WO2022123867A1 - Air bubble-containing liquid production device - Google Patents

Air bubble-containing liquid production device Download PDF

Info

Publication number
WO2022123867A1
WO2022123867A1 PCT/JP2021/035868 JP2021035868W WO2022123867A1 WO 2022123867 A1 WO2022123867 A1 WO 2022123867A1 JP 2021035868 W JP2021035868 W JP 2021035868W WO 2022123867 A1 WO2022123867 A1 WO 2022123867A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
rotating body
bubble
containing liquid
manufacturing apparatus
Prior art date
Application number
PCT/JP2021/035868
Other languages
French (fr)
Japanese (ja)
Inventor
太志 吉田
輝海 森
陽介 畑山
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2022123867A1 publication Critical patent/WO2022123867A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/74Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with rotary cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time

Definitions

  • the present invention relates to a bubble-containing liquid manufacturing apparatus.
  • Patent Document 1 discloses a conventional bubble-containing liquid manufacturing apparatus.
  • This bubble-containing liquid manufacturing apparatus includes a casing and a rotating body.
  • the casing circulates the gas and liquid that have flowed into the casing.
  • the rotating body is rotatably arranged in the casing around a predetermined axis.
  • the bubble-containing liquid manufacturing apparatus applies shear stress to the bubbles and liquid flowing between the inner wall of the casing and the rotating body by rotating the rotating body in the casing by a rotation driving source to refine the gas bubbles.
  • the present invention has been made in view of the above-mentioned conventional circumstances, and it is an object to be solved to provide a bubble-containing liquid manufacturing apparatus capable of suppressing the generation of air pools in the casing.
  • the bubble-containing liquid manufacturing apparatus includes a casing and a shearing mechanism.
  • the casing has a cylindrical shape in which an inflow port for gas and liquid to flow in is formed on one end side, and an outflow port in which gas and liquid flow out from the inflow port and flow through the inside is formed on the other end side. ..
  • the shearing mechanism applies a shearing force to the gas and liquid flowing in the casing.
  • the shearing mechanism portion has a rotating body, a rotation imparting portion, and a facing portion.
  • the rotating body has a cylindrical shape that is rotatably arranged in a casing around an axis.
  • the rotation imparting portion applies a rotational force around the axis to the rotating body.
  • the facing portion is provided on the inner wall portion of the casing, and has a cylindrical shape facing the outer peripheral portion of the rotating body through a predetermined gap.
  • the outlet faces the space formed between one end surface of the rotating body in the axial direction and the inner surface of the casing facing the one end surface.
  • the outlet may open to the inner surface of the inner surface of the casing extending along the direction intersecting the axial direction of the rotating body.
  • the casing can form an outflow path communicating with the outlet.
  • the outflow path can be formed extending along the axial direction of the rotating body.
  • the outflow path can be formed at a position distant from the axis of the rotating body in the centrifugal direction.
  • a plurality of outlets can be formed.
  • the inlet may be configured to have a liquid inlet into which the liquid flows.
  • the cross-sectional area of the outlet may be smaller than the cross-sectional area of the liquid inlet.
  • the inlet may be configured to have a gas inlet that opens at a position different from the liquid inlet and into which gas flows.
  • the gas inlet can be opened facing the gap between the outer peripheral portion and the facing portion of the rotating body.
  • the bubble-containing liquid manufacturing apparatus of the present invention may further include a pump unit.
  • the pump portion has a wing portion.
  • the wing portion is provided at an end portion of the rotating body opposite to the space side between the inner surface of the casing and rotates with the rotation of the rotating body. Then, the gas inlet can be opened at a position closer to the outlet than the wing.
  • FIG. 1 is a vertical sectional view schematically showing the structure of the bubble-containing liquid manufacturing apparatus which concerns on Embodiment 1.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
  • It is a vertical sectional view schematically showing the structure of the bubble-containing liquid production apparatus which concerns on Embodiment 2.
  • FIG. It is a vertical sectional view schematically showing the structure of the bubble-containing liquid manufacturing apparatus which concerns on Embodiment 3.
  • the size of the bubbles includes, for example, ultrafine bubbles (UFB: ultrafine bubble) having a diameter of 1 ⁇ m or less, microbubbles (MB: micro bubble) having a diameter of 100 ⁇ m or less, and millibubbles (milli bubble) having a diameter of 1 mm or less.
  • UFB ultrafine bubble
  • MB micro bubble
  • millibubbles milli bubble
  • the size of the bubbles contained in the bubble-containing liquid may be any size, but is typically UFB.
  • the bubble-containing liquid manufacturing apparatus 1 of the first embodiment (hereinafter, also simply referred to as an apparatus 1) includes a casing 10, a shear mechanism portion 20, and a pump portion 30, as shown in FIGS. 1 to 3.
  • the casing 10 is made of a metal material or a synthetic resin material. As shown in FIG. 1, the casing 10 has a cylindrical shape, and its axis is arranged along the horizontal direction. The casing 10 allows coolant as a liquid and air as a gas to flow from one end 10A side in the axial direction to the other end 10B side.
  • the casing 10 has a case main body 11 and a lid portion 12.
  • the case body 11 is a member arranged on one end 10A side in the axial direction of the casing 10.
  • the case body 11 has a bottomed cylindrical shape with one end open.
  • the case body 11 has a bottom portion 11A and a peripheral wall portion 11B, and is a single member in a form in which one shaft end of the peripheral wall portion 11B is closed by the bottom portion 11A.
  • the lid portion 12 is a member arranged on the other end portion 10B side in the axial direction of the casing 10.
  • the lid portion 12 closes the opening-side end of the case body 11 in a liquid-tight manner.
  • the lid portion 12 has a stepped shape in which a large diameter portion 12A having an outer diameter and an inner diameter substantially equal to that of the case body 11 and a small diameter portion 12B having an outer diameter and an inner diameter smaller than the large diameter portion 12A are connected in the axial direction. It has a tubular shape.
  • a central hole 12C is formed in the lid portion 12.
  • the central hole 12C is formed so as to penetrate the lid portion 12 in the axial direction.
  • a bearing member B that rotatably supports the shaft member 24, which will be described later, is inserted into the center hole 12C.
  • the casing 10 forms a first inlet 13 (exemplified as a liquid inlet), a second inlet 14 (exemplified as a gas inlet), and an outlet 15.
  • the first inflow port 13 and the second inflow port 14 are formed on the end portion 10A side of the casing 10, and the outflow port 15 is formed on the end portion 10B side of the casing 10.
  • the bubble-containing liquid manufacturing apparatus 1 has a first inlet 13 into which the coolant flows, and a second inlet 14 which is opened at a position different from the first inlet 13 and into which air flows. It has two inlets.
  • the first inflow port 13, the second inflow port 14, and the outflow port 15 each open to the inner surface of the casing 10 and communicate with each other through the internal space of the casing 10. Coolant and air are supplied from the first inflow port 13 and the second inflow port 14, respectively.
  • the coolant flowing in from the first inflow port 13 and the air flowing in from the second inflow port 14 flow through the casing 10 while being subjected to shearing force in the shearing mechanism section 20 described later to become a bubble-containing liquid, and become an outflow port 15. Is sent out of the casing 10.
  • the first inflow port 13 is on the end portion 10A side of the casing 10 and is formed in the center of the bottom portion 11A of the case body 11. Specifically, a first inflow path 13A is formed at the center of the bottom portion 11A so as to penetrate along the axial direction.
  • the first inflow port 13 is an opening on the downstream end side of the first inflow path 13A.
  • a pipeline (not shown) through which the coolant flows is connected to the upstream side of the first inflow path 13A via the joint portion 13B.
  • the upstream side of this pipeline communicates with a storage tank (tank) (not shown) of the grinding machine.
  • the second inflow port 14 is on the end portion 10A side of the casing 10 and is formed on the peripheral wall portion 11B of the case main body 11.
  • a second inflow path 14A is formed through the peripheral wall portion 11B.
  • the second inflow path 14A is formed so as to vertically penetrate the peripheral wall portion 11B at a position corresponding to the upper end portion of the casing 10 in the installed state.
  • the second inflow port 14 is an opening on the downstream end side of the second inflow path 14A.
  • a pipeline (not shown) through which compressed air flows is connected to the upstream side of the second inflow path 14A via the joint portion 14B.
  • the upstream side of this pipeline communicates with a source of compressed air such as a compressor.
  • the outlet 15 is open on the inner surface of the casing 10 extending in a direction intersecting the axial direction of the casing 10. Specifically, as shown in FIGS. 1 and 3, the outlet 15 is formed on the end portion 10B side of the casing 10 and at the bottom of the large diameter portion 12A of the lid portion 12. An outflow path 15A is formed through the bottom of the large diameter portion 12A. The outflow port 15 is an opening on the upstream end side of the outflow path 15A. As shown in FIG. 1, the inner surface A1 of the bottom portion of the large diameter portion 12A is formed so as to extend in a direction substantially orthogonal to the axial direction of the casing 10. The outlet 15 is open to the inner surface A1.
  • the outflow path 15A is formed at a position separated in the centrifugal direction from the central axis of the lid portion 12. Specifically, the outflow path 15A is formed so as to extend along the central axis of the lid portion 12 at a position offset upward from the central axis of the lid portion 12.
  • the central axis of the lid portion 12 has the same meaning as the central axis of the casing 10, and the central axis of the casing 10 coincides with the rotation axis of the rotating body 21 described later.
  • a pipeline (not shown) for delivering the bubble-containing liquid generated by the device 1 to the grinding machine side is connected to the downstream end side of the outflow path 15A via the joint portion 15B.
  • the upstream side of this pipeline may be connected to the above-mentioned storage tank, or may directly communicate with the discharge port for discharging the coolant to the processing point.
  • the cross-sectional area of the outflow port 15 is smaller than the cross-sectional area of the first inflow port 13. Specifically, the opening diameter of the outlet 15 is about 25 mm, while the opening diameter of the first inlet 13 is about 32 mm, and the cross-sectional area ratio is about 0.6 times.
  • the cross-sectional area ratio between the outlet 15 and the first inlet 13 can be, for example, about 0.5 times to 0.8 times.
  • the shearing mechanism unit 20 applies a shearing force to the coolant and air flowing in the casing 10.
  • the shearing mechanism portion 20 includes a rotating body 21, a motor 22 (exemplified as a rotation imparting portion), and an opposing member 23 (exemplified as an opposing portion).
  • the shearing mechanism portion 20 is configured by arranging the rotating body 21 and the facing member 23 so as to face each other.
  • the shearing mechanism portion 20 rotates the rotating body 21 by the motor 22 to cause relative rotation (relative movement) between the rotating body 21 and the facing member 23.
  • a mixed fluid of coolant and air flows between the rotating body 21 and the facing member 23.
  • the shearing mechanism portion 20 is configured to apply a shearing force to the mixed fluid by the relative movement between the rotating body 21 and the facing member 23.
  • the rotating body 21 is formed in a cylindrical shape.
  • the rotating body 21 is rotatably arranged in the casing 10 around the central axis of the rotating body 21.
  • the central axis of the rotating body 21 is arranged coaxially with the central axis of the casing 10. That is, in the present embodiment, the rotating body 21 is arranged so that its central axis coincides with the central axis of the casing 10.
  • the rotating body 21 is made of a metal material or a synthetic resin material.
  • the rotating body 21 includes a peripheral wall portion 21A, a bottom wall portion 21B, and a tubular member 21C.
  • the peripheral wall portion 21A is a portion corresponding to the inner peripheral portion of the rotating body 21.
  • the peripheral wall portion 21A has a cylindrical shape.
  • the bottom wall portion 21B is a portion corresponding to one end portion in the axial direction of the rotating body 21.
  • the bottom wall portion 21B has a disk shape and closes one end of the peripheral wall portion 21A in the axial direction.
  • the tubular member 21C is a portion corresponding to the outer peripheral portion of the rotating body 21.
  • the tubular member 21C has a cylindrical shape having a diameter larger than that of the peripheral wall portion 21A, and is attached to the outer periphery of the peripheral wall portion 21A.
  • the end surface (one end surface in the axial direction of the rotating body) on the bottom wall portion 21B side faces the inner surface of the lid portion 12 of the casing 10, and the outer peripheral surface of the tubular member 21C is formed.
  • the casing 10 is housed in the casing 10 so as to face the inner peripheral surface of the case body 11.
  • a space S is formed between the bottom wall portion 21B and the lid portion 12.
  • the outlet 15 faces the space S and is open.
  • the distance between the bottom wall portion 21B and the lid portion 12 is about 0.2 to 0.33 times (30 mm to 50 mm) the outer diameter (about 150 mm) of the rotating body 21.
  • the tubular member 21C forms an annular gap C at a predetermined interval from the facing member 23.
  • the second inflow port 14 is open facing the gap C.
  • the distance between the tubular member 21C and the facing member 23 in the annular gap C is about 2 mm.
  • the size of the distance between the tubular member 21C and the facing member 23 can be appropriately set according to the viscosity of the flowing liquid and the like, regardless of the outer diameter of the rotating body 21.
  • the distance between the gaps C can be about 1 mm to 4 mm.
  • the size of the cross-sectional area of the entire annular gap C is larger than the cross-sectional area of the first inflow port 13.
  • the first structural surface S1 is provided on the outer peripheral portion of the rotating body 21.
  • the first structural surface S1 is provided on the outer peripheral portion of the tubular member 21C.
  • the first structural surface S1 is a cylindrical curved surface centered on the central axis of the rotating body 21.
  • a plurality of recesses S10 are formed on the first structural surface S1.
  • the plurality of recesses S10 are circular dimples.
  • the plurality of recesses S10 are arranged at predetermined intervals in the axial direction and the circumferential direction on the first structural surface S1.
  • the motor 22 is arranged outside the end portion 10B side of the casing 10.
  • One end of the shaft member 24 is connected to the motor 22.
  • the shaft member 24 is rotatably supported by a bearing member B arranged in the central hole 12C of the lid portion 12.
  • the other end side of the shaft member 24 projects cantileverly into the casing 10 and is connected to the rotating body 21.
  • the shaft member 24 transmits the rotational force of the motor 22 to the rotating body 21. That is, the rotating body 21 is subjected to rotational force from the motor 22 via the shaft member 24.
  • the facing member 23 is a cylindrical member provided on the inner wall portion of the casing 10.
  • the inner peripheral surface of the facing member 23 faces the outer peripheral surface of the tubular member 21C of the rotating body 21.
  • an annular gap C is formed between the facing member 23 and the tubular member 21C.
  • the second structural surface S2 is provided on the inner peripheral portion of the facing member 23.
  • the second structural surface S2 is a cylindrical curved surface centered on the central axis of the case body 11.
  • a plurality of recesses S20 are formed on the second structural surface S2.
  • the plurality of recesses S20 are circular dimples, and are arranged at predetermined intervals in the axial direction and the circumferential direction on the second structural surface S2, which is the same as the first structural surface S1.
  • the pump unit 30 is configured to be able to transfer the coolant from the first inlet 13 to the outlet 15 by driving the motor 22.
  • the pump portion 30 has a base portion 31 and a plurality of wing portions 32.
  • the base portion 31 is attached to an end portion of the rotating body 21 opposite to the end portion corresponding to the space S, and rotates integrally with the rotating body 21.
  • the base portion 31 has a disk shape having an outer diameter equivalent to the outer diameter of the tubular member 21C in the rotating body 21.
  • the plurality of wing portions 32 are provided integrally with the base portion 31 so as to project toward the bottom portion 11A side of the case main body 11. As shown in FIG. 3, the plurality of wing portions 32 are formed so as to extend radially from the central portion of the base portion 31 toward the peripheral portion while swirling.
  • the pump unit 30 constitutes a centrifugal pump (centrifugal pump), and the plurality of blade units 32 correspond to centrifugal impellers. That is, the pump portion 30 forms a flow of coolant in the centrifugal direction from the center (rotation axis) of the base portion 31.
  • the plurality of blade portions 32 apply a turning force to the coolant to increase energy, and from the first inflow port 13, an annular gap C between the inner peripheral surface of the casing 10 and the outer peripheral surface of the rotating body 21 and an outflow port. Form a discharge pressure to transfer the coolant towards 15.
  • each wing portion 32 is formed in a streamlined shape so that the width increases from the inner peripheral side to the outer peripheral side thereof. As a result, a sufficient width of the flow path 33 formed between the blade portions 32 is secured, and the width of the flow path 33 is made uniform. As a result, it is possible to reduce the resistance of the coolant flowing through the flow path 33.
  • the second inflow port 14 is open facing the gap C between the outer peripheral surface of the rotating body 21 and the inner peripheral surface of the facing member 23.
  • the opening position of the second inflow port 14 is a position closer to the outflow port 15 than the wing portion 32 of the pump portion 30 in the axial direction of the casing 10. Therefore, the air from the second inflow port 14 flows into the downstream side of the pump unit 30.
  • the second inflow port 14 is closer to the outflow port 15 than the pump portion 30 and corresponds to the most upstream side of the first structural surface S1 and the second structural surface S2 (the position corresponding to the most upstream side of the first structural surface S1 and the second structural surface S2. It is preferably formed at a position closer to the first inflow port 13.
  • the motor 22 is activated and the rotating body 21 rotates at a predetermined rotation speed (for example, 3000 rpm).
  • a predetermined rotation speed for example, 3000 rpm.
  • the pump unit 30 rotates together with the rotating body 21, and the coolant is sucked from the storage tank of the grinding machine (not shown) and introduced into the casing 10 from the first inflow port 13.
  • the coolant introduced into the casing 10 from the first inflow port 13 receives a swirling action by the pump unit 30 and is supplied to the gap C at a predetermined discharge pressure. Further, from the second inflow port 14, compressed air from a compressor or the like (not shown) is introduced into the casing 10 at a predetermined pressure and mixed with the coolant in the gap C. The coolant mixed with air flows between the first structural surface S1 and the second structural surface S2 toward the downstream side. At this time, the first structural surface S1 of the rotating body 21 rotates relative to the second structural surface S2 of the opposing member 23. As a result, the coolant containing air receives shear stress, and the bubbles become finely divided bubble-containing coolant (bubble-containing liquid).
  • two structural surfaces S1 and S2 are formed, a first structural surface S1 on the rotating body 21 side and a second structural surface S2 on the casing 10 (opposing member 23) side, and these two structures are formed.
  • a shear force is applied to the coolant between the uneven surfaces of the surfaces S1 and S2. Therefore, an extremely large shear energy (energy) can be applied to the coolant as compared with the case where there is only one uneven surface or the case where the uneven surface is not formed, and the miniaturization of bubbles can be promoted.
  • the size of the cross-sectional area of the entire annular gap C is larger than the size of the cross-sectional area of the first inflow port 13, the pressure loss of the coolant flowing through the gap C is reduced.
  • the bubble-containing liquid generated between the first structural surface S1 and the second structural surface S2 reaches the space S between the bottom wall portion 21B of the rotating body 21 and the lid portion 12 of the casing 10, and reaches the outflow port 15. Outflow from. Since the outflow port 15 is open facing the space S, the bubble-containing liquid can flow out without causing an air pool in the space S. Further, since the outflow port 15 is provided with a cross-sectional area smaller than the cross-sectional area of the first inflow port 13, it is delivered to the grinding machine side (not shown) with sufficient discharge pressure by the pump unit 30.
  • the bubble-containing liquid enters the outflow path 15A from the outflow port 15 and flows out to the outside of the casing 10 through the outflow path 15A.
  • the outflow path 15A extends along the axial direction of the rotating body 21. That is, the outflow path 15A extends in the same direction as the flow direction of the bubble-containing liquid in the casing 10. Therefore, the outflow of the bubble-containing liquid from the casing 10 is promoted.
  • the outlet 15 is formed between the end surface on the bottom wall portion 21B side, which is one end surface of the rotating body 21 in the axial direction, and the inner surface of the lid portion 12, which is the inner surface of the casing 10 facing the end surface. It is open facing the space S.
  • This space S is located downstream of the shear mechanism portion 20. Therefore, the bubble-containing liquid that has reached the space S has the bubble miniaturization process completed in the shear mechanism portion 20 on the upstream side. Therefore, only the bubble-containing liquid for which the bubble miniaturization treatment has been completed flows out from the outlet 15, and the liquid in the middle of the treatment does not flow out.
  • the bubble-containing liquid manufacturing apparatus 1 includes a casing 10 and a shearing mechanism section 20.
  • the casing 10 has a first inlet 13 and a second inlet 14 formed on one end 10A side, and flows into the other end 10B side from the first inlet 13 and the second inlet 14 to the inside. It has a cylindrical shape in which the coolant and the outflow port 15 through which air flows out are formed.
  • the shearing mechanism unit 20 applies a shearing force to the coolant and air flowing in the casing 10 to generate a bubble-containing liquid.
  • the shearing mechanism portion 20 has a rotating body 21, a motor 22 as a rotation imparting portion, and an opposing member 23 as an opposing portion.
  • the rotating body 21 has a cylindrical shape that is rotatably arranged in the casing 10 around an axis.
  • the motor 22 applies a rotational force around the axis to the rotating body 21.
  • the facing member 23 is provided on the inner wall portion of the casing 10 and has a cylindrical shape facing the outer peripheral portion of the rotating body 21 via a predetermined gap.
  • the outlet 15 is a space S formed between an end surface on the bottom wall portion 21B side, which is one end surface of the rotating body 21 in the axial direction, and an inner surface of the lid portion 12, which is the inner surface of the casing 10 facing the end surface. It is open facing the roof.
  • the outlet 15 is open in the space S.
  • the space S is a space between one end surface of the rotating body 21 and the inner surface of the casing 10, and is a space at the axial end in the internal space of the casing 10. Therefore, the bubble-containing liquid that has entered the space S can be discharged from the outlet 15 without staying.
  • the bubble-containing liquid manufacturing apparatus 1 can suppress the generation of air pools in the casing 10.
  • the outlet 15 is open in the space S, and this space S is located on the downstream side of the shear mechanism portion 20. Therefore, the bubble-containing liquid manufacturing apparatus 1 can suitably flow out the treated bubble-containing liquid without flowing out the bubble-containing liquid in the middle of the bubble miniaturization treatment.
  • the outlet 15 is open to the inner surface A1 of the inner surface of the casing 10 extending along the direction orthogonal to the axial direction of the casing 10. Therefore, the bubble-containing liquid that flows along the axial direction of the casing 10, which is the same direction as the axial direction of the rotating body 21, can be introduced into the outlet 15 as it is in the flow direction. As a result, the bubble-containing liquid can be efficiently discharged from the casing 10.
  • the casing 10 forms an outflow path 15A communicating with the outflow port 15.
  • the outflow path 15A is formed so as to extend along the axial direction of the rotating body 21. Therefore, the flow of the bubble-containing liquid flowing through the outflow passage 15A can be made to flow along the axial direction which is the flow direction in the casing 10. As a result, the bubble-containing liquid can be efficiently discharged from the casing 10.
  • the outflow path 15A is formed at a position separated in the centrifugal direction from the central axis of the lid portion 12 (the axis of the rotating body 21). Specifically, the outflow path 15A is formed in the casing 10 in which the central axis is arranged along the horizontal direction, extending along the central axis of the lid portion 12 at a position offset upward from the central axis of the lid portion 12. Has been done. Therefore, it is possible to promote the discharge of air and suppress the generation of air pools. That is, since the coolant, which is a liquid constituting the bubble-containing liquid, collects in the centrifugal direction due to centrifugal force, it is easily discharged from the outlet 15. Therefore, the retention of fluid (both gas and liquid) in the casing 10 is less likely to occur, and as a result, the generation of air pools can be suppressed.
  • the inflow port is configured to have a first inflow port 13 as a liquid inflow port into which a liquid flows.
  • the cross-sectional area of the outlet 15 is smaller than the cross-sectional area of the first inlet 13. Therefore, the pressure loss of the inflowing liquid can be reduced, and the suction property can be improved.
  • the inflow port is configured to have a second inflow port 14 as a gas inflow port.
  • the second inflow port 14 opens at a position different from that of the first inflow port 13 to allow air to flow in. Therefore, the coolant and the air are made to flow in from separate inlets, and the decrease in pressure can be suppressed.
  • the second inflow port 14 is open facing the annular gap C between the outer peripheral portion of the rotating body 21 and the facing member 23. Therefore, air can be efficiently flowed into the casing 10. Further, the second inflow port 14 opens in the gap C at a position closer to the end portion 10A in the casing 10. Therefore, the shearing force of the shearing mechanism portion 20 can be applied over a longer distance.
  • the bubble-containing liquid manufacturing apparatus 1 further includes a pump unit 30.
  • the pump portion 30 has a wing portion 32.
  • the wing portion 32 is provided at an end portion of the rotating body 21 opposite to the space S side between the inner surface of the casing 10 and rotates with the rotation of the rotating body 21.
  • the second inflow port 14 is open at a position closer to the outflow port 15 than the wing portion 32. Therefore, it is possible to prevent air from entering the wing portion 32 and prevent a pressure drop. That is, in the bubble-containing liquid manufacturing apparatus 1, air is introduced into the casing 10 on the downstream side of the wing portion 32. Therefore, in the wing portion 32, the coolant before the air from the second inflow port 14 is mixed flows, and the decrease in pressure can be suppressed.
  • the bubble-containing liquid manufacturing apparatus 1 includes a pump unit 30, a pump is separately provided on the pipeline side for feeding coolant to the first inlet 13 or on the pipeline side for delivering the bubble-containing liquid from the outlet 15. No need to install. Therefore, it is possible to simplify the system provided with the bubble-containing liquid manufacturing apparatus 1.
  • the bubble-containing liquid manufacturing apparatus 201 according to the second embodiment will be described.
  • the bubble-containing liquid manufacturing apparatus 201 of the first embodiment has a second outlet 216 in addition to the outlet 15 similar to that of the first embodiment. Is different from.
  • the same configurations as those of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the second outlet 216 is open facing the space S and is formed on the inner surface A1 of the bottom of the large diameter portion 12A. It is open.
  • the second outlet 216 is on the end 10B side of the casing 10 and is formed at the bottom of the large diameter portion 12A of the lid portion 12.
  • a second outflow path 216A is formed through the bottom of the large diameter portion 12A.
  • the second outflow port 216 is an opening on the upstream end side of the second outflow path 216A.
  • the second outflow path 216A is formed so as to extend along the central axis of the lid portion 12 at a position offset downward from the central axis of the lid portion 12.
  • the second outflow passage 216A is formed vertically and vertically symmetrically with the outflow passage 15A with the central axis of the lid portion 12 interposed therebetween.
  • a pipeline (not shown) is connected to the downstream side of the second outflow passage 216A. This pipeline joins the pipeline connected to the downstream side of the outflow channel 15A on the downstream side.
  • a shaft member 24 connected to the rotating body 21 is inserted in the center of the lid portion 12, and a bearing member that rotatably supports the shaft member 24. B is placed.
  • a mechanism portion for rotationally supporting the rotating body 21 is provided on the end portion 10B side of the casing 10, so that space is restricted. Therefore, it may not be possible to secure a cross-sectional area of a desired size with only one outlet. However, by forming a plurality of outlets such as the outlet 15 and the second outlet 216, it is possible to easily secure a cross-sectional area having a desired size.
  • the bubble-containing liquid manufacturing apparatus 301 differs from the bubble-containing liquid manufacturing apparatus 1 of the first embodiment in that it has an outlet 315 instead of the outlet 15 of the first embodiment.
  • the same configurations as those of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the outlet 315 is similar to the outlet 15 in that the outlet 315 is open facing the space S.
  • the outlet 315 differs from the outlet 15 of the first embodiment in that the outlet 315 is open to the inner surface of the inner surface of the casing 10 extending in the axial direction of the casing 10.
  • the outlet 315 is formed on the end portion 10B side of the casing 10 and on the peripheral wall portion of the large diameter portion 12A of the lid portion 12.
  • the outflow port 315 opens at the uppermost position in the internal space of the casing 10 and at a position closest to the end portion 10B in the bubble-containing liquid manufacturing apparatus 301 in the installed state.
  • An outflow path 315A is formed through the peripheral wall portion of the large diameter portion 12A.
  • the outflow port 315 is an opening on the upstream end side of the outflow path 315A.
  • the inner surface A2 of the peripheral wall portion of the large diameter portion 12A is formed so as to extend in a direction along the axial direction of the casing 10.
  • the outlet 315 is open to the inner surface A2.
  • the outflow path 315A is formed so as to extend in the vertical direction at a position close to the bottom of the large diameter portion 12A in the peripheral wall portion of the large diameter portion 12A.
  • the extension direction of the outflow path 315A may be a direction that intersects the central axis of the lid portion 12, or is twisted with respect to the central axis of the lid portion 12, such as the tangential direction of the peripheral wall portion of the lid portion 12. It may extend in the direction of the relationship.
  • the outlet 315 is open in the space S. Since the space S is the space at the axial end in the internal space of the casing 10, the bubble-containing liquid that has entered the space S can be discharged from the outflow port 315 without staying.
  • the outlet 315 is open at the uppermost position in the internal space of the casing 10 and at the position closest to the end portion 10B. Therefore, even if an air pool is generated in the space S, it can be quickly discharged from the outlet 315.
  • the rotating body may have, for example, a conical trapezoidal shape, a shape having a step formed on the outer circumference, or the like.
  • the facing portion that opposes the outer peripheral portion of the rotating body through a predetermined gap may also have a shape that follows the shape of the outer peripheral portion of the rotating body.
  • coolant and air are exemplified as the liquid and gas constituting the bubble-containing liquid, but this is not essential.
  • the gas forming bubbles include air, nitrogen, oxygen, ozone, carbon dioxide and the like.
  • the liquid constituting the bubble-containing liquid include coolant, cutting oil, water (tap water, purified water, seawater, etc.) and the like. The gas and liquid constituting these bubble-containing liquids can be appropriately selected depending on the intended use.
  • the shear mechanism portion has an example of having a first structural surface and a second structural surface arranged to face the first structural surface, but this is not essential. ..
  • the shearing mechanism portion may have, for example, only one of the first structural surface and the second structural surface, or may not have either the first structural surface or the second structural surface. That is, the shearing mechanism portion may be in a form in which a shearing force is applied to the gas and the liquid flowing between the rotating bodies and the casings that rotate relative to each other, and the specific configuration thereof is particularly questionable. do not have. It is preferable that the shearing mechanism portion has undulations such as concave and convex formed on the surfaces facing each other in at least one of the relative rotating portions of the rotating body and the casing.
  • the first structural surface and the second structural surface each have a plurality of circular recesses, but this is not essential.
  • first structural surface and the second structural surface have recesses, their size, depth, external shape, arrangement spacing, and the like are not particularly limited.
  • the outer shape of the concave portion may be, for example, a polygonal shape such as a triangle or a quadrangle. In particular, in the case of a hexagonal honeycomb structure, a plurality of recesses can be formed at high density.
  • the concave portion is not limited to an independent shape, and may have various shapes such as a groove shape, a grid shape, a radial shape, and the like that can form an uneven surface.
  • tubular member is provided as a member separate from the peripheral wall portion of the rotating body, but the tubular member may be provided integrally with the peripheral wall portion of the rotating body.
  • the facing portion is provided as a facing member by a member separate from the peripheral wall portion of the casing, but the facing portion may be provided integrally with the casing on the inner wall portion of the casing. good.
  • the second structural surface can be formed directly on the inner wall portion of the casing.
  • the inlet may have, for example, one or more inlets into which a liquid premixed with gas flows, one or more liquid inlets into which the liquid flows, and one or more inlets into which the gas flows. It may be in the form of having a gas inlet of the above.
  • the embodiment including the pump unit is illustrated, but this is not essential.
  • the function of the pump unit can be realized by, for example, a configuration in which a separate pump is provided in the upstream pipe of the inflow port or the downstream pipe of the outflow port. In this case, it is not necessary for the bubble-containing liquid manufacturing apparatus to include a pump unit.
  • the structure of the pump portion is not limited to the centrifugal pump, and other pump structures such as a vane pump and a cascade pump (centrifugal pump) may be adopted.
  • the outlet is formed so as to face one of the shaft end surface or the peripheral wall surface in the space between the end surface of the rotating body and the inner surface of the casing, but this is not essential. ..
  • the outlet may be formed, for example, in a form that is open facing both the shaft end surface and the peripheral wall surface in the space between the end surface of the rotating body and the inner surface of the casing, that is, straddling the peripheral wall and the end wall of the casing. ..
  • the outlet facing the shaft end surface in the space between the end surface of the rotating body and the inner surface of the casing and the outlet opening facing the peripheral wall surface. Both may be formed.
  • the outlet When the outlet is formed by opening in the inner surface of the casing extending along the direction intersecting the axial direction of the rotating body, the extending direction of this "inner surface" is in the axial direction of the rotating body.
  • Bubble-containing liquid manufacturing apparatus 10 ... Casing, 13, 14 ... Inflow port (13 ... First inflow port (liquid inflow port), 14 ... Second inflow port (gas inflow port)), 15, 216, 315 ... Outlet, 15A, 216A, 315A ... Outflow path, 20 ... Shear mechanism part, 21 ... Rotating body, 22 ... Motor (rotation imparting part), 23 ... Opposing member (opposing part), 30 ... Pump part, 32 ... Wings, C ... Gap (between the outer peripheral portion of the rotating body and the facing portion), S ... Space (between one end surface of the rotating body in the axial direction and the inner surface of the casing).

Abstract

This air bubble-containing liquid production device (1) comprises a casing (10) and a shearing mechanism unit (20). The casing (10) has a cylindrical shape in which a first inflow port (13) and a second inflow port (14) are formed in one end (10A) side, and an outflow port (15) is formed in the other end (10B) side. The shearing mechanism unit (20) applies a shearing force to gas and liquid flowing in the casing (10) to generate an air bubble-containing liquid. The shearing mechanism unit (20) has a rotating body (21), a motor (22), and an opposing member (23). The rotating body (21) is disposed inside the casing (10) so as to be rotatable around the axis. The motor (22) applies an axial rotational force to the rotating body (21). The opposing member (23) opposes the rotating body (21) across a prescribed gap. The outflow port (15) faces and opens to a space (S) formed between: one axial-direction end surface of the rotating body (21); and an inner surface of the casing (10) facing the one end surface.

Description

気泡含有液体製造装置Bubble-containing liquid manufacturing equipment
 本発明は、気泡含有液体製造装置に関する。 The present invention relates to a bubble-containing liquid manufacturing apparatus.
 特許文献1は従来の気泡含有液体製造装置を開示している。この気泡含有液体製造装置は、ケーシング(casing)及び回転体を備えている。ケーシングは、内部に流入した気体及び液体を流通させる。回転体は、所定の軸周りに回転自在にケーシング内に配置されている。気泡含有液体製造装置は、回転駆動源により回転体をケーシング内で回転させることによって、ケーシングの内壁と回転体との間を流通する気泡及び液体にせん断応力を印加して気体の泡を微細化し、微細化された気泡を含有した気泡含有液体を生成する。 Patent Document 1 discloses a conventional bubble-containing liquid manufacturing apparatus. This bubble-containing liquid manufacturing apparatus includes a casing and a rotating body. The casing circulates the gas and liquid that have flowed into the casing. The rotating body is rotatably arranged in the casing around a predetermined axis. The bubble-containing liquid manufacturing apparatus applies shear stress to the bubbles and liquid flowing between the inner wall of the casing and the rotating body by rotating the rotating body in the casing by a rotation driving source to refine the gas bubbles. , Generates a bubble-containing liquid containing finely divided bubbles.
特開2019-103970号公報Japanese Unexamined Patent Publication No. 2019-103970
 特許文献1の場合、気体及び液体は、回転体の軸方向の一端側に形成された送入口からケーシング内に流入し、ケーシングの外周に形成された送出口から流出する。この場合、回転体の軸方向の他端側における回転体とケーシングの内面との間の隙間において、送出口から流出されることなく滞留する気泡含有液体が生じることがあった。気泡含有液体は、滞留すると、微細化された気泡の粒子が再び集まって大きな気泡となり、ひいては空気溜まりとなる。ケーシング内の空間に空気溜まりが生じると、気泡含有液体のケーシング内における流れが不安定になったり、送出口からの吐出圧を高めることができなくなってしまったりといった不具合の生じるおそれがあった。 In the case of Patent Document 1, the gas and the liquid flow into the casing from the inlet formed on one end side in the axial direction of the rotating body, and flow out from the inlet formed on the outer periphery of the casing. In this case, in the gap between the rotating body and the inner surface of the casing on the other end side in the axial direction of the rotating body, a bubble-containing liquid that stays without flowing out from the delivery port may be generated. When the bubble-containing liquid stays, the particles of the finely divided bubbles gather again to form large bubbles, which in turn becomes an air pool. If an air pool is generated in the space inside the casing, there is a possibility that problems such as unstable flow of the bubble-containing liquid in the casing and the inability to increase the discharge pressure from the outlet may occur.
 本発明は、上記従来の実情に鑑みてなされたものであって、ケーシング内における空気溜まりの発生を抑制することができる気泡含有液体製造装置を提供することを解決すべき課題としている。 The present invention has been made in view of the above-mentioned conventional circumstances, and it is an object to be solved to provide a bubble-containing liquid manufacturing apparatus capable of suppressing the generation of air pools in the casing.
 本発明に係る気泡含有液体製造装置は、ケーシング及びせん断機構部を備えている。ケーシングは、一端側に気体及び液体が流入する流入口が形成され、他端側に流入口から流入して内部を流通した気体及び液体が流出する流出口が形成された筒状をなしている。せん断機構部は、ケーシング内を流通する気体及び液体にせん断力を付与する。せん断機構部は、回転体、回転付与部、及び対向部を有している。回転体は、軸周りに回転自在にケーシング内に配置された筒状をなしている。回転付与部は、回転体に軸周りの回転力を付与する。対向部は、ケーシングの内壁部に設けられ、回転体の外周部と所定の隙間を介して対向する筒状をなしている。流出口は、回転体の軸方向の一端面と、この一端面に対向するケーシングの内面との間に形成される空間に臨んで開口している。 The bubble-containing liquid manufacturing apparatus according to the present invention includes a casing and a shearing mechanism. The casing has a cylindrical shape in which an inflow port for gas and liquid to flow in is formed on one end side, and an outflow port in which gas and liquid flow out from the inflow port and flow through the inside is formed on the other end side. .. The shearing mechanism applies a shearing force to the gas and liquid flowing in the casing. The shearing mechanism portion has a rotating body, a rotation imparting portion, and a facing portion. The rotating body has a cylindrical shape that is rotatably arranged in a casing around an axis. The rotation imparting portion applies a rotational force around the axis to the rotating body. The facing portion is provided on the inner wall portion of the casing, and has a cylindrical shape facing the outer peripheral portion of the rotating body through a predetermined gap. The outlet faces the space formed between one end surface of the rotating body in the axial direction and the inner surface of the casing facing the one end surface.
 本発明の気泡含有液体製造装置において、流出口は、ケーシングの内面のうち、回転体の軸方向に対して交差する方向に沿って延びる内面に開口し得る。 In the bubble-containing liquid manufacturing apparatus of the present invention, the outlet may open to the inner surface of the inner surface of the casing extending along the direction intersecting the axial direction of the rotating body.
 本発明の気泡含有液体製造装置において、ケーシングは、流出口に連通する流出路を形成し得る。流出路は、回転体の軸方向に沿って延びて形成され得る。 In the bubble-containing liquid manufacturing apparatus of the present invention, the casing can form an outflow path communicating with the outlet. The outflow path can be formed extending along the axial direction of the rotating body.
 本発明の気泡含有液体製造装置において、流出路は、回転体の軸心から遠心方向に離れた位置に形成され得る。 In the bubble-containing liquid manufacturing apparatus of the present invention, the outflow path can be formed at a position distant from the axis of the rotating body in the centrifugal direction.
 本発明の気泡含有液体製造装置において、流出口は複数形成され得る。 In the bubble-containing liquid manufacturing apparatus of the present invention, a plurality of outlets can be formed.
 本発明の気泡含有液体製造装置において、流入口は、液体が流入する液体流入口を有して構成され得る。そして、流出口の断面積は、液体流入口の断面積よりも小さく設けられ得る。 In the bubble-containing liquid manufacturing apparatus of the present invention, the inlet may be configured to have a liquid inlet into which the liquid flows. The cross-sectional area of the outlet may be smaller than the cross-sectional area of the liquid inlet.
 本発明の気泡含有液体製造装置において、流入口は、液体流入口とは異なる位置に開口して気体が流入する気体流入口を有して構成され得る。 In the bubble-containing liquid manufacturing apparatus of the present invention, the inlet may be configured to have a gas inlet that opens at a position different from the liquid inlet and into which gas flows.
 本発明の気泡含有液体製造装置において、気体流入口は、回転体の外周部と対向部との間の隙間に臨んで開口し得る。 In the bubble-containing liquid manufacturing apparatus of the present invention, the gas inlet can be opened facing the gap between the outer peripheral portion and the facing portion of the rotating body.
 本発明の気泡含有液体製造装置は、ポンプ(pump)部を更に備え得る。ポンプ部は翼部を有する。翼部は、回転体におけるケーシング内面との間の空間側とは反対の端部に設けられて回転体の回転に伴って回転する。そして、気体流入口は、翼部よりも流出口寄りの位置において開口し得る。 The bubble-containing liquid manufacturing apparatus of the present invention may further include a pump unit. The pump portion has a wing portion. The wing portion is provided at an end portion of the rotating body opposite to the space side between the inner surface of the casing and rotates with the rotation of the rotating body. Then, the gas inlet can be opened at a position closer to the outlet than the wing.
実施形態1に係る気泡含有液体製造装置の構成を模式的に示す縦断面図である。It is a vertical sectional view schematically showing the structure of the bubble-containing liquid manufacturing apparatus which concerns on Embodiment 1. FIG. 図1におけるII-II線断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. 図1におけるIII-III線断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 実施形態2に係る気泡含有液体製造装置の構成を模式的に示す縦断面図である。It is a vertical sectional view schematically showing the structure of the bubble-containing liquid production apparatus which concerns on Embodiment 2. FIG. 実施形態3に係る気泡含有液体製造装置の構成を模式的に示す縦断面図である。It is a vertical sectional view schematically showing the structure of the bubble-containing liquid manufacturing apparatus which concerns on Embodiment 3.
 本発明の気泡含有液体製造装置を具体化した実施形態について、図面を参照しつつ説明する。なお、以下の説明では、気泡含有液体製造装置として、研削加工における加工点に供給されるクーラント(coolant、研削液)に空気の微細気泡を含有させる装置を例示する。なお、気泡の大きさとしては、例えば、直径1μm以下のウルトラファインバブル(UFB:ultra fine bubble)、直径100μm以下のマイクロバブル(MB:micro bubble)、直径1mm以下のミリバブル(milli bubble)等の種類がある。気泡含有液体が含有する気泡の大きさは、いずれの大きさのものであってもよいが、典型的にはUFBである。 An embodiment embodying the bubble-containing liquid manufacturing apparatus of the present invention will be described with reference to the drawings. In the following description, as the bubble-containing liquid manufacturing apparatus, an apparatus in which air fine bubbles are contained in the coolant (coolant, grinding fluid) supplied to the processing point in the grinding process will be exemplified. The size of the bubbles includes, for example, ultrafine bubbles (UFB: ultrafine bubble) having a diameter of 1 μm or less, microbubbles (MB: micro bubble) having a diameter of 100 μm or less, and millibubbles (milli bubble) having a diameter of 1 mm or less. There are types. The size of the bubbles contained in the bubble-containing liquid may be any size, but is typically UFB.
<実施形態1>
 実施形態1の気泡含有液体製造装置1(以下、単に装置1とも表記する)は、図1から図3に示すように、ケーシング10と、せん断機構部20と、ポンプ部30とを備える。
<Embodiment 1>
The bubble-containing liquid manufacturing apparatus 1 of the first embodiment (hereinafter, also simply referred to as an apparatus 1) includes a casing 10, a shear mechanism portion 20, and a pump portion 30, as shown in FIGS. 1 to 3.
 ケーシング10は金属材料や合成樹脂材料によって構成される。図1に示すように、ケーシング10は、円筒状をなし、その軸線を水平方向に沿って配置される。ケーシング10は、液体としてのクーラント、及び気体としての空気を軸方向の一方の端部10A側から他方の端部10B側へと流通させる。ケーシング10は、ケース(case)本体11及び蓋部12を有している。ケース本体11は、ケーシング10の軸方向の一方の端部10A側に配置される部材である。ケース本体11は、一端が開口する有底の円筒状である。ケース本体11は、底部11A及び周壁部11Bを有しており、周壁部11Bの一方の軸端を底部11Aによって閉塞した形態の単一部材である。 The casing 10 is made of a metal material or a synthetic resin material. As shown in FIG. 1, the casing 10 has a cylindrical shape, and its axis is arranged along the horizontal direction. The casing 10 allows coolant as a liquid and air as a gas to flow from one end 10A side in the axial direction to the other end 10B side. The casing 10 has a case main body 11 and a lid portion 12. The case body 11 is a member arranged on one end 10A side in the axial direction of the casing 10. The case body 11 has a bottomed cylindrical shape with one end open. The case body 11 has a bottom portion 11A and a peripheral wall portion 11B, and is a single member in a form in which one shaft end of the peripheral wall portion 11B is closed by the bottom portion 11A.
 蓋部12は、ケーシング10の軸方向の他方の端部10B側に配置される部材である。蓋部12は、ケース本体11の開口側端部を液密に閉塞する。蓋部12は、ケース本体11と略同等の外径及び内径を有する大径部12Aと、大径部12Aよりも小さい外径及び内径を有する小径部12Bとを軸方向に連結した段差状の筒状をなしている。蓋部12には中心孔12Cが形成されている。中心孔12Cは、蓋部12を軸方向に貫通して形成されている。中心孔12Cには、後述する軸部材24を回転自在に支持する軸受部材Bが挿入される。 The lid portion 12 is a member arranged on the other end portion 10B side in the axial direction of the casing 10. The lid portion 12 closes the opening-side end of the case body 11 in a liquid-tight manner. The lid portion 12 has a stepped shape in which a large diameter portion 12A having an outer diameter and an inner diameter substantially equal to that of the case body 11 and a small diameter portion 12B having an outer diameter and an inner diameter smaller than the large diameter portion 12A are connected in the axial direction. It has a tubular shape. A central hole 12C is formed in the lid portion 12. The central hole 12C is formed so as to penetrate the lid portion 12 in the axial direction. A bearing member B that rotatably supports the shaft member 24, which will be described later, is inserted into the center hole 12C.
 ケーシング10は、第1流入口13(液体流入口として例示する)、第2流入口14(気体流入口として例示する)、及び流出口15を形成している。第1流入口13及び第2流入口14は、ケーシング10の端部10A側に形成されており、流出口15は、ケーシング10の端部10B側に形成されている。本実施形態において、気泡含有液体製造装置1は、クーラントが流入する第1流入口13と、第1流入口13とは異なる位置に開口して空気が流入する第2流入口14と、の2つの流入口を有している。第1流入口13、第2流入口14、及び流出口15は、それぞれケーシング10の内面に開口しており、ケーシング10の内部空間を介して相互に連通している。第1流入口13及び第2流入口14からは、クーラント及び空気がそれぞれ送入される。第1流入口13から流入したクーラント、及び第2流入口14から流入した空気は、後述するせん断機構部20においてせん断力を付与されつつケーシング10内を流通して気泡含有液体となり、流出口15からケーシング10外に送出される。 The casing 10 forms a first inlet 13 (exemplified as a liquid inlet), a second inlet 14 (exemplified as a gas inlet), and an outlet 15. The first inflow port 13 and the second inflow port 14 are formed on the end portion 10A side of the casing 10, and the outflow port 15 is formed on the end portion 10B side of the casing 10. In the present embodiment, the bubble-containing liquid manufacturing apparatus 1 has a first inlet 13 into which the coolant flows, and a second inlet 14 which is opened at a position different from the first inlet 13 and into which air flows. It has two inlets. The first inflow port 13, the second inflow port 14, and the outflow port 15 each open to the inner surface of the casing 10 and communicate with each other through the internal space of the casing 10. Coolant and air are supplied from the first inflow port 13 and the second inflow port 14, respectively. The coolant flowing in from the first inflow port 13 and the air flowing in from the second inflow port 14 flow through the casing 10 while being subjected to shearing force in the shearing mechanism section 20 described later to become a bubble-containing liquid, and become an outflow port 15. Is sent out of the casing 10.
 図1及び図3に示すように、第1流入口13はケーシング10の端部10A側であって、ケース本体11の底部11Aの中心に形成されている。具体的には、底部11Aの中心には第1流入路13Aが軸方向に沿って貫通して形成されている。第1流入口13は、この第1流入路13Aの下流端側の開口である。第1流入路13Aの上流側には、継手部13Bを介して、クーラントが流通する管路(図示省略)が接続される。この管路の上流側は、研削盤の貯留タンク(tank)(図示省略)に連通している。 As shown in FIGS. 1 and 3, the first inflow port 13 is on the end portion 10A side of the casing 10 and is formed in the center of the bottom portion 11A of the case body 11. Specifically, a first inflow path 13A is formed at the center of the bottom portion 11A so as to penetrate along the axial direction. The first inflow port 13 is an opening on the downstream end side of the first inflow path 13A. A pipeline (not shown) through which the coolant flows is connected to the upstream side of the first inflow path 13A via the joint portion 13B. The upstream side of this pipeline communicates with a storage tank (tank) (not shown) of the grinding machine.
 図1から図3に示すように、第2流入口14は、ケーシング10の端部10A側であって、ケース本体11の周壁部11Bに形成されている。周壁部11Bには第2流入路14Aが貫通して形成されている。具体的には、第2流入路14Aは、設置状態にあるケーシング10の上端部に対応する位置において、周壁部11Bを上下に貫通して形成されている。第2流入口14は、この第2流入路14Aの下流端側の開口である。第2流入路14Aの上流側には、継手部14Bを介して、圧縮空気が流通する管路(図示省略)が接続される。この管路の上流側は、コンプレッサ等の圧縮空気の供給源に連通している。 As shown in FIGS. 1 to 3, the second inflow port 14 is on the end portion 10A side of the casing 10 and is formed on the peripheral wall portion 11B of the case main body 11. A second inflow path 14A is formed through the peripheral wall portion 11B. Specifically, the second inflow path 14A is formed so as to vertically penetrate the peripheral wall portion 11B at a position corresponding to the upper end portion of the casing 10 in the installed state. The second inflow port 14 is an opening on the downstream end side of the second inflow path 14A. A pipeline (not shown) through which compressed air flows is connected to the upstream side of the second inflow path 14A via the joint portion 14B. The upstream side of this pipeline communicates with a source of compressed air such as a compressor.
 流出口15は、ケーシング10の内面のうち、ケーシング10の軸方向に対して交差する方向に延びる内面に開口している。具体的には、図1及び図3に示すように、流出口15は、ケーシング10の端部10B側であって、蓋部12の大径部12Aの底部に形成されている。大径部12Aの底部には、流出路15Aが貫通して形成されている。流出口15は、この流出路15Aの上流端側の開口である。図1に示すように、大径部12Aの底部の内面A1は、ケーシング10の軸方向に対して略直交する方向に延びて形成されている。流出口15は、この内面A1に開口している。 The outlet 15 is open on the inner surface of the casing 10 extending in a direction intersecting the axial direction of the casing 10. Specifically, as shown in FIGS. 1 and 3, the outlet 15 is formed on the end portion 10B side of the casing 10 and at the bottom of the large diameter portion 12A of the lid portion 12. An outflow path 15A is formed through the bottom of the large diameter portion 12A. The outflow port 15 is an opening on the upstream end side of the outflow path 15A. As shown in FIG. 1, the inner surface A1 of the bottom portion of the large diameter portion 12A is formed so as to extend in a direction substantially orthogonal to the axial direction of the casing 10. The outlet 15 is open to the inner surface A1.
 流出路15Aは、蓋部12の中心軸から遠心方向に離れた位置に形成されている。具体的には、流出路15Aは、蓋部12の中心軸から上方にオフセット(offset)した位置において、蓋部12の中心軸に沿って延びて形成されている。なお、蓋部12の中心軸とは、ケーシング10の中心軸と同義であり、ケーシング10の中心軸は、後述する回転体21の回転軸と一致している。 The outflow path 15A is formed at a position separated in the centrifugal direction from the central axis of the lid portion 12. Specifically, the outflow path 15A is formed so as to extend along the central axis of the lid portion 12 at a position offset upward from the central axis of the lid portion 12. The central axis of the lid portion 12 has the same meaning as the central axis of the casing 10, and the central axis of the casing 10 coincides with the rotation axis of the rotating body 21 described later.
 流出路15Aの下流端側には、継手部15Bを介して、装置1によって生成した気泡含有液体を研削盤側に送出する管路(図示省略)が接続される。この管路の上流側は、上述の貯留タンクに接続されていてもよいし、クーラントを加工点に吐出する吐出口に直接的に連通していてもよい。流出口15の断面積は、第1流入口13の断面積よりも小さく設けられている。具体的には、流出口15の開口径が25mm程度であるのに対し、第1流入口13の開口径は32mm程度であり、断面積比としては0.6倍程度である。なお、流出口15と第1流入口13の断面積比としては、例えば、0.5倍~0.8倍程度であることができる。 A pipeline (not shown) for delivering the bubble-containing liquid generated by the device 1 to the grinding machine side is connected to the downstream end side of the outflow path 15A via the joint portion 15B. The upstream side of this pipeline may be connected to the above-mentioned storage tank, or may directly communicate with the discharge port for discharging the coolant to the processing point. The cross-sectional area of the outflow port 15 is smaller than the cross-sectional area of the first inflow port 13. Specifically, the opening diameter of the outlet 15 is about 25 mm, while the opening diameter of the first inlet 13 is about 32 mm, and the cross-sectional area ratio is about 0.6 times. The cross-sectional area ratio between the outlet 15 and the first inlet 13 can be, for example, about 0.5 times to 0.8 times.
 せん断機構部20は、ケーシング10内を流通するクーラント及び空気にせん断力を付与する。図1及び図2に示すように、せん断機構部20は、回転体21と、モータ(motor)22(回転付与部として例示する)と、対向部材23(対向部として例示する)とを有する。せん断機構部20は、回転体21と対向部材23とを対向して配置して構成される。せん断機構部20は、モータ22によって回転体21を回転させ、回転体21と対向部材23との間に相対回転(相対移動)を生じさせる。回転体21と対向部材23との間にはクーラント及び空気の混合流体が流通する。せん断機構部20は、回転体21と対向部材23との相対移動によって、混合流体に対してせん断力を付与する構成である。 The shearing mechanism unit 20 applies a shearing force to the coolant and air flowing in the casing 10. As shown in FIGS. 1 and 2, the shearing mechanism portion 20 includes a rotating body 21, a motor 22 (exemplified as a rotation imparting portion), and an opposing member 23 (exemplified as an opposing portion). The shearing mechanism portion 20 is configured by arranging the rotating body 21 and the facing member 23 so as to face each other. The shearing mechanism portion 20 rotates the rotating body 21 by the motor 22 to cause relative rotation (relative movement) between the rotating body 21 and the facing member 23. A mixed fluid of coolant and air flows between the rotating body 21 and the facing member 23. The shearing mechanism portion 20 is configured to apply a shearing force to the mixed fluid by the relative movement between the rotating body 21 and the facing member 23.
 図1及び図2に示すように、回転体21は円筒状に形成されている。回転体21は、回転体21の中心軸周りに回転自在にケーシング10内に配置されている。回転体21の中心軸は、ケーシング10の中心軸に対して同軸に配置されている。すなわち、本実施形態において、回転体21は、自身の中心軸をケーシング10の中心軸に一致させて配置される。回転体21は金属材料や合成樹脂材料によって構成される。 As shown in FIGS. 1 and 2, the rotating body 21 is formed in a cylindrical shape. The rotating body 21 is rotatably arranged in the casing 10 around the central axis of the rotating body 21. The central axis of the rotating body 21 is arranged coaxially with the central axis of the casing 10. That is, in the present embodiment, the rotating body 21 is arranged so that its central axis coincides with the central axis of the casing 10. The rotating body 21 is made of a metal material or a synthetic resin material.
 図1及び図2に示すように、回転体21は、周壁部21A、底壁部21B、及び筒部材21Cを有して構成されている。周壁部21Aは、回転体21の内周部に相当する部位である。周壁部21Aは円筒状をなしている。底壁部21Bは、回転体21の軸方向の一端部に相当する部位である。底壁部21Bは円板状をなしており、周壁部21Aの軸方向の一端を閉塞する。筒部材21Cは、回転体21の外周部に相当する部位である。筒部材21Cは、周壁部21Aよりも大径な円筒状をなし、周壁部21Aの外周に取り付けられている。 As shown in FIGS. 1 and 2, the rotating body 21 includes a peripheral wall portion 21A, a bottom wall portion 21B, and a tubular member 21C. The peripheral wall portion 21A is a portion corresponding to the inner peripheral portion of the rotating body 21. The peripheral wall portion 21A has a cylindrical shape. The bottom wall portion 21B is a portion corresponding to one end portion in the axial direction of the rotating body 21. The bottom wall portion 21B has a disk shape and closes one end of the peripheral wall portion 21A in the axial direction. The tubular member 21C is a portion corresponding to the outer peripheral portion of the rotating body 21. The tubular member 21C has a cylindrical shape having a diameter larger than that of the peripheral wall portion 21A, and is attached to the outer periphery of the peripheral wall portion 21A.
 図1に示すように、回転体21は、底壁部21B側の端面(回転体の軸方向の一端面)をケーシング10の蓋部12の内面に対向させるとともに、筒部材21Cの外周面をケーシング10のケース本体11の内周面に対向させてケーシング10内に収納されている。この状態において、底壁部21Bと蓋部12との間には空間Sが形成されている。流出口15は、この空間Sに臨んで開口している。底壁部21Bと蓋部12との間隔は、回転体21の外径(約150mm)の0.2倍~0.33倍(30mmから50mm)程度としている。 As shown in FIG. 1, in the rotating body 21, the end surface (one end surface in the axial direction of the rotating body) on the bottom wall portion 21B side faces the inner surface of the lid portion 12 of the casing 10, and the outer peripheral surface of the tubular member 21C is formed. The casing 10 is housed in the casing 10 so as to face the inner peripheral surface of the case body 11. In this state, a space S is formed between the bottom wall portion 21B and the lid portion 12. The outlet 15 faces the space S and is open. The distance between the bottom wall portion 21B and the lid portion 12 is about 0.2 to 0.33 times (30 mm to 50 mm) the outer diameter (about 150 mm) of the rotating body 21.
 また、図1及び図2に示すように、筒部材21Cは、対向部材23との間に所定間隔の環状の隙間Cを形成している。第2流入口14は、この隙間Cに臨んで開口している。環状の隙間Cにおける筒部材21Cと対向部材23との間隔は2mm程度である。この筒部材21Cと対向部材23との間隔の大きさは、回転体21の外径に依らず、流通する液体の粘度等に応じて適宜設定することができる。例えば、隙間Cの間隔は、1mm~4mm程度であることができる。なお、本実施形態において、環状の隙間C全体の断面積の大きさは、第1流入口13の断面積よりも大きい。 Further, as shown in FIGS. 1 and 2, the tubular member 21C forms an annular gap C at a predetermined interval from the facing member 23. The second inflow port 14 is open facing the gap C. The distance between the tubular member 21C and the facing member 23 in the annular gap C is about 2 mm. The size of the distance between the tubular member 21C and the facing member 23 can be appropriately set according to the viscosity of the flowing liquid and the like, regardless of the outer diameter of the rotating body 21. For example, the distance between the gaps C can be about 1 mm to 4 mm. In this embodiment, the size of the cross-sectional area of the entire annular gap C is larger than the cross-sectional area of the first inflow port 13.
 図1及び図2に示すように、本実施形態において、回転体21の外周部には第1構造面S1が設けられている。具体的には、第1構造面S1は、筒部材21Cの外周部に設けられている。第1構造面S1は、回転体21の中心軸を軸心とする円筒状の曲面である。第1構造面S1には複数の凹部S10が形成されている。複数の凹部S10は円形のディンプル(dimple)である。複数の凹部S10は、第1構造面S1上において、軸方向及び周方向に所定の間隔で配列されている。 As shown in FIGS. 1 and 2, in the present embodiment, the first structural surface S1 is provided on the outer peripheral portion of the rotating body 21. Specifically, the first structural surface S1 is provided on the outer peripheral portion of the tubular member 21C. The first structural surface S1 is a cylindrical curved surface centered on the central axis of the rotating body 21. A plurality of recesses S10 are formed on the first structural surface S1. The plurality of recesses S10 are circular dimples. The plurality of recesses S10 are arranged at predetermined intervals in the axial direction and the circumferential direction on the first structural surface S1.
 図1に示すように、モータ22は、ケーシング10の端部10B側の外部に配置されている。モータ22には軸部材24の一端が連結されている。軸部材24は、蓋部12の中心孔12Cに配置された軸受部材Bに回転自在に支持されている。軸部材24の他端側はケーシング10内に片持ち状に突出して回転体21に連結されている。軸部材24は、モータ22の回転力を回転体21に伝達する。すなわち、回転体21は、軸部材24を介してモータ22から回転力を付与される。 As shown in FIG. 1, the motor 22 is arranged outside the end portion 10B side of the casing 10. One end of the shaft member 24 is connected to the motor 22. The shaft member 24 is rotatably supported by a bearing member B arranged in the central hole 12C of the lid portion 12. The other end side of the shaft member 24 projects cantileverly into the casing 10 and is connected to the rotating body 21. The shaft member 24 transmits the rotational force of the motor 22 to the rotating body 21. That is, the rotating body 21 is subjected to rotational force from the motor 22 via the shaft member 24.
 図1及び図2に示すように、対向部材23は、ケーシング10の内壁部に設けられた円筒状の部材である。対向部材23の内周面は、回転体21の筒部材21Cの外周面に対向している。上述のように、対向部材23と筒部材21Cとの間には環状の隙間Cが形成されている。本実施形態において、対向部材23の内周部には第2構造面S2が設けられている。第2構造面S2は、ケース本体11の中心軸を軸心とする円筒状の曲面である。第2構造面S2には複数の凹部S20が形成されている。複数の凹部S20は円形のディンプルであり、第2構造面S2上において軸方向及び周方向に所定の間隔で配列されている点は第1構造面S1と同様である。 As shown in FIGS. 1 and 2, the facing member 23 is a cylindrical member provided on the inner wall portion of the casing 10. The inner peripheral surface of the facing member 23 faces the outer peripheral surface of the tubular member 21C of the rotating body 21. As described above, an annular gap C is formed between the facing member 23 and the tubular member 21C. In the present embodiment, the second structural surface S2 is provided on the inner peripheral portion of the facing member 23. The second structural surface S2 is a cylindrical curved surface centered on the central axis of the case body 11. A plurality of recesses S20 are formed on the second structural surface S2. The plurality of recesses S20 are circular dimples, and are arranged at predetermined intervals in the axial direction and the circumferential direction on the second structural surface S2, which is the same as the first structural surface S1.
 ポンプ部30は、モータ22の駆動により第1流入口13から流出口15へ向けてクーラントを移送することが可能に構成される。図1及び図3に示すように、ポンプ部30は、ベース(base)部31と、複数の翼部32とを有する。ベース部31は、回転体21における空間Sに対応する端部とは反対側の端部に取り付けられており、回転体21と一体的に回転する。ベース部31は、回転体21における筒部材21Cの外径と同等の外径を有する円板形状をなしている。複数の翼部32は、ケース本体11の底部11A側に向かって突出するようにベース部31と一体的に設けられる。複数の翼部32は、図3に示すように、ベース部31の中心部から周縁部に向かって旋回しながら放射状に延びるように形成される。 The pump unit 30 is configured to be able to transfer the coolant from the first inlet 13 to the outlet 15 by driving the motor 22. As shown in FIGS. 1 and 3, the pump portion 30 has a base portion 31 and a plurality of wing portions 32. The base portion 31 is attached to an end portion of the rotating body 21 opposite to the end portion corresponding to the space S, and rotates integrally with the rotating body 21. The base portion 31 has a disk shape having an outer diameter equivalent to the outer diameter of the tubular member 21C in the rotating body 21. The plurality of wing portions 32 are provided integrally with the base portion 31 so as to project toward the bottom portion 11A side of the case main body 11. As shown in FIG. 3, the plurality of wing portions 32 are formed so as to extend radially from the central portion of the base portion 31 toward the peripheral portion while swirling.
 ポンプ部30は、遠心ポンプ(渦巻きポンプ)を構成し、複数の翼部32は、遠心羽根車に対応する。つまり、ポンプ部30は、ベース部31の中心(回転軸心)からその遠心方向に向かうクーラントの流れを形成する。複数の翼部32は、クーラントに旋回力を与えてエネルギーを増加させ、第1流入口13から、ケーシング10の内周面と回転体21の外周面との間の環状の隙間C、流出口15へ向けてクーラントを移送する吐出圧力を形成する。 The pump unit 30 constitutes a centrifugal pump (centrifugal pump), and the plurality of blade units 32 correspond to centrifugal impellers. That is, the pump portion 30 forms a flow of coolant in the centrifugal direction from the center (rotation axis) of the base portion 31. The plurality of blade portions 32 apply a turning force to the coolant to increase energy, and from the first inflow port 13, an annular gap C between the inner peripheral surface of the casing 10 and the outer peripheral surface of the rotating body 21 and an outflow port. Form a discharge pressure to transfer the coolant towards 15.
 図3に示すように、各翼部32は、その内周側から外周側に向かって幅が大きくなるような流線形状に形成される。これにより、翼部32間に形成される流路33の十分な幅の確保とともに、流路33の幅の一様化が図られている。これにより、流路33を流れるクーラントの低抵抗化を実現することができる。 As shown in FIG. 3, each wing portion 32 is formed in a streamlined shape so that the width increases from the inner peripheral side to the outer peripheral side thereof. As a result, a sufficient width of the flow path 33 formed between the blade portions 32 is secured, and the width of the flow path 33 is made uniform. As a result, it is possible to reduce the resistance of the coolant flowing through the flow path 33.
 上述のように、第2流入口14は、回転体21の外周面と対向部材23の内周面との間の隙間Cに臨んで開口している。具体的には、第2流入口14の開口位置は、図1に示すように、ケーシング10の軸方向において、ポンプ部30の翼部32よりも流出口15寄りの位置である。したがって、第2流入口14からの空気は、ポンプ部30よりも下流側に流入する。気泡含有液体の製造効率の観点では、第2流入口14は、ポンプ部30よりも流出口15寄りであって、第1構造面S1及び第2構造面S2の最も上流側に対応する位置(第1流入口13により近い位置)に形成されていることが好ましい。 As described above, the second inflow port 14 is open facing the gap C between the outer peripheral surface of the rotating body 21 and the inner peripheral surface of the facing member 23. Specifically, as shown in FIG. 1, the opening position of the second inflow port 14 is a position closer to the outflow port 15 than the wing portion 32 of the pump portion 30 in the axial direction of the casing 10. Therefore, the air from the second inflow port 14 flows into the downstream side of the pump unit 30. From the viewpoint of the production efficiency of the bubble-containing liquid, the second inflow port 14 is closer to the outflow port 15 than the pump portion 30 and corresponds to the most upstream side of the first structural surface S1 and the second structural surface S2 (the position corresponding to the most upstream side of the first structural surface S1 and the second structural surface S2. It is preferably formed at a position closer to the first inflow port 13.
 次に、上記構成の気泡含有液体製造装置1の動作について説明する。 Next, the operation of the bubble-containing liquid manufacturing apparatus 1 having the above configuration will be described.
 モータ22が起動し、回転体21が所定回転数(例えば、3000rpm)で回転する。これにより、ポンプ部30が回転体21とともに回転し、図示しない研削盤の貯留タンクからクーラントが吸入されて第1流入口13からケーシング10内に導入される。 The motor 22 is activated and the rotating body 21 rotates at a predetermined rotation speed (for example, 3000 rpm). As a result, the pump unit 30 rotates together with the rotating body 21, and the coolant is sucked from the storage tank of the grinding machine (not shown) and introduced into the casing 10 from the first inflow port 13.
 第1流入口13からケーシング10内に導入されたクーラントは、ポンプ部30による旋回作用を受けて所定の吐出圧で隙間Cへ供給される。また、第2流入口14からは、図示しないコンプレッサ(compressor)等からの圧縮空気がケーシング10内に所定圧力で導入され、隙間Cにおいてクーラントに混入される。空気が混入されたクーラントは、第1構造面S1及び第2構造面S2の間を下流側に向かって流通する。この時、回転体21の第1構造面S1は、対向部材23の第2構造面S2に対して相対回転する。これにより、空気を含んだクーラントがせん断応力を受け、気泡が微細化された気泡含有クーラント(気泡含有液体)となる。 The coolant introduced into the casing 10 from the first inflow port 13 receives a swirling action by the pump unit 30 and is supplied to the gap C at a predetermined discharge pressure. Further, from the second inflow port 14, compressed air from a compressor or the like (not shown) is introduced into the casing 10 at a predetermined pressure and mixed with the coolant in the gap C. The coolant mixed with air flows between the first structural surface S1 and the second structural surface S2 toward the downstream side. At this time, the first structural surface S1 of the rotating body 21 rotates relative to the second structural surface S2 of the opposing member 23. As a result, the coolant containing air receives shear stress, and the bubbles become finely divided bubble-containing coolant (bubble-containing liquid).
 特に、本実施形態では、回転体21側の第1構造面S1及びケーシング10(対向部材23)側の第2構造面S2の2つの構造面S1,S2を形成しており、これら2つの構造面S1,S2の凹凸面の間で、クーラントに対してせん断力が付与される。したがって、凹凸面が1つの場合や凹凸面が形成されていない場合と比較して、極めて大きなせん断エネルギー(energy)をクーラントに付与することができ、気泡の微細化を促進することができる。また、環状の隙間C全体の断面積の大きさは、第1流入口13の断面積の大きさよりも大きいため、隙間Cを流通するクーラントの圧力損失が低減されている。 In particular, in the present embodiment, two structural surfaces S1 and S2 are formed, a first structural surface S1 on the rotating body 21 side and a second structural surface S2 on the casing 10 (opposing member 23) side, and these two structures are formed. A shear force is applied to the coolant between the uneven surfaces of the surfaces S1 and S2. Therefore, an extremely large shear energy (energy) can be applied to the coolant as compared with the case where there is only one uneven surface or the case where the uneven surface is not formed, and the miniaturization of bubbles can be promoted. Further, since the size of the cross-sectional area of the entire annular gap C is larger than the size of the cross-sectional area of the first inflow port 13, the pressure loss of the coolant flowing through the gap C is reduced.
 第1構造面S1及び第2構造面S2の間で生成された気泡含有液体は、回転体21の底壁部21Bとケーシング10の蓋部12との間の空間Sに到達し、流出口15から流出する。流出口15は、この空間Sに臨んで開口していることから、空間S内における空気溜まりを生じさせることなく気泡含有液体を流出させることができる。また、流出口15は、第1流入口13の断面積よりも小さい断面積で設けられているため、ポンプ部30による十分な吐出圧力をもって図示しない研削盤側へ送出される。 The bubble-containing liquid generated between the first structural surface S1 and the second structural surface S2 reaches the space S between the bottom wall portion 21B of the rotating body 21 and the lid portion 12 of the casing 10, and reaches the outflow port 15. Outflow from. Since the outflow port 15 is open facing the space S, the bubble-containing liquid can flow out without causing an air pool in the space S. Further, since the outflow port 15 is provided with a cross-sectional area smaller than the cross-sectional area of the first inflow port 13, it is delivered to the grinding machine side (not shown) with sufficient discharge pressure by the pump unit 30.
 また、気泡含有液体は、流出口15から流出路15Aに進入し、この流出路15Aを経てケーシング10の外部に流出する。流出路15Aは、回転体21の軸方向に沿って延びている。すなわち、流出路15Aは、ケーシング10内における気泡含有液体の流れ方向と同じ方向に延びている。このため、気泡含有液体のケーシング10からの流出が促進される。 Further, the bubble-containing liquid enters the outflow path 15A from the outflow port 15 and flows out to the outside of the casing 10 through the outflow path 15A. The outflow path 15A extends along the axial direction of the rotating body 21. That is, the outflow path 15A extends in the same direction as the flow direction of the bubble-containing liquid in the casing 10. Therefore, the outflow of the bubble-containing liquid from the casing 10 is promoted.
 また、流出口15は、回転体21の軸方向の一端面である底壁部21B側の端面と、この端面に対向するケーシング10の内面である蓋部12の内面との間に形成される空間Sに臨んで開口している。この空間Sは、せん断機構部20の下流に位置している。したがって、空間Sに到達した気泡含有液体は、上流側のせん断機構部20において気泡の微細化処理が完了したものである。このため、流出口15からは、気泡の微細化処理が完了した気泡含有液体のみが流出し、処理途中のものが流出することはない。 Further, the outlet 15 is formed between the end surface on the bottom wall portion 21B side, which is one end surface of the rotating body 21 in the axial direction, and the inner surface of the lid portion 12, which is the inner surface of the casing 10 facing the end surface. It is open facing the space S. This space S is located downstream of the shear mechanism portion 20. Therefore, the bubble-containing liquid that has reached the space S has the bubble miniaturization process completed in the shear mechanism portion 20 on the upstream side. Therefore, only the bubble-containing liquid for which the bubble miniaturization treatment has been completed flows out from the outlet 15, and the liquid in the middle of the treatment does not flow out.
 以上のように、実施形態1に係る気泡含有液体製造装置1は、ケーシング10及びせん断機構部20を備えている。ケーシング10は、一方の端部10A側に第1流入口13及び第2流入口14が形成され、他方の端部10B側に、第1流入口13及び第2流入口14から流入して内部を流通したクーラント及び空気が流出する流出口15が形成された筒状をなしている。せん断機構部20は、ケーシング10内を流通するクーラント及び空気にせん断力を付与して気泡含有液体を生成する。せん断機構部20は、回転体21、回転付与部としてのモータ22、及び対向部としての対向部材23を有している。回転体21は、軸周りに回転自在にケーシング10内に配置される筒状をなしている。モータ22は、回転体21に軸周りの回転力を付与する。対向部材23は、ケーシング10の内壁部に設けられ、回転体21の外周部と所定の隙間を介して対向する筒状をなしている。流出口15は、回転体21の軸方向の一端面である底壁部21B側の端面と、この端面に対向するケーシング10の内面である蓋部12の内面との間に形成される空間Sに臨んで開口している。 As described above, the bubble-containing liquid manufacturing apparatus 1 according to the first embodiment includes a casing 10 and a shearing mechanism section 20. The casing 10 has a first inlet 13 and a second inlet 14 formed on one end 10A side, and flows into the other end 10B side from the first inlet 13 and the second inlet 14 to the inside. It has a cylindrical shape in which the coolant and the outflow port 15 through which air flows out are formed. The shearing mechanism unit 20 applies a shearing force to the coolant and air flowing in the casing 10 to generate a bubble-containing liquid. The shearing mechanism portion 20 has a rotating body 21, a motor 22 as a rotation imparting portion, and an opposing member 23 as an opposing portion. The rotating body 21 has a cylindrical shape that is rotatably arranged in the casing 10 around an axis. The motor 22 applies a rotational force around the axis to the rotating body 21. The facing member 23 is provided on the inner wall portion of the casing 10 and has a cylindrical shape facing the outer peripheral portion of the rotating body 21 via a predetermined gap. The outlet 15 is a space S formed between an end surface on the bottom wall portion 21B side, which is one end surface of the rotating body 21 in the axial direction, and an inner surface of the lid portion 12, which is the inner surface of the casing 10 facing the end surface. It is open facing the roof.
 気泡含有液体製造装置1は、流出口15が空間Sにおいて開口している。空間Sは、回転体21の一方の端面とケーシング10の内面との間の空間であり、ケーシング10の内部空間における軸方向末端の空間である。このため、この空間Sに進入した気泡含有液体を滞留させることなく流出口15から流出させることができる。 In the bubble-containing liquid manufacturing apparatus 1, the outlet 15 is open in the space S. The space S is a space between one end surface of the rotating body 21 and the inner surface of the casing 10, and is a space at the axial end in the internal space of the casing 10. Therefore, the bubble-containing liquid that has entered the space S can be discharged from the outlet 15 without staying.
 したがって、気泡含有液体製造装置1は、ケーシング10内における空気溜まりの発生を抑制することができる。 Therefore, the bubble-containing liquid manufacturing apparatus 1 can suppress the generation of air pools in the casing 10.
 また、流出口15は空間Sにおいて開口しており、この空間Sは、せん断機構部20の下流側に位置している。このため、気泡含有液体製造装置1は、気泡の微細化処理途中の気泡含有液体を流出させることなく、処理済みのものを好適に流出させることができる。 Further, the outlet 15 is open in the space S, and this space S is located on the downstream side of the shear mechanism portion 20. Therefore, the bubble-containing liquid manufacturing apparatus 1 can suitably flow out the treated bubble-containing liquid without flowing out the bubble-containing liquid in the middle of the bubble miniaturization treatment.
 また、流出口15は、ケーシング10の内面のうち、ケーシング10の軸方向に対して直交する方向に沿って延びる内面A1に開口している。このため、回転体21の軸方向と同方向であるケーシング10の軸方向に沿って流通する気泡含有液体を、流通方向そのままに流出口15に導入することができる。これにより、気泡含有液体をケーシング10内から効率よく流出させることができる。 Further, the outlet 15 is open to the inner surface A1 of the inner surface of the casing 10 extending along the direction orthogonal to the axial direction of the casing 10. Therefore, the bubble-containing liquid that flows along the axial direction of the casing 10, which is the same direction as the axial direction of the rotating body 21, can be introduced into the outlet 15 as it is in the flow direction. As a result, the bubble-containing liquid can be efficiently discharged from the casing 10.
 また、ケーシング10は、流出口15に連通する流出路15Aを形成している。この流出路15Aは、回転体21の軸方向に沿って延びて形成されている。このため、流出路15Aを流通する気泡含有液体の流れを、ケーシング10内における流れ方向である軸方向に沿った流れとすることができる。これにより、気泡含有液体をケーシング10内から効率よく流出させることができる。 Further, the casing 10 forms an outflow path 15A communicating with the outflow port 15. The outflow path 15A is formed so as to extend along the axial direction of the rotating body 21. Therefore, the flow of the bubble-containing liquid flowing through the outflow passage 15A can be made to flow along the axial direction which is the flow direction in the casing 10. As a result, the bubble-containing liquid can be efficiently discharged from the casing 10.
 また、流出路15Aは、蓋部12の中心軸(回転体21の軸心)から遠心方向に離れた位置に形成されている。具体的には、流出路15Aは、中心軸を水平方向に沿って配置したケーシング10において、蓋部12の中心軸から上方にオフセットした位置において、蓋部12の中心軸に沿って延びて形成されている。このため、空気の排出を促進することができ、空気溜まりの発生を抑制することができる。すなわち、気泡含有液体を構成する液体であるクーラントは、遠心力によって遠心方向に集まるため、流出口15から排出されやすくなる。このため、ケーシング10内における流体(気体、液体共)の滞留が生じにくくなり、その結果として、空気溜まりの発生を抑制することができる。 Further, the outflow path 15A is formed at a position separated in the centrifugal direction from the central axis of the lid portion 12 (the axis of the rotating body 21). Specifically, the outflow path 15A is formed in the casing 10 in which the central axis is arranged along the horizontal direction, extending along the central axis of the lid portion 12 at a position offset upward from the central axis of the lid portion 12. Has been done. Therefore, it is possible to promote the discharge of air and suppress the generation of air pools. That is, since the coolant, which is a liquid constituting the bubble-containing liquid, collects in the centrifugal direction due to centrifugal force, it is easily discharged from the outlet 15. Therefore, the retention of fluid (both gas and liquid) in the casing 10 is less likely to occur, and as a result, the generation of air pools can be suppressed.
 また、流入口は、液体が流入する液体流入口としての第1流入口13を有して構成されている。そして、流出口15の断面積は、第1流入口13の断面積よりも小さく設けられている。このため、流入する液体の圧力損失を小さくでき、吸込性を向上させることができる。 Further, the inflow port is configured to have a first inflow port 13 as a liquid inflow port into which a liquid flows. The cross-sectional area of the outlet 15 is smaller than the cross-sectional area of the first inlet 13. Therefore, the pressure loss of the inflowing liquid can be reduced, and the suction property can be improved.
 また、流入口は、気体流入口としての第2流入口14を有して構成されている。第2流入口14は、第1流入口13とは異なる位置に開口して空気が流入する。このため、クーラントと空気とを別々の流入口から流入させる構成となり、圧力の低下を抑制することができる。 Further, the inflow port is configured to have a second inflow port 14 as a gas inflow port. The second inflow port 14 opens at a position different from that of the first inflow port 13 to allow air to flow in. Therefore, the coolant and the air are made to flow in from separate inlets, and the decrease in pressure can be suppressed.
 第2流入口14は、回転体21の外周部と対向部材23との間の環状の隙間Cに臨んで開口している。このため、空気をケーシング10内に効率よく流入させることができる。また、第2流入口14は、ケーシング10内における端部10A寄りの位置において隙間Cに開口している。このため、せん断機構部20によるせん断力をより長い距離に亘って付与することができる。 The second inflow port 14 is open facing the annular gap C between the outer peripheral portion of the rotating body 21 and the facing member 23. Therefore, air can be efficiently flowed into the casing 10. Further, the second inflow port 14 opens in the gap C at a position closer to the end portion 10A in the casing 10. Therefore, the shearing force of the shearing mechanism portion 20 can be applied over a longer distance.
 また、気泡含有液体製造装置1は、ポンプ部30を更に備える。ポンプ部30は翼部32を有する。翼部32は、回転体21におけるケーシング10内面との間の空間S側とは反対の端部に設けられて回転体21の回転に伴って回転する。そして、第2流入口14は、翼部32よりも流出口15寄りの位置において開口している。このため、翼部32への空気の侵入を防ぎ、圧力低下を防止することができる。すなわち、気泡含有液体製造装置1は、翼部32よりも下流側においてケーシング10内に空気が導入される。このため、翼部32では、第2流入口14からの空気が混入される前のクーラントが流通し、圧力の低下を抑制できる。 Further, the bubble-containing liquid manufacturing apparatus 1 further includes a pump unit 30. The pump portion 30 has a wing portion 32. The wing portion 32 is provided at an end portion of the rotating body 21 opposite to the space S side between the inner surface of the casing 10 and rotates with the rotation of the rotating body 21. The second inflow port 14 is open at a position closer to the outflow port 15 than the wing portion 32. Therefore, it is possible to prevent air from entering the wing portion 32 and prevent a pressure drop. That is, in the bubble-containing liquid manufacturing apparatus 1, air is introduced into the casing 10 on the downstream side of the wing portion 32. Therefore, in the wing portion 32, the coolant before the air from the second inflow port 14 is mixed flows, and the decrease in pressure can be suppressed.
 また、気泡含有液体製造装置1は、ポンプ部30を備えているため、第1流入口13へクーラントを送入する管路側、又は流出口15から気泡含有液体を送出する管路側にポンプを別途設置する必要がない。このため、気泡含有液体製造装置1が備えられるシステム(system)の簡素化を図ることができる。 Further, since the bubble-containing liquid manufacturing apparatus 1 includes a pump unit 30, a pump is separately provided on the pipeline side for feeding coolant to the first inlet 13 or on the pipeline side for delivering the bubble-containing liquid from the outlet 15. No need to install. Therefore, it is possible to simplify the system provided with the bubble-containing liquid manufacturing apparatus 1.
<実施形態2>
 次に、実施形態2に係る気泡含有液体製造装置201について説明する。図4に示すように、気泡含有液体製造装置201は、実施形態1と同様の流出口15に加えて第2流出口216を有している点において、実施形態1の気泡含有液体製造装置1と相違する。その他の点において、実施形態1と同様の構成には同様の符号を付し、その詳細な説明を省略する。
<Embodiment 2>
Next, the bubble-containing liquid manufacturing apparatus 201 according to the second embodiment will be described. As shown in FIG. 4, the bubble-containing liquid manufacturing apparatus 201 of the first embodiment has a second outlet 216 in addition to the outlet 15 similar to that of the first embodiment. Is different from. In other respects, the same configurations as those of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 図4に示すように、気泡含有液体製造装置201において、第2流出口216は、流出口15と同様に、空間Sに臨んで開口しているとともに、大径部12Aの底部の内面A1に開口している。第2流出口216は、ケーシング10の端部10B側であって、蓋部12の大径部12Aの底部に形成されている。大径部12Aの底部には、第2流出路216Aが貫通して形成されている。第2流出口216は、この第2流出路216Aの上流端側の開口である。第2流出路216Aは、蓋部12の中心軸から下方にオフセットした位置において、蓋部12の中心軸に沿って延びて形成されている。第2流出路216Aは、蓋部12の中心軸を挟んで、流出路15Aと上下に対称に形成されている。なお、第2流出路216Aの下流側には管路(図示省略)が接続される。この管路は、下流側において、流出路15Aの下流側に接続される管路と合流する。 As shown in FIG. 4, in the bubble-containing liquid manufacturing apparatus 201, the second outlet 216, like the outlet 15, is open facing the space S and is formed on the inner surface A1 of the bottom of the large diameter portion 12A. It is open. The second outlet 216 is on the end 10B side of the casing 10 and is formed at the bottom of the large diameter portion 12A of the lid portion 12. A second outflow path 216A is formed through the bottom of the large diameter portion 12A. The second outflow port 216 is an opening on the upstream end side of the second outflow path 216A. The second outflow path 216A is formed so as to extend along the central axis of the lid portion 12 at a position offset downward from the central axis of the lid portion 12. The second outflow passage 216A is formed vertically and vertically symmetrically with the outflow passage 15A with the central axis of the lid portion 12 interposed therebetween. A pipeline (not shown) is connected to the downstream side of the second outflow passage 216A. This pipeline joins the pipeline connected to the downstream side of the outflow channel 15A on the downstream side.
 図4に示すように、気泡含有液体製造装置201において、蓋部12の中心には回転体21に連結される軸部材24が挿通されるとともに、この軸部材24を回転自在に支持する軸受部材Bが配置される。このように、気泡含有液体製造装置201において、ケーシング10の端部10B側には、回転体21を回転支持する機構部が設けられるためスペース(space)的な制約が生じる。このため、1つの流出口のみでは、所望の大きさの断面積を確保できないおそれがある。しかし、流出口15及び第2流出口216のように、流出口を複数形成することによって、所望の大きさの断面積を容易に確保することができる。 As shown in FIG. 4, in the bubble-containing liquid manufacturing apparatus 201, a shaft member 24 connected to the rotating body 21 is inserted in the center of the lid portion 12, and a bearing member that rotatably supports the shaft member 24. B is placed. As described above, in the bubble-containing liquid manufacturing apparatus 201, a mechanism portion for rotationally supporting the rotating body 21 is provided on the end portion 10B side of the casing 10, so that space is restricted. Therefore, it may not be possible to secure a cross-sectional area of a desired size with only one outlet. However, by forming a plurality of outlets such as the outlet 15 and the second outlet 216, it is possible to easily secure a cross-sectional area having a desired size.
<実施形態3>
 次に、実施形態3に係る気泡含有液体製造装置301について説明する。図5に示すように、気泡含有液体製造装置301は、実施形態1の流出口15に替えて、流出口315を有している点において実施形態1の気泡含有液体製造装置1と相違する。その他の点において、実施形態1と同様の構成には同様の符号を付し、その詳細な説明を省略する。
<Embodiment 3>
Next, the bubble-containing liquid manufacturing apparatus 301 according to the third embodiment will be described. As shown in FIG. 5, the bubble-containing liquid manufacturing apparatus 301 differs from the bubble-containing liquid manufacturing apparatus 1 of the first embodiment in that it has an outlet 315 instead of the outlet 15 of the first embodiment. In other respects, the same configurations as those of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 図5に示すように、気泡含有液体製造装置301において、流出口315は、空間Sに臨んで開口している点は流出口15と同様である。流出口315は、ケーシング10の内面のうち、ケーシング10の軸方向に沿った方向に延びる内面に開口している点において、実施形態1の流出口15と相違する。具体的には、流出口315は、ケーシング10の端部10B側であって、蓋部12の大径部12Aの周壁部に形成されている。流出口315は、設置状態にある気泡含有液体製造装置301において、ケーシング10の内部空間における最も上部、且つ最も端部10B寄りの位置に開口している。大径部12Aの周壁部には、流出路315Aが貫通して形成されている。流出口315は、この流出路315Aの上流端側の開口である。図5に示すように、大径部12Aの周壁部の内面A2は、ケーシング10の軸方向に沿った方向に延びて形成されている。流出口315は、この内面A2に開口している。流出路315Aは、大径部12Aの周壁部のうち、大径部12Aの底部に近接した位置において上下方向に延びて形成されている。なお、流出路315Aの延伸方向としては、蓋部12の中心軸と交差する方向であってもよいし、蓋部12の周壁部の接線方向等、蓋部12の中心軸に対してねじれの関係となる方向において延びるものであってもよい。 As shown in FIG. 5, in the bubble-containing liquid manufacturing apparatus 301, the outlet 315 is similar to the outlet 15 in that the outlet 315 is open facing the space S. The outlet 315 differs from the outlet 15 of the first embodiment in that the outlet 315 is open to the inner surface of the inner surface of the casing 10 extending in the axial direction of the casing 10. Specifically, the outlet 315 is formed on the end portion 10B side of the casing 10 and on the peripheral wall portion of the large diameter portion 12A of the lid portion 12. The outflow port 315 opens at the uppermost position in the internal space of the casing 10 and at a position closest to the end portion 10B in the bubble-containing liquid manufacturing apparatus 301 in the installed state. An outflow path 315A is formed through the peripheral wall portion of the large diameter portion 12A. The outflow port 315 is an opening on the upstream end side of the outflow path 315A. As shown in FIG. 5, the inner surface A2 of the peripheral wall portion of the large diameter portion 12A is formed so as to extend in a direction along the axial direction of the casing 10. The outlet 315 is open to the inner surface A2. The outflow path 315A is formed so as to extend in the vertical direction at a position close to the bottom of the large diameter portion 12A in the peripheral wall portion of the large diameter portion 12A. The extension direction of the outflow path 315A may be a direction that intersects the central axis of the lid portion 12, or is twisted with respect to the central axis of the lid portion 12, such as the tangential direction of the peripheral wall portion of the lid portion 12. It may extend in the direction of the relationship.
 気泡含有液体製造装置301は、流出口315が空間Sにおいて開口している。空間Sは、ケーシング10の内部空間における軸方向末端の空間であるため、この空間Sに進入した気泡含有液体を滞留させることなく流出口315から流出させることができる。 In the bubble-containing liquid manufacturing apparatus 301, the outlet 315 is open in the space S. Since the space S is the space at the axial end in the internal space of the casing 10, the bubble-containing liquid that has entered the space S can be discharged from the outflow port 315 without staying.
 また、流出口315は、ケーシング10の内部空間における最も上部、且つ最も端部10B寄りの位置に開口している。このため、仮に空間Sに空気溜まりが生じたとしても、流出口315から速やかに排出することができる。 Further, the outlet 315 is open at the uppermost position in the internal space of the casing 10 and at the position closest to the end portion 10B. Therefore, even if an air pool is generated in the space S, it can be quickly discharged from the outlet 315.
 本発明は、上記記述及び図面によって説明した実施形態1~3に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。 The present invention is not limited to the first to third embodiments described with the above description and drawings, and for example, the following embodiments are also included in the technical scope of the present invention.
(1)上記各実施形態では、回転体が円筒形状に形成された形態を例示したが、これは必須ではない。回転体は、例えば、円錐台形状、外周に段差の形成された形状等であってもよい。この場合、回転体の外周部と所定の隙間を介して対抗する対向部もまた、回転体の外周部の形状に倣った形状であるとよい。 (1) In each of the above embodiments, a form in which the rotating body is formed into a cylindrical shape is exemplified, but this is not essential. The rotating body may have, for example, a conical trapezoidal shape, a shape having a step formed on the outer circumference, or the like. In this case, the facing portion that opposes the outer peripheral portion of the rotating body through a predetermined gap may also have a shape that follows the shape of the outer peripheral portion of the rotating body.
(2)上記各実施形態では、気泡含有液体を構成する液体及び気体として、クーラント及び空気を例示したが、これは必須ではない。気泡を形成する気体としては、例えば、空気、窒素、酸素、オゾン(ozone)、二酸化炭素等を挙げることができる。気泡含有液体を構成する液体としては、例えば、クーラント、切削油、水(水道水、精製水、海水等)等を挙げることができる。これら気泡含有液体を構成する気体及び液体は、用途に応じて適宜選択可能である。 (2) In each of the above embodiments, coolant and air are exemplified as the liquid and gas constituting the bubble-containing liquid, but this is not essential. Examples of the gas forming bubbles include air, nitrogen, oxygen, ozone, carbon dioxide and the like. Examples of the liquid constituting the bubble-containing liquid include coolant, cutting oil, water (tap water, purified water, seawater, etc.) and the like. The gas and liquid constituting these bubble-containing liquids can be appropriately selected depending on the intended use.
(3)上記各実施形態では、せん断機構部が、第1構造面と、この第1構造面に対向して配置される第2構造面とを有する形態を例示したが、これは必須ではない。せん断機構部は、例えば、第1構造面及び第2構造面のうちの一方のみを有していてもよいし、第1構造面及び第2構造面のいずれも有していなくてもよい。すなわち、せん断機構部は、互いに相対回転する回転体及びケーシングの各相対回転部位の間を流通する気体及び液体に対してせん断力を付与する形態であればよく、その具体的な構成は特に問わない。せん断機構部は、回転体及びケーシングの各相対回転部位の少なくとも一方において、当該部位における互いに対向する面に凹状、凸状等の起伏が形成されていることが好ましい。 (3) In each of the above embodiments, the shear mechanism portion has an example of having a first structural surface and a second structural surface arranged to face the first structural surface, but this is not essential. .. The shearing mechanism portion may have, for example, only one of the first structural surface and the second structural surface, or may not have either the first structural surface or the second structural surface. That is, the shearing mechanism portion may be in a form in which a shearing force is applied to the gas and the liquid flowing between the rotating bodies and the casings that rotate relative to each other, and the specific configuration thereof is particularly questionable. do not have. It is preferable that the shearing mechanism portion has undulations such as concave and convex formed on the surfaces facing each other in at least one of the relative rotating portions of the rotating body and the casing.
(4)上記各実施形態では、第1構造面及び第2構造面が円形状の複数の凹部をそれぞれ有する形態を例示したが、これは必須ではない。第1構造面及び第2構造面が凹部を有する場合、その大きさ、深さ、外形形状、配列間隔等は特に限定されない。凹部の外形形状としては、例えば、三角形、四角形等の多角形状であってもよい。特に、六角形状のハニカム(honeycomb)構造の場合、複数の凹部を高密度で形成することができる。また、凹部としては、独立した形状に限らず、例えば、溝状や格子状、放射状等の凹凸面を形成できる各種形状であってもよい。 (4) In each of the above embodiments, the first structural surface and the second structural surface each have a plurality of circular recesses, but this is not essential. When the first structural surface and the second structural surface have recesses, their size, depth, external shape, arrangement spacing, and the like are not particularly limited. The outer shape of the concave portion may be, for example, a polygonal shape such as a triangle or a quadrangle. In particular, in the case of a hexagonal honeycomb structure, a plurality of recesses can be formed at high density. Further, the concave portion is not limited to an independent shape, and may have various shapes such as a groove shape, a grid shape, a radial shape, and the like that can form an uneven surface.
(5)上記各実施形態では、筒部材を回転体の周壁部とは別部材で設ける形態を例示したが、回転体の周壁部に一体に設けてもよい。 (5) In each of the above embodiments, the embodiment in which the tubular member is provided as a member separate from the peripheral wall portion of the rotating body is exemplified, but the tubular member may be provided integrally with the peripheral wall portion of the rotating body.
(6)上記各実施形態では、対向部が対向部材としてケーシングの周壁部とは別部材で設けられる形態を例示したが、対向部は、ケーシングの内壁部にケーシングと一体に設けられていてもよい。この場合、第2構造面は、ケーシングの内壁部に直接的に形成されていることができる。 (6) In each of the above embodiments, the embodiment in which the facing portion is provided as a facing member by a member separate from the peripheral wall portion of the casing is exemplified, but the facing portion may be provided integrally with the casing on the inner wall portion of the casing. good. In this case, the second structural surface can be formed directly on the inner wall portion of the casing.
(7)上記各実施形態では、液体流入口としての第1流入口及び気体流入口としての第2流入口の2つの流入口を有する形態を例示したが、これは必須ではない。流入口は、例えば、気体が予め混入された液体が流入する1つ又は複数の流入口を有する形態や、液体が流入する1つ又は複数の液体流入口と、気体が流入する1つ又は複数の気体流入口とを有する形態等であってもよい。 (7) In each of the above embodiments, an embodiment having two inlets, a first inlet as a liquid inlet and a second inlet as a gas inlet, has been exemplified, but this is not essential. The inlet may have, for example, one or more inlets into which a liquid premixed with gas flows, one or more liquid inlets into which the liquid flows, and one or more inlets into which the gas flows. It may be in the form of having a gas inlet of the above.
(8)上記各実施形態では、ポンプ部を備える形態を例示したが、これは必須ではない。ポンプ部の機能は、例えば、流入口の上流側配管や流出口の下流側配管に別途ポンプが設けられた構成によって実現することができる。この場合、気泡含有液体製造装置がポンプ部を備えている必要はない。また、ポンプ部の構造としては、遠心ポンプに限らず、ベーン(vane)ポンプやカスケード(cascade)ポンプ(渦流ポンプ)などの他のポンプ構造が採用されてもよい。 (8) In each of the above embodiments, the embodiment including the pump unit is illustrated, but this is not essential. The function of the pump unit can be realized by, for example, a configuration in which a separate pump is provided in the upstream pipe of the inflow port or the downstream pipe of the outflow port. In this case, it is not necessary for the bubble-containing liquid manufacturing apparatus to include a pump unit. Further, the structure of the pump portion is not limited to the centrifugal pump, and other pump structures such as a vane pump and a cascade pump (centrifugal pump) may be adopted.
(9)上記各実施形態では、流出口が、回転体の端面とケーシング内面との間の空間における軸端面又は周壁面の一方に臨んで形成される形態を例示したが、これは必須ではない。流出口は、例えば、回転体の端面とケーシング内面との間の空間における軸端面及び周壁面の両方に臨んで開口した形態、すなわち、ケーシングの周壁及び端壁に跨って形成されていてもよい。また、複数の流出口が形成されている場合には、回転体の端面とケーシング内面との間の空間における軸端面に臨んで開口する流出口と、周壁面に臨んで開口する流出口との両方が形成されていてもよい。 (9) In each of the above embodiments, the outlet is formed so as to face one of the shaft end surface or the peripheral wall surface in the space between the end surface of the rotating body and the inner surface of the casing, but this is not essential. .. The outlet may be formed, for example, in a form that is open facing both the shaft end surface and the peripheral wall surface in the space between the end surface of the rotating body and the inner surface of the casing, that is, straddling the peripheral wall and the end wall of the casing. .. When a plurality of outlets are formed, the outlet facing the shaft end surface in the space between the end surface of the rotating body and the inner surface of the casing and the outlet opening facing the peripheral wall surface. Both may be formed.
 流出口が、ケーシングの内面のうち、回転体の軸方向に対して交差する方向に沿って延びる内面に開口して形成される場合、この「内面」の延びる方向は、回転体の軸方向に対して略直交する方向に延びていることが好ましい。気泡含有液体のケーシング内における流通方向である軸方向から見た場合の開口の投影面積を最大にでき、気泡含有液体をケーシング内から一層効率よく流出させることができるからである。 When the outlet is formed by opening in the inner surface of the casing extending along the direction intersecting the axial direction of the rotating body, the extending direction of this "inner surface" is in the axial direction of the rotating body. On the other hand, it is preferable that they extend in a direction substantially orthogonal to each other. This is because the projected area of the opening when viewed from the axial direction, which is the distribution direction of the bubble-containing liquid in the casing, can be maximized, and the bubble-containing liquid can be more efficiently discharged from the casing.
 1,201,301…気泡含有液体製造装置、10…ケーシング、13,14…流入口(13…第1流入口(液体流入口)、14…第2流入口(気体流入口))、15,216,315…流出口、15A,216A,315A…流出路、20…せん断機構部、21…回転体、22…モータ(回転付与部)、23…対向部材(対向部)、30…ポンプ部、32…翼部、C…(回転体の外周部と対向部との間の)隙間、S…(回転体の軸方向の一端面とケーシングの内面との間の)空間 1,201,301 ... Bubble-containing liquid manufacturing apparatus, 10 ... Casing, 13, 14 ... Inflow port (13 ... First inflow port (liquid inflow port), 14 ... Second inflow port (gas inflow port)), 15, 216, 315 ... Outlet, 15A, 216A, 315A ... Outflow path, 20 ... Shear mechanism part, 21 ... Rotating body, 22 ... Motor (rotation imparting part), 23 ... Opposing member (opposing part), 30 ... Pump part, 32 ... Wings, C ... Gap (between the outer peripheral portion of the rotating body and the facing portion), S ... Space (between one end surface of the rotating body in the axial direction and the inner surface of the casing).

Claims (9)

  1.  一端側に気体及び液体が流入する流入口が形成され、他端側に前記流入口から流入して内部を流通した気体及び液体が流出する流出口が形成された筒状のケーシングと、
     前記ケーシング内を流通する気体及び液体にせん断力を付与するせん断機構部と、
     を備えており、
     前記せん断機構部は、
     軸周りに回転自在に前記ケーシング内に配置された筒状の回転体と、
     前記回転体に軸周りの回転力を付与する回転付与部と、
     前記ケーシングの内壁部に設けられ、前記回転体の外周部と所定の隙間を介して対向する筒状の対向部と、
     を有しており、
     前記流出口は、前記回転体の軸方向の一端面と、前記一端面に対向する前記ケーシングの内面との間に形成される空間に臨んで開口していることを特徴とする気泡含有液体製造装置。
    A cylindrical casing in which an inflow port for gas and liquid to flow in is formed on one end side, and an outflow port for gas and liquid flowing in from the inflow port and flowing through the inside is formed on the other end side.
    A shearing mechanism that applies shearing force to the gas and liquid flowing in the casing,
    Equipped with
    The shear mechanism is
    A cylindrical rotating body rotatably arranged in the casing around the axis,
    A rotation applying portion that applies a rotational force around the axis to the rotating body,
    A cylindrical facing portion provided on the inner wall portion of the casing and facing the outer peripheral portion of the rotating body via a predetermined gap,
    Have and
    The bubble-containing liquid production is characterized in that the outlet is open facing a space formed between one end surface of the rotating body in the axial direction and the inner surface of the casing facing the one end surface. Device.
  2.  前記流出口は、前記ケーシングの内面のうち、前記回転体の軸方向に対して交差する方向に沿って延びる内面に開口していることを特徴とする請求項1に記載の気泡含有液体製造装置。 The bubble-containing liquid manufacturing apparatus according to claim 1, wherein the outlet is open to an inner surface of the inner surface of the casing extending along a direction intersecting the axial direction of the rotating body. ..
  3.  前記ケーシングは、前記流出口に連通する流出路を形成しており、
     前記流出路は、前記回転体の軸方向に沿って延びて形成されていることを特徴とする請求項1又は請求項2に記載の気泡含有液体製造装置。
    The casing forms an outflow path that communicates with the outlet.
    The bubble-containing liquid manufacturing apparatus according to claim 1 or 2, wherein the outflow path extends along the axial direction of the rotating body.
  4.  前記ケーシングは、前記流出口に連通する流出路を形成しており、
     前記流出路は、前記回転体の軸心から遠心方向に離れた位置に形成されていることを特徴とする請求項1から請求項3のいずれか一項に記載の気泡含有液体製造装置。
    The casing forms an outflow path that communicates with the outlet.
    The bubble-containing liquid manufacturing apparatus according to any one of claims 1 to 3, wherein the outflow path is formed at a position separated from the axis of the rotating body in the centrifugal direction.
  5.  前記流出口は複数形成されていることを特徴とする請求項1から請求項4のいずれか一項に記載の気泡含有液体製造装置。 The bubble-containing liquid manufacturing apparatus according to any one of claims 1 to 4, wherein a plurality of outlets are formed.
  6.  前記流入口は、液体が流入する液体流入口を有して構成されており、
     前記流出口の断面積は、前記液体流入口の断面積よりも小さいことを特徴とする請求項1から請求項5のいずれか一項に記載の気泡含有液体製造装置。
    The inlet is configured to have a liquid inlet into which a liquid flows.
    The bubble-containing liquid manufacturing apparatus according to any one of claims 1 to 5, wherein the cross-sectional area of the outlet is smaller than the cross-sectional area of the liquid inlet.
  7.  前記流入口は、前記液体流入口とは異なる位置に開口して気体が流入する気体流入口を有して構成されていることを特徴とする請求項6に記載の気泡含有液体製造装置。 The bubble-containing liquid manufacturing apparatus according to claim 6, wherein the inlet is configured to have a gas inlet that opens at a position different from the liquid inlet and into which a gas flows.
  8.  前記気体流入口は、前記回転体の外周部と前記対向部との間の隙間に臨んで開口していることを特徴とする請求項7に記載の気泡含有液体製造装置。 The bubble-containing liquid manufacturing apparatus according to claim 7, wherein the gas inlet faces the gap between the outer peripheral portion of the rotating body and the facing portion.
  9.  前記回転体の軸心から遠心方向に向かう流体の流れを生成するポンプ部を更に備え、
     前記ポンプ部は、前記回転体における前記空間側とは反対の端部に設けられて前記回転体の回転に伴って回転する翼部を有しており、
     前記気体流入口は、前記翼部よりも前記流出口寄りの位置において開口していることを特徴とする請求項7又は請求項8に記載の気泡含有液体製造装置。
    Further, a pump unit for generating a fluid flow from the axis of the rotating body toward the centrifugal direction is provided.
    The pump portion has a wing portion provided at an end portion of the rotating body opposite to the space side and rotating with the rotation of the rotating body.
    The bubble-containing liquid manufacturing apparatus according to claim 7, wherein the gas inlet is opened at a position closer to the outlet than the wing portion.
PCT/JP2021/035868 2020-12-07 2021-09-29 Air bubble-containing liquid production device WO2022123867A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020202380A JP2022090168A (en) 2020-12-07 2020-12-07 Air bubble containing liquid production device
JP2020-202380 2020-12-07

Publications (1)

Publication Number Publication Date
WO2022123867A1 true WO2022123867A1 (en) 2022-06-16

Family

ID=81973572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035868 WO2022123867A1 (en) 2020-12-07 2021-09-29 Air bubble-containing liquid production device

Country Status (2)

Country Link
JP (1) JP2022090168A (en)
WO (1) WO2022123867A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157440A (en) * 1997-08-12 1999-03-02 Yaskawa Electric Corp Gas/liquid mixing device
WO2002038263A1 (en) * 2000-11-10 2002-05-16 Maelstrom Advanced Process Technologies Ltd Dynamic mixer
JP2007307494A (en) * 2006-05-19 2007-11-29 Yamazaki Co Ltd Gas-mixing water producing device and humidifying device
JP2011240265A (en) * 2010-05-19 2011-12-01 Aisin Seiki Co Ltd Apparatus and system for forming fine foam cluster
JP2015188857A (en) * 2014-03-28 2015-11-02 俊行 門脇 Nano-bubble hydrogen water and hydrogen foam producing system
JP2020168598A (en) * 2019-04-02 2020-10-15 Kyb株式会社 Air bubble containing liquid production device and air bubble containing liquid production system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157440A (en) * 1997-08-12 1999-03-02 Yaskawa Electric Corp Gas/liquid mixing device
WO2002038263A1 (en) * 2000-11-10 2002-05-16 Maelstrom Advanced Process Technologies Ltd Dynamic mixer
JP2007307494A (en) * 2006-05-19 2007-11-29 Yamazaki Co Ltd Gas-mixing water producing device and humidifying device
JP2011240265A (en) * 2010-05-19 2011-12-01 Aisin Seiki Co Ltd Apparatus and system for forming fine foam cluster
JP2015188857A (en) * 2014-03-28 2015-11-02 俊行 門脇 Nano-bubble hydrogen water and hydrogen foam producing system
JP2020168598A (en) * 2019-04-02 2020-10-15 Kyb株式会社 Air bubble containing liquid production device and air bubble containing liquid production system

Also Published As

Publication number Publication date
JP2022090168A (en) 2022-06-17

Similar Documents

Publication Publication Date Title
WO2018117040A1 (en) Device and system for generating gas-liquid containing microbubbles
US11236756B2 (en) Cavitation device
JP6799865B2 (en) Disperser, defoamer
WO2005099883A1 (en) A method, an apparatus and a rotor for homogenizing a medium
JP6117658B2 (en) Centrifugal pump
JPH0753955B2 (en) Gas discharge device
JPWO2010041565A1 (en) Microbubble generating pump, moving blade for microbubble generating pump and stationary blade for microbubble generating pump
WO2022123867A1 (en) Air bubble-containing liquid production device
US7931398B2 (en) Fluid blending methods utilizing either or both passive and active mixing
JPS62177292A (en) Method and apparatus for mixing liquid or gas with pulp
JP2022502254A (en) Cavitation reactor
WO1980001497A1 (en) Device for dispersing and homogenizing drilling mud
US20220032343A1 (en) Classifying Rotor and Classifying Apparatus
WO2020203413A1 (en) Device for producing bubble-containing liquid and system for producing bubble-containing liquid
JP6808212B2 (en) Media circulation type crusher
JP3149456U (en) Joining structure of rotor and shaft of rotary joint, and media mixing mill equipped with rotary joint having the joining structure
CN206027837U (en) Horizontal sand mill
KR101437513B1 (en) bubble generating apparatus
JP5800213B2 (en) Rotating body for stirring and stirring device
CA2937398C (en) Cavitation device
JP5857042B2 (en) Double flow centrifugal pump
JP4138470B2 (en) Filter
JP2019214003A (en) Mixer and fluid mixing system
JP2015522124A (en) Solid vortex pump
RU2206377C1 (en) Device for aeration of liquids (versions)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902971

Country of ref document: EP

Kind code of ref document: A1