WO2022122459A1 - Method for the selective hydrogenation of the c2 fraction comprising acetylene in the presence of a catalyst in monolithic form - Google Patents

Method for the selective hydrogenation of the c2 fraction comprising acetylene in the presence of a catalyst in monolithic form Download PDF

Info

Publication number
WO2022122459A1
WO2022122459A1 PCT/EP2021/083464 EP2021083464W WO2022122459A1 WO 2022122459 A1 WO2022122459 A1 WO 2022122459A1 EP 2021083464 W EP2021083464 W EP 2021083464W WO 2022122459 A1 WO2022122459 A1 WO 2022122459A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
support
active phase
monolith
selective hydrogenation
Prior art date
Application number
PCT/EP2021/083464
Other languages
French (fr)
Inventor
Florent ALLAIN
Yacine HAROUN
Marion SERVEL
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to KR1020237022545A priority Critical patent/KR20230117196A/en
Priority to US18/266,062 priority patent/US20240043357A1/en
Priority to JP2023535330A priority patent/JP2023553933A/en
Priority to CN202180082854.7A priority patent/CN116583580A/en
Priority to EP21819870.3A priority patent/EP4259753A1/en
Publication of WO2022122459A1 publication Critical patent/WO2022122459A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/163Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
    • C07C7/167Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation for removal of compounds containing a triple carbon-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/40Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • C10G2300/1092C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the subject of the invention is a process for the selective hydrogenation of polyunsaturated compounds in a hydrocarbon feedstock, in particular in the C2 cut from steam cracking, in the presence of a catalyst in the form of a metal or ceramic monolith.
  • monolith-shaped support can be made of ceramic materials such as alumina or silicon carbide or zirconium or cordierite.
  • Monolith supports also exist with metallic materials, for example steel, stainless steel and many other types of metals.
  • Ceramic and metal monoliths can take different geometric shapes and sizes. They consist of parallel channels separated from each other by thin walls. These channels can have different section shapes: rectangular, cylindrical, triangular, hexagonal and many other more complex shapes.
  • the monolith supports are generally characterized by the density and the size of the channels, more specifically by the number of channels per unit of length which is called CPSI (“Channels per square inch” according to the Anglo-Saxon terminology). ). As its abbreviation indicates, it corresponds to the number of channels intercepted by a section of 1 x 1 inch (“inch” according to English terminology) or 2.54 x 2.54 cm.
  • Pmat with: s: porosity or void ratio of the monolith; p m density of the monolith;
  • Pmat density of the monolith material.
  • Metallic or ceramic monoliths can be used in various catalytic applications, in particular in the treatment of exhaust gases (US1969/3441381, US1971/35971653) or as NO X reduction catalyst (Tomasic, V. 2007), or still in selective hydrogenation of hydrocarbon feedstocks comprising polyunsaturated compounds.
  • one of the objectives of the present invention is to propose a process for the selective hydrogenation of a C2 cut from steam cracking in the presence of a catalyst in the form of a metal or ceramic monolith supporting the active phase, making it possible to obtain performances in hydrogenation in terms of selectivity at least as good, or even better, than the processes known from the state of the art.
  • a catalyst comprising an active phase based on at least one group VIII metal and a support in the form of a ceramic or metallic monolith with a particular geometric structure, said active phase in the form of a layer of determined thickness on the walls of said support, makes it possible to obtain catalytic performances at least as good, or even improved in terms of selectivity when it is used in a selective hydrogenation process of a C2 steam cracking cut containing acetylene, and this by reducing even at iso conversion the catalytic volume available for the charge and while limiting the pressure drops.
  • the subject of the present invention is a process for the selective hydrogenation of a C2 cut from steam cracking comprising acetylene, said process being carried out in the gaseous phase at a temperature between 0° C. and 300° C., at a pressure between 0.1 MPa and 6.0 MPa, at a hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1,000, and at an hourly volume rate (VVH) of between 100 h -1 and 60,000 h -1 , preferably between 500 lr 1 and 30,000 h -1 , in the presence of a catalyst comprising, preferably consisting of, an active phase based on at least one group VIII metal and a support in the form of a ceramic or metallic monolith, characterized in that said support comprises a number of channels per unit length (CPSI) between 300 and 1200, and in that the active phase is in the form of a layer on the walls of said support , the thickness of said layer of active phase being between 30 ⁇
  • the Applicant has found that the use of such a catalyst, having a support in the form of a ceramic or metallic monolith, said support comprising a specific number of channels per unit length, coupled with a specific thickness of the layer of the active phase on the walls of the support, allows iso-conversion to reduce the volume of catalytic bed necessary for carrying out a selective hydrogenation reaction of a C2 cut from steam cracking comprising acetylene, while significantly improving the selectivity of the reaction towards the desired products.
  • said catalyst comprises a geometric surface of between 1500 m 2 /m 3 and 5000 m 2 /m 3 .
  • the thickness of the catalyst wall is between 0.08 mm and 0.5 mm.
  • the degree of porosity of said catalyst is between 20 and 90%.
  • the thickness of said layer of active phase is between 60 ⁇ m and 100 ⁇ m.
  • the support is a metallic monolith chosen from monoliths made of steel, stainless steel (316L, 310SS), nickel, aluminium, iron, copper, nickel-chromium, nickel-chromium-aluminum, iron- chrome-aluminum, Inconel®.
  • the support is a ceramic monolith chosen from monoliths made of alumina (Al2O3), silica-alumina, silicon carbide (SiC), phosphorus-alumina, magnesia (MgO), zinc oxide, oxide zirconium (ZrO 2 ), cordierite (Al 3 Mg 2 AISi50i8).
  • said Group VIII metal is selected from nickel, platinum and palladium. More preferably, said Group VIII metal is palladium.
  • the palladium content is between 0.005 and 2% by weight of said element relative to the total weight of the catalyst.
  • the number of channels per unit length (CPSI) of said medium is between 400 and 700.
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • the textural and structural properties of the support and of the catalyst described below are determined by characterization methods known to those skilled in the art.
  • the total pore volume and the pore distribution are determined in the present invention by nitrogen porosimetry as described in the book “Adsorption by powders and porous solids. Principles, methodology and applications” written by F. Rouquérol, J. Rouquérol and K. Sing, Academic Press, 1999.
  • specific surface area is meant the BET specific surface area (SBET in m 2 /g) determined by nitrogen adsorption in accordance with the ASTM D 3663-78 standard established from the BRUNAUER-EMMETT-TELLER method described in the periodical "The Journal of American Society, 1938, 60, 309.
  • the monolith supports (ceramic or metallic) are characterized by the number of channels per unit length (CPSI). It should be noted that the value of the CPSI of a catalyst comprising such a monolithic support does not change, whatever the thickness of the layer of the active phase of the catalyst.
  • Group VIII metal content is measured by X-ray fluorescence.
  • Monounsaturated organic compounds such as ethylene, for example, are the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes. These processes are operated at high temperature and produce, in addition to the desired monounsaturated compounds, polyunsaturated organic compounds such as acetylene, or diolefinic compounds. These polyunsaturated compounds are very reactive and lead to side reactions in the polymerization units. It is therefore necessary to eliminate them before recovering these cuts. Selective hydrogenation is the main treatment developed to specifically remove unwanted polyunsaturated compounds from these hydrocarbon feedstocks. It allows the conversion of polyunsaturated compounds to the corresponding alkenes by avoiding their total saturation and therefore the formation of the corresponding alkanes.
  • the present invention relates to a process for the selective hydrogenation of a C2 cut from steam cracking comprising acetylene, said process being carried out in the gas phase at a temperature between 0° C. and 300° C., at a pressure between 0.1 MPa and 6.0 MPa, at a hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1,000, and at an hourly volumetric velocity (VVH) of between 100 lr 1 and 60,000 h -1 , preferably between 500 lr 1 and 50,000 h -1 , in the presence of a catalyst comprising, preferably consisting of, an active phase based on at least one group VIII metal and a support in the form of a ceramic or metallic monolith, said support comprising a number of channels per unit length (CPSI) between 300 and 1200, the active phase being in the form of a layer on the walls of said support, the thickness of said phase layer active being between 30 ⁇ m and 150 ⁇ m.
  • the acetylene content included in the steam cracking charge C2 is advantageously between 0.1% and 5% by weight of acetylene relative to the total weight of the charge, preferably between 0.5% and 2.5% by weight of acetylene.
  • the C2 cut from steam cracking used for carrying out the selective hydrogenation process according to the invention comprises the following composition: between 40 and 95% by weight of ethylene, between 0.1 and 5% weight of acetylene, the remainder being ethane and/or methane. In some cuts C2 from steam cracking, between 0.1 and 1% by weight of C3 compounds may also be present.
  • the selective hydrogenation process according to the invention aims to eliminate the acetylene in the said feed to be hydrogenated without hydrogenating the monounsaturated hydrocarbons, that is to say ethylene.
  • the technological implementation of the selective hydrogenation process is for example carried out by injection, in ascending or descending current, of the charge of polyunsaturated hydrocarbons and of hydrogen into at least one fixed-bed reactor.
  • Said reactor can be of the isothermal type or of the adiabatic type. An adiabatic reactor is preferred.
  • the charge of polyunsaturated hydrocarbons can advantageously be diluted by one or more re-injection(s) of the effluent, from said reactor where the selective hydrogenation reaction takes place, at one or more points of the reactor, located between the inlet and outlet of the reactor in order to limit the temperature gradient in the reactor.
  • the technological implementation of the selective hydrogenation process according to the invention can also be advantageously carried out by the implantation of said catalyst in a reactive distillation column or in reactor-exchangers or in a slurry type reactor.
  • the hydrogen flow can be introduced at the same time as the charge to be hydrogenated and/or at one or more different points of the reactor.
  • the selective hydrogenation of the C2 cut from steam cracking is carried out in the gas phase.
  • the selective hydrogenation of the C2 steam cracking cut is carried out at a temperature between 0° C. and 300° C., preferably between 15° C. and 280° C., at a pressure between 0. 1 MPa and 6.0 MPa, preferably between 0.2 MPa and 5.0 MPa, at a hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1000, preferably between 0.7 and 800, and at an hourly volume velocity (VVH) of between 100 h 1 and 60,000 h 1 , preferably between 500 h 1 and 50,000 h 1 .
  • VVH hourly volume velocity
  • the catalyst used in the context of the selective hydrogenation process comprises, preferably consists of, an active phase based on at least one group VIII metal and a support in the form of a ceramic or metallic monolith, characterized in that said support comprises a number of channels per unit length (CPSI) between 300 and 1200, and in that the active phase is in the form of a layer on the walls of said support, the thickness of said active phase layer being between 30 ⁇ m and 150 ⁇ m.
  • CPSI channels per unit length
  • the number of channels per unit length (CPSI) of said support is between 300 and 1200, preferably between 350 and 1000, more preferably between 400 and 700, and even more preferably between 450 and 750.
  • the geometric surface of said catalyst is between 1500 m 2 /m 3 and 5000 m 2 /m 3 , preferably between 1500 m 2 /m 3 and 4000 m 2 /m 3 , and even more preferably between 2000 m 2 /m 3 and 4000 m 2 /m 3 .
  • the thickness of the catalyst wall is between 0.08 mm and 0.5 mm, more preferably between 0.1 mm and 0.4 mm.
  • the degree of porosity of said catalyst is between 15% and 90%, preferably between 20% and 90%, and more preferably between 20% and 70%.
  • the thickness of said layer of active phase is between 60 ⁇ m and 100 ⁇ m, and even more preferably between 60 ⁇ m and 90 ⁇ m.
  • said monolith is preferably chosen from monoliths made of steel, stainless steel (316L, 310SS), nickel, aluminium, iron, copper, nickel-chromium, nickel-chromium -aluminum, iron-chromium-aluminum, Inconel®.
  • said monolith is preferably chosen from alumina (Al2O3), silica-alumina, silicon carbide (SiC), phosphorus-alumina, magnesia (MgO) monoliths. , zinc oxide, zirconium oxide (ZrC>2), cordierite (Al 3 Mg 2 AISi50i8).
  • said ceramic monolith is made of alumina (Al2O3), silica-alumina, phosphorus-alumina, or silicon carbide (SiC).
  • the group VIII metal of the active phase is preferably chosen from nickel, platinum and palladium.
  • the Group VIII metal is palladium.
  • the palladium content is generally between 0.005 and 2% by weight of said element relative to the total weight of the catalyst, preferably between 0.01 and 2% by weight, and more preferably between 0. 05 and 1% by weight, relative to the total weight of the catalyst.
  • the catalyst may also comprise, as active phase, an element from group IB, preferably chosen from silver and copper.
  • group IB element is silver.
  • the group IB element content is preferably between 0.01 and 0.3% by weight relative to the total weight of the catalyst, more preferably between 0.015 and 0.2% by weight.
  • the deposition of the active phase of the catalyst on the support in the form of a monolith can be carried out by conventional methods well known to those skilled in the art, and is carried out in particular by coating (“washcoat” according to the English terminology). - Saxon).
  • This impregnation technique is carried out by completely immersing the support in the form of a ceramic or metallic monolith in a solution containing the the precursor salts of the desired active phase(s) and then bringing out said impregnated monolith for drying in air (preferably a stream of air).
  • the operation can be repeated several times.
  • the catalyst precursor is generally dried at a temperature between 50°C and 550°C, more preferably between 70°C and 200°C.
  • the drying time is generally between 0.5 hour and 20 hours.
  • This preparation route is carried out in such a way as to obtain a layer of active phase on the walls of the support, the thickness of said layer being between 30 ⁇ m and 150 ⁇ m, preferentially between 60 ⁇ m and 100 ⁇ m, and even more preferentially between 60pm and 90pm.
  • the catalyst can be used in a catalytic bed in a selective hydrogenation reactor in the form of blocks of elements of cubic or parallelepipedal shape packed on top of each other.
  • the blocks of catalyst in monolithic support can have a rounded shape to properly match the shape of the reactor.
  • the selective hydrogenation reactor used in the context of the process according to the invention can be equipped with a plurality of tubes filled with the catalyst as described previously.
  • the tubes can have a circular, square or rectangular section.
  • the wall of the tubes can be porous or non-porous.
  • the maximum spacing between the tubes is between 0 and 100 mm, preferably between 0 and 20 mm.
  • the height of the reaction section can be composed of several tubes connected to each other.
  • the selective hydrogenation reactor used in the context of the process according to the invention can be of the reactor-exchanger type.
  • the exchanger reactor is equipped with a multitude of tubes filled with the catalyst as described previously.
  • the tubes can have a circular, square or rectangular section.
  • a heat transfer fluid circulates to dissipate the heat generated by the exothermic reactions of selective hydrogenation.
  • the direction of flow of the heat transfer fluid can be in the same direction as in the opposite direction to the flow of the load in the tubes.
  • the counter-current direction remains the preferred embodiment.
  • the heat transfer fluid can be a liquid or a vapor which condenses. Examples
  • - catalyst B (non-compliant): a catalyst based on palladium on a support in the form of a ceramic monolith whose geometric characteristics are not in accordance with the invention (see Table 1 below);
  • - catalyst C (compliant): a palladium-based catalyst on a support in the form of a monolith in accordance with the invention (see Table 1 below);
  • - catalyst D (non-compliant): a catalyst based on palladium on a support in the form of a ceramic monolith whose geometric characteristics are not in accordance with the invention (see Table 1 below);
  • - catalyst E (non-compliant): a catalyst based on palladium on a support in the form of a ceramic monolith whose geometric characteristics and the thickness of the active layer are not in accordance with the invention (see Table 1 below). after).
  • the active phase of palladium was deposited by the coating technique at a desired concentration to obtain on the final catalyst a palladium element content of: B: 0.028% Pd, C 0.042% Pd, D : 0.054% Pd and E: 0.015% Pd by weight relative to the total weight of the catalyst.
  • Table 1 gives the operating conditions considered. They are identical for the five cases studied.
  • the non-compliant catalyst E although having a higher selectivity than the catalyst C according to the invention, the latter has a lower conversion (and therefore an acetylene content at the outlet of the reactor that is too high) with an increased pressure drop, which is due respectively to a too high density of channels and a low layer thickness of the active phase.
  • catalyst C according to the invention makes it possible to have a compromise between selectivity for acetylene, pressure drop, and catalytic reaction volume.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Dispersion Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Disclosed is a method for the selective hydrogenation of a C2 steam-cracking fraction comprising acetylene, in the presence of a catalyst comprising an active phase made from at least one group VIII metal and a support in the form of a ceramic or metal monolith, characterised in that the support comprises a number of channels per unit length CPSI of between 300 and 1200, and in that the active phase is in the form of a layer on the walls of the support, the thickness of the active phase layer being between 30 µm and 150 µm.

Description

PROCEDE D'HYDROGENATION SELECTIVE DE LA COUPE C2 COMPRENANT DE L'ACETYLENE EN PRESENCE D'UN CATALYSEUR SOUS FORME DE MONOLITHE METHOD FOR THE SELECTIVE HYDROGENATION OF THE C2 CUT COMPRISING ACETYLENE IN THE PRESENCE OF A CATALYST IN THE FORM OF A MONOLITH
Domaine technique Technical area
L'invention a pour objet un procédé d’hydrogénation sélective de composés polyinsaturés dans une charge hydrocarbonée, en particulier dans la coupe C2 de vapocraquage, en présence d’un catalyseur se présentant sous la forme d’un monolithe métallique ou céramique. The subject of the invention is a process for the selective hydrogenation of polyunsaturated compounds in a hydrocarbon feedstock, in particular in the C2 cut from steam cracking, in the presence of a catalyst in the form of a metal or ceramic monolith.
Etat de la technique State of the art
Plusieurs types de support en forme de monolithe existent développés et fabriqués avec différentes techniques. Les supports en monolithe peuvent être en matériaux céramiques comme par exemple de l’alumine ou du carbure du silicium ou du zirconium ou de la cordiérite. Les supports monolithes existent aussi avec des matériaux métalliques, par exemple en acier, acier inox et bien d’autres types de métaux. Several types of monolith-shaped support exist developed and manufactured with different techniques. The monolith supports can be made of ceramic materials such as alumina or silicon carbide or zirconium or cordierite. Monolith supports also exist with metallic materials, for example steel, stainless steel and many other types of metals.
Il existe différents modes de fabrication des supports en monolithe. La technique de fabrication est bien connue de l’Homme du métier, et peut être trouvée dans l’article Forzatti et al., « Preparation and characterization of extruded monolithic ceramic catalysts », Catalysis Today 1998, 41 , 87-94, ou bien l’article Avila et al., Monolithic reactors for environmental applications : « A review on preparation technologies », Chem. Eng. J. 2005, 109, 11-36, ou enfin l’article, Sandeeran et al., « Preparation Methods and Their Relevance to Oxidation », Catalysts 2017, 7, 62. There are different ways of making monolith supports. The manufacturing technique is well known to those skilled in the art, and can be found in the article Forzatti et al., "Preparation and characterization of extruded monolithic ceramic catalysts", Catalysis Today 1998, 41, 87-94, or else the article Avila et al., Monolithic reactors for environmental applications: “A review on preparation technologies”, Chem. Eng. J. 2005, 109, 11-36, or finally the article, Sandeeran et al., “Preparation Methods and Their Relevance to Oxidation”, Catalysts 2017, 7, 62.
Les monolithes céramiques et métalliques peuvent prendre différentes formes et tailles géométriques. Ils sont constitués de canaux parallèles séparés les uns des autres par de fines parois. Ces canaux peuvent avoir différentes formes de section : rectangulaire, cylindrique, triangulaire, hexagonale et bien d’autres forme plus complexe. Ceramic and metal monoliths can take different geometric shapes and sizes. They consist of parallel channels separated from each other by thin walls. These channels can have different section shapes: rectangular, cylindrical, triangular, hexagonal and many other more complex shapes.
Les supports monolithes (céramiques ou métalliques) sont généralement caractérisés par la densité et la taille des canaux, plus spécifiquement par le nombre de canaux par unité de longueur que l’on appelle CPSI («Channels per square inch » selon la terminologie anglo- saxonne). Comme son abréviation l’indique, il correspond au nombre de canaux interceptés par une section de 1 x 1 pouce (« inch » selon la terminologie anglo-saxonne) soit 2,54 x 2,54 cm. Les monolithes peuvent également être caractérisés par leur épaisseur de paroi, ou par la largeur de fenêtre des canaux lorsque ces derniers ont une section rectangulaire ou carrée, ou encore par leur porosité. La porosité peut être calculée par la formule suivante : . Pm E = 1 -The monolith supports (ceramic or metallic) are generally characterized by the density and the size of the channels, more specifically by the number of channels per unit of length which is called CPSI (“Channels per square inch” according to the Anglo-Saxon terminology). ). As its abbreviation indicates, it corresponds to the number of channels intercepted by a section of 1 x 1 inch (“inch” according to English terminology) or 2.54 x 2.54 cm. Monoliths can also be characterized by their wall thickness, or by the window width of the channels when the latter have a rectangular or square section, or else by their porosity. The porosity can be calculated by the following formula: . PM E = 1 -
Pmat avec : s : porosité ou taux de vide du monolithe ; pm : densité du monolithe ; Pmat with: s: porosity or void ratio of the monolith; p m : density of the monolith;
Pmat : densité du matériau du monolithe. Pmat: density of the monolith material.
Les monolithes métalliques ou céramiques peuvent être utilisées dans diverses applications catalytiques, notamment dans le traitement des gaz d’échappement (US1969/3441381 , US1971/35971653) ou en tant que catalyseur de réduction des NOX (Tomasic, V. 2007), ou encore en hydrogénation sélective de charges hydrocarbonées comprenant des composés polyinsaturés. Metallic or ceramic monoliths can be used in various catalytic applications, in particular in the treatment of exhaust gases (US1969/3441381, US1971/35971653) or as NO X reduction catalyst (Tomasic, V. 2007), or still in selective hydrogenation of hydrocarbon feedstocks comprising polyunsaturated compounds.
L’article de revue "Selective hydrogenation of 1 ,3-butadiene in the presence of 1 -butene under liquid phase conditions using structured catalysts" de F.J. Méndeza et al. publié dans Catalysis Today 289 (2017) 151-161 s’intéresse à l’utilisation d’un support de catalyseur sous la forme de mousses ou de monolithes métalliques pour l’hydrogénation sélective du 1 ,3-butadiène. Ce document divulgue que l’utilisation d’un support en mousse ou en monolithe enduit de phase active de NiPd/(CeO2-AI2O3) donne des bons résultats en matière de conversion et en matière de sélectivité en hydrogénation sélective du 1 ,3-butadiène. Les catalyseurs dont le support se présente sous la forme d’un monolithe ont une épaisseur de couche de la phase active de 18 pm ou 20 pm. The review article "Selective hydrogenation of 1,3-butadiene in the presence of 1-butene under liquid phase conditions using structured catalysts" by FJ Méndeza et al. published in Catalysis Today 289 (2017) 151-161 discusses the use of catalyst support in the form of metal foams or monoliths for the selective hydrogenation of 1,3-butadiene. This document discloses that the use of a support in foam or in monolith coated with the active phase of NiPd/(CeO2-Al 2 O3) gives good results in terms of conversion and in terms of selectivity in the selective hydrogenation of 1,3 -butadiene. Catalysts whose support is in the form of a monolith have a layer thickness of the active phase of 18 μm or 20 μm.
L’article "Catalyst deactivation in liquid- and gas-phase hydrogenation acetylene using a monolithic catalyst reactor” de Asplud et al. publié dans Catalysis Today, vol. 24 (181 -187) 1995, s’intéresse à l’utilisation d’un support de catalyseur sous la forme de monolithe céramique en alumine-a pour l’hydrogénation sélective de l’acétylène. Ce document divulgue l’utilisation d’un support en monolithe imprégné directement avec du PdCI2 sur les parois du monolithe, la phase active obtenue à base de palladium ayant une épaisseur de 200 pm.The article “Catalyst deactivation in liquid- and gas-phase hydrogenation acetylene using a monolithic catalyst reactor” by Asplud et al. published in Catalysis Today, vol. 24 (181 -187) 1995, is concerned with the use of a catalyst support in the form of alumina-a ceramic monolith for the selective hydrogenation of acetylene This document discloses the use of a monolith support impregnated directly with PdCI 2 on the walls of the monolith, the phase active obtained based on palladium having a thickness of 200 μm.
Dans ce contexte, un des objectifs de la présente invention est de proposer un procédé d’hydrogénation sélective d’une coupe C2 de vapocraquage en présence d’un catalyseur se présentant sous la forme d’un monolithe métallique ou céramique supportant la phase active, permettant l’obtention de performances en hydrogénation en matière de sélectivité au moins aussi bonnes, voire meilleures, que les procédés connus de l’état de la technique. In this context, one of the objectives of the present invention is to propose a process for the selective hydrogenation of a C2 cut from steam cracking in the presence of a catalyst in the form of a metal or ceramic monolith supporting the active phase, making it possible to obtain performances in hydrogenation in terms of selectivity at least as good, or even better, than the processes known from the state of the art.
La Demanderesse a découvert qu’un catalyseur comprenant une phase active à base d’au moins un métal du groupe VIII et un support se présentant sous la forme d’un monolithe céramique ou métallique avec une structure géométrique particulière, ladite phase active se présentant sous la forme d’une couche d’épaisseur déterminée sur les parois dudit support, permet d’obtenir des performances catalytiques au moins aussi bonnes, voire améliorées en matière de sélectivité lorsqu’il est mis en oeuvre dans un procédé d’hydrogénation sélective d’une coupe C2 de vapocraquage contentant de l’acétylène, et cela en réduisant même à iso conversion le volume catalytique disponible pour la charge et tout en limitant les pertes de charge. The Applicant has discovered that a catalyst comprising an active phase based on at least one group VIII metal and a support in the form of a ceramic or metallic monolith with a particular geometric structure, said active phase in the form of a layer of determined thickness on the walls of said support, makes it possible to obtain catalytic performances at least as good, or even improved in terms of selectivity when it is used in a selective hydrogenation process of a C2 steam cracking cut containing acetylene, and this by reducing even at iso conversion the catalytic volume available for the charge and while limiting the pressure drops.
Objets de l’invention Objects of the invention
La présente invention a pour objet un procédé d’hydrogénation sélective d’une coupe C2 de vapocraquage comprenant de l’acétylène, ledit procédé étant réalisé en phase gazeuse à une température comprise entre 0°C et 300°C, à une pression comprise entre 0,1 MPa et 6,0 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000, et à une vitesse volumique horaire (V.V.H.) comprise entre 100 h-1 et 60000 h-1, de préférence entre 500 lr1 et 30000 h-1, en présence d’un catalyseur comprenant, de préférence constitué de, une phase active à base d’au moins un métal du groupe VIII et un support se présentant sous la forme d’une monolithe céramique ou métallique, caractérisé en ce que ledit support comprend un nombre de canaux par unité de longueur (CPSI) entre 300 et 1200, et en ce que la phase active se présente sous la forme d’une couche sur les parois dudit support, l’épaisseur de ladite couche de phase active étant compris entre 30 pm et 150 pm. The subject of the present invention is a process for the selective hydrogenation of a C2 cut from steam cracking comprising acetylene, said process being carried out in the gaseous phase at a temperature between 0° C. and 300° C., at a pressure between 0.1 MPa and 6.0 MPa, at a hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1,000, and at an hourly volume rate (VVH) of between 100 h -1 and 60,000 h -1 , preferably between 500 lr 1 and 30,000 h -1 , in the presence of a catalyst comprising, preferably consisting of, an active phase based on at least one group VIII metal and a support in the form of a ceramic or metallic monolith, characterized in that said support comprises a number of channels per unit length (CPSI) between 300 and 1200, and in that the active phase is in the form of a layer on the walls of said support , the thickness of said layer of active phase being between 30 μm and 150 μm.
En effet, la Demanderesse a constaté que le recours à un tel catalyseur, présentant un support sous la forme d’une monolithe céramique ou métallique, ledit support comprenant un nombre spécifique de canaux par unité de longueur, couplé à une épaisseur spécifique de la couche de la phase active sur les parois du support, permet à iso-conversion, de réduire le volume de lit catalytique nécessaire pour la réalisation d’une réaction d’hydrogénation sélective d’une coupe C2 de vapocraquage comprenant de l’acétylène, tout en améliorant de manière significative la sélectivité de la réaction vers les produits recherchés. Indeed, the Applicant has found that the use of such a catalyst, having a support in the form of a ceramic or metallic monolith, said support comprising a specific number of channels per unit length, coupled with a specific thickness of the layer of the active phase on the walls of the support, allows iso-conversion to reduce the volume of catalytic bed necessary for carrying out a selective hydrogenation reaction of a C2 cut from steam cracking comprising acetylene, while significantly improving the selectivity of the reaction towards the desired products.
De préférence, ledit catalyseur comprend une surface géométrique comprise entre 1500 m2/m3 et 5000 m2/m3. Preferably, said catalyst comprises a geometric surface of between 1500 m 2 /m 3 and 5000 m 2 /m 3 .
De préférence, l’épaisseur de la paroi du catalyseur est comprise entre 0,08 mm et 0,5 mm. De préférence, le taux de porosité dudit catalyseur est compris entre 20 et 90%. Preferably, the thickness of the catalyst wall is between 0.08 mm and 0.5 mm. Preferably, the degree of porosity of said catalyst is between 20 and 90%.
De préférence, l’épaisseur de ladite couche de phase active est comprise entre 60 pm et 100 pm. Dans un mode de réalisation selon l’invention, le support est un monolithe métallique choisi parmi les monolithes en acier, inox (316L, 310SS), nickel, aluminium, fer, cuivre, nickel- chrome, nickel-chrome-aluminium, fer-chrome-aluminium, Inconel®. Preferably, the thickness of said layer of active phase is between 60 μm and 100 μm. In one embodiment according to the invention, the support is a metallic monolith chosen from monoliths made of steel, stainless steel (316L, 310SS), nickel, aluminium, iron, copper, nickel-chromium, nickel-chromium-aluminum, iron- chrome-aluminum, Inconel®.
Dans un mode de réalisation selon l’invention le support est un monolithe céramique choisi parmi les monolithes en alumine (AI2O3), silice-alumine, carbure de silicium (SiC), phosphore-alumine, magnésie (MgO), oxyde de zinc, oxyde de zirconium (ZrO2), cordiérite (AI3Mg2AISi50i8). In one embodiment according to the invention, the support is a ceramic monolith chosen from monoliths made of alumina (Al2O3), silica-alumina, silicon carbide (SiC), phosphorus-alumina, magnesia (MgO), zinc oxide, oxide zirconium (ZrO 2 ), cordierite (Al 3 Mg 2 AISi50i8).
De préférence, ledit métal du groupe VIII est choisi parmi le nickel, le platine et le palladium. Plus préférentiellement, ledit métal du groupe VIII est le palladium. Preferably, said Group VIII metal is selected from nickel, platinum and palladium. More preferably, said Group VIII metal is palladium.
Dans un mode de réalisation selon l’invention, lorsque le métal du groupe VIII est le palladium, la teneur en palladium est comprise entre 0,005 et 2% poids dudit élément par rapport au poids total du catalyseur. In one embodiment according to the invention, when the group VIII metal is palladium, the palladium content is between 0.005 and 2% by weight of said element relative to the total weight of the catalyst.
De préférence, le nombre de canaux par unité de longueur (CPSI) dudit support est compris entre 400 et 700. Preferably, the number of channels per unit length (CPSI) of said medium is between 400 and 700.
Description détaillée detailed description
Définitions Definitions
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81 ème édition, 2000-2001 ). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC. In the following, the groups of chemical elements are given according to the CAS classification (CRC Handbook of Chemistry and Physics, publisher CRC press, editor-in-chief DR Lide, 81st edition, 2000-2001). For example, group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
Les propriétés texturales et structurales du support et du catalyseur décrits ci-après sont déterminées par les méthodes de caractérisation connues de l'homme du métier. Le volume poreux total et la distribution poreuse sont déterminés dans la présente invention par porosimétrie à l’azote tel que décrit dans l'ouvrage « Adsorption by powders and porous solids. Principles, methodology and applications » écrit par F. Rouquérol, J. Rouquérol et K. Sing, Academic Press, 1999. The textural and structural properties of the support and of the catalyst described below are determined by characterization methods known to those skilled in the art. The total pore volume and the pore distribution are determined in the present invention by nitrogen porosimetry as described in the book “Adsorption by powders and porous solids. Principles, methodology and applications” written by F. Rouquérol, J. Rouquérol and K. Sing, Academic Press, 1999.
On entend par surface spécifique, la surface spécifique BET (SBET en m2/g) déterminée par adsorption d’azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique "The Journal of American Society, 1938, 60, 309. By specific surface area is meant the BET specific surface area (SBET in m 2 /g) determined by nitrogen adsorption in accordance with the ASTM D 3663-78 standard established from the BRUNAUER-EMMETT-TELLER method described in the periodical "The Journal of American Society, 1938, 60, 309.
Dans la présente demande, les supports monolithes (céramiques ou métalliques) sont caractérisés le nombre de canaux par unité de longueur (CPSI). Il est à noter que la valeur du CPSI d’un catalyseur comprenant un tel support en monolithe ne change pas, quel que soit l’épaisseur de la couche de la phase active du catalyseur. In the present application, the monolith supports (ceramic or metallic) are characterized by the number of channels per unit length (CPSI). It should be noted that the value of the CPSI of a catalyst comprising such a monolithic support does not change, whatever the thickness of the layer of the active phase of the catalyst.
La teneur en métal du groupe VIII est mesurée par fluorescence X. Group VIII metal content is measured by X-ray fluorescence.
Description du procédé Description of the process
Les composés organiques mono-insaturés tels que par exemple l’éthylène sont à la source de la fabrication de polymères, de matières plastiques et d'autres produits chimiques à valeur ajoutée. Ces composés sont obtenus à partir du gaz naturel, du naphta ou du gazole qui ont été traités par des procédés de vapocraquage ou de craquage catalytique. Ces procédés sont opérés à haute température et produisent, en plus des composés mono- insaturés recherchés, des composés organiques polyinsaturés tels que l'acétylène, ou des composés dioléfiniques. Ces composés polyinsaturés sont très réactifs et conduisent à des réactions parasites dans les unités de polymérisation. Il est donc nécessaire de les éliminer avant de valoriser ces coupes. L'hydrogénation sélective est le principal traitement développé pour éliminer spécifiquement les composés polyinsaturés indésirables de ces charges d'hydrocarbures. Elle permet la conversion des composés polyinsaturés vers les alcènes correspondants en évitant leur saturation totale et donc la formation des alcanes correspondants. Monounsaturated organic compounds such as ethylene, for example, are the source of the manufacture of polymers, plastics and other value-added chemicals. These compounds are obtained from natural gas, naphtha or gas oil which have been treated by steam cracking or catalytic cracking processes. These processes are operated at high temperature and produce, in addition to the desired monounsaturated compounds, polyunsaturated organic compounds such as acetylene, or diolefinic compounds. These polyunsaturated compounds are very reactive and lead to side reactions in the polymerization units. It is therefore necessary to eliminate them before recovering these cuts. Selective hydrogenation is the main treatment developed to specifically remove unwanted polyunsaturated compounds from these hydrocarbon feedstocks. It allows the conversion of polyunsaturated compounds to the corresponding alkenes by avoiding their total saturation and therefore the formation of the corresponding alkanes.
Ainsi, la présente invention concerne un procédé d’hydrogénation sélective d’une coupe C2 de vapocraquage comprenant de l’acétylène, ledit procédé étant réalisé en phase gazeuse à une température comprise entre 0°C et 300°C, à une pression comprise entre 0,1 MPa et 6,0 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000, et à une vitesse volumique horaire (V.V.H.) comprise entre 100 lr1 et 60000 h-1, de préférence entre 500 lr1 et 50000 h-1, en présence d’un catalyseur comprenant, de préférence constitué de, une phase active à base d’au moins un métal du groupe VIII et un support se présentant sous la forme d’une monolithe céramique ou métallique, ledit support comprenant un nombre de canaux par unité de longueur (CPSI) entre 300 et 1200, la phase active se présentant sous la forme d’une couche sur les parois dudit support, l’épaisseur de ladite couche de phase active étant compris entre 30 pm et 150 pm. Thus, the present invention relates to a process for the selective hydrogenation of a C2 cut from steam cracking comprising acetylene, said process being carried out in the gas phase at a temperature between 0° C. and 300° C., at a pressure between 0.1 MPa and 6.0 MPa, at a hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1,000, and at an hourly volumetric velocity (VVH) of between 100 lr 1 and 60,000 h -1 , preferably between 500 lr 1 and 50,000 h -1 , in the presence of a catalyst comprising, preferably consisting of, an active phase based on at least one group VIII metal and a support in the form of a ceramic or metallic monolith, said support comprising a number of channels per unit length (CPSI) between 300 and 1200, the active phase being in the form of a layer on the walls of said support, the thickness of said phase layer active being between 30 μm and 150 μm.
La teneur en acétylène compris dans la charge C2 de vapocraquage est avantageusement comprise entre 0,1% à 5 % poids d'acétylène par rapport au poids total de la charge, de préférence entre 0,5 % et 2,5 % poids d'acétylène. A titre d’exemple, la coupe C2 de vapocraquage utilisée pour la mise en oeuvre du procédé d'hydrogénation sélective selon l'invention, comprend la composition suivante : entre 40 et 95 % poids d'éthylène, entre 0,1 à 5 % poids d'acétylène, le reste étant de l'éthane et/ou du méthane. Dans certaines coupes C2 de vapocraquage, entre 0,1 et 1 % poids de composés en C3 peuvent aussi être présents. The acetylene content included in the steam cracking charge C2 is advantageously between 0.1% and 5% by weight of acetylene relative to the total weight of the charge, preferably between 0.5% and 2.5% by weight of acetylene. By way of example, the C2 cut from steam cracking used for carrying out the selective hydrogenation process according to the invention comprises the following composition: between 40 and 95% by weight of ethylene, between 0.1 and 5% weight of acetylene, the remainder being ethane and/or methane. In some cuts C2 from steam cracking, between 0.1 and 1% by weight of C3 compounds may also be present.
Le procédé d'hydrogénation sélective selon l'invention vise à éliminer l’acétylène dans ladite charge à hydrogéner sans hydrogéner les hydrocarbures mono-insaturés, c’est-à-dire l’éthylène. La mise en oeuvre technologique du procédé d’hydrogénation sélective est par exemple réalisée par injection, en courant ascendant ou descendant, de la charge d'hydrocarbures polyinsaturés et de l’hydrogène dans au moins un réacteur à lit fixe. Ledit réacteur peut être de type isotherme ou de type adiabatique. Un réacteur adiabatique est préféré. La charge d'hydrocarbures polyinsaturés peut avantageusement être diluée par une ou plusieurs ré-injection(s) de l'effluent, issu dudit réacteur où se produit la réaction d'hydrogénation sélective, en un ou plusieurs points du réacteur, situés entre l'entrée et la sortie du réacteur afin de limiter le gradient de température dans le réacteur. La mise en oeuvre technologique du procédé d’hydrogénation sélective selon l'invention peut également être avantageusement réalisée par l'implantation dudit catalyseur dans une colonne de distillation réactive ou dans des réacteurs - échangeurs ou dans un réacteur de type slurry. Le flux d'hydrogène peut être introduit en même temps que la charge à hydrogéner et/ou en un ou plusieurs points différents du réacteur. The selective hydrogenation process according to the invention aims to eliminate the acetylene in the said feed to be hydrogenated without hydrogenating the monounsaturated hydrocarbons, that is to say ethylene. The technological implementation of the selective hydrogenation process is for example carried out by injection, in ascending or descending current, of the charge of polyunsaturated hydrocarbons and of hydrogen into at least one fixed-bed reactor. Said reactor can be of the isothermal type or of the adiabatic type. An adiabatic reactor is preferred. The charge of polyunsaturated hydrocarbons can advantageously be diluted by one or more re-injection(s) of the effluent, from said reactor where the selective hydrogenation reaction takes place, at one or more points of the reactor, located between the inlet and outlet of the reactor in order to limit the temperature gradient in the reactor. The technological implementation of the selective hydrogenation process according to the invention can also be advantageously carried out by the implantation of said catalyst in a reactive distillation column or in reactor-exchangers or in a slurry type reactor. The hydrogen flow can be introduced at the same time as the charge to be hydrogenated and/or at one or more different points of the reactor.
L'hydrogénation sélective de la coupe C2 de vapocraquage est réalisée en phase gazeuse. D'une manière générale, l'hydrogénation sélective de la coupe C2 de vapocraquage s'effectue à une température comprise entre 0°C et 300°C, de préférence entre 15°C et 280 °C, à une pression comprise entre 0,1 MPa et 6,0 MPa, de préférence entre 0,2 MPa et 5,0 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000, de préférence entre 0,7 et 800, et à une vitesse volumique horaire (V.V.H.) comprise entre 100 h 1 et 60000 h 1, de préférence entre 500 h 1 et 50000 h 1. The selective hydrogenation of the C2 cut from steam cracking is carried out in the gas phase. In general, the selective hydrogenation of the C2 steam cracking cut is carried out at a temperature between 0° C. and 300° C., preferably between 15° C. and 280° C., at a pressure between 0. 1 MPa and 6.0 MPa, preferably between 0.2 MPa and 5.0 MPa, at a hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1000, preferably between 0.7 and 800, and at an hourly volume velocity (VVH) of between 100 h 1 and 60,000 h 1 , preferably between 500 h 1 and 50,000 h 1 .
Description du catalyseur Catalyst Description
Le catalyseur utilisé dans le cadre du procédé d’hydrogénation sélective comprend, de préférence est constitué de, une phase active à base d’au moins un métal du groupe VIII et un support se présentant sous la forme d’un monolithe céramique ou métallique, caractérisé en ce que ledit support comprend un nombre de canaux par unité de longueur (CPSI) entre 300 et 1200, et en ce que la phase active se présente sous la forme d’une couche sur les parois dudit support, l’épaisseur de ladite couche de phase active étant compris entre 30 pm et 150 pm. The catalyst used in the context of the selective hydrogenation process comprises, preferably consists of, an active phase based on at least one group VIII metal and a support in the form of a ceramic or metallic monolith, characterized in that said support comprises a number of channels per unit length (CPSI) between 300 and 1200, and in that the active phase is in the form of a layer on the walls of said support, the thickness of said active phase layer being between 30 μm and 150 μm.
De préférence, le nombre de canaux par unité de longueur (CPSI) dudit support est compris entre 300 et 1200, de préférence entre 350 et 1000, plus préférentiellement entre 400 et 700, et encore plus préférentiellement entre 450 et 750. De préférence, la surface géométrique dudit catalyseur est comprise entre 1500 m2/m3 et 5000 m2/m3, de préférence entre 1500 m2/m3 et 4000 m2/m3, et encore plus préférentiellement entre 2000 m2/m3 et 4000 m2/m3. Preferably, the number of channels per unit length (CPSI) of said support is between 300 and 1200, preferably between 350 and 1000, more preferably between 400 and 700, and even more preferably between 450 and 750. Preferably, the geometric surface of said catalyst is between 1500 m 2 /m 3 and 5000 m 2 /m 3 , preferably between 1500 m 2 /m 3 and 4000 m 2 /m 3 , and even more preferably between 2000 m 2 /m 3 and 4000 m 2 /m 3 .
De préférence, l’épaisseur de la paroi du catalyseur est comprise entre 0,08 mm et 0,5 mm, plus préférentiellement entre 0,1 mm et 0,4 mm. Preferably, the thickness of the catalyst wall is between 0.08 mm and 0.5 mm, more preferably between 0.1 mm and 0.4 mm.
De préférence, le taux de porosité dudit catalyseur est compris entre 15% et 90%, de préférence entre 20% et 90%, et plus préférentiellement compris entre 20% et 70%. Preferably, the degree of porosity of said catalyst is between 15% and 90%, preferably between 20% and 90%, and more preferably between 20% and 70%.
De préférence, l’épaisseur de ladite couche de phase active est comprise entre 60 pm et 100 pm, et encore plus préférentiellement entre 60 pm et 90 pm. Preferably, the thickness of said layer of active phase is between 60 μm and 100 μm, and even more preferably between 60 μm and 90 μm.
Lorsque le support du catalyseur se présente sous la forme d’un monolithe métallique, ledit monolithe est de préférence choisi parmi les monolithes en acier, inox (316L, 310SS), nickel, aluminium, fer, cuivre, nickel-chrome, nickel-chrome-aluminium, fer-chrome-aluminium, Inconel®. When the catalyst support is in the form of a metallic monolith, said monolith is preferably chosen from monoliths made of steel, stainless steel (316L, 310SS), nickel, aluminium, iron, copper, nickel-chromium, nickel-chromium -aluminum, iron-chromium-aluminum, Inconel®.
Lorsque le support du catalyseur se présente sous la forme d’un monolithe céramique, ledit monolithe est de préférence choisi parmi les monolithes en alumine (AI2O3), silice-alumine, carbure de silicium (SiC), phosphore-alumine, magnésie (MgO), oxyde de zinc, oxyde de zirconium (ZrC>2), cordiérite (AI3Mg2AISi50i8). De préférence, ledit monolithe céramique est en alumine (AI2O3), silice-alumine, phosphore-alumine, ou carbure de silicium (SiC). When the catalyst support is in the form of a ceramic monolith, said monolith is preferably chosen from alumina (Al2O3), silica-alumina, silicon carbide (SiC), phosphorus-alumina, magnesia (MgO) monoliths. , zinc oxide, zirconium oxide (ZrC>2), cordierite (Al 3 Mg 2 AISi50i8). Preferably, said ceramic monolith is made of alumina (Al2O3), silica-alumina, phosphorus-alumina, or silicon carbide (SiC).
Le métal du groupe VIII de la phase active est de préférence choisi parmi le nickel, le platine, le palladium. De préférence, le métal du groupe VIII est le palladium. The group VIII metal of the active phase is preferably chosen from nickel, platinum and palladium. Preferably, the Group VIII metal is palladium.
Lorsque le métal du groupe VIII est le palladium, la teneur en palladium est généralement comprise entre 0,005 et 2% poids dudit élément par rapport au poids total du catalyseur, de préférence entre 0,01 et 2 % poids, et plus préférentiellement entre 0,05 et 1% poids, par rapport au poids total du catalyseur. When the group VIII metal is palladium, the palladium content is generally between 0.005 and 2% by weight of said element relative to the total weight of the catalyst, preferably between 0.01 and 2% by weight, and more preferably between 0. 05 and 1% by weight, relative to the total weight of the catalyst.
Le catalyseur peut comprendre en outre en tant que phase active un élément du groupe IB, de préférence choisi parmi l’argent et le cuivre. De manière préférée, l’élément du groupe IB est l’argent. La teneur en élément du groupe IB est de préférence comprise entre 0,01 et 0,3% poids par rapport au poids total du catalyseur, plus préférentiellement comprise entre 0,015 et 0,2% poids. The catalyst may also comprise, as active phase, an element from group IB, preferably chosen from silver and copper. Preferably, the group IB element is silver. The group IB element content is preferably between 0.01 and 0.3% by weight relative to the total weight of the catalyst, more preferably between 0.015 and 0.2% by weight.
Le dépôt de la phase active du catalyseur sur le support se présentant sous la forme d’un monolithe peut être réalisé par des méthodes conventionnelles bien connues de l’Homme du métier, et est réalisé notamment par enduction (« washcoat » selon la terminologie anglo- saxonne). Cette technique d’imprégnation est réalisée en immergeant complètement le support sous forme de monolithe céramique ou métallique dans une solution contenant le ou les sels précurseurs de la ou des phase(s) active(s) désirée(s) puis de ressortir ledit monolithe imprégné ensuite pour un séchage sous air (de préférence un courant d'air). L'opération peut être répétée plusieurs fois. Le précurseur du catalyseur est généralement séché à une température comprise entre 50°C et 550°C, de manière plus préférée entre 70°C et 200°C. La durée du séchage est comprise généralement entre 0,5 heure et 20 heures. Cette voie de préparation est réalisée de telle manière à obtenir une couche de phase active sur les parois du support, l’épaisseur de ladite couche étant comprise entre 30 pm et 150 pm, préférentiellement entre 60 pm et 100 pm, et encore plus préférentiellement entre 60 pm et 90 pm. The deposition of the active phase of the catalyst on the support in the form of a monolith can be carried out by conventional methods well known to those skilled in the art, and is carried out in particular by coating (“washcoat” according to the English terminology). - Saxon). This impregnation technique is carried out by completely immersing the support in the form of a ceramic or metallic monolith in a solution containing the the precursor salts of the desired active phase(s) and then bringing out said impregnated monolith for drying in air (preferably a stream of air). The operation can be repeated several times. The catalyst precursor is generally dried at a temperature between 50°C and 550°C, more preferably between 70°C and 200°C. The drying time is generally between 0.5 hour and 20 hours. This preparation route is carried out in such a way as to obtain a layer of active phase on the walls of the support, the thickness of said layer being between 30 μm and 150 μm, preferentially between 60 μm and 100 μm, and even more preferentially between 60pm and 90pm.
Mise en oeuyre du catalyseur Implementation of the catalyst
Dans un mode de réalisation selon l’invention, le catalyseur peut être utilisé dans un lit catalytique dans un réacteur d’hydrogénation sélective sous la forme de blocs d’éléments de forme cubique ou parallépipédique empaquetés les uns sur les autres. Au niveau de la paroi du réacteur, les blocs de catalyseur en de support monolithique peuvent avoir une forme arrondie pour bien épouser la forme du réacteur. In one embodiment according to the invention, the catalyst can be used in a catalytic bed in a selective hydrogenation reactor in the form of blocks of elements of cubic or parallelepipedal shape packed on top of each other. At the level of the wall of the reactor, the blocks of catalyst in monolithic support can have a rounded shape to properly match the shape of the reactor.
Le réacteur d’hydrogénation sélective utilisé dans le cadre du procédé selon l’invention peut être équipé d’une pluralité de tubes remplis du catalyseur tel que décrit précédemment. Les tubes peuvent avoir une section circulaire, carrée ou rectangulaire. La paroi des tubes peut être poreuse ou non poreuse. L’espacement maximum entre les tubes est compris entre 0 et 100 mm préférentiellement entre 0 et 20 mm. Selon ce mode de réalisation, la hauteur de la section réactionnelle peut être composée de plusieurs tubes reliés les uns aux autres. The selective hydrogenation reactor used in the context of the process according to the invention can be equipped with a plurality of tubes filled with the catalyst as described previously. The tubes can have a circular, square or rectangular section. The wall of the tubes can be porous or non-porous. The maximum spacing between the tubes is between 0 and 100 mm, preferably between 0 and 20 mm. According to this embodiment, the height of the reaction section can be composed of several tubes connected to each other.
Le réacteur d’hydrogénation sélective utilisé dans le cadre du procédé selon l’invention peut être du type réacteur-échangeur. Le réacteur échangeur est équipé d’une multitude de de tubes remplis du catalyseur tel que décrit précédemment. Les tubes peuvent avoir une section circulaire, carrée ou rectangulaire. Entre les tubes un fluide caloporteur circule pour dissiper la chaleur générée par les réactions exothermiques d’hydrogénation sélective. Le sens d’écoulement du fluide caloporteur peut être dans le même sens comme dans le sens contraire de l’écoulement de la charge dans les tubes. Le sens contre-courant restent le mode de réalisation préféré. Le fluide caloporteur peut être un liquide ou une vapeur qui condense. Exemples The selective hydrogenation reactor used in the context of the process according to the invention can be of the reactor-exchanger type. The exchanger reactor is equipped with a multitude of tubes filled with the catalyst as described previously. The tubes can have a circular, square or rectangular section. Between the tubes a heat transfer fluid circulates to dissipate the heat generated by the exothermic reactions of selective hydrogenation. The direction of flow of the heat transfer fluid can be in the same direction as in the opposite direction to the flow of the load in the tubes. The counter-current direction remains the preferred embodiment. The heat transfer fluid can be a liquid or a vapor which condenses. Examples
Pour illustrer certains des avantages de la présente invention, il est proposé de comparer les résultats en hydrogénation sélective de l’acétylène en utilisant : To illustrate some of the advantages of the present invention, it is proposed to compare the results in the selective hydrogenation of acetylene using:
- catalyseur A (non conforme) : un catalyseur à base de palladium sur un support en alumine (SBET = 10 m2/g) se présentant sous la forme de billes de diamètre de 3,8 mm, la teneur en palladium étant de 800 ppm poids en élément Pd par rapport au poids total du catalyseur ; - catalyst A (non-compliant): a catalyst based on palladium on an alumina support (SBET = 10 m 2 /g) in the form of balls with a diameter of 3.8 mm, the palladium content being 800 ppm weight of Pd element relative to the total weight of the catalyst;
- catalyseur B (non conforme) : un catalyseur à base de palladium sur un support en forme de monolithe en céramique dont les caractéristiques géométriques sont non conformes à l’invention (cf. tableau 1 ci-après) ; - catalyst B (non-compliant): a catalyst based on palladium on a support in the form of a ceramic monolith whose geometric characteristics are not in accordance with the invention (see Table 1 below);
- catalyseur C (conforme) : un catalyseur à base de palladium sur un support se présentant sous la forme de monolithe conforme à l’invention (cf. tableau 1 ci-après) ; - catalyst C (compliant): a palladium-based catalyst on a support in the form of a monolith in accordance with the invention (see Table 1 below);
- catalyseur D (non conforme) : un catalyseur à base de palladium sur un support en forme de monolithe en céramique dont les caractéristiques géométriques ne sont pas conformes à l’invention (cf. tableau 1 ci-après) ; - catalyst D (non-compliant): a catalyst based on palladium on a support in the form of a ceramic monolith whose geometric characteristics are not in accordance with the invention (see Table 1 below);
- catalyseur E (non conforme) : un catalyseur à base de palladium sur un support en forme de monolithe en céramique dont les caractéristiques géométriques et l’épaisseur de la couche active ne sont pas conformes à l’invention (cf. tableau 1 ci-après). - catalyst E (non-compliant): a catalyst based on palladium on a support in the form of a ceramic monolith whose geometric characteristics and the thickness of the active layer are not in accordance with the invention (see Table 1 below). after).
Pour les catalyseurs B à E, la phase active de palladium a été déposée par la technique d’enduction à une concentration voulue pour obtenir sur le catalyseur final une teneur en élément palladium de : B : 0,028% Pd, C 0,042% Pd, D : 0,054% Pd et E : 0,015% Pd en poids par rapport au poids total du catalyseur. For catalysts B to E, the active phase of palladium was deposited by the coating technique at a desired concentration to obtain on the final catalyst a palladium element content of: B: 0.028% Pd, C 0.042% Pd, D : 0.054% Pd and E: 0.015% Pd by weight relative to the total weight of the catalyst.
Tableau 1
Figure imgf000010_0001
Le tableau 2 donne les conditions opératoires considérées. Elles sont identiques pour les cinq cas étudiés.
Table 1
Figure imgf000010_0001
Table 2 gives the operating conditions considered. They are identical for the five cases studied.
Tableau 2
Figure imgf000011_0001
Table 2
Figure imgf000011_0001
Les résultats sont donnés au tableau 3 ci-après. Pour l’ensemble de ces résultats, le diamètre du réacteur utilisé est de 1 m. The results are given in Table 3 below. For all of these results, the diameter of the reactor used is 1 m.
Tableau 3
Figure imgf000011_0002
Table 3
Figure imgf000011_0002
On observe que l’ensemble des catalyseurs ont une conversion supérieure à 99% de l’acétylène, avec une teneur en acétylène en sortie de réacteur égale à 1 ppm, voire même supérieure à 1 ppm pour le catalyseur B non conforme à l’invention (1 ,3 ppm) et pour le catalyseur E non conforme à l’invention (14 ppm). Cette conversion est atteinte avec une réduction de volume de réacteur lorsque le procédé est réalisé en présence des catalyseurs C (conforme) et D (non conforme) par rapport à un procédé en présence d’un catalyseur A (non conforme) dont le support se présente sous forme de billes. L’utilisation du catalyseur C selon l’invention permet en outre une réduction de volume de réacteur de 30% en volume aussi bien par rapport aux catalyseurs A et B non conformes, et un gain en perte de charge.It is observed that all the catalysts have a conversion greater than 99% of the acetylene, with an acetylene content at the outlet of the reactor equal to 1 ppm, or even greater than 1 ppm for catalyst B not in accordance with the invention. (1.3 ppm) and for catalyst E not in accordance with the invention (14 ppm). This conversion is achieved with a reduction in reactor volume when the process is carried out in the presence of catalysts C (compliant) and D (non-compliant) compared to a process in the presence of a catalyst A (non-compliant) whose support is in the form of beads. The use of catalyst C according to the invention also allows a reduction in reactor volume of 30% in volume as well as compared to non-compliant catalysts A and B, and a gain in pressure drop.
Ainsi, à iso-conversion, le volume total du réacteur peut être réduit. On remarque également l’impact de la sélection de la densité de canaux (CPSI) du support sur le procédé selon l’invention. En effet, les catalyseurs B et D, non conformes à l’invention, bien que se présentant sous la forme de monolithe, présentent des résultats médiocres soit en teneur en acétylène en sortie de réacteur (alors que ce dernier présente un volume catalytique plus élevé) pour le catalyseur B soit en perte de charge pour le catalyseur D (et un peu en sélectivité). Enfin, le catalyseur E non conforme bien que présentant une sélectivité supérieure au catalyseur C selon l’invention, celui-ci présente une moins bonne conversion (et donc une teneur en acétylène en sortie de réacteur trop élevée) avec une perte de charge accrue, ce qui est due respectivement à une densité de canaux trop élevée et une faible épaisseur de couche de la phase active. Ainsi, seul le catalyseur C selon l’invention permet d’avoir un compromis entre sélectivité en acétylène, perte de charge, et volume catalytique de réaction. Thus, at iso-conversion, the total volume of the reactor can be reduced. We also note the impact of the selection of the channel density (CPSI) of the support on the method according to the invention. Indeed, catalysts B and D, not in accordance with the invention, although in the form of a monolith, show mediocre results either in terms of acetylene content at the outlet of the reactor (while the latter has a higher catalytic volume ) for catalyst B or in pressure drop for catalyst D (and a little in selectivity). Finally, the non-compliant catalyst E, although having a higher selectivity than the catalyst C according to the invention, the latter has a lower conversion (and therefore an acetylene content at the outlet of the reactor that is too high) with an increased pressure drop, which is due respectively to a too high density of channels and a low layer thickness of the active phase. Thus, only catalyst C according to the invention makes it possible to have a compromise between selectivity for acetylene, pressure drop, and catalytic reaction volume.

Claims

REVENDICATIONS
1. Procédé d’hydrogénation sélective d’une coupe C2 de vapocraquage comprenant de l’acétylène, ledit procédé étant réalisé en phase gazeuse à une température comprise entre 0°C et 300°C, à une pression comprise entre 0,1 MPa et 6,0 MPa, à un ratio molaire hydrogène/(composés polyinsaturés à hydrogéner) compris entre 0,5 et 1000, et à une vitesse volumique horaire comprise entre 100 h-1 et 60000 h-1, en présence d’un catalyseur comprenant une phase active à base d’au moins un métal du groupe VIII et un support se présentant sous la forme d’une monolithe céramique ou métallique, caractérisé en ce que ledit support comprend un nombre de canaux par unité de longueur CPSI compris entre 300 et 1200, et en ce que la phase active se présente sous la forme d’une couche sur les parois dudit support, l’épaisseur de ladite couche de phase active étant compris entre 30 pm et 150 pm. 1. Process for the selective hydrogenation of a C2 cut from steam cracking comprising acetylene, said process being carried out in the gaseous phase at a temperature between 0° C. and 300° C., at a pressure between 0.1 MPa and 6.0 MPa, at a hydrogen/(polyunsaturated compounds to be hydrogenated) molar ratio of between 0.5 and 1000, and at an hourly volume rate of between 100 h -1 and 60,000 h -1 , in the presence of a catalyst comprising an active phase based on at least one group VIII metal and a support in the form of a ceramic or metallic monolith, characterized in that said support comprises a number of channels per unit of CPSI length of between 300 and 1200, and in that the active phase is in the form of a layer on the walls of said support, the thickness of said layer of active phase being between 30 μm and 150 μm.
2. Procédé selon la revendication 1 , dans lequel ledit catalyseur comprend une surface géométrique comprise entre 1500 m2/m3 et 5000 m2/m3. 2. Process according to claim 1, in which said catalyst comprises a geometric surface of between 1500 m 2 /m 3 and 5000 m 2 /m 3 .
3. Procédé selon l’une des revendications 1 ou 2, dans lequel l’épaisseur de la paroi du catalyseur est comprise entre 0,08 mm et 0,5 mm. 3. Process according to one of Claims 1 or 2, in which the thickness of the wall of the catalyst is between 0.08 mm and 0.5 mm.
4. Procédé selon l’une quelconque des revendications précédentes, dans lequel le taux de porosité dudit catalyseur est compris entre 20 et 90%. 4. Process according to any one of the preceding claims, in which the degree of porosity of said catalyst is between 20 and 90%.
5. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’épaisseur de ladite couche de phase active est comprise entre 60 pm et 100 pm. 5. Method according to any one of the preceding claims, in which the thickness of the said layer of active phase is between 60 μm and 100 μm.
6. Procédé selon l’une quelconque des revendications 1 à 5, dans lequel le support est un monolithe céramique choisi parmi les monolithes en alumine (AI2O3), silice-alumine, carbure de silicium (SiC), phosphore-alumine, magnésie (MgO), oxyde de zinc, oxyde de zirconium (ZrO2), cordiérite (AI3Mg2AISi50i8). 6. Method according to any one of claims 1 to 5, in which the support is a ceramic monolith chosen from monoliths made of alumina (Al2O3), silica-alumina, silicon carbide (SiC), phosphorus-alumina, magnesia (MgO ), zinc oxide, zirconium oxide (ZrO 2 ), cordierite (Al 3 Mg2AISi 5 0i8).
7. Procédé selon l’une quelconque des revendications précédentes, dans lequel ledit métal du groupe VIII est choisi parmi le nickel, le platine et le palladium. 7. A method according to any preceding claim, wherein said Group VIII metal is selected from nickel, platinum and palladium.
8. Procédé selon la revendication précédente, dans lequel ledit métal du groupe VIII est le palladium. 8. Process according to the preceding claim, in which the said Group VIII metal is palladium.
9. Procédé selon la revendication précédente, dans lequel la teneur en palladium est comprise entre 0,005 et 2% poids dudit élément par rapport au poids total du catalyseur. 9. Process according to the preceding claim, in which the palladium content is between 0.005 and 2% by weight of said element relative to the total weight of the catalyst.
10. Procédé selon l’une quelconque des revendications précédentes, dans lequel le nombre de canaux par unité de longueur dudit support est compris entre 400 et 700. 10. Method according to any one of the preceding claims, in which the number of channels per unit length of said medium is between 400 and 700.
PCT/EP2021/083464 2020-12-10 2021-11-30 Method for the selective hydrogenation of the c2 fraction comprising acetylene in the presence of a catalyst in monolithic form WO2022122459A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237022545A KR20230117196A (en) 2020-12-10 2021-11-30 Method for Selective Hydrogenation of C2 Fraction Containing Acetylene in the Presence of a Monolithic Catalyst
US18/266,062 US20240043357A1 (en) 2020-12-10 2021-11-30 Method for the selective hydrogenation of the c2 fraction comprising acetylene in the presence of a catalyst in monolithic form
JP2023535330A JP2023553933A (en) 2020-12-10 2021-11-30 Process for the selective hydrogenation of acetylene-containing C2 fractions in the presence of a catalyst in monolithic form
CN202180082854.7A CN116583580A (en) 2020-12-10 2021-11-30 Method for selectively hydrogenating a C2 fraction comprising acetylene in the presence of a catalyst in monolithic form
EP21819870.3A EP4259753A1 (en) 2020-12-10 2021-11-30 Method for the selective hydrogenation of the c2 fraction comprising acetylene in the presence of a catalyst in monolithic form

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2013013 2020-12-10
FR2013013A FR3117504B1 (en) 2020-12-10 2020-12-10 Process for the selective hydrogenation of the C2 cut in the presence of a catalyst in the form of a monolith

Publications (1)

Publication Number Publication Date
WO2022122459A1 true WO2022122459A1 (en) 2022-06-16

Family

ID=74554049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/083464 WO2022122459A1 (en) 2020-12-10 2021-11-30 Method for the selective hydrogenation of the c2 fraction comprising acetylene in the presence of a catalyst in monolithic form

Country Status (7)

Country Link
US (1) US20240043357A1 (en)
EP (1) EP4259753A1 (en)
JP (1) JP2023553933A (en)
KR (1) KR20230117196A (en)
CN (1) CN116583580A (en)
FR (1) FR3117504B1 (en)
WO (1) WO2022122459A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3137849A1 (en) * 2022-07-18 2024-01-19 IFP Energies Nouvelles METHOD FOR PREPARING A CATALYST COMPRISING A GROUP VIII METAL FROM AN ALPHA ALUMINA
FR3137848A1 (en) * 2022-07-18 2024-01-19 IFP Energies Nouvelles METHOD FOR PREPARING A CATALYST COMPRISING A GROUP VIII METAL AND A SUPPORT IN THE FORM OF A MONOLITH OR A FOAM COATED WITH ALPHA ALUMINA

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441381A (en) 1965-06-22 1969-04-29 Engelhard Ind Inc Apparatus for purifying exhaust gases of an internal combustion engine
US3597165A (en) 1969-06-18 1971-08-03 Engelhard Min & Chem Catalytic exhaust purifier
WO2011107565A1 (en) * 2010-03-05 2011-09-09 Shell Internationale Research Maatschappij B.V. Hydrogenation catalyst
WO2013093231A1 (en) * 2011-12-21 2013-06-27 IFP Energies Nouvelles Method for preparing a group viii metal catalyst by impregnation using at least one organic additive, and selective hydrogenation method implementing said catalyst
US10029237B2 (en) * 2015-03-05 2018-07-24 IFP Energies Nouvelles Catalyst comprising dispersed gold and palladium, and its use in selective hydrogenation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441381A (en) 1965-06-22 1969-04-29 Engelhard Ind Inc Apparatus for purifying exhaust gases of an internal combustion engine
US3597165A (en) 1969-06-18 1971-08-03 Engelhard Min & Chem Catalytic exhaust purifier
WO2011107565A1 (en) * 2010-03-05 2011-09-09 Shell Internationale Research Maatschappij B.V. Hydrogenation catalyst
WO2013093231A1 (en) * 2011-12-21 2013-06-27 IFP Energies Nouvelles Method for preparing a group viii metal catalyst by impregnation using at least one organic additive, and selective hydrogenation method implementing said catalyst
US10029237B2 (en) * 2015-03-05 2018-07-24 IFP Energies Nouvelles Catalyst comprising dispersed gold and palladium, and its use in selective hydrogenation

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"CRC Handbook of Chemistry and Physics", 2000, CRC PRESS
ASPLUD ET AL.: "Catalyst deactivation in liquid- and gas-phase hydrogénation acetylene using a monolithic catalyst reactor", CATALYSIS TODAY, vol. 24, 1995, pages 181 - 187, XP055832971, DOI: 10.1016/0920-5861(95)00023-9
ASPLUND STAFFAN ET AL: "Catalyst deactivation in liquid- and gas-phase hydrogenation of acetylene using a monolithic catalyst reactor", CATALYSIS TODAY, vol. 24, no. 1-2, 1 June 1995 (1995-06-01), AMSTERDAM, NL, pages 181 - 187, XP055832971, ISSN: 0920-5861, DOI: 10.1016/0920-5861(95)00023-9 *
AVILA ET AL.: "A review on préparation technologies", CHEM. ENG. J., vol. 109, 2005, pages 11 - 36
BRUNAUER-EMMETT-TELLER, THE JOURNAL OF AMERICAN SOCIETY, vol. 60, 1938, pages 309
EDVINSSON ROLF K. ET AL: "Liquid-Phase Hydrogenation of Acetylene in a Monolithic Catalyst Reactor", vol. 34, no. 1, 1 January 1995 (1995-01-01), pages 94 - 100, XP055833071, ISSN: 0888-5885, Retrieved from the Internet <URL:https://pubs.acs.org/doi/pdf/10.1021/ie00040a007> DOI: 10.1021/ie00040a007 *
F. ROUQUÉROLJ. ROUQUÉROLK. SING: "Adsorption by powders and porous solids. Principles, methodology and applications", 1999, ACADEMIC PRESS
F.J. MÉNDEZA ET AL.: "Selective hydrogénation of 1,3-butadiene in the presence of 1-butene under liquid phase conditions using structured catalysts", CATALYSIS TODAY, vol. 289, 2017, pages 151 - 161, XP085006724, DOI: 10.1016/j.cattod.2016.09.022
FORZATTI ET AL.: "Préparation and characterization of extruded monolithic ceramic catalysts", CATALYSIS TODAY, vol. 41, 1998, pages 87 - 94
SANDEERAN ET AL.: "Préparation Methods and Their Relevance to Oxidation", CATALYSTS, vol. 7, 2017, pages 62

Also Published As

Publication number Publication date
FR3117504B1 (en) 2023-12-15
US20240043357A1 (en) 2024-02-08
JP2023553933A (en) 2023-12-26
KR20230117196A (en) 2023-08-07
EP4259753A1 (en) 2023-10-18
CN116583580A (en) 2023-08-11
FR3117504A1 (en) 2022-06-17

Similar Documents

Publication Publication Date Title
EP4259753A1 (en) Method for the selective hydrogenation of the c2 fraction comprising acetylene in the presence of a catalyst in monolithic form
CA2611890C (en) Method of converting a synthesis gas into hydrocarbons in the presence of sic foam
EP1827684B1 (en) Cobalt-based catalyst for fischer-tropsch synthesis
EP1442784B1 (en) Inorganic porous membrane containing carbon, method of manufacturing and use thereof
EP4237516A1 (en) Method for selective hydrogenation using a foamed catalyst
WO2016037830A1 (en) Mesoporous catalyst made from nickel and use of same in hydrocarbon hydrogenation
JP2004530746A (en) Hydrotreating methods and catalysts
FR2991197A1 (en) CATALYST COMPRISING PALLADIUM AND SILVER AND ITS SELECTIVE HYDROGENATION APPLICATION
WO2015189190A1 (en) Mesoporous and macroporous catalyst made from nickel having a macroporous median diameter of between 50 nm and 200 nm and use of same in hydrocarbon hydrogenation
EP3697530A1 (en) Method for converting a gas comprising carbon monoxide into methane by means of a catalytic material containing praseodymium and nickel on alumina
FR3059253A1 (en) SELECTIVE HYDROGENATION CATALYST FOR C3 HYDROCARBON CUTTING
EP3381552B1 (en) Method for preparing cobalt catalysts
WO2003049858A1 (en) Catalytic reforming system and process______
WO2014062359A2 (en) Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same
EP2315628B1 (en) Method of preparing a core/shell material having good mechanical strength
FR2965191A1 (en) PLATE REACTOR FOR THE FISCHER-TROPSCH SYNTHESIS
WO2019011569A1 (en) Method for hydrogenating aromatics using a catalyst obtained by impregnation comprising a specific support
EP3332869B1 (en) Catalyst for selective hydrogenation of c3 fractions from steam cracking and/or catalytic cracking
EP1702025B1 (en) Method for converting a synthesis gas into hydrocarbons in the presence of beta-sic and the effluent of said method
FR2934174A1 (en) Fischer-Tropsch synthesis of hydrocarbons, e.g. for use in motor fuel production, uses catalytic plates with catalyst compartment containing catalyst supported on silicon carbide foam
WO2024017702A1 (en) Process for preparing a catalyst comprising a group viii metal and a support in the form of a monolith or a foam coated with alpha alumina
WO2024017701A1 (en) Process for preparing a catalyst comprising a group viii metal from an alpha alumina
FR3033268A1 (en) CATALYST COMPRISING GOLD HOMOGENEOUSLY DISPERSED IN A POROUS MEDIUM
FR3068983B1 (en) SELECTIVE HYDROGENATION PROCESS USING A CATALYST OBTAINED BY IMPREGNATION COMPRISING A SPECIFIC SUPPORT
FR3132646A1 (en) CATALYST COMPRISING AN ACTIVE PHASE OF PALLADIUM AND COPPER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21819870

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180082854.7

Country of ref document: CN

Ref document number: 18266062

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023535330

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237022545

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021819870

Country of ref document: EP

Effective date: 20230710