WO2022122515A1 - Grain fondu a base d'alumine - Google Patents

Grain fondu a base d'alumine Download PDF

Info

Publication number
WO2022122515A1
WO2022122515A1 PCT/EP2021/083832 EP2021083832W WO2022122515A1 WO 2022122515 A1 WO2022122515 A1 WO 2022122515A1 EP 2021083832 W EP2021083832 W EP 2021083832W WO 2022122515 A1 WO2022122515 A1 WO 2022122515A1
Authority
WO
WIPO (PCT)
Prior art keywords
grains
mass
molten
less
hfo
Prior art date
Application number
PCT/EP2021/083832
Other languages
English (en)
Inventor
Nadia Frederich
Samuel Noel Patrice Marlin
Shuqiong LIANG
Original Assignee
Saint-Gobain Centre De Recherches Et D'etudes Europeen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Centre De Recherches Et D'etudes Europeen filed Critical Saint-Gobain Centre De Recherches Et D'etudes Europeen
Priority to KR1020237022837A priority Critical patent/KR20230117413A/ko
Priority to CN202180093194.2A priority patent/CN116888087A/zh
Priority to US18/265,672 priority patent/US20240043336A1/en
Priority to MX2023006674A priority patent/MX2023006674A/es
Priority to EP21816106.5A priority patent/EP4255868A1/fr
Priority to JP2023534222A priority patent/JP2023553022A/ja
Publication of WO2022122515A1 publication Critical patent/WO2022122515A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/107Refractories by fusion casting
    • C04B35/109Refractories by fusion casting containing zirconium oxide or zircon (ZrSiO4)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/14Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/1115Minute sintered entities, e.g. sintered abrasive grains or shaped particles such as platelets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • C09K3/1427Abrasive particles per se obtained by division of a mass agglomerated by melting, at least partially, e.g. with a binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/721Carbon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/728Silicon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Definitions

  • the present invention relates to a fused grain, in particular for applications as abrasive grains.
  • the invention also relates to a mixture of said grains as well as an abrasive tool comprising a mixture of grains in accordance with the invention.
  • Abrasive tools are generally classified according to the mode of shaping of the grains that enter into their compositions: free abrasives (use in projection or suspension, without support), coated abrasives (support of the canvas or paper type, where the grains are arranged on a few layers) and bonded abrasives (in the form of circular wheels, sticks, etc.).
  • the abrasive grains are pressed with an organic or vitreous binder (in this case, a binder consisting of oxides, mainly silicate).
  • organic or vitreous binder in this case, a binder consisting of oxides, mainly silicate.
  • fused and cast grains which have different microstructures.
  • the problems posed by sintered grains and by fused and cast grains, and the technical resolutions adopted to solve them, are therefore generally different.
  • a composition developed to manufacture a fused and cast grain is therefore not a priori usable to manufacture a sintered ceramic grain having the same properties, and vice versa.
  • the fused grains based on alumina usually used in the manufacture of grinding wheels or abrasive belts include two main categories depending on the type of applications and abrasion regimes encountered: fused grains of alumina-zirconia and fused grains of alumina-zirconia. alumina.
  • Fused alumina-zirconia grains are known from US-A-3,181,939, which describes fused alumina-zirconia grains containing 10 to 60% zirconia, the balance being alumina and impurities.
  • US-A-4,457,767 describes molten alumina-zirconia grains having a composition close to the eutectic, with a quantity of zirconia close to 40% by mass, and which may comprise up to 2% yttrium oxide .
  • fused alumina grains have a better yield (consumption of grains reduced to the quantity of material abraded) and better energy efficiency for uses at low pressures or for finishing applications. .
  • An object of the invention is to meet, at least partially, this need.
  • this object is achieved by means of a molten grain having the following chemical analysis, in mass percentages on the basis of the oxides:
  • both the yield and the energy efficiency are better than those of known fused alumina grains. Without being limited by this theory, they explain this result by a microstructure which, surprisingly, is substantially identical to that of the molten grains of pure alumina despite the presence of ZrO 2 + HfO 2 and of Y 2 O3.
  • a molten grain according to the invention may also have one or more of the following optional characteristics: - 3% ⁇ ZrO 2 +HfO 2 ⁇ 11%, preferably 4% ⁇ ZrO 2 +HfO 2 ⁇ 10%, preferably 5%
  • the total content of quadratic and cubic zirconias, in mass percentages based on the total mass of the crystallized phases of zirconia, is greater than 30% and less than 95%, preferably greater than 40% and less than 80%, of preferably greater than 50% and less than 70%;
  • the carbon content is greater than 50 ppm and less than 0.15%, preferably greater than 50 ppm and less than 0.06%, preferably greater than 50 ppm and less than 0.03%, in percentages by mass based on the mass of the molten grain;
  • the molten grain comprises cubic zirconia
  • the content of elements other than ZrO 2 , HfO 2 , Y 2 O 3 and A1 2 O 3 is less than 1.0%; preferably the elements other than ZrO 2 , HfO 2 , Y 2 O 3 and A1 2 O 3 are impurities;
  • the invention also relates to a mixture of grains comprising, in mass percentage, more than 80% of molten grains according to the invention.
  • the invention also relates to a method for manufacturing a mixture of molten grains according to the invention, said method comprising the following successive steps: a) mixing raw materials so as to form a starting charge, b) melting said charge starting point until a molten material is obtained, c) solidification of said molten material so that the molten material is completely solidified in less than 3 minutes, d) optionally, and in particular if step c) does not lead to obtaining grains, grinding of said solid mass so as to obtain a mixture of grains, e) optionally, particle size selection.
  • the raw materials are chosen in step a) so that the solid mass obtained at the end of step c) has a composition in accordance with that of a grain according to the invention.
  • the invention finally relates to an abrasive tool comprising grains bound by a binder and agglomerated, for example in the form of a grinding wheel, or deposited on a support, for example a strip or a disc, this tool being remarkable in that at the least a part, preferably more than 50%, preferably more than 70%, preferably more than 80%, preferably more than 90%, preferably more than 95%, preferably more than 99%, preferably all of said grains are in accordance with the invention.
  • the abrasive tool may in particular be a grinding wheel, a precision wheel, a sharpening wheel, a cut-off wheel, a cutting wheel in the mass, a grinding or roughing wheel, a drive wheel, portable wheel, foundry wheel, drill wheel, mounted points, cylindrical, cone, disc or segment wheel or any other type of wheel.
  • the invention relates to the use of grains according to the invention, in particular in an abrasive tool according to the invention, for abrading.
  • the grains according to the invention are particularly suitable for machining steel, in particular stainless steels.
  • the oxide contents of a grain according to the invention relate to the overall contents for each of the corresponding chemical elements, expressed in the form of the most stable oxide, according to the usual industry convention; are therefore included the sub-oxides and optionally nitrides, oxynitrides, carbides, oxycarbides, carbonitrides, or even the metallic species of the above-mentioned elements.
  • HfCL is considered not to be chemically dissociable from ZrCL.
  • ZrCL or “ZrCL+HfCL” therefore designate the total content of these two oxides.
  • HfCL is not added intentionally in the starting load. HfCL therefore only designates traces of hafnium oxide, this oxide being always naturally present in zirconia sources at levels generally below 2%.
  • the quadratic zirconia and cubic zirconia contents are measured by X-ray diffraction on a powder obtained by grinding the molten grains, as described below, for the examples.
  • impurities is meant the unavoidable constituents, necessarily introduced with the raw materials.
  • the compounds forming part of the group of oxides, nitrides, oxynitrides, carbides, oxycarbides, carbonitrides and metal species of sodium and other alkalis, iron and vanadium are impurities.
  • mention may be made of Fe2O3 or Na2O. HfCh is not considered an impurity.
  • precursor of an oxide is meant a constituent capable of supplying said oxide during the manufacture of a grain or a mixture of grains according to the invention.
  • a "grain” is a particle whose all dimensions are less than 20 mm.
  • molten grain or more broadly “molten product”, we mean a solid grain (or product) obtained by solidification by cooling of a molten material.
  • a "molten material” is a mass made liquid by heating a starting charge, which may contain some solid particles, but in an insufficient quantity for them to be able to structure said mass. To maintain its shape, a molten material must be contained in a container.
  • the molten products based on oxides according to the invention are conventionally obtained by melting at more than 1900°C.
  • median size of a powder means the size dividing the particles into first and second populations equal in mass, these first and second populations comprising only particles having a size greater than or equal to, or less than, respectively, the median size .
  • the median size of a powder can be determined using a particle size distribution carried out using a laser particle sizer.
  • compositions of a grain are given in mass percentages, based on the total mass of the oxides of the grain.
  • the chemical composition of a molten grain according to the invention preferably has one or more of the following optional characteristics: -
  • the ZrCL+HfCL content is preferably greater than 3%, preferably greater than 4%, preferably greater than 5%, and preferably less than 12%, preferably less than 11%, preferably less than 10% , preferably less than 9%, in mass percentages based on the oxides;
  • the inventors have discovered that a grain having a ZrCh+HfCh content greater than 15% has a different microstructure from that of the grain according to the invention: the amount of eutectic phase, located between the alumina grains, is greater , and it contributes to modifying the fracturing regime of the grain during its use.
  • the preferred ZrCh+HfCh ranges correspond to the best compromise between cost and grain performance;
  • the HfCL content is preferably less than 1%, preferably less than 0.5%, preferably less than 0.3%, preferably less than 0.2%, and/or greater than 0.02%, in mass percentages based on the oxides;
  • the Y2O3/(ZrO2+HfO2) mass ratio is preferably greater than 0.0070, preferably greater than 0.0080, preferably greater than 0.0090, preferably greater than 0.0100, preferably greater than 0, 0110, preferably greater than 0.0120, preferably greater than 0.0150, preferably greater than 0.0170, preferably greater than 0.0180, preferably greater than 0.0190, and preferably less than 0.1200 , preferably less than 0.1000, preferably less than 0.0800, or even less than 0.0600, or even less than 0.0500, or even less than 0.0400, or even less than 0.0300, or even less than 0, 0250;
  • the content of elements other than ZrCL, HI O2, Y2O3 and Al2O3 is preferably less than 1.8%, preferably less than 1.5%, preferably less than 1.2%, preferably less than 1%, preferably less than 0.8%, preferably less than 0.5%, in mass percentages based on the oxides;
  • the elements other than ZrCL, HI O2, Y2O3 and Al2O3 are preferably impurities;
  • the Na2O content is preferably less than 0.3%, preferably less than 0.2%, preferably less than 0.15%, preferably less than 0.1%, preferably less than 0.08% , preferably less than 0.05%, in mass percentages based on the oxides;
  • the SiCh content is preferably less than 0.3%, preferably less than 0.2%, preferably less than 0.15%, preferably less than 0.1%, preferably less than 0.08%, preferably less than 0.05%, in mass percentages based on the oxides;
  • the TiCL content is preferably less than 0.2%, preferably less than 0.15%, preferably less than 0.13%, preferably less than or equal to 0.12%, in mass percentages on the basis oxides;
  • the FC2O3 content is preferably less than 0.3%, preferably less than 0.2%, preferably less than 0.15%, preferably less than 0.1%, preferably less than 0.08% , preferably less than 0.05%, in mass percentages based on the oxides;
  • the MgO content is preferably less than 0.2%, preferably less than 0.15%, preferably less than 0.1%, preferably less than 0.08%, preferably less than 0.05% , in mass percentages based on the oxides;
  • the CaO content is preferably less than 0.2%, preferably less than 0.15%, preferably less than 0.1%, preferably less than 0.08%, preferably less than 0.05% , in mass percentages based on the oxides;
  • the oxide content is greater than 98%, preferably greater than 99%, preferably greater than 99.4%, preferably greater than 99.5%, preferably greater than 99.6%, preferably greater than 99 .7%, in percentages by mass based on the mass of the molten grain;
  • the carbon content is greater than 30 ppm, preferably greater than 50 ppm, preferably greater than 80 ppm and/or preferably less than 0.15%, preferably less than 0.1%, preferably less than 0 .08%, preferably less than 0.06%, preferably less than 0.05%, preferably less than 0.04%, preferably less than 0.03%, in mass percentages based on mass melted grain.
  • the total content of quadratic and cubic zirconias, in mass percentages based on the total mass of the crystallized phases of zirconia is preferably greater than 30%, preferably greater than 40%, preferably greater than 50%, preferably greater than at 55%, preferably greater than 60%, and/or preferably less than 95%, preferably less than 90%, preferably less than 85%, preferably less than 80%, preferably less than 75%, preferably less than 70%;
  • - Zirconia is at least partly in cubic form.
  • a fused grain according to the invention has a microstructure substantially composed of alumina crystals, said crystals being separated by joints in which Z1O2 and Y2O3 are located.
  • the elements other than Al2O3, Z1O2 and Y2O3 are substantially entirely localized in said joints.
  • the average size of the alumina crystals is less than 50 ⁇ m, preferably less than 40 ⁇ m, preferably less than 30 ⁇ m, preferably less than 25 ⁇ m, or even less than 20 ⁇ m, and/or preferably greater to 3 ⁇ m, preferably greater than 4 ⁇ m.
  • step c) of the process according to the invention it is possible, in step c) of the process according to the invention, to reduce the time necessary to completely solidify the molten material.
  • a mixture of grains according to the invention comprises, in mass percentages, preferably more than 85%, preferably more than 90%, preferably more than 95%, preferably more than 99%, preferably substantially 100% of molten grains according to the invention.
  • a mixture of grains according to the invention respects a particle size distribution in accordance with those of the mixtures or “grits” provided by the standard FEPA Standard 43-GB-1984, R1993 and the standard FEPA Standard 42-GB-1984, R1993.
  • a mixture of grain according to the invention has a mass refusal on a 16 mm sieve, preferably on a 9.51 mm sieve, measured using a Ro-Tap® sieving machine, of less than 1%.
  • Fused grains according to the invention can be manufactured according to steps a) to e) mentioned above, which are conventional for the manufacture of fused grains of alumina.
  • the parameters can for example take the values of the process used for the examples below.
  • step a raw materials are conventionally dosed so as to obtain the desired composition, then mixed to form the starting charge.
  • the metals Zr, Hf, Al, and Y in the starting charge are found substantially entirely in the molten grains.
  • the metals Zr, Hf, Al and Y are preferably introduced into the starting charge in the form of ZrCL, HIO2, Al2O3 and Y2O3 oxides. They can also be conventionally introduced in the form of precursors of these oxides.
  • the feedstock includes an amount of carbon, preferably in the form of coke, of between 0.2% and 4%, based on the mass of the feedstock.
  • the starting charge in particular when the raw materials present in the starting charge have a low impurity content, the starting charge consists of ZrCL, HfCL, Al2O3 and Y2O3 oxides and/or precursors of these oxides.
  • the "other elements" are preferably impurities.
  • an electric arc furnace is preferably used, preferably of the Héroult type with graphite electrodes, but all known furnaces are possible, such as an induction furnace or a plasma furnace, provided that they melt the starting charge.
  • the raw materials are preferably melted in a reducing medium (obtained by the presence of carbon in the starting charge and/or by the fact that the electrodes are soaked in the bath of molten material), preferably at atmospheric pressure.
  • an electric arc furnace comprising a 70 liter tank, with a melting energy before casting of more than 1.9 kWh per kg of raw materials for a power of more than 209 kW, or an electric arc furnace of different capacity operated under equivalent conditions.
  • a person skilled in the art knows how to determine such equivalent conditions.
  • step c) the cooling must be rapid, i.e. so that the molten material is completely solidified in less than 3 minutes.
  • the cooling may result from casting in molds as described in US 3,993,119 or from quenching.
  • the molten material is completely solidified in less than 2 minutes, preferably in less than a minute, preferably in less than 40 seconds, preferably in less than 30 seconds.
  • step c) does not make it possible to directly obtain a mixture of grains, or if these grains do not have a particle size suitable for the intended application, grinding (step d)) can be implemented, according to techniques conventional.
  • step e if the previous steps do not make it possible to obtain a mixture of grains having a particle size suitable for the intended application, a particle size selection, for example by sieving or cycloning can be implemented.
  • the abrasive tools can in particular be formed by agglomeration of grains according to the invention by means of a binder, in particular in the form of a grinding wheel, for example by pressing, or be formed by fixing grains according to the invention on a support, for example a tape or a disc, by means of a binder.
  • the binder can be inorganic, in particular a glass (for example, a binder consisting of oxides, substantially consisting of silicate(s) can be used) or organic.
  • the binder may in particular be a thermosetting resin. It is preferably chosen from the group consisting of phenolic, epoxy, acrylate, polyester, polyamide, polybenzimidazole, polyurethane, phenoxy, phenol-furfural, analine-formaldehyde, urea-formaldehyde, cresol-aldehyde, resorcinol-aldehyde, urea- aldehyde, melamine-formaldehyde, and mixtures thereof.
  • the binder can also incorporate organic or inorganic fillers, such as hydrated inorganic fillers (for example aluminum trihydrate or boehmite) or not (eg molybdenum oxide), cryolite, halogen, fluorspar, iron sulphide, zinc sulphide, magnesia, silicon carbide, silicon chloride, chloride of potassium, manganese dichloride, potassium or zinc fluoroborate, potassium fluoroaluminate, calcium oxide, potassium sulfate, a copolymer of vinylidene chloride and vinyl chloride, polyvinylidene chloride, polyvinyl chloride, fibers, sulfides, chlorides, sulfates, fluorides, and mixtures thereof.
  • the binder can also contain reinforcing fibers such as glass fibers.
  • the binder represents between 2 and 60%, preferably between 20% and 40% by volume of the mixture.
  • the total quantity of quadratic and cubic zirconias is determined by X-ray diffraction on samples ground dry in an RS 100 grinder marketed by the company Retsch, equipped with a tungsten carbide bowl having an internal diameter equal to 80 mm and an internal height equal to 40 mm and a tungsten carbide roller, having a diameter equal to 45 mm and a height equal to 35 mm.
  • step e) by sieving, 20 g of grains according to the invention having a size of between 425 ⁇ m and 500 ⁇ m are selected. These grains are then ground for 30 seconds in the grinder, the speed selected being equal to 14,000 rpm. After grinding, the recovered powder is sieved through a 40 ⁇ m sieve and only the passer-by is used for measurement by X-ray diffraction.
  • the acquisition of the diffraction diagram is carried out using a device of the D8 Endeavor type from the company Bruker, over an angular range 29 of between 5° and 100°, with a step of 0.01°, and a time of 0.34 sec/step count.
  • the front optic has a 0.3° primary slit and a 2.5° Soller slit.
  • the sample is rotating on itself at a speed equal to 15 rpm, with use of the automatic knife.
  • the rear optics have a 2.5° Soller slit, a 0.0125 mm nickel filter and a 1D detector with an aperture equal to 4°.
  • the diffraction patterns are then qualitatively analyzed using EVA software and the ICDD2016 database.
  • a single stabilized phase (quadratic or cubic) is assumed.
  • the diffraction diagrams are analyzed with HighScore Plus software from Malvem Panalytical, using the "pseudo Voigt split width" function and the area of the planes (-111) and (111) of the monoclinic zirconia phase and the peak area of the (111) plane of the stabilized zirconia phase are determined.
  • As(iii): the peak area of the (111) plane of the stabilized zirconia phase (in the quadratic and/or cubic form), located at around 2 ⁇ 30.2°, d: the density of the zirconia monoclinic, setting equal to 5.8 g/cm 3 , ds: the density of the stabilized zirconia, setting equal to 6.1 g/cm 3 .
  • the mass quantity of quadratic and cubic zirconia, in percentages based on the total mass of the crystallized phases of zirconia is equal to: 100
  • the chemical analysis of the molten grains is measured by the technique of "inductively coupled plasma", ("Inductively Coupled Plasma”, or “ICP”, in English) for Y2O3 and for elements whose content does not exceed 0.5%.
  • ICP Inductively Coupled Plasma
  • a bead of the product to be analyzed is made by melting the product, then the chemical analysis is carried out by X-ray fluorescence.
  • the carbon content of the molten grains is measured using a carbon-sulphur analyzer model CS744, marketed by the company LECO.
  • the median size of a powder is conventionally measured using an LA950V2 model laser particle sizer marketed by Horiba.
  • the average size of the alumina crystals of the molten grains of the examples is measured by the “Mean Linear Intercept” method.
  • a method of this type is described in standard ASTM E1382. According to this standard, lines of analysis are drawn on images of the molten grains, then, along each line of analysis, the lengths 1, called “intercepts", are measured between two joints separating two consecutive crystals intersecting said line analysis.
  • the average length “F” of the intercepts “1” is then determined.
  • the intercepts were measured on images, obtained by scanning electron microscopy, of molten grains having a size between 500 ⁇ m and 600 ⁇ m, said sections having previously been polished until a mirror quality is obtained.
  • the magnification used for taking the images is chosen so as to visualize on an image between 130 and 160 alumina crystals not cut by the edges of the image. 5 images per blend of fused grains were made, each on a different grain. A minimum of 100 intercepts are measured per frame.
  • the average size “d” of the alumina crystals of a mixture of molten grains is equal to the average F of the intercepts 1 measured on all 5 images.
  • Alumina powder with a purity greater than 99.6% by mass comprising the impurities Na2 ⁇ , CaO, Fe2 ⁇ 3, MgO, TiCl, SiCh, and having a median size equal to 80 ⁇ m;
  • Zirconia powder with a purity greater than 99.4% by mass comprising the impurities Al2O3, CaO, Y2O3, MgO, TiO2, SiO2, and having a median size equal to 1.5 mm;
  • the grains were prepared according to the following conventional manufacturing process, in accordance with the invention: a) mixing the raw materials so as to form a starting charge, b) melting said starting charge in a single-phase electric arc furnace of Héroult type with graphite electrodes, with a furnace vessel 0.8 m in diameter, a voltage of 95 V, an intensity of 2200 A and a specific electrical energy supplied of 1.9 kWh/kg charged, c) sudden cooling of the molten material by means of a casting device between thin metal plates such as that presented in US-A-3,993,119, so as to obtain an entirely solid plate, constituting a solid mass, d) grinding of said solid mass cooled in step c) so as to obtain a mixture of grains, e) selection by sieving using a Ro-Tap® sieving machine of the grains having a size of between 500 and 600 ⁇ m.
  • Table 1 below provides the chemical composition and the proportion of cubic zirconia of the various mixtures of molten grains, as well as the results obtained with these mixtures.
  • the percentage improvement in the ratio S is calculated by the following formula: 100. (ratio S of the product of the example considered - ratio S of the product of reference example 1) / ratio S of the product of example 1 reference.
  • a positive and high value of the percentage improvement of the ratio S is sought.
  • the inventors consider an improvement of more than 5% in the S ratio to be significant.
  • the S ratio is improved by more than 10%, preferably by more than 15%, preferably by more than 20%, preferably by more than 25%, preferably by more than 30%, preferably by more by 35%.
  • the percentage reduction in specific energy, Es is calculated by the following formula:
  • a positive and high value of the percentage reduction of the specific energy Es during the test is sought.
  • the inventors consider a reduction of more than 5% in the specific energy Es to be significant.
  • the specific energy is reduced by more than 10%, preferably by more than 15%.
  • the amount of quadratic and cubic zirconia is provided in mass percentages based on the total mass of the crystallized zirconia phases.
  • Reference example 1 outside the invention, is a mixture of molten grains marketed by the company Saint-Gobain Ceramic Materials under the name MA88K-weak.
  • the average size of the alumina crystals is between 5 ⁇ m and 25 ⁇ m for the grains of examples 2 to 8.
  • the inventors have observed that a ZrCh content of less than 2% does not make it possible to improve the abrasive performance.
  • the inventors also found that a ZrCL content greater than 13% was the cause of a modification of the microstructure of the molten grain, said microstructure changing from a microstructure mainly composed of corundum grains and presenting zirconia at the grain boundaries to a microstructure comprising a non-negligible amount of alumina-zirconia eutectic phase.
  • a comparison of comparative examples 1 and 2 shows the importance of the Y2O3/(ZrO2+HfO2) mass ratio: for such a ratio equal to 0.0065, the S ratio is improved by 20% and the specific energy is reduced by 5 %.
  • a comparison of comparative examples 1 and 8 outside the invention shows that a Y2O3/(ZrO2+HfO2) mass ratio equal to 0.14 makes it possible to improve the ratio by 17%, but results in an increase in the specific energy of 7% .
  • a comparison of comparative examples 1 and 3, 4, 5, 6 and 7 shows the importance of the mass ratio Y2O3/(ZrO2+HfO2), equal to 0.0125, 0.0209, 0.0232, 0.0248, 0.0433, respectively: the S ratio is improved by 25%, 42%, 41%, 31%, 24% respectively, and the specific energy is reduced by 8%, 16%, 18%, 14%, 9% , respectively.
  • the invention provides a mixture of fused grains consisting mainly of alumina, and therefore of lower cost than fused alumina-zirconia grains, and exhibiting better yield and energy efficiency than those of known alumina grains.
  • the present invention is not limited to the embodiments described provided by way of illustrative and non-limiting examples.
  • the molten grains according to the invention are not limited to particular shapes or dimensions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

Grain fondu présentant l'analyse chimique suivante, en pourcentages massiques sur la base des oxydes : ZrO2+HfO2 : 2% à 13%; Eléments autres que ZrO2, HfO2, Y2O3 et AI2O3 : ≤ 2%. Y2O3 + AI2O3 : complément à 100%; avec 0,0065 ≤ Y2O3/(ZrO2+HfO2) ≤ 0,1300.

Description

Description
Titre : GRAIN FONDU A BASE D’ALUMINE
Domaine technique
La présente invention concerne un grain fondu, notamment pour des applications comme grains abrasifs. L’invention concerne également un mélange desdits grains ainsi qu’un outil abrasif comportant un mélange de grains conforme à l’invention.
Art antérieur
On classe généralement les outils abrasifs selon le mode de mise en forme des grains qui entrent dans leurs compositions : abrasifs libres (utilisation en projection ou en suspension, sans support), abrasifs appliqués (support de type toiles ou papiers, où les grains sont disposés sur quelques couches) et abrasifs agglomérés (sous forme de meules circulaires, de bâtons, etc.). Dans ces derniers, les grains abrasifs sont pressés avec un liant organique ou vitreux (en ce cas, un liant constitué d’oxydes, essentiellement silicaté). Ces grains doivent présenter eux-mêmes de bonnes propriétés mécaniques à l’abrasion, et donner lieu à une bonne cohésion mécanique avec le liant (solidité de l’interface).
Parmi les grains abrasifs, on distingue les grains fondus et coulés et les grains frittés, qui présentent des microstructures différentes. Les problèmes posés par les grains frittés et par les grains fondus et coulés, et les résolutions techniques adoptées pour les résoudre, sont donc généralement différents. Une composition mise au point pour fabriquer un grain fondu et coulé n'est donc pas a priori utilisable pour fabriquer un grains céramique fritté présentant les mêmes propriétés, et réciproquement.
Les grains fondus à base d’alumine habituellement utilisés dans la fabrication de meules ou de bandes abrasives regroupent deux catégories principales selon le type d’applications et de régimes d’abrasion rencontrés : les grains fondus d’alumine-zircone et les grains fondus d’alumine.
Les grains fondus d’alumine-zircone sont connus depuis US-A-3,181,939, qui décrit des grains fondus d’alumine-zircone contenant 10 à 60% de zircone, le complément étant l’alumine et les impuretés. US-A-4,457,767 décrit des grains fondus d’alumine-zircone présentant une composition proche de l’eutectique, avec une quantité de zircone proche de 40% en masse, et qui peuvent comporter jusqu’à 2% d’oxyde d’yttrium. Par rapport aux grains fondus d’alumine-zircone, les grains fondus d’alumine présentent un meilleur rendement (consommation de grains ramenée à la quantité de matière abrasée) et une meilleure efficacité énergétique pour des utilisations à faibles pressions ou pour des applications de finition. On explique généralement ces performances par leur microstructure spécifique qui conduit à des fractures, et donc à un maintien du nombre d’arêtes de coupe sous des contraintes plus faibles que pour des grains fondus d’alumine- zircone. Par ailleurs, les grains fondus d’alumine sont moins chers que les grains fondus d’alumine-zircone. Dans certaines applications, le compromis entre le coût et les performances est donc considéré comme meilleur pour les grains d’alumine, et en particulier pour des taux d’enlèvement de matière faibles, notamment pour des opérations de finition.
Il existe cependant un besoin permanent pour améliorer les performances des grains d’alumine, et en particulier le rendement et l’efficacité énergétique.
Un but de l’invention est de répondre, au moins partiellement, à ce besoin.
Résumé de l’invention
Selon l’invention, on atteint ce but au moyen d’un grain fondu présentant l’analyse chimique suivante, en pourcentages massiques sur la base des oxydes :
ZrO2+HfO2 : 2% à 13% ;
Eléments autres que ZrO2, HfO2, Y2Û3 et AhCh : < 2%. Y2Û3 + A12O3 : complément à 100% ; avec 0,1300 > Y2O3/(ZrO2+HfO2) > 0,0065.
Comme on le verra plus en détail dans la suite de la description, les inventeurs ont découvert qu’avec la composition chimique ci-dessus, et en particulier avec l’association de la teneur en ZrO2 + HfO2 et du rapport massique Y2O3/(ZrO2+HfO2) selon l’invention, le rendement comme l’efficacité énergétique sont meilleurs que ceux des grains fondus en alumine connus. Sans être limités par cette théorie, ils expliquent ce résultat par une microstructure qui, de manière surprenante, est sensiblement identique à celle des grains fondus d’alumine pure en dépit de la présence de ZrO2 + HfO2 et de Y2Û3.
Un grain fondu selon l’invention peut encore présenter une ou plusieurs des caractéristiques optionnelles suivantes : - 3% < ZrO2+HfO2 < 11%, de préférence 4% < ZrO2+HfO2 < 10%, de préférence 5%
< ZrO2+HfO2 < 9% ;
- 0,0100 < Y2O3/(ZrO2+HfO2) < 0,1000, de préférence 0,0150 < Y2O3/(ZrO2+HfO2) < 0,0600, de préférence 0,0170 < Y2O3/(ZrO2+HfO2) < 0,0300 ;
- la teneur totale en zircones quadratique et cubique, en pourcentages massiques sur la base de la masse totale des phases cristallisées de zircone, est supérieure à 30% et inférieure à 95%, de préférence supérieure à 40% et inférieure à 80%, de préférence supérieure à 50% et inférieure à 70% ;
- la teneur en carbone est supérieure à 50 ppm et inférieure à 0,15%, de préférence supérieure à 50 ppm et inférieure à 0,06%, de préférence supérieure à 50 ppm et inférieure à 0,03%, en pourcentages en masse sur la base de la masse du grain fondu ;
- le grain fondu comporte de la zircone cubique ;
- la teneur en éléments autres que ZrO2, HfO2, Y2O3 et A12O3 est inférieure à 1,0% ; de préférence les éléments autres que ZrO2, HfO2, Y2O3 et A12O3 sont des impuretés ;
- Na2O < 0,3%, et/ou SiO2 < 0,3%, et/ou TiO2 < 0,2%, et/ou Fe2O3 < 0,3%, et/ou MgO < 0,2% et/ou CaO < 0,2%.
L’invention concerne encore un mélange de grains comportant, en pourcentage massique, plus de 80% de grains fondus selon l’invention.
L’invention concerne également un procédé de fabrication d'un mélange de grains fondus selon l’invention, ledit procédé comprenant les étapes successives suivantes : a) mélange de matières premières de manière à former une charge de départ, b) fusion de ladite charge de départ jusqu’à obtention d’une matière en fusion, c) solidification de ladite matière en fusion de manière que la matière en fusion soit entièrement solidifiée en moins de 3 minutes, d) optionnellement, et en particulier si l’étape c) ne conduit pas à l’obtention de grains, broyage de ladite masse solide de manière à obtenir un mélange de grains, e) optionnellement, sélection granulométrique.
Selon l’invention, les matières premières sont choisies à l’étape a) de manière que la masse solide obtenue en fin d’étape c) présente une composition conforme à celle d’un grain selon l’invention. L'invention concerne enfin un outil abrasif comportant des grains liés par un liant et agglomérés, par exemple sous forme d’une meule, ou déposés sur un support, par exemple une bande ou un disque, cet outil étant remarquable en ce qu'au moins une partie, de préférence plus de 50%, de préférence plus de 70%, de préférence plus de 80%, de préférence plus de 90%, de préférence plus de 95%, de préférence plus de 99%, de préférence la totalité desdits grains sont conformes à l'invention. L'outil abrasif peut être en particulier une meule de rectification, une meule de précision, une meule d'affûtage, une meule de tronçonnage, une meule de taillage dans la masse, une meule d'ébarbage ou de dégrossissage, une meule d'entraînement, une meule portable, une meule pour fonderies, une meule à forets, une meule sur tiges, une meule cylindrique, à cônes, à disques ou à segments ou tout autre type de meule.
De manière générale, l’invention concerne l’utilisation de grains selon l’invention, en particulier dans un outil abrasif selon l'invention, pour abraser.
Les grains selon l’invention sont particulièrement indiqués pour l’usinage d’acier, en particulier les aciers inoxydables.
Définitions
Les teneurs en oxydes d’un grain selon l’invention se rapportent aux teneurs globales pour chacun des éléments chimiques correspondants, exprimées sous la forme de l’oxyde le plus stable, selon la convention habituelle de l’industrie ; sont donc inclus les sous-oxydes et éventuellement nitrures, oxynitrures, carbures, oxycarbures, carbonitrures, ou même les espèces métalliques des éléments sus-mentionnés.
Dans le cadre de cette demande, HfCL est considéré comme n’étant pas chimiquement dissociable de ZrCL. Dans la composition chimique d’un produit comportant de la zircone, « ZrCL » ou « ZrCL+HfCL » désignent donc la teneur totale de ces deux oxydes. Selon la présente invention, HfCL n’est pas ajouté volontairement dans la charge de départ. HfCL ne désigne donc que les traces d’oxyde d’hafnium, cet oxyde étant toujours naturellement présent dans les sources de zircone à des teneurs généralement inférieures à 2%.
Les teneurs en zircone quadratique et en zircone cubique sont mesurées par diffraction X sur une poudre obtenue par broyage des grains fondus, comme décrit ci-dessous, pour les exemples. Par « impuretés », on entend les constituants inévitables, introduits nécessairement avec les matières premières. En particulier les composés faisant partie du groupe des oxydes, nitrures, oxynitrures, carbures, oxycarbures, carbonitrures et espèces métalliques de sodium et autres alcalins, fer, et vanadium sont des impuretés. A titre d’exemples, on peut citer Fe2O3 ou Na2Û. HfCh n’est pas considéré comme une impureté.
Par « précurseur » d’un oxyde, on entend un constituant apte à fournir ledit oxyde lors de la fabrication d’un grain ou d’un mélange de grains selon l’invention.
Un « grain » est une particule dont toutes les dimensions sont inférieures à 20 mm.
Par « grain fondu », ou plus largement « produit fondu », on entend un grain (ou produit) solide obtenu par solidification par refroidissement d’une matière en fusion.
Une « matière en fusion » est une masse rendue liquide par chauffage d'une charge de départ, qui peut contenir quelques particules solides, mais en une quantité insuffisante pour qu’elles puissent structurer ladite masse. Pour conserver sa forme, une matière en fusion doit être contenue dans un récipient. Les produits fondus à base d'oxydes selon l’invention sont classiquement obtenus par une fusion à plus de 1900°C.
On appelle « taille médiane » d’une poudre, la taille divisant les particules en première et deuxième populations égales en masse, ces première et deuxième populations ne comportant que des particules présentant une taille supérieure ou égale, ou inférieure respectivement, à la taille médiane. La taille médiane d’une poudre peut être déterminée à l’aide d’une distribution granulométrique réalisée à l’aide d’un granulomètre laser.
Dans la présente description, sauf mention contraire, toutes les compositions d’un grain sont données en pourcentages massiques, sur la base de la masse totale des oxydes du grain.
Description détaillée
La description qui suit est fournie à des fins illustratives et ne limite pas l’invention.
Grain fondu
La composition chimique d’un grain fondu selon l’invention, et de préférence d’un mélange de grains selon l’invention, présente de préférence une ou plusieurs des caractéristiques optionnelles suivantes : - La teneur en ZrCL+HfCL est de préférence supérieure à 3%, de préférence supérieure à 4%, de préférence supérieure à 5%, et de préférence inférieure à 12%, de préférence inférieure à 11%, de préférence inférieure à 10%, de préférence inférieure à 9%, en pourcentages massiques sur la base des oxydes ; Les inventeurs ont découvert qu’un grain présentant une teneur en ZrCh+HfCh supérieure à 15% présente une micro structure différente de celle du grain selon l’invention : la quantité de phase eutectique, localisée entre les grains d’alumine, est plus importante, et elle contribue à modifier le régime de fracturation du grain lors de son utilisation. Les plages préférées de ZrCh+HfCh correspondent au meilleur compromis entre le coût et les performances du grain ;
- La teneur en HfCL est de préférence inférieure à 1%, de préférence inférieure à 0,5%, de préférence inférieure à 0,3%, de préférence inférieure à 0,2%, et/ou supérieure à 0,02%, en pourcentages massiques sur la base des oxydes ;
- Le rapport massique Y2O3/(ZrO2+HfO2) est de préférence supérieur à 0,0070, de préférence supérieur à 0,0080, de préférence supérieur à 0,0090, de préférence supérieur à 0,0100, de préférence supérieur à 0,0110, de préférence supérieur à 0,0120, de préférence supérieur à 0,0150, de préférence supérieur à 0,0170, de préférence supérieur à 0,0180, de préférence supérieur à 0,0190, et de préférence inférieur à 0,1200, de préférence inférieur à 0,1000, de préférence inférieur à 0,0800, voire inférieur à 0,0600, voire inférieur à 0,0500, voire inférieur à 0,0400, voire inférieur à 0,0300, voire inférieur à 0,0250 ;
- La teneur en éléments autres que ZrCL, HI O2, Y2O3 et AI2O3 est de préférence inférieure à 1,8%, de préférence inférieure à 1,5%, de préférence inférieure à 1,2%, de préférence inférieure à 1%, de préférence inférieure à 0,8%, de préférence inférieure à 0,5%, en pourcentages massiques sur la base des oxydes ;
- Les éléments autres que ZrCL, HI O2, Y2O3 et AI2O3 sont de préférence des impuretés ;
- La teneur en Na2Û est de préférence inférieure à 0,3%, de préférence inférieure à 0,2%, de préférence inférieure à 0,15%, de préférence inférieure à 0,1%, de préférence inférieure à 0,08%, de préférence inférieure à 0,05%, en pourcentages massiques sur la base des oxydes ;
- La teneur en SiCh est de préférence inférieure à 0,3%, de préférence inférieure à 0,2%, de préférence inférieure à 0,15%, de préférence inférieure à 0,1%, de préférence inférieure à 0,08%, de préférence inférieure à 0,05%, en pourcentages massiques sur la base des oxydes ;
- La teneur en TiCL est de préférence inférieure à 0,2%, de préférence inférieure à 0,15%, de préférence inférieure à 0,13%, de préférence inférieure ou égale à 0,12%, en pourcentages massiques sur la base des oxydes ;
- La teneur en FC2O3 est de préférence inférieure à 0,3%, de préférence inférieure à 0,2%, de préférence inférieure à 0,15%, de préférence inférieure à 0,1%, de préférence inférieure à 0,08%, de préférence inférieure à 0,05%, en pourcentages massiques sur la base des oxydes ;
- La teneur en MgO est de préférence inférieure à 0,2%, de préférence inférieure à 0, 15%, de préférence inférieure à 0,1%, de préférence inférieure à 0,08%, de préférence inférieure à 0,05%, en pourcentages massiques sur la base des oxydes ;
- La teneur en CaO est de préférence inférieure à 0,2%, de préférence inférieure à 0, 15%, de préférence inférieure à 0,1%, de préférence inférieure à 0,08%, de préférence inférieure à 0,05%, en pourcentages massiques sur la base des oxydes ;
- La teneur en oxydes est supérieure à 98%, de préférence supérieure à 99%, de préférence supérieure à 99,4%, de préférence supérieure à 99,5%, de préférence supérieure à 99,6%, de préférence supérieure à 99,7%, en pourcentages en masse sur la base de la masse du grain fondu ;
- La teneur en carbone est supérieure à 30 ppm, de préférence supérieure à 50 ppm, de préférence supérieure à 80 ppm et/ou de préférence inférieure à 0,15%, de préférence inférieure à 0,1%, de préférence inférieure à 0,08%, de préférence inférieure à 0,06%, de préférence inférieure à 0,05%, de préférence inférieure à 0,04%, de préférence inférieure à 0,03%, en pourcentages en masse sur la base de la masse du grain fondu.
Les phases cristallisées d’un grain fondu selon l’invention présentent de préférence une ou plusieurs des caractéristiques optionnelles suivantes :
- La teneur totale en zircones quadratique et cubique, en pourcentages massiques sur la base de la masse totale des phases cristallisées de zircone est de préférence supérieure à 30%, de préférence supérieure à 40%, de préférence supérieure à 50%, de préférence supérieure à 55%, de préférence supérieure à 60%, et/ou de préférence inférieure à 95%, de préférence inférieure à 90%, de préférence inférieure à 85%, de préférence inférieure à 80%, de préférence inférieure à 75%, de préférence inférieure à 70% ;
- La zircone est au moins en partie sous forme cubique.
Sans pouvoir l’expliquer de manière théorique, les inventeurs ont constaté que ces caractéristiques cristallographiques sont avantageuses.
Un grain fondu selon l’invention présente une micro structure substantiellement composée de cristaux d’alumine, lesdits cristaux étant séparés par des joints dans lesquels sont localisés Z1O2 et Y2O3. De préférence, les éléments autres que AI2O3, Z1O2 et Y2O3 sont sensiblement entièrement localisés dans lesdits joints.
De préférence, la taille moyenne des cristaux d’alumine est inférieure à 50 pm, de préférence inférieure à 40 pm, de préférence inférieure à 30 pm, de préférence inférieure à 25 pm, voire inférieure à 20 pm, et/ou de préférence supérieure à 3 pm, de préférence supérieure à 4 pm.
Pour diminuer la taille moyenne des cristaux d’alumine du grain fondu selon l’invention, on peut, à l’étape c) du procédé selon l’invention, diminuer le temps nécessaire pour solidifier entièrement la matière en fusion.
Mélange de grains
Un mélange de grains selon l’invention comporte, en pourcentages massiques, de préférence plus de 85%, de préférence plus de 90%, de préférence plus de 95%, de préférence plus de 99%, de préférence sensiblement 100% de grains fondus selon l’invention.
De préférence, un mélange de grains selon l’invention respecte une distribution granulométrique conforme à celles des mélanges ou « grits » fournis par la norme FEPA Standard 43-GB-1984, R1993 et la norme FEPA Standard 42-GB-1984, R1993.
De préférence, un mélange de grain selon l’invention présente un refus massique au tamis de 16 mm, de préférence au tamis de 9,51 mm, mesuré à l’aide d’une tamiseuse Ro-Tap®, inférieur à 1%.
Procédé de fabrication d’un grain fondu selon l’invention
Des grains fondus selon l’invention peuvent être fabriqués suivant les étapes a) à e) mentionnées ci-dessus, classiques pour la fabrication de grains fondus d’alumine. Les paramètres peuvent par exemple prendre les valeurs du procédé utilisé pour les exemples ci-dessous.
A l’étape a), des matières premières sont classiquement dosées de manière à obtenir la composition souhaitée, puis mélangées pour former la charge de départ.
Les métaux Zr, Hf, Al, et Y dans la charge de départ se retrouvent sensiblement intégralement dans les grains fondus.
Choisir les matières premières de la charge de départ de manière que la masse solide obtenue en fin d’étape c) présente une composition conforme à celle d’un grain selon l’invention ne pose donc aucune difficulté à l’homme du métier.
Les métaux Zr, Hf, Al et Y sont de préférence introduits dans la charge de départ sous la forme d’oxydes ZrCL, HIO2, AI2O3 et Y2O3. Ils peuvent être également classiquement introduits sous forme de précurseurs de ces oxydes.
Dans un mode de réalisation, la charge de départ comporte une quantité de carbone, de préférence sous la forme de coke, comprise entre 0,2% et 4%, sur la base de la masse de la charge de départ.
Dans un mode de réalisation, en particulier lorsque les matières premières présentes dans la charge de départ présentent une faible teneur en impuretés, la charge de départ est constituée d’oxydes ZrCL, HfCL, AI2O3 et Y2O3 et/ou de précurseurs de ces oxydes.
On considère qu’une teneur en « autres éléments » inférieure à 2% dans les grains ne supprime pas l’effet technique avantageux de l’invention.
Les "autres éléments" sont de préférence des impuretés.
A l’étape b), on utilise de préférence un four à arc électrique, de préférence de type Héroult avec électrodes en graphite, mais tous les fours connus sont envisageables, comme un four à induction ou un four à plasma, pourvu qu’ils permettent de faire fondre la charge de départ.
Les matières premières sont de préférence fondues en milieu réducteur (obtenu par la présence de carbone dans la charge de départ et/ou par le fait que les électrodes trempent dans le bain de matière en fusion), de préférence à pression atmosphérique.
De préférence, on utilise un four à arc électrique, comportant une cuve de 70 litres, avec une énergie de fusion avant coulée de plus de 1,9 kWh par kg de matières premières pour une puissance de plus de 209 kW, ou un four à arc électrique de capacité différente mis en œuvre dans des conditions équivalentes. L’homme du métier sait déterminer de telles conditions équivalentes.
A l’étape c), le refroidissement doit être rapide, c'est-à-dire de manière que la matière en fusion soit entièrement solidifiée en moins de 3 minutes. Par exemple, il peut résulter d’un coulage dans des moules tels que décrits dans US 3,993,119 ou d’une trempe.
De préférence, la matière en fusion est entièrement solidifiée en moins de 2 minutes, de préférence en moins d’une minute, de préférence en moins de 40 secondes, de préférence en moins de 30 secondes.
Si l’étape c) ne permet pas d’obtenir directement un mélange de grains, ou si ces grains ne présentent pas une granulométrie adaptée à l’application visée, un broyage (étape d)) peut être mis en œuvre, selon des techniques conventionnelles.
A l’étape e), si les étapes précédentes ne permettent pas d’obtenir un mélange de grains présentant une granulométrie adaptée à l’application visée, une sélection granulométrique, par exemple par tamisage ou cyclonage peut être mise en œuvre.
Outils abrasifs
Les procédés de fabrication des outils abrasifs selon l'invention sont bien connus.
Les outils abrasifs peuvent en particulier être formés par agglomération de grains selon l’invention au moyen d’un liant, en particulier sous la forme d’une meule, par exemple par pressage, ou être formés par fixation de grains selon l’invention sur un support, par exemple une bande ou un disque, au moyen d’un liant.
Le liant peut être inorganique, en particulier un verre (par exemple, un liant constitué d'oxydes, substantiellement constitué de silicate(s) peut être utilisé) ou organique.
Un liant organique est bien adapté. Le liant peut être notamment une résine thermodurcissable. Il est de préférence choisi dans le groupe constitué par les résines phénoliques, époxy, acrylate, polyester, polyamide, polybenzimidazole, polyuréthane, phénoxy, phénol-furfural, analine-formaldéhyde, urée-formaldéhyde, cresol-aldéhyde, resorcinol-aldéhyde, urée-aldéhyde, mélamine-formaldéhyde, et les mélanges de celles-ci.
Le liant peut également incorporer des charges organiques ou inorganiques, comme des charges inorganique hydratées (par exemple du trihydrate d'aluminium ou de la boehmite) ou non (par exemple de l'oxyde de molybdène), de la cryolite, un halogène, du fluorspar, du sulfure de fer, du sulfure de zinc, de la magnésie, du carbure de silicium, du chlorure de silicium, du chlorure de potassium, du dichlorure de manganèse, du fluoroborate de potassium ou de zinc, du fluoroaluminate de potassium, de l'oxyde de calcium, du sulfate de potassium, un copolymère de chlorure de vinylidène et de chlorure de vinyle, du chlorure de polyvinylidène, du chlorure polyvinyle, des fibres, sulfures, chlorures, sulfates, fluorures, et des mélanges de ceux-ci. Le liant peut également contenir des fibres de renfort comme des fibres de verre.
De préférence, le liant représente entre 2 et 60%, de préférence entre 20% et 40% en volume du mélange.
Exemples
Les exemples non limitatifs suivants sont donnés dans le but d’illustrer l’invention.
Protocoles de mesure
Les protocoles de mesure suivants ont été utilisés pour déterminer certaines propriétés de mélanges de grains fondus. Ils permettent une excellente simulation du comportement réel des grains lorsqu’ils sont mis en œuvre pour une abrasion.
Afin d’évaluer la performance abrasive des mélanges de grains, des meules de diamètre 12,7 cm, contenant 1 gramme de grains de chaque exemple, ont été réalisées.
Des plaques en acier inoxydable 304, de dimensions 20,5 cm x 7,6 cm x 6,0 cm, ont ensuite été usinées en surface avec ces meules, avec un mouvement de va et vient à vitesse constante en maintenant une profondeur de coupe constante de 40 pm et une vitesse de rotation de la meule de 3600 tr/min. L’énergie totale développée par la meule pendant l’usinage, Etot, a été enregistrée.
Après usure complète de la meule, on a mesuré la masse d’acier usinée (c'est-à-dire la masse d’acier enlevée par l’opération de meulage) « Ma », la masse de meule consommée « Mm », et le volume d’acier enlevé par l’opération de meulage « Va ».
Pour évaluer le rendement, on calcule classiquement le rapport S de la masse d’acier usinée divisée par la masse de grains consommée lors dudit usinage (S= Ma/Mm). Pour évaluer l’efficacité énergétique, on calcule classiquement l’énergie spécifique d’usinage, Es, égale à l’énergie nécessaire pour enlever un volume unitaire d’acier (Es = Etot/Va).
La quantité totale en zircones quadratique et cubique, dites « zircone stabilisée », en pourcentages massiques sur la base de la masse totale des phases cristallisées de zircone, est déterminée par diffraction des rayons X sur des échantillons broyés à sec dans un broyeur RS 100 commercialisé par la société Retsch, équipé d’un bol en carbure de tungstène présentant un diamètre intérieur égal à 80 mm et une hauteur intérieure égale à 40 mm et d’un galet en carbure de tungstène, présentant un diamètre égal à 45 mm et une hauteur égale à 35 mm.
On sélectionne d’abord à l’étape e), par tamisage, 20 g de grains selon l’invention présentant une taille comprise entre 425 pm et 500 pm. Ces grains sont alors broyés pendant 30 secondes dans le broyeur, la vitesse sélectionnée étant égale à 14000 t/min. Après broyage, la poudre récupérée est tamisée sur un tamis de 40 pm et seul le passant est utilisé pour la mesure par diffraction des rayons X.
L’acquisition du diagramme de diffraction est réalisée à partir d’un appareil du type D8 Endeavor de la société Bruker, sur un domaine angulaire 29 compris entre 5° et 100°, avec un pas de 0,01°, et un temps de comptage de 0,34 s/pas. L’optique avant comporte une fente primaire de 0,3° et une fente de Soller de 2,5°. L’échantillon est en rotation sur lui- même à une vitesse égale à 15 tr/min, avec utilisation du couteau automatique. L’optique arrière comporte une fente de Soller de 2,5°, un filtre nickel de 0,0125 mm et un détecteur 1D avec une ouverture égale à 4°.
Les diagrammes de diffraction sont ensuite analysés qualitativement à l’aide du logiciel EVA et de la base de données ICDD2016.
Il est fait l'hypothèse d'une unique phase stabilisée (quadratique ou cubique).
Une fois les phases présentes mises en évidence, les diagrammes de diffraction sont analysés, avec le logiciel HighScore Plus de la société Malvem Panalytical, à l’aide de la fonction « pseudo Voigt split width » et l’aire des plans (-111) et (111) de la phase de zircone monoclinique et l’aire du pic du plan (111) de la phase de zircone stabilisée sont déterminés.
Soient : AM(-III) : l’aire du pic du plan (-111) de la phase de zircone monoclinique, localisé à environ 29 = 28,2°,
AM(111) : l’aire du pic du plan (111) de la phase de zircone monoclinique, localisé à environ 29 = 31,3°,
As(iii) : l’aire du pic du plan (111) de la phase de zircone stabilisée (sous la forme quadratique et/ou cubique), localisé à environ 29 = 30,2°, d : la masse volumique de la zircone monoclinique, prise égale à 5,8 g/cm3, ds : la masse volumique de la zircone stabilisée, prise égale à 6,1 g/cm3.
La quantité massique de zircone quadratique et cubique, en pourcentages sur la base de la masse totale des phases cristallisées de zircone est égale à : 100
Figure imgf000014_0001
A l’exception de la teneur en carbone, l’analyse chimique des grains fondus est mesurée par la technique du « plasma à couplage inductif », (« Inductively Coupled Plasma », ou « ICP », en anglais) pour Y2O3 et pour les éléments dont la teneur ne dépasse pas 0,5%. Pour déterminer la teneur des autres éléments, une perle du produit à analyser est fabriquée en fondant le produit, puis l’analyse chimique est réalisée par fluorescence X.
La teneur en carbone des grains fondus est mesurée à l’aide d’un analyseur carbone- soufre modèle CS744, commercialisé par la société LECO.
La taille médiane d’une poudre est mesurée classiquement à l’aide d’un granulomètre laser de modèle LA950V2 commercialisé par la société Horiba.
La taille moyenne des cristaux d’alumine des grains fondus des exemples est mesurée par la méthode de « Mean Linear Intercept ». Une méthode de ce type est décrite dans la norme ASTM E1382. Suivant cette norme, on trace des lignes d’analyse sur des images des grains fondus, puis, le long de chaque ligne d’analyse, on mesure les longueurs 1, dites « intercepts », entre deux joints séparant deux cristaux consécutifs coupant ladite ligne d’analyse.
On détermine ensuite la longueur moyenne « F » des intercepts « 1 ».
Pour les mélanges de grains des exemples, les intercepts ont été mesurés sur des images, obtenues par microscopie électronique à balayage, de grains fondus présentant une taille comprise entre 500 pm et 600 pm, lesdites sections ayant préalablement été polies jusqu’à obtention d’une qualité miroir. Le grossissement utilisé pour la prise des images est choisi de manière à visualiser sur une image entre 130 et 160 cristaux d’alumine non coupés par les bords de l’image. 5 images par mélange de grains fondus ont été réalisées, chacune sur un grain différent. Au minimum, 100 intercepts sont mesurés par image.
La taille moyenne « d » des cristaux d’alumine d’un mélange de grains fondus est égale à la moyenne F des intercepts 1 mesurés sur l’ensemble des 5 images.
Protocole de fabrication
Les produits des exemples ont été élaborés à partir des matières premières suivantes :
- Poudre d’alumine de pureté supérieure à 99,6% en masse, comportant les impuretés Na2Û, CaO, Fe2Û3, MgO, TiCL, SiCh, et présentant une taille médiane égale à 80 pm ;
- Poudre de zircone de pureté supérieure à 99,4% en masse, comportant les impuretés AI2O3, CaO, Y2O3, MgO, TiO2, SiO2, et présentant une taille médiane égale à 1,5 mm ;
- Poudre d’oxyde d’yttrium de pureté supérieure à 99,999% en masse, présentant une taille médiane comprise entre 3 et 6 pm.
Les grains ont été préparés suivant le procédé de fabrication conventionnel suivant, conforme à l’invention : a) mélange des matières premières de manière à former une charge de départ, b) fusion de ladite charge de départ dans un four à arc électrique monophasé de type Héroult à électrodes en graphite, avec une cuve de four de 0,8 m de diamètre, une tension de 95 V, une intensité de 2200 A et une énergie électrique spécifique fournie de 1,9 kWh/kg chargé, c) refroidissement brutal de la matière en fusion au moyen d’un dispositif de coulée entre plaques minces métalliques tel que celui présenté dans le brevet US-A-3, 993,119, de manière à obtenir une plaque entièrement solide, constituant une masse solide, d) broyage de ladite masse solide refroidie à l’étape c) de manière à obtenir un mélange de grains, e) sélection par tamisage à l’aide d’une tamiseuse Ro-Tap® des grains présentant une taille comprise entre 500 et 600 pm.
Le tableau 1 suivant fournit la composition chimique et la proportion de zircone cubique des différents mélanges de grains fondus, ainsi que les résultats obtenus avec ces mélanges. Le pourcentage d’amélioration du rapport S est calculé par la formule suivante : 100. (rapport S du produit de l’exemple considéré - rapport S du produit de l’exemple 1 de référence) / rapport S du produit de l’exemple 1 de référence.
Une valeur positive et élevée du pourcentage d’amélioration du rapport S est recherchée. Les inventeurs considèrent significative une amélioration de plus de 5% du rapport S.
De préférence, le rapport S est amélioré de plus de 10%, de préférence de plus de 15%, de préférence de plus de 20%, de préférence de plus de 25%, de préférence de plus de 30%, de préférence de plus de 35%.
Le pourcentage de réduction de l’énergie spécifique, Es, est calculé par la formule suivante :
100. (Es avec le produit de l’exemple 1 de référence - Es avec le produit de l’exemple considéré) / Es du produit de l’exemple 1 de référence.
Une valeur positive et élevée du pourcentage de réduction de l’énergie spécifique Es lors du test est recherchée. Les inventeurs considèrent significative une réduction de plus de 5% de l’énergie spécifique Es. De préférence, l’énergie spécifique est réduite de plus de 10%, de préférence de plus de 15%.
La quantité de zircone quadratique et cubique est fournie en pourcentages massiques sur la base de la masse totale des phases cristallisées de zircone.
L’exemple de référence 1, hors invention, est un mélange de grains fondus commercialisé par la société Saint-Gobain Ceramic Materials sous le nom MA88K-weak.
[Tableau 1]
Figure imgf000017_0001
n.d. : non déterminé
La taille moyenne des cristaux d’alumine est comprise entre 5 pm et 25 pm pour les grains des exemples 2 à 8. Les inventeurs ont constaté qu’une teneur en ZrCh inférieure à 2% ne permet pas d’améliorer les performances abrasives.
Les inventeurs ont également constaté qu’une teneur en ZrCL supérieure à 13% était à l’origine d’une modification de la microstructure du grain fondu, ladite micro structure passant d’une microstructure principalement composée de grains de corindon et présentant de la zircone aux joints de grains à une micro structure comportant une quantité non négligeable de phase eutectique alumine-zircone.
Une comparaison des exemples 1 comparatif et 2 montre l’importance du rapport massique Y2O3/(ZrO2+HfO2) : pour un tel rapport égal à 0,0065, le rapport S est amélioré de 20% et l’énergie spécifique est réduite de 5%. Une comparaison des exemples 1 comparatif et 8 hors invention montre qu’un rapport massique Y2O3/(ZrO2+HfO2) égal à 0,14 permet d’améliorer le rapport de 17%, mais entraîne une augmentation de l’énergie spécifique de 7%.
Une comparaison des exemples 1 comparatif et 3, 4, 5, 6 et 7, montre l’importance du rapport massique Y2O3/(ZrO2+HfO2), égal à 0,0125, 0,0209, 0,0232, 0,0248, 0,0433, respectivement : le rapport S est amélioré de 25%, 42%, 41%, 31%, 24% respectivement, et l’énergie spécifique est réduite de 8%, 16%, 18%, 14%, 9%, respectivement.
Les exemples 4 et 5 sont les exemples préférés d’entre tous.
Comme cela apparaît clairement à présent, l’invention fournit un mélange de grains fondus principalement constitué d’alumine, et donc d’un coût plus faible que les grains fondus d’alumine-zircone, et présentant un rendement et une efficacité énergétique meilleurs que ceux des grains d’alumine connus.
Bien entendu, la présente invention n’est pas limitée aux modes de réalisation décrits fournis à titre d’exemples illustratifs et non limitatifs. En particulier, les grains fondus selon l’invention ne se limitent pas à des formes ou à des dimensions particulières.

Claims

REVENDICATIONS Grain fondu présentant l’analyse chimique suivante, en pourcentages massiques sur la base des oxydes :
ZrO2+HfO2 : > 2% et < 10% ;
Eléments autres que ZrO2, HfO2, Y2Û3 et AI2O3 : < 2% ;
Y2Û3 + A12O3 : complément à 100% ; avec 0,0065 < Y2O3/(ZrO2+HfO2) < 0,1300. Grain fondu selon la revendication précédente, dans lequel
3% < ZrO2+HfO2, et/ou
0,0100 < Y2O3/(ZrO2+HfO2) < 0,1000, et/ou dans lequel la teneur totale en zircones quadratique et cubique, en pourcentages massiques sur la base de la masse totale des phases cristallisées de zircone, est supérieure à 30% et inférieure à 95%, et/ou dans lequel la teneur en carbone est supérieure à 30 ppm et inférieure à 0,15%, en pourcentages en masse sur la base de la masse du grain fondu. Grain fondu selon la revendication précédente, dans lequel
4% < ZrO2+HfO2, et/ou
0,0150 < Y2O3/(ZrO2+HfO2) < 0,080, et/ou dans lequel la teneur totale en zircones quadratique et cubique, en pourcentages massiques sur la base de la masse totale des phases cristallisées de zircone, est supérieure à 40% et inférieure à 80%, et/ou dans lequel la teneur en carbone est supérieure à 30 ppm et inférieure à 0,1%, en pourcentages en masse sur la base de la masse du grain fondu. Grain fondu selon la revendication précédente, dans lequel
5% < ZrO2+HfO2 < 9%, et/ou
0,0170 < Y2O3/(ZrO2+HfO2), et/ou dans lequel la teneur totale en zircones quadratique et cubique, en pourcentages massiques sur la base de la masse totale des phases cristallisées de zircone, est supérieure à 50% et inférieure à 70%, et/ou dans lequel la teneur en carbone est supérieure à 30 ppm et inférieure à 0,08%, en pourcentages en masse sur la base de la masse du grain fondu.
5. Grain fondu selon l’une quelconque des revendications précédentes, comportant de la zircone cubique.
6. Grain fondu selon l’une quelconque des revendications précédentes, dans lequel la teneur en éléments autres que Z1O2, HIO2, Y2O3 et AI2O3 est inférieure à 1,0%.
7. Grain fondu selon la revendication immédiatement précédente, dans lequel les éléments autres que Z1O2, HIO2, Y2O3 et AI2O3 sont des impuretés.
8. Grain fondu selon l’une quelconque des revendications précédentes, dans lequel Na2Û < 0,3%, SiO2 < 0,3%, TiO2 < 0,2%, Fe2O3 < 0,3%, MgO < 0,2% et CaO < 0,2%.
9. Grain fondu selon l’une quelconque des revendications précédentes, comportant une teneur en carbone supérieure à 80 ppm, en pourcentages en masse sur la base de la masse du grain fondu.
10. Grain fondu selon l’une quelconque des revendications précédentes, dans lequel la teneur en TiÛ2 est inférieure à 0,2%, en pourcentages massiques sur la base des oxydes.
11. Mélange de grains comportant, en pourcentages massiques, plus de 80% de grains selon l'une quelconque des revendications précédentes.
12. Procédé de fabrication d'un mélange de grains fondus selon la revendication immédiatement précédente, ledit procédé comprenant les étapes successives suivantes : a) mélange de matières premières de manière à former une charge de départ, b) fusion de ladite charge de départ jusqu’à obtention d’une matière en fusion, c) solidification de ladite matière en fusion de manière que la matière en fusion soit entièrement solidifiée en moins de 3 minutes, d) optionnellement, et en particulier si l’étape c) ne conduit pas à l’obtention de grains, broyage de ladite masse solide de manière à obtenir un mélange de grains, e) optionnellement, sélection granulométrique.
13. Outil abrasif comportant des grains liés par un liant, agglomérés ou déposés sur un support, au moins une partie desdits grains étant conformes à l'une quelconque des revendications 1 à 10. Outil abrasif selon la revendication précédente comportant plus de 80% de grains selon l’une quelconque des revendications 1 à 10. Outil abrasif selon l’une quelconque des deux revendications immédiatement précédentes se présentant sous la forme d’une meule, d’une bande ou d’un disque.
PCT/EP2021/083832 2020-12-07 2021-12-01 Grain fondu a base d'alumine WO2022122515A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237022837A KR20230117413A (ko) 2020-12-07 2021-12-01 알루미나 기반 융합된 그레인
CN202180093194.2A CN116888087A (zh) 2020-12-07 2021-12-01 基于氧化铝的熔融晶粒
US18/265,672 US20240043336A1 (en) 2020-12-07 2021-12-01 Alumina-based fused grain
MX2023006674A MX2023006674A (es) 2020-12-07 2021-12-01 Grano fundido a base de alumina.
EP21816106.5A EP4255868A1 (fr) 2020-12-07 2021-12-01 Grain fondu a base d'alumine
JP2023534222A JP2023553022A (ja) 2020-12-07 2021-12-01 アルミナベースの溶融されたグレイン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2012788 2020-12-07
FR2012788A FR3117108B1 (fr) 2020-12-07 2020-12-07 Grain fondu à base d’alumine

Publications (1)

Publication Number Publication Date
WO2022122515A1 true WO2022122515A1 (fr) 2022-06-16

Family

ID=74206079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/083832 WO2022122515A1 (fr) 2020-12-07 2021-12-01 Grain fondu a base d'alumine

Country Status (8)

Country Link
US (1) US20240043336A1 (fr)
EP (1) EP4255868A1 (fr)
JP (1) JP2023553022A (fr)
KR (1) KR20230117413A (fr)
CN (1) CN116888087A (fr)
FR (1) FR3117108B1 (fr)
MX (1) MX2023006674A (fr)
WO (1) WO2022122515A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3181939A (en) 1961-01-27 1965-05-04 Norton Co Fused alumina-zirconia abrasives
US3993119A (en) 1974-11-08 1976-11-23 Norton Company Progressively or continuously cycled mold for forming and discharging a fine crystalline material
US4457767A (en) 1983-09-29 1984-07-03 Norton Company Alumina-zirconia abrasive
FR2787106A1 (fr) * 1998-12-09 2000-06-16 Produits Refractaires Grains ceramiques fondus alumine-zircone, outils abrasifs et pieces refractaires produits a partir de ces grains
US7011689B2 (en) * 1998-12-09 2006-03-14 Societe Europeenne Des Produits Refractaires Melted alumina-zirconia ceramic grains, abrasive tools and refractory parts produced from said grains
WO2016051093A1 (fr) * 2014-10-01 2016-04-07 Saint-Gobain Centre De Recherches Et D'etudes Europeen Materiau refractaire et grains fondus a base d'alumine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3181939A (en) 1961-01-27 1965-05-04 Norton Co Fused alumina-zirconia abrasives
US3993119A (en) 1974-11-08 1976-11-23 Norton Company Progressively or continuously cycled mold for forming and discharging a fine crystalline material
US4457767A (en) 1983-09-29 1984-07-03 Norton Company Alumina-zirconia abrasive
FR2787106A1 (fr) * 1998-12-09 2000-06-16 Produits Refractaires Grains ceramiques fondus alumine-zircone, outils abrasifs et pieces refractaires produits a partir de ces grains
US7011689B2 (en) * 1998-12-09 2006-03-14 Societe Europeenne Des Produits Refractaires Melted alumina-zirconia ceramic grains, abrasive tools and refractory parts produced from said grains
WO2016051093A1 (fr) * 2014-10-01 2016-04-07 Saint-Gobain Centre De Recherches Et D'etudes Europeen Materiau refractaire et grains fondus a base d'alumine

Also Published As

Publication number Publication date
JP2023553022A (ja) 2023-12-20
KR20230117413A (ko) 2023-08-08
US20240043336A1 (en) 2024-02-08
CN116888087A (zh) 2023-10-13
MX2023006674A (es) 2023-06-21
EP4255868A1 (fr) 2023-10-11
FR3117108B1 (fr) 2023-04-21
FR3117108A1 (fr) 2022-06-10

Similar Documents

Publication Publication Date Title
CA2571810C (fr) Melange de grains d&#39;alumine-zircone fondus
EP2257509B1 (fr) Grains fondus et revetus de silice
EP2462081B1 (fr) Grains d&#39;alumine-zircone fondus
CA2715053C (fr) Poudre de grains abrasifs
EP1613709B1 (fr) Grains ceramiques fondus a base d&#39;alumine et de magnesie
CA2665623A1 (fr) Particule en matiere ceramique fondue
WO2022122515A1 (fr) Grain fondu a base d&#39;alumine
WO2010103484A2 (fr) Melange de grains d&#39;alumine-zircone fondu
EP2337655B1 (fr) Grains fondus abrasifs
WO2023111156A1 (fr) Grain fondu à base d&#39;alumine
EP3414212B1 (fr) Grains d&#39;alumine-zircone fondus
WO2012056420A1 (fr) Particule en matiere ceramique fondue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21816106

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023534222

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023011117

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237022837

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021816106

Country of ref document: EP

Effective date: 20230707

WWE Wipo information: entry into national phase

Ref document number: 202180093194.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 112023011117

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230606