processing operation of the satellite receiving station In the present disclosure, it is assumed that the satellite receiving station can perform the reception processing of the notification frame, the reception processing of the data frame, and the transmission / reception processing of the frame reception information frame in parallel.
 図13には、衛星受信局が通知フレームを受信するための処理手順をフローチャートの形式で示している。 FIG. 13 shows the processing procedure for the satellite receiving station to receive the notification frame in the form of a flowchart.
 まず、衛星受信局は、受信対象端末リストを参照して、登録されている端末から通知フレームを受信する無線リソース(時刻・周波数)及び通知フレーム復調に必要な情報を、上述した規則1~4に基づいて算出する(ステップS1301)。 First, the satellite receiving station refers to the reception target terminal list, and obtains the radio resource (time / frequency) for receiving the notification frame from the registered terminal and the information necessary for demodulating the notification frame in the above-mentioned rules 1 to 4. It is calculated based on (step S1301).
 次いで、衛星受信局は、ステップS1301で算出した通知フレーム受信時刻になったか否かを判定する(ステップS1302)。通知フレーム受信時刻が到来すると(ステップS1302のYes)、衛星受信局は、ステップS1301で算出したプリアンブル及び同期情報を用いて該当端末からの通知フレームを検出し(ステップS1303)、ステップS1301で算出したスクランブルパターンを用いて受信した通知フレームを復調する(ステップS1304)。そして、衛星受信局は、通知フレームの復調に成功したか否かを判定する(ステップS1305)。 Next, the satellite receiving station determines whether or not the notification frame reception time calculated in step S1301 has been reached (step S1302). When the notification frame reception time arrives (Yes in step S1302), the satellite receiving station detects the notification frame from the corresponding terminal using the preamble and synchronization information calculated in step S1301 (step S1303), and calculates it in step S1301. The received notification frame is demodulated using the scramble pattern (step S1304). Then, the satellite receiving station determines whether or not the demodulation of the notification frame is successful (step S1305).
 ここで、通知フレームの復調に成功した場合には(ステップS1305のYes)、衛星受信局は、受信した通知フレームに格納されている端末ID、データ送信間隔などの情報を、受信対象端末リストに登録する(ステップS1306)。 Here, if the demodulation of the notification frame is successful (Yes in step S1305), the satellite receiving station puts information such as the terminal ID and the data transmission interval stored in the received notification frame into the reception target terminal list. Register (step S1306).
 次いで、衛星受信局は、通知フレームに格納されている端末ID、データ送信間隔、及びステップS1303~S1304で通知フレームを検出及び復調処理する際に算出した周波数誤差推定結果及び伝搬遅延推定結果、さらには通知フレーム送信からデータフレーム送信までの送信間隔を用いて、フレーム受信情報フレームを生成する(ステップS1307)。 Next, the satellite receiving station has the terminal ID stored in the notification frame, the data transmission interval, the frequency error estimation result and the propagation delay estimation result calculated when the notification frame is detected and demodulated in steps S1303 to S1304, and further. Generates a frame reception information frame using the transmission interval from the notification frame transmission to the data frame transmission (step S1307).
 その後、衛星受信局は、同じ衛星軌道上の後続の衛星受信局に、フレーム受信情報フレームを送信する(ステップS1308)。 After that, the satellite receiving station transmits a frame reception information frame to a subsequent satellite receiving station in the same satellite orbit (step S1308).
 一方、通知フレームの復調に失敗した場合には(ステップS1305のNo)、衛星受信局は、受信対象端末リストへの登録、フレーム受信情報フレームの送信を行わない。 On the other hand, if the demodulation of the notification frame fails (No in step S1305), the satellite receiving station does not register in the reception target terminal list or transmit the frame reception information frame.
 図13に示した処理手順では、衛星受信局は通知フレームを受信する度にフレーム受信情報フレームを送信するようになっているが、衛星受信局は通知フレームを複数受信してからまとめてフレーム受信情報フレームを送信するようにしてもよい。 In the processing procedure shown in FIG. 13, the satellite receiving station transmits a frame reception information frame each time it receives a notification frame, but the satellite receiving station receives a plurality of notification frames and then collectively receives the frames. Information frames may be transmitted.
 図14には、衛星受信局がデータフレームを受信するための処理手順をフローチャートの形式で示している。但し、衛星受信局は、受信対象端末リストに登録されている端末毎に並列してデータフレームの受信処理を実行可能であるとする。 FIG. 14 shows the processing procedure for the satellite receiving station to receive the data frame in the form of a flowchart. However, it is assumed that the satellite receiving station can execute the data frame reception processing in parallel for each terminal registered in the reception target terminal list.
 まず、衛星受信局は、受信対象端末リストから端末IDなどの対象端末の情報を取得して(ステップS1401)、対象端末からデータフレームを受信する無線リソース(時刻・周波数)、及びデータフレーム復調に必要なプリアンブル、同期情報、スクランブルパターンを、上述した規則1~4に基づいて算出する(ステップS1402)。 First, the satellite receiving station acquires the information of the target terminal such as the terminal ID from the reception target terminal list (step S1401), and performs the radio resource (time / frequency) for receiving the data frame from the target terminal and the data frame demodulation. The required preamble, synchronization information, and scramble pattern are calculated based on the above-mentioned rules 1 to 4 (step S1402).
 次いで、衛星受信局は、ステップS1402で算出したデータフレーム受信時刻になったか否かを判定する(ステップS1403)。データフレーム受信時刻が到来すると(ステップS1403のYes)、衛星受信局は、ステップS1402で算出したプリアンブル及び同期情報を用いて該当端末からのデータフレームを検出し(ステップS1404)、ステップS1402で算出したスクランブルパターンを用いて受信したデータフレームを復調する(ステップS1405)。そして、衛星受信局は、データフレームの復調に成功したか否かを判定する(ステップS1406)。 Next, the satellite receiving station determines whether or not the data frame reception time calculated in step S1402 has been reached (step S1403). When the data frame reception time arrives (Yes in step S1403), the satellite receiving station detects the data frame from the corresponding terminal using the preamble and synchronization information calculated in step S1402 (step S1404), and calculates it in step S1402. The received data frame is demodulated using the scramble pattern (step S1405). Then, the satellite receiving station determines whether or not the demodulation of the data frame is successful (step S1406).
 ここで、データフレームの復調に成功した場合には(ステップS1406のYes)、衛星受信局は、データ送信間隔、及びステップS1404~S1405でデータフレームを検出及び復調処理する際に算出した周波数誤差推定結果及び伝搬遅延推定結果を用いて、フレーム受信情報フレームを生成する(ステップS1407)。 Here, if the demodulation of the data frame is successful (Yes in step S1406), the satellite receiving station estimates the data transmission interval and the frequency error calculated when the data frame is detected and demodulated in steps S1404 to S1405. A frame reception information frame is generated using the result and the propagation delay estimation result (step S1407).
 その後、衛星受信局は、同じ衛星軌道上の後続の衛星受信局に、フレーム受信情報フレームを送信する(ステップS1408)。 After that, the satellite receiving station transmits a frame reception information frame to a subsequent satellite receiving station in the same satellite orbit (step S1408).
 一方、データフレームの復調に失敗した場合には(ステップS1406のNo)、衛星受信局は、フレーム受信情報フレームの送信を行わない。 On the other hand, if the demodulation of the data frame fails (No in step S1406), the satellite receiving station does not transmit the frame reception information frame.
 図14に示した処理手順では、衛星受信局はデータフレームを受信する度にフレーム受信情報フレームを送信するようになっているが、衛星受信局はデータフレームを複数受信してからまとめてフレーム受信情報フレームを送信するようにしてもよい。 In the processing procedure shown in FIG. 14, the satellite receiving station transmits a frame reception information frame each time a data frame is received, but the satellite receiving station receives a plurality of data frames and then collectively receives the frame. Information frames may be transmitted.
 図15には、衛星受信局がフレーム受信情報フレームを受信するための処理手順をフローチャートの形式で示している。 FIG. 15 shows the processing procedure for the satellite receiving station to receive the frame reception information frame in the form of a flowchart.
 まず、衛星受信局は、フレーム受信情報フレームを受信したか否かを判定する(ステップS1501)。そして、衛星受信局は、フレーム受信情報フレームを受信したときには(ステップS1501のYes)、その受信フレームを復調処理して(ステップS1502)、復調処理に成功したか否かを判定する(ステップS1503)。 First, the satellite receiving station determines whether or not the frame reception information frame has been received (step S1501). Then, when the satellite receiving station receives the frame reception information frame (Yes in step S1501), the received frame is demodulated (step S1502), and it is determined whether or not the demodulation processing is successful (step S1503). ..
 衛星受信局は、フレーム受信情報フレームの復調処理に成功した場合には(ステップS1503のYes)、そのフレーム受信情報フレームに格納されているフレーム受信情報数を示すnSTAを取得して(ステップS1504)、フレーム受信情報数だけ、以降の各フレーム受信情報(Frame Rx Info)の処理を繰り返し実行する。 If the demodulation process of the frame reception information frame is successful (Yes in step S1503), the satellite receiving station acquires an nSTA indicating the number of frame reception information stored in the frame reception information frame (step S1504). , The processing of each subsequent frame reception information (Frame Rx Info) is repeatedly executed for the number of frame reception information.
 衛星受信局は、まず、周波数誤差推定結果(Freq.Eror)と伝搬遅延推定結果(Propagation Delay)から、通知フレーム又はデータフレームが同一の衛星受信局で受信可能な残時間を推定する(ステップS1505)。 First, the satellite receiving station estimates the remaining time that can be received by the satellite receiving station having the same notification frame or data frame from the frequency error estimation result (Freq.Eror) and the propagation delay estimation result (Propagation Delivery) (step S1505). ).
 次いで、ステップS1505で推定した受信可能残時間とデータ送信間隔に基づいて、次に該当端末から送信されるデータフレームが同一の衛星受信局で受信可能か否かを判定する(ステップS1506)。ここで、データ送信間隔には、Ftypeが0すなわち受信フレームが通知フレームだった場合にはNext Data Tx Intervalフィールドに格納されている値を使用し、Ftypeが1すなわち受信フレームがデータフレームだった場合にはData Tx Intervalフィールドに格納されている値を使用する。 Next, based on the receivable remaining time estimated in step S1505 and the data transmission interval, it is determined whether or not the data frame transmitted from the corresponding terminal can be received by the same satellite receiving station (step S1506). Here, for the data transmission interval, the value stored in the Next Data Tx Interval field is used when Ftype is 0, that is, the received frame is a notification frame, and when Ftype is 1, that is, the received frame is a data frame. The value stored in the Data Tx Interval field is used for.
 そして、次に該当端末から送信されるデータフレームが同一の衛星受信局で受信可能である場合には(ステップS1506のYes)、衛星受信局は、ステップS1505に戻って、次のフレーム受信情報(Frame Rx Info)の処理を繰り返し実行する。 Then, if the data frame transmitted from the corresponding terminal can be received by the same satellite receiving station (Yes in step S1506), the satellite receiving station returns to step S1505 and receives the next frame reception information (Yes). The process of Frame Rx Info) is repeatedly executed.
 一方、次に該当端末から送信されるデータフレームが同一の衛星受信局で受信不可能な場合には(ステップS1506のNo)、衛星受信局は、当該フレーム受信情報(Frame Rx Info)に格納されている端末ID、データ送信間隔を自身の受信対象端末リストに登録した後(ステップS1507)、ステップS1505に戻って、次のフレーム受信情報(Frame Rx Info)の処理を繰り返し実行する。 On the other hand, if the next data frame transmitted from the corresponding terminal cannot be received by the same satellite receiving station (No in step S1506), the satellite receiving station is stored in the frame receiving information (Frame Rx Info). After registering the terminal ID and the data transmission interval in its own reception target terminal list (step S1507), the process returns to step S1505 and the processing of the next frame reception information (Frame Rx Info) is repeatedly executed.
 図15に示したフローチャート中のステップS1505における周波数誤差推定及び伝搬遅延推定について補足しておく。図16には、衛星の高度が600km、周波数が2GHzの場合の周波数誤差と伝搬遅延の時間変化の一例を示している。図16は、端末の頭上を衛星が通過する場合の例であり、1台の端末に対して衛星受信局は、0~6分の6分間受信可能であるとする。周波数誤差の算出には、3GPP TR 38.811 V15.1.0(非特許文献1)に記載されているモデルを参照した。図16に示す例では、3分目に衛星受信局がちょうど端末の頭上にあり、伝搬遅延が最小になるとともに周波数誤差の符号が反転する。 The frequency error estimation and propagation delay estimation in step S1505 in the flowchart shown in FIG. 15 are supplemented. FIG. 16 shows an example of the time change of the frequency error and the propagation delay when the altitude of the satellite is 600 km and the frequency is 2 GHz. FIG. 16 shows an example in which a satellite passes overhead of a terminal, and it is assumed that the satellite receiving station can receive one terminal for 6 minutes from 0 to 6 minutes. For the calculation of the frequency error, the model described in 3GPP TR 38.811 V15.1.0 (Non-Patent Document 1) was referred to. In the example shown in FIG. 16, the satellite receiving station is just above the terminal at the third minute, the propagation delay is minimized, and the sign of the frequency error is inverted.
 端末からの受信フレームの周波数誤差推定結果及び伝搬遅延推定結果を図16のチャートと比較することで、端末からのフレームを受信可能な6分間のうちいずれの時刻に該当するかを割り出すことができる。また、衛星受信局が端末の頭上を所定速度で一方向に移動する際、割り出した時刻に該当する端末と衛星受信局との相対的な位置関係を推定することができる。 By comparing the frequency error estimation result and the propagation delay estimation result of the received frame from the terminal with the chart of FIG. 16, it is possible to determine which time corresponds to the 6 minutes in which the frame from the terminal can be received. .. Further, when the satellite receiving station moves over the terminal in one direction at a predetermined speed, the relative positional relationship between the terminal corresponding to the determined time and the satellite receiving station can be estimated.
 例えば、データ送信間隔が3分、フレーム受信情報フレームで通知された周波数誤差推定結果が30kHz、伝搬遅延推定結果が2.5ミリ秒の場合、受信可能な6分間のうち2分目に相当する。したがって、次のデータフレームは受信可能な6分間のうち5分目に相当するので、同一の衛星受信局では受信可能である。 For example, if the data transmission interval is 3 minutes, the frequency error estimation result notified in the frame reception information frame is 30 kHz, and the propagation delay estimation result is 2.5 milliseconds, it corresponds to the second minute of the receivable 6 minutes. .. Therefore, since the next data frame corresponds to the 5th minute of the 6 minutes that can be received, it can be received by the same satellite receiving station.
 一方、データ送信間隔が3分、フレーム受信情報フレームにて通知された周波数誤差推定結果が-30kHz、伝搬遅延推定結果が2.5ミリ秒の場合、受信可能な6分間のうち5分目に相当する。したがって、次のデータフレームは受信可能な6分間を経過した時刻に相当するので、同一受信局では受信不可能である。このように、衛星受信局が衛星軌道上を一方向に移動することを考慮すると、周波数誤差と伝搬遅延を組み合わせることで、端末からのフレームを受信した衛星受信局で受信可能な残り時間を推定することが可能である。 On the other hand, when the data transmission interval is 3 minutes, the frequency error estimation result notified in the frame reception information frame is -30 kHz, and the propagation delay estimation result is 2.5 milliseconds, the 5th minute out of the receivable 6 minutes. Equivalent to. Therefore, since the next data frame corresponds to the time when the receivable 6 minutes have elapsed, it cannot be received by the same receiving station. Considering that the satellite receiving station moves in one direction in the satellite orbit in this way, the remaining time that can be received by the satellite receiving station that received the frame from the terminal is estimated by combining the frequency error and the propagation delay. It is possible to do.
 要するに、第1の実施例に係る方法では、各衛星受信局は、端末から受信したフレームの周波数誤差推定結果と伝搬遅延推定結果を含むフレーム受信情報を共有し、周波数誤差推定結果と伝搬遅延推定結果と、フレーム送信間隔と、隣接衛星受信局の位置関係に基づいて、該当端末から次に送信されるデータフレームが同一の衛星受信局で受信可能か否かを判定する。 In short, in the method according to the first embodiment, each satellite receiving station shares the frame reception information including the frequency error estimation result and the propagation delay estimation result of the frame received from the terminal, and the frequency error estimation result and the propagation delay estimation. Based on the result, the frame transmission interval, and the positional relationship of the adjacent satellite receiving stations, it is determined whether or not the next data frame transmitted from the corresponding terminal can be received by the same satellite receiving station.
 第1の実施例によれば、衛星受信局が同一軌道上の後続の衛星受信局にフレーム受信情報を送信することで、端末が頻繁に通知フレームを送信しなくても、端末が次にデータフレームを送信するときに、その端末が位置する場所を受信可能範囲とする衛星受信局がその端末からのデータフレームを受信し復調することを可能にすることができる。 According to the first embodiment, the satellite receiving station transmits the frame reception information to the succeeding satellite receiving station in the same orbit, so that the terminal can then send the data even if the terminal does not frequently transmit the notification frame. When transmitting a frame, it is possible to enable a satellite receiving station whose receivable range is the location where the terminal is located to receive and demodulate the data frame from the terminal.
D.第2の実施例
 上記第1の実施例では、衛星受信局間で、端末から受信したフレームの周波数誤差推定結果と伝搬遅延推定結果を通知して、該当端末から送信されるデータフレームが同一の衛星受信局で受信可能か否かを判定する方法について説明した。これに対し、第2の実施例では、端末がGPS受信機を搭載している場合に、衛星受信局間で端末の位置座標(緯度・経度)を通知することで、該当端末から送信されるデータフレームが同一の衛星受信局で受信可能か否かを判定する方法について説明する。
D. Second Example In the above first embodiment, the frequency error estimation result and the propagation delay estimation result of the frame received from the terminal are notified between the satellite receiving stations, and the data frame transmitted from the corresponding terminal is the same. The method of determining whether or not reception is possible at the satellite receiving station has been explained. On the other hand, in the second embodiment, when the terminal is equipped with a GPS receiver, the position coordinates (latitude / longitude) of the terminal are notified between the satellite receiving stations, so that the terminal is transmitted. A method of determining whether or not a data frame can be received by the same satellite receiving station will be described.
D-1.フレーム構成例
 図17には、端末の位置座標を通知する場合のフレーム受信情報フレームのデータ部分のフレーム構成例を示している。データ部分以外のフォーマットは、使用する通信方式に応じたものとする。上述したように、フレーム受信情報フレームは、衛星受信局が端末から受信したフレームに関するフレーム受信情報を、同じ衛星軌道上の後続の衛星受信局に通知するフレームである。
D-1. Frame configuration example FIG. 17 shows a frame configuration example of a data portion of a frame reception information frame when notifying the position coordinates of a terminal. The format other than the data part shall be according to the communication method used. As described above, the frame reception information frame is a frame that notifies the subsequent satellite receiving station in the same satellite orbit of the frame reception information regarding the frame received from the terminal by the satellite receiving station.
 nSTAフィールドには、データ部分に格納されているフレーム受信情報(Frame Rx Info)の個数が格納される。nSTAフィールドの後に、nSTAフィールドに記載された個数分のFrame Rx Infoフィールドが続く。各Frame Rx Infoフィールドには各端末から受信したフレームに関するフレーム受信情報が格納される。図17に示すフレーム構成例では、nSTAフィールドには値nを示す情報が格納され、n個のFrame Rx Infoフィールドが格納されている。 In the nSTA field, the number of frame reception information (Frame Rx Info) stored in the data part is stored. The nSTA field is followed by the number of Frame Rx Info fields described in the nSTA field. In each Frame Rx Info field, frame reception information regarding a frame received from each terminal is stored. In the frame configuration example shown in FIG. 17, information indicating the value n is stored in the nSTA field, and n Frame Rx Info fields are stored.
 各Frame Rx Infoフィールドは、IDフィールドと、Ftypeフィールドと、Longitudeフィールドと、Latitudeフィールドと、Frame Rx Timeフィールドと、Data Tx Intervalフィールドと、Next Data Tx Intervalフィールドをそれぞれ含む。 Each Frame Rx Info field includes an ID field, an Ftype field, a Longitude field, a Latitude field, a Frame Rx Time field, a Data Tx Interval field, and a Next Data Tx Interval field, respectively.
 IDフィールドには、受信したフレームの送信元の端末のID(端末ID)が格納される。Ftypeフィールドには、受信したフレームの種類を示す値が格納される。具体的には、Ftypeフィールドに格納された値が0のときには通知フレームを示し、1のときにはデータフレームを示す。Longitudeフィールドには、端末が位置する緯度が格納される。Latitudeフィールドには、端末が位置する経度が格納される。Frame Rx Timeフィールドには、端末からフレームを受信した時刻が格納される。Data Tx Intervalフィールドには、データフレーム送信間隔が格納される。Next Data Tx Intervalフィールドには次のデータフレームが送信されるまでの時間が格納される。Ftypeが0、つまり通知フレームを受信したときのみ、Next Data Tx Intervalフィールドが付加される。 In the ID field, the ID (terminal ID) of the terminal that is the source of the received frame is stored. A value indicating the type of received frame is stored in the Ftype field. Specifically, when the value stored in the Ftype field is 0, a notification frame is indicated, and when it is 1, a data frame is indicated. The longitude field in which the terminal is located is stored in the Longitude field. The longitude in which the terminal is located is stored in the Latitude field. In the Frame Rx Time field, the time when the frame is received from the terminal is stored. The data frame transmission interval is stored in the Data Tx Interval field. The time until the next data frame is transmitted is stored in the Next Data Tx Interval field. The Next Data Tx Interval field is added only when Ftype is 0, that is, when a notification frame is received.
D-2.フレーム受信情報フレームの受信動作
 図18には、衛星受信局がフレーム受信情報フレームを受信するための処理手順をフローチャートの形式で示している。
D-2. Frame reception information frame reception operation FIG. 18 shows a processing procedure for a satellite receiving station to receive a frame reception information frame in the form of a flowchart.
 まず、衛星受信局は、フレーム受信情報フレームを受信したか否かを判定する(ステップS1801)。そして、衛星受信局は、フレーム受信情報フレームを受信したときには(ステップS1801のYes)、その受信フレームを復調処理して(ステップS1802)、復調処理に成功したか否かを判定する(ステップS1803)。 First, the satellite receiving station determines whether or not the frame reception information frame has been received (step S1801). Then, when the satellite receiving station receives the frame reception information frame (Yes in step S1801), the received frame is demodulated (step S1802), and it is determined whether or not the demodulation processing is successful (step S1803). ..
 衛星受信局は、フレーム受信情報フレームの復調処理に成功した場合には(ステップS1803のYes)、そのフレーム受信情報フレームに格納されているフレーム受信情報数を示すnSTAを取得して(ステップS1804)、フレーム受信情報数だけ、以降の各フレーム受信情報(Frame Rx Info)の処理を繰り返し実行する。 If the demodulation process of the frame reception information frame is successful (Yes in step S1803), the satellite receiving station acquires nSTA indicating the number of frame reception information stored in the frame reception information frame (step S1804). , The processing of each subsequent frame reception information (Frame Rx Info) is repeatedly executed for the number of frame reception information.
 まず、端末の位置座標とその端末からのフレーム受信時刻から、通知フレーム又はデータフレームが同一の衛星受信局で受信可能な残時間を推定する(ステップS1805)。 First, the remaining time that the notification frame or the data frame can be received by the same satellite receiving station is estimated from the position coordinates of the terminal and the frame reception time from the terminal (step S1805).
 次いで、ステップS1805で推定した受信可能残時間とデータ送信間隔に基づいて、次に該当端末から送信されるデータフレームが同一の衛星受信局で受信可能か否かを判定する(ステップS1806)。ここで、データ送信間隔には、Ftypeが0すなわち受信フレームが通知フレームだった場合にはNext Data Tx Intervalフィールドに格納されている値を使用し、Ftypeが1すなわち受信フレームがデータフレームだった場合にはData Tx Intervalフィールドに格納されている値を使用する。 Next, based on the receivable remaining time estimated in step S1805 and the data transmission interval, it is determined whether or not the data frame transmitted from the corresponding terminal can be received by the same satellite receiving station (step S1806). Here, for the data transmission interval, the value stored in the Next Data Tx Interval field is used when Ftype is 0, that is, the received frame is a notification frame, and when Ftype is 1, that is, the received frame is a data frame. The value stored in the Data Tx Interval field is used for.
 そして、次に該当端末から送信されるデータフレームが同一の衛星受信局で受信可能である場合には(ステップS1806のYes)、衛星受信局は、ステップS1805に戻って、次のフレーム受信情報(Frame Rx Info)の処理を繰り返し実行する。 Then, if the data frame transmitted from the corresponding terminal can be received by the same satellite receiving station (Yes in step S1806), the satellite receiving station returns to step S1805 and returns to the next frame reception information (Yes). The process of Frame Rx Info) is repeatedly executed.
 一方、次に該当端末から送信されるデータフレームが同一の衛星受信局で受信不可能な場合には(ステップS1806のNo)、衛星受信局は、当該フレーム受信情報(Frame Rx Info)に格納されている端末ID、データ送信間隔を自身の受信対象端末リストに登録した後(ステップS1807)、ステップS1805に戻って、次のフレーム受信情報(Frame Rx Info)の処理を繰り返し実行する。 On the other hand, if the next data frame transmitted from the corresponding terminal cannot be received by the same satellite receiving station (No in step S1806), the satellite receiving station is stored in the frame receiving information (Frame Rx Info). After registering the terminal ID and the data transmission interval in its own reception target terminal list (step S1807), the process returns to step S1805, and the processing of the next frame reception information (Frame Rx Info) is repeatedly executed.
 衛星受信局は、LPWAで受信したデータを地上に送信するため、衛星通信で地上局と通信を行う必要がある。そのため、一般的に衛星受信局はGPSなどで自身の位置座標を把握している。 Since the satellite receiving station transmits the data received by the LPWA to the ground, it is necessary to communicate with the ground station by satellite communication. Therefore, in general, the satellite receiving station grasps its own position coordinates by GPS or the like.
 また、衛星コンステレーションを構築する場合、同一衛星軌道上を周回する衛星受信局の情報を保持している。例えば、衛星軌道上の前方の衛星とは6分間隔で地上の同一点を通過する、といった情報を持っているとする。 Also, when constructing a satellite constellation, it holds information on satellite receiving stations that orbit in the same satellite orbit. For example, it is assumed that the satellite has information that it passes through the same point on the ground at intervals of 6 minutes with the satellite in front of the satellite orbit.
 具体的には、フレーム受信情報フレームを受信した時刻が12:00、端末がデータフレームで通知した位置情報が受信可能範囲になる時刻12:05、フレーム受信時刻が11:58の場合、通知フレーム又はデータフレームを受信した衛星受信局での受信可能残時間は7分となる。データ送信間隔が3分の場合、次のデータフレームは同一受信局で受信可能である。 Specifically, when the time when the frame reception information frame is received is 12:00, the time when the position information notified by the terminal in the data frame is within the receivable range is 12:05, and the frame reception time is 11:58, the notification frame. Alternatively, the remaining receivable time at the satellite receiving station that received the data frame is 7 minutes. When the data transmission interval is 3 minutes, the next data frame can be received by the same receiving station.
 一方、フレーム受信情報フレームを受信した時刻が12:00、端末がデータフレームで通知した位置情報が受信可能範囲になる時刻12:01、フレーム受信時刻が11:59の場合、通知フレーム又はデータフレームを受信した衛星受信局での受信可能残時間は2分となる。データ送信間隔が3分の場合、次のデータフレームは同一受信局で受信不可能である。 On the other hand, when the time when the frame reception information frame is received is 12:00, the time when the position information notified by the terminal in the data frame is within the receivable range is 12:01, and the frame reception time is 11:59, the notification frame or the data frame. The remaining receivable time at the satellite receiving station that received the message is 2 minutes. If the data transmission interval is 3 minutes, the next data frame cannot be received by the same receiving station.
 このように、低軌道衛星は衛星軌道上を一方向に進み、またコンステレーションによって各衛星受信局の位置関係が把握可能であることを考慮すると、端末が通知する位置情報とフレームを受信した時刻から、フレームを受信した受信局で受信可能な残り時間を推定することが可能である。 In this way, considering that the low earth orbit satellite travels in one direction in the satellite orbit and the positional relationship of each satellite receiving station can be grasped by constellation, the position information notified by the terminal and the time when the frame is received are received. From, it is possible to estimate the remaining time that can be received by the receiving station that received the frame.
E.第3の実施例
 第1の実施例(図9に示した通信シーケンス例)では、衛星受信局701は、端末801が位置する場所が自身の受信可能範囲711を通り過ぎた後も、端末801を自身の受信対象端末リストに登録したままであり、端末801からのデータフレームに対して不要な受信・復調処理を実行してしまう。これに対し、第3の実施例では、衛星受信局が、自身の受信可能範囲から通り過ぎた端末に対して不要な受信・復調処理を実行しないようにする方法について説明する。
E. Third Example In the first embodiment (communication sequence example shown in FIG. 9), the satellite receiving station 701 uses the terminal 801 even after the place where the terminal 801 is located has passed its own receivable range 711. It remains registered in its own reception target terminal list, and performs unnecessary reception / demodulation processing on the data frame from the terminal 801. On the other hand, in the third embodiment, a method of preventing the satellite receiving station from performing unnecessary reception / demodulation processing on a terminal that has passed from its own receivable range will be described.
E-1.通信シーケンス例
 図19には、第3の実施例に係る方法を適用する場合の衛星受信局701及び衛星受信局702と端末801間の通信シーケンス例を示している。衛星受信局701と衛星受信局702は、それぞれ衛星軌道上を毎秒数kmの速さで移動し続けているので、端末801が位置する場所が衛星受信局701の受信可能範囲711となる時間帯と、衛星受信局701の受信可能範囲711から外れて衛星受信局702の受信可能範囲712となる時間帯がある。
E-1. Communication Sequence Example FIG. 19 shows an example of a communication sequence between the satellite receiving station 701 and the satellite receiving station 702 and the terminal 801 when the method according to the third embodiment is applied. Since the satellite receiving station 701 and the satellite receiving station 702 continue to move in the satellite orbit at a speed of several km per second, the time zone where the terminal 801 is located is the receivable range 711 of the satellite receiving station 701. And, there is a time zone that deviates from the receivable range 711 of the satellite receiving station 701 and becomes the receivable range 712 of the satellite receiving station 702.
 まず、端末801は、自身のIDを通知するため、通知フレームを送信(ブロードキャスト)する(SEQ1901)。端末801は、通知フレームの送信には、あらかじめシステム内で通知フレーム送信用に割り当てられている無線リソース(時刻・周波数)を用いる。 First, the terminal 801 transmits (broadcasts) a notification frame in order to notify its own ID (SEQ1901). The terminal 801 uses a radio resource (time / frequency) previously allocated for notification frame transmission in the system for transmission of the notification frame.
 この時点で、端末801は衛星受信局701の受信可能範囲711にいる。したがって、衛星受信局701は、通知フレーム送信用の無線リソースに対して、通知フレームの受信及び復調処理を実行して(SEQ1911)、通知フレームから取得したIDを受信対象端末リストに登録する(SE1912)。そして、衛星受信局701は、端末801から受信した通知フレームに関するフレーム受信情報を、同じ衛星軌道上の後続に位置する衛星受信局702に送信する(SEQ1913)。フレーム受信情報は、通知フレームの送信元の端末ID、データ送信間隔、該当端末の位置座標、通知フレームの受信時刻を含む。衛星受信局701は、図13に示した処理手順に従って、通知フレームの受信・復調、及び通知フレームの送信処理を行う。 At this point, the terminal 801 is in the receivable range 711 of the satellite receiving station 701. Therefore, the satellite receiving station 701 executes the reception and demodulation processing of the notification frame for the radio resource for transmitting the notification frame (SEQ1911), and registers the ID acquired from the notification frame in the reception target terminal list (SE1912). ). Then, the satellite receiving station 701 transmits the frame reception information regarding the notification frame received from the terminal 801 to the satellite receiving station 702 located following the same satellite orbit (SEQ1913). The frame reception information includes the terminal ID of the transmission source of the notification frame, the data transmission interval, the position coordinates of the corresponding terminal, and the reception time of the notification frame. The satellite receiving station 701 performs reception / demodulation of the notification frame and transmission processing of the notification frame according to the processing procedure shown in FIG.
 一方、端末801からの通知フレームは衛星受信局702には届かないので、衛星受信局702は、端末801のIDを受信対象端末リストに登録しない。また、衛星受信局702は、同じ衛星軌道上の前方に位置する衛星受信局701からのフレーム受信情報フレームを受信処理して、端末801を自身の受信対象端末リストに登録すべきか否かを判定する(SEQ1921)。衛星受信局がフレーム受信情報フレームを受信する処理手順については後述する(図21を参照のこと)。ここでは、衛星受信局702は、周波数誤差推定結果と伝搬遅延推定結果に基づいて推定した受信可能残時間とデータ送信間隔から、端末801から次に送信されるデータフレームが受信不可能であると判定して、端末801を自身の受信対象端末リストに登録しない。 On the other hand, since the notification frame from the terminal 801 does not reach the satellite receiving station 702, the satellite receiving station 702 does not register the ID of the terminal 801 in the reception target terminal list. Further, the satellite receiving station 702 receives and processes the frame reception information frame from the satellite receiving station 701 located in front of the same satellite orbit, and determines whether or not the terminal 801 should be registered in its own reception target terminal list. (SEQ1921). The processing procedure for the satellite receiving station to receive the frame reception information frame will be described later (see FIG. 21). Here, the satellite receiving station 702 determines that the next data frame transmitted from the terminal 801 cannot be received from the receivable remaining time and the data transmission interval estimated based on the frequency error estimation result and the propagation delay estimation result. Judging, the terminal 801 is not registered in its own reception target terminal list.
 次いで、端末801は、あらかじめシステム内で決められた規則1~4に基づいて、自分のIDからデータフレームを送信する無線リソース(時刻・周波数)及びデータフレーム生成に必要な符号を算出して、データフレームを生成し送信(ブロードキャスト)する(SEQ1902)。 Next, the terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system. A data frame is generated and transmitted (broadcast) (SEQ1902).
 衛星受信局701は、受信対象端末リストに登録されているIDを用いて、端末801と同じ規則1~4に基づいて、端末のIDから端末801がデータフレームを送信する無線リソース(時刻・周波数)及びデータフレームの復調に必要な符号を算出して、データフレームを受信し復調する(SEQ1914)。そして、衛星受信局701は、端末801から受信したデータフレームに関するフレーム受信情報を、同じ衛星軌道上の後続に位置する衛星受信局702に送信する(SEQ1915)。衛星受信局701は、図14に示した処理手順に従って、データフレームの受信・復調、及び通知フレームの送信処理を行う。 The satellite receiving station 701 uses the ID registered in the reception target terminal list, and is a radio resource (time / frequency) at which the terminal 801 transmits a data frame from the terminal ID based on the same rules 1 to 4 as the terminal 801. ) And the code required for demodulation of the data frame is calculated, and the data frame is received and demodulated (SEQ1914). Then, the satellite receiving station 701 transmits the frame reception information regarding the data frame received from the terminal 801 to the satellite receiving station 702 located following the same satellite orbit (SEQ1915). The satellite receiving station 701 performs reception / demodulation of data frames and transmission processing of notification frames according to the processing procedure shown in FIG.
 衛星受信局702は、同じ衛星軌道上の前方に位置する衛星受信局701からのフレーム受信情報フレームを受信処理して、端末801を自身の受信対象端末リストに登録すべきか否かを判定する(SEQ1922)。衛星受信局がフレーム受信情報フレームを受信する処理手順については後述する(図21を参照のこと)。ここでは、衛星受信局702は、周波数誤差推定結果と伝搬遅延推定結果に基づいて推定した受信可能残時間とデータ送信間隔から、端末801から次に送信されるデータフレームが衛星受信局702で受信可能であると判定して、端末801を受信対象端末リストに登録する(SEQ1923)。 The satellite receiving station 702 receives and processes the frame reception information frame from the satellite receiving station 701 located in front of the same satellite orbit, and determines whether or not the terminal 801 should be registered in its own reception target terminal list ( SEQ1922). The processing procedure for the satellite receiving station to receive the frame reception information frame will be described later (see FIG. 21). Here, the satellite receiving station 702 receives the data frame to be transmitted next from the terminal 801 at the satellite receiving station 702 from the receivable remaining time and the data transmission interval estimated based on the frequency error estimation result and the propagation delay estimation result. It is determined that it is possible, and the terminal 801 is registered in the reception target terminal list (SEQ1923).
 そして、衛星受信局702は、同じ衛星軌道上の前方に位置する衛星受信局701に対して、受信対象端末リスト登録通知フレームを送信して、端末801を受信対象端末リストに登録したことを通知する(SEQ1924)。衛星受信局701は、衛星受信局702から受信対象端末リスト登録通知フレームを受信すると、自身の受信対象端末リストから端末801のエントリを削除する(SEQ1916)。 Then, the satellite receiving station 702 transmits a reception target terminal list registration notification frame to the satellite receiving station 701 located in front of the same satellite orbit, and notifies that the terminal 801 is registered in the reception target terminal list. (SEQ1924). When the satellite receiving station 701 receives the reception target terminal list registration notification frame from the satellite receiving station 702, the satellite receiving station 701 deletes the entry of the terminal 801 from its own receiving target terminal list (SEQ1916).
 さらに、端末801は、あらかじめシステム内で決められた規則1~4に基づいて、自分のIDから次のデータフレームを送信する無線リソース(時刻・周波数)及びデータフレーム生成に必要な符号を算出して、次のデータフレームを生成し送信(ブロードキャスト)する(SEQ1903)。 Further, the terminal 801 calculates the radio resource (time / frequency) for transmitting the next data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system. Then, the next data frame is generated and transmitted (broadcast) (SEQ1903).
 この時点で、端末801が位置する場所は衛星受信局701の受信可能範囲711の外となっている。衛星受信局701は、既に端末801を自身の受信対象端末リストから削除しているので、端末801からのデータフレームに対して不要な受信・復調処理を行わない。 At this point, the location where the terminal 801 is located is outside the receivable range 711 of the satellite receiving station 701. Since the satellite receiving station 701 has already deleted the terminal 801 from its own list of reception target terminals, it does not perform unnecessary reception / demodulation processing on the data frame from the terminal 801.
 また、衛星受信局702は、衛星受信局701から受信したフレーム受信情報に基づいて端末801のIDを自身の受信対象端末リストに登録しているので、端末801と同じ規則1~4に基づいて、端末のIDから端末801がデータフレームを送信する無線リソース(時刻・周波数)及びデータフレームの復調に必要な符号を算出して、データフレームの受信及び復調処理を試み、復調に成功する(SEQ1925)。 Further, since the satellite receiving station 702 registers the ID of the terminal 801 in its own reception target terminal list based on the frame reception information received from the satellite receiving station 701, it is based on the same rules 1 to 4 as the terminal 801. , The terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame from the terminal ID and the code required for demodulating the data frame, attempts to receive and demolish the data frame, and succeeds in demolishing (SEQ1925). ).
 図19に示した通信シーケンス例によれば、衛星受信局701は、同じ衛星軌道上の後続の衛星受信局702からの通知により、端末801が自身の受信可能範囲711から通り過ぎた後に不要な受信・復調処理を実行しないようにすることができる。 According to the communication sequence example shown in FIG. 19, the satellite receiving station 701 receives unnecessary reception after the terminal 801 has passed from its own receivable range 711 by the notification from the subsequent satellite receiving station 702 in the same satellite orbit. -It is possible to prevent the demodulation process from being executed.
E-2.フレーム構成例
 図20には、受信対象端末リスト登録通知フレームのデータ部分のフレーム構成例を示している。データ部分以外のフォーマットは、使用する通信方式に応じたものとする。図19に示したように、受信対象端末リスト登録通知フレームは、衛星受信局が、同じ衛星軌道上の前方の衛星受信局から受信したフレーム受信情報に基づいて端末を自身の受信対象端末リストに登録したことを通知するフレームである。
E-2. Frame configuration example FIG. 20 shows a frame configuration example of the data portion of the reception target terminal list registration notification frame. The format other than the data part shall be according to the communication method used. As shown in FIG. 19, the reception target terminal list registration notification frame sets the terminal into its own reception target terminal list based on the frame reception information received by the satellite receiving station from the satellite receiving station in front of the same satellite orbit. It is a frame to notify that the registration has been made.
 nSTAフィールドには、データ部分に格納されている端末ID(STA Rx ID)の個数が格納される。nSTAフィールドの後に、nSTAフィールドに記載された個数分のSTA IDフィールドが続く。各STA IDフィールドには、受信対象端末リストに登録した端末IDの情報が格納される。 In the nSTA field, the number of terminal IDs (STA Rx ID) stored in the data part is stored. The nSTA field is followed by the number of STA ID fields described in the nSTA field. In each STA ID field, information on the terminal ID registered in the reception target terminal list is stored.
E-3.衛星受信局の処理動作
 図21には、衛星受信局がフレーム受信情報フレームを受信するための処理手順をフローチャートの形式で示している。
E-3. Processing operation of the satellite receiving station FIG. 21 shows a processing procedure for the satellite receiving station to receive a frame reception information frame in the form of a flowchart.
 まず、衛星受信局は、フレーム受信情報フレームを受信したか否かを判定する(ステップS2101)。そして、衛星受信局は、フレーム受信情報フレームを受信したときには(ステップS2101のYes)、その受信フレームを復調処理して(ステップS2102)、復調処理に成功したか否かを判定する(ステップS2103)。 First, the satellite receiving station determines whether or not the frame reception information frame has been received (step S2101). Then, when the satellite receiving station receives the frame reception information frame (Yes in step S2101), the received frame is demodulated (step S2102), and it is determined whether or not the demodulation processing is successful (step S2103). ..
 衛星受信局は、フレーム受信情報フレームの復調処理に成功した場合には(ステップS2103のYes)、そのフレーム受信情報フレームに格納されているフレーム受信情報数を示すnSTAを取得して(ステップS2104)、フレーム受信情報数だけ、以降の各フレーム受信情報(Frame Rx Info)の処理を繰り返し実行する。 If the demodulation process of the frame reception information frame is successful (Yes in step S2103), the satellite receiving station acquires nSTA indicating the number of frame reception information stored in the frame reception information frame (step S2104). , The processing of each subsequent frame reception information (Frame Rx Info) is repeatedly executed for the number of frame reception information.
 まず、周波数誤差推定結果(Freq.Eror)と伝搬遅延推定結果(Propagation Delay)から、通知フレーム又はデータフレームが同一の衛星受信局で受信可能な残時間を推定する(ステップS2105)。 First, the remaining time that the notification frame or the data frame can be received by the same satellite receiving station is estimated from the frequency error estimation result (Freq.Eror) and the propagation delay estimation result (Propagation Delivery) (step S2105).
 次いで、ステップS2105で推定した受信可能残時間とデータ送信間隔に基づいて、次に該当端末から送信されるデータフレームが同一の衛星受信局で受信可能か否かを判定する(ステップS2106)。ここで、データ送信間隔には、Ftypeが0すなわち受信フレームが通知フレームだった場合にはNext Data Tx Intervalフィールドに格納されている値を使用し、Ftypeが1すなわち受信フレームがデータフレームだった場合にはData Tx Intervalフィールドに格納されている値を使用する。 Next, based on the receivable remaining time estimated in step S2105 and the data transmission interval, it is determined whether or not the data frame transmitted from the corresponding terminal can be received by the same satellite receiving station (step S2106). Here, for the data transmission interval, the value stored in the Next Data Tx Interval field is used when Ftype is 0, that is, the received frame is a notification frame, and when Ftype is 1, that is, the received frame is a data frame. The value stored in the Data Tx Interval field is used for.
 そして、次に該当端末から送信されるデータフレームが同一の衛星受信局で受信可能である場合には(ステップS2106のYes)、衛星受信局は、ステップS2105に戻って、次のフレーム受信情報(Frame Rx Info)の処理を繰り返し実行する。 Then, if the data frame transmitted from the corresponding terminal can be received by the same satellite receiving station (Yes in step S2106), the satellite receiving station returns to step S2105 and receives the next frame reception information (Yes). The process of Frame Rx Info) is repeatedly executed.
 一方、次に該当端末から送信されるデータフレームが同一の衛星受信局で受信不可能な場合には(ステップS2106のNo)、衛星受信局は、当該フレーム受信情報(Frame Rx Info)に格納されている端末ID、データ送信間隔を自身の受信対象端末リストに登録し(ステップS2107)、次いで受信対象端末リスト登録通知フレーム(図20を参照のこと)に該当端末の端末IDを追加した後(ステップS2108)、ステップS2105に戻って、次のフレーム受信情報(Frame Rx Info)の処理を繰り返し実行する。 On the other hand, if the next data frame transmitted from the corresponding terminal cannot be received by the same satellite receiving station (No in step S2106), the satellite receiving station is stored in the frame receiving information (Frame Rx Info). After registering the terminal ID and data transmission interval in its own reception target terminal list (step S2107), and then adding the terminal ID of the corresponding terminal to the reception target terminal list registration notification frame (see FIG. 20) (see FIG. 20). Step S2108), returning to step S2105, the processing of the next frame reception information (Frame Rx Info) is repeatedly executed.
 ステップS2101で受信したフレーム受信情報フレームに格納されているnSTA個のすべてのフレーム受信情報に対して処理を完了すると、衛星受信局は、受信対象端末リスト登録通知フレームを送信する必要があるか否かを判定する(ステップS2109)。そして、受信対象端末リスト登録通知フレームを送信する必要がある場合には(ステップS2109のYes)、衛星受信局は、格納されている受信対象端末リスト登録IDの個数をnSTAに格納して、受信対象端末リスト登録通知フレームを送信する(ステップS2110)。 When the processing is completed for all the nSTA frame reception information stored in the frame reception information frame received in step S2101, whether or not the satellite receiving station needs to transmit the reception target terminal list registration notification frame. (Step S2109). Then, when it is necessary to transmit the reception target terminal list registration notification frame (Yes in step S2109), the satellite receiving station stores the number of stored reception target terminal list registration IDs in nSTA and receives the reception. The target terminal list registration notification frame is transmitted (step S2110).
 図22には、衛星受信局が受信対象端末リスト登録通知フレームを受信するための処理手順をフローチャートの形式で示している。 FIG. 22 shows a processing procedure for the satellite receiving station to receive the reception target terminal list registration notification frame in the form of a flowchart.
 まず、衛星受信局は、受信対象端末リスト登録通知フレームを受信したか否かを判定する(ステップS2201)。そして、衛星受信局は、受信対象端末リスト登録通知フレームを受信したときには(ステップS2201のYes)、その受信フレームを復調処理して(ステップS2202)、復調処理に成功したか否かを判定する(ステップS2203)。 First, the satellite receiving station determines whether or not the reception target terminal list registration notification frame has been received (step S2201). Then, when the satellite receiving station receives the reception target terminal list registration notification frame (Yes in step S2201), the satellite receiving station demodulates the received frame (step S2202) and determines whether or not the demodulation processing is successful (step S2202). Step S2203).
 衛星受信局は、受信対象端末リスト登録通知フレームの復調処理に成功した場合には(ステップS2203のYes)、その受信対象端末リスト登録通知フレームに格納されているSTA IDフィールドの個数を示すnSTAを取得して(ステップS2204)、nSTA数だけ、以降の各STA IDフィールドの処理を繰り返し実行する。この繰り返し処理では、受信対象端末リスト登録通知フレームに格納された端末IDのエントリを自身の受信対象端末リストから削除する(ステッS2205)。 When the satellite receiving station succeeds in demodulating the reception target terminal list registration notification frame (Yes in step S2203), the satellite receiving station outputs nSTA indicating the number of STA ID fields stored in the reception target terminal list registration notification frame. It is acquired (step S2204), and the subsequent processing of each STA ID field is repeatedly executed for the number of nSTAs. In this iterative process, the entry of the terminal ID stored in the reception target terminal list registration notification frame is deleted from its own reception target terminal list (step S2205).
 衛星受信局は、図22に示した処理手順に従って受信対象端末リスト登録通知フレームを処理することによって、同じ衛星軌道上の後続の衛星受信局で新たに受信対象となった端末を、自身の受信対象端末リストから削除することができる。 By processing the reception target terminal list registration notification frame according to the processing procedure shown in FIG. 22, the satellite receiving station receives the terminal newly received by the subsequent satellite receiving station in the same satellite orbit. It can be deleted from the target terminal list.
 したがって、第3の実施例に係る通信シーケンスによれば、衛星受信局は、自身の受信可能範囲を通り過ぎた端末に対する不要な受信・復調処理を実行しないようにすることができる。 Therefore, according to the communication sequence according to the third embodiment, the satellite receiving station can prevent unnecessary reception / demodulation processing for the terminal that has passed its receivable range.
F.第4の実施例
 上述した第1の実施例では、ある衛星受信局の受信対象となっている端末が次にデータフレームを送信するときには、その端末が位置する場所が自身又は同じ衛星軌道上で次の周回順となる衛星受信局の受信可能範囲になることを前提としている(例えば、図9に示した通信シーケンス例を参照のこと)。
F. Fourth Example In the first embodiment described above, the next time a terminal to be received by a satellite receiving station transmits a data frame, the place where the terminal is located is on its own or in the same satellite orbit. It is assumed that the range will be within the receivable range of the satellite receiving station in the next orbital order (see, for example, the communication sequence example shown in FIG. 9).
 しかしながら、端末のデータ送信間隔が数時間など長い場合、その端末が次にデータフレームを送信するときには、その端末を受信対象とする衛星受信局より同じ衛星軌道上で数個(2個以上)後方の衛星受信局の受信可能範囲に移動していることも想定される。 However, if the data transmission interval of a terminal is long, such as several hours, the next time the terminal transmits a data frame, it will be several (two or more) behind in the same satellite orbit from the satellite receiving station that is the target of reception. It is also assumed that it has moved to the receivable range of the satellite receiving station of.
 そこで、第4の実施例では、端末のデータ送信間隔において同じ衛星軌道上で数個(2個以上)先の衛星受信局の受信可能範囲に移動している場合であっても、適切な衛星受信局がデータフレームを受信できる方法について説明する。 Therefore, in the fourth embodiment, even if the data transmission interval of the terminal is moved to the receivable range of several (two or more) ahead satellite receiving stations in the same satellite orbit, the appropriate satellite is used. The method in which the receiving station can receive the data frame will be described.
F-1.通信シーケンス例
 図23には、第4の実施例に係る方法を適用する場合の衛星受信局701~703と端末801間の通信シーケンス例を示している。衛星受信局701~703は、それぞれ衛星軌道上を毎秒数kmの速さで移動し続けているので、端末801が位置する場所が衛星受信局701の受信可能範囲711となる時間帯と、衛星受信局701の受信可能範囲711から外れて衛星受信局702の受信可能範囲712となる時間帯と、衛星受信局702の受信可能範囲712から外れて衛星受信局703の受信可能範囲713となる時間帯がある。
F-1. Example of Communication Sequence FIG. 23 shows an example of a communication sequence between the satellite receiving stations 701 to 703 and the terminal 801 when the method according to the fourth embodiment is applied. Since the satellite receiving stations 701 to 703 continue to move in the satellite orbit at a speed of several km per second, the time zone where the terminal 801 is located is in the receivable range 711 of the satellite receiving station 701 and the satellite. Time zone that is out of the receivable range 711 of the receiving station 701 and becomes the receivable range 712 of the satellite receiving station 702, and time that is out of the receivable range 712 of the satellite receiving station 702 and becomes the receivable range 713 of the satellite receiving station 703. There is a band.
 端末801は、あらかじめシステム内で決められた規則1~4に基づいて、自分のIDからデータフレームを送信する無線リソース(時刻・周波数)及びデータフレーム生成に必要な符号を算出して、データフレームを生成し送信(ブロードキャスト)する(SEQ2301)。 The terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system, and the data frame. Is generated and transmitted (broadcast) (SEQ2301).
 端末801は衛星受信局701の受信可能範囲711にいて、衛星受信局701は自身の受信対象端末リストに端末801を登録しているとする。したがって、衛星受信局701は、受信対象端末リストに登録されているIDを用いて、端末801と同じ規則1~4に基づいて、端末のIDから端末801がデータフレームを送信する無線リソース(時刻・周波数)及びデータフレームの復調に必要な符号を算出して、データフレームを受信し復調する(SEQ2311)。ここでは、衛星受信局701はデータフレームの受信及び復調に成功したとする。 It is assumed that the terminal 801 is in the receivable range 711 of the satellite receiving station 701, and the satellite receiving station 701 has registered the terminal 801 in its own reception target terminal list. Therefore, the satellite receiving station 701 uses the ID registered in the reception target terminal list, and is a radio resource (time) for which the terminal 801 transmits a data frame from the terminal ID based on the same rules 1 to 4 as the terminal 801. -Frequency) and the code required for demodulation of the data frame are calculated, and the data frame is received and demodulated (SEQ 2311). Here, it is assumed that the satellite receiving station 701 succeeds in receiving and demodulating the data frame.
 そして、衛星受信局701は、端末801から受信したデータフレームに関するフレーム受信情報を、同じ衛星軌道上の後続に位置する衛星受信局702に送信する(SEQ2312)。フレーム受信情報は、データフレームを受信した端末ID、周波数誤差推定結果、伝搬遅延推定結果、受信した衛星受信局IDなどの情報を含む。 Then, the satellite receiving station 701 transmits the frame reception information regarding the data frame received from the terminal 801 to the satellite receiving station 702 located following the same satellite orbit (SEQ2312). The frame reception information includes information such as the terminal ID that received the data frame, the frequency error estimation result, the propagation delay estimation result, and the received satellite receiving station ID.
 衛星受信局702は、同じ衛星軌道上の前方に位置する衛星受信局701からのフレーム受信情報フレームを受信処理して、端末801を自身の受信対象端末リストに登録すべきか否かを判定する(SEQ2321)。ここでは、衛星受信局702は、周波数誤差推定結果と伝搬遅延推定結果に基づいて推定した受信可能残時間とデータ送信間隔から、端末801から次に送信されるデータフレームが受信不可能であると判定して、端末801を自身の受信対象端末リストに登録しない。 The satellite receiving station 702 receives and processes the frame reception information frame from the satellite receiving station 701 located in front of the same satellite orbit, and determines whether or not the terminal 801 should be registered in its own reception target terminal list ( SEQ2321). Here, the satellite receiving station 702 determines that the next data frame transmitted from the terminal 801 cannot be received from the receivable remaining time and the data transmission interval estimated based on the frequency error estimation result and the propagation delay estimation result. Judging, the terminal 801 is not registered in its own reception target terminal list.
 次いで、衛星受信局702は、受信したフレーム受信情報に基づいて、同じ衛星軌道上の後続に位置する衛星受信局703にこのフレーム受信情報を送信すべきか否かを判定する(SEQ2322)。そして、衛星受信局702は、判定結果に基づいて、フレーム受信情報を衛星受信局703に送信する(SEQ2323)。 Next, the satellite receiving station 702 determines whether or not this frame receiving information should be transmitted to the satellite receiving station 703 located following the same satellite orbit based on the received frame reception information (SEQ2322). Then, the satellite receiving station 702 transmits the frame reception information to the satellite receiving station 703 based on the determination result (SEQ2323).
 衛星受信局703は、同じ衛星軌道上の前方に位置する衛星受信局702からのフレーム受信情報フレームを受信処理して、端末801を自身の受信対象端末リストに登録すべきか否かを判定する(SEQ2331)。ここでは、衛星受信局703は、周波数誤差推定結果と伝搬遅延推定結果に基づいて推定した受信可能残時間とデータ送信間隔から、端末801から次に送信されるデータフレームが衛星受信局703で受信可能であると判定して、端末801を受信対象端末リストに登録する(SEQ2332)。 The satellite receiving station 703 receives and processes a frame reception information frame from the satellite receiving station 702 located in front of the same satellite orbit, and determines whether or not the terminal 801 should be registered in its own reception target terminal list ( SEQ2331). Here, the satellite receiving station 703 receives the data frame to be transmitted next from the terminal 801 at the satellite receiving station 703 from the receivable remaining time and the data transmission interval estimated based on the frequency error estimation result and the propagation delay estimation result. It is determined that it is possible, and the terminal 801 is registered in the reception target terminal list (SEQ2332).
 そして、衛星受信局703は、端末801からのデータフレームを受信した衛星受信局701に対して、受信対象端末リスト登録通知フレームを送信して、端末801を受信対象端末リストに登録したことを通知する(SEQ2333)。衛星受信局701は、衛星受信局702から受信対象端末リスト登録通知フレームを受信すると、自身の受信対象端末リストから端末801のエントリを削除する(SEQ2313)。 Then, the satellite receiving station 703 transmits a reception target terminal list registration notification frame to the satellite receiving station 701 that has received the data frame from the terminal 801 to notify that the terminal 801 has been registered in the reception target terminal list. (SEQ2333). When the satellite receiving station 701 receives the reception target terminal list registration notification frame from the satellite receiving station 702, the satellite receiving station 701 deletes the entry of the terminal 801 from its own receiving target terminal list (SEQ2313).
 さらに、端末801は、あらかじめシステム内で決められた規則1~4に基づいて、自分のIDから次のデータフレームを送信する無線リソース(時刻・周波数)及びデータフレーム生成に必要な符号を算出して、次のデータフレームを生成し送信(ブロードキャスト)する(SEQ2302)。 Further, the terminal 801 calculates the radio resource (time / frequency) for transmitting the next data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system. Then, the next data frame is generated and transmitted (broadcast) (SEQ2302).
 この時点で、端末801が位置する場所は衛星受信局701の受信可能範囲711及び衛星受信局702の受信可能範囲712の外となっている。衛星受信局701は、既に端末801を自身の受信対象端末リストから削除しているので、端末801からのデータフレームに対して不要な受信・復調処理を行わない。また、衛星受信局702は、自身の受信対象端末リストに端末801を登録していないので、端末801からのデータフレームに対して受信・復調処理を行わない。 At this point, the location where the terminal 801 is located is outside the receivable range 711 of the satellite receiving station 701 and the receivable range 712 of the satellite receiving station 702. Since the satellite receiving station 701 has already deleted the terminal 801 from its own list of reception target terminals, it does not perform unnecessary reception / demodulation processing on the data frame from the terminal 801. Further, since the satellite receiving station 702 does not register the terminal 801 in its own reception target terminal list, it does not perform reception / demodulation processing on the data frame from the terminal 801.
 また、衛星受信局703は、衛星受信局702から受信したフレーム受信情報に基づいて端末801のIDを自身の受信対象端末リストに登録しているので、端末801と同じ規則1~4に基づいて、端末のIDから端末801がデータフレームを送信する無線リソース(時刻・周波数)及びデータフレームの復調に必要な符号を算出して、データフレームの受信及び復調処理を試み、復調に成功する(SEQ2334)。 Further, since the satellite receiving station 703 registers the ID of the terminal 801 in its own reception target terminal list based on the frame reception information received from the satellite receiving station 702, it is based on the same rules 1 to 4 as the terminal 801. , The terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame from the terminal ID and the code required for demodulating the data frame, attempts to receive and demolish the data frame, and succeeds in demolishing (SEQ2334). ).
 図23に示した通信シーケンス例によれば、端末801が次にデータフレームを送信するときに、端末801を受信対象とする衛星受信局701より2個後方の衛星受信局703の受信可能範囲713に移動しているが、衛星受信局703が端末801からの次のデータフレームを受信することができる。また、衛星受信局701は、同じ衛星軌道上の後続の衛星受信局703からの通知により、端末801が自身の受信可能範囲711から通り過ぎた後に不要な受信・復調処理を実行しないようにすることができる。 According to the communication sequence example shown in FIG. 23, when the terminal 801 next transmits a data frame, the receivable range 713 of the satellite receiving station 703 two behind the satellite receiving station 701 whose reception target is the terminal 801 is 713. However, the satellite receiving station 703 can receive the next data frame from the terminal 801. Further, the satellite receiving station 701 prevents the terminal 801 from executing unnecessary reception / demodulation processing after passing from its own receivable range 711 by the notification from the subsequent satellite receiving station 703 in the same satellite orbit. Can be done.
F-2.フレーム構成
 図24には、フレーム受信情報フレームのデータ部分のフレーム構成例を示している。データ部分以外のフォーマットは、使用する通信方式に応じたものとする。フレーム受信情報フレームは、衛星受信局が端末から受信したフレームに関するフレーム受信情報を、同じ衛星軌道上の後続の衛星受信局に通知するフレームである。
F-2. Frame configuration FIG. 24 shows a frame configuration example of the data portion of the frame reception information frame. The format other than the data part shall be according to the communication method used. The frame reception information frame is a frame for notifying a subsequent satellite receiving station in the same satellite orbit of the frame reception information regarding the frame received from the terminal by the satellite receiving station.
 nSTAフィールドには、データ部分に格納されているフレーム受信情報(Frame Rx Info)の個数が格納される。nSTAフィールドの後に、nSTAフィールドに記載された個数分のFrame Rx Infoフィールドが続く。各Frame Rx Infoフィールドには各端末から受信したフレームに関するフレーム受信情報が格納される。図24に示すフレーム構成例では、nSTAフィールドには値nを示す情報が格納され、n個のFrame Rx Infoフィールドが格納されている。 In the nSTA field, the number of frame reception information (Frame Rx Info) stored in the data part is stored. The nSTA field is followed by the number of Frame Rx Info fields described in the nSTA field. In each Frame Rx Info field, frame reception information regarding a frame received from each terminal is stored. In the frame configuration example shown in FIG. 24, information indicating the value n is stored in the nSTA field, and n Frame Rx Info fields are stored.
 各Frame Rx Infoフィールドは、IDフィールドと、Ftypeフィールドと、Freq.Errorフィールドと、Propagation Delayフィールドと、Data Tx Intervalフィールドと、Next Data Tx Intervalフィールドと、Data Rx SAT IDをそれぞれ含む。 Each Frame Rx Info field includes an ID field, an Ftype field, and Freq. Includes the Error field, the Propage Delivery field, the Data Tx Interval field, the Next Data Tx Interval field, and the Data Rx SAT ID, respectively.
 IDフィールドには、受信したフレームの送信元の端末のID(端末ID)が格納される。Ftypeフィールドには、受信したフレームの種類を示す値が格納される。具体的には、Ftypeフィールドに格納された値が0のときには通知フレームを示し、1のときにはデータフレームを示す。Freq.Errorフィールドには、受信したフレームの周波数誤差推定結果が格納される。Propagation Delayフィールドには、受信したフレームの伝搬遅延推定結果が格納される。Data Tx Intervalフィールドには、データフレーム送信間隔が格納される。Next Data Tx Intervalフィールドには次のデータフレームが送信されるまでの時間が格納される。Ftypeが0、つまり通知フレームを受信したときのみ、Next Data Tx Intervalフィールドが付加される。Data Rx SAT IDフィールドには、該当するフレームを受信した衛星受信局のID(SAT ID)が格納される。 In the ID field, the ID (terminal ID) of the terminal that is the source of the received frame is stored. A value indicating the type of received frame is stored in the Ftype field. Specifically, when the value stored in the Ftype field is 0, a notification frame is indicated, and when it is 1, a data frame is indicated. Freq. The error estimation result of the received frame is stored in the Error field. In the Promotion Delivery field, the propagation delay estimation result of the received frame is stored. The data frame transmission interval is stored in the Data Tx Interval field. The time until the next data frame is transmitted is stored in the Next Data Tx Interval field. The Next Data Tx Interval field is added only when Ftype is 0, that is, when a notification frame is received. In the Data Rx SAT ID field, the ID (SAT ID) of the satellite receiving station that received the corresponding frame is stored.
F-3.フレーム受信情報フレームの受信動作
 図25A及び図25Bには、衛星受信局がフレーム受信情報フレームを受信するための処理手順をフローチャートの形式で示している。
F-3. Frame reception information Frame reception operation FIGS. 25A and 25B show a processing procedure for a satellite receiving station to receive a frame reception information frame in the form of a flowchart.
 まず、衛星受信局は、フレーム受信情報フレームを受信したか否かを判定する(ステップS2501)。そして、衛星受信局は、フレーム受信情報フレームを受信したときには(ステップS2501のYes)、その受信フレームを復調処理して(ステップS2502)、復調処理に成功したか否かを判定する(ステップS2503)。 First, the satellite receiving station determines whether or not the frame reception information frame has been received (step S2501). Then, when the satellite receiving station receives the frame reception information frame (Yes in step S2501), the received frame is demodulated (step S2502), and it is determined whether or not the demodulation processing is successful (step S2503). ..
 衛星受信局は、フレーム受信情報フレームの復調処理に成功した場合には(ステップS2503のYes)、そのフレーム受信情報フレームに格納されているフレーム受信情報数を示すnSTAを取得して(ステップS2504)、フレーム受信情報数だけ、以降の各フレーム受信情報(Frame Rx Info)の処理を繰り返し実行する。 If the demodulation process of the frame reception information frame is successful (Yes in step S2503), the satellite receiving station acquires nSTA indicating the number of frame reception information stored in the frame reception information frame (step S2504). , The processing of each subsequent frame reception information (Frame Rx Info) is repeatedly executed for the number of frame reception information.
 衛星受信局は、フレーム受信情報の処理として、まず、周波数誤差推定結果(Freq.Eror)と伝搬遅延推定結果(Propagation Delay)から、通知フレーム又はデータフレームが同一の衛星受信局で受信可能な残時間を推定する(ステップS2505)。 As the processing of the frame reception information, the satellite receiving station first, from the frequency error estimation result (Freq.Eror) and the propagation delay estimation result (Propagation Delivery), remains that the notification frame or the data frame can be received by the same satellite receiving station. Estimate the time (step S2505).
 次いで、ステップS2505で推定した受信可能残時間とデータ送信間隔に基づいて、次に該当端末から送信されるデータフレームが同一の衛星受信局で受信可能か否かを判定する(ステップS2506)。ここで、データ送信間隔には、Ftypeが0すなわち受信フレームが通知フレームだった場合にはNext Data Tx Intervalフィールドに格納されている値を使用し、Ftypeが1すなわち受信フレームがデータフレームだった場合にはData Tx Intervalフィールドに格納されている値を使用する。 Next, based on the receivable remaining time estimated in step S2505 and the data transmission interval, it is determined whether or not the data frame transmitted from the corresponding terminal can be received by the same satellite receiving station (step S2506). Here, for the data transmission interval, the value stored in the Next Data Tx Interval field is used when Ftype is 0, that is, the received frame is a notification frame, and when Ftype is 1, that is, the received frame is a data frame. The value stored in the Data Tx Interval field is used for.
 そして、次に該当端末から送信されるデータフレームが同一の衛星受信局で受信可能である場合には(ステップS2506のYes)、衛星受信局は、ステップS2505に戻って、次のフレーム受信情報(Frame Rx Info)の処理を繰り返し実行する。 Then, if the data frame transmitted from the corresponding terminal can be received by the same satellite receiving station (Yes in step S2506), the satellite receiving station returns to step S2505 and receives the next frame reception information (Yes). The process of Frame Rx Info) is repeatedly executed.
 一方、次に該当端末から送信されるデータフレームが同一の衛星受信局で受信不可能な場合には(ステップS2506のNo)、衛星受信局は、ステップS2505で推定した受信可能残時間とデータ送信間隔に基づいて、次に該当端末から送信されるデータフレームを自局が受信可能か否かをさらに判定する(ステップS2507)。 On the other hand, if the next data frame transmitted from the corresponding terminal cannot be received by the same satellite receiving station (No in step S2506), the satellite receiving station determines the remaining receivable time and data transmission estimated in step S2505. Based on the interval, it is further determined whether or not the own station can receive the data frame transmitted from the corresponding terminal next (step S2507).
 そして、次に該当端末から送信されるデータフレームを自局が受信可能な場合には(ステップS2507のYes)、衛星受信局は、当該フレーム受信情報(Frame Rx Info)に格納されている端末ID、データ送信間隔を自身の受信対象端末リストに登録し(ステップS2508)、次いで受信対象端末リスト登録通知フレームに該当端末の端末IDを追加した後(ステップS2509)、ステップS2505に戻って、次のフレーム受信情報(Frame Rx Info)の処理を繰り返し実行する。 Then, if the own station can receive the data frame transmitted from the corresponding terminal (Yes in step S2507), the satellite receiving station has the terminal ID stored in the frame reception information (Frame Rx Info). , Register the data transmission interval in its own reception target terminal list (step S2508), then add the terminal ID of the corresponding terminal to the reception target terminal list registration notification frame (step S2509), and then return to step S2505 to perform the next step. The processing of the frame reception information (Frame Rx Info) is repeatedly executed.
 一方、次に該当端末から送信されるデータフレームを自局が受信不可能な場合には(ステップS2507のNo)、衛星受信局は、同じ衛星軌道上の後続の衛星受信局へ送信用のフレーム受信情報フレームに当該フレーム受信情報を追加した後(ステップS2510)、ステップS2505に戻って、次のフレーム受信情報(Frame Rx Info)の処理を繰り返し実行する。 On the other hand, if the own station cannot receive the data frame transmitted from the corresponding terminal next (No in step S2507), the satellite receiving station is a frame for transmitting to a subsequent satellite receiving station in the same satellite orbit. After adding the frame reception information to the reception information frame (step S2510), the process returns to step S2505 and the process of the next frame reception information (Frame Rx Info) is repeatedly executed.
 ステップS2501で受信したフレーム受信情報フレームに格納されているnSTA個のすべてのフレーム受信情報に対して処理を完了すると、衛星受信局は、受信対象端末リスト登録通知フレームを送信する必要があるか否かを判定する(ステップS2511)。そして、受信対象端末リスト登録通知フレームを送信する必要がある場合には(ステップS2511のYes)、衛星受信局は、格納されている受信対象端末リスト登録IDの個数をnSTAに格納して、受信対象端末リスト登録通知フレームを送信する(ステップS2512)。 When the processing for all the nSTA frame reception information stored in the frame reception information frame received in step S2501 is completed, the satellite receiving station needs to transmit the reception target terminal list registration notification frame. (Step S2511). Then, when it is necessary to transmit the reception target terminal list registration notification frame (Yes in step S2511), the satellite receiving station stores the number of stored reception target terminal list registration IDs in nSTA and receives the reception. The target terminal list registration notification frame is transmitted (step S2512).
 次いで、衛星受信局は、同じ衛星軌道上の後続の衛星受信局へフレーム受信情報フレームを送信する必要があるか否かを判定する(ステップS2513)。そして、受信対象端末リスト登録通知フレームを送信する必要がある場合には(ステップS2513のYes)、衛星受信局は、格納されている受信対象端末リスト登録IDの個数をnSTAに格納して、フレーム受信情報フレームを送信する(ステップS2514)。 Next, the satellite receiving station determines whether or not it is necessary to transmit a frame reception information frame to a subsequent satellite receiving station in the same satellite orbit (step S2513). Then, when it is necessary to transmit the reception target terminal list registration notification frame (Yes in step S2513), the satellite receiving station stores the number of stored reception target terminal list registration IDs in nSTA and frames. The received information frame is transmitted (step S2514).
F-3.隣接衛星受信局情報リスト
 図26には、衛星受信局が保持している隣接衛星受信局情報リストの一例を示している。図示の隣接衛星受信局情報リストは、衛星受信局が同じ衛星軌道上を周回している各隣接衛星受信局の情報を登録している。各隣接衛星受信局のエントリは、自局からの相対位置と、衛星受信局を識別する衛星IDと、自局との間隔を格納している。ここで、相対位置は、自局に対し同じ衛星軌道上の何番目に位置する衛星であるかを示す情報である。マイナスは衛星軌道上の前方、プラスは衛星軌道上の後方を示す。相対位置0は自局を示す。また、間隔は、自局との位置間隔を示す情報である。マイナスは衛星軌道上の前方、プラスは衛星軌道上の後方を示す。間隔0は自局を示す。
F-3. Adjacent satellite receiving station information list FIG. 26 shows an example of an adjacent satellite receiving station information list held by the satellite receiving station. The illustrated adjacent satellite receiving station information list registers information on each adjacent satellite receiving station in which the satellite receiving station orbits in the same satellite orbit. The entry of each adjacent satellite receiving station stores the relative position from the own station, the satellite ID that identifies the satellite receiving station, and the distance from the own station. Here, the relative position is information indicating the position of the satellite in the same satellite orbit with respect to the own station. Negative indicates the front in the satellite orbit, and positive indicates the rear in the satellite orbit. Relative position 0 indicates the own station. The interval is information indicating the position interval from the own station. Negative indicates the front in the satellite orbit, and positive indicates the rear in the satellite orbit. Interval 0 indicates own station.
 例えば、図16と図26に示した例においては、データ送信間隔が10min、フレーム受信情報フレームにて通知された周波数誤差推定結果が-30kHz、伝搬遅延推定結果が2.5ミリ秒、フレームを受信した衛星受信局の衛星IDが502の場合、次のデータフレームは自局が受信可能である。 For example, in the examples shown in FIGS. 16 and 26, the data transmission interval is 10 min, the frequency error estimation result notified in the frame reception information frame is -30 kHz, the propagation delay estimation result is 2.5 ms, and the frame is set. When the satellite ID of the received satellite receiving station is 502, the next data frame can be received by the own station.
 一方、例えば、データ送信間隔が10min、フレーム受信情報フレームにて通知された周波数誤差推定結果が-30kHz、伝搬遅延推定結果が2.5ミリ秒、フレームを受信した衛星受信局の衛星IDが503の場合、次のデータフレームは同一の衛星受信局でも自局でも受信不可能であり、後続の衛星受信局にフレーム受信情報を送信する必要がある。 On the other hand, for example, the data transmission interval is 10 min, the frequency error estimation result notified in the frame reception information frame is -30 kHz, the propagation delay estimation result is 2.5 milliseconds, and the satellite ID of the satellite receiving station that received the frame is 503. In the case of, the next data frame cannot be received by either the same satellite receiving station or the own station, and it is necessary to transmit the frame reception information to the succeeding satellite receiving station.
 第4の実施例によれば、端末が頻繁に通知フレームを送信する必要はなく、端末の長いデータ送信間隔において数個先の衛星受信局の受信可能範囲に移動している場合であっても、該当端末を受信可能範囲とする衛星受信局が該当端末からのデータフレームを受信及び復調処理することが可能になる。 According to the fourth embodiment, the terminal does not need to transmit the notification frame frequently, even if the terminal moves to the receivable range of several satellite receiving stations ahead in the long data transmission interval of the terminal. , The satellite receiving station whose receivable range is the corresponding terminal can receive and demodulate the data frame from the corresponding terminal.
G.第5の実施例
 上述した第1、第3、及び第4の実施例では、各衛星受信局は受信したフレーム受信情報を処理する必要があるため、衛星受信局の処理量が増大する可能性がある。そこで、第5の実施例では、通知フレーム又はデータフレームを受信した衛星受信局が次のデータフレームを受信する衛星受信局を判定する方法について説明する。
G. Fifth Example In the first, third, and fourth embodiments described above, each satellite receiving station needs to process the received frame reception information, so that the processing amount of the satellite receiving station may increase. There is. Therefore, in the fifth embodiment, a method in which the satellite receiving station that has received the notification frame or the data frame determines the satellite receiving station that receives the next data frame will be described.
G-1.通信シーケンス例
 図27には、第5の実施例に係る方法を適用する場合の衛星受信局701~703と端末801間の通信シーケンス例を示している。衛星受信局701~703は、それぞれ衛星軌道上を毎秒数kmの速さで移動し続けているので、端末801が位置する場所が衛星受信局701の受信可能範囲711となる時間帯と、衛星受信局701の受信可能範囲711から外れて衛星受信局702の受信可能範囲712となる時間帯と、衛星受信局702の受信可能範囲712から外れて衛星受信局703の受信可能範囲713となる時間帯がある。
G-1. Example of Communication Sequence FIG. 27 shows an example of a communication sequence between the satellite receiving stations 701 to 703 and the terminal 801 when the method according to the fifth embodiment is applied. Since the satellite receiving stations 701 to 703 continue to move in the satellite orbit at a speed of several km per second, the time zone where the terminal 801 is located is in the receivable range 711 of the satellite receiving station 701 and the satellite. Time zone that is out of the receivable range 711 of the receiving station 701 and becomes the receivable range 712 of the satellite receiving station 702, and time that is out of the receivable range 712 of the satellite receiving station 702 and becomes the receivable range 713 of the satellite receiving station 703. There is a band.
 端末801は、あらかじめシステム内で決められた規則1~4に基づいて、自分のIDからデータフレームを送信する無線リソース(時刻・周波数)及びデータフレーム生成に必要な符号を算出して、データフレームを生成し送信(ブロードキャスト)する(SEQ2701)。 The terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame from its own ID and the code required for data frame generation based on the rules 1 to 4 determined in advance in the system, and the data frame. Is generated and transmitted (broadcast) (SEQ2701).
 端末801は衛星受信局701の受信可能範囲711にいて、衛星受信局701は自身の受信対象端末リストに端末801を登録しているとする。したがって、衛星受信局701は、受信対象端末リストに登録されているIDを用いて、端末801と同じ規則1~4に基づいて、端末のIDから端末801がデータフレームを送信する無線リソース(時刻・周波数)及びデータフレームの復調に必要な符号を算出して、データフレームを受信し復調する(SEQ2711)。ここでは、衛星受信局701はデータフレームの受信及び復調に成功したとする。 It is assumed that the terminal 801 is in the receivable range 711 of the satellite receiving station 701, and the satellite receiving station 701 has registered the terminal 801 in its own reception target terminal list. Therefore, the satellite receiving station 701 uses the ID registered in the reception target terminal list, and is a radio resource (time) for which the terminal 801 transmits a data frame from the terminal ID based on the same rules 1 to 4 as the terminal 801. -Frequency) and the code required for demodulation of the data frame are calculated, and the data frame is received and demodulated (SEQ2711). Here, it is assumed that the satellite receiving station 701 succeeds in receiving and demodulating the data frame.
 そして、衛星受信局701は、データフレーム受信時の端末ID、周波数誤差推定結果、伝搬遅延推定結果、隣接する衛星受信局情報に基づいて、端末801から次に送信されるデータフレームを衛星受信局703が受信可能であると判定して(SEQ2712)、受信対象端末登録フレームを衛星受信局703に送信する(SEQ2713)。 Then, the satellite receiving station 701 sets the data frame to be transmitted next from the terminal 801 to the satellite receiving station based on the terminal ID at the time of receiving the data frame, the frequency error estimation result, the propagation delay estimation result, and the adjacent satellite receiving station information. It is determined that the 703 is receivable (SEQ2712), and the reception target terminal registration frame is transmitted to the satellite receiving station 703 (SEQ2713).
 衛星受信局703は、衛星受信局701から受信した受信対象端末登録フレームに格納されている端末IDとデータ送信間隔を、自身の受信対象端末リストに登録する(SEQ2731)。 The satellite receiving station 703 registers the terminal ID and the data transmission interval stored in the receiving target terminal registration frame received from the satellite receiving station 701 in its own receiving target terminal list (SEQ2731).
 また、衛星受信局701は、端末801から次に送信されるデータフレームを自局で受信不可能であると判定したので(SEQ2712)、自身の受信対象端末リストから端末801のエントリを削除する(SEQ2714)。 Further, since the satellite receiving station 701 has determined that the next data frame transmitted from the terminal 801 cannot be received by its own station (SEQ2712), the entry of the terminal 801 is deleted from the list of its own receiving target terminals (SEQ 2712). SEQ2714).
 その後、時間が経過して、端末801が次のデータフレームを生成し送信(ブロードキャスト)する(SEQ2702)。 After that, after a lapse of time, the terminal 801 generates and transmits (broadcasts) the next data frame (SEQ2702).
 この時点で、端末801が位置する場所は衛星受信局701の受信可能範囲711及び衛星受信局702の受信可能範囲712の外となっている。衛星受信局701は、既に端末801を自身の受信対象端末リストから削除しているので、端末801からのデータフレームに対して不要な受信・復調処理を行わない。また、衛星受信局702は、自身の受信対象端末リストに端末801を登録していないので、端末801からのデータフレームに対して受信・復調処理を行わない。 At this point, the location where the terminal 801 is located is outside the receivable range 711 of the satellite receiving station 701 and the receivable range 712 of the satellite receiving station 702. Since the satellite receiving station 701 has already deleted the terminal 801 from its own list of reception target terminals, it does not perform unnecessary reception / demodulation processing on the data frame from the terminal 801. Further, since the satellite receiving station 702 does not register the terminal 801 in its own reception target terminal list, it does not perform reception / demodulation processing on the data frame from the terminal 801.
 また、衛星受信局703は、衛星受信局701から受信した受信対象端末登録フレームに基づいて端末801のIDを自身の受信対象端末リストに登録しているので、端末801と同じ規則1~4に基づいて、端末のIDから端末801がデータフレームを送信する無線リソース(時刻・周波数)及びデータフレームの復調に必要な符号を算出して、データフレームの受信及び復調処理を試み、復調に成功する(SEQ2732)。 Further, since the satellite receiving station 703 registers the ID of the terminal 801 in its own receiving target terminal list based on the receiving target terminal registration frame received from the satellite receiving station 701, the same rules 1 to 4 as those of the terminal 801 are applied. Based on this, the terminal 801 calculates the radio resource (time / frequency) for transmitting the data frame from the terminal ID and the code required for demolishing the data frame, attempts to receive and demolish the data frame, and succeeds in demolishing. (SEQ2732).
 図27に示した通信シーケンス例によれば、端末801が次にデータフレームを送信するときに、端末801を受信対象とする衛星受信局701より2個後ろの衛星受信局703の受信可能範囲713に移動しているが、衛星受信局701による受信可能な衛星受信局の判定処理に基づいて、衛星受信局703が端末801からの次のデータフレームを受信することができる。また、衛星受信局701は、同じ衛星軌道上の後続の衛星受信局703からの通知により、端末801が自身の受信可能範囲711から通り過ぎた後に不要な受信・復調処理を実行しないようにすることができる。 According to the communication sequence example shown in FIG. 27, when the terminal 801 next transmits a data frame, the receivable range 713 of the satellite receiving station 703 two behind the satellite receiving station 701 whose reception target is the terminal 801 is 713. However, the satellite receiving station 703 can receive the next data frame from the terminal 801 based on the determination processing of the receivable satellite receiving station by the satellite receiving station 701. Further, the satellite receiving station 701 prevents the terminal 801 from executing unnecessary reception / demodulation processing after passing from its own receivable range 711 by the notification from the subsequent satellite receiving station 703 in the same satellite orbit. Can be done.
G-2.フレーム構成例
 図28には、受信対象端末登録フレームのデータ部分のフレーム構成例を示している。データ部分以外のフォーマットは、使用する通信方式に応じたものとする。受信対象端末登録フレームは、衛星受信局が、同じ衛星軌道上の後続の衛星受信局に対して、該当端末の受信対象端末リストへの登録を指示するフレームである。
G-2. Frame Configuration Example FIG. 28 shows a frame configuration example of the data portion of the reception target terminal registration frame. The format other than the data part shall be according to the communication method used. The reception target terminal registration frame is a frame in which the satellite receiving station instructs subsequent satellite receiving stations in the same satellite orbit to register the corresponding terminal in the reception target terminal list.
 nSTAフィールドには、データ部分に格納されている端末情報(STA Info)の個数が格納される。nSTAフィールドの後に、nSTAフィールドに記載された個数分のSTA Infoフィールドが続く。各STA Infoフィールドには、送信先の衛星受信局に対して受信対象端末リストへの登録を指示する端末に関する端末情報が格納される。図28に示すフレーム構成例では、nSTAフィールドには値nを示す情報が格納され、n個のSTA Infoフィールドが格納されている。 In the nSTA field, the number of terminal information (STA Info) stored in the data part is stored. The nSTA field is followed by the number of STA Info fields described in the nSTA field. In each STA Info field, terminal information regarding a terminal instructing the satellite receiving station of the transmission destination to be registered in the reception target terminal list is stored. In the frame configuration example shown in FIG. 28, information indicating the value n is stored in the nSTA field, and n STA Info fields are stored.
 各STA Infoフィールドは、IDフィールドと、Data Tx Intervalフィールドをそれぞれ含む。IDフィールドには、受信対象となる端末のIDが格納される。Data Tx Intervalフィールドには、該当端末のデータフレーム送信間隔が格納される。 Each STA Info field includes an ID field and a Data Tx Interval field, respectively. The ID of the terminal to be received is stored in the ID field. In the Data Tx Interval field, the data frame transmission interval of the corresponding terminal is stored.
G-3.衛星受信局の処理動作
 図29には、衛星受信局が通知フレームを受信するための処理手順をフローチャートの形式で示している。
G-3. Processing operation of the satellite receiving station FIG. 29 shows a processing procedure for the satellite receiving station to receive a notification frame in the form of a flowchart.
 まず、衛星受信局は、受信対象端末リストを参照して、登録されている端末から通知フレームを受信する無線リソース(時刻・周波数)及び通知フレーム復調に必要な情報を、上述した規則1~4に基づいて算出する(ステップS2901)。 First, the satellite receiving station refers to the reception target terminal list, and obtains the radio resource (time / frequency) for receiving the notification frame from the registered terminal and the information necessary for demodulating the notification frame in the above-mentioned rules 1 to 4. It is calculated based on (step S2901).
 次いで、衛星受信局は、ステップS2901で算出した通知フレーム受信時刻になったか否かを判定する(ステップS2902)。通知フレーム受信時刻が到来すると(ステップS2902のYes)、衛星受信局は、ステップS2901で算出したプリアンブル及び同期情報を用いて該当端末からの通知フレームを検出し(ステップS2903)、ステップS2901で算出したスクランブルパターンを用いて受信した通知フレームを復調する(ステップS2904)。そして、衛星受信局は、通知フレームの復調に成功したか否かを判定する(ステップS2905)。通知フレームの復調に失敗した場合には(ステップS2905のNo)、ステップS2901に戻り、衛星受信局は次の通知フレームの受信を試みる。 Next, the satellite receiving station determines whether or not the notification frame reception time calculated in step S2901 has been reached (step S2902). When the notification frame reception time arrives (Yes in step S2902), the satellite receiving station detects the notification frame from the corresponding terminal using the preamble and synchronization information calculated in step S2901 (step S2903), and calculates it in step S2901. The received notification frame is demodulated using the scramble pattern (step S2904). Then, the satellite receiving station determines whether or not the demodulation of the notification frame is successful (step S2905). If the demodulation of the notification frame fails (No in step S2905), the process returns to step S2901 and the satellite receiving station tries to receive the next notification frame.
 一方、通知フレームの復調に成功した場合には(ステップS2905のYes)、衛星受信局は、受信した通知フレームに格納されている端末ID、データ送信間隔に基づいて、次に送信されるデータフレームを受信可能な衛星受信局を判定する(ステップS2906)。そして、衛星受信局は、該当端末から次に送信されるデータフレームを自局で受信可能か否かを判定する(ステップS2907)。 On the other hand, if the demodulation of the notification frame is successful (Yes in step S2905), the satellite receiving station will transmit the next data frame based on the terminal ID and the data transmission interval stored in the received notification frame. Is determined (step S2906). Then, the satellite receiving station determines whether or not the next data frame transmitted from the corresponding terminal can be received by the own station (step S2907).
 ここで、該当端末から次に送信されるデータフレームを衛星受信局自身で受信可能である場合には(ステップS2907のYes)、衛星受信局は、受信した通知フレームに格納されている端末ID、データ送信間隔などの情報を、受信対象端末リストに登録する(ステップS2908)。 Here, when the data frame to be transmitted next from the corresponding terminal can be received by the satellite receiving station itself (Yes in step S2907), the satellite receiving station has a terminal ID stored in the received notification frame. Information such as the data transmission interval is registered in the reception target terminal list (step S2908).
 該当端末から次に送信されるデータフレームを衛星受信局自身で受信可能でない場合には(ステップS2907のNo)、衛星受信局は、受信対象端末登録フレームを生成し(ステップS2909)、該当端末から次に送信されるデータフレームを受信可能な他の衛星受信局にその受信対象端末登録フレームを送信する(ステップS2910)。 If the satellite receiving station itself cannot receive the next data frame transmitted from the corresponding terminal (No in step S2907), the satellite receiving station generates a reception target terminal registration frame (step S2909), and the satellite receiving station generates a reception target terminal registration frame (step S2909). The reception target terminal registration frame is transmitted to another satellite receiving station that can receive the next transmitted data frame (step S2910).
 次いで、衛星受信局は、該当端末が自身の受信対象端末リストに存在するか否かを確認し(ステップS2911)、存在する場合には(ステップS2911のYes)、自身の受信対象端末リストから該当端末のエントリを削除する(ステップS2912)。 Next, the satellite receiving station confirms whether or not the corresponding terminal exists in its own reception target terminal list (step S2911), and if it does exist (Yes in step S2911), it corresponds from its own reception target terminal list. Delete the terminal entry (step S2912).
 図30には、衛星受信局がデータフレームを受信するための処理手順をフローチャートの形式で示している。但し、衛星受信局は、受信対象端末リストに登録されている端末毎に並列してデータフレームの受信処理を実行可能であるとする。 FIG. 30 shows the processing procedure for the satellite receiving station to receive the data frame in the form of a flowchart. However, it is assumed that the satellite receiving station can execute the data frame reception processing in parallel for each terminal registered in the reception target terminal list.
 まず、衛星受信局は、受信対象端末リストから端末IDなどの対象端末の情報を取得して(ステップS3001)、対象端末からデータフレームを受信する無線リソース(時刻・周波数)及びデータフレーム復調に必要な情報を、上述した規則1~4に基づいて算出する(ステップS3002)。 First, the satellite receiving station acquires the information of the target terminal such as the terminal ID from the reception target terminal list (step S3001), and is necessary for the radio resource (time / frequency) for receiving the data frame from the target terminal and the data frame demodulation. Information is calculated based on the above-mentioned rules 1 to 4 (step S3002).
 次いで、衛星受信局は、ステップS3002で算出したデータフレーム受信時刻になったか否かを判定する(ステップS3003)。データフレーム受信時刻が到来すると(ステップS3003のYes)、衛星受信局は、ステップS3002で算出したプリアンブル及び同期情報を用いて該当端末からのデータフレームを検出し(ステップS3004)、ステップS3002で算出したスクランブルパターンを用いて受信したデータフレームを復調する(ステップS3005)。そして、衛星受信局は、データフレームの復調に成功したか否かを判定する(ステップS3006)。データフレームの復調に失敗した場合には(ステップS3006のNo)、ステップS3001に戻り、衛星受信局は次の通知フレームの受信を試みる。 Next, the satellite receiving station determines whether or not the data frame reception time calculated in step S3002 has been reached (step S3003). When the data frame reception time arrives (Yes in step S3003), the satellite receiving station detects the data frame from the corresponding terminal using the preamble and synchronization information calculated in step S3002 (step S3004), and calculates it in step S3002. The received data frame is demodulated using the scramble pattern (step S3005). Then, the satellite receiving station determines whether or not the demodulation of the data frame is successful (step S3006). If the demodulation of the data frame fails (No in step S3006), the process returns to step S3001 and the satellite receiving station tries to receive the next notification frame.
 一方、データフレームの復調に成功した場合には(ステップS3006のYes)、衛星受信局は、そのデータフレームに格納されている端末ID、データ送信間隔に基づいて、次に送信されるデータフレームを受信可能な衛星受信局を判定する(ステップS3007)。そして、衛星受信局は、該当端末から次に送信されるデータフレームを自局で受信可能か否かを判定する(ステップS3008)。 On the other hand, if the demodulation of the data frame is successful (Yes in step S3006), the satellite receiving station selects the next data frame to be transmitted based on the terminal ID and the data transmission interval stored in the data frame. A receivable satellite receiving station is determined (step S3007). Then, the satellite receiving station determines whether or not the next data frame transmitted from the corresponding terminal can be received by the own station (step S3008).
 ここで、該当端末から次に送信されるデータフレームを衛星受信局自身で受信可能である場合には(ステップS3008のYes)、衛星受信局は、受信したデータフレームに格納されている端末ID、データ送信間隔などの情報を、受信対象端末リストに登録する(ステップS3009)。 Here, when the data frame to be transmitted next from the corresponding terminal can be received by the satellite receiving station itself (Yes in step S3008), the satellite receiving station has a terminal ID stored in the received data frame. Information such as the data transmission interval is registered in the reception target terminal list (step S3009).
 該当端末から次に送信されるデータフレームを衛星受信局自身で受信可能でない場合には(ステップS3008のNo)、衛星受信局は、受信対象端末登録フレームを生成し(ステップS3010)、該当端末から次に送信されるデータフレームを受信可能な他の衛星受信局にその受信対象端末登録フレームを送信する(ステップS3011)。 If the satellite receiving station itself cannot receive the next data frame transmitted from the corresponding terminal (No in step S3008), the satellite receiving station generates a reception target terminal registration frame (step S3010), and the satellite receiving station generates a reception target terminal registration frame (step S3010). The reception target terminal registration frame is transmitted to another satellite receiving station that can receive the next transmitted data frame (step S3011).
 そして、衛星受信局は、該当端末が自身の受信対象端末リストに存在するか否かを確認し(ステップS3012)、存在する場合には(ステップS3012のYes)、自身の受信対象端末リストから該当端末のエントリを削除する(ステップS3013)。 Then, the satellite receiving station confirms whether or not the corresponding terminal exists in its own reception target terminal list (step S3012), and if it exists (Yes in step S3012), it corresponds from its own reception target terminal list. The terminal entry is deleted (step S3013).
 図31には、衛星受信局が受信対象端末リスト登録フレームを受信するための処理手順をフローチャートの形式で示している。 FIG. 31 shows a processing procedure for the satellite receiving station to receive the reception target terminal list registration frame in the form of a flowchart.
 まず、衛星受信局は、受信対象端末リスト登録フレームを受信したか否かを判定する(ステップS3101)。そして、衛星受信局は、受信対象端末リスト登録フレームを受信したときには(ステップS3101のYes)、その受信フレームを復調処理して(ステップS3102)、復調処理に成功したか否かを判定する(ステップS3103)。 First, the satellite receiving station determines whether or not the reception target terminal list registration frame has been received (step S3101). Then, when the satellite receiving station receives the reception target terminal list registration frame (Yes in step S3101), the satellite receiving station demodulates the received frame (step S3102) and determines whether or not the demodulation processing is successful (step). S3103).
 衛星受信局は、受信対象端末リスト登録フレームの復調処理に成功した場合には(ステップS3103のYes)、その受信対象端末リスト登録フレームに格納されているSTA Infoフィールドの個数を示すnSTAを取得して(ステップS2204)、nSTA数だけ、以降の各STA Infoフィールドの処理を繰り返し実行する。この繰り返し処理では、STA Infoフィールドに格納されている端末ID及びデータフレーム送信間隔といった端末情報を自身の受信対象端末リストに登録する(ステッS3105)。 When the satellite receiving station succeeds in demodulating the reception target terminal list registration frame (Yes in step S3103), the satellite receiving station acquires nSTA indicating the number of STA Info fields stored in the reception target terminal list registration frame. (Step S2204), the subsequent processing of each STA Info field is repeatedly executed for the number of nSTAs. In this iterative process, terminal information such as the terminal ID and the data frame transmission interval stored in the STA Info field is registered in its own reception target terminal list (step S3105).
 衛星受信局は、図31に示した処理手順に従って受信対象端末リスト登録フレームを処理することによって、新たに受信対象となった端末を自身の受信対象端末リストに登録することができる。 The satellite receiving station can register the newly received terminal in its own reception target terminal list by processing the reception target terminal list registration frame according to the processing procedure shown in FIG. 31.
 したがって、第5の実施例によれば、端末が頻繁に通知フレームを送信する必要はなく、端末の長いデータ送信間隔において数個先の衛星受信局の受信可能範囲に移動している場合であっても、該当端末を受信可能範囲とする衛星受信局が該当端末からのデータフレームを受信及び復調処理することが可能になる。 Therefore, according to the fifth embodiment, it is not necessary for the terminal to frequently transmit the notification frame, and the terminal may move to the receivable range of several satellite receiving stations ahead in the long data transmission interval of the terminal. However, the satellite receiving station whose receivable range is the corresponding terminal can receive and demodulate the data frame from the corresponding terminal.
H.効果
 このH項では、上述した第1乃至第5の実施例によってもたらされる効果についてまとめておく。第1乃至第5の実施例によれば、以下の(1)及び(2)のような効果を得ることができる。
H. Effect In this section H, the effects brought about by the above-mentioned first to fifth embodiments are summarized. According to the first to fifth embodiments, the following effects (1) and (2) can be obtained.
(1)端末は通知フレームを頻繁に送信する必要がない。端末から定期的に送信されるデータフレームを受信可能な衛星受信局が受信及び復調することが可能である。
(2)衛星受信局が、自身の受信可能範囲を通り過ぎた端末に対する不要な受信及び復調を実行しないようにすることができる。
(1) The terminal does not need to send the notification frame frequently. It is possible for a satellite receiving station that can receive data frames periodically transmitted from the terminal to receive and demodulate.
(2) It is possible to prevent the satellite receiving station from performing unnecessary reception and demodulation for a terminal that has passed its receivable range.
 上記(1)及び(2)よりさらに以下の効果につながる。 It leads to the following effects further than the above (1) and (2).
(3)端末の低消費電力化及び低コスト化
(4)受信局当たりの収容台数の増加
(5)システムで必要な受信局数の削減
(6)通信サービスの低コスト化
(3) Lower power consumption and lower cost of terminals (4) Increase the number of units that can be accommodated per receiving station (5) Reduce the number of receiving stations required for the system (6) Reduce the cost of communication services
I.第6の実施例
 上記の第1乃至第5の実施例では、端末が通知フレームを送信した後にデータフレームを送信するという通信シーケンスで、衛星受信局は基本的には通知フレームを受信した端末を受信対象とする。これに対し、第6の実施例では、端末は、通知フレームを送信しないで、データフレームを送信する。
I. Sixth Example In the first to fifth embodiments described above, in the communication sequence in which the terminal transmits the notification frame and then the data frame is transmitted, the satellite receiving station basically selects the terminal that has received the notification frame. Target for reception. On the other hand, in the sixth embodiment, the terminal transmits the data frame without transmitting the notification frame.
 図32には、端末が任意にデータフレームを送信可能なシステムにおける、端末と受信局間の通信シーケンス例を示している。受信局は、端末がデータフレームを送信する無線リソースが分からない。ここで言う無線リソースは、送信時刻、送信周波数、及び送信に用いる符号を含む。このため、受信局は、すべての無線リソース(時刻、周波数、符号)に対して、受信及び復調処理を行う必要がある。 FIG. 32 shows an example of a communication sequence between a terminal and a receiving station in a system in which the terminal can arbitrarily transmit a data frame. The receiving station does not know the radio resource to which the terminal sends the data frame. The radio resource referred to here includes a transmission time, a transmission frequency, and a code used for transmission. Therefore, the receiving station needs to perform reception and demodulation processing for all radio resources (time, frequency, code).
 しかしながら、すべての無線リソースに対して受信及び復調処理を実行すると、受信局において受信処理に要するリソース(メモリ使用量、演算量など)が膨大となり、受信局の高コスト化、サイズの大型化、消費電力の増大といった問題が生じる。特に、低軌道衛星に受信局を搭載するような場合、受信局を小型化及び低消費電力化する必要がある。 However, if reception and demodulation processing is executed for all wireless resources, the resources (memory usage, calculation amount, etc.) required for reception processing at the receiving station become enormous, and the cost of the receiving station increases, the size increases, and so on. Problems such as increased power consumption arise. In particular, when a receiving station is mounted on a low earth orbit satellite, it is necessary to reduce the size and power consumption of the receiving station.
 これに対し、第6の実施例では、端末はデータフレームに次回のデータフレームの送信に関する情報を付加する。そして、衛星受信局側では、データフレームに付加された情報に基づいて次回のデータフレームの受信及び復調処理を実行する無線リソースの管理を行う。したがって、第6の実施例によれば、衛星受信局は、受信及び復調処理を実行する無線リソースを限定することができ、受信局の低コスト化、小型化、及び低消費電力化を実現し易くなる。 On the other hand, in the sixth embodiment, the terminal adds information regarding the transmission of the next data frame to the data frame. Then, the satellite receiving station side manages the radio resource that executes the reception and demodulation processing of the next data frame based on the information added to the data frame. Therefore, according to the sixth embodiment, the satellite receiving station can limit the radio resources for performing the reception and demodulation processing, and realizes cost reduction, miniaturization, and low power consumption of the receiving station. It will be easier.
I-1.システム構成
 図33には、第6の実施例に係るLPWA無線通信システムの構成例を模式的に示している。同図に示す例では、地上に設置された複数の受信局(以下、「地上局」とする)と、地球上を低軌道で周回する複数の低軌道衛星受信局(以下、単に「衛星受信局」とも言う)と、地上に散在する無数の端末で構成される。
I-1. The system configuration diagram 33 schematically shows a configuration example of the LPWA wireless communication system according to the sixth embodiment. In the example shown in the figure, a plurality of receiving stations installed on the ground (hereinafter referred to as "ground stations") and a plurality of low earth orbit satellite receiving stations orbiting the earth in a low orbit (hereinafter, simply "satellite reception"). It is also called a "station") and consists of innumerable terminals scattered on the ground.
 端末は、搭載するセンサーなどでセンシングした情報を定期的に送信する送信機である。衛星受信局は、端末が送信したデータを受信し、復調処理を行う。また、衛星受信局は、必要に応じて復調結果(ユーザデータ)をクラウド上のアプリケーションサーバ(図示しない)に送信する。また、衛星受信局は衛星間通信を可能とする。衛星受信局間の通信方式は限定されないが、常時接続及び高速通信であることが望ましい。地上局は衛星受信局と通信を行う送受信機である。衛星受信局と地上局間の通信方式は限定されないが、高速通信であることが望ましい。 The terminal is a transmitter that periodically transmits information sensed by the on-board sensor or the like. The satellite receiving station receives the data transmitted by the terminal and performs demodulation processing. Further, the satellite receiving station transmits the demodulation result (user data) to the application server (not shown) on the cloud as needed. In addition, the satellite receiving station enables inter-satellite communication. The communication method between satellite receiving stations is not limited, but it is desirable to use constant connection and high-speed communication. A ground station is a transceiver that communicates with a satellite receiver. The communication method between the satellite receiving station and the ground station is not limited, but high-speed communication is desirable.
I-2.通信シーケンス例
 図33に示す例では、衛星受信局3301と衛星受信局3302は同じ衛星軌道上を周回する隣接衛星受信局である。衛星受信局3301と衛星受信局3302の衛星軌道上の移動に伴って、衛星受信局3301の受信可能範囲3311と衛星受信局3302の受信可能範囲3312もそれぞれ地上を移動する。
I-2. Communication sequence example In the example shown in FIG. 33, the satellite receiving station 3301 and the satellite receiving station 3302 are adjacent satellite receiving stations orbiting in the same satellite orbit. As the satellite receiving station 3301 and the satellite receiving station 3302 move in the satellite orbit, the receivable range 3311 of the satellite receiving station 3301 and the receivable range 3312 of the satellite receiving station 3302 also move on the ground.
 図34には、受信可能範囲3311又は受信可能範囲3312のいずれかに含まれる端末3401と衛星受信局3301及び衛星受信局3302間の通信シーケンス例を示している。 FIG. 34 shows an example of a communication sequence between the terminal 3401 included in either the receivable range 3311 or the receivable range 3312 and the satellite receiving station 3301 and the satellite receiving station 3302.
 まず、端末3401は、初回データフレームを送信(ブロードキャスト)する(SEQ3401)。 First, the terminal 3401 transmits (broadcasts) the first data frame (SEQ3401).
 初回データフレームとは、端末3401が電源オンにした直後などに初めて送信する際のフレームを指す。端末3401は、衛星受信局3301及び3302が常時受信対象としている無線リソース(時刻、周波数、及び符号)を用いて送信する。また、端末3401は、初回データフレーム内に、次の通常データフレームの送信に用いる無線リソースの情報を格納している。 The initial data frame refers to the frame when the terminal 3401 transmits for the first time immediately after the power is turned on. The terminal 3401 transmits using the radio resources (time, frequency, and code) that the satellite receiving stations 3301 and 3302 always receive. Further, the terminal 3401 stores the information of the radio resource used for the transmission of the next normal data frame in the initial data frame.
 図34に示す例では、端末3401が初回データフレームを送信した時点で、端末3401が位置する場所は衛星受信局3301の受信可能範囲3311であるので、衛星受信局3301は初回データフレームの受信及び復調に成功する(SEQ3411)。次いで、衛星受信局3301は、初回データフレームに格納されている次の通常データフレーム送信用の無線リソースに基づいて、次の通常データフレームが受信可能な衛星受信局を判定する。そして、衛星受信局3301自身が次の通常データフレームを受信可能であるので、衛星受信局3301は、端末3401の次に送信する通常データフレームの無線リソースの情報を自身の受信リストに登録する(SEQ3412)。 In the example shown in FIG. 34, when the terminal 3401 transmits the first data frame, the location where the terminal 3401 is located is the receivable range 3311 of the satellite receiving station 3301, so that the satellite receiving station 3301 receives the first data frame and receives the first data frame. Successful demodulation (SEQ3411). Next, the satellite receiving station 3301 determines a satellite receiving station that can receive the next normal data frame based on the radio resource for transmitting the next normal data frame stored in the initial data frame. Then, since the satellite receiving station 3301 itself can receive the next normal data frame, the satellite receiving station 3301 registers the information of the radio resource of the normal data frame to be transmitted next to the terminal 3401 in its reception list (). SEQ3412).
 一方、端末3401が初回データフレームを送信した時点で、端末3401が位置する場所は衛星受信局3302の受信可能範囲3312の外であるので、衛星受信局3302は初回データフレームを受信できない。 On the other hand, when the terminal 3401 transmits the first data frame, the place where the terminal 3401 is located is outside the receivable range 3312 of the satellite receiving station 3302, so that the satellite receiving station 3302 cannot receive the first data frame.
 次いで、端末3401は、初回データフレームに格納した無線リソースを用いて、通常データフレームを送信する(SEQ3402)。また、端末3401は、通常データフレーム内に、さらに次の通常データフレームの送信に用いる無線リソースの情報を格納している。 Next, the terminal 3401 transmits a normal data frame using the radio resource stored in the initial data frame (SEQ3402). Further, the terminal 3401 further stores the information of the radio resource used for the transmission of the next normal data frame in the normal data frame.
 衛星受信局3301は、自身の受信リストに登録されている無線リソースに基づいて受信及び復調処理を実行することで、端末3401が送信した通常データフレームをピンポイントで受信及び復調することができる(SEQ3413)。一方、端末3401がこの通常データフレームを送信した時点で、端末3401が位置する場所は衛星受信局3302の受信可能範囲3312の外であるので、衛星受信局3302はこの通常データフレームを受信できない。 The satellite receiving station 3301 can receive and demodulate the normal data frame transmitted by the terminal 3401 in a pinpoint manner by executing the reception and demodulation processing based on the radio resources registered in its reception list. SEQ 3413). On the other hand, when the terminal 3401 transmits this normal data frame, the place where the terminal 3401 is located is outside the receivable range 3312 of the satellite receiving station 3302, so that the satellite receiving station 3302 cannot receive this normal data frame.
 また、衛星受信局3301は、受信した通常データフレームに格納されているさらに次の通常データフレーム送信用の無線リソースに基づいて、次の通常データフレームが受信可能な衛星受信局を判定する。そして、衛星受信局3301自身がさらに次の通常データフレームを受信可能であるので、衛星受信局3301は自身の受信リストに端末3401を再び登録する(SEQ3414)。 Further, the satellite receiving station 3301 determines a satellite receiving station that can receive the next normal data frame based on the radio resource for transmitting the next normal data frame stored in the received normal data frame. Then, since the satellite receiving station 3301 itself can receive the next normal data frame, the satellite receiving station 3301 re-registers the terminal 3401 in its receiving list (SEQ3414).
 次いで、端末3401は、前回の通常データフレームに格納した無線リソースを用いて、次の通常データフレームを送信する(SEQ3403)。また、端末3401は、通常データフレーム内に、さらに次の通常データフレームの送信に用いる無線リソースの情報を格納している。 Next, the terminal 3401 transmits the next normal data frame using the radio resource stored in the previous normal data frame (SEQ3403). Further, the terminal 3401 further stores the information of the radio resource used for the transmission of the next normal data frame in the normal data frame.
 衛星受信局3301は、自身の受信リストに登録されている無線リソースに基づいて受信及び復調処理を実行することで、端末3401が送信した通常データフレームをピンポイントで受信及び復調することができる(SEQ3415)。一方、端末3401がこの通常データフレームを送信した時点で、端末3401が位置する場所は衛星受信局3302の受信可能範囲3312の外であるので、衛星受信局3302はこの通常データフレームを受信できない。 The satellite receiving station 3301 can receive and demodulate the normal data frame transmitted by the terminal 3401 in a pinpoint manner by executing the reception and demodulation processing based on the radio resources registered in its reception list. SEQ3415). On the other hand, when the terminal 3401 transmits this normal data frame, the place where the terminal 3401 is located is outside the receivable range 3312 of the satellite receiving station 3302, so that the satellite receiving station 3302 cannot receive this normal data frame.
 また、衛星受信局3301は、受信した通常データフレームに格納されているさらに次の通常データフレーム送信用の無線リソースに基づいて、次の通常データフレームが受信可能な衛星受信局を判定する。そして、衛星受信局3301はさらに次の通常データフレームを受信不可能なので、受信可能な衛星受信局3302へ受信対象無線リソース情報通知フレームを送信する(SEQ3416)。 Further, the satellite receiving station 3301 determines a satellite receiving station that can receive the next normal data frame based on the radio resource for transmitting the next normal data frame stored in the received normal data frame. Since the satellite receiving station 3301 cannot receive the next normal data frame, the receiving target radio resource information notification frame is transmitted to the receivable satellite receiving station 3302 (SEQ3416).
 衛星受信局3302は、衛星受信局3301から受信した受信対象無線リソース情報通知フレームに格納されている無線リソースの情報を自身の受信リストに登録する(SEQ3421)。 The satellite receiving station 3302 registers the information of the radio resource stored in the reception target radio resource information notification frame received from the satellite receiving station 3301 in its own reception list (SEQ3421).
 次いで、端末3401は、前回の通常データフレームに格納した無線リソースを用いて、次の通常データフレームを送信する(SEQ3404)。 Next, the terminal 3401 transmits the next normal data frame using the radio resource stored in the previous normal data frame (SEQ3404).
 端末3401が次の通常データフレームを送信した時点で位置する場所が衛星受信局3302の受信可能範囲3312になっている。衛星受信局3302は、自身の受信リストに登録されている無線リソースに基づいて受信及び復調処理を実行することで、端末3401が送信した通常データフレームをピンポイントで受信及び復調することができる(SEQ3422)。一方、端末3401がこの通常データフレームを送信した時点で、端末3401が位置する場所は衛星受信局3301の受信可能範囲3312の外に移動しているので、衛星受信局3301はこの通常データフレームを受信できない。 The location where the terminal 3401 is located when the next normal data frame is transmitted is within the receivable range 3312 of the satellite receiving station 3302. The satellite receiving station 3302 can receive and demodulate the normal data frame transmitted by the terminal 3401 in a pinpoint manner by executing the reception and demodulation processing based on the radio resource registered in its reception list. SEQ3422). On the other hand, when the terminal 3401 transmits this normal data frame, the place where the terminal 3401 is located has moved out of the receivable range 3312 of the satellite receiving station 3301, so that the satellite receiving station 3301 uses this normal data frame. I can't receive it.
 なお、端末は、初回データフレームを、電源をオンにした直後だけでなく、定期的に送信するようにしてもよい。衛星受信局が通常データフレームの受信に失敗した場合でも、初回データフレームの受信に成功した時点から再度、衛星受信局の受信リストに登録されるようになるため、端末は定期的に初回データフレームを送信することが望ましい。 The terminal may transmit the initial data frame not only immediately after the power is turned on but also periodically. Even if the satellite receiving station fails to receive the normal data frame, the terminal will be registered in the receiving list of the satellite receiving station again from the time when the first data frame is successfully received, so that the terminal will periodically receive the first data frame. Is desirable to send.
I-3.装置構成
 第6に実施例でも、端末の構成は図3と同じでよいので、このI項では端末の構成についての説明を省略する。
I-3. Device Configuration Sixth, also in the sixth embodiment, the configuration of the terminal may be the same as that of FIG. 3, and therefore, the description of the terminal configuration will be omitted in this section I.
 図35には、第6の実施例に係るシステムにおける衛星受信局3500の機能的構成例を示している。衛星受信局3500は、図33に示した衛星軌道のいずれかで地球上を周回する低軌道衛星に搭載して用いられる。衛星受信局3500は、LPWA部3520と衛星間通信部3530を備えている。 FIG. 35 shows a functional configuration example of the satellite receiving station 3500 in the system according to the sixth embodiment. The satellite receiving station 3500 is used by being mounted on a low earth orbit satellite orbiting the earth in any of the satellite orbits shown in FIG. 33. The satellite receiving station 3500 includes an LPWA unit 3520 and an intersatellite communication unit 3530.
 LPWA部3520は、地上の端末が送信したフレームを受信する。LPWA部3520は、図4に示した受信局200と同一の構成要素については図4と同じ参照番号を付けている。LPWA部3520内はさらに受信可能受信局判定部3526を備えている。受信可能受信局判定部3526は、端末から受信したデータフレームに格納されている次回データフレーム送信情報に基づいて、次回データフレームを受信可能な受信局を判定する。 The LPWA unit 3520 receives a frame transmitted by a terminal on the ground. The LPWA unit 3520 has the same reference number as that of FIG. 4 for the same components as the receiving station 200 shown in FIG. The LPWA unit 3520 further includes a receivable receiving station determination unit 3526. The receivable receiving station determination unit 3526 determines the receiving station that can receive the next data frame based on the next data frame transmission information stored in the data frame received from the terminal.
 衛星間通信部3530は、無線通信部3531と、無線制御部3532と、フレーム生成部3533と、フレーム検出・復調部3534を備えている。 The intersatellite communication unit 3530 includes a wireless communication unit 3531, a wireless control unit 3532, a frame generation unit 3533, and a frame detection / demodulation unit 3534.
 無線通信部3531は、無線信号の送受信を行う。無線通信部353は、無線制御部3532からの制御により、電波を受信し、無線信号へ変換し、フレーム検出・復調部3534に渡す。また、無線通信部3531は、無線制御部3532からの制御により、フレーム生成部3533で生成されたフレームを無線信号に変換し、送信する。 The wireless communication unit 3531 transmits and receives wireless signals. The wireless communication unit 353 receives radio waves under the control of the wireless control unit 3532, converts them into radio signals, and passes them to the frame detection / demodulation unit 3534. Further, the wireless communication unit 3531 converts the frame generated by the frame generation unit 3533 into a wireless signal and transmits it under the control of the wireless control unit 3532.
 無線制御部3532は、衛星受信局間でフレームを送受信できるように、無線通信部3531を制御する。 The wireless control unit 3532 controls the wireless communication unit 3531 so that frames can be transmitted and received between satellite receiving stations.
 フレーム生成部3533は、LPWA部3520側の受信可能受信局判定部3526から取得した、次回データフレーム送信情報を格納し、所定のフォーマットに応じたフレームを生成する。 The frame generation unit 3533 stores the next data frame transmission information acquired from the receivable receiving station determination unit 3526 on the LPWA unit 3520 side, and generates a frame according to a predetermined format.
 フレーム検出・復調部3534は、無線通信部3531の受信信号からフレームを検出し復調する。フレーム検出・復調部3534は、フレームの復調に成功した場合、受信したデータをLPWA部3520内の記憶部205に渡す。具体的には、同一軌道上の前方の衛星受信局から受信した受信対象端末の無線リソースの情報を、記憶部205内の受信リストに記憶する。 The frame detection / demodulation unit 3534 detects and demodulates a frame from the received signal of the wireless communication unit 3531. When the frame detection / demodulation unit 3534 succeeds in demodulating the frame, the frame detection / demodulation unit 3534 passes the received data to the storage unit 205 in the LPWA unit 3520. Specifically, the information of the radio resource of the reception target terminal received from the satellite receiving station in front of the same orbit is stored in the reception list in the storage unit 205.
I-4.フレーム構成
 図36には、端末と衛星受信局間で送受信されるデータフレームの構成例を示している。但し、初回データフレームと通常データフレームのフレーム構成は同じであるものとする。データフレームは、ID、DATA、Time Interval、Ch、Code、及びCRCの各フィールドを含む。
I-4. Frame configuration FIG. 36 shows a configuration example of a data frame transmitted / received between the terminal and the satellite receiving station. However, it is assumed that the frame configuration of the initial data frame and the normal data frame is the same. The data frame includes ID, DATA, Time Interval, Ch, Code, and CRC fields.
 IDフィールドには、送信元である端末100の固有の識別子であるIDが格納される。DATAフィールドには、送信データが格納される。データフレームの場合には、センサー104から取得したデータなどが格納される。Time Intervalフィールドには、当該データフレームを送信してから、次回データフレームを送信するまでの送信間隔に関する情報が格納される。Chフィールドには、次回データフレームを送信する際に用いる周波数に関する情報が格納される。Codeフィールドには、次回データフレームを送信する際に用いる符号に関する情報、具体的には、プリアンブル、同期情報(Sync)、及びスクランブルパターンを生成するのに必要な4つの初期値を示す情報が格納される。CRCフィールドには、IDフィールド、DATAフィールド、Time Intervalフィールド、Chフィールド、及びCodeフィールドに格納された情報に対して計算したCRC値が格納される。受信側では、CRC値を用いて復調成功判定が行われる。 In the ID field, an ID which is a unique identifier of the terminal 100 which is the transmission source is stored. Transmission data is stored in the DATA field. In the case of a data frame, data acquired from the sensor 104 or the like is stored. In the Time Interval field, information regarding the transmission interval from the transmission of the data frame to the transmission of the next data frame is stored. The Ch field stores information about the frequency used when transmitting the next data frame. The Code field contains information about the code to be used the next time the data frame is transmitted, specifically preamble, synchronization information (Sync), and information indicating the four initial values needed to generate the scramble pattern. Will be done. In the CRC field, the CRC value calculated for the information stored in the ID field, the DATA field, the Time Interval field, the Ch field, and the Code field is stored. On the receiving side, the demodulation success determination is performed using the CRC value.
 上記のID、DATA、Time Interval、Ch、Code、及びCRCを連結した系列に対して、FEC符号化や順番の並べ替え(インタリーブ)を行って、ペイロードを生成する。さらにペイロードの先頭に、フレーム検出と同期獲得に使用する既知パターンであるプリアンブルと同期情報を連結した後、ビット毎にスクランブルパターンとの排他的論理和(XOR)をとることによって、フレームが生成される。 FEC coding and order rearrangement (interleave) are performed on the series in which the above ID, DATA, Time Interval, Ch, Code, and CRC are concatenated to generate a payload. Furthermore, a frame is generated by concatenating the preamble, which is a known pattern used for frame detection and synchronization acquisition, and synchronization information at the beginning of the payload, and then taking an exclusive OR (XOR) with the scramble pattern for each bit. Or.
 システム内には、フレーム生成に必要なプリアンブル及び同期情報、スクランブルパターンの生成方法をそれぞれ決定するための規則が、あらかじめ決定されている。フレーム生成に必要なプリアンブル及び同期情報、スクランブルパターンの生成方法は、図6に示した規則3及び規則4にそれぞれ従う。プリアンブル及び同期情報(Preamble/Sync)は、規則3にプリアンブル及び同期情報算出用の2つの初期値Seed(P)-1とSeed(P)-2を入力することで決定される。また、スクランブルパターンは、規則4にスクランブルパターン用の2つの初期値Seed(S)-1とSeed(S)-2を入力することで決定される。 In the system, rules for determining the preamble and synchronization information required for frame generation and the scramble pattern generation method are predetermined. The preamble and synchronization information required for frame generation and the scramble pattern generation method follow Rule 3 and Rule 4 shown in FIG. 6, respectively. The preamble / synchronization information (Preamble / Sync) is determined by inputting two initial values Seed (P) -1 and Seed (P) -2 for calculating the preamble and synchronization information in Rule 3. Further, the scramble pattern is determined by inputting two initial values Seed (S) -1 and Seed (S) -2 for the scramble pattern in Rule 4.
 各初期値は、あらかじめシステム内で決まっており、端末100内の記憶部106及び衛星受信局3500内の記憶部3525に保持されている。また、初回データフレームと通常データフレームでは使用可能な初期値が異なる。 Each initial value is determined in advance in the system and is held in the storage unit 106 in the terminal 100 and the storage unit 3525 in the satellite receiving station 3500. In addition, the initial values that can be used differ between the initial data frame and the normal data frame.
 図37には、受信対象無線リソース情報通知フレームのデータ部分のフレーム構成例を示している。データ部分以外のフォーマットは、使用する通信方式に応じたものとする。受信対象無線リソース情報通知フレームは、衛星受信局が次回の通常データフレームを自身で受信できないと判定したときに受信可能な他の衛星受信局に対して次回の通常データフレーム送信用の無線リソースを通知するフレームである。 FIG. 37 shows a frame configuration example of the data part of the reception target radio resource information notification frame. The format other than the data part shall be according to the communication method used. The reception target radio resource information notification frame provides the radio resource for the next normal data frame transmission to other satellite receiving stations that can be received when the satellite receiving station determines that the next normal data frame cannot be received by itself. It is a frame to notify.
 受信対象無線リソース情報通知フレームのデータ部分は、Rx Timeフィールドと、Chフィールドと、Codeフィールドを含む。Rx Timeフィールドには、次回のデータフレームの受信時刻に関する情報が格納される。Chフィールドには、次回のデータフレームの受信周波数に関する情報が格納される。Codeフィールドには、次回のデータフレームの受信符号に関する情報、具体的には、プリアンブル、同期情報(Sync)、及びスクランブルパターンを生成するのに必要な4つの初期値を示す情報が格納される。 The data part of the reception target radio resource information notification frame includes an Rx Time field, a Ch field, and a Code field. Information about the reception time of the next data frame is stored in the RxTime field. Information about the reception frequency of the next data frame is stored in the Ch field. The Code field stores information about the receive code of the next data frame, specifically, preamble, synchronization information (Sync), and information indicating the four initial values required to generate the scramble pattern.
I-5.端末の処理動作
 図38には、端末が行う処理動作をフローチャートの形式で死している。
I-5. Processing operation of the terminal In FIG. 38, the processing operation performed by the terminal is dead in the form of a flowchart.
 まず、端末は、初回データフレームの送信に使用する無線リソース(時刻、周波数、符号)を決定する(ステップS3801)。 First, the terminal determines the radio resource (time, frequency, code) used for transmitting the initial data frame (step S3801).
 次いで、端末は、次回の通常データフレームの送信に使用する無線リソース(時刻、周波数、符号)を決定する(ステップS3802)。 Next, the terminal determines the radio resource (time, frequency, code) to be used for the transmission of the next normal data frame (step S3802).
 次いで、端末は、初回データフレームを生成する(ステップS3803)。初回データフレームのTime Interval、Ch、Codeの各フィールドには、ステップS3802で決定した、次回の通常データフレームの送信に使用する無線リソースの各情報を格納する。 Next, the terminal generates the initial data frame (step S3803). In the Time Interval, Ch, and Code fields of the initial data frame, each information of the radio resource used for the transmission of the next normal data frame determined in step S3802 is stored.
 そして、初回データフレームの送信時刻が到来すると(ステップS3804のYes)、端末は、ステップS3801で算出した送信周波数を用いて、ステップS3803で生成した初回データフレームを送信する(ステップS3805)。 Then, when the transmission time of the first data frame arrives (Yes in step S3804), the terminal transmits the first data frame generated in step S3803 using the transmission frequency calculated in step S3801 (step S3805).
 次いで、端末は、次々回に送信するフレームが初回データフレームか否かを判定する(ステップS3806)。 Next, the terminal determines whether or not the frame to be transmitted one after another is the first data frame (step S3806).
 次々回に送信するフレームが初回データフレームでない場合には(ステップS3808のNo)、端末は、次々回の通常データフレームの送信に使用する無線リソース(時刻、周波数、符号)を決定する(ステップS3807)。 If the frame to be transmitted one after another is not the first data frame (No in step S3808), the terminal determines the radio resource (time, frequency, code) used for the transmission of the normal data frame one after another (step S3807).
 次いで、端末は、通常データフレームを生成する(ステップS3808)。通常データフレームのTime Interval、Ch、Codeの各フィールドには、ステップS3807で決定した、次の通常データフレームの送信に使用する無線リソースの各情報を格納する。但し、次に送信するデータフレームが初回データフレームの場合には(ステップS3806のYes)、通常データフレームのTime Interval、Ch、Codeの各フィールドを0詰めする。 Next, the terminal generates a normal data frame (step S3808). In the Time Interval, Ch, and Code fields of the normal data frame, each information of the radio resource used for transmission of the next normal data frame determined in step S3807 is stored. However, when the data frame to be transmitted next is the first data frame (Yes in step S3806), each field of Time Interval, Ch, and Code of the normal data frame is filled with 0.
 そして、通常データフレームの送信時刻が到来すると(ステップS3809のYes)、端末は、ステップS3802で算出した送信周波数を用いて、ステップS3803で生成した通常データフレームを送信する(ステップS3810)。 Then, when the transmission time of the normal data frame arrives (Yes in step S3809), the terminal transmits the normal data frame generated in step S3803 using the transmission frequency calculated in step S3802 (step S3801).
 次いで、端末は、次回に送信するフレームが初回データフレームか否かを判定する(ステップS3811)。次回に送信するフレームが初回データフレームである場合には(ステップS3811のYes)、ステップS3801に戻って、端末は、初回データフレームを送信するための処理を繰り返し実行する。また、次回に送信するフレームが初回データフレームでない場合には(ステップS3811のNo)、ステップS3806に戻って、端末は、通常データフレームを送信するための処理を繰り返し実行する。 Next, the terminal determines whether or not the next frame to be transmitted is the first data frame (step S3811). If the frame to be transmitted next time is the first data frame (Yes in step S3811), the terminal returns to step S3801 and repeatedly executes the process for transmitting the first data frame. If the next frame to be transmitted is not the first data frame (No in step S3811), the terminal returns to step S3806 and repeatedly executes the process for transmitting the normal data frame.
I-6.衛星受信局の処理動作
 図39には、衛星受信局が初回データフレームを受信するための処理動作をフローチャートの形式で示している。
I-6. Processing operation of the satellite receiving station FIG. 39 shows the processing operation for the satellite receiving station to receive the initial data frame in the form of a flowchart.
 まず、衛星受信局は、初回データフレームの送信に割り当てられたすべての周波数及び符号に対して受信及び復調処理を実行する(ステップS3901)。 First, the satellite receiving station executes reception and demodulation processing for all frequencies and codes assigned to the transmission of the initial data frame (step S3901).
 そして、初回データフレームの受信及び復調処理に成功した場合には(ステップS3902のYes)、衛星受信局は、復調に成功した初回データフレーム内のTime Intervalフィールドに格納されている送信間隔に基づいて、次回の通常データフレームの受信予想時刻を算出する(ステップS3903)。 Then, when the reception and demodulation processing of the initial data frame is successful (Yes in step S3902), the satellite receiving station is based on the transmission interval stored in the Time Interval field in the initial data frame in which the demodulation is successful. , Calculate the expected reception time of the next normal data frame (step S3903).
 次いで、衛星受信局は、次回の通常データフレームを受信可能な衛星受信局が自身であるか否かを判定する(ステップS3904)。 Next, the satellite receiving station determines whether or not the satellite receiving station that can receive the next normal data frame is itself (step S3904).
 次回の通常データフレームを受信可能な衛星受信局が自身である場合には(ステップS3904のYes)、衛星受信局は、ステップS3903で算出した受信予想時刻と初回データフレームに格納されている周波数及び符号を自身の受信リストに登録する(ステップS3905)。 If the satellite receiving station that can receive the next normal data frame is itself (Yes in step S3904), the satellite receiving station has the estimated reception time calculated in step S3903, the frequency stored in the first data frame, and the frequency. The code is registered in its own reception list (step S3905).
 一方、次回の通常データフレームを受信可能な衛星受信局が自身でない場合には(ステップS3904のNo)、衛星受信局は、次回の通常データフレームを受信可能な衛星受信局へ、受信対象無線リソース情報通知フレームを送信する(ステップS3906)。 On the other hand, if the satellite receiving station that can receive the next normal data frame is not itself (No in step S3904), the satellite receiving station sends the satellite receiving station that can receive the next normal data frame to the radio resource to be received. The information notification frame is transmitted (step S3906).
 図39に示したフローチャート中のステップS3903及びS3904の処理について、図16を参照しながら説明する。 The processing of steps S3903 and S3904 in the flowchart shown in FIG. 39 will be described with reference to FIG.
 例えばステップS3902で復調処理に成功した初回データフレームの受信時刻が12:00:01.020、Time Intervalが00:01:00.000であった場合、次回の通常データフレームの受信予想時刻は12:01:01.020となる。しかし、地上と衛星受信局間は数百kmと距離が長いため、伝搬遅延が発生する。また、衛星受信局は移動するため、データフレーム毎に伝搬遅延量が異なることを考慮する必要がある。 For example, if the reception time of the first data frame for which the demodulation process was successful in step S3902 is 12:00:01.020 and the Time Interval is 00: 01: 00.000, the expected reception time of the next normal data frame is 12. : 01: 01.020. However, since the distance between the ground and the satellite receiving station is as long as several hundred kilometers, a propagation delay occurs. In addition, since the satellite receiving station moves, it is necessary to consider that the propagation delay amount differs for each data frame.
 図16には、衛星の高度が600km、周波数が2GHzの場合の周波数誤差と伝搬遅延の時間変化の一例を示している。これは端末の頭上を衛星が通過する場合の例であり、1台の端末に対して衛星受信局は6分間受信可能であるとする。周波数誤差の算出には、3GPP TR 38.811 V15.1.0(非特許文献1)に記載されているモデルを参照した。 FIG. 16 shows an example of the time change of the frequency error and the propagation delay when the altitude of the satellite is 600 km and the frequency is 2 GHz. This is an example of the case where the satellite passes overhead of the terminal, and it is assumed that the satellite receiving station can receive for 6 minutes for one terminal. For the calculation of the frequency error, the model described in 3GPP TR 38.811 V15.1.0 (Non-Patent Document 1) was referred to.
 例えば、データフレームの受信時の周波数誤差推定結果が40kHzであったとする。その場合、伝搬遅延量は3.5ミリ秒、Time Intervalが00:01:00.000であった場合、次回の通常データフレームの受信ときの伝搬遅延量は2.5ミリ秒となる。したがって、次回の通常データフレームの受信予想時刻は12:01:01.019となる。 For example, it is assumed that the frequency error estimation result at the time of receiving the data frame is 40 kHz. In that case, if the propagation delay amount is 3.5 ms and the Time Interval is 00: 01: 00.000, the propagation delay amount at the time of receiving the next normal data frame is 2.5 ms. Therefore, the expected reception time of the next normal data frame is 12: 01: 01.019.
 続いて、次回通常データフレームが受信可能な衛星受信局が自身であるか否かを判定する。 Subsequently, it is determined whether or not the satellite receiving station that can receive the next normal data frame is itself.
 例えば、図16に示した例において、データフレーム受信時の周波数誤差推定結果が40kHz、Time Intervalが00:01:00.000であった場合、次回の通常データフレームを受信可能な衛星受信局は自身である。 For example, in the example shown in FIG. 16, when the frequency error estimation result at the time of receiving the data frame is 40 kHz and the Time Interval is 00: 01: 00.000, the satellite receiving station capable of receiving the next normal data frame is Be yourself.
 一方、データフレーム受信時の周波数誤差推定結果が-40kHz、Time Intervalが00:01:30.000であった場合、次回の通常データフレームを受信可能な衛星受信局は同じ衛星軌道を周回する1つ後方の衛星受信局となる。 On the other hand, if the frequency error estimation result at the time of receiving the data frame is -40 kHz and the Time Interval is 00: 01: 30.000, the satellite receiving station that can receive the next normal data frame orbits the same satellite orbit 1. It will be the satellite receiving station one behind.
 図40には、衛星受信局が通常データフレームを受信するための処理手順をフローチャートの形式で示している。但し、衛星受信局は、受信リストに登録されている受信対象無線リソース毎に本処理を実行するものとする。 FIG. 40 shows the processing procedure for the satellite receiving station to receive a normal data frame in the form of a flowchart. However, the satellite receiving station shall execute this process for each reception target radio resource registered in the reception list.
 まず、衛星受信局は、受信リストから受信対象の無線リソース(時刻、周波数、符号)を取得する(ステップS4001)。そして、衛星受信局は、受信対象時刻になったか否かを判定する(ステップS4002)。 First, the satellite receiving station acquires the radio resource (time, frequency, code) to be received from the reception list (step S4001). Then, the satellite receiving station determines whether or not the reception target time has come (step S4002).
 受信対象時刻が到来すると(ステップS4002のYes)、衛星受信局は、受信対象周波数に対して、受信対象符号を用いて受信及び復調処理を実行する(ステップS4003)。そして、衛星受信局は、通常データフレームの復調に成功したか否かを判定する(ステップS4004)。 When the reception target time arrives (Yes in step S4002), the satellite receiving station executes reception and demodulation processing for the reception target frequency using the reception target code (step S4003). Then, the satellite receiving station determines whether or not the demodulation of the normal data frame is successful (step S4004).
 通常データフレームの復調に失敗した場合には(ステップS4004のNo)、衛星受信局は、後続の処理ステップをすべてスキップして、当該受信対象無線リソースにおける通常データフレームの受信処理を終了する。 If the demodulation of the normal data frame fails (No in step S4004), the satellite receiving station skips all the subsequent processing steps and ends the reception processing of the normal data frame in the radio resource to be received.
 一方、通常データフレームの復調に成功した場合には(ステップS4004のYes)、衛星受信局は、復調した通常データフレームに、次回の通常データフレームの送信に用いる無線リソースの情報が格納されているか否かを判定する(ステップS4005)。 On the other hand, if the demodulation of the normal data frame is successful (Yes in step S4004), does the satellite receiving station store the information of the radio resource used for the transmission of the next normal data frame in the demodulated normal data frame? It is determined whether or not (step S4005).
 復調した通常データフレームに、次回の通常データフレームの送信に用いる無線リソースの情報が格納されていない場合には(ステップS4005のNo)、衛星受信局は、後続の処理ステップをすべてスキップして、当該受信対象無線リソースにおける通常データフレームの受信処理を終了する。 If the demodulated normal data frame does not contain information on the radio resources used to transmit the next normal data frame (No in step S4005), the satellite receiving station skips all subsequent processing steps. The reception processing of the normal data frame in the reception target radio resource is terminated.
 復調した通常データフレームに、次回の通常データフレームの送信に用いる無線リソースの情報が格納されている場合には(ステップS4005のYes)、衛星受信局は、当該通常データフレームの受信時刻と当該通常データフレームに格納されている送信間隔に基づいて、次の通常データフレームの受信予想時刻を算出する(ステップS4006)。 When the demodulated normal data frame stores information on the radio resource used for transmission of the next normal data frame (Yes in step S4005), the satellite receiving station determines the reception time of the normal data frame and the normal data frame. Based on the transmission interval stored in the data frame, the estimated reception time of the next normal data frame is calculated (step S4006).
 次いで、衛星受信局は、次回の通常データフレームを受信可能な衛星受信局が自身であるか否かを判定する(ステップS4007)。 Next, the satellite receiving station determines whether or not the satellite receiving station that can receive the next normal data frame is itself (step S4007).
 次回の通常データフレームを受信可能な衛星受信局が自身である場合には(ステップS4007のYes)、衛星受信局は、ステップS4006で算出した受信予想時刻と、ステップS4003で復調した通常データフレームに格納されている周波数及び符号を自身の受信リストに登録する(ステップS4008)。 If the satellite receiving station that can receive the next normal data frame is itself (Yes in step S4007), the satellite receiving station uses the estimated reception time calculated in step S4006 and the normal data frame demodulated in step S4003. Register the stored frequency and code in its own reception list (step S4008).
 また、次回の通常データフレームを受信可能な衛星受信局が自身でない場合には(ステップS4007のNo)、衛星受信局は、次回の通常データフレームを受信可能な衛星受信局へ、受信対象無線リソース情報通知フレームを送信する(ステップS4009)。 If the satellite receiving station that can receive the next normal data frame is not itself (No in step S4007), the satellite receiving station sends the satellite receiving station that can receive the next normal data frame to the radio resource to be received. The information notification frame is transmitted (step S4009).
 図41には、衛星受信局が受信対象無線リソース情報通知フレームを受信するための処理手順をフローチャートの形式で示している。 FIG. 41 shows a processing procedure for the satellite receiving station to receive the reception target radio resource information notification frame in the form of a flowchart.
 まず、衛星受信局は、他の衛星受信局から受信対象無線リソース情報通知フレームを受信したか否かを判定する(ステップS4101)。そして、受信対象無線リソース情報通知フレームを受信した場合には(ステップS4101のYes)、衛星受信局は、受信対象無線リソース情報通知フレームを復調処理して(ステップS4102)、当該フレームの復調に成功したか否かを判定する(ステップS4103)。 First, the satellite receiving station determines whether or not the reception target radio resource information notification frame has been received from another satellite receiving station (step S4101). Then, when the reception target radio resource information notification frame is received (Yes in step S4101), the satellite receiving station demodulates the reception target radio resource information notification frame (step S4102) and succeeds in demodulating the frame. It is determined whether or not it has been done (step S4103).
 受信対象無線リソース情報通知フレームの復調に成功した場合には(ステップS4103のYes)、衛星受信局は、そのフレームが自局宛てか否かを判定する(ステップS4104)。 If the demodulation of the reception target radio resource information notification frame is successful (Yes in step S4103), the satellite receiving station determines whether or not the frame is addressed to its own station (step S4104).
 そして、復調した受信対象無線リソース情報通知フレームが自局宛ての場合には(ステップS4104のYes)、衛星受信局は、当該フレームに格納されている情報を自身の受信リストに登録する(ステップS4105)。 Then, when the demodulated reception target radio resource information notification frame is addressed to its own station (Yes in step S4104), the satellite receiving station registers the information stored in the frame in its own reception list (step S4105). ).
 また、復調した受信対象無線リソース情報通知フレームが自局宛てでない場合には(ステップS4104のNo)、衛星受信局は、該当する衛星受信局へ、受信対象無線リソース情報通知フレームを転送する(ステップS4106)。 If the demodulated reception target radio resource information notification frame is not addressed to its own station (No in step S4104), the satellite receiving station transfers the reception target radio resource information notification frame to the corresponding satellite receiving station (step). S4106).
I-7.効果
 このI項で説明した第6の実施例によってもたらされる効果についてまとめておく。第6の実施例によれば、以下の(1)及び(2)のような効果を得ることができる。
I-7. Effect The effects brought about by the sixth embodiment described in this section I are summarized. According to the sixth embodiment, the following effects (1) and (2) can be obtained.
(1)端末と衛星受信局間で無線リソース割り当てのためのシグナリングの必要がなく、衛星受信局が受信及び復調処理を実行する無線リソースを限定することができる。
(2)端末と衛星受信局間で無線リソース割り当てのためのシグナリングの必要がなく、衛星受信局が移動し、端末が送信するデータフレームを受信可能な衛星受信局が変化した場合でも追従可能である。
(1) There is no need for signaling for allocating radio resources between the terminal and the satellite receiving station, and the radio resources for which the satellite receiving station executes reception and demodulation processing can be limited.
(2) There is no need for signaling for radio resource allocation between the terminal and the satellite receiving station, and it is possible to follow even if the satellite receiving station moves and the satellite receiving station that can receive the data frame transmitted by the terminal changes. be.
 上記(1)及び(2)よりさらに以下の効果につながる。 It leads to the following effects further than the above (1) and (2).
(3)端末の低消費電力化及び低コスト化
(4)受信局当たりの収容台数の増加
(5)受信局の小型化、低消費電力化
(6)システムで必要な受信局数の削減
(7)通信サービスの低コスト化
(3) Low power consumption and low cost of terminals (4) Increase in the number of units that can be accommodated per receiving station (5) Miniaturization and low power consumption of receiving stations (6) Reduction of the number of receiving stations required for the system (6) 7) Cost reduction of communication services
 以上、特定の実施形態を参照しながら、本開示について詳細に説明してきた。しかしながら、本開示の要旨を逸脱しない範囲で当業者が該実施形態の修正や代用を成し得ることは自明である。 The present disclosure has been described in detail with reference to the specific embodiment. However, it is self-evident that a person skilled in the art may modify or substitute the embodiment without departing from the gist of the present disclosure.
 本明細書では、本開示をLPWA通信方式に適用した実施形態を中心に説明してきたが、本開示の要旨はこれに限定されるものではない。本開示は、地上の端末と地球上を周回する衛星受信局の間で通信を行うさまざまなタイプの通信システムに同様に適用することができる。また、本明細書では、便宜上、特定の衛星コンステレーションに特化した実施形態について説明したが、他の衛星コンステレーションを使用する通信システムに対しても同様に本開示を適用することができ、任意の衛星受信局数にも対応することができる。 Although the present specification has mainly described embodiments in which the present disclosure is applied to the LPWA communication method, the gist of the present disclosure is not limited to this. The present disclosure is similarly applicable to various types of communication systems that communicate between terminals on the ground and satellite receivers orbiting the earth. Further, although the present specification has described an embodiment specialized for a specific satellite constellation for convenience, the present disclosure can be similarly applied to a communication system using another satellite constellation. It can correspond to any number of satellite receiving stations.
 要するに、例示という形態により本開示について説明してきたのであり、本明細書の記載内容を限定的に解釈するべきではない。本開示の要旨を判断するためには、特許請求の範囲を参酌すべきである。 In short, the present disclosure has been described in the form of an example, and the contents of the present specification should not be interpreted in a limited manner. In order to judge the gist of this disclosure, the scope of claims should be taken into consideration.
 なお、本開示は、以下のような構成をとることも可能である。 Note that this disclosure can also have the following structure.
(1)所定の軌道で地球上を周回し、地上の端末からフレームを受信する衛星受信局の1つとして動作し、
 前記端末からフレームを受信処理する受信部と、
 前記端末からフレーム受信時のフレーム受信情報と、前記端末のフレーム送信間隔と、周辺の衛星受信局の位置関係に基づいて、前記端末が次に送信するフレームの受信に適した衛星受信局を判定する判定部と、
を具備する通信装置。
(1) Operates as one of the satellite receiving stations that orbit the earth in a predetermined orbit and receive frames from terminals on the ground.
A receiving unit that receives and processes frames from the terminal,
Based on the frame reception information at the time of receiving a frame from the terminal, the frame transmission interval of the terminal, and the positional relationship of the surrounding satellite receiving stations, a satellite receiving station suitable for receiving the frame to be transmitted next by the terminal is determined. Judgment unit and
A communication device equipped with.
(2)フレーム受信情報は、フレーム受信時の周波数誤差推定結果及び伝搬遅延推定結果を含む、
上記(1)に記載の通信装置。
(2) The frame reception information includes the frequency error estimation result and the propagation delay estimation result at the time of frame reception.
The communication device according to (1) above.
(3)フレーム受信情報は、前記端末の位置情報を含む、
上記(1)に記載の通信装置。
(3) The frame reception information includes the position information of the terminal.
The communication device according to (1) above.
(4)周辺の衛星受信局とフレーム受信情報を交換する、
上記(1)乃至(3)のいずれかに記載の通信装置。
(4) Exchange frame reception information with nearby satellite receiving stations,
The communication device according to any one of (1) to (3) above.
(5)前記判定部は、さらに周辺の衛星受信局からのフレーム受信情報に基づいて、前記端末が次に送信するフレームの受信に適した衛星受信局を判定する、
上記(4)に記載の通信装置。
(5) The determination unit further determines a satellite receiving station suitable for receiving the frame to be transmitted next by the terminal based on the frame reception information from the surrounding satellite receiving stations.
The communication device according to (4) above.
(6)次に送信するフレームを自局が受信可能と前記判定部が判定した端末の情報を受信対象端末リストに保持し、
 前記受信対象端末リストに保持されている情報に基づいて端末が次に送信するフレームを受信処理する、
上記(5)に記載の通信装置。
(6) The information of the terminal determined by the determination unit that the own station can receive the next frame to be transmitted is retained in the reception target terminal list, and the information is retained in the reception target terminal list.
The frame to be transmitted next by the terminal is received and processed based on the information held in the reception target terminal list.
The communication device according to (5) above.
(7)周辺の衛星受信局からのフレーム受信情報に基づいて前記受信対象端末リストに追加した端末の情報を、前記周辺の衛星受信局に通知する、
上記(6)に記載の通信装置。
(7) Notify the peripheral satellite receiving stations of the information of the terminals added to the receiving target terminal list based on the frame reception information from the surrounding satellite receiving stations.
The communication device according to (6) above.
(8)周辺の衛星受信局からの前記通知に基づいて、自局の受信対象端末リストから該当する端末の情報を削除する、
上記(7)に記載の通信装置。
(8) Based on the above notification from the satellite receiving stations in the vicinity, the information of the corresponding terminal is deleted from the reception target terminal list of the own station.
The communication device according to (7) above.
(9)自局の識別情報を付けたフレーム受信情報を周辺の衛星受信局と交換し、
 周辺の衛星受信局からのフレーム受信情報に基づいて前記受信対象端末リストに追加した端末の情報を、そのフレーム受信情報に識別情報が示された衛星受信局に通知する、
上記(7)に記載の通信装置。
(9) Exchange the frame reception information with the identification information of the own station with the surrounding satellite reception stations, and
Notify the satellite receiving station whose identification information is shown in the frame receiving information of the information of the terminal added to the receiving target terminal list based on the frame receiving information from the surrounding satellite receiving stations.
The communication device according to (7) above.
(10)前記判定部が前記端末から次に送信されるフレームの受信に適していると判定した周辺の衛星受信局に対して受信対象端末登録を通知する、
上記(1)に記載の通信装置。
(10) Notifying the peripheral satellite receiving stations that the determination unit has determined to be suitable for receiving the next frame transmitted from the terminal to the reception target terminal registration.
The communication device according to (1) above.
(11)前記周辺の衛星受信局に対して受信対象端末登録を通知した端末を自局の受信対象から外す、
上記(10)に記載の通信装置。
(11) The terminal that has notified the satellite receiving stations in the vicinity of the reception target terminal registration is excluded from the reception target of the own station.
The communication device according to (10) above.
(12)周辺の衛星受信局から受信対象端末登録が通知された端末を自局の受信対象とする、
上記(10)又は(11)のいずれかに記載の通信装置。
(12) The terminal to which the reception target terminal registration is notified from the surrounding satellite receiving stations is set as the reception target of the own station.
The communication device according to any one of (10) and (11) above.
(13)フレーム受信情報は前記端末から通知されるフレーム送信間隔を含み、
 前記判定部は、フレーム送信間隔とフレーム受信時の周波数誤差推定結果に基づいて、前記端末から次に送信されるフレームの受信予想時刻を推定する、
上記(1)に記載の通信装置。
(13) The frame reception information includes the frame transmission interval notified from the terminal.
The determination unit estimates the estimated reception time of the next frame transmitted from the terminal based on the frame transmission interval and the frequency error estimation result at the time of frame reception.
The communication device according to (1) above.
(14)前記判定部は、前記端末から次に送信されるフレームの受信予想時刻と周辺の衛星受信局の位置関係に基づいて、前記端末が次に送信するフレームの受信に適した衛星受信局を判定する、
上記(13)に記載の通信装置。
(14) The determination unit is a satellite receiving station suitable for receiving the next frame transmitted by the terminal based on the estimated reception time of the next frame transmitted from the terminal and the positional relationship of the surrounding satellite receiving stations. To judge,
The communication device according to (13) above.
(15)次に送信するフレームを自局が受信可能と前記判定部が判定した端末を自局の受信対象とする、
上記(14)に記載の通信装置。
(15) The terminal that the determination unit determines that the next frame to be transmitted can be received by the own station is set as the reception target of the own station.
The communication device according to (14) above.
(16)端末が次に送信するフレームの受信に適していると判定した周辺の衛星受信局に対して、その端末のフレームを受信するための無線リソース情報を通知する、
上記(14)に記載の通信装置。
(16) Notifying the satellite receiving stations in the vicinity that the terminal has determined to be suitable for receiving the frame to be transmitted next, the radio resource information for receiving the frame of the terminal.
The communication device according to (14) above.
(17)周辺の衛星受信局から端末のフレームを受信するための無線リソース情報が通知されたことに応答して、該当する端末を自局の受信対象とする、
上記(16)に記載の通信装置。
(17) In response to the notification of the radio resource information for receiving the frame of the terminal from the surrounding satellite receiving stations, the corresponding terminal is set as the reception target of the own station.
The communication device according to (16) above.
(18)前記周辺の衛星受信局は、同一軌道を移動する衛星受信局及び隣接軌道を移動する衛星受信局のうち少なくとも一方を含む、
上記(1)乃至(17)のいずれかに記載の通信装置。
(18) The surrounding satellite receiving stations include at least one of a satellite receiving station moving in the same orbit and a satellite receiving station moving in an adjacent orbit.
The communication device according to any one of (1) to (17) above.
(19)所定の軌道で地球上を周回し、地上の端末からフレームを受信する衛星受信局として動作する通信方法であって、
 前記端末からフレームを受信処理する受信ステップと、
 前記端末からフレーム受信時のフレーム受信情報と、前記端末のフレーム送信間隔と、周辺の衛星受信局の位置関係に基づいて、前記端末が次に送信するフレームの受信に適した衛星受信局を判定する判定ステップと、
を有する通信方法。
(19) A communication method that orbits the earth in a predetermined orbit and operates as a satellite receiving station that receives frames from terminals on the ground.
A reception step for receiving and processing a frame from the terminal, and
Based on the frame reception information at the time of receiving a frame from the terminal, the frame transmission interval of the terminal, and the positional relationship of the surrounding satellite receiving stations, a satellite receiving station suitable for receiving the frame to be transmitted next by the terminal is determined. Judgment step to do and
Communication method with.
(20)地上に設置された端末と、それぞれ所定の軌道で地球上を周回する複数の衛星受信局からなり、
 前記複数の衛星受信局はそれぞれ、前記端末からフレームを受信処理する受信部と、前記端末からフレーム受信時のフレーム受信情報と前記端末のフレーム送信間隔と、周辺の衛星受信局の位置関係に基づいて前記端末が次に送信するフレームの受信に適した衛星受信局を判定する判定部を具備する、
通信システム。
(20) It consists of a terminal installed on the ground and a plurality of satellite receiving stations that orbit the earth in a predetermined orbit.
Each of the plurality of satellite receiving stations is based on a receiving unit that receives and processes a frame from the terminal, frame reception information at the time of receiving a frame from the terminal, a frame transmission interval of the terminal, and a positional relationship of surrounding satellite receiving stations. The terminal is provided with a determination unit for determining a satellite receiving station suitable for receiving the next frame to be transmitted.
Communications system.
 100…端末、101…無線通信部、102…無線制御部
 103…フレーム生成部、104…センサー
 105…無線資源決定部、106…記憶部
 200…受信局、201…無線通信部、202…無線制御部
 203…フレーム検出・復調部、204…無線資源決定部
 205…記憶部
 1000…衛星受信局、1200…LPWA部、1300…衛星間通信部
 1301…無線通信部、1302…無線制御部
 1303…フレーム生成部、1304…フレーム検出・復調部
 3500…衛星受信局、3520…LPWA部
 3526…受信可能受信局判定部
 3531…無線通信部、3532…無線制御部
 3533…フレーム生成部、3534…フレーム検出・復調部
100 ... Terminal, 101 ... Wireless communication unit, 102 ... Wireless control unit 103 ... Frame generation unit, 104 ... Sensor 105 ... Radio resource determination unit, 106 ... Storage unit 200 ... Receiving station, 201 ... Wireless communication unit, 202 ... Wireless control Unit 203 ... Frame detection / demodulation unit, 204 ... Radio resource determination unit 205 ... Storage unit 1000 ... Satellite receiving station 1200 ... LPWA unit 1300 ... Intersatellite communication unit 1301 ... Wireless communication unit 1302 ... Wireless control unit 1303 ... Frame Generation unit, 1304 ... Frame detection / demodulation unit 3500 ... Satellite receiving station, 3520 ... LPWA unit 3526 ... Receivable receiving station determination unit 3531 ... Wireless communication unit, 3532 ... Wireless control unit 3533 ... Frame generation unit, 3534 ... Frame detection unit Demodition unit

Claims (20)

  1.  所定の軌道で地球上を周回し、地上の端末からフレームを受信する衛星受信局の1つとして動作し、
     前記端末からフレームを受信処理する受信部と、
     前記端末からフレーム受信時のフレーム受信情報と、前記端末のフレーム送信間隔と、周辺の衛星受信局の位置関係に基づいて、前記端末が次に送信するフレームの受信に適した衛星受信局を判定する判定部と、
    を具備する通信装置。
    It orbits the earth in a predetermined orbit and operates as one of the satellite receiving stations that receives frames from terminals on the ground.
    A receiving unit that receives and processes frames from the terminal,
    Based on the frame reception information at the time of receiving a frame from the terminal, the frame transmission interval of the terminal, and the positional relationship of the surrounding satellite receiving stations, a satellite receiving station suitable for receiving the frame to be transmitted next by the terminal is determined. Judgment unit and
    A communication device equipped with.
  2.  フレーム受信情報は、フレーム受信時の周波数誤差推定結果及び伝搬遅延推定結果を含む、
    請求項1に記載の通信装置。
    The frame reception information includes the frequency error estimation result and the propagation delay estimation result at the time of frame reception.
    The communication device according to claim 1.
  3.  フレーム受信情報は、前記端末の位置情報を含む、
    請求項1に記載の通信装置。
    The frame reception information includes the position information of the terminal.
    The communication device according to claim 1.
  4.  周辺の衛星受信局とフレーム受信情報を交換する、
    請求項1に記載の通信装置。
    Exchange frame reception information with nearby satellite receivers,
    The communication device according to claim 1.
  5.  前記判定部は、さらに周辺の衛星受信局からのフレーム受信情報に基づいて、前記端末が次に送信するフレームの受信に適した衛星受信局を判定する、
    請求項4に記載の通信装置。
    The determination unit further determines a satellite receiving station suitable for receiving the frame to be transmitted next by the terminal based on the frame reception information from the surrounding satellite receiving stations.
    The communication device according to claim 4.
  6.  次に送信するフレームを自局が受信可能と前記判定部が判定した端末の情報を受信対象端末リストに保持し、
     前記受信対象端末リストに保持されている情報に基づいて端末が次に送信するフレームを受信処理する、
    請求項5に記載の通信装置。
    The information of the terminal determined by the determination unit that the own station can receive the next frame to be transmitted is retained in the reception target terminal list, and the information is retained in the reception target terminal list.
    The frame to be transmitted next by the terminal is received and processed based on the information held in the reception target terminal list.
    The communication device according to claim 5.
  7.  周辺の衛星受信局からのフレーム受信情報に基づいて前記受信対象端末リストに追加した端末の情報を、前記周辺の衛星受信局に通知する、
    請求項6に記載の通信装置。
    Notify the peripheral satellite receiving stations of the information of the terminals added to the receiving target terminal list based on the frame reception information from the surrounding satellite receiving stations.
    The communication device according to claim 6.
  8.  周辺の衛星受信局からの前記通知に基づいて、自局の受信対象端末リストから該当する端末の情報を削除する、
    請求項7に記載の通信装置。
    Based on the above notification from the satellite receiving station in the vicinity, the information of the corresponding terminal is deleted from the reception target terminal list of the own station.
    The communication device according to claim 7.
  9.  自局の識別情報を付けたフレーム受信情報を周辺の衛星受信局と交換し、
     周辺の衛星受信局からのフレーム受信情報に基づいて前記受信対象端末リストに追加した端末の情報を、そのフレーム受信情報に識別情報が示された衛星受信局に通知する、
    請求項7に記載の通信装置。
    Exchange the frame reception information with the identification information of your own station with the satellite reception stations in the vicinity,
    Notify the satellite receiving station whose identification information is shown in the frame receiving information of the information of the terminal added to the receiving target terminal list based on the frame receiving information from the surrounding satellite receiving stations.
    The communication device according to claim 7.
  10.  前記判定部が前記端末から次に送信されるフレームの受信に適していると判定した周辺の衛星受信局に対して受信対象端末登録を通知する、
    請求項1に記載の通信装置。
    Notifying the surrounding satellite receiving stations that the determination unit has determined to be suitable for receiving the next frame transmitted from the terminal, the registration of the reception target terminal is notified.
    The communication device according to claim 1.
  11.  前記周辺の衛星受信局に対して受信対象端末登録を通知した端末を自局の受信対象から外す、
    請求項10に記載の通信装置。
    The terminal that has notified the satellite receiving stations in the vicinity of the reception target terminal registration is excluded from the reception target of the own station.
    The communication device according to claim 10.
  12.  周辺の衛星受信局から受信対象端末登録が通知された端末を自局の受信対象とする、
    請求項10に記載の通信装置。
    The terminal to which the reception target terminal registration is notified from the surrounding satellite receiving stations is the reception target of the own station.
    The communication device according to claim 10.
  13.  フレーム受信情報は前記端末から通知されるフレーム送信間隔を含み、
     前記判定部は、フレーム送信間隔とフレーム受信時の周波数誤差推定結果に基づいて、前記端末から次に送信されるフレームの受信予想時刻を推定する、
    請求項1に記載の通信装置。
    The frame reception information includes the frame transmission interval notified from the terminal.
    The determination unit estimates the estimated reception time of the next frame transmitted from the terminal based on the frame transmission interval and the frequency error estimation result at the time of frame reception.
    The communication device according to claim 1.
  14.  前記判定部は、前記端末から次に送信されるフレームの受信予想時刻と周辺の衛星受信局の位置関係に基づいて、前記端末が次に送信するフレームの受信に適した衛星受信局を判定する、
    請求項13に記載の通信装置。
    The determination unit determines a satellite receiving station suitable for receiving the next frame transmitted by the terminal based on the estimated reception time of the next frame transmitted from the terminal and the positional relationship of the surrounding satellite receiving stations. ,
    The communication device according to claim 13.
  15.  次に送信するフレームを自局が受信可能と前記判定部が判定した端末を自局の受信対象とする、
    請求項14に記載の通信装置。
    The terminal that the determination unit determines that the next frame to be transmitted can be received by the own station is set as the reception target of the own station.
    The communication device according to claim 14.
  16.  端末が次に送信するフレームの受信に適していると判定した周辺の衛星受信局に対して、その端末のフレームを受信するための無線リソース情報を通知する、
    請求項14に記載の通信装置。
    Notifies the radio resource information for receiving the frame of the terminal to the surrounding satellite receiving stations determined to be suitable for receiving the frame to be transmitted next by the terminal.
    The communication device according to claim 14.
  17.  周辺の衛星受信局から端末のフレームを受信するための無線リソース情報が通知されたことに応答して、該当する端末を自局の受信対象とする、
    請求項16に記載の通信装置。
    In response to notification of radio resource information for receiving a terminal frame from a nearby satellite receiving station, the corresponding terminal is targeted for reception by the own station.
    The communication device according to claim 16.
  18.  前記周辺の衛星受信局は、同一軌道を移動する衛星受信局及び隣接軌道を移動する衛星受信局のうち少なくとも一方を含む、
    請求項1に記載の通信装置。
    The surrounding satellite receiving stations include at least one of a satellite receiving station moving in the same orbit and a satellite receiving station moving in an adjacent orbit.
    The communication device according to claim 1.
  19.  所定の軌道で地球上を周回し、地上の端末からフレームを受信する衛星受信局として動作する通信方法であって、
     前記端末からフレームを受信処理する受信ステップと、
     前記端末からフレーム受信時のフレーム受信情報と、前記端末のフレーム送信間隔と、周辺の衛星受信局の位置関係に基づいて、前記端末が次に送信するフレームの受信に適した衛星受信局を判定する判定ステップと、
    を有する通信方法。
    It is a communication method that orbits the earth in a predetermined orbit and operates as a satellite receiving station that receives frames from terminals on the ground.
    A reception step for receiving and processing a frame from the terminal, and
    Based on the frame reception information at the time of receiving a frame from the terminal, the frame transmission interval of the terminal, and the positional relationship of the surrounding satellite receiving stations, a satellite receiving station suitable for receiving the frame to be transmitted next by the terminal is determined. Judgment step to do and
    Communication method with.
  20.  地上に設置された端末と、それぞれ所定の軌道で地球上を周回する複数の衛星受信局からなり、
     前記複数の衛星受信局はそれぞれ、前記端末からフレームを受信処理する受信部と、前記端末からフレーム受信時のフレーム受信情報と前記端末のフレーム送信間隔と、周辺の衛星受信局の位置関係に基づいて前記端末が次に送信するフレームの受信に適した衛星受信局を判定する判定部を具備する、
    通信システム。
    It consists of a terminal installed on the ground and multiple satellite receiving stations that orbit the earth in their respective orbits.
    Each of the plurality of satellite receiving stations is based on a receiving unit that receives and processes a frame from the terminal, frame reception information at the time of receiving a frame from the terminal, a frame transmission interval of the terminal, and a positional relationship of surrounding satellite receiving stations. The terminal is provided with a determination unit for determining a satellite receiving station suitable for receiving the next frame to be transmitted.
    Communications system.
PCT/JP2021/038067 2020-12-09 2021-10-14 Communication device, communication method, and communication system WO2022123902A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022568078A JPWO2022123902A1 (en) 2020-12-09 2021-10-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-204620 2020-12-09
JP2020204620 2020-12-09

Publications (1)

Publication Number Publication Date
WO2022123902A1 true WO2022123902A1 (en) 2022-06-16

Family

ID=81973523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038067 WO2022123902A1 (en) 2020-12-09 2021-10-14 Communication device, communication method, and communication system

Country Status (2)

Country Link
JP (1) JPWO2022123902A1 (en)
WO (1) WO2022123902A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115276771A (en) * 2022-07-28 2022-11-01 银河航天(北京)网络技术有限公司 Method and device for simulating service range of non-stationary orbit satellite gateway station

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0562374A1 (en) * 1992-03-27 1993-09-29 Motorola, Inc. Call setup method for use with a network having mobile end users
EP0601293A2 (en) * 1992-12-07 1994-06-15 Motorola, Inc. Intelligent position tracking
US5884164A (en) * 1996-10-08 1999-03-16 France Telecom Call handover in a non-geostationary satellite constellation
US20170041830A1 (en) * 2015-08-05 2017-02-09 Qualcomm Incorporated Satellite-to-satellite handoff in satellite communications system
WO2019217026A1 (en) * 2018-05-11 2019-11-14 Dish Network L.L.C. Timing advance for satellite-based communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0562374A1 (en) * 1992-03-27 1993-09-29 Motorola, Inc. Call setup method for use with a network having mobile end users
EP0601293A2 (en) * 1992-12-07 1994-06-15 Motorola, Inc. Intelligent position tracking
US5884164A (en) * 1996-10-08 1999-03-16 France Telecom Call handover in a non-geostationary satellite constellation
US20170041830A1 (en) * 2015-08-05 2017-02-09 Qualcomm Incorporated Satellite-to-satellite handoff in satellite communications system
WO2019217026A1 (en) * 2018-05-11 2019-11-14 Dish Network L.L.C. Timing advance for satellite-based communications

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115276771A (en) * 2022-07-28 2022-11-01 银河航天(北京)网络技术有限公司 Method and device for simulating service range of non-stationary orbit satellite gateway station
CN115276771B (en) * 2022-07-28 2024-01-16 银河航天(北京)网络技术有限公司 Non-stationary orbit satellite gateway station service range simulation method and device

Also Published As

Publication number Publication date
JPWO2022123902A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
JP7217078B2 (en) Infrastructure and management of cellular core and radio access networks in space
US10439706B2 (en) Mobile satellite communication system
EP3907905B1 (en) Timing synchronization for non-terrestrial cellular wireless communication networks
RU2140725C1 (en) Record-keeping in satellite communication system
EP3190721B1 (en) Satellite communication system and method in which wideband frequency hopping signals are received at the satellite with control of the power level of the channels.
RU2136108C1 (en) Method for load allocation for several satellite retransmitters by extended spectrum signals from several antennas of ground stations
AU724146B2 (en) Satellite communications system having distributed user assignment and resource assignment with terrestrial gateways
CN112787712B (en) Communication connection establishing method for low-orbit satellite base station-aircraft user terminal
Liberg et al. Narrowband internet of things for non-terrestrial networks
WO2014030447A1 (en) Communication system, communication terminal, communication method, chip clock generation method, and orthogonal code generation method
US11683089B2 (en) Radio communication system, radio communication method, and base station device
WO2013130812A1 (en) Satellite communication system transmitting frequency hopped signals with a plurality of gateways and non processing satellites
CN1139845A (en) Low earth orbit communication satellite gateway-to-gateway relay system
CA2651435A1 (en) Use of alternate communication networks to complement an ad-hoc mobile node to mobile node communication network
WO2022123902A1 (en) Communication device, communication method, and communication system
ES2293698T3 (en) COMPARTMENT OF SLOTS IN AN ACCESS CHANNEL.
KR100767846B1 (en) System and method for resolving frequency and timing uncertainty in access transmissions in a spread spectrum communication system
WO2022123909A1 (en) Communication device, communication method, and communication system
WO2023006600A1 (en) Short area indication for public warning system
CN116998196A (en) Communication method and communication device
Narenthiran Optimisation of mobility management for mobile satellite systems resources
Vázquez et al. Pushing for higher rates and efficiency in Satcom: the different perspectives within SatNExIV

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903006

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022568078

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903006

Country of ref document: EP

Kind code of ref document: A1