WO2022123685A1 - Station placement design assisting method and station placement design assisting device - Google Patents

Station placement design assisting method and station placement design assisting device Download PDF

Info

Publication number
WO2022123685A1
WO2022123685A1 PCT/JP2020/045849 JP2020045849W WO2022123685A1 WO 2022123685 A1 WO2022123685 A1 WO 2022123685A1 JP 2020045849 W JP2020045849 W JP 2020045849W WO 2022123685 A1 WO2022123685 A1 WO 2022123685A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
area
combination
base station
combination pattern
Prior art date
Application number
PCT/JP2020/045849
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 坪井
和人 後藤
秀紀 俊長
直樹 北
武 鬼沢
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/045849 priority Critical patent/WO2022123685A1/en
Priority to JP2022567945A priority patent/JPWO2022123685A1/ja
Publication of WO2022123685A1 publication Critical patent/WO2022123685A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present invention relates to a station design support method and a station design support device.
  • FIG. 26 shows a use case (for example,) proposed by mmWave Networks in TIP (Telecom Infra Project) (main members: Facebook, DeutscheInstitut, Intel, NOKIA, etc.), which is a consortium that promotes open specifications of communication network devices in general. It is a diagram which has been partially modified and schematicized with reference to (see Non-Patent Documents 1 to 3).
  • mmWave Networks is one of the TIP project groups, aiming to build a network that is faster and cheaper than laying optical fiber by using millimeter-wave radio in the unlicensed band.
  • terminal station equipment 840 to terminal station equipment (hereinafter referred to as "terminal station") 844 installed on each wall surface of the building.
  • the base station device 830 to the base station device (hereinafter referred to as “base station”) 834 installed on the electric pole 821 to the electric pole 826 are devices called mmWave DN (Distribution Node).
  • the base stations 830 to 834 are connected to the communication devices provided in the station building (Fiber PoP (Point of Presence)) 850 and the station building 851 by optical fibers 900 and 901.
  • This communication device is connected to the communication network of the provider.
  • a mmWave Link that is, millimeter-wave radio is performed between the terminal station 840 to the terminal station 844 and the base station 830 to the base station 834.
  • the millimeter-wave radio link is shown by a alternate long and short dash line.
  • Base stations 830 to 834 are installed on utility poles 821 to 826, terminal stations 840 to 844 are installed on the wall of a building, and base stations 830 to bases communicate with each other by millimeter-wave radio. Selecting a candidate position for installing a station 834 and a terminal station 840 to a terminal station 844 is called a station design.
  • a method for designing a station there is a method using three-dimensional point cloud data obtained by imaging a space.
  • a moving object such as a vehicle equipped with an MMS (Mobile Mapping System) is driven along a road around a residential area to be evaluated to acquire three-dimensional point cloud data.
  • MMS Mobile Mapping System
  • the wireless communication between the base station 830 to the base station 834 and the terminal station 840 to the terminal station 844 is evaluated by utilizing the acquired point cloud data.
  • the evaluation means there are a means for determining the line-of-sight between the two stations in three dimensions and a means for calculating the shielding rate.
  • the shielding rate is an index showing how much the object existing between the base station 830 to the base station 834 and the terminal station 840 to the terminal station 844 affects the wireless communication, and vice versa. From the point of view of, it can also be called “transmittance”. In order to perform these evaluation means, it is necessary to have point cloud data for all evaluation targets in the space including the candidate positions of the base station 830 to the base station 834 and the terminal station 840 to the terminal station 844.
  • the wireless communication carrier When trying to cover a certain area (for example, a city) with a communication network as described above, the wireless communication carrier needs to roughly grasp the number of base stations required in order to plan capital investment, etc.
  • a certain area for example, a city
  • the wireless communication carrier needs to roughly grasp the number of base stations required in order to plan capital investment, etc.
  • an area of several hundred meters square may be an evaluation target area. be.
  • all base station installation position candidates that is, utility poles
  • all terminal station installation position candidates that is, the wall surface of the building
  • the evaluation target area is divided into a plurality of smaller areas (hereinafter referred to as "small areas"). Therefore, the station design is performed for each small area.
  • One aspect of the present invention is an area division step of dividing a designated area into a plurality of the small areas on which at least a part of the range overlaps, which is a small area indicating an area smaller than the designated area. For each of the small areas, a combination pattern of at least one candidate position for installing a first radio station and at least one candidate position for installing a second radio station included in the small area is extracted, and a combination pattern list is generated.
  • One aspect of the present invention is a step of acquiring information indicating the position of at least one first radio station, and A step of calculating the number of combination patterns of at least one first radio station and an installation candidate position of at least one second radio station located within a predetermined distance from the position of the first radio station, and the combination pattern.
  • One aspect of the present invention is an area division portion that divides a designated area into a plurality of small areas in which a designated area is smaller than the designated area and in which at least a part of the range overlaps.
  • a combination pattern extraction unit that extracts a combination pattern of the installation candidate position of the first radio station and the installation candidate position of the second radio station included in the small area and generates a combination pattern list.
  • a station design including a duplicate pattern deletion unit that deletes duplicate combination patterns among the combination pattern lists for each small area, and an output unit that outputs a combination pattern list from which the duplicate combination patterns have been deleted. It is a support device.
  • the point cloud data processing unit 6 includes a three-dimensional candidate position selection unit 20, a three-dimensional line-of-sight determination processing unit 23, and a shielding rate calculation unit 24.
  • the pattern number control unit 17 includes an area division unit 171, a combination pattern extraction unit 172, an overlap pattern deletion unit 173, and a recommended pattern identification unit 174.
  • the data stored in advance by the map data storage unit 11, the equipment data storage unit 12, and the point cloud data storage unit 13 included in the station design support device 1 will be described.
  • the map data storage unit 11 stores two-dimensional map data in advance.
  • the map data includes, for example, data showing the position and shape of a building that is a candidate for installing a terminal station, data showing the range of the site of the building, data showing the road, and the like.
  • the equipment data storage unit 12 is a base station candidate position data in a two-dimensional coordinate system indicating the position of a base station-installed building, which is an outdoor facility such as an electric pole that is a candidate for installing a base station (hereinafter, “two-dimensional base station”). "Candidate position data") is stored.
  • the point cloud data storage unit 13 stores, for example, three-dimensional point cloud data acquired by MMS.
  • the terminal station candidate position extraction unit 4 extracts the building contour data indicating the position and shape of the building from the map data in the design area from the map data for each building (step S2-1).
  • the building contour data extracted by the terminal station candidate position extraction unit 4 is data indicating the wall surface of the building where the terminal station may be installed, and is regarded as a position that is a candidate for installing the terminal station.
  • the terminal station candidate position extraction unit 4 generates and assigns building identification data, which is identification information that can uniquely identify each building, to the building contour data for each building to be extracted.
  • the terminal station candidate position extraction unit 4 outputs the assigned building identification data in association with the building contour data corresponding to the building.
  • the two-dimensional outlook determination processing unit 5 uses the building contour data for each building output by the terminal station candidate position extraction unit 4 for each of the two-dimensional base station candidate position data output by the base station candidate position extraction unit 3. It is determined whether or not there is a line-of-sight for each building in the horizontal direction from the position indicated by each of the two-dimensional base station candidate position data.
  • the two-dimensional line-of-sight determination processing unit 5 detects a line-of-sight range in the building determined to have line-of-sight, that is, the wall surface of the building as the line-of-sight range (step S4-1).
  • the two-dimensional line-of-sight determination processing unit 5 correlates the building contour data of the building having the line-of-sight range detected in the horizontal direction with the data indicating the line-of-sight range in the horizontal direction of the building for each base station candidate position, and has a two-dimensional line-of-sight. It is written and stored in the determination result storage unit 15 (step S4-2). As a result, for each two-dimensional base station candidate position data, the building identification data of the building and the data indicating the horizontal line-of-sight range of the building corresponding to the building identification data are stored in the two-dimensional line-of-sight determination result storage unit 15. Will be.
  • the two-dimensional line-of-sight determination processing unit 5 outputs "instruction to consider a building in which another building exists between the base station candidate position and the base station candidate position" output by the operation processing unit 10 in response to the operation of the user of the station design support device 1. It is determined whether or not the instruction signal indicating "is received from the operation processing unit 10" (step S4-3). Before the process of FIG. 2 is started, the user of the station design support device 1 selects in advance whether or not to consider a building in which another building exists between the base station candidate position and the base station candidate position. If it is selected to be considered, the operation processing unit 10 receives an operation of the user and indicates an instruction signal indicating "an instruction to consider a building in which another building exists between the base station candidate position and the base station candidate position". Is output.
  • step S4-3 determines that the instruction signal has not been received (step S4-3, No).
  • step S5-1 determines that the instruction signal is received (step S4-3, Yes).
  • the two-dimensional line-of-sight determination processing unit 5 refers to, for example, the two-dimensional line-of-sight determination result storage unit 15, and for each of the two-dimensional base station candidate position data, the building that has not detected the horizontal line-of-sight range is the building and 2 A building in which another building exists between the position indicated by the 2D base station candidate position data, and the building is referred to as a vertical line-of-sight detection target building (hereinafter, the vertical line-of-sight detection target building is also referred to as a "line-of-sight detection target building". Detect as).
  • the two-dimensional line-of-sight determination processing unit 5 receives, for example, the operation of the user of the station design support device 1 and obtains data indicating the installation altitude for each base station candidate position designated by the user and the height of the building. Import the data shown from the outside.
  • the two-dimensional line-of-sight determination processing unit 5 uses data indicating the height of the captured building for each line-of-sight detection target building for each detected base station candidate position from the height of the installation altitude at the base station candidate position. Detects the vertical line-of-sight range.
  • the two-dimensional line-of-sight determination processing unit 5 stores the building identification data of the building in which the vertical line-of-sight range is detected and the data indicating the vertical line-of-sight range detected in the building in the two-dimensional line-of-sight determination result storage unit 15. Write and store (step S4-4).
  • the building identification data of the building and the data indicating the horizontal and vertical line-of-sight range of the building corresponding to the building identification data are stored in the 2D line-of-sight determination result storage unit 15. It will be remembered.
  • the three-dimensional candidate position selection unit 20 becomes a base station candidate position indicating a position that is a candidate for installing a base station in the three-dimensional space and a candidate for installing a terminal station in the three-dimensional space. Select a terminal station candidate position that indicates the position.
  • the user of the station design support device 1 operates the operation processing unit 10 to select any one of the two-dimensional base station candidate position data from the two-dimensional line-of-sight determination result storage unit 15.
  • the operation processing unit 10 outputs the selected two-dimensional base station candidate position data to the three-dimensional candidate position selection unit 20.
  • the three-dimensional candidate position selection unit 20 takes in the two-dimensional base station candidate position data output by the operation processing unit 10.
  • the three-dimensional candidate position selection unit 20 acquires point cloud data near the position indicated by the captured two-dimensional base station candidate position data from the point cloud data storage unit 13, and displays the acquired point cloud data on the screen.
  • the user operates the operation processing unit 10 to select a three-dimensional position that is a candidate for installing a base station from the point cloud data displayed on the screen, and outputs the three-dimensional position to the three-dimensional candidate position selection unit 20.
  • the three-dimensional candidate position selection unit 20 captures the three-dimensional position output by the operation processing unit 10, and uses the captured three-dimensional position as the three-dimensional base station candidate position data.
  • the 3D candidate position selection unit 20 reads data indicating the line-of-sight range of the building associated with the captured 2D base station candidate position data from the 2D line-of-sight determination result storage unit 15.
  • the three-dimensional candidate position selection unit 20 reads the point cloud data in the range indicated by the read data indicating the line-of-sight range of the building from the point cloud data storage unit 13, and displays the read point cloud data on the screen.
  • the user operates the operation processing unit 10 to select a three-dimensional position that is a candidate for installing a terminal station from the point cloud data displayed on the screen, and outputs the three-dimensional position to the three-dimensional candidate position selection unit 20.
  • the three-dimensional candidate position selection unit 20 captures the three-dimensional position output by the operation processing unit 10, and uses the captured three-dimensional position as the three-dimensional terminal station candidate position data.
  • the three-dimensional base station candidate position data is simply referred to as “base station candidate position data”
  • the three-dimensional terminal station candidate position data is simply referred to as “terminal station candidate position data”.
  • the 3D line-of-sight determination processing unit 23 is a point of space between the base station candidate position and the terminal station candidate position indicated by each of the base station candidate position data and the terminal station candidate position data selected by the 3D candidate position selection unit 20.
  • the group data is read from the point group data storage unit 13 (step S5-1).
  • the three-dimensional line-of-sight determination processing unit 23 performs three-dimensional line-of-sight determination processing between the base station candidate position and the terminal station candidate position based on the read point cloud data, and communicates based on the result of the determination processing. Estimate whether or not it is possible (step S5-2).
  • the shielding rate calculation unit 24 uses the base station candidate position data and the terminal station candidate position data selected by the three-dimensional candidate position selection unit 20.
  • the point cloud data in the space between the base station candidate position and the terminal station candidate position indicated by each is read from the point cloud data storage unit 13 (step S5-1).
  • the shielding rate calculation unit 24 calculates the shielding rate between the base station candidate position and the terminal station candidate position based on the read point cloud data, and estimates whether or not communication is possible based on the result of the calculation process.
  • Step S5-2 The point cloud data processing unit 6 including the three-dimensional line-of-sight processing determination unit 23 and the shielding rate calculation unit 24 performs the processing of steps S5-1 to S5-2 by combining all the base station candidate position data and the terminal station candidate position data. Do about.
  • the station number calculation unit 7 is based on the result of estimation of the possibility of communication performed by the point cloud data processing unit 6 having both the three-dimensional line-of-sight processing determination unit 23 and the shielding rate calculation unit 24 using the three-dimensional point cloud data. Then, the base station candidate positions and the terminal station candidate positions are totaled, and the required number of base stations and the number of accommodated terminal stations for each base station candidate position are calculated (step S6-1).
  • the processing configuration in the station design support device 1 is a processing performed using map data which is two-dimensional data, and a point cloud data which is three-dimensional data based on the result of the processing. It can also be regarded as a two-step process called the process to be performed.
  • the processes performed using the map data are (1) designation of the design area, (2) extraction of the terminal station candidate position, and (3) base station candidate position. It includes four processes of (4) outlook determination using two-dimensional map data.
  • the process of designating the design area corresponds to the process of steps S1-1 and S1-2 performed by the design area designation unit 2.
  • the process of extracting the terminal station candidate position corresponds to the process of step S2-1 performed by the terminal station candidate position extraction unit 4.
  • the process of extracting the base station candidate position corresponds to the process of step S3-1 performed by the base station candidate position extraction unit 3.
  • the process of the line-of-sight determination using the two-dimensional map data corresponds to the process of steps S4-1 to S4-4 performed by the two-dimensional line-of-sight determination processing unit 5.
  • the processing performed using the point cloud data is (5) communication availability determination using the 3D point cloud data, and (6) the number of required base stations and the number of accommodated terminal stations in the design area. Includes two processes: calculation of.
  • base station candidate positions and terminal station candidate positions are used for base stations installed in outdoor equipment such as electric poles and terminal stations installed on the walls of buildings using three-dimensional point group data. It is possible to support the station design by making a three-dimensional outlook judgment between. In order to handle 3D point cloud data, a huge amount of data and a large amount of computational resources are required. Therefore, in the station design support device 1, the two-dimensional line-of-sight determination processing unit 5 provides a two-dimensional line-of-sight between the base station candidate position and the terminal station candidate position before using the three-dimensional point group data. The determination is made, and the point group data processing unit 6 performs a three-dimensional outlook determination process after narrowing down the point group data to be used by using the determination result. Therefore, it is possible to perform efficient three-dimensional outlook determination processing with reduced calculation resources.
  • the point cloud data processing unit 6 of the station design support device 1 is provided with a shielding rate calculation unit 24 to calculate the shielding rate.
  • the calculation of the obstruction rate requires more calculation resources than the three-dimensional line-of-sight determination process. Since the point cloud data to be used can be sufficiently narrowed down, it is possible to efficiently calculate the shielding rate by reducing the calculation resources.
  • the base station is deployed in an outdoor communication facility (in this embodiment, an electric pole), and the terminal station is installed on the wall surface of the building. It is a communication system that performs wireless communication using millimeter-wave band radio.
  • the station design support device 1 creates a list of combination patterns of the base station installation candidate positions and the terminal station installation candidate positions (hereinafter referred to as "combination pattern list").
  • the station design support device 1 performs a process of determining whether or not communication between the two stations is possible by performing a line-of-sight determination and a shielding rate calculation for the combination pattern of both stations.
  • the station design support device 1 determines whether or not communication between the two stations is possible using the map information corresponding to the design area (for example, the residential area to be evaluated) and the point cloud data of the design area collected in advance. ..
  • the wider the design area the more combinations of the base station installation candidate positions and the terminal station installation candidate positions, and the computational resources required to determine whether communication is possible or not.
  • a high-performance PC currently on the market as of 2020
  • a combination pattern of both stations is used. It takes about several seconds to calculate the shielding rate per set.
  • the combination pattern of the installation candidate positions of both stations is tens of billions to tens of trillions, it will be difficult to complete the communication availability determination process in a realistic processing time. Therefore, it is necessary to narrow down the number of combination patterns of the installation candidate positions of both stations to the extent that the communication availability determination process can be completed in a realistic processing time.
  • the number of combination patterns that can complete the communication availability determination process in a realistic processing time is, for example, less than 500,000.
  • the station design support device 1 in the present embodiment determines whether or not communication is possible with the user before determining whether or not communication is possible between the installation candidate position of the base station and the installation candidate position of the terminal station in the design area. Information on combination patterns that can complete processing in a realistic processing time is presented.
  • the number of utility poles included in the design area is about several tens (maximum number: 100), and the number of buildings is about one hundred and several tens (maximum number: 200).
  • the explanation is based on the assumption that it is a building).
  • the base station shall be installed on the utility pole, and the terminal station shall be installed on the wall surface of the building.
  • the central position (center of gravity) of the wall surface (facing the base station direction side) of the building It is assumed that it is one of the points).
  • the number of candidate base station installation positions in the design area corresponds to the number of utility poles (that is, dozens), and the number of terminal station installation candidate positions in the design area is the building building. It will be a number (that is, a hundred and several tens).
  • FIG. 4 is a schematic diagram showing a design area according to the first embodiment of the present invention.
  • the base station installation candidate positions (telephone poles) are indicated by “ ⁇ ” marks, and the terminal station installation candidate positions (building walls) are indicated by “x” marks. .. Although only a part of them is shown in FIG. 4, it is assumed that there are actually 100 candidate base station installation positions and 200 terminal station installation candidate positions as described above.
  • utility poles can be installed approximately every 40 to 50 [m], which can be used as a general utility pole installation interval.
  • the number of combination patterns of the installation candidate positions of one base station in the design area and the installation candidate positions of all terminal stations is expressed by the following equation (1) by using the binomial theorem. Can be done.
  • the number of combination patterns of the installation candidate positions of all base stations in the design area and the installation candidate positions of all terminal stations is the total number of base stations with respect to the value obtained by the above equation (1). By multiplying, it can be expressed by the following equation (2).
  • the above equation (1) represents a case where no particular restriction condition is provided for the number of terminal stations connected to a certain base station by wireless communication.
  • a base station based on the direction of the terminal station as seen from the base station that can communicate, or based on the maximum number of frequency channels used in one base station, etc.
  • a constraint condition may be set so that the value of k is equal to or less than the maximum number (for example, the number of frequency channels). This makes it possible to reduce the number of combinations of patterns between the base station installation candidate positions and the terminal station installation candidate positions.
  • the number of combination patterns of the installation candidate positions of all base stations in the design area and the installation candidate positions of all terminal stations is the total number of base stations with respect to the value obtained by the above equation (4). By multiplying, it can be expressed by the following equation (5).
  • the number of combination patterns is further reduced by imposing the constraint condition as compared with the number of combination patterns obtained by the above-mentioned equation (2).
  • FIG. 5 is a schematic diagram for explaining the reduction of combination patterns by providing constraints.
  • FIG. 5 shows, as an example, a case where the maximum number of terminal stations to which one base station can communicate and connect is 3.
  • FIG. 6 is a schematic diagram for explaining a combination pattern when no constraint condition is provided.
  • the position of the utility pole which is a candidate position for installing a base station, is indicated by a “ ⁇ ” or “ ⁇ ” mark, and the building is a candidate position for installing a terminal station.
  • the center position of is indicated by an "x” mark.
  • the “ ⁇ ” mark indicates the position of the utility pole selected as the base station.
  • the mark of " ⁇ " indicates the position of the utility pole that was not selected as the base station.
  • the state in which the base station installed on the utility pole marked with " ⁇ ” and the base station installed on the utility pole marked with "x" are connected by wireless communication is shown by a solid line or a broken line.
  • the solid line shows the wireless communication connection at the same base station and terminal station as in FIG. 6, which will be described later.
  • the terminal stations can be accommodated with a smaller number of base stations (18 locations).
  • many utility poles to which base stations are not deployed are left.
  • the terminal station is accommodated in various base station selection patterns different from the base station selection pattern shown in FIG.
  • the base station selection pattern is reduced. Therefore, as a result, the number of patterns of the combination of the base station installation candidate position and the terminal station installation candidate position is reduced from the value of the equation (2) to the value of the equation (5).
  • FIG. 7 is a schematic diagram showing an example of a case where the design area is divided into small areas for station placement design.
  • the base station installation candidate position (telephone pole) is indicated by a “ ⁇ ” mark
  • the terminal station installation candidate position (building wall surface) is indicated by “ ⁇ ”. It is indicated by the mark of. Although only a part of them is shown in FIG. 7, it is assumed that there are actually 100 candidate base station installation positions and 200 terminal station installation candidate positions as described above.
  • the radius of the small area is one-fourth of the radius of the design area
  • the area of the small area is one-sixteenth of the area of the design area. Therefore, if the base station installation candidate positions (telephone poles) and terminal station installation candidate positions (buildings) in the design area are evenly distributed, the base stations existing in one small area
  • the number of combination patterns of about 4.15 million does not satisfy less than 500,000 combinations, which is the number of combination patterns that can complete the communication availability determination process in a realistic processing time, which is given as an example above. .. Therefore, it is conceivable to design the station using a small area with a shorter radius.
  • FIGS. 8 and 9 are schematic views showing an example of a case where the design area is divided into small areas for station placement design. Similar to FIG. 4, in the design area shown in FIGS. 8 and 9, the base station installation candidate position (telephone pole) is indicated by a “ ⁇ ” mark, and the terminal station installation candidate position (wall surface of the building) is indicated. It is indicated by an "x" mark. Although only a part of them is shown in FIG. 7, it is assumed that there are actually 100 candidate base station installation positions and 200 terminal station installation candidate positions as described above.
  • the radius of the small area is 1/5 of the radius of the design area
  • the area of the small area is 1/25 of the area of the design area. Therefore, if the base station installation candidate positions (telephone poles) and terminal station installation candidate positions (buildings) in the design area are evenly distributed, the base stations existing in one small area
  • the radius of the small area is about 2/9 of the radius of the design area
  • the area of the small area is about 4/81 of the area of the design area. Therefore, if the base station installation candidate positions (telephone poles) and terminal station installation candidate positions (buildings) in the design area are evenly distributed, the base stations existing in one small area
  • the combination patterns calculated by the equations (6), (7), and (8) can be used.
  • the same combination pattern may be counted twice. By properly removing this duplicate count, the combination pattern is further reduced.
  • FIG. 10 is a flowchart showing an operation of creating a combination pattern list of the station design support device 1 according to the first embodiment of the present invention.
  • the area division portion 171 sets the size of a small area (for example, a circle with a radius of 50 [m]) that is narrower than the design area (for example, a circle with a radius of 200 [m]) (step S101).
  • the area division unit 171 sets the position of the small area so as to fill the design area with the plurality of small areas (step S102).
  • the combination pattern extraction unit 172 generates a combination pattern list which is a list of combination patterns of the base station installation candidate position (telephone pole) and the terminal station installation candidate position (building) for each small area (step S103).
  • the combination pattern extraction unit 172 records the generated combination pattern list in the combination pattern list storage unit 18.
  • step S106 when the generation of the combination pattern list is completed for all the small areas (step S104 ⁇ YES), it is determined whether or not there is a duplicate combination pattern in the already generated combination pattern list (step S106). When there is a duplicate combination pattern in the already generated combination pattern list (step S106 ⁇ YES), the duplicate pattern deletion unit 173 deletes the other, leaving only one duplicate combination pattern. (Step S107). Then, the process returns to step S106.
  • the station design support device 1 When there is no duplicate combination pattern in the already generated combination pattern list (step S106 / NO), the station design support device 1 outputs the generated combination pattern list. For example, the station design support device 1 presents the generated combination pattern list to the user by displaying it on a display unit (not shown). This completes the operation of the station design support device 1 shown in the flowchart of FIG.
  • the design area is divided into a plurality of small areas and a combination pattern list is created for each small area, so that the number of combination patterns can be significantly reduced.
  • the station design support device 1 can reduce the number of combination patterns to the extent that the line-of-sight determination and the calculation of the shielding rate can be performed in a realistic calculation time (for example, less than 500,000 patterns).
  • the station design support device 1 in the first embodiment arranges a plurality of small areas so as to fill the entire design area while allowing superposition. As a result, the station design support device 1 reduces the oversight of combination patterns that have a positional relationship that straddles the boundaries of adjacent small areas and that have good results of line-of-sight determination and obstruction rate calculation. can do. From the above, the station station design support device 1 in the present embodiment can enable more effective station station design within a realistic calculation processing time.
  • the station design support device 1 has a configuration in which a small area is set so as to fill the design area while allowing superimposition by a plurality of circular small areas.
  • the shape is not limited to such a configuration, and the shape of the small area does not have to be circular.
  • the road section here means a section where there is a line of sight (without turning) on a certain road.
  • the station design support device 1 in the second embodiment described below is located in a different road section, so that there is no line of sight and the shielding rate is assumed to be high.
  • the combination pattern with the installation candidate position (building) can be excluded in advance.
  • the station design support device 1 can reduce the number of combinations of patterns by providing such constraint conditions.
  • the station design support device 1 in the present embodiment sets a plurality of small areas that fill the design area by using information such as roads included in the map data.
  • FIG. 13 is a schematic diagram showing a case where the station design support device 1 uses a plurality of small areas based on a road section.
  • the combination pattern of the installation candidate positions (electric poles) of all the base stations existing in this design area and the installation candidate positions (buildings) of all the terminal stations is a value (about 1 trillion ways) obtained by the following equation (9). As described above, the number of combination patterns exceeds the number of combination patterns (for example, 500,000 patterns) that can complete the communication passability determination process in a realistic processing time.
  • the station design support device 1 sets the road section by dividing the road so that the section with a line of sight becomes one road section, for example, on a curved road. Further, in the case of a road having a long line of sight, for example, a long straight road, the road section is set by dividing the road so that the section of 200 [m]) is one road section, for example. This distance of 200 [m] is the upper limit distance at which sufficient wireless communication can be performed using millimeter-wave radio waves.
  • the station design support device 1 sets the road in the design area into eight road sections of road section A, road section B, road section C, ..., Road section G, and road section H. Cut into.
  • the station design support device 1 sets a small area for each of these eight road sections. In FIG. 13, the small area is shown as a solid oval.
  • the station design support device 1 arranges eight small areas while allowing superimposition so that the entire design area is filled.
  • the 768 combinations of small areas including the road section A which are represented by the equation (10) are stationed without dividing the design area into the small areas, which are indicated by the above equation (9).
  • the number of combinations is about 1 trillion, which is less than 1 / 1.4 billion.
  • the 384 combinations which is the number of combinations of small areas including the road section H, which is represented by the equation (12), is a station design without dividing the design area into the small areas, which is indicated by the above equation (9). It is less than about 1 / 2.9 billion with respect to about 1 trillion combinations, which is the number of combinations in the case of performing.
  • the number of combination patterns in the eight small areas from the small area including the road section A to the small area including the road section H can be calculated as described above.
  • the total number of the combination patterns of these eight small areas is about 1 trillion, which is the number of combination patterns when the station design is performed without dividing the design area into the small areas, which is shown by the above equation (9). On the other hand, it is at least about one billionth. In this way, by dividing the design area into small areas based on the road section and performing station station design, the number of combination patterns can be significantly reduced.
  • FIG. 14 is a flowchart showing an operation of creating a combination pattern list of the station design support device 1 according to the second embodiment of the present invention.
  • the area division unit 171 divides the road included in the design area into a plurality of road sections based on the map data (step S201). For example, the area division unit 171 divides the road for each straight line within a communicable distance. In addition, for example, the area division portion 171 divides the section of the curve for each line of sight. However, as a caveat, the division of road sections allows the boundaries of adjacent road sections to enter each other and allow the adjacent road sections to overlap.
  • the area division unit 171 groups the utility poles and buildings for each small area including each road section based on the map data and the equipment data (step S202). In the following description, a small area including a certain road section may be simply referred to as a "road section”. The area division unit 171 determines whether or not all the road sections in the design area have been grouped (step S203).
  • the combination pattern extraction unit 172 will use the utility pole (base station installation candidate position) and building (terminal station installation candidate) for each group.
  • the combination pattern with the position) is extracted (step S204).
  • the combination pattern extraction unit 172 generates a combination pattern list, which is a list of the extracted combination patterns (step S205).
  • the combination pattern extraction unit 172 records the generated combination pattern list in the combination pattern list storage unit 18.
  • the duplicate pattern deletion unit 173 determines whether or not there is the same (overlapping) combination pattern among the combination pattern lists of different small areas (step S206). That is, in this determination, it is confirmed whether or not there is an overlapping combination pattern in which a base station and a terminal station are installed in the same utility pole and the same building in different groups.
  • step S206 When there is the same (overlapping) combination pattern between the combination pattern lists of different small areas (step S206, YES), the duplication pattern deletion unit 173 leaves only one duplication pattern. Others are deleted (step S207). Then, the process returns to step S206.
  • step S206 when there is no same (overlapping) combination pattern between the combination pattern lists of different small areas (step S206 / NO), the process returns to step S203, and the area division unit 171 determines all the road sections in the design area. Determine if grouping has been performed. When all the road sections in the design area are grouped (step S203, YES), the station design support device 1 outputs the generated combination pattern list. For example, the station design support device 1 presents the generated combination pattern list to the user by displaying it on a display unit (not shown) (step S208). This completes the operation of the station design support device 1 shown in the flowchart of FIG.
  • the station design support device 1 in the second embodiment when there are installation candidate positions of a plurality of base stations and installation candidate positions of a plurality of terminal stations in the design area.
  • an appropriate combination pattern can be presented. If all combination patterns of all base station installation candidate positions and all terminal station installation candidate positions in such a design area are to be evaluated, the number of combination patterns is, for example, as described above. The number will exceed 1 trillion. Therefore, in this case, it becomes difficult to determine the line-of-sight and calculate the shielding rate for each combination pattern in a realistic calculation time.
  • the station design support device 1 in the second embodiment divides the road included in the design area into a plurality of road sections based on the map data, and sets a small area for each road section. Since the station design support device 1 creates a combination pattern list for each small area, the number of combination patterns can be significantly reduced. As a result, the station design support device 1 can reduce the number of combination patterns to the extent that the line-of-sight determination and the calculation of the shielding rate can be performed in a realistic calculation time (for example, less than 500,000 patterns).
  • the station design support device 1 in the second embodiment sets a small area for each road section, the line-of-sight determination and the shielding rate calculation between the base station installation candidate position and the terminal installation candidate position are performed.
  • the combination pattern list can be generated so as to exclude the combination patterns that are difficult to obtain good results. This is because, as mentioned above, the wall surface of the building facing the road section different from the road section on which the utility pole is built is considered to have no line of sight and often have a high shielding rate.
  • the station design support device 1 in the second embodiment arranges a plurality of small areas so as to fill the entire design area while allowing superposition.
  • the station design support device 1 reduces the oversight of combination patterns that have a positional relationship that straddles the boundaries of adjacent small areas and that have good results of line-of-sight determination and obstruction rate calculation. can do.
  • the station design support device 1 is referred to as a recommended base station installation position (hereinafter referred to as "recommended installation position") based on the design area designated by the user and the installation position of the terminal station. ) Is presented to the user.
  • the number of combination patterns for performing line-of-sight determination and shielding rate calculation processing may be enormous (for example, tens of billions) depending on the position where the terminal stations are designated.
  • the station design support device 1 in the present embodiment can reduce such a combination pattern.
  • FIG. 15 is a flowchart showing the operation of the station design support device 1 according to the third embodiment of the present invention.
  • the design area designation unit 2 designates the design area based on the designated input by the user (step S301).
  • the designated design area is, for example, a specific area in the map data stored in the map data storage unit 11 as shown on the left side of FIG.
  • the base station candidate position extraction unit 3 acquires equipment data from the equipment data storage unit 12 and extracts information on outdoor communication equipment including utility poles in the design area (step S302).
  • the information extracted here is, for example, information as shown on the right side of FIG. As shown on the right side of FIG. 16, the information includes, for example, information indicating a utility pole number identifying a utility pole, a position and type of a utility pole, and the like in a designated design area.
  • the point cloud data processing unit 6 designates the installation position of the terminal station based on the designated input by the user (step S303). For example, in the map shown in FIG. 18, the installation position of the terminal station is represented by an “x” mark.
  • the point cloud data processing unit 6 is a candidate for installing a base station, which is determined to have a line of sight or has a shielding rate less than a predetermined value, centering on the designated terminal station, based on the installation position of the designated terminal station.
  • the position (telephone pole) is extracted (step S304). In the map shown in FIG. 19, the extracted five base station installation candidate positions (telephone poles) are indicated by “ ⁇ ” marks. Further, a code (“A”, “B”, “C”, “D”, 7) For identifying the installation candidate position of each base station is shown.
  • the recommended pattern specifying unit 174 presents the recommended installation position of the base station to the user (step S305). This completes the operation of the station design support device 1 shown in the flowchart of FIG.
  • the two methods of presenting the recommended installation positions of the base station will be described below.
  • the first presentation method is to derive the recommended installation position of the base station for accommodating the terminal station with the minimum number of base stations.
  • this first presentation method it is assumed that the user of the station design support device 1 specifies the installation positions of a plurality of terminal stations.
  • FIG. 20 is a diagram showing an example of a list presented by the station design support device 1 according to the third embodiment of the present invention. As shown in FIG. 20, in the first presentation method, the number of terminal stations determined to have no line of sight for any of the base station installation candidate positions in the design area is minimized. The recommended installation location of the base station is presented so that the number of base stations required to accommodate the terminal station in the design area is minimized.
  • the second presentation method is to derive the recommended installation position of the base station so as to minimize the number of terminal stations that cannot be connected to a plurality of base stations.
  • this second presentation method presents the recommended installation position of the base station so that each of the plurality of terminal stations specified by the user can be connected to as many base stations as possible. ..
  • FIG. 21 is a diagram showing an example of a list presented by the station design support device 1 according to the third embodiment of the present invention. As shown in FIG. 21, in the second presentation method, the number of terminal stations determined to have no line of sight for any of the base station installation candidate positions in the design area is minimized. Further, a base that minimizes the number of terminal stations that cannot be connected to multiple base stations and minimizes the number of base stations required to accommodate the terminal stations in the design area. The recommended installation location of the station is presented.
  • the minimum value of the number of terminal stations determined to have no line of sight for any of the base station installation candidate positions is 16.
  • the minimum value of the terminal station that cannot be connected to a plurality of base stations is 1.
  • the minimum value of the number of base stations required to accommodate the terminal stations in the design area is 4. In this case, there is only one combination of four base stations required to accommodate the terminal station in the design area, "A", "B", "C”, and "D". Therefore, the first-ranked evaluation order is given to this one combination of base stations.
  • the number of utility poles that are candidate positions for the installation of the base station and the number of terminal stations are important in the design area. If these numbers are too large, the number of combination patterns of the base station installation candidate position and the terminal station installation position will be so large that it will not be possible to determine the line-of-sight or calculate the shielding rate within a realistic time. It becomes a number.
  • Terminal stations installed at these five locations may communicate with, for example, 33 base stations. Since there are 100 candidate base station installation positions in the design area, the value of 33 locations means that the terminal station connects to about one-third of these base stations even if it is underestimated. It is an expected value based on the assumption that it is possible.
  • each terminal station is not necessarily due to the difference due to the position of each terminal station and the positions of a plurality of base stations existing in the vicinity of each terminal station.
  • the same number of base stations is not always selected (that is, the same number of combination patterns are generated).
  • the number of combinations of patterns is roughly estimated here, and it is assumed that the same number of base stations are selected for each terminal station.
  • the positions of the number m of base stations and the number n of terminal stations are opposite to those of equation (2).
  • a small area (radius 44.4 [m]) is provided with respect to a design area (a circular area having a radius of 200 [m] in an area of 400 [m] square). Circular area) was set. As a result, in the above calculation, the number of combination patterns could be reduced from about 22 trillion patterns to about 500,000 patterns.
  • the number of combination patterns is about 43 billion. Therefore, the number of combination patterns is adjusted to be 500,000 or less that can be processed in a realistic time.
  • the station design support device 1 gradually increases the value of i. As a result, the radius of the small area is gradually shortened, and the number of combination patterns is reduced.
  • the radius of the circle Dz 150 [m]. That is, in FIG. 23, the circular area of the two-dot chain line is reduced to the circular area of the one-dot chain line.
  • FIG. 24 is a flowchart showing the operation of the station design support device 1 according to the third embodiment of the present invention.
  • the design area designation unit 2 designates the design area based on the designated input by the user (step S401).
  • the point cloud data processing unit 6 designates the position of the terminal station based on the designated input by the user (step S402).
  • the point cloud data processing unit 6 selects a base station located at a distance capable of wireless communication from the terminal station (step S403).
  • the combination pattern extraction unit 172 calculates the number of combination patterns from the (plural) terminal stations and the base stations selected in step S403 (step S404).
  • the combination pattern extraction unit 172 determines whether or not the calculated number of combination patterns is a predetermined value (for example, 500,000 ways) or less (step S405).
  • step S405 determines whether or not the distance from the terminal station that selects the base station can be shortened (step S406).
  • step S406 selects the base station at a shorter distance from the terminal station (step S407). Then, the process returns to step S404.
  • step S406 when the distance from the terminal station for selecting the base station cannot be shortened (step S406 / NO), the combination pattern extraction unit 172 deletes some designations of the specified plurality of terminal stations (step S408). Then, the process returns to step S403.
  • step S408 partial deletion of a plurality of designated terminal stations may not be completed as a result. That is, even though one terminal station has the shortest distance, the number of combinations may exceed a predetermined number. In such a case, it is conceivable that the station design support device 1 separately presents the user.
  • step S405 when the number of combination patterns is equal to or less than a predetermined value (step S405 ⁇ YES), the point cloud data processing unit 6 performs a point cloud for each combination pattern included in the generated combination pattern list.
  • the outlook determination process using the data or the obstruction rate calculation process is carried out (step S409). This completes the operation of the station design support device 1 shown in the flowchart of FIG. 24.
  • the station design support device 1 in the third embodiment there are a plurality of utility poles that are candidate positions for installing base stations in the design area, and the position of at least one terminal station is arbitrary.
  • the installation candidate positions of all the base stations located within the range where wireless communication is possible from the terminal station in such a design area are selected, the number of combination patterns will be on the scale of tens of billions. Therefore, in this case, it becomes difficult to determine the line-of-sight and calculate the shielding rate for each combination pattern in a realistic calculation time.
  • the station design support device 1 in the third embodiment gradually shortens the radius of the circular area indicating the distance from the installation position of the terminal station to the installation candidate position of the base station to be selected. As a result, the station design support device 1 can gradually reduce the number of combination patterns. As a result, the station design support device 1 can reduce the number of combination patterns to the extent that the line-of-sight determination and the obstruction rate can be calculated in a realistic calculation time (for example, less than 500,000 patterns). Can be adjusted.
  • the station design support device 1 gradually shortens the radius of the circular area indicating the distance to the installation candidate position of the base station to be selected, thereby reducing the number of combination patterns. It was a configuration to reduce.
  • the station design support device 1 gradually increases the radius of the circular area indicating the distance to the installation candidate position of the base station to be selected. Therefore, the number of combination patterns is adjusted so as to approach a desired value.
  • FIG. 25 is a diagram showing adjustment of the radius of the small area.
  • the station design support device 1 gradually increases the radius of the area.
  • the number of combination patterns increases step by step.
  • the station design support device 1 optimally uses the number of combination patterns calculated in the previous stage. Determined as the number of patterns. Then, the station design support device 1 performs a process of determining the line-of-sight and calculating the shielding rate for each combination pattern included in the combination pattern list generated in the previous step.
  • the station station design support device 1 in the modified example of the third embodiment has the number of combination patterns by gradually shortening the communication distance as in the station station design support device 1 in the third embodiment described above. On the contrary to reducing the number of union patterns, the shortest communication distance is increased in order to obtain the optimum number of union patterns.
  • the station design support device 1 in the modified example of the third embodiment has the above-mentioned configuration by gradually expanding the target area from the shortest communication distance. Compared with the third embodiment of the above, the station design can be performed with less computational resources.
  • the reason for this is that the narrower the target area, the smaller the number of combination patterns.
  • the station design support device 1 in the modified example of the third embodiment starts from the case where the number of combination patterns is smaller, and gradually increases the number of combination patterns as necessary to obtain the optimum number of combination patterns. .. Therefore, the station design support device 1 in the modified example of the third embodiment gradually reduces the number of combination patterns from the large number of combination patterns in the first stage to obtain the optimum number of patterns. It is possible to significantly reduce the calculation resources as compared with the above-mentioned third embodiment.
  • the station design support device 1 can significantly reduce the combination patterns, and can be installed at the base station installation candidate positions and the terminal station installation candidates that exist across the boundary between two adjacent small areas. Even if it is a combination pattern with a position, it can be made difficult to be excluded from the evaluation target. As a result, the station station design support device 1 can support more effective station station design within a realistic calculation processing time.
  • the station design support device 1 in each of the above-described embodiments may be realized by a computer.
  • a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed.
  • the term "computer system” as used herein includes hardware such as an OS and peripheral devices.
  • the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, and a storage device such as a hard disk built in a computer system.
  • a "computer-readable recording medium” is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized by using a programmable logic device such as FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array
  • the line-of-sight judgment and shielding rate from the base stations installed in outdoor equipment such as utility poles to the terminal stations installed on the wall of the building It can be applied to the calculation.
  • Duplicate Pattern deletion unit 174 ... Recommended pattern identification unit, 800, 801 ... Building, 810, 811, 812 ... Residential, 821, 826 ... Electric pole, 830, 834 ... Base station, 840, 844 ... Terminal station, 850, 851 ... Station Building, 900, 901 ... Optical fiber

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This station placement design assisting method comprises: an area division step for dividing a designated area into a plurality of small areas that show areas smaller than the designated area and the ranges of at least some of which overlap each other; a combination pattern extraction step for extracting, for each of the small areas, combination patterns of the placement candidate positions of at least one first radio station and the placement candidate positions of at least one second radio station that are included in the small area, thereby generating combination pattern lists; a duplicated pattern deletion step for deleting duplicated combination patterns between the combination pattern lists of the respective small areas; and an output step for outputting combination pattern lists from which the duplicated combination patterns have been deleted.

Description

置局設計支援方法及び置局設計支援装置Station design support method and station design support device
 本発明は、置局設計支援方法及び置局設計支援装置に関する。 The present invention relates to a station design support method and a station design support device.
 図26は、通信ネットワーク機器全般の仕様オープン化推進を図るコンソーシアムであるTIP(Telecom Infra Project)(主要メンバ:Facebook, Deutsche Telecom, Intel, NOKIAなど)において、mmWave Networksが提案するユースケース(例えば、非特許文献1~3参照)を参考に一部を修正して模式化した図である。mmWave Networksは、TIPのプロジェクトグループの1つであり、アンライセンス帯のミリ波無線を使用して、光ファイバの敷設より速く、かつ安価なネットワーク構築を目指している。 FIG. 26 shows a use case (for example,) proposed by mmWave Networks in TIP (Telecom Infra Project) (main members: Facebook, Deutsche Telekom, Intel, NOKIA, etc.), which is a consortium that promotes open specifications of communication network devices in general. It is a diagram which has been partially modified and schematicized with reference to (see Non-Patent Documents 1 to 3). mmWave Networks is one of the TIP project groups, aiming to build a network that is faster and cheaper than laying optical fiber by using millimeter-wave radio in the unlicensed band.
 図26に示すビル800、801、および住宅810、811、812などの建物において、建物のそれぞれの壁面に設置された端末局装置840~端末局装置(以下、「端末局」という。)844、および電柱821~電柱826に設置された基地局装置830~基地局装置(以下、「基地局」という。)834は、mmWave DN(Distribution Node)と呼ばれる装置である。 In buildings such as buildings 800, 801 and houses 810, 811, 812 shown in FIG. 26, terminal station equipment 840 to terminal station equipment (hereinafter referred to as "terminal station") 844 installed on each wall surface of the building. The base station device 830 to the base station device (hereinafter referred to as "base station") 834 installed on the electric pole 821 to the electric pole 826 are devices called mmWave DN (Distribution Node).
 基地局830~基地局834は、光ファイバ900、901により局舎(Fiber PoP(Point of Presence))850、局舎851に備えられた通信装置と接続されている。この通信装置は、プロバイダーの通信ネットワークに接続されている。端末局840~端末局844と基地局830~基地局834との間では、mmWave Link、すなわちミリ波無線が行われる。図26では、ミリ波無線のリンクを一点鎖線で示している。 The base stations 830 to 834 are connected to the communication devices provided in the station building (Fiber PoP (Point of Presence)) 850 and the station building 851 by optical fibers 900 and 901. This communication device is connected to the communication network of the provider. A mmWave Link, that is, millimeter-wave radio is performed between the terminal station 840 to the terminal station 844 and the base station 830 to the base station 834. In FIG. 26, the millimeter-wave radio link is shown by a alternate long and short dash line.
 基地局830~基地局834を電柱821~電柱826に設置し、端末局840~端末局844を建物の壁面に設置し、両局間をミリ波無線によって通信する形態において、基地局830~基地局834および端末局840~端末局844を設置する候補になる位置を選定することを置局設計という。 Base stations 830 to 834 are installed on utility poles 821 to 826, terminal stations 840 to 844 are installed on the wall of a building, and base stations 830 to bases communicate with each other by millimeter-wave radio. Selecting a candidate position for installing a station 834 and a terminal station 840 to a terminal station 844 is called a station design.
 置局設計を行う手法として空間を撮像することによって得られる3次元の点群データを用いる手法がある。この手法では、例えば、最初に、MMS(Mobile Mapping System)を搭載した車両などの移動体を評価対象の住宅エリア周辺の道路に沿って走行させることにより3次元の点群データを取得する。次に、取得した点群データを活用して基地局830~基地局834と端末局840~端末局844との間の無線通信を評価する。評価手段として、両局間の3次元での見通し判定を行う手段や、遮蔽率を算出する手段がある。ここで、「遮蔽率」とは、基地局830~基地局834と、端末局840~端末局844との間に存在する物体がどの程度、無線通信に影響するかを示す指標であり、逆の視点からみれば「透過率」ということもできる。これらの評価手段を行うためには、基地局830~基地局834と端末局840~端末局844の候補位置を含む空間において、全ての評価対象について点群データがそろっている必要がある。 As a method for designing a station, there is a method using three-dimensional point cloud data obtained by imaging a space. In this method, for example, first, a moving object such as a vehicle equipped with an MMS (Mobile Mapping System) is driven along a road around a residential area to be evaluated to acquire three-dimensional point cloud data. Next, the wireless communication between the base station 830 to the base station 834 and the terminal station 840 to the terminal station 844 is evaluated by utilizing the acquired point cloud data. As the evaluation means, there are a means for determining the line-of-sight between the two stations in three dimensions and a means for calculating the shielding rate. Here, the "shielding rate" is an index showing how much the object existing between the base station 830 to the base station 834 and the terminal station 840 to the terminal station 844 affects the wireless communication, and vice versa. From the point of view of, it can also be called "transmittance". In order to perform these evaluation means, it is necessary to have point cloud data for all evaluation targets in the space including the candidate positions of the base station 830 to the base station 834 and the terminal station 840 to the terminal station 844.
 あるエリア(例えば都市)を上記のような通信ネットワークでカバーしようとする場合、無線通信事業者は、設備投資等の計画を行うため、必要となる基地局の個数を概算で把握しておく必要がある。例えば図26に示されるように、電柱に基地局を設置し、建物の壁面に端末局を設置するような置局設計を行う場合、数百メートル四方のエリアが評価対象エリアとされることがある。このような場合、評価対象エリア内に存在する、全ての基地局設置位置の候補(すなわち、電柱)と全ての端末局設置位置の候補(すなわち、建物の壁面)との全ての組合せパターンに対して見通し判定や遮蔽率の算出処理を行うならば、膨大な計算量となる。そのため、従来、組合せパターンの個数を現実的な計算処理時間内で処理可能な個数にまで削減するため、例えば、評価対象エリアを複数のより小さなエリア(以下、「小エリア」という。)に区切って、小エリアごとに置局設計が行われる。 When trying to cover a certain area (for example, a city) with a communication network as described above, the wireless communication carrier needs to roughly grasp the number of base stations required in order to plan capital investment, etc. There is. For example, as shown in FIG. 26, when a base station is installed on a utility pole and a terminal station is installed on the wall of a building, an area of several hundred meters square may be an evaluation target area. be. In such a case, for all combination patterns of all base station installation position candidates (that is, utility poles) and all terminal station installation position candidates (that is, the wall surface of the building) existing in the evaluation target area. If the line-of-sight judgment and the obstruction rate calculation process are performed, the amount of calculation will be enormous. Therefore, in order to reduce the number of combination patterns to the number that can be processed within a realistic calculation processing time, for example, the evaluation target area is divided into a plurality of smaller areas (hereinafter referred to as "small areas"). Therefore, the station design is performed for each small area.
 しかしながら、小エリアごとに置局設計が行われる場合、隣接する2つの小エリアの境界を跨って存在する基地局の設置候補位置と端末局の設置候補位置との組合せパターンは、例え両局間で見通しがあり遮蔽率が低い組合せパターンであったとしても、評価対象外となってしまう。このように、従来技術では、両局間で見通しがあり遮蔽率が低い組合せパターンが見落とされる場合があるため、効果的な置局設計が行われないことがあるという課題がある。 However, when the station placement design is performed for each small area, the combination pattern of the base station installation candidate position and the terminal station installation candidate position that exist across the boundary between two adjacent small areas is, for example, between the two stations. Even if the combination pattern has a clear view and a low shielding rate, it will not be evaluated. As described above, in the prior art, there is a problem that an effective station design may not be performed because a combination pattern having a line-of-sight between both stations and a low shielding rate may be overlooked.
 上記事情に鑑み、本発明は、現実的な計算処理時間内でより効果的な置局設計を行えるようにする技術を提供することを目的としている。 In view of the above circumstances, it is an object of the present invention to provide a technique that enables more effective station placement design within a realistic calculation processing time.
 本発明の一態様は、指定されたエリアを、前記指定されたエリアより小さいエリアを示す小エリアであって、少なくとも一部の範囲が重畳する複数の前記小エリアに区分けするエリア分割ステップと、前記小エリアごとに、前記小エリアに含まれる、少なくとも1つの第1無線局の設置候補位置と少なくとも1つの第2無線局の設置候補位置との組合せパターンを抽出し、組合せパターンリストを生成する組合せパターン抽出ステップと、前記小エリアごとの前記組合せパターンリストの間で、重複する組合せパターンを削除する重複パターン削除ステップと、前記重複する組合せパターンが削除された組合せパターンリストを出力する出力ステップと、を有する置局設計支援方法である。 One aspect of the present invention is an area division step of dividing a designated area into a plurality of the small areas on which at least a part of the range overlaps, which is a small area indicating an area smaller than the designated area. For each of the small areas, a combination pattern of at least one candidate position for installing a first radio station and at least one candidate position for installing a second radio station included in the small area is extracted, and a combination pattern list is generated. A combination pattern extraction step, a duplicate pattern deletion step for deleting duplicate combination patterns between the combination pattern list for each small area, and an output step for outputting a combination pattern list from which the duplicate combination pattern is deleted. It is a station design support method having.
 本発明の一態様は、少なくとも1つの第1無線局の位置を示す情報を取得するステップと、
 少なくとも1つの第1無線局と、前記第1無線局の位置から所定の距離以内に位置する少なくとも1つの第2無線局の設置候補位置との組合せパターンの数を算出するステップと、前記組合せパターンの数が所定数を超過している場合、前記所定の距離を段階的により短くするステップと、前記組合せパターンの数が所定数を超過しなくなった場合、前記組合せパターンの数を出力するステップと、を有する置局設計支援方法である。
One aspect of the present invention is a step of acquiring information indicating the position of at least one first radio station, and
A step of calculating the number of combination patterns of at least one first radio station and an installation candidate position of at least one second radio station located within a predetermined distance from the position of the first radio station, and the combination pattern. When the number of combinations exceeds a predetermined number, the step of gradually shortening the predetermined distance, and when the number of the combination patterns does not exceed the predetermined number, the step of outputting the number of the combination patterns. It is a station design support method having.
 本発明の一態様は、少なくとも1つの第1無線局の位置を示す情報を取得するステップと、少なくとも1つの第1無線局と、前記第1無線局の位置から所定の距離以内に位置する少なくとも1つの第2無線局の設置候補位置との組合せパターンの数を算出するステップと、前記組合せパターンの数が所定数を超過していない場合、前記所定の距離を段階的により長くするステップと、前記組合せパターンの数が所定数を超過した場合、直前の段階の前記所定の距離に基づく前記組合せパターンの数を出力するステップと、を有する置局設計支援方法である。 One aspect of the present invention is a step of acquiring information indicating the position of at least one first radio station, and at least one first radio station and at least located within a predetermined distance from the position of the first radio station. A step of calculating the number of combination patterns with the installation candidate positions of one second radio station, and a step of gradually lengthening the predetermined distance when the number of the combination patterns does not exceed a predetermined number. This is a station design support method including a step of outputting the number of combination patterns based on the predetermined distance in the immediately preceding step when the number of combination patterns exceeds a predetermined number.
 本発明の一態様は、指定されたエリアを、前記指定されたエリアより小さいエリアを示す小エリアであって、少なくとも一部の範囲が重畳する複数の前記小エリアに区分けするエリア分割部と、前記小エリアごとに、前記小エリアに含まれる、第1無線局の設置候補位置と第2無線局の設置候補位置との組合せパターンを抽出し、組合せパターンリストを生成する組合せパターン抽出部と、前記小エリアごとの前記組合せパターンリストの間で、重複する組合せパターンを削除する重複パターン削除部と、前記重複する組合せパターンが削除された組合せパターンリストを出力する出力部と、を備える置局設計支援装置である。 One aspect of the present invention is an area division portion that divides a designated area into a plurality of small areas in which a designated area is smaller than the designated area and in which at least a part of the range overlaps. For each of the small areas, a combination pattern extraction unit that extracts a combination pattern of the installation candidate position of the first radio station and the installation candidate position of the second radio station included in the small area and generates a combination pattern list. A station design including a duplicate pattern deletion unit that deletes duplicate combination patterns among the combination pattern lists for each small area, and an output unit that outputs a combination pattern list from which the duplicate combination patterns have been deleted. It is a support device.
 本発明により、現実的な計算処理時間内でより効果的な置局設計を行うことが可能になる。 According to the present invention, it becomes possible to perform a more effective station placement design within a realistic calculation processing time.
第1の実施形態の置局設計支援装置の構成を示すブロック図である。It is a block diagram which shows the structure of the station design support apparatus of 1st Embodiment. 第1の実施形態の置局設計支援装置による処理の流れを示すフローチャートである。It is a flowchart which shows the flow of processing by the station design support apparatus of 1st Embodiment. 第1の実施形態の置局設計支援装置による処理を2段階に分けて説明するための図である。It is a figure for demonstrating the process by the station design support apparatus of 1st Embodiment in 2 steps. 第1の実施形態における設計エリアを示す模式図である。It is a schematic diagram which shows the design area in 1st Embodiment. 制約条件を設けることによる組合せパターンの削減を説明するための模式図である。It is a schematic diagram for demonstrating the reduction of a combination pattern by setting a constraint condition. 制約条件を設けない場合における組合せパターンを説明するための模式図である。It is a schematic diagram for demonstrating the combination pattern in the case where the constraint condition is not provided. 設計エリアを小エリアに分けて置局設計を行う場合の一例を示す模式図である。It is a schematic diagram which shows an example of the case where the design area is divided into small areas and station station design is performed. 設計エリアを小エリアに分けて置局設計を行う場合の一例を示す模式図である。It is a schematic diagram which shows an example of the case where the design area is divided into small areas and station station design is performed. 設計エリアを小エリアに分けて置局設計を行う場合の一例を示す模式図である。It is a schematic diagram which shows an example of the case where the design area is divided into small areas and station station design is performed. 第1の実施以形態における置局設計支援装置1の組合せパターンリスト作成の動作を示すフローチャートである。It is a flowchart which shows the operation of the combination pattern list creation of the station design support apparatus 1 in 1st Embodiment or later. 置局設計支援装置1が矩形の複数の小エリアを用いる場合を示す模式図である。It is a schematic diagram which shows the case where the station design support device 1 uses a plurality of rectangular small areas. 置局設計支援装置1が六角形の複数の小エリアを用いる場合を示す模式図である。It is a schematic diagram which shows the case where the station design support device 1 uses a plurality of hexagonal small areas. 置局設計支援装置1が道路区間に基づく複数の小エリアを用いる場合を示す模式図である。It is a schematic diagram which shows the case where the station design support device 1 uses a plurality of small areas based on a road section. 第2の実施以形態における置局設計支援装置1の組合せパターンリスト作成の動作を示すフローチャートである。It is a flowchart which shows the operation of the combination pattern list creation of the station design support apparatus 1 in the 2nd Embodiment. 第3の実施形態における置局設計支援装置1の動作を示すフローチャートである。It is a flowchart which shows the operation of the station design support apparatus 1 in 3rd Embodiment. 設備データ記憶部に記憶された設備データの一例を示す図である。It is a figure which shows an example of the equipment data stored in the equipment data storage part. 指定された設計エリアの地図の一例を示す図である。It is a figure which shows an example of the map of the designated design area. 指定された設計エリアの地図の一例を示す図である。It is a figure which shows an example of the map of the designated design area. 指定された設計エリアの地図の一例を示す図である。It is a figure which shows an example of the map of the designated design area. 第3の実施形態における置局設計支援装置1が提示するリストの一例を示す図である。It is a figure which shows an example of the list presented by the station design support apparatus 1 in the 3rd Embodiment. 第3の実施形態における置局設計支援装置1が提示するリストの一例を示す図である。It is a figure which shows an example of the list presented by the station design support apparatus 1 in the 3rd Embodiment. 設計エリア内の基地局の設置候補位置と端末局の設置位置との配置の一例を示す図である。It is a figure which shows an example of the arrangement of the base station installation candidate position and the terminal station installation position in a design area. 小エリアの半径の調整を示す図である。It is a figure which shows the adjustment of the radius of a small area. 第3の実施形態における置局設計支援装置1の動作を示すフローチャートである。It is a flowchart which shows the operation of the station design support apparatus 1 in 3rd Embodiment. 小エリアの半径の調整を示す図である。It is a figure which shows the adjustment of the radius of a small area. TIPが提案するユースケースの一例を示す図である。It is a figure which shows an example of the use case proposed by TIP.
(第1の実施形態)
 以下、本発明の第1の実施形態について図面を参照して説明する。図1は、第1の実施形態の置局設計の支援を行う装置である置局設計支援装置1の構成を示すブロック図である。置局設計支援装置1は、設計エリア指定部2、基地局候補位置抽出部3、端末局候補位置抽出部4、2次元見通し判定処理部5、点群データ処理部6、局数算出部7、操作処理部10、地図データ記憶部11、設備データ記憶部12、点群データ記憶部13、2次元見通し判定結果記憶部15、パターン数制御部17、および組合せパターンリスト記憶部18を備える。
(First Embodiment)
Hereinafter, the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a station station design support device 1 which is a device that supports station station design according to the first embodiment. The station design support device 1 includes a design area designation unit 2, a base station candidate position extraction unit 3, a terminal station candidate position extraction unit 4, a two-dimensional line-of-sight determination processing unit 5, a point cloud data processing unit 6, and a station number calculation unit 7. , Operation processing unit 10, map data storage unit 11, equipment data storage unit 12, point cloud data storage unit 13, two-dimensional line-of-sight determination result storage unit 15, pattern number control unit 17, and combination pattern list storage unit 18.
 点群データ処理部6は、3次元候補位置選定部20、3次元見通し判定処理部23、および遮蔽率算出部24を備える。
 パターン数制御部17は、エリア分割部171、組合せパターン抽出部172、重複パターン削除部173、および推奨パターン特定部174を備える。
The point cloud data processing unit 6 includes a three-dimensional candidate position selection unit 20, a three-dimensional line-of-sight determination processing unit 23, and a shielding rate calculation unit 24.
The pattern number control unit 17 includes an area division unit 171, a combination pattern extraction unit 172, an overlap pattern deletion unit 173, and a recommended pattern identification unit 174.
 置局設計支援装置1が備える地図データ記憶部11、設備データ記憶部12、および点群データ記憶部13が予め記憶するデータについて説明する。 The data stored in advance by the map data storage unit 11, the equipment data storage unit 12, and the point cloud data storage unit 13 included in the station design support device 1 will be described.
 地図データ記憶部11は、2次元の地図データを予め記憶する。地図データには、例えば、端末局が設置される候補になる建物の位置と形状を示すデータ、建物の敷地の範囲を示すデータ、および道路を示すデータなどが含まれている。
 設備データ記憶部12は、基地局が設置される候補になる電柱などの屋外設備である基地局設置建造物の位置を示す2次元の座標系における基地局候補位置データ(以下「2次元基地局候補位置データ」という。)を記憶する。
 点群データ記憶部13は、例えば、MMSが取得した3次元の点群データを記憶する。
The map data storage unit 11 stores two-dimensional map data in advance. The map data includes, for example, data showing the position and shape of a building that is a candidate for installing a terminal station, data showing the range of the site of the building, data showing the road, and the like.
The equipment data storage unit 12 is a base station candidate position data in a two-dimensional coordinate system indicating the position of a base station-installed building, which is an outdoor facility such as an electric pole that is a candidate for installing a base station (hereinafter, “two-dimensional base station”). "Candidate position data") is stored.
The point cloud data storage unit 13 stores, for example, three-dimensional point cloud data acquired by MMS.
 以下、図2に示すフローチャートを参照しつつ、置局設計支援装置1の各機能部の構成および置局設計支援装置1による置局設計支援方法の処理の流れについて説明する。 Hereinafter, with reference to the flowchart shown in FIG. 2, the configuration of each functional unit of the station station design support device 1 and the flow of processing of the station station design support method by the station station design support device 1 will be described.
 設計エリア指定部2は、地図データ記憶部11から2次元の地図データを読み出す(ステップS1-1)。設計エリア指定部2は、読み出した地図データを、例えば、ワーキングメモリに書き込んで記憶させる。設計エリア指定部2は、ワーキングメモリが記憶する地図データにおいて、例えば、操作処理部10が置局設計支援装置1の利用者の操作を受けて出力する設計エリアの範囲を指定する指示信号に基づいて、矩形形状のエリアを選択する。設計エリア指定部2は、選択したエリアを設計エリアとして指定する(ステップS1-2)。 The design area designation unit 2 reads out two-dimensional map data from the map data storage unit 11 (step S1-1). The design area designation unit 2 writes and stores the read map data in, for example, a working memory. The design area designation unit 2 is based on, for example, an instruction signal for designating a range of the design area to be output by the operation processing unit 10 in response to the operation of the user of the station design support device 1 in the map data stored in the working memory. And select a rectangular area. The design area designation unit 2 designates the selected area as the design area (step S1-2).
 端末局候補位置抽出部4は、設計エリア内の地図データから建物の位置と形状を示す建物輪郭データを建物ごとに地図データから抽出する(ステップS2-1)。端末局候補位置抽出部4が抽出する建物輪郭データは、端末局が設置される可能性のある建物の壁面を示すデータであり、端末局が設置される候補になる位置とみなされる。 The terminal station candidate position extraction unit 4 extracts the building contour data indicating the position and shape of the building from the map data in the design area from the map data for each building (step S2-1). The building contour data extracted by the terminal station candidate position extraction unit 4 is data indicating the wall surface of the building where the terminal station may be installed, and is regarded as a position that is a candidate for installing the terminal station.
 端末局候補位置抽出部4は、抽出する建物ごとの建物輪郭データに対して、個々の建物を一意に識別可能な識別情報である建物識別データを生成して付与する。端末局候補位置抽出部4は、付与した建物識別データと、当該建物に対応する建物輪郭データとを関連付けて出力する。 The terminal station candidate position extraction unit 4 generates and assigns building identification data, which is identification information that can uniquely identify each building, to the building contour data for each building to be extracted. The terminal station candidate position extraction unit 4 outputs the assigned building identification data in association with the building contour data corresponding to the building.
 基地局候補位置抽出部3は、設計エリア指定部2が指定した設計エリア内に位置する基地局設置建造物に対応する2次元基地局候補位置データを設備データ記憶部12から読み出して出力する(ステップS3-1)。なお、地図データ記憶部11が記憶する地図データの座標と、設備データ記憶部12が記憶する2次元基地局候補位置データの座標とが一致していない場合、基地局候補位置抽出部3は、読み出した2次元基地局候補位置データの座標を、地図データの座標系に合わせる変換を行う。 The base station candidate position extraction unit 3 reads out the two-dimensional base station candidate position data corresponding to the base station installation building located in the design area designated by the design area designation unit 2 from the equipment data storage unit 12 and outputs the data ( Step S3-1). If the coordinates of the map data stored in the map data storage unit 11 and the coordinates of the two-dimensional base station candidate position data stored in the equipment data storage unit 12 do not match, the base station candidate position extraction unit 3 will perform. The coordinates of the read two-dimensional base station candidate position data are converted to match the coordinate system of the map data.
 2次元見通し判定処理部5は、基地局候補位置抽出部3が出力する2次元基地局候補位置データの各々について、端末局候補位置抽出部4が出力する建物ごとの建物輪郭データを用いて、2次元基地局候補位置データの各々が示す位置からの水平方向における建物ごとの見通しの有無を判定する。2次元見通し判定処理部5は、見通しありと判定した建物において見通しのある範囲、すなわち建物の壁面を見通し範囲として検出する(ステップS4-1)。 The two-dimensional outlook determination processing unit 5 uses the building contour data for each building output by the terminal station candidate position extraction unit 4 for each of the two-dimensional base station candidate position data output by the base station candidate position extraction unit 3. It is determined whether or not there is a line-of-sight for each building in the horizontal direction from the position indicated by each of the two-dimensional base station candidate position data. The two-dimensional line-of-sight determination processing unit 5 detects a line-of-sight range in the building determined to have line-of-sight, that is, the wall surface of the building as the line-of-sight range (step S4-1).
 2次元見通し判定処理部5は、検出した見通し範囲に対応する建物の壁面の中で、更に優先して端末局を設置する建物の壁面の候補を選択する。2次元見通し判定処理部5は、ある建物の見通し範囲が、複数の壁面を含んでいる場合、例えば、基地局から近い方の壁面を優先して端末局を設置する壁面とし、当該壁面を最終的な水平方向における見通し範囲として選択する。 The two-dimensional line-of-sight determination processing unit 5 selects a candidate for the wall surface of the building in which the terminal station is installed with higher priority among the wall surfaces of the building corresponding to the detected line-of-sight range. When the line-of-sight range of a certain building includes a plurality of wall surfaces, the two-dimensional line-of-sight determination processing unit 5 sets, for example, the wall surface closer to the base station as the wall surface on which the terminal station is installed, and sets the wall surface as the final wall surface. Select as the line-of-sight range in the horizontal direction.
 なお、ある建物の見通し範囲が複数の壁面を含んでいる場合において、1つの壁面を選択する方法は上記の方法に限られるものではなく任意である。 In addition, when the line-of-sight range of a certain building includes a plurality of wall surfaces, the method of selecting one wall surface is not limited to the above method and is arbitrary.
 2次元見通し判定処理部5は、基地局候補位置ごとに、水平方向において検出した見通し範囲を有する建物の建物輪郭データと、当該建物の水平方向における見通し範囲を示すデータとを関連付けて2次元見通し判定結果記憶部15に書き込んで記憶させる(ステップS4-2)。これにより、2次元基地局候補位置データごとに、建物の建物識別データと、当該建物識別データに対応する建物の水平方向の見通し範囲を示すデータとが2次元見通し判定結果記憶部15に記憶されることになる。 The two-dimensional line-of-sight determination processing unit 5 correlates the building contour data of the building having the line-of-sight range detected in the horizontal direction with the data indicating the line-of-sight range in the horizontal direction of the building for each base station candidate position, and has a two-dimensional line-of-sight. It is written and stored in the determination result storage unit 15 (step S4-2). As a result, for each two-dimensional base station candidate position data, the building identification data of the building and the data indicating the horizontal line-of-sight range of the building corresponding to the building identification data are stored in the two-dimensional line-of-sight determination result storage unit 15. Will be.
 2次元見通し判定処理部5は、操作処理部10が置局設計支援装置1の利用者の操作を受けて出力する「基地局候補位置との間に他の建物が存在する建物を考慮する指示」を示す指示信号を、操作処理部10から受けているか否かを判定する(ステップS4-3)。なお、置局設計支援装置1の利用者は、図2の処理が開始される前に、基地局候補位置との間に他の建物が存在する建物を考慮するか否かを予め選択しており、考慮することを選択している場合、操作処理部10は、利用者の操作を受けて「基地局候補位置との間に他の建物が存在する建物を考慮する指示」を示す指示信号を出力する。 The two-dimensional line-of-sight determination processing unit 5 outputs "instruction to consider a building in which another building exists between the base station candidate position and the base station candidate position" output by the operation processing unit 10 in response to the operation of the user of the station design support device 1. It is determined whether or not the instruction signal indicating "is received from the operation processing unit 10" (step S4-3). Before the process of FIG. 2 is started, the user of the station design support device 1 selects in advance whether or not to consider a building in which another building exists between the base station candidate position and the base station candidate position. If it is selected to be considered, the operation processing unit 10 receives an operation of the user and indicates an instruction signal indicating "an instruction to consider a building in which another building exists between the base station candidate position and the base station candidate position". Is output.
 2次元見通し判定処理部5は、当該指示信号を受けていないと判定した場合(ステップS4-3、No)、処理をステップS5-1に進める。一方、当該指示信号を受けていると判定した場合(ステップS4-3、Yes)、処理をステップS4-4に進める。 When the two-dimensional line-of-sight determination processing unit 5 determines that the instruction signal has not been received (step S4-3, No), the process proceeds to step S5-1. On the other hand, when it is determined that the instruction signal is received (step S4-3, Yes), the process proceeds to step S4-4.
 2次元見通し判定処理部5は、2次元基地局候補位置データごとに、設計エリア内の建物のうち、当該建物と2次元基地局候補位置データが示す位置との間に他の建物が存在する建物を垂直方向の見通し検出対象建物として検出する。2次元見通し判定処理部5は、例えば、2次元見通し判定結果記憶部15を参照し、2次元基地局候補位置データごとに、水平方向の見通し範囲を検出していない建物を、当該建物と2次元基地局候補位置データが示す位置との間に他の建物が存在する建物とし、当該建物を垂直方向の見通し検出対象建物(以下、垂直方向の見通し検出対象建物を「見通し検出対象建物」ともいう)として検出する。 In the 2D outlook determination processing unit 5, for each 2D base station candidate position data, another building exists between the building in the design area and the position indicated by the 2D base station candidate position data. Detects a building as a vertical line-of-sight detection target building. The two-dimensional line-of-sight determination processing unit 5 refers to, for example, the two-dimensional line-of-sight determination result storage unit 15, and for each of the two-dimensional base station candidate position data, the building that has not detected the horizontal line-of-sight range is the building and 2 A building in which another building exists between the position indicated by the 2D base station candidate position data, and the building is referred to as a vertical line-of-sight detection target building (hereinafter, the vertical line-of-sight detection target building is also referred to as a "line-of-sight detection target building". Detect as).
 2次元見通し判定処理部5は、例えば、置局設計支援装置1の利用者の操作を受けて、当該利用者が指定する基地局候補位置ごとの設置高度を示すデータと、建物の高さを示すデータとを外部から取り込む。 The two-dimensional line-of-sight determination processing unit 5 receives, for example, the operation of the user of the station design support device 1 and obtains data indicating the installation altitude for each base station candidate position designated by the user and the height of the building. Import the data shown from the outside.
 2次元見通し判定処理部5は、検出した基地局候補位置ごとの見通し検出対象建物ごとに、取り込んだ建物の高さを示すデータを用いて、当該基地局候補位置における設置高度の高さからの垂直方向の見通し範囲を検出する。2次元見通し判定処理部5は、垂直方向の見通し範囲を検出した建物の建物識別データと、当該建物において検出した垂直方向における見通し範囲を示すデータとを関連付けて2次元見通し判定結果記憶部15に書き込んで記憶させる(ステップS4-4)。これにより、2次元基地局候補位置データごとに、建物の建物識別データと、当該建物識別データに対応する建物の水平および垂直方向の見通し範囲を示すデータとが2次元見通し判定結果記憶部15に記憶されることになる。 The two-dimensional line-of-sight determination processing unit 5 uses data indicating the height of the captured building for each line-of-sight detection target building for each detected base station candidate position from the height of the installation altitude at the base station candidate position. Detects the vertical line-of-sight range. The two-dimensional line-of-sight determination processing unit 5 stores the building identification data of the building in which the vertical line-of-sight range is detected and the data indicating the vertical line-of-sight range detected in the building in the two-dimensional line-of-sight determination result storage unit 15. Write and store (step S4-4). As a result, for each 2D base station candidate position data, the building identification data of the building and the data indicating the horizontal and vertical line-of-sight range of the building corresponding to the building identification data are stored in the 2D line-of-sight determination result storage unit 15. It will be remembered.
 点群データ処理部6において、3次元候補位置選定部20は、3次元空間における基地局を設置する候補になる位置を示す基地局候補位置と、3次元空間における端末局を設置する候補になる位置を示す端末局候補位置とを選定する。 In the point group data processing unit 6, the three-dimensional candidate position selection unit 20 becomes a base station candidate position indicating a position that is a candidate for installing a base station in the three-dimensional space and a candidate for installing a terminal station in the three-dimensional space. Select a terminal station candidate position that indicates the position.
 例えば、置局設計支援装置1の利用者が、操作処理部10を操作して、2次元見通し判定結果記憶部15からいずれか1つの2次元基地局候補位置データを選択する。操作処理部10は、選択した2次元基地局候補位置データを3次元候補位置選定部20に出力する。3次元候補位置選定部20は、操作処理部10が出力する2次元基地局候補位置データを取り込む。3次元候補位置選定部20は、取り込んだ2次元基地局候補位置データが示す位置の付近の点群データを点群データ記憶部13から取得し、取得した点群データを画面に表示する。利用者は操作処理部10を操作して、画面に表示された点群データの中から基地局を設置する候補になる3次元の位置を選択して3次元候補位置選定部20に出力する。3次元候補位置選定部20は、操作処理部10が出力する3次元の位置を取り込み、取り込んだ3次元の位置を、3次元の基地局候補位置データとする。 For example, the user of the station design support device 1 operates the operation processing unit 10 to select any one of the two-dimensional base station candidate position data from the two-dimensional line-of-sight determination result storage unit 15. The operation processing unit 10 outputs the selected two-dimensional base station candidate position data to the three-dimensional candidate position selection unit 20. The three-dimensional candidate position selection unit 20 takes in the two-dimensional base station candidate position data output by the operation processing unit 10. The three-dimensional candidate position selection unit 20 acquires point cloud data near the position indicated by the captured two-dimensional base station candidate position data from the point cloud data storage unit 13, and displays the acquired point cloud data on the screen. The user operates the operation processing unit 10 to select a three-dimensional position that is a candidate for installing a base station from the point cloud data displayed on the screen, and outputs the three-dimensional position to the three-dimensional candidate position selection unit 20. The three-dimensional candidate position selection unit 20 captures the three-dimensional position output by the operation processing unit 10, and uses the captured three-dimensional position as the three-dimensional base station candidate position data.
 次に、3次元候補位置選定部20は、取り込んだ2次元基地局候補位置データに関連付けられている建物の見通し範囲を示すデータを2次元見通し判定結果記憶部15から読み出す。3次元候補位置選定部20は、読み出した建物の見通し範囲を示すデータが示す範囲の点群データを点群データ記憶部13から読み出し、読み出した点群データを画面に表示する。利用者は操作処理部10を操作して、画面に表示された点群データの中から端末局を設置する候補になる3次元の位置を選択して3次元候補位置選定部20に出力する。3次元候補位置選定部20は、操作処理部10が出力する3次元の位置を取り込み、取り込んだ3次元の位置を、3次元の端末局候補位置データとする。以下、3次元の基地局候補位置データを、単に「基地局候補位置データ」といい、3次元の端末局候補位置データを、単に「端末局候補位置データ」という。 Next, the 3D candidate position selection unit 20 reads data indicating the line-of-sight range of the building associated with the captured 2D base station candidate position data from the 2D line-of-sight determination result storage unit 15. The three-dimensional candidate position selection unit 20 reads the point cloud data in the range indicated by the read data indicating the line-of-sight range of the building from the point cloud data storage unit 13, and displays the read point cloud data on the screen. The user operates the operation processing unit 10 to select a three-dimensional position that is a candidate for installing a terminal station from the point cloud data displayed on the screen, and outputs the three-dimensional position to the three-dimensional candidate position selection unit 20. The three-dimensional candidate position selection unit 20 captures the three-dimensional position output by the operation processing unit 10, and uses the captured three-dimensional position as the three-dimensional terminal station candidate position data. Hereinafter, the three-dimensional base station candidate position data is simply referred to as "base station candidate position data", and the three-dimensional terminal station candidate position data is simply referred to as "terminal station candidate position data".
 3次元見通し判定処理部23は、3次元候補位置選定部20が選定した基地局候補位置データおよび端末局候補位置データの各々が示す、基地局候補位置および端末局候補位置の間の空間の点群データを点群データ記憶部13から読み出す(ステップS5-1)。3次元見通し判定処理部23は、読み出した点群データに基づいて、基地局候補位置と、端末局候補位置との間における3次元の見通し判定処理を行い、判定処理の結果に基づいて通信の可否を推定する(ステップS5-2)。 The 3D line-of-sight determination processing unit 23 is a point of space between the base station candidate position and the terminal station candidate position indicated by each of the base station candidate position data and the terminal station candidate position data selected by the 3D candidate position selection unit 20. The group data is read from the point group data storage unit 13 (step S5-1). The three-dimensional line-of-sight determination processing unit 23 performs three-dimensional line-of-sight determination processing between the base station candidate position and the terminal station candidate position based on the read point cloud data, and communicates based on the result of the determination processing. Estimate whether or not it is possible (step S5-2).
 これに対して、点群データ処理部6において、遮蔽率の算出を行う場合、遮蔽率算出部24は、3次元候補位置選定部20が選定した基地局候補位置データおよび端末局候補位置データの各々が示す、基地局候補位置および端末局候補位置の間の空間の点群データを点群データ記憶部13から読み出す(ステップS5-1)。遮蔽率算出部24は、読み出した点群データに基づいて、基地局候補位置と、端末局候補位置との間の遮蔽率を算出し、算出処理の結果に基づいて通信の可否を推定する(ステップS5-2)。
 3次元見通し処理判定部23及び遮蔽率算出部24を含む点群データ処理部6は、ステップS5-1~ステップS5-2の処理を全ての基地局候補位置データと端末局候補位置データの組合せについて行う。
On the other hand, when the point cloud data processing unit 6 calculates the shielding rate, the shielding rate calculation unit 24 uses the base station candidate position data and the terminal station candidate position data selected by the three-dimensional candidate position selection unit 20. The point cloud data in the space between the base station candidate position and the terminal station candidate position indicated by each is read from the point cloud data storage unit 13 (step S5-1). The shielding rate calculation unit 24 calculates the shielding rate between the base station candidate position and the terminal station candidate position based on the read point cloud data, and estimates whether or not communication is possible based on the result of the calculation process. Step S5-2).
The point cloud data processing unit 6 including the three-dimensional line-of-sight processing determination unit 23 and the shielding rate calculation unit 24 performs the processing of steps S5-1 to S5-2 by combining all the base station candidate position data and the terminal station candidate position data. Do about.
 局数算出部7は、3次元見通し処理判定部23あるいは遮蔽率算出部24どちらも有する点群データ処理部6が3次元の点群データを用いて行った通信の可否の推定の結果に基づいて、基地局候補位置や端末局候補位置を集計して、所要基地局数と、基地局候補位置ごとの収容端末局数とを算出する(ステップS6-1)。 The station number calculation unit 7 is based on the result of estimation of the possibility of communication performed by the point cloud data processing unit 6 having both the three-dimensional line-of-sight processing determination unit 23 and the shielding rate calculation unit 24 using the three-dimensional point cloud data. Then, the base station candidate positions and the terminal station candidate positions are totaled, and the required number of base stations and the number of accommodated terminal stations for each base station candidate position are calculated (step S6-1).
 置局設計支援装置1における処理の構成は、図3に示すように2次元データである地図データを用いて行う処理と、当該処理の結果を受けて、3次元データである点群データを用いて行う処理という、2段階の処理として捉えることもできる。 As shown in FIG. 3, the processing configuration in the station design support device 1 is a processing performed using map data which is two-dimensional data, and a point cloud data which is three-dimensional data based on the result of the processing. It can also be regarded as a two-step process called the process to be performed.
 図3に示すように、1段階目の2次元データである地図データを用いて行う処理は、(1)設計エリアの指定、(2)端末局候補位置の抽出、(3)基地局候補位置の抽出、および(4)2次元の地図データを用いた見通し判定、の4つの処理を含んでいる。 As shown in FIG. 3, the processes performed using the map data, which is the first-stage two-dimensional data, are (1) designation of the design area, (2) extraction of the terminal station candidate position, and (3) base station candidate position. It includes four processes of (4) outlook determination using two-dimensional map data.
 (1)設計エリアの指定の処理は、設計エリア指定部2が行うステップS1-1およびステップS1-2の処理に相当する。(2)端末局候補位置の抽出の処理は、端末局候補位置抽出部4が行うステップS2-1の処理に相当する。(3)基地局候補位置の抽出の処理は、基地局候補位置抽出部3が行うステップS3-1の処理に相当する。(4)2次元の地図データを用いた見通し判定の処理は、2次元見通し判定処理部5が行うステップS4-1~ステップS4-4の処理に相当する。 (1) The process of designating the design area corresponds to the process of steps S1-1 and S1-2 performed by the design area designation unit 2. (2) The process of extracting the terminal station candidate position corresponds to the process of step S2-1 performed by the terminal station candidate position extraction unit 4. (3) The process of extracting the base station candidate position corresponds to the process of step S3-1 performed by the base station candidate position extraction unit 3. (4) The process of the line-of-sight determination using the two-dimensional map data corresponds to the process of steps S4-1 to S4-4 performed by the two-dimensional line-of-sight determination processing unit 5.
 2段階目の3次元データである点群データを用いて行う処理は、(5)3次元点群データを用いた通信可否判定、および(6)設計エリアにおける所要基地局数および収容端末局数の算出、の2つの処理を含んでいる。 The processing performed using the point cloud data, which is the second-stage 3D data, is (5) communication availability determination using the 3D point cloud data, and (6) the number of required base stations and the number of accommodated terminal stations in the design area. Includes two processes: calculation of.
 (5)3次元点群データを用いた通信可否判定の処理は、3次元見通し処理判定部23及び遮蔽率算出部24を持つ点群データ処理部6が行うステップS5-1~ステップS5-2の処理に相当する。(6)設計エリアにおける所要基地局数および収容端末局数の算出の処理は、局数算出部7が行うステップS6-1の処理に相当する。 (5) The process of determining whether communication is possible using the three-dimensional point cloud data is performed by the point cloud data processing unit 6 having the three-dimensional line-of-sight processing determination unit 23 and the shielding rate calculation unit 24, in steps S5-1 to S5-2. Corresponds to the processing of. (6) The process of calculating the required number of base stations and the number of accommodated terminal stations in the design area corresponds to the process of step S6-1 performed by the station number calculation unit 7.
 例えば、ミリ波などの無線通信において、電柱など屋外設備に設置する基地局、および建物の壁面に設置する端末局について、3次元の点群データを利用して基地局候補位置と端末局候補位置との間の3次元の見通し判定を行い置局設計の支援を行うことができる。3次元の点群データを取り扱うためには、膨大な量のデータと多大な計算リソースが必要になる。そのため、置局設計支援装置1では、3次元の点群データを利用する前に、2次元見通し判定処理部5が、基地局候補位置と端末局候補位置との間の2次元での見通しを判定し、この判定結果を用いて、点群データ処理部6が、利用する点群データを絞り込んだ上で3次元の見通し判定処理を行う構成である。そのため、計算リソースを削減した効率的な3次元の見通し判定処理を行うことが可能となる。 For example, in wireless communication such as millimeter waves, base station candidate positions and terminal station candidate positions are used for base stations installed in outdoor equipment such as electric poles and terminal stations installed on the walls of buildings using three-dimensional point group data. It is possible to support the station design by making a three-dimensional outlook judgment between. In order to handle 3D point cloud data, a huge amount of data and a large amount of computational resources are required. Therefore, in the station design support device 1, the two-dimensional line-of-sight determination processing unit 5 provides a two-dimensional line-of-sight between the base station candidate position and the terminal station candidate position before using the three-dimensional point group data. The determination is made, and the point group data processing unit 6 performs a three-dimensional outlook determination process after narrowing down the point group data to be used by using the determination result. Therefore, it is possible to perform efficient three-dimensional outlook determination processing with reduced calculation resources.
 また、無線通信において、単純な線状の見通し判定だけでなく、電波が空間を伝搬する際に関係する送信と受信間の回転楕円体形状の領域、いわゆるフレネルゾーンにおける「遮蔽率」を算出することも重要である。置局設計支援装置1の点群データ処理部6は、遮蔽率算出部24を備えることにより、遮蔽率の算出を行う。遮蔽率の算出には、3次元の見通し判定処理より多くの計算リソースが必要になるが、置局設計支援装置1では、2次元見通し判定処理部5が行う2次元の見通し判定の処理において、利用する点群データを十分に絞り込むことができているため、計算リソースを削減した効率的な遮蔽率の算出の処理を行うことが可能となる。 Further, in wireless communication, not only a simple linear line-of-sight determination but also a "shielding rate" in a spheroidal region between transmission and reception, which is related to radio waves propagating in space, a so-called Fresnel zone, is calculated. That is also important. The point cloud data processing unit 6 of the station design support device 1 is provided with a shielding rate calculation unit 24 to calculate the shielding rate. The calculation of the obstruction rate requires more calculation resources than the three-dimensional line-of-sight determination process. Since the point cloud data to be used can be sufficiently narrowed down, it is possible to efficiently calculate the shielding rate by reducing the calculation resources.
 本実施形態の置局設計支援装置1が置局設計の対象とする無線通信システムは、基地局を屋外の通信設備(本実施形態では、電柱)に配備し、端末局を建物の壁面に設置して、ミリ波帯無線を用いて無線通信を行う通信システムである。置局設計支援装置1は、基地局の設置候補位置と端末局の設置候補位置との組合せパターンのリスト(以下、「組合せパターンリスト」という。)を作成する。 In the wireless communication system whose station design is targeted by the station design support device 1 of the present embodiment, the base station is deployed in an outdoor communication facility (in this embodiment, an electric pole), and the terminal station is installed on the wall surface of the building. It is a communication system that performs wireless communication using millimeter-wave band radio. The station design support device 1 creates a list of combination patterns of the base station installation candidate positions and the terminal station installation candidate positions (hereinafter referred to as "combination pattern list").
 置局設計支援装置1は、両局の組合せパターンに対して見通し判定及び遮蔽率算出を行うことによって、両局間の通信の可否を判定する処理を行う。置局設計支援装置1は、設計エリア(例えば、評価対象の住宅エリア等)に対応する地図情報、及び予め収集された設計エリアの点群データを用いて両局間の通信の可否を判定する。 The station design support device 1 performs a process of determining whether or not communication between the two stations is possible by performing a line-of-sight determination and a shielding rate calculation for the combination pattern of both stations. The station design support device 1 determines whether or not communication between the two stations is possible using the map information corresponding to the design area (for example, the residential area to be evaluated) and the point cloud data of the design area collected in advance. ..
 しかしながら、設計エリアが広くなるほど、基地局の設置候補位置と端末局の設置候補位置との組合せパターンはより多くなり、通信可否を判定するために必要となる計算リソースも増大する。例えば、点群データを用いて基地局と端末局との間の遮蔽率を算出する場合、現在(2020年時点)に市販されている高性能なPCを用いたとしても、両局の組合せパターン1組当たりの遮蔽率の算出に数秒程度の時間を要する。 However, the wider the design area, the more combinations of the base station installation candidate positions and the terminal station installation candidate positions, and the computational resources required to determine whether communication is possible or not. For example, when calculating the shielding rate between a base station and a terminal station using point cloud data, even if a high-performance PC currently on the market (as of 2020) is used, a combination pattern of both stations is used. It takes about several seconds to calculate the shielding rate per set.
 両局の設置候補位置の組合せパターンがもし数百億通り~数十兆通りになるならば、通信可否の判定処理を現実的な処理時間で完了させることは困難になる。したがって、通信可否の判定処理を現実的な処理時間で完了させることが可能な程度に、両局の設置候補位置の組合せパターン数の絞り込みを行う必要がある。通信可否の判定処理を現実的な処理時間で完了させることが可能な組合せパターン数とは、例えば50万通り未満である。 If the combination pattern of the installation candidate positions of both stations is tens of billions to tens of trillions, it will be difficult to complete the communication availability determination process in a realistic processing time. Therefore, it is necessary to narrow down the number of combination patterns of the installation candidate positions of both stations to the extent that the communication availability determination process can be completed in a realistic processing time. The number of combination patterns that can complete the communication availability determination process in a realistic processing time is, for example, less than 500,000.
 本実施形態における置局設計支援装置1は、設計エリア内における基地局の設置候補位置と端末局の設置候補位置との間の通信可否を判定する前に、ユーザに対して、通信可否の判定処理を現実的な処理時間で完了させることが可能な組合せパターンに関する情報を提示する。 The station design support device 1 in the present embodiment determines whether or not communication is possible with the user before determining whether or not communication is possible between the installation candidate position of the base station and the installation candidate position of the terminal station in the design area. Information on combination patterns that can complete processing in a realistic processing time is presented.
 本実施形態では、一例として、設計エリアに含まれる電柱の本数を数十本程度(最大本数:100本)であるもの仮定し、建物の棟数を百数十棟程度(最大棟数:200棟)であるものと仮定して説明する。 In this embodiment, as an example, it is assumed that the number of utility poles included in the design area is about several tens (maximum number: 100), and the number of buildings is about one hundred and several tens (maximum number: 200). The explanation is based on the assumption that it is a building).
 また、本実施形態では、基地局は電柱に設置されるものとし、端末局は建物の壁面に設置されるものとする。一般的に、建物の壁面において、端末局を設置可能な位置は複数存在するが、本実施形態では説明を簡単にするため、建物の(基地局方向側に向く)壁面の中央の位置(重心地点)の1か所であるものと仮定する。これにより、設計エリア内に存在する基地局の設置候補位置の個数は電柱の本数(すなわち、数十本)に相当し、設計エリア内に存在する端末局の設置候補位置の個数は建物の棟数(すなわち、百数十棟)となる。 Further, in the present embodiment, the base station shall be installed on the utility pole, and the terminal station shall be installed on the wall surface of the building. Generally, there are a plurality of positions on the wall surface of the building where the terminal station can be installed, but in the present embodiment, for the sake of simplicity, the central position (center of gravity) of the wall surface (facing the base station direction side) of the building. It is assumed that it is one of the points). As a result, the number of candidate base station installation positions in the design area corresponds to the number of utility poles (that is, dozens), and the number of terminal station installation candidate positions in the design area is the building building. It will be a number (that is, a hundred and several tens).
 図4は、本発明の第1の実施形態における設計エリアを示す模式図である。図4に示されるように、本実施形態では、設計エリアは、半径D=200[m]の円内のエリアであるものとする。この200[m]という距離は、一般的なミリ波の通信距離に相当する。 FIG. 4 is a schematic diagram showing a design area according to the first embodiment of the present invention. As shown in FIG. 4, in the present embodiment, the design area is assumed to be an area within a circle having a radius D = 200 [m]. This distance of 200 [m] corresponds to a general millimeter-wave communication distance.
 図4に示される設計エリアでは、基地局の設置候補位置(電柱)が「○」の印で示され、端末局の設置候補位置(建物の壁面)が「×」の印で示されている。図4においては一部のみしか示されていないが、実際には前述の通り、基地局の設置候補位置は100箇所存在し、端末局の設置候補位置は200箇所存在するものとする。半径D=200[m]のエリアにおいて100本の電柱を設置する場合、およそ40~50[m]おきに電柱を設置できることになり、一般的な電柱の設置間隔とすることができる。 In the design area shown in FIG. 4, the base station installation candidate positions (telephone poles) are indicated by "○" marks, and the terminal station installation candidate positions (building walls) are indicated by "x" marks. .. Although only a part of them is shown in FIG. 4, it is assumed that there are actually 100 candidate base station installation positions and 200 terminal station installation candidate positions as described above. When 100 utility poles are installed in an area with a radius D = 200 [m], utility poles can be installed approximately every 40 to 50 [m], which can be used as a general utility pole installation interval.
 この場合、設計エリア内のある1つの基地局の設置候補位置と、全ての端末局の設置候補位置との組合せパターン数は、二項定理を用いることにより、以下の(1)式によって表すことができる。 In this case, the number of combination patterns of the installation candidate positions of one base station in the design area and the installation candidate positions of all terminal stations is expressed by the following equation (1) by using the binomial theorem. Can be done.
 +・・・++・・・+n-1=2 ・・・(1) n C 0 + n C 1 + n C 2 + ... + n C k + ... + n C n-1 + n C n = 2 n ... (1)
 したがって、設計エリア内の全ての基地局の設置候補位置と、全ての端末局の設置候補位置との組合せパターン数は、上記の(1)式で求められた値に対して基地局の総数を乗算することにより、以下の(2)式によって表すことができる。 Therefore, the number of combination patterns of the installation candidate positions of all base stations in the design area and the installation candidate positions of all terminal stations is the total number of base stations with respect to the value obtained by the above equation (1). By multiplying, it can be expressed by the following equation (2).
 (組合せパターン数)=m×2 ・・・(2) (Number of combination patterns) = m × 2 n ... (2)
 (2)式のm及びnの値をそれぞれ、前述の基地局の設置候補位置の個数(電柱の本数)100とし、端末局の設置候補位置の個数(建物の棟数)200とした場合、組合せパターン数は膨大な数となってしまう。仮に、基地局の設置候補位置の個数と端末局の設置候補位置の個数とがそれぞれ上記の5分の1の個数であったとしても(すなわち、m=20,n=40であったとしても)、組合せパターン数は以下の(3)式で示されるように約22兆通りとなる。 When the values of m and n in equation (2) are 100 for the number of candidate positions for installation of the above-mentioned base station (number of utility poles) and 200 for the number of candidate positions for installation of terminal stations (number of buildings), respectively. The number of combination patterns will be enormous. Even if the number of candidate base station installation positions and the number of terminal station installation candidate positions are each one-fifth of the above (that is, m = 20, n = 40). ), The number of combination patterns is about 22 trillion as shown by the following equation (3).
 (組合せパターン数)=20×240
           =21,990,232,555,520 ・・・(3)
(Number of combination patterns) = 20 × 2 40
= 21,990,232,555,520 ... (3)
 したがって、これでもまだ、両局間の見通し判定や遮蔽率の算出をするためには、汎用的なPC等の計算リソースでは、現実的な処理時間で完了させることが困難である。 Therefore, even with this, in order to determine the line-of-sight between the two stations and calculate the shielding rate, it is still difficult to complete the calculation in a realistic processing time with a calculation resource such as a general-purpose PC.
 ただし、上記の(1)式は、ある基地局に対して無線通信接続する端末局の個数には特に制約条件が設けられていない場合を表わしている。しかしながら、一般的には、通信可能となる基地局から見た端末局の方向に基づいて、あるいは、ある1つの基地局で使用される周波数チャネルの最大数等に基づいて、ある基地局に対して無線通信接続する端末局の個数には制約条件が設けられている。すなわち、一般的に、ある1つの基地局と無線通信することができる端末局の最大数には上限がある。 However, the above equation (1) represents a case where no particular restriction condition is provided for the number of terminal stations connected to a certain base station by wireless communication. However, in general, for a base station, based on the direction of the terminal station as seen from the base station that can communicate, or based on the maximum number of frequency channels used in one base station, etc. There are restrictions on the number of terminal stations that can be connected wirelessly. That is, in general, there is an upper limit to the maximum number of terminal stations that can wirelessly communicate with a certain base station.
 そのため、上記の(1)式において、kの値をその最大数(例えば、周波数チャネル数)以下とする制約条件を設けるようにしてもよい。これにより、基地局の設置候補位置と端末局の設置候補位置との組合せパターン数を削減することができる。 Therefore, in the above equation (1), a constraint condition may be set so that the value of k is equal to or less than the maximum number (for example, the number of frequency channels). This makes it possible to reduce the number of combinations of patterns between the base station installation candidate positions and the terminal station installation candidate positions.
 上記の(1)式において、ある1つの基地局から端末局の接続数をk以下とした場合、設計エリア内のある1つの基地局の設置候補位置と、全ての端末局の設置候補位置との組合せパターン数は、以下の(4)式によって表すことができる。 In the above equation (1), when the number of connections from one base station to terminal stations is k or less, the installation candidate positions of one base station in the design area and the installation candidate positions of all terminal stations are used. The number of combination patterns of can be expressed by the following equation (4).
 (組合せパターン数)=+・・・+
           =2-(k+1+・・・+n-1) ・・・(4)
(Number of combination patterns) = n C 1 + n C 2 + ... + n C k
= 2 n- ( n C k + 1 + ... + n C n-1 + n C n ) ... (4)
 したがって、設計エリア内の全ての基地局の設置候補位置と、全ての端末局の設置候補位置との組合せパターン数は、上記の(4)式で求められた値に対して基地局の総数を乗算することにより、以下の(5)式によって表すことができる。 Therefore, the number of combination patterns of the installation candidate positions of all base stations in the design area and the installation candidate positions of all terminal stations is the total number of base stations with respect to the value obtained by the above equation (4). By multiplying, it can be expressed by the following equation (5).
 (組合せパターン数)=m×(+・・・+
           =m×2-m×(k+1+・・・+n-1) ・・・(5)
(Number of combination patterns) = m × ( n C 1 + n C 2 + ... + n C k )
= M × 2 n −m × ( n C k + 1 + ・ ・ ・ + n C n-1 + n C n ) ・ ・ ・ (5)
 このように、前述の(2)式によって求められる組合せパターン数と比べ、制約条件が課されることにより組合せパターン数がさらに削減される。 As described above, the number of combination patterns is further reduced by imposing the constraint condition as compared with the number of combination patterns obtained by the above-mentioned equation (2).
 図5は、制約条件を設けることによる組合せパターンの削減を説明するための模式図である。図5は、一例として、1つの基地局が通信接続することができる端末局の最大数が3である場合を表している。これに対し、図6は、制約条件を設けない場合における組合せパターンを説明するための模式図である。図5及び図6に示される地図データ(住宅地図)では、基地局の設置候補位置となる電柱の位置が「●」又は「○」の印で示され、端末局の設置候補位置となる建物の中央の位置が「×」の印で示されている。また、図5においては、「●」の印は、基地局として選択された電柱の位置を表す。また、「○」の印は、基地局として選択されなかった電柱の位置を表す。そして、「●」印の電柱に設置された基地局と「×」印の電柱に設置された基地局とが無線通信接続する様子が、実線又は破線で示されている。実線は、後述される図6と同じ基地局及び端末局での無線通信接続を示す。 FIG. 5 is a schematic diagram for explaining the reduction of combination patterns by providing constraints. FIG. 5 shows, as an example, a case where the maximum number of terminal stations to which one base station can communicate and connect is 3. On the other hand, FIG. 6 is a schematic diagram for explaining a combination pattern when no constraint condition is provided. In the map data (residential map) shown in FIGS. 5 and 6, the position of the utility pole, which is a candidate position for installing a base station, is indicated by a “●” or “○” mark, and the building is a candidate position for installing a terminal station. The center position of is indicated by an "x" mark. Further, in FIG. 5, the “●” mark indicates the position of the utility pole selected as the base station. In addition, the mark of "○" indicates the position of the utility pole that was not selected as the base station. The state in which the base station installed on the utility pole marked with "●" and the base station installed on the utility pole marked with "x" are connected by wireless communication is shown by a solid line or a broken line. The solid line shows the wireless communication connection at the same base station and terminal station as in FIG. 6, which will be described later.
 図5の基地局数(49ヵ所)に比べると、図6では、制約条件がないため、より少ない基地局数(18ヵ所)で端末局を収容できている。しかしながら図6では、基地局が配備されない電柱が多く残されている。なお、制約条件がない場合には、図6に示される基地局の選択パターンとは異なる、様々な基地局の選択パターンでの端末局の収容が考えられる。このように、ある1つの基地局と接続可能な端末局の個数に制約条件が課されることにより、端末局を収容するために必要となる基地局の個数がより多くなる。しかしながら、この場合、基地局の選択パターンは削減される。そのため、結果的に、基地局の設置候補位置と端末局の設置候補位置との組合せのパターン数は、(2)式の値から(5)式の値へと削減される。 Compared to the number of base stations in FIG. 5 (49 locations), in FIG. 6, since there are no restrictions, the terminal stations can be accommodated with a smaller number of base stations (18 locations). However, in FIG. 6, many utility poles to which base stations are not deployed are left. If there is no constraint condition, it is conceivable that the terminal station is accommodated in various base station selection patterns different from the base station selection pattern shown in FIG. As described above, by imposing a constraint on the number of terminal stations that can be connected to a certain base station, the number of base stations required to accommodate the terminal stations is further increased. However, in this case, the base station selection pattern is reduced. Therefore, as a result, the number of patterns of the combination of the base station installation candidate position and the terminal station installation candidate position is reduced from the value of the equation (2) to the value of the equation (5).
 以下、設計エリアをより小さな複数のエリア(以下、「小エリア」という。)に分けて置局設計を行う場合について説明する。
 図7は、設計エリアを小エリアに分けて置局設計を行う場合の一例を示す模式図である。図7に示される破線の円(半径D=200[m])は、先の図4に示される設計エリアに相当する。ここでは、図7に示される設計エリアを、半径d=50[m]の円である複数の小エリアに分けて置局設計を行う場合について説明する。
Hereinafter, a case where the station design is performed by dividing the design area into a plurality of smaller areas (hereinafter referred to as “small areas”) will be described.
FIG. 7 is a schematic diagram showing an example of a case where the design area is divided into small areas for station placement design. The broken line circle (radius D = 200 [m]) shown in FIG. 7 corresponds to the design area shown in FIG. 4 above. Here, a case where the design area shown in FIG. 7 is divided into a plurality of small areas having a radius d = 50 [m] and the station placement design is performed will be described.
 なお、図4と同様、図7に示される設計エリアでは、基地局の設置候補位置(電柱)が「○」の印で示され、端末局の設置候補位置(建物の壁面)が「×」の印で示されている。図7においては一部のみしか示されていないが、実際には前述の通り、基地局の設置候補位置は100箇所存在し、端末局の設置候補位置は200箇所存在するものとする。 As in FIG. 4, in the design area shown in FIG. 7, the base station installation candidate position (telephone pole) is indicated by a “○” mark, and the terminal station installation candidate position (building wall surface) is indicated by “×”. It is indicated by the mark of. Although only a part of them is shown in FIG. 7, it is assumed that there are actually 100 candidate base station installation positions and 200 terminal station installation candidate positions as described above.
 図7に示されるように、半径d=50[m]の円を小エリアとし、小エリアを隙間なく並べて半径D=200[m]の設計エリア全てを覆うようにする。隙間なく並べるためには、隣り合う小エリア同士を重ねて並べる必要がある。そのため、図7に示されるように、半径d=50[m]の小エリアが81個(=9×9)必要となる。 As shown in FIG. 7, a circle with a radius d = 50 [m] is set as a small area, and the small areas are arranged without gaps so as to cover the entire design area with a radius D = 200 [m]. In order to line up without gaps, it is necessary to stack adjacent small areas on top of each other. Therefore, as shown in FIG. 7, 81 small areas (= 9 × 9) having a radius d = 50 [m] are required.
 また、小エリアの半径は設計エリアの半径の4分の1であるため、小エリアの面積は設計エリアの面積の16分の1である。そのため、仮に、設計エリア内の基地局の設置候補位置(電柱)と端末局の設置候補位置(建物)とが均一に分布しているとするならば、1つの小エリア内に存在する基地局の設置候補位置(電柱)及び端末局の設置候補位置(建物)の個数は、それぞれm’=6.25(≒100÷16)及びn’=12.5(≒200÷16)となる。 Also, since the radius of the small area is one-fourth of the radius of the design area, the area of the small area is one-sixteenth of the area of the design area. Therefore, if the base station installation candidate positions (telephone poles) and terminal station installation candidate positions (buildings) in the design area are evenly distributed, the base stations existing in one small area The number of installation candidate positions (telephone poles) and terminal station installation candidate positions (buildings) is m'= 6.25 (≈100 ÷ 16) and n'= 12.5 (≈200 ÷ 16), respectively.
 このように、小エリアの個数:81ヵ所に対し、上記のm’=6.25及びn’=13(≒12.5)を前述の(2)式に当てはめると、全ての小エリア内における、全ての基地局の設置候補位置と全ての端末局の設置候補位置との組合せパターン数は、以下の(6)式によって表すことができる。 In this way, when the above m'= 6.25 and n'= 13 (≈12.5) are applied to the above-mentioned equation (2) for the number of small areas: 81 places, the above-mentioned equation (2) is applied to all the small areas. The number of combination patterns of the installation candidate positions of all base stations and the installation candidate positions of all terminal stations can be expressed by the following equation (6).
 (組合せパターン数)=81×6.25×213
           =506.25×8,192
           =4,147,200 ・・・(6)
(Number of combination patterns) = 81 × 6.25 × 2 13
= 506.25 × 8,192
= 4,147,200 ... (6)
 このように(6)式によって示される、設計エリアを小エリアに分けて置局設計を行う場合における組合せパターン数である約415万通りは、先の式(3)によって示される、設計エリアを小エリアに分けずに置局設計を行う場合における組合せパターン数である約22兆通りに対して、凡そ530万分の1未満である。このように、設計エリアを小エリアに分けて置局設計を行うことにより、組合せパターン数を大幅に削減することができる。 In this way, about 4.15 million combinations, which is the number of combination patterns in the case where the design area is divided into small areas and the station placement design is performed, which is represented by the formula (6), is the design area represented by the above formula (3). It is less than about 1 / 5.3 million of the number of combination patterns of about 22 trillion in the case of station design without dividing into small areas. In this way, by dividing the design area into small areas and performing station placement design, the number of combination patterns can be significantly reduced.
 但し、約415万通りの組合せパターン数は、上記において一例として挙げた、通信可否の判定処理を現実的な処理時間で完了させることが可能な組合せパターン数である50万通り未満を満たしていない。よってさらに半径の短い小エリアを用いて置局設計を行うことが考えられる。 However, the number of combination patterns of about 4.15 million does not satisfy less than 500,000 combinations, which is the number of combination patterns that can complete the communication availability determination process in a realistic processing time, which is given as an example above. .. Therefore, it is conceivable to design the station using a small area with a shorter radius.
 図8及び図9は、設計エリアを小エリアに分けて置局設計を行う場合の一例を示す模式図である。なお、図4と同様、図8及び図9に示される設計エリアでは、基地局の設置候補位置(電柱)が「○」の印で示され、端末局の設置候補位置(建物の壁面)が「×」の印で示されている。図7においては一部のみしか示されていないが、実際には前述の通り、基地局の設置候補位置は100箇所存在し、端末局の設置候補位置は200箇所存在するものとする。 FIGS. 8 and 9 are schematic views showing an example of a case where the design area is divided into small areas for station placement design. Similar to FIG. 4, in the design area shown in FIGS. 8 and 9, the base station installation candidate position (telephone pole) is indicated by a “○” mark, and the terminal station installation candidate position (wall surface of the building) is indicated. It is indicated by an "x" mark. Although only a part of them is shown in FIG. 7, it is assumed that there are actually 100 candidate base station installation positions and 200 terminal station installation candidate positions as described above.
 図8に示される破線の円(半径D=200[m])は、先の図4に示される設計エリアに相当する。図8は、設計エリアを半径d=40[m]の円である複数の小エリアに分けて置局設計を行う場合を示すものである。図8に示されるように、半径d=40[m]の円を小エリアとし、小エリアを隙間なく並べて半径D=200[m]の設計エリア全てを覆うようにする。隙間なく並べるためには、隣り合う小エリア同士を重ねて並べる必要がある。そのため、図8に示されるように、半径d=40[m]の小エリアが121個(=11×11)必要となる。 The broken line circle (radius D = 200 [m]) shown in FIG. 8 corresponds to the design area shown in FIG. 4 above. FIG. 8 shows a case where the station design is performed by dividing the design area into a plurality of small areas having a radius d = 40 [m]. As shown in FIG. 8, a circle having a radius d = 40 [m] is set as a small area, and the small areas are arranged without gaps so as to cover the entire design area having a radius D = 200 [m]. In order to line up without gaps, it is necessary to stack adjacent small areas on top of each other. Therefore, as shown in FIG. 8, 121 small areas (= 11 × 11) having a radius d = 40 [m] are required.
 また、小エリアの半径は設計エリアの半径の5分の1であるため、小エリアの面積は設計エリアの面積の25分の1である。そのため、仮に、設計エリア内の基地局の設置候補位置(電柱)と端末局の設置候補位置(建物)とが均一に分布しているとするならば、1つの小エリア内に存在する基地局の設置候補位置(電柱)及び端末局の設置候補位置(建物)の個数は、それぞれm”=4(=100÷25)及びn”=8(=200÷25)となる。 Also, since the radius of the small area is 1/5 of the radius of the design area, the area of the small area is 1/25 of the area of the design area. Therefore, if the base station installation candidate positions (telephone poles) and terminal station installation candidate positions (buildings) in the design area are evenly distributed, the base stations existing in one small area The number of installation candidate positions (telephone poles) and terminal station installation candidate positions (buildings) is m "= 4 (= 100 ÷ 25) and n" = 8 (= 200 ÷ 25), respectively.
 このように、小エリアの個数:121ヵ所に対し、上記のm”=4及びn”=8を前述の(2)式に当てはめると、全ての小エリア内における、全ての基地局の設置候補位置と全ての端末局の設置候補位置との組合せパターン数は、以下の(7)式によって表すことができる。 In this way, if the above m "= 4 and n" = 8 are applied to the above equation (2) for the number of small areas: 121, all base station installation candidates in all the small areas are candidates. The number of combinations of positions and installation candidate positions of all terminal stations can be expressed by the following equation (7).
 (組合せパターン数)=121×4×2
           =484×256
           =123,904 ・・・(7)
(Number of combination patterns) = 121 x 4 x 2 8
= 484 x 256
= 123,904 ... (7)
 このように(7)式によって示される、設計エリアを小エリアに分けて置局設計を行う場合における組合せパターン数である約12万通りは、上記において一例として挙げた、通信可否の判定処理を現実的な処理時間で完了させることが可能な組合せパターン数である50万通り未満を満たしている。 In this way, about 120,000 combinations, which is the number of combination patterns in the case where the design area is divided into small areas and the station placement design is performed, which is shown by the equation (7), is the communication passability determination process mentioned above as an example. It satisfies less than 500,000 combinations, which is the number of combination patterns that can be completed in a realistic processing time.
 しかしながら、小エリアをより小さく設定するほど、基地局の設置候補位置と端末局の設置候補位置がより近い位置に存在し、見通し判定や遮蔽率の算出の結果が良好な組合せパターンであるにも関わらず、見落とされるケースが増加することが想定される。したがって、上記において一例として挙げた、通信可否の判定処理を現実的な処理時間で完了させることが可能な組合せパターン数である50万通りにより近い組合せパターン数となるように、小エリアの半径を調整することが考えられる。 However, the smaller the small area is set, the closer the base station installation candidate position and the terminal station installation candidate position are, and the result of the line-of-sight determination and the calculation of the shielding rate is a good combination pattern. Nevertheless, it is expected that the number of cases that will be overlooked will increase. Therefore, the radius of the small area is set so that the number of combination patterns is closer to 500,000, which is the number of combination patterns that can complete the communication availability determination processing as an example above in a realistic processing time. It is possible to adjust.
 図9に示される破線の円(半径D=200[m])は、先の図4に示される設計エリアに相当する。図9は、設計エリアを半径d=44.4[m]の円である複数の小エリアに分けて置局設計を行う場合を示すものである。図9に示されるように、半径d=44.4[m]の円を小エリアとし、小エリアを隙間なく並べて半径D=200[m]の設計エリア全てを覆うようにする。隙間なく並べるためには、隣り合う小エリア同士を重ねて並べる必要がある。そのため、図8に示されるように、半径d=44.4[m]の小エリアが100個(=10×10)必要となる。 The broken line circle (radius D = 200 [m]) shown in FIG. 9 corresponds to the design area shown in FIG. 4 above. FIG. 9 shows a case where the station design is performed by dividing the design area into a plurality of small areas having a radius d = 44.4 [m]. As shown in FIG. 9, a circle having a radius d = 44.4 [m] is set as a small area, and the small areas are arranged without gaps so as to cover the entire design area having a radius D = 200 [m]. In order to line up without gaps, it is necessary to stack adjacent small areas on top of each other. Therefore, as shown in FIG. 8, 100 small areas (= 10 × 10) having a radius d = 44.4 [m] are required.
 また、小エリアの半径は設計エリアの半径の約9分の2であるため、小エリアの面積は設計エリアの面積の約81分の4である。そのため、仮に、設計エリア内の基地局の設置候補位置(電柱)と端末局の設置候補位置(建物)とが均一に分布しているとするならば、1つの小エリア内に存在する基地局の設置候補位置(電柱)及び端末局の設置候補位置(建物)の個数は、それぞれm”’=4.94(≒100÷81×4)及びn”’=10(≒200÷81×4)となる。 Also, since the radius of the small area is about 2/9 of the radius of the design area, the area of the small area is about 4/81 of the area of the design area. Therefore, if the base station installation candidate positions (telephone poles) and terminal station installation candidate positions (buildings) in the design area are evenly distributed, the base stations existing in one small area The number of installation candidate positions (telephone poles) and terminal station installation candidate positions (buildings) is m "'= 4.94 (≈100 ÷ 81 x 4) and n" "= 10 (≈200 ÷ 81 x 4), respectively. ).
 このように、小エリアの個数:100ヵ所に対し、上記のm”’=4.94及びn”’=10を前述の(2)式に当てはめると、全ての小エリア内における、全ての基地局の設置候補位置と全ての端末局の設置候補位置との組合せパターン数は、以下の(8)式によって表すことができる。 In this way, when the above m "'= 4.94 and n"'= 10 are applied to the above equation (2) for the number of small areas: 100, all the bases in all the small areas. The number of combination patterns of the station installation candidate positions and the installation candidate positions of all terminal stations can be expressed by the following equation (8).
 (組合せパターン数)=100×4.94×210
           =494×1024
           =505,856 ・・・(8)
(Number of combination patterns) = 100 × 4.94 × 2 10
= 494 x 1024
= 505,856 ... (8)
 このように(8)式によって示される、設計エリアを小エリアに分けて置局設計を行う場合における組合せパターン数である約50万通りは、上記において一例として挙げた、通信可否の判定処理を現実的な処理時間で完了させることが可能な組合せパターン数の上限である50万通りに相当する。このように、小エリアの半径を調整することで、現実的な計算処理時間内でより効果的な置局設計を行えるようにすることができる。 As described above, about 500,000 combinations, which is the number of combination patterns in the case where the design area is divided into small areas and the station placement design is performed, which is shown by the equation (8), is the communication availability determination process mentioned above as an example. This corresponds to the upper limit of 500,000 combinations that can be completed in a realistic processing time. By adjusting the radius of the small area in this way, it is possible to perform more effective station placement design within a realistic calculation processing time.
 ここで、図7~図9に示されるように複数の小エリアが重畳するように並べられることから、(6)式、(7)式、及び(8)式によって算出された組合せパターンには、同一の組合せパターンが重複してカウントされていることがある。この重複したカウントを適切に削除することによって、組合せパターンはさらに削減される。 Here, since a plurality of small areas are arranged so as to overlap each other as shown in FIGS. 7 to 9, the combination patterns calculated by the equations (6), (7), and (8) can be used. , The same combination pattern may be counted twice. By properly removing this duplicate count, the combination pattern is further reduced.
 以下、置局設計支援装置1の組合せパターンリスト作成における動作の一例について説明する。
 図10は、本発明の第1の実施以形態における置局設計支援装置1の組合せパターンリスト作成の動作を示すフローチャートである。
Hereinafter, an example of the operation in creating the combination pattern list of the station design support device 1 will be described.
FIG. 10 is a flowchart showing an operation of creating a combination pattern list of the station design support device 1 according to the first embodiment of the present invention.
 エリア分割部171は、設計エリア(例えば、半径200[m]の円)よりも狭いエリアとなる小エリアの大きさ(例えば半径50[m]の円)を設定する(ステップS101)。エリア分割部171は、設計エリアを複数の小エリアで埋め尽くすように小エリアの位置を設定する(ステップS102)。ここで注意点は、隣り合う小エリアが互いに重なり合い十分な重複を持つように設定される。組合せパターン抽出部172は、小エリアごとに、基地局の設置候補位置(電柱)と端末局の設置候補位置(建物)との組合せパターンのリストである組合せパターンリストを生成する(ステップS103)。組合せパターン抽出部172は、生成された組合せパターンリストを組合せパターンリスト記憶部18に記録する。 The area division portion 171 sets the size of a small area (for example, a circle with a radius of 50 [m]) that is narrower than the design area (for example, a circle with a radius of 200 [m]) (step S101). The area division unit 171 sets the position of the small area so as to fill the design area with the plurality of small areas (step S102). The caveat here is that adjacent small areas overlap each other and are set to have sufficient overlap. The combination pattern extraction unit 172 generates a combination pattern list which is a list of combination patterns of the base station installation candidate position (telephone pole) and the terminal station installation candidate position (building) for each small area (step S103). The combination pattern extraction unit 172 records the generated combination pattern list in the combination pattern list storage unit 18.
 組合せパターン抽出部172は、全ての小エリアについて組合せパターンリストの生成が完了したか否かを判定する(ステップS104)。組合せパターンリストの生成していない小エリアが存在する場合(ステップS104・NO)、重複パターン削除部173は、小エリアごとに生成された組合せパターンリストの間で重複している組合せパターンを検出する。重複パターン削除部173は、重複している組合せパターンについては、1つだけ残して、その他を削除する(ステップS105)。その後、ステップS103に戻る。 The combination pattern extraction unit 172 determines whether or not the generation of the combination pattern list is completed for all the small areas (step S104). When there is a small area for which the combination pattern list has not been generated (step S104 / NO), the duplicate pattern deletion unit 173 detects a combination pattern that is duplicated among the combination pattern lists generated for each small area. .. The duplication pattern deletion unit 173 deletes the other duplication patterns, leaving only one (step S105). After that, the process returns to step S103.
 一方、全ての小エリアについて組合せパターンリストの生成が完了した場合(ステップS104・YES)、既に生成された組合せパターンリスト内に重複する組合せパターンが存在するか否かを判定する(ステップS106)。既に生成された組合せパターンリスト内に重複する組合せパターンが存在する場合(ステップS106・YES)、重複パターン削除部173は、重複している組合せパターンについては、1つだけ残して、その他を削除する(ステップS107)。その後、ステップS106に戻る。 On the other hand, when the generation of the combination pattern list is completed for all the small areas (step S104 · YES), it is determined whether or not there is a duplicate combination pattern in the already generated combination pattern list (step S106). When there is a duplicate combination pattern in the already generated combination pattern list (step S106 · YES), the duplicate pattern deletion unit 173 deletes the other, leaving only one duplicate combination pattern. (Step S107). Then, the process returns to step S106.
 既に生成された組合せパターンリスト内に重複する組合せパターンが存在しない場合(ステップS106・NO)、置局設計支援装置1は、生成された組合せパターンリストを出力する。例えば、置局設計支援装置1は、生成された組合せパターンリストを表示部(不図示)に表示させることにより、ユーザに対して提示する。
 以上で、図10のフローチャートが示す置局設計支援装置1の動作が終了する。
When there is no duplicate combination pattern in the already generated combination pattern list (step S106 / NO), the station design support device 1 outputs the generated combination pattern list. For example, the station design support device 1 presents the generated combination pattern list to the user by displaying it on a display unit (not shown).
This completes the operation of the station design support device 1 shown in the flowchart of FIG.
 以上説明したように、第1の実施形態における置局設計支援装置1によれば、設計エリア内に、例えば、百箇所程度の基地局の設置候補位置と、百数十箇所程度の端末局の設置候補位置とが存在する場合において、適切な組合せパターンの提示を行うことができる。仮に、このような設計エリア内の、全ての基地局の設置候補位置と全ての端末局の設置候補位置との全ての組合せパターンを評価対象とするならば、先述の通り、組合せパターン数は数十兆規模の数になる。そのため、この場合、各組合せパターンについて見通し判定や遮蔽率の算出を現実的な計算時間で行うことが困難となる。 As described above, according to the station design support device 1 in the first embodiment, in the design area, for example, about 100 base station installation candidate positions and about 100 or more terminal stations are located. When there is an installation candidate position, an appropriate combination pattern can be presented. If all combination patterns of all base station installation candidate positions and all terminal station installation candidate positions in such a design area are to be evaluated, the number of combination patterns is a number as described above. It will be a number on the scale of 10 trillion. Therefore, in this case, it becomes difficult to determine the line-of-sight and calculate the shielding rate for each combination pattern in a realistic calculation time.
 第1の実施形態における置局設計支援装置1によれば、設計エリアを複数の小エリアに分けて、小エリアごとに組合せパターンリスト作成するため、組合せパターン数を大幅に削減することができる。これにより、置局設計支援装置1は、見通し判定や遮蔽率の算出を現実的な計算時間で行うことが可能な程度(例えば、50万通り未満)に組合せパターン数を削減することができる。 According to the station design support device 1 in the first embodiment, the design area is divided into a plurality of small areas and a combination pattern list is created for each small area, so that the number of combination patterns can be significantly reduced. As a result, the station design support device 1 can reduce the number of combination patterns to the extent that the line-of-sight determination and the calculation of the shielding rate can be performed in a realistic calculation time (for example, less than 500,000 patterns).
 さらに、第1の実施形態における置局設計支援装置1は、複数の小エリアを、重畳を許しつつ、設計エリア全体を埋め尽くすように配置させる。これにより、置局設計支援装置1は、隣り合う小エリアの境界を跨った位置関係となる組合せパターンであって、見通し判定や遮蔽率の算出の結果が良好な組合せパターンが見落とされることを削減することができる。
 以上のことから、本実施形態における置局設計支援装置1は、現実的な計算処理時間内でより効果的な置局設計を行えるようにすることができる。
Further, the station design support device 1 in the first embodiment arranges a plurality of small areas so as to fill the entire design area while allowing superposition. As a result, the station design support device 1 reduces the oversight of combination patterns that have a positional relationship that straddles the boundaries of adjacent small areas and that have good results of line-of-sight determination and obstruction rate calculation. can do.
From the above, the station station design support device 1 in the present embodiment can enable more effective station station design within a realistic calculation processing time.
(第1の実施形態の変形例)
 上述した第1の実施形態では、置局設計支援装置1は、円形の複数の小エリアによって、重畳を許しつつ、設計エリアを埋め尽くすように小エリアを設定する構成であった。しかしながら、このような構成に限られるものではなく、小エリアの形状は円形でなくても構わない。
(Variation example of the first embodiment)
In the first embodiment described above, the station design support device 1 has a configuration in which a small area is set so as to fill the design area while allowing superimposition by a plurality of circular small areas. However, the shape is not limited to such a configuration, and the shape of the small area does not have to be circular.
 例えば図11は、置局設計支援装置1が矩形(正方形)の複数の小エリアを用いる場合を示す模式図である。例えば、図11に示されるように、正方形の一辺の長さの半分(図11では、50[m])を単位として縦と横とにずらしながら小エリアを並べるようにして、重畳を許しつつ、複数の小エリアで設計エリアを埋め尽くすようにすればよい。 For example, FIG. 11 is a schematic diagram showing a case where the station design support device 1 uses a plurality of rectangular (square) small areas. For example, as shown in FIG. 11, small areas are arranged vertically and horizontally with half the length of one side of the square (50 [m] in FIG. 11) as a unit to allow superposition. , The design area may be filled with multiple small areas.
 また、例えば図12は、置局設計支援装置1が六角形(正六角形)の複数の小エリアを用いる場合を示す模式図である。例えば、図12に示されるように、正六角形の一辺の長さ(図12では、50[m])を単位として縦と横とにずらしながら小エリアを並べるようにして、重畳を許しつつ、複数の小エリアで設計エリアを埋め尽くすようにすればよい。 Further, for example, FIG. 12 is a schematic diagram showing a case where the station design support device 1 uses a plurality of small areas of a hexagon (regular hexagon). For example, as shown in FIG. 12, small areas are arranged vertically and horizontally with the length of one side of a regular hexagon (50 [m] in FIG. 12) as a unit to allow superposition. The design area may be filled with multiple small areas.
(第2の実施形態)
 前述の第1の実施形態では、置局設計支援装置1が、設計エリアに対して、同一形状の複数の小エリアを等間隔で整列させるにように配置する場合について説明した。しかしながら、
一般的に、基地局の設置候補位置となる電柱は道路の脇に沿って建てられていることが多く、端末の設置候補位置となる建物の壁面は道路に面していることが多い。
(Second embodiment)
In the first embodiment described above, the case where the station design support device 1 arranges a plurality of small areas having the same shape at equal intervals with respect to the design area has been described. however,
In general, utility poles that are candidate locations for base stations are often built along the side of the road, and the walls of buildings that are candidate locations for terminal installations often face the road.
 そのため、電柱が建てられている道路区間と同一の道路区間に面する建物の壁面とは、見通しがあり、遮蔽率も低いことが多いと考えられる。一方、電柱が建てられている道路区間と異なる道路区間に面する建物の壁面とは、見通しがなく、遮蔽率も高いことが多いと考えられる。
 なお、ここでいう道路区間とは、ある道路において(曲がったりせずに)見通しがある区間のことをいう。
Therefore, it is considered that the wall surface of the building facing the same road section as the road section on which the utility pole is built has a good view and the shielding rate is low in many cases. On the other hand, it is considered that the wall surface of the building facing the road section different from the road section on which the utility pole is built has no line of sight and the shielding rate is high in many cases.
The road section here means a section where there is a line of sight (without turning) on a certain road.
 以下に説明する第2の実施形態における置局設計支援装置1は、異なる道路区間に存在するため見通しがなく遮蔽率も高いと想定される、基地局の設置候補位置(電柱)と端末局の設置候補位置(建物)との組合せパターンを、予め除外することができる。置局設計支援装置1は、このよう制約条件を設けることで組合せのパターン数を削減することができる。 The station design support device 1 in the second embodiment described below is located in a different road section, so that there is no line of sight and the shielding rate is assumed to be high. The combination pattern with the installation candidate position (building) can be excluded in advance. The station design support device 1 can reduce the number of combinations of patterns by providing such constraint conditions.
 本実施形態における置局設計支援装置1は、地図データに含まれる道路等の情報を用いて、設計エリアを埋め尽くす複数の小エリアを設定する。
 図13は、置局設計支援装置1が道路区間に基づく複数の小エリアを用いる場合を示す模式図である。
The station design support device 1 in the present embodiment sets a plurality of small areas that fill the design area by using information such as roads included in the map data.
FIG. 13 is a schematic diagram showing a case where the station design support device 1 uses a plurality of small areas based on a road section.
 前述の第1の実施形態で説明したように、設計エリア内に存在する、全ての基地局設置位置の候補(すなわち、電柱)と全ての端末局設置位置の候補(すなわち、建物の壁面)との全ての組合せパターンに対して見通し判定や遮蔽率の算出処理を行うならば、膨大な計算量となる。そのため、組合せパターンの個数を現実的な計算処理時間内で処理可能な個数にまで削減する必要がある。 As described in the first embodiment described above, all the base station installation position candidates (that is, utility poles) and all the terminal station installation position candidates (that is, the wall surface of the building) existing in the design area If the line-of-sight judgment and the calculation process of the shielding rate are performed for all the combination patterns of, the amount of calculation becomes enormous. Therefore, it is necessary to reduce the number of combination patterns to a number that can be processed within a realistic calculation processing time.
 前述の第1の実施形態で示した図7~図9等と同様に、第2の実施形態においても、一例として400[m]四方のエリアを設計エリアとして考える。第1の実施形態と同様に、図13では、基地局の設置候補位置(電柱)が「○」の印で示され、端末局の設置候補位置(建物の壁面)が「×」の印で示されている。 Similar to FIGS. 7 to 9 shown in the first embodiment described above, in the second embodiment as an example, an area of 400 [m] square is considered as a design area. Similar to the first embodiment, in FIG. 13, the base station installation candidate position (telephone pole) is indicated by a “○” mark, and the terminal station installation candidate position (building wall surface) is indicated by an “x” mark. It is shown.
 仮に、図13に示される住宅エリアを設計エリアとした場合、この設計エリア内に存在する全ての基地局の設置候補位置(電柱)と全ての端末局の設置候補位置(建物)との組合せパターン数は、以下の(9)式によって求められる値(約1兆通り)となる。このように、組合せパターン数は、通信可否の判定処理を現実的な処理時間で完了させることが可能な組合せパターン数(例えば、50万通り)を超過する。 Assuming that the residential area shown in FIG. 13 is the design area, the combination pattern of the installation candidate positions (electric poles) of all the base stations existing in this design area and the installation candidate positions (buildings) of all the terminal stations. The number is a value (about 1 trillion ways) obtained by the following equation (9). As described above, the number of combination patterns exceeds the number of combination patterns (for example, 500,000 patterns) that can complete the communication passability determination process in a realistic processing time.
 (組合せパターン数)=16×236
           =16×68,719,476,736
           =1,099,511,627,776 ・・・(9)
(Number of combination patterns) = 16 × 2 36
= 16 × 68,719,476,736
= 1,099,511,627,776 ... (9)
 なお、上記の(9)式は、前述の(2)式に対し、図13に示される基地局の設置候補位置(電柱)の個数と端末局の設置候補位置(建物)の個数である、m=16及びn=36をそれぞれ当てはめたものである。 The above equation (9) is the number of base station installation candidate positions (telephone poles) and the number of terminal station installation candidate positions (buildings) shown in FIG. 13 as compared with the above equation (2). It is the one to which m = 16 and n = 36 are applied respectively.
 本実施形態における置局設計支援装置1は、地図データを用いて道路区間ごとに小エリアを設定する。置局設計支援装置1は、設定された小エリアごとに、基地局の設置候補位置(例えば、電柱)と端末局の設置候補位置(例えば、建物の壁面)との組合せパターンリストを生成する。 The station design support device 1 in this embodiment sets a small area for each road section using map data. The station design support device 1 generates a combination pattern list of a base station installation candidate position (for example, a utility pole) and a terminal station installation candidate position (for example, a wall surface of a building) for each set small area.
 なお、置局設計支援装置1は、例えば曲がった道路においては、見通しがある区間を1つの道路区間とするように道路を区切ることによって道路区間を設定する。また、例えば長い直線の道路など、遠くまで見通しがある道路である場合には、例えば、200[m])の区間を1つの道路区間とするように道路を区切ることによって道路区間を設定する。この200[m]という距離は、ミリ波の電波を用いて十分に無線通信を行うことが可能となる上限の距離である。 Note that the station design support device 1 sets the road section by dividing the road so that the section with a line of sight becomes one road section, for example, on a curved road. Further, in the case of a road having a long line of sight, for example, a long straight road, the road section is set by dividing the road so that the section of 200 [m]) is one road section, for example. This distance of 200 [m] is the upper limit distance at which sufficient wireless communication can be performed using millimeter-wave radio waves.
 図13に示されるように、例えば置局設計支援装置1は、設計エリア内の道路を、道路区間A、道路区間B、道路区間C、…、道路区間G、道路区間Hの8つの道路区間に切り分ける。置局設計支援装置1は、これら8つの道路区間ごとに小エリアを設定する。図13においては、小エリアは実線の楕円形で示されている。置局設計支援装置1は、設計エリア全体が埋め尽くされるように、重畳を許しつつ、8つの小エリアを配置する。 As shown in FIG. 13, for example, the station design support device 1 sets the road in the design area into eight road sections of road section A, road section B, road section C, ..., Road section G, and road section H. Cut into. The station design support device 1 sets a small area for each of these eight road sections. In FIG. 13, the small area is shown as a solid oval. The station design support device 1 arranges eight small areas while allowing superimposition so that the entire design area is filled.
 例えば、図13に示される住宅エリア(設計エリア)において、道路区間Aを含む小エリアには、基地局の設置候補位置である電柱が3本建てられており、端末局の設置候補位置である建物が8棟建てられている。これらの数字(m=3,n=8)を前述の(2)式に当てはめることで、道路区間Aを含む小エリアにおける組合せパターン数は、以下の(10)式により768通りとなる。 For example, in the residential area (design area) shown in FIG. 13, three utility poles, which are candidate positions for installing a base station, are built in a small area including a road section A, which is a candidate position for installing a terminal station. Eight buildings have been built. By applying these numbers (m = 3, n = 8) to the above-mentioned equation (2), the number of combination patterns in the small area including the road section A becomes 768 according to the following equation (10).
 (組合せパターン数)=3×2
           =3×256
           =768 ・・・(10)
(Number of combination patterns) = 3 × 2 8
= 3 × 256
= 768 ... (10)
 このように(10)式によって示される、道路区間Aを含む小エリアの組合せパターン数である768通りは、先の式(9)によって示される、設計エリアを小エリアに分けずに置局設計を行う場合における組合せパターン数である約1兆通りに対して、凡そ14億分の1未満である。 In this way, the 768 combinations of small areas including the road section A, which are represented by the equation (10), are stationed without dividing the design area into the small areas, which are indicated by the above equation (9). The number of combinations is about 1 trillion, which is less than 1 / 1.4 billion.
 同様に、例えば、図13に示される住宅エリア(設計エリア)において、道路区間Bを含む小エリアには、基地局の設置候補位置である電柱が4本建てられており、端末局の設置候補位置である建物が7棟建てられている。これらの数字(m=4,n=7)を前述の(2)式に当てはめることで、道路区間Bを含む小エリアにおける組合せパターン数は、以下の(11)式により512通りとなる。 Similarly, for example, in the residential area (design area) shown in FIG. 13, four utility poles, which are candidate positions for installing base stations, are built in a small area including road section B, and candidates for installing terminal stations. Seven buildings are being built. By applying these numbers (m = 4, n = 7) to the above-mentioned equation (2), the number of combination patterns in the small area including the road section B becomes 512 according to the following equation (11).
 (組合せパターン数)=4×2
           =4×128
           =512 ・・・(11)
(Number of combination patterns) = 4 × 2 7
= 4 x 128
= 512 ... (11)
 このように(11)式によって示される、道路区間Bを含む小エリアの組合せパターン数である512通りは、先の式(9)によって示される、設計エリアを小エリアに分けずに置局設計を行う場合における組合せパターン数である約1兆通りに対して、凡そ21億分の1未満である。 In this way, 512 ways, which is the number of combinations of small areas including the road section B represented by the equation (11), are stationed without dividing the design area into the small areas indicated by the above equation (9). The number of combinations is about 1 trillion, which is less than 1 / 2.1 billion.
 同様に、例えば、図13に示される住宅エリア(設計エリア)において、道路区間Hを含む小エリアには、基地局の設置候補位置である電柱が3本建てられており、端末局の設置候補位置である建物が7棟建てられている。これらの数字(m=3,n=7)を前述の(2)式に当てはめることで、道路区間Hを含む小エリアにおける組合せパターン数は、以下の(12)式により192通りとなる。 Similarly, for example, in the residential area (design area) shown in FIG. 13, three utility poles, which are candidate positions for installing base stations, are built in a small area including the road section H, and candidates for installing terminal stations. Seven buildings are being built. By applying these numbers (m = 3, n = 7) to the above-mentioned equation (2), the number of combination patterns in the small area including the road section H becomes 192 according to the following equation (12).
 (組合せパターン数)=3×2
           =3×128
           =384 ・・・(12)
(Number of combination patterns) = 3 × 2 6
= 3 x 128
= 384 ・ ・ ・ (12)
 このように(12)式によって示される、道路区間Hを含む小エリアの組合せパターン数である384通りは、先の式(9)によって示される、設計エリアを小エリアに分けずに置局設計を行う場合における組合せパターン数である約1兆通りに対して、凡そ29億分の1未満である。 In this way, the 384 combinations, which is the number of combinations of small areas including the road section H, which is represented by the equation (12), is a station design without dividing the design area into the small areas, which is indicated by the above equation (9). It is less than about 1 / 2.9 billion with respect to about 1 trillion combinations, which is the number of combinations in the case of performing.
 このように、道路区間Aを含む小エリアから道路区間Hを含む小エリアまでの8つの小エリアにおける組合せパターン数は、上記のようにそれぞれ算出することができる。これら8つの小エリアの組合せパターン数を合計した数は、先の式(9)によって示される、設計エリアを小エリアに分けずに置局設計を行う場合における組合せパターン数である約1兆通りに対して、少なくとも約10億分の1未満となる。このように、設計エリアを道路区間に基づく小エリアに分けて置局設計を行うことにより、組合せパターン数を大幅に削減することができる。 As described above, the number of combination patterns in the eight small areas from the small area including the road section A to the small area including the road section H can be calculated as described above. The total number of the combination patterns of these eight small areas is about 1 trillion, which is the number of combination patterns when the station design is performed without dividing the design area into the small areas, which is shown by the above equation (9). On the other hand, it is at least about one billionth. In this way, by dividing the design area into small areas based on the road section and performing station station design, the number of combination patterns can be significantly reduced.
 以下、置局設計支援装置1の組合せパターンリスト作成における動作の一例について説明する。
 図14は、本発明の第2の実施以形態における置局設計支援装置1の組合せパターンリスト作成の動作を示すフローチャートである。
Hereinafter, an example of the operation in creating the combination pattern list of the station design support device 1 will be described.
FIG. 14 is a flowchart showing an operation of creating a combination pattern list of the station design support device 1 according to the second embodiment of the present invention.
 エリア分割部171は、地図データに基づいて、設計エリアに含まれる道路を複数の道路区間に区分けする(ステップS201)。例えば、エリア分割部171は、道路を、直線毎に、通信可能な距離内で区分けする。なお、例えば、エリア分割部171は、カーブの区間については見通し毎に区分けする。但し、注意点として、道路区間の区分けは、隣接する道路区間の境界が相互に入り込むようにして、隣接する道路区間どうしが重なり合うことを許容する。 The area division unit 171 divides the road included in the design area into a plurality of road sections based on the map data (step S201). For example, the area division unit 171 divides the road for each straight line within a communicable distance. In addition, for example, the area division portion 171 divides the section of the curve for each line of sight. However, as a caveat, the division of road sections allows the boundaries of adjacent road sections to enter each other and allow the adjacent road sections to overlap.
 エリア分割部171は、地図データ及び設備データに基づいて、各道路区間を含む小エリアごとに電柱と建物とをグループ分けする(ステップS202)。なお、以下の説明において、ある道路区間を含む小エリアのことを単に「道路区間」ということがある。
 エリア分割部171は、設計エリア内の全ての道路区間についてグループ分けを行ったか否かを判定する(ステップS203)。
The area division unit 171 groups the utility poles and buildings for each small area including each road section based on the map data and the equipment data (step S202). In the following description, a small area including a certain road section may be simply referred to as a "road section".
The area division unit 171 determines whether or not all the road sections in the design area have been grouped (step S203).
 設計エリア内にグループ分けを行っていない道路区間がある場合(ステップS203・NO)、組合せパターン抽出部172は、グループごとに、電柱(基地局の設置候補位置)と建物(端末局の設置候補位置)との組合せパターンを抽出する(ステップS204)。組合せパターン抽出部172は、抽出された組合せパターンのリストである組合せパターンリストを生成する(ステップS205)。組合せパターン抽出部172は、生成された組合せパターンリストを組合せパターンリスト記憶部18に記録する。 If there is a road section in the design area that has not been grouped (step S203 / NO), the combination pattern extraction unit 172 will use the utility pole (base station installation candidate position) and building (terminal station installation candidate) for each group. The combination pattern with the position) is extracted (step S204). The combination pattern extraction unit 172 generates a combination pattern list, which is a list of the extracted combination patterns (step S205). The combination pattern extraction unit 172 records the generated combination pattern list in the combination pattern list storage unit 18.
 重複パターン削除部173は、異なる小エリアの組合せパターンリストの間で同一の(重複した)組合せパターンがあるか否かを判定する(ステップS206)。すなわち、この判定では、異なるグループにおいて同一の電柱と同一の建物とにそれぞれ基地局と端末局とを設置するような重複した組合せパターンの有無を確認している。 The duplicate pattern deletion unit 173 determines whether or not there is the same (overlapping) combination pattern among the combination pattern lists of different small areas (step S206). That is, in this determination, it is confirmed whether or not there is an overlapping combination pattern in which a base station and a terminal station are installed in the same utility pole and the same building in different groups.
 異なる小エリアの組合せパターンリストの間で同一の(重複した)組合せパターンがある場合(ステップS206・YES)、重複パターン削除部173は、重複している組合せパターンについては、1つだけ残して、その他を削除する(ステップS207)。その後、ステップS206へ戻る。 When there is the same (overlapping) combination pattern between the combination pattern lists of different small areas (step S206, YES), the duplication pattern deletion unit 173 leaves only one duplication pattern. Others are deleted (step S207). Then, the process returns to step S206.
 一方、異なる小エリアの組合せパターンリストの間で同一の(重複した)組合せパターンがない場合(ステップS206・NO)、ステップS203へ戻り、エリア分割部171は、設計エリア内の全ての道路区間についてグループ分けを行ったか否かを判定する。設計エリア内の全ての道路区間についてグループ分けを行った場合(ステップS203・YES)、置局設計支援装置1は、生成された組合せパターンリストを出力する。例えば、置局設計支援装置1は、生成された組合せパターンリストを表示部(不図示)に表示させることにより、ユーザに対して提示する(ステップS208)。
 以上で、図14のフローチャートが示す置局設計支援装置1の動作が終了する。
On the other hand, when there is no same (overlapping) combination pattern between the combination pattern lists of different small areas (step S206 / NO), the process returns to step S203, and the area division unit 171 determines all the road sections in the design area. Determine if grouping has been performed. When all the road sections in the design area are grouped (step S203, YES), the station design support device 1 outputs the generated combination pattern list. For example, the station design support device 1 presents the generated combination pattern list to the user by displaying it on a display unit (not shown) (step S208).
This completes the operation of the station design support device 1 shown in the flowchart of FIG.
 以上説明したように、第2の実施形態における置局設計支援装置1によれば、設計エリア内に、複数の基地局の設置候補位置と、複数の端末局の設置候補位置とが存在する場合において、適切な組合せパターンの提示を行うことができる。仮に、このような設計エリア内の、全ての基地局の設置候補位置と全ての端末局の設置候補位置との全ての組合せパターンを評価対象とするならば、先述の通り、組合せパターン数は例えば1兆を超える規模の数になる。そのため、この場合、各組合せパターンについて見通し判定や遮蔽率の算出を現実的な計算時間で行うことが困難となる。 As described above, according to the station design support device 1 in the second embodiment, when there are installation candidate positions of a plurality of base stations and installation candidate positions of a plurality of terminal stations in the design area. In, an appropriate combination pattern can be presented. If all combination patterns of all base station installation candidate positions and all terminal station installation candidate positions in such a design area are to be evaluated, the number of combination patterns is, for example, as described above. The number will exceed 1 trillion. Therefore, in this case, it becomes difficult to determine the line-of-sight and calculate the shielding rate for each combination pattern in a realistic calculation time.
 第2の実施形態における置局設計支援装置1は、地図データに基づいて、設計エリアに含まれる道路を複数の道路区間に区分けし、道路区間ごとに小エリアを設定する。置局設計支援装置1は、小エリアごとに組合せパターンリスト作成するため、組合せパターン数を大幅に削減することができる。これにより、置局設計支援装置1は、見通し判定や遮蔽率の算出を現実的な計算時間で行うことが可能な程度(例えば、50万通り未満)に組合せパターン数を削減することができる。 The station design support device 1 in the second embodiment divides the road included in the design area into a plurality of road sections based on the map data, and sets a small area for each road section. Since the station design support device 1 creates a combination pattern list for each small area, the number of combination patterns can be significantly reduced. As a result, the station design support device 1 can reduce the number of combination patterns to the extent that the line-of-sight determination and the calculation of the shielding rate can be performed in a realistic calculation time (for example, less than 500,000 patterns).
 また、第2の実施形態における置局設計支援装置1は、道路区間ごとに小エリアを設定することから、基地局の設置候補位置と端末設置候補位置との間における見通し判定および遮蔽率算出の結果が良好となり難い組合せパターンを除外するように組合せパターンリストを生成することができる。なぜならば、前述の通り、電柱が建てられている道路区間と異なる道路区間に面する建物の壁面とは、見通しがなく、遮蔽率も高いことが多いと考えられるからである。 Further, since the station design support device 1 in the second embodiment sets a small area for each road section, the line-of-sight determination and the shielding rate calculation between the base station installation candidate position and the terminal installation candidate position are performed. The combination pattern list can be generated so as to exclude the combination patterns that are difficult to obtain good results. This is because, as mentioned above, the wall surface of the building facing the road section different from the road section on which the utility pole is built is considered to have no line of sight and often have a high shielding rate.
 さらに、第2の実施形態における置局設計支援装置1は、複数の小エリアを、重畳を許しつつ、設計エリア全体を埋め尽くすように配置させる。これにより、置局設計支援装置1は、隣り合う小エリアの境界を跨った位置関係となる組合せパターンであって、見通し判定や遮蔽率の算出の結果が良好な組合せパターンが見落とされることを削減することができる。 Further, the station design support device 1 in the second embodiment arranges a plurality of small areas so as to fill the entire design area while allowing superposition. As a result, the station design support device 1 reduces the oversight of combination patterns that have a positional relationship that straddles the boundaries of adjacent small areas and that have good results of line-of-sight determination and obstruction rate calculation. can do.
(第3の実施形態)
 第3の実施形態では、置局設計支援装置1は、ユーザによって指定される設計エリアと端末局の設置位置とに基づいて、推奨される基地局の設置位置(以下、「推奨設置位置」という。)をユーザに対して提示する構成を有する。複数の端末局が指定される場合、端末局が指定された位置によっては、見通し判定や遮蔽率の算出処理を行う組合せパターンが膨大に(例えば、数百億通りに)なることがある。本実施形態における置局設計支援装置1は、このような組合せパターンを削減することができる。
(Third embodiment)
In the third embodiment, the station design support device 1 is referred to as a recommended base station installation position (hereinafter referred to as "recommended installation position") based on the design area designated by the user and the installation position of the terminal station. ) Is presented to the user. When a plurality of terminal stations are designated, the number of combination patterns for performing line-of-sight determination and shielding rate calculation processing may be enormous (for example, tens of billions) depending on the position where the terminal stations are designated. The station design support device 1 in the present embodiment can reduce such a combination pattern.
 以下、第3の実施形態における置局設計支援装置1の動作の一例について説明する。
 図15は、本発明の第3の実施形態における置局設計支援装置1の動作を示すフローチャートである。
Hereinafter, an example of the operation of the station design support device 1 in the third embodiment will be described.
FIG. 15 is a flowchart showing the operation of the station design support device 1 according to the third embodiment of the present invention.
 まず、設計エリア指定部2は、ユーザによる指定入力に基づいて設計エリアを指定する(ステップS301)。指定される設計エリアは、例えば、図16左側に示されるような地図データ記憶部11に記憶された地図データにおける特定のエリアである。 First, the design area designation unit 2 designates the design area based on the designated input by the user (step S301). The designated design area is, for example, a specific area in the map data stored in the map data storage unit 11 as shown on the left side of FIG.
 次に、基地局候補位置抽出部3は、設備データ記憶部12から設備データを取得し、設計エリア内の、電柱などを含む屋外の通信設備に関する情報を抽出する(ステップS302)。ここで抽出される情報とは、例えば、図16右側に示されるような情報である。図16右側に示されるように、当該情報には、例えば、指定された設計エリア内の、電柱を識別する電柱番号、電柱の位置及び種類等を示す情報が含まれる。 Next, the base station candidate position extraction unit 3 acquires equipment data from the equipment data storage unit 12 and extracts information on outdoor communication equipment including utility poles in the design area (step S302). The information extracted here is, for example, information as shown on the right side of FIG. As shown on the right side of FIG. 16, the information includes, for example, information indicating a utility pole number identifying a utility pole, a position and type of a utility pole, and the like in a designated design area.
 点群データ処理部6は、電柱などを含む屋外の通信設備に関する情報に基づいて、例えば図17に示されるように、指定された設計エリアの地図上に、ステップS302において抽出された情報に基づく基地局の設置候補位置(電柱)を例えば表示部(不図示)に表示させる。なお、図17に示される地図において、電柱の本数は94本で、建物の棟数は230棟である。電柱は、「〇」印で表されている。 The point cloud data processing unit 6 is based on the information extracted in step S302 on the map of the designated design area, for example, as shown in FIG. 17, based on the information about the outdoor communication equipment including the utility pole and the like. For example, the installation candidate position (telephone pole) of the base station is displayed on a display unit (not shown). In the map shown in FIG. 17, the number of utility poles is 94 and the number of buildings is 230. Utility poles are represented by a "○" mark.
 点群データ処理部6は、ユーザによる指定入力に基づいて端末局の設置位置を指定する(ステップS303)。例えば、図18に示される地図において、端末局の設置位置は「×」印で表されている。点群データ処理部6は、指定された端末局の設置位置に基づいて、指定した端末局を中心にして、見通しありと判定される、あるいは所定の遮蔽率未満となる、基地局の設置候補位置(電柱)を抽出する(ステップS304)。図19に示される地図において、抽出された5つの基地局の設置候補位置(電柱)が「○」印で示されている。また、各々の基地局の設置候補位置を識別する符号(「A」、「B」、「C」、「D」、・・・)が示されている。 The point cloud data processing unit 6 designates the installation position of the terminal station based on the designated input by the user (step S303). For example, in the map shown in FIG. 18, the installation position of the terminal station is represented by an “x” mark. The point cloud data processing unit 6 is a candidate for installing a base station, which is determined to have a line of sight or has a shielding rate less than a predetermined value, centering on the designated terminal station, based on the installation position of the designated terminal station. The position (telephone pole) is extracted (step S304). In the map shown in FIG. 19, the extracted five base station installation candidate positions (telephone poles) are indicated by “◯” marks. Further, a code (“A”, “B”, “C”, “D”, ...) For identifying the installation candidate position of each base station is shown.
 推奨パターン特定部174は、基地局の推奨設置位置をユーザに対して提示する(ステップS305)。
 以上で、図15のフローチャートが示す置局設計支援装置1の動作が終了する。
The recommended pattern specifying unit 174 presents the recommended installation position of the base station to the user (step S305).
This completes the operation of the station design support device 1 shown in the flowchart of FIG.
 以下に、基地局の推奨設置位置の2つの提示方法について説明する。
 1つ目の提示方法は、最小の基地局数で端末局を収容するための基地局の推奨設置位置を導出するものである。この1つ目の提示方法では、置局設計支援装置1のユーザが、複数の端末局の設置位置を指定する場合が想定される。
The two methods of presenting the recommended installation positions of the base station will be described below.
The first presentation method is to derive the recommended installation position of the base station for accommodating the terminal station with the minimum number of base stations. In this first presentation method, it is assumed that the user of the station design support device 1 specifies the installation positions of a plurality of terminal stations.
 図20は、本発明の第3の実施形態における置局設計支援装置1が提示するリストの一例を示す図である。図20に示されるように、1つ目の提示方法では、設計エリアにおいて、基地局のいずれの設置候補位置に対しても見通しがないと判定される端末局の個数を最小にした上で、設計エリア内の端末局を収容するために必要とされる基地局数が最小となるような、基地局の推奨設置位置が提示される。 FIG. 20 is a diagram showing an example of a list presented by the station design support device 1 according to the third embodiment of the present invention. As shown in FIG. 20, in the first presentation method, the number of terminal stations determined to have no line of sight for any of the base station installation candidate positions in the design area is minimized. The recommended installation location of the base station is presented so that the number of base stations required to accommodate the terminal station in the design area is minimized.
 図20に示されるリストにおいては、基地局のいずれの設置候補位置に対しても見通しがないと判定される端末局の個数の最小値は、16である。このうち、設計エリア内の端末局を収容するために必要とされる基地局数の最小値は、2である。この場合の、設計エリア内の端末局を収容するために必要とされる2つの基地局の組合せは、「A」と「D」、又は、「B」と「D」の2通り存在する。よって、この2通りの基地局の組合せに対して、1位の評価順位が付けられている。 In the list shown in FIG. 20, the minimum value of the number of terminal stations determined to have no line of sight for any of the base station installation candidate positions is 16. Of these, the minimum number of base stations required to accommodate the terminal stations in the design area is 2. In this case, there are two combinations of two base stations required to accommodate the terminal station in the design area, "A" and "D", or "B" and "D". Therefore, the first evaluation order is given to the combination of these two types of base stations.
 2つ目の提示方法は、複数の基地局には接続することができない端末局の個数を最小になるように、基地局の推奨設置位置を導出するものである。言い換えれば、この2つ目の提示方法は、ユーザによって指定された複数の端末局の各々がなるべく幾つもの基地局と接続することができるような、基地局の推奨設置位置を提示するものである。 The second presentation method is to derive the recommended installation position of the base station so as to minimize the number of terminal stations that cannot be connected to a plurality of base stations. In other words, this second presentation method presents the recommended installation position of the base station so that each of the plurality of terminal stations specified by the user can be connected to as many base stations as possible. ..
 図21は、本発明の第3の実施形態における置局設計支援装置1が提示するリストの一例を示す図である。図21に示されるように、2つ目の提示方法では、設計エリアにおいて、基地局のいずれの設置候補位置に対しても見通しがないと判定される端末局の個数を最小にした上で、さらに、複数の基地局には接続することができない端末局の個数を最小にした上で、設計エリア内の端末局を収容するために必要とされる基地局数が最小となるような、基地局の推奨設置位置が提示される。 FIG. 21 is a diagram showing an example of a list presented by the station design support device 1 according to the third embodiment of the present invention. As shown in FIG. 21, in the second presentation method, the number of terminal stations determined to have no line of sight for any of the base station installation candidate positions in the design area is minimized. Further, a base that minimizes the number of terminal stations that cannot be connected to multiple base stations and minimizes the number of base stations required to accommodate the terminal stations in the design area. The recommended installation location of the station is presented.
 図21に示されるリストにおいては、基地局のいずれの設置候補位置に対しても見通しがないと判定される端末局の個数の最小値は、16である。このうち、複数の基地局には接続することができない端末局の最小値は、1である。さらに、このうち、設計エリア内の端末局を収容するために必要とされる基地局数の最小値は、4である。この場合の、設計エリア内の端末局を収容するために必要とされる4つの基地局の組合せは、「A」と「B」と「C」と「D」の1通りのみ存在する。よって、この1通りの基地局の組合せに対して、1位の評価順位が付けられている。 In the list shown in FIG. 21, the minimum value of the number of terminal stations determined to have no line of sight for any of the base station installation candidate positions is 16. Of these, the minimum value of the terminal station that cannot be connected to a plurality of base stations is 1. Further, among these, the minimum value of the number of base stations required to accommodate the terminal stations in the design area is 4. In this case, there is only one combination of four base stations required to accommodate the terminal station in the design area, "A", "B", "C", and "D". Therefore, the first-ranked evaluation order is given to this one combination of base stations.
 基地局の推奨設置位置を導出するためには、設計エリアに基地局の設置候補位置となる電柱の個数、および(ユーザによって指定される)端末局の個数が重要になる。これらの個数が多すぎると、基地局の設置候補位置と端末局の設置位置との組合せパターン数が、見通しの判定や遮蔽率の算出を現実的な時間内に行うことができなくなるほどの膨大な数になる。 In order to derive the recommended installation position of the base station, the number of utility poles that are candidate positions for the installation of the base station and the number of terminal stations (specified by the user) are important in the design area. If these numbers are too large, the number of combination patterns of the base station installation candidate position and the terminal station installation position will be so large that it will not be possible to determine the line-of-sight or calculate the shielding rate within a realistic time. It becomes a number.
 以下、図22を参照しながら説明する。
 以下、設計エリア内の基地局の設置候補位置(電柱)の個数m=100とし、ユーザによって指定された端末局の設置位置の個数n=5とする。これら5ヵ所に設置された端末局は、例えば33ヵ所の基地局に通信接続する可能性がある。なお、この33ヵ所という値は、設計エリア内に100ヵ所の基地局の設置候補位置が存在することから、少な目に見積もったとしてもこれらの3分の1程度の基地局に端末局が通信接続可能であるという想定に基づく予想値である。
Hereinafter, description will be made with reference to FIG. 22.
Hereinafter, the number of installation candidate positions (telephone poles) of the base station in the design area is m = 100, and the number of installation positions of the terminal stations specified by the user is n = 5. Terminal stations installed at these five locations may communicate with, for example, 33 base stations. Since there are 100 candidate base station installation positions in the design area, the value of 33 locations means that the terminal station connects to about one-third of these base stations even if it is underestimated. It is an expected value based on the assumption that it is possible.
 なお、実際には、5ヵ所の端末局が指定された場合、各端末局それぞれの位置、及び、これらの端末局ごとの周辺に存在する複数の基地局の位置による違いから、必ずしも各端末局に対し同数の基地局が選択される(すなわち、同数の組合せパターンが生成される)とは限らない。しかしながら、ここでは説明を簡単にするため、組合せのパターン数を大まかに見積もることとし、各端末局に対し同数の基地局が選択されるもの想定する。 Actually, when five terminal stations are specified, each terminal station is not necessarily due to the difference due to the position of each terminal station and the positions of a plurality of base stations existing in the vicinity of each terminal station. However, the same number of base stations is not always selected (that is, the same number of combination patterns are generated). However, for the sake of simplicity, the number of combinations of patterns is roughly estimated here, and it is assumed that the same number of base stations are selected for each terminal station.
 基地局の個数m=33、及び端末局の個数n=5は、両局間の無線通信距離が200[m]程度であるならば、前述の通り十分に想定できる数値である。これらの数字(m=33,n=5)を用いて、前述の(2)式に倣って組合せパターン数を算出すると、以下の(13)式により約430億通りとなる。なお、以下の(13)式では、基地局の個数mと端末局の個数nの位置が、(2)式とは逆となる。 The number of base stations m = 33 and the number of terminal stations n = 5 are numerical values that can be sufficiently assumed as described above if the wireless communication distance between the two stations is about 200 [m]. When the number of combination patterns is calculated according to the above-mentioned equation (2) using these numbers (m = 33, n = 5), there are about 43 billion combinations according to the following equation (13). In the following equation (13), the positions of the number m of base stations and the number n of terminal stations are opposite to those of equation (2).
 (組合せパターン数)=n×2
           =5×233
           =5×8,589,934,592
           =42,949,672,960 ・・・(13)
(Number of combination patterns) = n × 2 m
= 5 × 2 33
= 5 × 8,589,934,592
= 42,949,672,960 ... (13)
 このように、端末局に対する基地局の設置候補位置が、設計エリア内の電柱の本数100本の3分の1として少なめに見積もり、33ヵ所であると想定したとしても、基地局と端末局との組合せパターン数は、約430億通りになる。この組合せパターン数は、例えば組合せパターン1組当たりの遮蔽率の算出時間に3秒を要すると仮定した場合、全ての組合せパターンを処理するためは、3583.3万時間(=1290億秒)が必要となる。これは、149.3万日に相当し、すなわち4000年を超える期間となる。 In this way, even if the candidate positions for installing the base station for the terminal station are underestimated as one-third of the 100 utility poles in the design area and assumed to be 33 locations, the base station and the terminal station The number of combination patterns is about 43 billion. Assuming that it takes 3 seconds to calculate the shielding rate per combination pattern, for example, 358.33 million hours (= 129 billion seconds) is required to process all the combination patterns. You will need it. This corresponds to 149.3 million days, that is, a period exceeding 4000 years.
 なお、前述の第1の実施形態では、例えば、設計エリア(400[m]四方のエリアにある半径200[m]の円形のエリア)に対して、小エリア(半径44.4[m]の円形のエリア)を設定した。これにより、前述の計算では、組合せパターン数を約22兆通りから約50万通りへ削減することができた。 In the above-mentioned first embodiment, for example, a small area (radius 44.4 [m]) is provided with respect to a design area (a circular area having a radius of 200 [m] in an area of 400 [m] square). Circular area) was set. As a result, in the above calculation, the number of combination patterns could be reduced from about 22 trillion patterns to about 500,000 patterns.
 しかしながら、実際には、用意できる計算リソースで、常に50万通りの組合せパターン数の見通し判定や遮蔽率の算出の処理を実施できるとは限らない(場合によっては、より少ない計算リソースしか用意ができないことも想定されるからである)。
 そこで、以下、用意できる計算リソースに応じて組合せパターン数をより削減するため、小エリアの半径をより短くするように調整する方法について説明する。
However, in reality, it is not always possible to prepare the prospect judgment of the number of combination patterns and the calculation of the shielding rate of 500,000 combinations with the calculation resources that can be prepared (in some cases, less calculation resources can be prepared. Because it is also assumed).
Therefore, in order to further reduce the number of combination patterns according to the calculation resources that can be prepared, a method of adjusting the radius of the small area to be shorter will be described below.
 図23は、小エリアの半径の調整を示す図である。
 図23は、上記の式(13)によって算定された組合せパターン数(約430億通り)を削減する方法を説明するための図である。ここでは、前述の図22に示される、端末局と基地局と間の無線通信距離が200[m]程度であるとの想定の下で設定された円形の検討範囲を調整する。具体的には、例えば図23に示される、ユーザによって指定された端末局の位置を中心とした円形の直径Dを、以下の(14)式で表す。
FIG. 23 is a diagram showing the adjustment of the radius of the small area.
FIG. 23 is a diagram for explaining a method of reducing the number of combination patterns (about 43 billion ways) calculated by the above equation (13). Here, the circular examination range set under the assumption that the wireless communication distance between the terminal station and the base station, which is shown in FIG. 22 above, is about 200 [m] is adjusted. Specifically, for example, the circular diameter DZ centered on the position of the terminal station designated by the user, which is shown in FIG. 23, is represented by the following equation (14).
 D=200-50×i ・・・(14) D Z = 200-50 x i ... (14)
 ここでi=0の場合には、図22に示される円形のエリアに相当し(図23に示される二点鎖線の円形エリアと同じ)、半径Dz=200[m]である。このエリアでは、前述の通り、約430億通りの組合せパターン数となる。そこで、組合せパターン数を、現実的な時間で処理可能な50万通り以下とするように調整する。 Here, when i = 0, it corresponds to the circular area shown in FIG. 22 (same as the circular area of the two-dot chain line shown in FIG. 23), and the radius is Dz = 200 [m]. In this area, as described above, the number of combination patterns is about 43 billion. Therefore, the number of combination patterns is adjusted to be 500,000 or less that can be processed in a realistic time.
 置局設計支援装置1は、段階的にiの値を増加させる。これにより、段階的に、小エリアの半径が短くなり、組合せパターン数が減少する。
 上記の(14)式において、第1段階としてi=1とするならば、円の半径Dz=150[m]となる。すなわち、図23において、二点鎖線の円形のエリアから、一点鎖線の円形のエリアへと縮小する。この第1段階では、端末局に対して無線通信可能な基地局の設置候補位置が、m=25ヵ所になると想定する。また、指定される端末局の個数については変わらず、n=5ヵ所であるものとする。これら、n=5、m=25との条件に基づき、組合せパターン数は、次の(15)式によって表される。
The station design support device 1 gradually increases the value of i. As a result, the radius of the small area is gradually shortened, and the number of combination patterns is reduced.
In the above equation (14), if i = 1 as the first step, the radius of the circle Dz = 150 [m]. That is, in FIG. 23, the circular area of the two-dot chain line is reduced to the circular area of the one-dot chain line. In this first stage, it is assumed that the candidate positions for installing base stations capable of wireless communication with the terminal station are m = 25. Further, the number of designated terminal stations does not change, and it is assumed that n = 5 locations. Based on these conditions of n = 5 and m = 25, the number of combination patterns is expressed by the following equation (15).
 (組合せパターン数)=n×2
           =5×225
           =5×33,554,432
           =167,772,160 ・・・(15)
(Number of combination patterns) = n × 2 m
= 5 × 2 25
= 5 × 33,554,432
= 167,772,160 ... (15)
 このように、i=1の場合における組合せパターン数は、約1.7憶通りであり、現実的に処理可能な組合せパターン数となっていない。仮に、1組の組合せパターンに対する処理に要する時間が3[秒]であるならば、全ての(1.7億通りの)組合せパターンに対する処理に要する時間は5.0331億[秒]となり、すなわち、約16年の期間を要する。これは、上記の(13)式によって算出された約430億通り組合せパターン数を、256分の1に削減させるに留まるものである。 As described above, the number of combination patterns in the case of i = 1 is about 170 million, which is not the number of combination patterns that can be processed realistically. If the processing time for one set of combination patterns is 3 [seconds], the processing time for all (170 million combinations) combination patterns is 5033.1 billion [seconds], that is, It takes about 16 years. This is only to reduce the number of combinations of about 43 billion combinations calculated by the above equation (13) to 1/256.
 上記の(14)式において、第2段階としてi=2とするならば、円の半径Dz=100[m]となる。すなわち、図23において、一点鎖線の円形のエリアから、実線の円形のエリアへと縮小する。この第2段階では、端末局に対して無線通信可能な基地局の設置候補位置が、m=16ヵ所になると想定する。また、指定される端末局の個数については変わらず、n=5ヵ所であるものとする。これら、n=5、m=16との条件に基づき、組合せパターン数は、次の(16)式によって表される。 In the above equation (14), if i = 2 as the second step, the radius of the circle Dz = 100 [m]. That is, in FIG. 23, the area is reduced from the circular area of the alternate long and short dash line to the circular area of the solid line. In this second stage, it is assumed that the candidate positions for installing base stations capable of wireless communication with the terminal station are m = 16. Further, the number of designated terminal stations does not change, and it is assumed that n = 5 locations. Based on these conditions of n = 5 and m = 16, the number of combination patterns is expressed by the following equation (16).
 (組合せパターン数)=n×2
           =5×216
           =5×65,536
           =327,680 ・・・(15)
(Number of combination patterns) = n × 2 m
= 5 × 2 16
= 5 × 65,536
= 327,680 ... (15)
 このように、i=2の場合における組合せパターン数は、約33万通りであり、現実的に処理可能な組合せパターン数となっている。これは、上記の(13)式によって算出された約430億通り組合せパターン数を、13万分の1に削減させるものである。このように、本実施形態によれば、組合せパターン数を、段階的に削減させて、所定の(現実的な計算時間内に処理可能な組合せパターン数である50万通り未満を満たすように調整することができる。 As described above, the number of combination patterns in the case of i = 2 is about 330,000, which is the number of combination patterns that can be realistically processed. This reduces the number of combinations of about 43 billion combinations calculated by the above equation (13) to 1 / 130,000. As described above, according to the present embodiment, the number of combination patterns is gradually reduced and adjusted so as to satisfy a predetermined number of combination patterns (less than 500,000 combinations that can be processed within a realistic calculation time). can do.
 図24は、本発明の第3の実施形態における置局設計支援装置1の動作を示すフローチャートである。
 まず、設計エリア指定部2は、ユーザによる指定入力に基づいて設計エリアを指定する(ステップS401)。次に、点群データ処理部6は、ユーザによる指定入力に基づいて端末局の位置を指定する(ステップS402)。ここでは、なお、複数の端末局の指定も可能である。
FIG. 24 is a flowchart showing the operation of the station design support device 1 according to the third embodiment of the present invention.
First, the design area designation unit 2 designates the design area based on the designated input by the user (step S401). Next, the point cloud data processing unit 6 designates the position of the terminal station based on the designated input by the user (step S402). Here, it is also possible to specify a plurality of terminal stations.
 次に、点群データ処理部6は、端末局から無線通信可能な距離に位置する基地局を選択する(ステップS403)。組合せパターン抽出部172は、(複数の)端末局と、ステップS403において選択された基地局とから、組合せパターン数を算出する(ステップS404)。組合せパターン抽出部172は、算出された組合せパターン数が所定の値(例えば、50万通り)以下であるか否かを判定する(ステップS405)。 Next, the point cloud data processing unit 6 selects a base station located at a distance capable of wireless communication from the terminal station (step S403). The combination pattern extraction unit 172 calculates the number of combination patterns from the (plural) terminal stations and the base stations selected in step S403 (step S404). The combination pattern extraction unit 172 determines whether or not the calculated number of combination patterns is a predetermined value (for example, 500,000 ways) or less (step S405).
 組合せパターン数が所定の値を超える場合(ステップS405・NO)、組合せパターン抽出部172は、基地局を選ぶ端末局からの距離をより短くできるか否かを判定する(ステップS406)。基地局を選ぶ端末局からの距離をより短くできる場合(ステップS406・YES)、組合せパターン抽出部172は、端末局からより短くした距離にある基地局を選択する(ステップS407)。その後、ステップS404へ戻る。 When the number of combination patterns exceeds a predetermined value (step S405 / NO), the combination pattern extraction unit 172 determines whether or not the distance from the terminal station that selects the base station can be shortened (step S406). When the distance from the terminal station for selecting the base station can be shortened (step S406 · YES), the combination pattern extraction unit 172 selects the base station at a shorter distance from the terminal station (step S407). Then, the process returns to step S404.
 一方、基地局を選ぶ端末局からの距離をより短くできない場合(ステップS406・NO)、組合せパターン抽出部172は、指定された複数の端末局の一部の指定を削除する(ステップS408)。その後、ステップS403へ戻る。 On the other hand, when the distance from the terminal station for selecting the base station cannot be shortened (step S406 / NO), the combination pattern extraction unit 172 deletes some designations of the specified plurality of terminal stations (step S408). Then, the process returns to step S403.
 なお、図24のフローチャートには図示していないが、ステップS408において、指定された複数の端末局の一部削除では結果的に済まなくなる場合も想定される。すなわち、1つの端末局で、かつ距離を最も短くしたにもかかわらず、所定の組合せパターン数を超える場合がある。そのような場合は、置局設計支援装置1が、別途ユーザに対して提示するようにすることが考えられる。 Although not shown in the flowchart of FIG. 24, it is assumed that in step S408, partial deletion of a plurality of designated terminal stations may not be completed as a result. That is, even though one terminal station has the shortest distance, the number of combinations may exceed a predetermined number. In such a case, it is conceivable that the station design support device 1 separately presents the user.
 一方、上記のステップS405において、組合せパターン数が所定の値以下である場合(ステップS405・YES)、点群データ処理部6は、生成された組合せパターンリストに含まれる各組合せパターンについて、点群データを活用した見通しの判定処理、あるいは、遮蔽率の算出処理をそれぞれ実施する(ステップS409)。
 以上で、図24のフローチャートが示す置局設計支援装置1の動作が終了する。
On the other hand, in step S405 described above, when the number of combination patterns is equal to or less than a predetermined value (step S405 · YES), the point cloud data processing unit 6 performs a point cloud for each combination pattern included in the generated combination pattern list. The outlook determination process using the data or the obstruction rate calculation process is carried out (step S409).
This completes the operation of the station design support device 1 shown in the flowchart of FIG. 24.
 以上説明したように、第3の実施形態における置局設計支援装置1によれば、設計エリア内に基地局の設置候補位置となる電柱が複数存在し、少なくとも1つの端末局の位置を任意の建物の壁面などに指定する場合において、適切な組合せパターンの提示を行うことができる。仮に、このような設計エリア内の、端末局から無線通信可能な距離に位置する全ての基地局の設置候補位置を選ぶならば、組合せパターン数は数百億の規模の数になる。そのため、この場合、各組合せパターンについて見通し判定や遮蔽率の算出を現実的な計算時間で行うことが困難となる。 As described above, according to the station design support device 1 in the third embodiment, there are a plurality of utility poles that are candidate positions for installing base stations in the design area, and the position of at least one terminal station is arbitrary. When designating on the wall surface of a building, it is possible to present an appropriate combination pattern. If the installation candidate positions of all the base stations located within the range where wireless communication is possible from the terminal station in such a design area are selected, the number of combination patterns will be on the scale of tens of billions. Therefore, in this case, it becomes difficult to determine the line-of-sight and calculate the shielding rate for each combination pattern in a realistic calculation time.
 第3の実施形態における置局設計支援装置1は、端末局の設置位置から、選択対象となる基地局の設置候補位置までの距離を示す円形のエリアの半径を段階的に短くする。これにより、置局設計支援装置1は、組合せパターン数を段階的に削減していくことができる。これにより、置局設計支援装置1は、見通し判定や遮蔽率の算出を現実的な計算時間で行うことが可能な程度(例えば、50万通り未満)に組合せパターン数を削減するように、段階的に調整することができる。 The station design support device 1 in the third embodiment gradually shortens the radius of the circular area indicating the distance from the installation position of the terminal station to the installation candidate position of the base station to be selected. As a result, the station design support device 1 can gradually reduce the number of combination patterns. As a result, the station design support device 1 can reduce the number of combination patterns to the extent that the line-of-sight determination and the obstruction rate can be calculated in a realistic calculation time (for example, less than 500,000 patterns). Can be adjusted.
(第3の実施形態の変形例)
 前述の第3の実施形態においては、置局設計支援装置1は、選択対象となる基地局の設置候補位置までの距離を示す円形のエリアの半径を段階的に短くすることにより、組合せパターン数を削減する構成であった。一方、第3の実施形態の変形例においては、置局設計支援装置1は、選択対象となる基地局の設置候補位置までの距離を示す円形のエリアの半径を段階的に長くしていくことにより、組合せパターン数が所望の値に近づくように調整する。
(Variation example of the third embodiment)
In the third embodiment described above, the station design support device 1 gradually shortens the radius of the circular area indicating the distance to the installation candidate position of the base station to be selected, thereby reducing the number of combination patterns. It was a configuration to reduce. On the other hand, in the modification of the third embodiment, the station design support device 1 gradually increases the radius of the circular area indicating the distance to the installation candidate position of the base station to be selected. Therefore, the number of combination patterns is adjusted so as to approach a desired value.
 図25は、小エリアの半径の調整を示す図である。
 具体的には、例えば、置局設計支援装置1は、段階的にエリアの半径を長くしていく。これにより、組合せパターン数が段階的に増加していく。ある段階に置いて、現実的な計算時間で処理が可能である上限の組合せパターン数を超過した場合、置局設計支援装置1は、1つ前の段階において算出された組合せパターン数を最適なパターン数として決定する。そして、置局設計支援装置1は、1つ前の段階において生成された組合せパターンリストに含まれる各組合せパターンに対して、見通し判定や遮蔽率の算出の処理を行う。
FIG. 25 is a diagram showing adjustment of the radius of the small area.
Specifically, for example, the station design support device 1 gradually increases the radius of the area. As a result, the number of combination patterns increases step by step. When the upper limit number of combination patterns that can be processed in a realistic calculation time is exceeded at a certain stage, the station design support device 1 optimally uses the number of combination patterns calculated in the previous stage. Determined as the number of patterns. Then, the station design support device 1 performs a process of determining the line-of-sight and calculating the shielding rate for each combination pattern included in the combination pattern list generated in the previous step.
 このように、第3の実施形態の変形例における置局設計支援装置1は、前述の第3の実施形態における置局設計支援装置1のように通信距離を段階的に短くして組合せパターン数を削減していくのとは逆に、最短の通信距離から順に長くして最適な組合パターン数を得られるように調整する。このように、最短の通信距離から段階的に対象とするエリアを拡張する構成とすることで、な構成を有することで、第3の実施形態の変形例における置局設計支援装置1は、前述の第3の実施形態と比べて、より少ない計算リソースで置局設計を行うことができる。 As described above, the station station design support device 1 in the modified example of the third embodiment has the number of combination patterns by gradually shortening the communication distance as in the station station design support device 1 in the third embodiment described above. On the contrary to reducing the number of union patterns, the shortest communication distance is increased in order to obtain the optimum number of union patterns. As described above, the station design support device 1 in the modified example of the third embodiment has the above-mentioned configuration by gradually expanding the target area from the shortest communication distance. Compared with the third embodiment of the above, the station design can be performed with less computational resources.
 この理由としては、対象とするエリアがより狭いほど組合せパターン数がより少ないためである。第3の実施形態の変形例における置局設計支援装置1は、組合せパターン数がより少ない場合から始めて、必要に応じて組合せパターン数を段階的に増加させていき、最適な組合せパターン数を得る。そのため、第3の実施形態の変形例における置局設計支援装置1は、最初の段階では多数である組合せパターン数から、必要に応じて組合せパターン数を段階的に減少させて最適なパターン数を得る前述の第3の実施形態よりも、大幅に計算リソースを少なくすることができる。 The reason for this is that the narrower the target area, the smaller the number of combination patterns. The station design support device 1 in the modified example of the third embodiment starts from the case where the number of combination patterns is smaller, and gradually increases the number of combination patterns as necessary to obtain the optimum number of combination patterns. .. Therefore, the station design support device 1 in the modified example of the third embodiment gradually reduces the number of combination patterns from the large number of combination patterns in the first stage to obtain the optimum number of patterns. It is possible to significantly reduce the calculation resources as compared with the above-mentioned third embodiment.
 上述した実施形態における置局設計支援装置1は、指定された設計エリアを、前記指定されたエリアより小さいエリアを示す小エリアであって、少なくとも一部の範囲が重畳する複数の前記小エリアに区分けするエリア分割部171と、前記小エリアごとに、前記小エリアに含まれる、基地局(第1無線局)の設置候補位置と端末局(第2無線局)の設置候補位置との組合せパターンを抽出し、組合せパターンリストを生成する組合せパターン抽出部172と、前記小エリアごとの前記組合せパターンリストの間で、重複する組合せパターンを削除する重複パターン削除部173と、前記重複する組合せパターンが削除された組合せパターンリストを出力する出力部とを備える。 The station design support device 1 in the above-described embodiment is a small area indicating an area smaller than the designated area, and the designated design area is formed into a plurality of the small areas on which at least a part of the range is superimposed. A combination pattern of the area division unit 171 to be divided and the installation candidate position of the base station (first radio station) and the installation candidate position of the terminal station (second radio station) included in the small area for each small area. A combination pattern extraction unit 172 that extracts a combination pattern list and generates a combination pattern list, an overlap pattern deletion unit 173 that deletes a duplicate combination pattern between the combination pattern list for each small area, and the overlapped combination pattern. It is provided with an output unit that outputs a deleted combination pattern list.
 上記の構成を備えることにより、置局設計支援装置1は、組合せパターンを大幅に削減しつつ、隣接する2つの小エリアの境界を跨って存在する基地局の設置候補位置と端末局の設置候補位置との組合せパターンであっても評価対象外になり難くすることができる。これにより、置局設計支援装置1は、現実的な計算処理時間内でより効果的な置局設計を行うように支援することができる。 By providing the above configuration, the station design support device 1 can significantly reduce the combination patterns, and can be installed at the base station installation candidate positions and the terminal station installation candidates that exist across the boundary between two adjacent small areas. Even if it is a combination pattern with a position, it can be made difficult to be excluded from the evaluation target. As a result, the station station design support device 1 can support more effective station station design within a realistic calculation processing time.
 なお、上記の第1から第3の実施形態において、基地局と端末局とが行う無線通信として、ミリ波無線を一例として示していたが、ミリ波無線通信以外の地上波デジタル通信、衛星電波による通信、UHF(Ultra High Frequency)を用いた通信であってもよい。 In the first to third embodiments described above, millimeter-wave radio is shown as an example of wireless communication between the base station and the terminal station, but terrestrial digital communication and satellite radio waves other than millimeter-wave wireless communication are shown. Communication by, or communication using UHF (Ultra High Frequency) may be used.
 上述した各実施形態における置局設計支援装置1をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組合せで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。 The station design support device 1 in each of the above-described embodiments may be realized by a computer. In that case, a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed. The term "computer system" as used herein includes hardware such as an OS and peripheral devices. Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, and a storage device such as a hard disk built in a computer system. Further, a "computer-readable recording medium" is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized by using a programmable logic device such as FPGA (Field Programmable Gate Array).
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and the design and the like within a range not deviating from the gist of the present invention are also included.
 点群データを活用し、無線の基地局と端末局を設置する場所を決める置局設計において、電柱など屋外設備に置く基地局から建物の壁面に設置する端末局までの見通し判定や遮蔽率の算出に適用できる。 In the station design that uses point cloud data to determine the location where wireless base stations and terminal stations are installed, the line-of-sight judgment and shielding rate from the base stations installed in outdoor equipment such as utility poles to the terminal stations installed on the wall of the building It can be applied to the calculation.
1…置局設計支援装置、2…設計エリア指定部、3…基地局候補位置抽出部、4…端末局候補位置抽出部、5…2次元見通し判定処理部、6…点群データ処理部、7…局数算出部、10…操作処理部、11…地図データ記憶部、12…設備データ記憶部、13…点群データ記憶部、15…2次元見通し判定結果記憶部、17…パターン数制御部、18…組合せパターンリスト記憶部、20…3次元候補位置選定部、23…3次元見通し判定処理部、24…遮蔽率算出部、171…エリア分割部、172…パターン抽出部、173…重複パターン削除部、174…推奨パターン特定部、800、801…ビル、810、811、812…住宅、821、826…電柱、830、834…基地局、840、844…端末局、850、851…局舎、900、901…光ファイバ 1 ... Station design support device, 2 ... Design area designation unit, 3 ... Base station candidate position extraction unit, 4 ... Terminal station candidate position extraction unit, 5 ... Two-dimensional line-of-sight determination processing unit, 6 ... Point group data processing unit, 7 ... Station number calculation unit, 10 ... Operation processing unit, 11 ... Map data storage unit, 12 ... Equipment data storage unit, 13 ... Point group data storage unit, 15 ... Two-dimensional line-of-sight determination result storage unit, 17 ... Pattern number control Unit, 18 ... Combination pattern list storage unit, 20 ... 3D candidate position selection unit, 23 ... 3D prospect determination processing unit, 24 ... Obstruction rate calculation unit, 171 ... Area division unit, 172 ... Pattern extraction unit, 173 ... Duplicate Pattern deletion unit, 174 ... Recommended pattern identification unit, 800, 801 ... Building, 810, 811, 812 ... Residential, 821, 826 ... Electric pole, 830, 834 ... Base station, 840, 844 ... Terminal station, 850, 851 ... Station Building, 900, 901 ... Optical fiber

Claims (8)

  1.  指定されたエリアを、前記指定されたエリアより小さいエリアを示す小エリアであって、少なくとも一部の範囲が重畳する複数の前記小エリアに区分けするエリア分割ステップと、
     前記小エリアごとに、前記小エリアに含まれる、少なくとも1つの第1無線局の設置候補位置と少なくとも1つの第2無線局の設置候補位置との組合せパターンを抽出し、組合せパターンリストを生成する組合せパターン抽出ステップと、
     前記小エリアごとの前記組合せパターンリストの間で、重複する組合せパターンを削除する重複パターン削除ステップと、
     前記重複する組合せパターンが削除された組合せパターンリストを出力する出力ステップと、
     を有する置局設計支援方法。
    An area division step that divides a designated area into a plurality of small areas that are smaller than the designated area and that at least a part of the range overlaps with each other.
    For each of the small areas, a combination pattern of at least one candidate position for installing a first radio station and at least one candidate position for installing a second radio station included in the small area is extracted, and a combination pattern list is generated. Combination pattern extraction step and
    A duplicate pattern deletion step for deleting duplicate combination patterns between the combination pattern lists for each small area, and
    An output step that outputs a combination pattern list in which the duplicate combination pattern is deleted, and
    Station design support method with.
  2.  複数の前記小エリアは、半径が同一の円形であり、半径の長さを単位として順にずれて配置される
     請求項1に記載の置局設計支援方法。
    The station design support method according to claim 1, wherein the plurality of small areas are circular with the same radius and are arranged in order with the length of the radius as a unit.
  3.  複数の前記小エリアは、前記エリアに含まれる道路が区分けされた複数の道路区分を1つずつ含むように配置される
     請求項1に記載の置局設計支援方法。
    The station design support method according to claim 1, wherein the plurality of small areas are arranged so as to include a plurality of road divisions in which roads included in the area are divided.
  4.  複数の前記道路区分は、前記道路において見通しがある区間ごとに分けられた区分である
     請求項3に記載の置局設計支援方法。
    The station design support method according to claim 3, wherein the plurality of road divisions are divisions divided into sections having a line of sight on the road.
  5.  1つの前記第1無線局との組合せパターンとなる前記第2無線局の個数は所定値以下である
     請求項1から4のうちいずれか一項に記載の置局設計支援方法。
    The station setting design support method according to any one of claims 1 to 4, wherein the number of the second radio stations, which is a combination pattern with the first radio station, is not more than a predetermined value.
  6.  少なくとも1つの第1無線局の位置を示す情報を取得するステップと、
     少なくとも1つの第1無線局と、前記第1無線局の位置から所定の距離以内に位置する少なくとも1つの第2無線局の設置候補位置との組合せパターンの数を算出するステップと、
     前記組合せパターンの数が所定数を超過している場合、前記所定の距離を段階的により短くするステップと、
     前記組合せパターンの数が所定数を超過しなくなった場合、前記組合せパターンの数を出力するステップと、
     を有する置局設計支援方法。
    A step of acquiring information indicating the position of at least one first radio station, and
    A step of calculating the number of combination patterns of at least one first radio station and a candidate position for installation of at least one second radio station located within a predetermined distance from the position of the first radio station.
    When the number of the combination patterns exceeds a predetermined number, the step of gradually shortening the predetermined distance and the step of gradually shortening the predetermined distance.
    When the number of the combination patterns does not exceed the predetermined number, the step of outputting the number of the combination patterns and the step.
    Station design support method with.
  7.  少なくとも1つの第1無線局の位置を示す情報を取得するステップと、
     少なくとも1つの第1無線局と、前記第1無線局の位置から所定の距離以内に位置する少なくとも1つの第2無線局の設置候補位置との組合せパターンの数を算出するステップと、
     前記組合せパターンの数が所定数を超過していない場合、前記所定の距離を段階的により長くするステップと、
     前記組合せパターンの数が所定数を超過した場合、直前の段階の前記所定の距離に基づく前記組合せパターンの数を出力するステップと、
     を有する置局設計支援方法。
    A step of acquiring information indicating the position of at least one first radio station, and
    A step of calculating the number of combination patterns of at least one first radio station and a candidate position for installation of at least one second radio station located within a predetermined distance from the position of the first radio station.
    When the number of the combination patterns does not exceed the predetermined number, the step of gradually increasing the predetermined distance and the step of gradually increasing the predetermined distance.
    When the number of the combination patterns exceeds a predetermined number, a step of outputting the number of the combination patterns based on the predetermined distance in the immediately preceding step, and
    Station design support method with.
  8.  指定されたエリアを、前記指定されたエリアより小さいエリアを示す小エリアであって、少なくとも一部の範囲が重畳する複数の前記小エリアに区分けするエリア分割部と、
     前記小エリアごとに、前記小エリアに含まれる、第1無線局の設置候補位置と第2無線局の設置候補位置との組合せパターンを抽出し、組合せパターンリストを生成する組合せパターン抽出部と、
     前記小エリアごとの前記組合せパターンリストの間で、重複する組合せパターンを削除する重複パターン削除部と、
     前記重複する組合せパターンが削除された組合せパターンリストを出力する出力部と、
     を備える置局設計支援装置。
    An area division portion that divides the designated area into a plurality of the small areas in which at least a part of the range overlaps, which is a small area indicating an area smaller than the designated area.
    For each of the small areas, a combination pattern extraction unit that extracts a combination pattern of the installation candidate position of the first radio station and the installation candidate position of the second radio station included in the small area and generates a combination pattern list.
    A duplicate pattern deletion unit that deletes duplicate combination patterns between the combination pattern lists for each small area, and
    An output unit that outputs a combination pattern list in which the duplicate combination pattern is deleted, and
    Station design support device equipped with.
PCT/JP2020/045849 2020-12-09 2020-12-09 Station placement design assisting method and station placement design assisting device WO2022123685A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/045849 WO2022123685A1 (en) 2020-12-09 2020-12-09 Station placement design assisting method and station placement design assisting device
JP2022567945A JPWO2022123685A1 (en) 2020-12-09 2020-12-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/045849 WO2022123685A1 (en) 2020-12-09 2020-12-09 Station placement design assisting method and station placement design assisting device

Publications (1)

Publication Number Publication Date
WO2022123685A1 true WO2022123685A1 (en) 2022-06-16

Family

ID=81973362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045849 WO2022123685A1 (en) 2020-12-09 2020-12-09 Station placement design assisting method and station placement design assisting device

Country Status (2)

Country Link
JP (1) JPWO2022123685A1 (en)
WO (1) WO2022123685A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019213148A (en) * 2018-06-08 2019-12-12 日本電信電話株式会社 Station design method, station design apparatus, and station design program for wireless communication system
WO2020149291A1 (en) * 2019-01-18 2020-07-23 日本電信電話株式会社 Station installation design method, station installation design device, and program
WO2020250392A1 (en) * 2019-06-13 2020-12-17 日本電信電話株式会社 Station installation assistance design device, station installation assistance design method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019213148A (en) * 2018-06-08 2019-12-12 日本電信電話株式会社 Station design method, station design apparatus, and station design program for wireless communication system
WO2020149291A1 (en) * 2019-01-18 2020-07-23 日本電信電話株式会社 Station installation design method, station installation design device, and program
WO2020250392A1 (en) * 2019-06-13 2020-12-17 日本電信電話株式会社 Station installation assistance design device, station installation assistance design method, and program

Also Published As

Publication number Publication date
JPWO2022123685A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
CN106708955B (en) Thermodynamic diagram generation method and equipment
CN110163065B (en) Point cloud data processing method, point cloud data loading method, device and equipment
JP4312480B2 (en) Method and system for wireless coverage deployment in a mobile wireless telephone network
US8681153B2 (en) Map display method used to enhance the display of a building by showing several levels of this building
US10659972B2 (en) System and methods for obtaining ubiquitous network coverage
CN104867174A (en) Three-dimensional map rendering and display method and system
EP2424293A1 (en) Radio wave propagation characteristic estimation apparatus, method, and computer program
JP2020113826A (en) Installation candidate presentation method, installation candidate presentation device, and program
CN105101093A (en) Network topology visualization method with respect to geographical location information
CN103218694A (en) Power emergency monitoring method and system
JP7252495B2 (en) Station placement support method and station placement support device
Makkawi et al. RSUs placement using cumulative weight based method for urban and rural roads
WO2022123685A1 (en) Station placement design assisting method and station placement design assisting device
WO2021199238A1 (en) Station installation assisting method, station installation assisting device, and station installation assisting program
CN110378173A (en) A kind of method and apparatus of determining lane boundary line
CN105408941A (en) Global grid building in reverse faulted areas by an optimized unfaulting method
CN109391947A (en) A kind of network node dispositions method and device
JP7280536B2 (en) Outlook determination method, visibility determination device, and program
WO2023032223A1 (en) Station installation design supporting method and station installation design supporting apparatus
KR101100698B1 (en) Method for designing wireless networks using the Google-Earth
KR102642179B1 (en) System, method and program for managing pavement
Matrood et al. A simple gis based method for designing fiber-network
WO2022219669A1 (en) Station site design assisting device and station site design assisting method
Corputy et al. Web Planning Tower Base Transceiver Station Collective Mobile Telecommunications in Merauke City Based On Geographic Information Systems Using Mapinfo For The Next 10 Years
JP6366317B2 (en) Equipment display system using mobile terminals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022567945

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965068

Country of ref document: EP

Kind code of ref document: A1