WO2022121934A1 - 重路由方法及装置、通信设备 - Google Patents

重路由方法及装置、通信设备 Download PDF

Info

Publication number
WO2022121934A1
WO2022121934A1 PCT/CN2021/136402 CN2021136402W WO2022121934A1 WO 2022121934 A1 WO2022121934 A1 WO 2022121934A1 CN 2021136402 W CN2021136402 W CN 2021136402W WO 2022121934 A1 WO2022121934 A1 WO 2022121934A1
Authority
WO
WIPO (PCT)
Prior art keywords
state information
link state
node
communication node
link
Prior art date
Application number
PCT/CN2021/136402
Other languages
English (en)
French (fr)
Inventor
文鸣
刘进华
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2023533925A priority Critical patent/JP2023551953A/ja
Priority to EP21902639.0A priority patent/EP4262263A4/en
Priority to KR1020237016202A priority patent/KR20230088430A/ko
Publication of WO2022121934A1 publication Critical patent/WO2022121934A1/zh
Priority to US18/310,171 priority patent/US20230269653A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/121Shortest path evaluation by minimising delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices
    • H04W88/182Network node acting on behalf of an other network entity, e.g. proxy

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a rerouting method and apparatus, and communication equipment.
  • the integrated access and backhaul (IAB) node can autonomously reroute data, that is, when the link between the IAB node and its parent node fails the wireless link (Radio Link Failure, RLF), can enable local rerouting of data packets, that is, the IAB node can select a second return path for data that is different from the current return path, so as to realize data offloading.
  • RLF Radio Link Failure
  • the IAB node cannot open the local routing of data without RLF, resulting in lower flexibility of the network node to transmit data, and the IAB node cannot know some information of the optional return path (such as transmission The redundant capacity of the link, or latency, etc.), it is impossible to effectively determine how to perform local rerouting of the data to be transmitted.
  • Blindly selecting the second backhaul path and determining the amount of data to be offloaded to the second backhaul path may lead to problems such as insufficient utilization of the capacity of the second backhaul path, congestion or long transmission delay of the offloaded data.
  • the embodiments of the present application provide a rerouting method, apparatus, and communication device, which can solve the problem in the prior art that rerouting can only be performed when a radio link failure RLF occurs, resulting in a relatively simple way of starting rerouting.
  • a method for rerouting comprising: acquiring target information by a first communication node, wherein the target information includes at least one of the following: a link of a backhaul path associated with the first communication node Status information and identification information of the return path; the first communication node determines the target return path according to the target information.
  • a rerouting method including: a second communication node receiving link state information of a backhaul link associated with itself reported by a first communication node in a communication system; wherein the second communication The node is a node that controls all the first communication nodes in the communication system; the second communication node configures the identification information of the return path according to the link state information, wherein the identification information is used to indicate that the data packet is in the communication The return path selected for transmission in the system.
  • a rerouting apparatus applied to a first communication node, including: a first obtaining module, configured to obtain target information, wherein the target information includes at least one of the following: Link state information of the backhaul path associated with the communication node, and identification information of the backhaul path; a determining module, configured to determine the target backhaul path according to the target information.
  • a rerouting device applied to a second communication node, comprising: a third receiving module configured to receive a link of a backhaul link associated with itself and reported by the first communication node in the communication system status information; wherein the second communication node is a node that controls all the first communication nodes in the communication system; a configuration module is configured to configure the identification information of the return path according to the link status information, wherein the identification information It is used to indicate the return path selected when the data packet is transmitted in the communication system.
  • a communication device in a fifth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being processed by the The steps of the method as described in the first aspect or the second aspect are implemented when the device is executed.
  • a readable storage medium on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps as described in the first aspect are implemented.
  • the steps of the method of the second aspect are provided, on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps as described in the first aspect are implemented.
  • a chip in a seventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a network-side device program or instruction, implementing the method as described in the first aspect. the method described, or implement the method described in the second aspect.
  • an embodiment of the present application provides a program product, where the program product is stored in a non-volatile storage medium, and the program product is executed by at least one processor to implement the method according to the first aspect. steps, or steps for implementing the method according to the second aspect.
  • an embodiment of the present application provides a communication device configured to perform the steps of the method described in the first aspect, or configured to perform the steps of the method described in the second aspect.
  • the first communication node may determine the target backhaul path according to the link state information of the backhaul path associated with the first communication node and/or the identification information of the backhaul path, that is, the first communication node may determine the target backhaul path according to The link state information and/or the identification information determine the currently available backhaul path, and then determine the target backhaul path therefrom, so that the second communication node can perform rerouting to select the backhaul path even in the absence of RLF,
  • the method of rerouting is made more flexible, thereby solving the problem in the prior art that rerouting can be performed only when the radio link failure RLF occurs, resulting in a relatively simple way of starting rerouting.
  • FIG. 1 shows a block diagram of a wireless communication system to which an embodiment of the present application can be applied
  • Fig. 2 is the schematic diagram of IAB system in the prior art
  • Fig. 3 is a CU-DU structure diagram of an IAB system
  • FIG. 4 is a flowchart 1 of a rerouting method according to an embodiment of the present application.
  • FIG. 5 is a second flowchart of a method for rerouting according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a backhaul path in an IAB network according to an embodiment of the present application.
  • Fig. 7a is the structural representation that the report of link state information of the embodiment of the present application is per BA Routing ID;
  • Fig. 7b shows that the report of link state information in the embodiment of the present application is per link ID
  • FIG. 8 is a schematic structural diagram 1 of an apparatus for rerouting according to an embodiment of the present application.
  • FIG. 9 is a second schematic structural diagram of a rerouting apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, but the techniques are also applicable to applications other than NR system applications, such as 6th generation (6th generation ) Generation, 6G) communication system.
  • 6th generation 6th generation
  • 6G 6th generation
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, Wireless Local Area Networks, WLAN) access point, WiFi node, Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary, it needs to be explained Yes, in the embodiments of the present application, only the base station in the NR system is used as an example, but the specific type of the base station is not limited.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Node B Evolved Node B
  • eNB
  • FIG. 2 is a schematic diagram of an IAB system in the prior art.
  • an IAB node includes a distributed unit (Distributed Unit, DU) functional part and a mobile terminal (Mobile Termination, MT) functional part.
  • DU distributed Unit
  • MT Mobile Termination
  • an access node ie IAB node
  • the IAB node After an IAB node establishes a complete backhaul link, the IAB node turns on its DU function, and the DU provides cell services, that is, the DU can provide access services for user equipment (User Equipment, UE).
  • a self-backhaul loop includes a donor IAB node (or IAB donor, which is composed of IAB-donor-CU and IAB-donor-DU), and the donor IAB node has a directly connected wired transmission network
  • FIG. 3 is a structural diagram of a centralized/distributed unit (Centralized Unit-Distributed Unit, CU-DU) of an IAB system.
  • CU-DU Centralized Unit-Distributed Unit
  • the DUs of all IAB nodes are connected to a CU node, which configures the DUs through the F1-AP protocol.
  • the CU configures the MT through the RRC protocol.
  • IAB-donor-DU nodes have no MT functional part.
  • the introduction of the IAB system is to solve the situation that the deployment of the wired transmission network is not in place when the access points are densely deployed. That is, when there is no wired transmission network, the access point can rely on wireless backhaul.
  • the Backhaul Adaptation Protocol (BAP) layer is a protocol layer unique to the IAB network.
  • the BAP entity in each IAB node has an address, called the BAP address, which is combined with the path allocated by the IAB-donor-CU
  • the identifier (BAP routing ID) can be used to route data.
  • the protocol layer provides some functions as follows:
  • Routing function 1 send the data packet from the CU to the UE through the return channel or send the data packet from the UE to the CU through the return channel;
  • BAP protocol also provides the routing function of F1-AP information, sending F1 control information from CU to IAB-DU through the return channel or sending F1 control information from IAB-DU to CU through the return channel;
  • the BAP protocol layer defines some BAP Control PDUs (Protocol Data Units) used in IAB networks, which are used for flow control, notification of wireless link failures, etc.
  • BAP Control PDUs Protocol Data Units
  • IAB IniAB, hop-by-hop and end-to-end flow control.
  • 3GPP RAN2 agrees to adopt the flow control mechanism in the IAB network to solve the data congestion during downlink transmission.
  • the data congestion during downlink transmission means that the data received by the IAB node from its parent IAB node is too late to send to the downstream node or UE, resulting in data congestion.
  • Accumulation when the data accumulates, that is, when the data accumulates to the risk of buffer overflow, it will send a flow control feedback to its parent node to warn of congestion.
  • the IAB node that receives the flow control feedback will control the downlink data sent to the child IAB node. Transmission rate.
  • the IAB donor (home) node can send downlink data to the UE through IAB node 1, IAB node 2 and IAB node 3.
  • IAB Node 2 Once the backhaul link between IAB node 2 and IAB node 3 encounters link congestion, then IAB Node 2 will send flow control feedback (carried on BAP control PDU) to its upstream node, that is, IAB node 1. After IAB node 1 receives the message, it will stop sending new downlink data to IAB node 2.
  • FIG. 4 is a flowchart of the method for rerouting according to the embodiment of the present application. As shown in FIG. 4 , the steps of the method include:
  • Step S402 the first communication node acquires target information, wherein the target information includes at least one of the following: link state information of a backhaul path associated with the first communication node, and identification information of the backhaul path;
  • Step S404 the first communication node determines the target return path according to the target information.
  • the first communication node can determine the target backhaul path according to the link state information of the backhaul path associated with the first communication node and/or the identification information of the backhaul path, that is, the first communication node can
  • the currently available backhaul path is determined according to the link state information and/or the identification information, and then the target backhaul path is determined therefrom, so that the second communication node can perform rerouting to select the backhaul path even in the absence of RLF , which makes the way of rerouting more flexible, thereby solving the problem that rerouting is performed only in the case of a radio link failure RLF in the prior art, resulting in a relatively simple way of starting rerouting.
  • the backhaul paths associated with the first communication node are all the backhaul paths associated with the first communication node, and the backhaul paths identified by the identification information can be configured by the second communication node for the first communication node.
  • the used path may be all the backhaul paths associated with the first communication node, or may be part of the backhaul paths. For example, if the return paths associated with the first communication node include path 1, path 2, and path 3, the second communication node configures only two paths (path 1 and path 2) for use through identification information.
  • the first communication node in the embodiment of the present application may be a common node in the IAB network, for example, an IAB node, a donor IAB node.
  • the second communication node involved in the embodiment of the present application may be a CU node in the IAB network.
  • the return path (routing) involved in the embodiments of the present application refers to an entire transmission path
  • the return link (link) refers to a certain segment of the path (that is, path between 2 nodes).
  • the first communication node involved in step S402 in the embodiment of the present application obtains Link state information of the backhaul path associated with the first communication node, including at least one of the following:
  • Step S402-11 the first communication node obtains the first link state information of the downlink backhaul link with the downstream node;
  • Step S402-12 the first communication node receives the second link state information reported by the downstream node on the downlink return path; wherein the second link state information includes at least one of the following: The obtained link state information and the link state information reported by the downstream node of the downstream node on the downlink return path.
  • the downlink state information may be composed of the first link state information and/or the second link state information, that is, for the first communication node.
  • the target backhaul path is determined according to the first link state information and/or the second link state information.
  • Step S406 the first communication node transmits downlink status information to an upstream node of the first communication node, where the downlink status information includes at least one of the following Item: first link state information, second link state information.
  • the link state information in this embodiment of the present application may include at least one of the following items: redundancy capacity (capacity) and transmission delay (latency). Therefore, since the first communication node will transmit the link state information to the upstream node, which is extended to every communication node in the IAB network, each IAB node can directly forward the report message of the downstream IAB node to the upstream node or send the received message to the upstream node. The report message of the downstream IAB node is reported to the upstream node together with its own report message.
  • redundancy capacity capacity
  • transmission delay latency
  • each node when each node receives the latency value from the downstream child node, it can forward it to the upstream node, or send it to the upstream node together with the latency of the IAB node and the child IAB node in the return path.
  • the redundant capacity may refer to the redundant rate capacity, the number of bearers of a certain service (eg, video), and the amount of buffered data available for redundancy.
  • the manner in which the first communication node involved in the foregoing step S406 transmits the downlink state information to the upstream node of the first communication node includes at least one of the following:
  • Step S406-11 the first communication node transmits the first redundancy capacity value to the upstream node, wherein the first redundancy capacity value is the redundancy capacity value indicated by the first link state information;
  • Step S406-12 the first communication node transmits the second redundancy capacity value to the upstream node, wherein the second redundancy capacity value is the redundancy capacity value indicated by the first link state information and the second link state information. the smaller of the indicated redundancy capacity values;
  • Step S406-13 the first communication node transmits the first transmission delay value to the upstream node, wherein the first transmission delay value is the transmission delay value indicated by the first link state information;
  • Step S406-14 the first communication node transmits the second transmission delay value to the upstream node, wherein the second transmission delay value is the transmission delay value indicated by the first link state information and the second link state information. The sum of the indicated transmission delay values.
  • each IAB node in the backhaul link reports the redundant capacity min ⁇ C IAB node , C IAB child node ⁇ , that is, each IAB node receives the redundancy capacity value from the downstream child node, which is related to the estimated return link of the node to the child IAB node located in the return path.
  • the redundancy capacity values are compared, and the IAB passes the minimum of the two to the upstream node.
  • each parent node receives the downlink value from the downstream child node, which is consistent with the estimated IAB node of the node and the child IAB node in the return path.
  • the transmission delay value of the backhaul link between them is added, and finally only the accumulated transmission delay value is transmitted to the upstream node.
  • the first communication node involved in step S402 in the embodiment of the present application obtains and communicates with the first communication node
  • the associated method of transmitting the link state information of the back path may include at least one of the following:
  • Step S402-21 the first communication node obtains third link state information, where the third link state information is link state information of the backhaul link between the first communication node and the upstream node;
  • Step S404-22 the first communication node receives the fourth link state information transmitted by the upstream node on the uplink return path; wherein the fourth link state information includes at least one of the following: The acquired link state information and the link state information transmitted by the upstream node of the upstream node on the uplink return path.
  • the downlink state information may be composed of the third link state information and/or the fourth link state information, that is, for the first communication node.
  • the target backhaul path is determined according to the third link state information and/or the fourth link state information.
  • the method in this embodiment of the present application may further include: step S408, the first communication node transmits the uplink state information to the downstream node on the backhaul path, where the uplink state information includes at least one of the following: The third link state information and the fourth link state information.
  • the manner in which the first communication node involved in step S408 transmits the uplink state information to the downstream node on the backhaul path includes at least one of the following:
  • Step S408-11 the first communication node transmits a third redundancy capacity value to the downstream node, where the third redundancy capacity value is the redundancy capacity value indicated by the third link state information;
  • Step S408-12 the first communication node transmits the fourth redundancy capacity value to the downstream node, wherein the fourth redundancy capacity value is the redundancy capacity value indicated by the third link state information and the value of the fourth link state information. the smaller of the indicated redundancy capacity values;
  • Step S408-13 the first communication node transmits the third transmission delay value to the downstream node, wherein the third transmission delay value is the transmission delay value indicated by the third link state information;
  • Step S408-14 the first communication node transmits the fourth transmission delay value to the downstream node, wherein the fourth transmission delay value is the transmission delay value indicated by the third link state information and the fourth link state information. The sum of the indicated transmission delay values.
  • step S408-12 for the redundant capacity, only min ⁇ C IAB node , C sub-IAB node ⁇ is transmitted, that is, each node receives the redundant capacity value transmitted from the upstream sub-node, and it corresponds to the link of the node
  • the estimated redundancy capacity value is compared, and the minimum value of the two is passed to the downstream node. That is, the smaller value of the redundancy capacity of each backhaul path is used to select the backhaul path with more redundancy capacity.
  • each IAB node receives the transmission delay value from the upstream node, adds the transmission delay value estimated by the node, and finally sends only the downstream node. Pass the accumulated transmission delay value.
  • the available backhaul path is determined by the value of the transmission delay, that is, the backhaul path with a smaller transmission delay value is selected as far as possible.
  • the link state information includes at least one of the following: redundancy capacity and transmission delay
  • the first communication node involved in step S402 of the present application is determined according to the target information
  • the method of the target return path may further include:
  • Step S21 the first communication node determines the target link state information from the link state information, wherein the target link state at least satisfies one of the following conditions: the redundancy capacity is greater than the first preset threshold, and the transmission delay is less than the second preset threshold;
  • Step S22 the first communication node determines the target return path according to the target link state information.
  • the first preset threshold and the second preset threshold are determined by the transmission requirements of the data packets to be transmitted. That is to say, different first and second thresholds may be determined according to different data packets to be transmitted.
  • the first communication node when the first communication node receives the congestion indication about the optional backhaul path, the first communication node reduces or sets the redundancy capacity of the path to 0, and according to the updated redundancy capacity Select the corresponding return path. That is, the redundant capacity of the current optional backhaul path can be updated according to the situation.
  • the method of the embodiment of the present application may further include:
  • Step S410 the first communication node obtains the link state information of the backhaul link associated with itself;
  • Step S412 the first communication node transmits the link state information of the backhaul link associated with itself to the second communication node, where the second communication node is a node that controls all the first communication nodes in the communication system.
  • the CU node will receive the link status sent by other IAB nodes in the IAB network. information that can be used to determine the available backhaul paths in the IAB network.
  • the first communication node will receive the identification information sent by the second communication node, where the identification information is used to indicate the return path selected when the data packet is transmitted in the communication system.
  • the first communication node can determine the currently available backhaul paths, and then select an available backhaul path from the available backhaul paths for data offloading according to the service requirements required by the data packets to be transmitted. That is, it is guaranteed that the selected return path is available.
  • the method in this embodiment of the present application further includes: the first communication node receiving first configuration information sent by the second communication node, where the first configuration information is used to indicate the redundancy capacity and/or the backhaul path transmission delay. That is to say, while notifying the first communication node of the identification information of the backhaul path, the second communication node may also notify the redundancy capacity and/or transmission delay of the backhaul path, through the redundancy capacity of the local rerouting And/or the transmission delay can enable the first communication node to select a better backhaul path from the available backhaul paths, that is, a path with low transmission delay and large redundancy capacity.
  • the link state information in the embodiment of the present application is transmitted between multiple communication nodes through a message bearer of at least one of the following: a radio resource control (Radio Resource Control, RRC) message , F1-C message, return adaptation protocol BAP control protocol data unit (Protocol Data Unit, PDU), media access control layer (Media Access Control, MAC) control unit (Control Element, CE).
  • RRC Radio Resource Control
  • F1-C message F1-C message
  • PDU return adaptation protocol BAP control protocol data unit
  • PDU media access control layer
  • MAC Media Access Control
  • Control Element, CE Control Element
  • the format of the bearer link state information in the embodiment of the present application includes at least one of the following fields: redundancy capacity, transmission delay, identifier of the backhaul link, and identifier of the backhaul adaptation protocol BAP path.
  • the format of the message includes multiple entries, wherein each entry is used to indicate at least one of the following: information of a backhaul link identifier, and information of a backhaul adaptation protocol BAP path identifier.
  • FIG. 5 is a second flowchart of the method for rerouting according to an embodiment of the present application. As shown in FIG. 5 , the steps of the method include:
  • Step S502 the second communication node receives the link state information of the backhaul link associated with itself reported by the first communication node in the communication system; wherein the second communication node is a node that controls all the first communication nodes in the communication system;
  • Step S504 the second communication node configures the identification information of the return path according to the link state information, wherein the identification information is used to indicate the return path selected when the data packet is transmitted in the communication system.
  • the second communication node can determine the available backhaul paths in the communication system according to the link state information, and send back The identification information of the path is notified to the first communication node, so that even in the absence of RLF, the second communication node can perform rerouting to select the return path, so that the rerouting method is more flexible, thereby solving the problem in the prior art.
  • the rerouting is performed only when the radio link failure RLF occurs, which leads to a relatively simple problem in the way of starting the rerouting.
  • the method of the embodiment of the present application may further include:
  • Step S506 the second communication node sends first configuration information to the first communication node, where the first configuration information is used to indicate the redundancy capacity and/or transmission delay of the backhaul path. That is to say, while notifying the first communication node of the identification information of the backhaul path, the second communication node may also notify the redundancy capacity and/or transmission delay corresponding to the backhaul path.
  • the spare capacity and/or transmission delay can enable the first communication node to select a better return path for the data packet to be transmitted from the available return paths, that is, a path with low transmission delay and large redundancy capacity.
  • the method steps of the embodiment of the present application may further include:
  • Step S508 the second communication node sends second configuration information to the first communication node, where the second configuration information is used to indicate at least one of the following: used to instruct the first communication node to report link state information, used to instruct the first communication node A communication node initiates the local rerouting function.
  • the second configuration information can notify the first communication node which specific link state information to report, such as redundancy capacity or transmission delay; and notify the first communication node whether to enable the local rerouting function.
  • the above triggering manner may include at least one of the following: periodic triggering, event triggering, and polling triggering.
  • the periodicity may be preset by the second communication node, or may be a protocol agreement.
  • the event trigger includes at least one of the following events: link status information meets preset conditions, link status information messages sent by other communication nodes are received, and flow control feedback messages are received; for example, a link redundancy capacity or redundancy The change of the remaining capacity exceeds a certain threshold, the flow control feedback (flow control feedback) message is received, and the link status information message sent by the child node/parent node is received, etc.
  • the polling trigger may be trigger signaling sent by the IAB-donor-CU or IAB-donor-DU/IAB node.
  • the link state information in the embodiment of the present application has a valid duration in the second communication node.
  • the link state information is valid at the second communication node for at least the following time.
  • an IAB network is taken as an example
  • the first communication node is a common node (IAB node or donor DU) in the IAB network
  • the second communication node is is the CU node in the IAB network.
  • the CU configures each IAB node through RRC signaling, or configures IAB-donor-DU through F1 signaling to configure optional backhaul path status information, and the configuration includes at least one of the following:
  • the information is configured to be triggered by receiving the downlink flow control feedback message and also trigger the corresponding information reporting when the IAB node receives the link status information sent by other nodes;
  • the configuration implicitly instructs the IAB/IAB-donor-DU node to enable the Local rerouting function, that is, the IAB node that receives the configuration can perform downlink data packet replay on the optional return path information in the IAB network based on this node. routing;
  • the valid time after receiving the optional return path status information is: the information is considered valid until the next optional return path status information is received;
  • IAB-donor-CU->IAB-donor-DU1->IAB1->IAB3->IAB4 first IAB4 triggers the DL HbH flow control feedback message and Send to IAB3, triggering IAB3 to report the optional backlink link status information; IAB3 estimates the capacity and latency of its downlink link H31 to be C31 and L31 respectively, and reports it to IAB1 through the BAP control PDU; IAB1 receives the transmission from the child node It also triggers IAB1 to report link state information. IAB1 estimates the redundancy capacity and transmission delay of its downlink link H21 as C21 and L21 respectively, and reports it to IAB through BAP control PDU. -donor-DU1, but only the minimum value of C21 and C31 is reported for capacity; for transmission delay, the sum of the two is reported, that is, L21+L31.
  • IAB-donor-DU1 receives the optional backhaul link status information sent by IAB1, triggers IAB-donor-DU1 to carry out link status information, and IAB-donor-DU1 estimates the redundancy capacity of its downlink link H11 and The transmission delays are C11 and L11 respectively.
  • the downlink link from IAB-donor-DU1 to IAB2 is H12; IAB-donor-DU1 can report the optional backlink status information of all downstream nodes received. Report to IAB-donor-CU through F1 signaling.
  • the IAB-donor-CU adjusts the routing mapping configuration of the data packet according to the obtained state information of each link in the IAB network, and sends it to each node in the topology through F1 signaling; IAB-donor-DU1 Data is rerouted according to the changed configuration.
  • the downstream link status information received by IAB-donor-DU1 indicates that the capacity available in routing ID1 is larger than that in routing ID2 and the total The delay is smaller than that of routing ID2, then IAB-donor-DU1 can autonomously reroute the data that needs to be transmitted to IAB4 (if the data packets configured by IAB-donor-CU are transmitted through routing ID2), the Data is sent through the route of routing ID1.
  • rerouting can only be performed by IAB-donor-DU1, but also any node with multiple transmission paths in the node (provided that the destination IAB node of the original data packet can pass through the IAB node. other transmission paths).
  • the signaling carrying the backhaul link state information in the embodiments of the present application may be carried by F1 and RRC messages, or may be carried by BAP control PDU and MAC CE.
  • the BAP control PDU is used as an example to describe
  • the link status information is reported as per BAP routing ID, as follows:
  • PDU type indicates the type of the PDU.
  • the currently used PDU types are shown in Table 1:
  • the PDU type can be indicated using 1 reserved value in 0100-1111; or the same PDU type value as the downlink status information report (1 in 0100-1111 A reserved value), but an R bit is used to distinguish uplink and downlink status information reports.
  • the redundancy capacity and/or transmission delay can be selected according to the configuration of the CU; and it is noted that each message can carry the link status information of multiple backhaul paths;
  • the redundancy capacity can be the minimum value among all link states on the path;
  • the carried transmission delay can be the sum of all link states on the path.
  • the reporting of link status information is per link ID, as follows:
  • the PDU type can use any reserved value in 0100-1111 (a value different from that in Figure 7a, or different from the status information report in the per BAP routing ID format) PDU type value);
  • one reserved value in 0100-1111 can be used to indicate respectively; or the same reserved value can be used, but one R bit is used to distinguish the uplink and downlink;
  • each link ID the redundancy capacity and/or transmission delay can be selected according to the configuration of the CU; and it is noted that each message can carry the link status information of multiple link IDs;
  • the carried capacity and latency are the estimated link state values for the link ID.
  • the IAB node or the IAB-donor-DU node can be enabled to independently select a best transmission path to reroute the data packet by receiving the link state information report related to it, and can How much data is carried to other paths to ensure the reliability of data transmission.
  • the execution subject may be a rerouting apparatus, or a control module in the rerouting apparatus for executing the rerouting method.
  • a method for performing rerouting by a rerouting device is used as an example to describe the rerouting device provided in the embodiment of the present application.
  • An embodiment of the present application provides an apparatus for rerouting, which is applied to a first communication node. As shown in FIG. 8 , the apparatus includes:
  • the first obtaining module 82 is configured to obtain target information, wherein the target information includes at least one of the following: link state information of a backhaul path associated with the first communication node, and identification information of the backhaul path;
  • the determining module 84 is configured to determine the target return path according to the target information.
  • the target backhaul path can be determined according to the link state information of the backhaul path associated with the first communication node and/or the identification information of the backhaul path, that is, the first communication node can determine the target backhaul path according to the link status information and identification information to determine the currently available backhaul path, and then determine the target backhaul path from it, so that even in the absence of RLF, the second communication node can perform rerouting to select the backhaul path, so that the rerouting method It is more flexible, and thus solves the problem in the prior art that the rerouting is performed only in the case of a radio link failure RLF, resulting in a relatively simple way of starting the rerouting.
  • the first obtaining module 82 in this embodiment of the present application may further include at least one of the following:
  • a first obtaining unit configured to obtain the first link state information of the downlink backhaul link with the downstream node
  • a first receiving unit configured to receive the second link state information reported by the downstream node on the downlink return path; wherein the second link state information includes at least one of the following: obtained by the downstream node on the downlink return path link state information reported by the downstream node of the downstream node on the downlink return path.
  • the apparatus in this embodiment of the present application may further include: a first transmission module, configured to transmit downlink status information to an upstream node of the first communication node, where the downlink status information includes at least one of the following: First link state information, second link state information.
  • a first transmission module configured to transmit downlink status information to an upstream node of the first communication node, where the downlink status information includes at least one of the following: First link state information, second link state information.
  • the first transmission module in this embodiment of the present application may include at least one of the following:
  • a first transmission unit configured to transmit a first redundancy capacity value to an upstream node, where the first redundancy capacity value is a redundancy capacity value indicated by the first link state information
  • the second transmission unit is configured to transmit a second redundancy capacity value to the upstream node, wherein the second redundancy capacity value is the redundancy capacity value indicated by the first link state information and the redundancy capacity value indicated by the second link state information.
  • a third transmission unit configured to transmit the first transmission delay value to the upstream node, where the first transmission delay value is the transmission delay value indicated by the first link state information
  • the fourth transmission unit is configured to transmit the second transmission delay value to the upstream node, where the second transmission delay value is the transmission delay value indicated by the first link state information and the transmission delay value indicated by the second link state information. The sum of transmission delay values.
  • the first obtaining module 82 in this embodiment of the present application may further include at least one of the following:
  • a second obtaining unit configured to obtain third link state information, where the third link state information is link state information of the backhaul link between the first communication node and the upstream node;
  • the second receiving unit is configured to receive fourth link state information transmitted by the upstream node on the uplink backhaul path; wherein the fourth link state information includes at least one of the following: obtained by the upstream node on the uplink backhaul path The link state information transmitted by the upstream node on the uplink backhaul path and the link state information transmitted by the upstream node.
  • the apparatus in this embodiment of the present application may further include: a second transmission module, configured to transmit the uplink state information to the downstream node on the backhaul path, where the uplink state information includes at least one of the following : third link state information, fourth link state information.
  • a second transmission module configured to transmit the uplink state information to the downstream node on the backhaul path, where the uplink state information includes at least one of the following : third link state information, fourth link state information.
  • the second transmission module in this embodiment of the present application may further include at least one of the following:
  • a fifth transmission unit configured to transmit a third redundancy capacity value to the downstream node, wherein the third redundancy capacity value is the redundancy capacity value indicated by the third link state information;
  • the sixth transmission unit is configured to transmit the fourth redundancy capacity value to the downstream node, wherein the fourth redundancy capacity value is the redundancy capacity value indicated by the third link state information and the value indicated by the fourth link state information.
  • a seventh transmission unit configured to transmit a third transmission delay value to the downstream node, where the third transmission delay value is the transmission delay value indicated by the third link state information;
  • An eighth transmission unit configured to transmit a fourth transmission delay value to the downstream node, where the fourth transmission delay value is the transmission delay value indicated by the third link state information and the transmission delay value indicated by the fourth link state information The sum of transmission delay values.
  • the determining module 84 in this embodiment of the present application may further include: a first determining unit, configured to obtain information from the link state information
  • the target link state information is determined in , where the target link state at least satisfies one of the following conditions: the redundancy capacity is greater than the first preset threshold, and the transmission delay is less than the second preset threshold;
  • the target return path is determined according to the target link state information.
  • the first preset threshold and the second preset threshold are determined by the transmission requirements of the data packets to be transmitted.
  • the apparatus in this embodiment of the present application may further include: a second acquisition module, configured to acquire link status information of a backhaul link associated with itself before acquiring target information; a third transmission module, configured with The second communication node is a node that controls all the first communication nodes in the communication system.
  • the apparatus in this embodiment of the present application may further include: a first receiving module, configured to receive identification information sent by the second communication node, where the identification information is used to indicate that the data packet is selected for transmission in the communication system. return path.
  • a first receiving module configured to receive identification information sent by the second communication node, where the identification information is used to indicate that the data packet is selected for transmission in the communication system. return path.
  • the apparatus in this embodiment of the present application may further include: a second receiving module, configured to receive first configuration information sent by the second communication node, where the first configuration information is used to indicate redundancy of the backhaul path capacity and/or transmission delay.
  • a second receiving module configured to receive first configuration information sent by the second communication node, where the first configuration information is used to indicate redundancy of the backhaul path capacity and/or transmission delay.
  • the link state information in the embodiment of the present application is transmitted between multiple communication nodes through a message bearing at least one of the following: a radio resource control RRC message, an F1-C message, and a backhaul adaptation protocol BAP control protocol.
  • Data unit PDU media access control layer control unit.
  • the format of the message in this embodiment of the present application includes at least one of the following fields: redundancy capacity, transmission delay, identifier of the backhaul link, and backhaul adaptation protocol BAP path identifier.
  • the format of the message in this embodiment of the present application includes multiple entries, where each entry is used to indicate at least one of the following: information about a backhaul link identifier, information about a backhaul adaptation protocol BAP path identifier .
  • the above embodiment is described from the device side applied to the first communication node, and the following describes the device side applied to the second communication node.
  • An embodiment of the present application provides a rerouting apparatus, which is applied to a second communication node. As shown in FIG. 9 , the apparatus includes:
  • the third receiving module 92 is configured to receive the link state information of the backhaul link associated with itself reported by the first communication node in the communication system; wherein the second communication node is the node that controls all the first communication nodes in the communication system ;
  • the configuration module 94 is configured to configure the identification information of the return path according to the link state information, wherein the identification information is used to indicate the return path selected when the data packet is transmitted in the communication system.
  • the available backhaul path in the communication system can be determined according to the link state information, and the The identification information of the backhaul path is notified to the first communication node, so that the second communication node can perform rerouting to select the backhaul path even in the absence of RLF, so that the rerouting method is more flexible, thereby solving the problem of existing In the technology, rerouting is only performed when the radio link failure RLF occurs, which leads to a relatively simple problem in the way of initiating rerouting.
  • the apparatus in this embodiment of the present application may further include: a first sending module, configured to send first configuration information to the first communication node, where the first configuration information is used to indicate the redundancy capacity and / or transmission delay.
  • a first sending module configured to send first configuration information to the first communication node, where the first configuration information is used to indicate the redundancy capacity and / or transmission delay.
  • the apparatus in this embodiment of the present application may further include: a second sending module, configured to send the second configuration information to the first communication node before receiving the link state information reported by the first communication node in the communication system,
  • the second configuration information is used to indicate at least one of the following: used to instruct the first communication node to report link state information, and used to instruct the first communication node to start the local rerouting function.
  • the triggering manner in this embodiment of the present application includes at least one of the following: periodic triggering, event triggering, and polling triggering.
  • the event trigger in this embodiment of the present application includes at least one of the following events: link state information meets preset conditions, a link state information message sent by another communication node is received, and a flow control feedback message is received.
  • the valid time of the link state information in the embodiment of the present application in the second communication node is at least one of the following: 1) within a preset time period after receiving the link state information, wherein the preset time period is determined by The second communication node is determined or agreed by the protocol; 2) After receiving the link state information until receiving the next link state information carrying the same link identifier or BAP path identifier.
  • the apparatus for rerouting in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the rerouting device in the embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the rerouting apparatus provided in this embodiment of the present application can implement each process implemented by the method embodiments in FIG. 4 and FIG. 5 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 1000, including a processor 1001, a memory 1002, a program or instruction stored in the memory 1002 and executable on the processor 1001,
  • a communication device 1000 including a processor 1001, a memory 1002, a program or instruction stored in the memory 1002 and executable on the processor 1001
  • the communication device 1000 is a terminal
  • the program or instruction is executed by the processor 1001
  • each process of the foregoing method embodiment of the rerouting method is implemented, and the same technical effect can be achieved.
  • the communication device 1000 is a network-side device, when the program or instruction is executed by the processor 1001, each process of the above rerouting method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the network device 1100 includes: an antenna 111 , a radio frequency device 112 , and a baseband device 113 .
  • the antenna 111 is connected to the radio frequency device 112 .
  • the radio frequency device 112 receives information through the antenna 111, and sends the received information to the baseband device 113 for processing.
  • the baseband device 113 processes the information to be sent and sends it to the radio frequency device 112
  • the radio frequency device 112 processes the received information and sends it out through the antenna 111 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 113, and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 113, where the baseband apparatus 113 includes a processor 114 and a memory 115.
  • the baseband device 113 may include, for example, at least one baseband board on which multiple chips are arranged, as shown in FIG. 11 , one of the chips is, for example, the processor 114 , which is connected to the memory 115 to call the program in the memory 115 to execute
  • the network devices shown in the above method embodiments operate.
  • the baseband device 113 may further include a network interface 116 for exchanging information with the radio frequency device 112, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present invention further includes: an instruction or program stored on the memory 115 and executable on the processor 114 , and the processor 114 invokes the instruction or program in the memory 115 to execute the instructions or programs shown in FIG. 8 or 9 .
  • the method executed by each module achieves the same technical effect. To avoid repetition, it is not repeated here.
  • the embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the above-mentioned rerouting method embodiment can be achieved, and can achieve The same technical effect, in order to avoid repetition, will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used for running network-side device programs or instructions to implement the above rerouting
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used for running network-side device programs or instructions to implement the above rerouting
  • An embodiment of the present application provides a computer program product, where the program product is stored in a non-volatile storage medium, and the program product is executed by at least one processor to implement each process of the foregoing rerouting method embodiment, And can achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • An embodiment of the present application provides a communication device, which is configured to perform each process of each embodiment of the above rerouting method, and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种重路由方法及装置、通信设备,属于通信技术领域。其中,该方法包括:第一通信节点获取目标信息,其中,所述目标信息包括以下至少一项:与所述第一通信节点关联的回传路径的链路状态信息、回传路径的标识信息;所述第一通信节点根据所述目标信息确定目标回传路径。

Description

重路由方法及装置、通信设备
相关申请的交叉引用
本申请主张在2020年12月11日在中国提交的中国专利申请No.202011460042.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种重路由方法及装置、通信设备。
背景技术
现有通信系统中能够让自回传(Integrated Access and Backhaul,IAB)节点自主对数据进行重路由的场景,即当该IAB节点和其父节点之间的链路发生了无线链路失败(Radio Link Failure,RLF),才能开启数据包的本地重路由(local rerouting),即IAB节点可以为数据选择不同于当前回传路径的第二回传路径,从而实现数据分流。然而目前的机制下IAB节点在未发生RLF的情况下,无法开启数据的本地路由,导致网络节点传输数据的灵活性变低,且目前IAB节点无法知道可选回传路径的一些信息(如传输链路的冗余capacity,或者latency等),也就无法有效判断如何对需要传输的数据进行局部重路由。盲选第二回传路径和确定分流到第二回传路径的数据量可能会导致第二回传路径的容量得不到充分利用、出现拥塞或分流数据的传输时延过长等问题。
发明内容
本申请实施例提供一种重路由方法及装置、通信设备,能够解决现有技术中只有在发生无线链路失败RLF的情况下才能进行重路由,导致启动重路由的方式比较单一的问题。
第一方面,提供了一种重路由的方法,包括:第一通信节点获取目标信 息,其中,所述目标信息包括以下至少一项:与所述第一通信节点关联的回传路径的链路状态信息、回传路径的标识信息;所述第一通信节点根据所述目标信息确定目标回传路径。
第二方面,提供了一种重路由的方法,包括:第二通信节点接收通信系统中第一通信节点上报的与自身关联的回传链路的链路状态信息;其中,所述第二通信节点是通信系统中控制所有第一通信节点的节点;所述第二通信节点根据所述链路状态信息配置回传路径的标识信息,其中,所述标识信息用于指示数据包在所述通信系统中传输时所选用的回传路径。
第三方面,提供了一种重路由的装置,应用于第一通信节点,包括:第一获取模块,用于获取目标信息,其中,所述目标信息包括以下至少一项:与所述第一通信节点关联的回传路径的链路状态信息、回传路径的标识信息;确定模块,用于根据所述目标信息确定目标回传路径。
第四方面,提供了一种重路由的装置,应用于第二通信节点,包括:第三接收模块,用于接收通信系统中第一通信节点上报的与自身关联的回传链路的链路状态信息;其中,所述第二通信节点是通信系统中控制所有第一通信节点的节点;配置模块,用于根据所述链路状态信息配置回传路径的标识信息,其中,所述标识信息用于指示数据包在所述通信系统中传输时所选用的回传路径。
第五方面,提供了一种通信设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第七方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实 现如第一方面所述的方法,或实现如第二方面所述的方法。
第八方面,本申请实施例提供一种程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第九方面,本申请实施例提供了一种通信设备,被配置为执行如第一方面所述的方法的步骤,或者被配为执行如第二方面所述的方法的步骤。
在本申请实施例中,第一通信节点可以根据与第一通信节点关联的回传路径的链路状态信息和/或回传路径的标识信息确定目标回传路径,即第一通信节点可以根据链路状态信息和/或标识信息确定当前可用的回传路径,进而从中确定出目标回传路径,这样即使在没有出现RLF的情况下第二通信节点也可以进行重路由以选择回传路径,使得重路由的方式更加灵活,从而解决了现有技术中只有在发生无线链路失败RLF的情况下才能进行重路由,导致启动重路由的方式比较单一的问题。
附图说明
图1示出本申请实施例可应用的一种无线通信系统的框图;
图2是现有技术中IAB系统的示意图;
图3是一个IAB系统的CU-DU结构图;
图4是本申请实施例的重路由的方法流程图一;
图5是本申请实施例的重路由的方法流程图二;
图6是本申请实施例的IAB网络中回传路径的示意图;
图7a是本申请实施例的链路状态信息的上报是per BAP routing ID的结构示意图;
图7b是本申请实施例的链路状态信息的上报是per link ID;
图8是本申请实施例的重路由的装置的结构示意图一;
图9是本申请实施例的重路由的装置的结构示意图二;
图10是本申请实施例的通信设备的结构示意图;
图11是本申请实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6 代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、无线局域网络(Wireless Local Area Networks,WLAN)接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
首先对本申请实施例的相关术语进行介绍;
一、IAB网络简介
图2是现有技术中IAB系统的示意图,如图2所示,一个IAB节点包括分布单元(Distributed Unit,DU)功能部分和移动终端(Mobile Termination,MT)功能部分。依靠MT,一个接入节点(即IAB node)可以找到一个上游接入点(parent IAB node或者IAB-donor-DU),并跟上游接入点的DU建立无线连接,该无线连接被称为回传链路(backhaul link)。在一个IAB节点建立 完整的回传链路后,该IAB节点打开其DU功能,DU会提供小区服务,即DU可以为用户设备(User Equipment,UE)提供接入服务。一个自回传回路包括一个donor IAB节点(或者称为IAB donor,由IAB-donor-CU和IAB-donor-DU组成),donor IAB节点有直接相连的有线传输网。
图3是一个IAB系统的集中/分布单元(Centralized Unit-Distributed Unit,CU-DU)结构图。在一个自回传回路中,所有的IAB节点的DU都连接到一个CU节点,由这一个节点通过F1-AP协议进行对DU进行配置。CU通过RRC协议,对MT进行配置。IAB-donor-DU节点没有MT功能部分。
其中,IAB系统的引入是为了解决接入点密集部署时,有线传输网部署不到位的情况。即在没有有线传输网络时,接入点可以依赖无线回传。
二、IAB网络的BAP协议简介:
回传适配协议(Backhaul Adaptation Protocol,BAP)层是IAB网络特有的协议层,每个IAB节点中的BAP实体都有一个地址,称为BAP address,该地址结合IAB-donor-CU分配的路径标识(BAP routing ID)可以用来对数据进行路由。该协议层提供一部分功能如下:
路由功能1:将数据包从CU通过回传通道发送给UE或者是将数据包从UE经回传通道发送到CU;
路由功能2:BAP协议也提供F1-AP信息的路由功能,将来自CU的F1控制信息经回传通道发送给IAB-DU或将来自IAB-DU的F1控制信息经回传通道发送给CU;
QoS控制信息的传输功能:BAP协议层中定义了一些IAB网络中使用的BAP Control PDU(Protocol Data Unit,协议数据单元),用来做流量控制、回传无线链路失败的通知等。
三、IAB网络中的flow control(流控制)简介
IAB中支持两种类型的流控机制,分别是hop-by-hop以及end-to-end flow control。
1)hop-by-hop flow control
3GPP RAN2同意在IAB网络中采用流控的机制来解决下行传输时的数据拥塞,下行传输时的数据拥塞是指IAB节点从其父IAB节点收到的数据来不及发送给下游节点或者UE而造成数据堆积,当数据堆积,即当数据堆积到有缓存溢出风险时,会向其父节点发送一个flow control的反馈以警示拥塞,接收到流控反馈的IAB节点会控制给子IAB节点发送下行数据的传输速率。
例如,IAB donor(归属)节点可以通过IAB节点1、IAB节点2以及IAB节点3给UE发送下行数据,一旦IAB节点2和IAB节点3之间的回传链路遭遇了链路拥塞,那么IAB节点2会向它的上游节点,即IAB节点1发送flow control feedback(承载在BAP control PDU上),IAB节点1收到消息后则会停止减少向IAB节点2发送新的下行数据。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的重路由的方法进行详细地说明。
本申请实施例的装置提供了一种重路由的方法,图4是本申请实施例的重路由的方法流程图一,如图4所述,该方法的步骤包括:
步骤S402,第一通信节点获取目标信息,其中,目标信息包括以下至少一项:与第一通信节点关联的回传路径的链路状态信息、回传路径的标识信息;
步骤S404,第一通信节点根据目标信息确定目标回传路径。
通过上述步骤S402和步骤S404,第一通信节点可以根据与第一通信节点关联的回传路径的链路状态信息和/或回传路径的标识信息确定目标回传路径,即第一通信节点可以根据链路状态信息和/或标识信息确定当前可用的回传路径,进而从中确定出目标回传路径,这样即使在没有出现RLF的情况下第二通信节点也可以进行重路由以选择回传路径,使得重路由的方式更加灵活,从而解决了现有技术中只有在发生无线链路失败RLF的情况下进行重路由,导致启动重路由的方式比较单一的问题。
需要说明的是,与第一通信节点关联的回传路径是与第一通信节点关联的所有回传路径,而该标识信息所标识的回传路径第二通信节点给第一通信节点配置的可以使用的路径,可以是第一通信节点关联的所有回传路径,也可以是其中部分回传路径。例如,与第一通信节点关联的回传路径有路径1、路径2、路径3,则第二通信节点通过标识信息只给配置了2条路径(路径1、路径2)可使用。
需要说明的是,本申请实施例中的第一通信节点可以IAB网络中的普通节点,例如,IAB节点、donor IAB节点。而本申请实施例中涉及到的第二通信节点可以是IAB网络中的CU节点。
此外,还需要说明的是,本申请实施例中涉及到的回传路径(routing)表示的是一整条传输路径,而回传链路(link)指的是路径上的某段组成(即2个节点之间的路径)。
在本申请实施例的可选实施方式中,在上述本申请实施例中的链路状态信息为下行链路状态信息的情况下,本申请实施例中步骤S402中涉及到的第一通信节点获取与第一通信节点关联的回传路径的链路状态信息,包括以下至少一项:
步骤S402-11,第一通信节点获取与下游节点之间的下行回传链路的第一链路状态信息;
步骤S402-12,第一通信节点接收下行回传路径上的下游节点上报的第二链路状态信息;其中,第二链路状态信息包括以下至少一项:下行回传路径上的下游节点所获取到的链路状态信息、下行回传路径上的下游节点的下游节点所上报的链路状态信息。
通过上述步骤S402-11和步骤S402-12可知,该下行链路状态信息可以由第一链路状态信息和/或第二链路状态信息组成,也就是说,对于第一通信节点而言,是根据第一链路状态信息和/或第二链路状态信息来确定目标回传路径的。
在此基础上,本申请实施例的方法步骤还可以包括:步骤S406,第一通信节点将下行链路状态信息传输给第一通信节点的上游节点,其中,下行链路状态信息包括以下至少一项:第一链路状态信息、第二链路状态信息。
在本申请实施例中的链路状态信息可以包括以下至少一项:冗余容量(capacity)、传输时延(latency)。因此,由于第一通信节点均会向上游节点传输链路状态信息,扩展到IAB网络中的每一个通信节点,每个IAB节点可以把下游IAB节点的汇报消息直接转发给上游节点或者把收到的下游IAB节点的汇报消息和自身的汇报消息一起汇报给上游节点。在具体应用场景中,即每一个节点收到下游子节点传来的latency值,都可以向上游节点转发,或者跟本IAB节点与处于该回传路径的子IAB节点的latency一起向上游节点发送。
需要说明的是,在本申请实施例中,冗余容量可以是指冗余速率容量、某一业务(如视频)的承载数量、冗余可用的缓冲数据量。
进一步地,在本申请实施例中,上述步骤S406中涉及到的第一通信节点将下行链路状态信息传输给第一通信节点的上游节点的方式,包括以下至少之一:
步骤S406-11,第一通信节点向上游节点传输第一冗余容量值,其中,第一冗余容量值为第一链路状态信息所指示的冗余容量值;
步骤S406-12,第一通信节点向上游节点传输第二冗余容量值,其中,第二冗余容量值为第一链路状态信息所指示的冗余容量值与第二链路状态信息所指示的冗余容量值中较小的冗余容量值;
步骤S406-13,第一通信节点向上游节点传输第一传输时延值,其中,第一传输时延值为第一链路状态信息所指示的传输时延值;
步骤S406-14,第一通信节点向上游节点传输第二传输时延值,其中,第二传输时延值为第一链路状态信息所指示的传输时延值与第二链路状态信息所指示的传输时延值之和。
由上述步骤S406-12可知,对于一个可选回传路径的冗余容量传输,每一个处于该回传链路的IAB节点向上汇报处于该回传路径的回传链路的冗余容量min{C IAB节点,C IAB子节点},即每一个IAB节点收到下游子节点传来的冗余容量值,都与该节点到位于该回传路径的子IAB节点的回传链路的预估冗余容量值进行比较,然后该IAB向上游节点传递两者之中的最小值。
由上述步骤S406-14可知,对于下行传输延时,每一个父节点收到下游子节点传来的下行值,都与该节点所预估的本IAB节点和处于该回传路径的子IAB节点之间的回传链路的传输时延值进行相加,最终只向上游节点传递累加的传输时延值。
在本申请实施例的另一个可选实施方式中,在链路状态信息为上行链路状态信息的情况下,本申请实施例中的步骤S402涉及到的第一通信节点获取与第一通信节点关联的回传路径的链路状态信息的方式,可以包括以下至少一项:
步骤S402-21,第一通信节点获取第三链路状态信息,其中,第三链路状态信息为第一通信节点与上游节点之间的回传链路的链路状态信息;
步骤S404-22,第一通信节点接收上行回传路径上的上游节点传递的第四链路状态信息;其中,第四链路状态信息包括以下至少之一:上行回传路径上的上游节点所获取到的链路状态信息、上行回传路径上的上游节点的上游节点所传输的链路状态信息。
通过上述步骤S402-21和步骤S402-22可知,该下行链路状态信息可以由第三链路状态信息和/或第四链路状态信息组成,也就是说,对于第一通信节点而言,是根据第三链路状态信息和/或第四链路状态信息来确定目标回传路径的。
基于此,本申请实施例中的方法还可以包括:步骤S408,第一通信节点将上行链路状态信息传输给回传路径上的下游节点,其中,上行链路状态信息包括以下至少一项:第三链路状态信息、第四链路状态信息。
进一步地,在本申请实施例中,步骤S408中涉及到的第一通信节点将上行链路状态信息传输给回传路径上的下游节点的方式,包括以下至少一项:
步骤S408-11,第一通信节点向下游节点传输第三冗余容量值,其中,第三冗余容量值为第三链路状态信息所指示的冗余容量值;
步骤S408-12,第一通信节点向下游节点传输第四冗余容量值,其中,第四冗余容量值为第三链路状态信息所指示的冗余容量值与第四链路状态信息所指示的冗余容量值中较小的冗余容量值;
步骤S408-13,第一通信节点向下游节点传输第三传输时延值,其中,第三传输时延值为第三链路状态信息所指示的传输时延值;
步骤S408-14,第一通信节点向下游节点传输第四传输时延值,其中,第四传输时延值为第三链路状态信息所指示的传输时延值与第四链路状态信息所指示的传输时延值之和。
对于上述步骤S408-12,对于冗余容量,只传递min{C IAB节点,C 子IAB节点},即每一个节点收到上游子节点传来的冗余容量值,都与该节点对应链路的预估冗余容量值进行比较,向下游节点传递两者之中的最小值。也就是说,通过每条回传路径的冗余容量的较小值以从中选择出冗余容量较多的回传路径。
对于上述步骤S408-14,对于上行传输延时,每一个IAB节点收到上游节点传来的传输时延值,都与该节点所预估的传输时延值进行相加,最终只向下游节点传递累加的传输时延值。通过传输时延的取值以确定可用的回传路径,即尽量选择传输时延值较小的回传路径。
在本申请实施例的可选实施方式中,在链路状态信息包括以下至少一项:冗余容量、传输时延的情况下,本申请步骤S402中涉及到的第一通信节点根据目标信息确定目标回传路径的方式,进一步可以包括:
步骤S21,第一通信节点从链路状态信息中确定出目标链路状态信息,其中,目标链路状态至少满足以下条件之一:冗余容量大于第一预设门限、传输时延小于第二预设门限;
步骤S22,第一通信节点根据目标链路状态信息确定目标回传路径。
需要说明的是,该第一预设门限和第二预设门限由待传输的数据包的传输需求确定。也就是说,可以根据不同的待传输的数据包确定不同的一门限和第二门限。
在具体应用场景中,当第一通信节点收到关于可选回传路径的拥塞指示时,则第一通信节点将该路径的冗余容量减少或置于0,并依据更新后的冗余容量进行相应回传路径的选择。也就是说,当前可选回传路径的冗余容量可以根据情况进行更新。
在本申请实施例的另一个可选实施方式中,在步骤S402中涉及到的第一通信节点获取目标信息之前,本申请实施例的方法还可以包括:
步骤S410,第一通信节点获取与自身关联的回传链路的链路状态信息;
步骤S412,第一通信节点向第二通信节点传输与自身关联的回传链路的链路状态信息,其中,第二通信节点是通信系统中控制所有第一通信节点的节点。
通过上述步骤S410和步骤S412,如果第一通信节点为IAB网络中的节点,则第二通信节点为IAB网络中的CU节点,则CU节点会接收IAB网络中的其他IAB节点发送的链路状态信息,该链路状态信息可以用于确定IAB网络中可用的回传路径。
基于此,第一通信节点会接收到第二通信节点发送的标识信息,其中,标识信息用于指示数据包在通信系统中传输时所选用的回传路径。通过该标识信息第一通信节点就能够确定当前可用的回传路径有哪些,再根据待传输的数据包所需要的服务需求,从可用的回传路径中选择出一条可用回传路径进行数据分流即可,保证了所选择的回传路径是可用的。
需要说明的是,本申请实施例中的方法还包括:第一通信节点接收第二通信节点发送的第一配置信息,其中,第一配置信息用于指示回传路径的冗余容量和/或传输时延。也就是说,第二通信节点在通知第一通信节点的回传 路径的标识信息的同时,还可以通知回传路径的冗余容量和/或传输时延,通过该局部重路由的冗余容量和/或传输时延可以使得第一通信节点能够从可用的回传路径中选择出更优的回传路径,即传输时延低,冗余容量大的路径。
在本申请实施例的可选实施方式中,本申请实施例中的链路状态信息在多个通信节点之间传输通过以下至少一项的消息承载:无线资源控制(Radio Resource Control,RRC)消息、F1-C消息、回传适配协议BAP控制协议数据单元(Protocol Data Unit,PDU)、媒体接入控制层(Media Access Control,MAC)控制单元(Control Element,CE)。
此外,本申请实施例中承载链路状态信息的格式中至少包括以下之一的域:冗余容量、传输时延、回传链路的标识、回传适配协议BAP路径标识。其中,消息的格式中包括多个条目,其中,每一个条目用于指示以下至少一项:回传链路标识的信息、回传适配协议BAP路径标识的信息。
上述实施例是从第一通信节点侧对本申请进行解释说明的,下面将从第二通信节点侧对本申请进行解释说明。
本申请实施例还提供了一种重路由的方法,图5是本申请实施例的重路由的方法流程图二,如图5所示,该方法的步骤包括:
步骤S502,第二通信节点接收通信系统中第一通信节点上报的与自身关联的回传链路的链路状态信息;其中,第二通信节点是通信系统中控制所有第一通信节点的节点;
步骤S504,第二通信节点根据链路状态信息配置回传路径的标识信息,其中,标识信息用于指示数据包在通信系统中传输时所选用的回传路径。
通过上述步骤S502和步骤S504可知,第二通信节点在接收到第一通信节点传输的链路状态信息之后,可以根据该链路状态信息确定该通信系统中可用的回传路径,并将回传路径的标识信息通知给第一通信节点,这样即使在没有出现RLF的情况下第二通信节点也可以进行重路由以选择回传路径,使得重路由的方式更加灵活,从而解决了现有技术中只有在发生无线链路失 败RLF的情况下进行重路由,导致启动重路由的方式比较单一的问题。
在本申请实施例的可选实施方式中,本申请实施例的方法还可以包括:
步骤S506,第二通信节点向第一通信节点发送第一配置信息,其中,第一配置信息用于指示回传路径的冗余容量和/或传输时延。也就是说,第二通信节点在通知第一通信节点的回传路径的标识信息的同时,还可以通知该回传路径对应的冗余容量和/或传输时延,通过该局部重路由的冗余容量和/或传输时延可以使得第一通信节点能够从可用的回传路径中为待传输的数据包选择出更优的回传路径,即传输时延低,冗余容量大的路径。
在本申请实施例的可选实施方式中,在第二通信节点接收通信系统中第一通信节点上报的链路状态信息之前,本申请实施例的方法步骤进一步可以包括:
步骤S508,第二通信节点向第一通信节点发送第二配置信息,其中,第二配置信息用于指示以下至少一项:用于指示触发第一通信节点上报链路状态信息、用于指示第一通信节点启动局部重路由功能。
通过该第二配置信息能够通知第一通信节点上报哪些具体的链路状态信息,例如冗余容量、或传输时延;以及通知第一通信节点是否开启局部重路由功能。
其中,上述触发的方式可以包括以下至少一项:周期性触发、事件触发、轮询触发。
其中,该周期性可以是第二通信节点预设,也可以是协议约定。而事件触发包括以下至少之一的事件:链路状态信息满足预设条件、收到其他通信节点发送的链路状态信息消息、收到流量控制反馈消息;例如,某链路冗余容量或冗余容量变化超过一定阈值、收到流控制反馈(flow control feedback)消息、收到子节点/父节点发送的链路状态信息消息等。轮询触发可以是由IAB-donor-CU或者IAB-donor-DU/IAB节点发送触发信令。
需要说明的是,本申请实施例中的链路状态信息在第二通信节点中是存 在有效时长的,在具体应用场景中,该链路状态信息在第二通信节点的有效时间为至少以下之一:1)从收到链路状态信息之后的预设时长内,其中,预设时长由第二通信节点确定或由协议约定;2)从收到链路状态信息之后直到收到下一个携带同样链路标识或BAP路径标识的链路状态信息。
下面结合本申请实施的具体实施方式对本申请进行举例说明,在该具体实施方式中以IAB网络为例,第一通信节点为IAB网络中的普通节点(IAB节点或donor DU),第二通信节点为IAB网络中的CU节点。
在该具体实施方式中,首先,CU通过RRC信令配置各IAB节点,或者通过F1信令配置IAB-donor-DU进行可选回传路径状态信息的配置,该配置包括以下至少一项:
a)配置需要上报的可选回传路径状态信息为下行链路的冗余容量和传输时延;
b)该信息配置成收到下行flow control feedback消息触发且当IAB节点接收到其他节点发送的链路状态信息时也触发相应的信息上报;
c)并且该配置隐式指示IAB/IAB-donor-DU节点开启Local rerouting功能,即收到该配置的IAB节点可以基于本节点对IAB网络中的可选回传路径信息进行下行数据包的重路由;
d)收到可选回传路径状态信息后的有效时间为:直至收到下一个可选回传路径状态信息之前均认定该信息有效;
如图6所示,以传输路径(假设为routing ID=1)IAB-donor-CU->IAB-donor-DU1->IAB1->IAB3->IAB4举例;首先IAB4触发DL HbH flow control feedback消息并且发送给IAB3,触发IAB3进行可选回传链路状态信息上报;IAB3估计其下行链路link H31的capacity和latency分别为C31和L31,并且通过BAP control PDU上报给IAB1;IAB1收到子节点发送的可选回传链路状态信息,也触发IAB1进行链路状态信息上报,IAB1估计其下行链路link H21的冗余容量和传输时延分别为C21和L21,并 且通过BAP control PDU上报给IAB-donor-DU1,但是对于capacity而言只上报C21和C31中的最小值;对于传输时延而言上报两者之和,即L21+L31。
进而,IAB-donor-DU1收到IAB1发送的可选回传链路状态信息,触发IAB-donor-DU1进行链路状态信息,IAB-donor-DU1估计其下行链路link H11的冗余容量和传输时延分别为C11和L11,图6中,IAB-donor-DU1到IAB2的下行链路link为H12;IAB-donor-DU1可以将收到的所有下游节点可选回传链路状态信息上报通过F1信令上报给IAB-donor-CU,此时对于capacity而言上报C11和min{C21,C31}中的最小值;对于传输时延而言上报两者之和,即L11+(L21+L31);最终由IAB-donor-CU根据得到的IAB网络中各链路的状态信息,调整数据包的路由映射配置,并且通过F1信令下发给拓扑结构中的各节点;IAB-donor-DU1根据更改后的配置对数据进行重路由。
还可以是,IAB-donor-DU1不上报下游节点可选回传链路状态信息给IAB-donor-CU,而是根据IAB-donor-DU1得到的各路径的链路状态信息(如路径routing ID=2,即IAB-donor-DU1->IAB2->IAB3->IAB4),选择一条最适合当前需要传输数据包的路径,对数据包进行re-routing(若选择的需要传输数据包的路径与原数据包的包头中所携带的路径ID一致,则不需要re-routing),如IAB-donor-DU1收到的下游链路状态信息表示routing ID1中可用的capacity比routing ID2的要大且总的延时比routing ID2的要小,则IAB-donor-DU1即可自主地对需要传输给IAB4的数据进行重路由(如果IAB-donor-CU配置的数据包是通过routing ID2传输时),将数据通过routing ID1的路径进行发送。
需要说明的是,不一定是只能由IAB-donor-DU1进行重路由,还可以是节点中的任一有多条传输路径的节点(前提是原始数据包的destination IAB节点可以通过该IAB节点的其他传输路径送达)。
此外,本申请实施例中的承载回传链路状态信息的信令,可以由F1、RRC消息承载,也可以由BAP control PDU和MAC CE承载,在本申请以BAP  control PDU为例,对其进行举例说明,如图7a所示,链路状态信息的上报是per BAP routing ID,具体如下:
1)PDU type(类型)表示该PDU的类型,目前已使用的PDU type如表1所示:
表1
Figure PCTCN2021136402-appb-000001
对于下行链路状态信息报告,PDU type可以使用0100-1111中的任意一个预留值;或者对第一通信协议中的flow control feedback消息格式进行增强,如PDU type使用0001,且用一位R位来区分当前为不同协议的消息。具体来说,如果图7a中第一个字节中的第1个R位=1用来进行区分,第一通信协议中的IAB会读取该R位,若为1则表示PDU type为“0001”的消息是用来承载下行链路状态信息的,若为0则仍然表示第一通信协议中的flow control feedback格式。
2)对于上行链路状态信息报告,PDU type可以使用0100-1111中的1个预留值来指示;或者也可以使用与下行链路状态信息报告相同的PDU type值(0100-1111中的1个预留值),但是用一位R位来区分上下行链路状态信息报告。
3)对于每一个回传路径,都可以根据CU的配置选择携带冗余容量和/或传输时延;并且注意到每个消息可以携带多个回传路径的链路状态信息;其中,携带的冗余容量可以是该路径上所有的链路状态中的最小值;携带的 传输时延可以是该路径上所有的链路状态的总和。
如图7b所示,链路状态信息的上报是per link ID的,具体如下:
1)对于下行链路状态信息报告,PDU type可以使用0100-1111中的任意一个预留值(与图7a中不一样的一个值,或者说与per BAP routing ID格式下的状态信息报告不一样的PDU type值);
2)对于上行链路状态信息报告,可以分别使用0100-1111中的1个预留值来指示;或者也可以使用相同的预留值,但是用一位R位来区分上下行;
3)对于每一个link ID,都可以根据CU的配置选择携带冗余容量和/或传输时延;并且注意到每个消息可以携带多个link ID的链路状态信息;
4)携带的capacity和latency为对该link ID预估的链路状态值。
通过本申请的具体实施方式,可以使得IAB节点或者IAB-donor-DU节点通过接收与其相关的链路状态信息报告,从而具备能够自主选择一条最有的传输路径对数据包进行重路由,以及能够承载多少数据到其他路径,从而保证数据传输的可靠性。
需要说明的是,本申请实施例提供的重路由的方法,执行主体可以为重路由的装置,或者,该重路由的装置中的用于执行重路由的方法的控制模块。本申请实施例中以重路由的装置执行重路由的方法为例,说明本申请实施例提供的重路由的装置。
本申请实施例提供了一种重路由的装置,应用于第一通信节点,如图8所示,该装置包括:
第一获取模块82,用于获取目标信息,其中,目标信息包括以下至少一项:与第一通信节点关联的回传路径的链路状态信息、回传路径的标识信息;
确定模块84,用于根据目标信息确定目标回传路径。
通过本申请实施例的装置,可以根据与第一通信节点关联的回传路径的链路状态信息和/或回传路径的标识信息确定目标回传路径,即第一通信节点可以根据链路状态信息和标识信息确定当前可用的回传路径,进而从中确定 出目标回传路径,这样即使在没有出现RLF的情况下第二通信节点也可以进行重路由以选择回传路径,使得重路由的方式更加灵活,从而解决了现有技术中只有在发生无线链路失败RLF的情况下进行重路由,导致启动重路由的方式比较单一的问题。
可选地,在链路状态信息为下行链路状态信息的情况下,本申请实施例中的第一获取模块82进一步可以包括以下至少一项:
第一获取单元,用于获取与下游节点之间的下行回传链路的第一链路状态信息;
第一接收单元,用于接收下行回传路径上的下游节点上报的第二链路状态信息;其中,第二链路状态信息包括以下至少一项:下行回传路径上的下游节点所获取到的链路状态信息、下行回传路径上的下游节点的下游节点所上报的链路状态信息。
可选地,本申请实施例的装置还可以包括:第一传输模块,用于将下行链路状态信息传输给第一通信节点的上游节点,其中,下行链路状态信息包括以下至少一项:第一链路状态信息、第二链路状态信息。
可选地,本申请实施例中的第一传输模块可以包括以下至少之一:
第一传输单元,用于向上游节点传输第一冗余容量值,其中,第一冗余容量值为第一链路状态信息所指示的冗余容量值;
第二传输单元,用于向上游节点传输第二冗余容量值,其中,第二冗余容量值为第一链路状态信息所指示的冗余容量值与第二链路状态信息所指示的冗余容量值中较小的冗余容量值;
第三传输单元,用于向上游节点传输第一传输时延值,其中,第一传输时延值为第一链路状态信息所指示的传输时延值;
第四传输单元,用于向上游节点传输第二传输时延值,其中,第二传输时延值为第一链路状态信息所指示的传输时延值与第二链路状态信息所指示的传输时延值之和。
可选地,在链路状态信息为上行链路状态信息的情况下,本申请实施例中的第一获取模块82进一步可以包括以下至少一项:
第二获取单元,用于获取第三链路状态信息,其中,第三链路状态信息为第一通信节点与上游节点之间的回传链路的链路状态信息;
第二接收单元,用于接收上行回传路径上的上游节点传递的第四链路状态信息;其中,第四链路状态信息包括以下至少之一:上行回传路径上的上游节点所获取到的链路状态信息、上行回传路径上的上游节点的上游节点所传输的链路状态信息。
可选地,本申请实施例的装置还可以进一步包括:第二传输模块,用于将上行链路状态信息传输给回传路径上的下游节点,其中,上行链路状态信息包括以下至少一项:第三链路状态信息、第四链路状态信息。
可选地,本申请实施例中的第二传输模块进一步可以包括以下至少一项:
第五传输单元,用于向下游节点传输第三冗余容量值,其中,第三冗余容量值为第三链路状态信息所指示的冗余容量值;
第六传输单元,用于向下游节点传输第四冗余容量值,其中,第四冗余容量值为第三链路状态信息所指示的冗余容量值与第四链路状态信息所指示的冗余容量值中较小的冗余容量值;
第七传输单元,用于向下游节点传输第三传输时延值,其中,第三传输时延值为第三链路状态信息所指示的传输时延值;
第八传输单元,用于向下游节点传输第四传输时延值,其中,第四传输时延值为第三链路状态信息所指示的传输时延值与第四链路状态信息所指示的传输时延值之和。
可选地,在链路状态信息包括以下至少一项:冗余容量、传输时延的情况下,本申请实施例的确定模块84进一步可以包括:第一确定单元,用于从链路状态信息中确定出目标链路状态信息,其中,目标链路状态至少满足以下条件之一:冗余容量大于第一预设门限、传输时延小于第二预设门限;第 二确定单元,用于从根据目标链路状态信息确定目标回传路径。
其中,第一预设门限和第二预设门限由待传输的数据包的传输需求确定。
可选地,本申请实施例中的装置还可以进一步包括:第二获取模块,用于在获取目标信息之前,获取与自身关联的回传链路的链路状态信息;第三传输模块,用于向第二通信节点传输与自身关联的回传链路的链路状态信息,其中,第二通信节点是通信系统中控制所有第一通信节点的节点。
可选地,本申请实施例中的装置还可以进一步包括:第一接收模块,用于接收第二通信节点发送的标识信息,其中,标识信息用于指示数据包在通信系统中传输时所选用的回传路径。
可选地,本申请实施例中的装置还可以进一步包括:第二接收模块,用于接收第二通信节点发送的第一配置信息,其中,第一配置信息用于指示回传路径的冗余容量和/或传输时延。
可选地,本申请实施例中的链路状态信息在多个通信节点之间传输通过以下至少一项的消息承载:无线资源控制RRC消息、F1-C消息、回传适配协议BAP控制协议数据单元PDU、媒体接入控制层控制单元。
可选地,本申请实施例中的消息的格式中至少包括以下之一的域:冗余容量、传输时延、回传链路的标识、回传适配协议BAP路径标识。
可选地,本申请实施例中的消息的格式中包括多个条目,其中,每一个条目用于指示以下至少一项:回传链路标识的信息、回传适配协议BAP路径标识的信息。
上述实施例是从应用于第一通信节点的装置侧进行描述的,下述姜葱应用于第二通信节点的装置侧进行描述。
本申请实施例提供了一种重路由的装置,应用于第二通信节点,如图9所示,该装置包括:
第三接收模块92,用于接收通信系统中第一通信节点上报的与自身关联的回传链路的链路状态信息;其中,第二通信节点是通信系统中控制所有第 一通信节点的节点;
配置模块94,用于根据链路状态信息配置回传路径的标识信息,其中,标识信息用于指示数据包在通信系统中传输时所选用的回传路径。
通过本申请实施例中应用于第二通信节点的装置,在接收到第一通信节点传输的链路状态信息之后,可以根据该链路状态信息确定该通信系统中可用的回传路径,并将回传路径的标识信息通知给第一通信节点,这样即使在没有出现RLF的情况下第二通信节点也可以进行重路由以选择回传路径,使得重路由的方式更加灵活,从而解决了现有技术中只有在发生无线链路失败RLF的情况下进行重路由,导致启动重路由的方式比较单一的问题。
可选地,本申请实施例的装置还可以进一步包括:第一发送模块,用于向第一通信节点发送第一配置信息,其中,第一配置信息用于指示回传路径的冗余容量和/或传输时延。
可选地,本申请实施例的装置还可以进一步包括:第二发送模块,用于在接收通信系统中第一通信节点上报的链路状态信息之前,向第一通信节点发送第二配置信息,其中,第二配置信息用于指示以下至少一项:用于指示触发第一通信节点上报链路状态信息、用于指示第一通信节点启动局部重路由功能。
可选地,本申请实施例中触发的方式包括以下至少一项:周期性触发、事件触发、轮询触发。
可选地,本申请实施例中的事件触发包括以下至少之一的事件:链路状态信息满足预设条件、收到其他通信节点发送的链路状态信息消息、收到流量控制反馈消息。
可选地,本申请实施例中的链路状态信息在第二通信节点的有效时间为以下至少之一:1)从收到链路状态信息之后的预设时长内,其中,预设时长由第二通信节点确定或由协议约定;2)从收到链路状态信息之后直到收到下一个携带同样链路标识或BAP路径标识的链路状态信息。
本申请实施例中的重路由的装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的重路由的装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的重路由的装置能够实现图4和图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图10所示,本申请实施例还提供一种通信设备1000,包括处理器1001,存储器1002,存储在存储器1002上并可在所述处理器1001上运行的程序或指令,例如,该通信设备1000为终端时,该程序或指令被处理器1001执行时实现上述重路由的方法实施例的各个过程,且能达到相同的技术效果。该通信设备1000为网络侧设备时,该程序或指令被处理器1001执行时实现上述重路由的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图11所示,该网络设备1100包括:天线111、射频装置112、基带装置113。天线111与射频装置112连接。在上行方向上,射频装置112通过天线111接收信息,将接收的信息发送给基带装置113进行处理。在下行方向上,基带装置113对要发送的信息进行处理,并发送给射频装置112,射频装置112对收到的信息进行处理后经过天线111发送出去。
上述频带处理装置可以位于基带装置113中,以上实施例中网络侧设备执行的方法可以在基带装置113中实现,该基带装置113包括处理器114和 存储器115。
基带装置113例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图11所示,其中一个芯片例如为处理器114,与存储器115连接,以调用存储器115中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置113还可以包括网络接口116,用于与射频装置112交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器115上并可在处理器114上运行的指令或程序,处理器114调用存储器115中的指令或程序执行图8或9所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述重路由的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述重路由的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例提供了一种计算机程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现上述重路由的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例提供了一种通信设备,被配置为执行如上述重路由的方法 各个实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (47)

  1. 一种重路由的方法,包括:
    第一通信节点获取目标信息,其中,所述目标信息包括以下至少一项:与所述第一通信节点关联的回传路径的链路状态信息、回传路径的标识信息;
    所述第一通信节点根据所述目标信息确定目标回传路径。
  2. 根据权利要求1所述的方法,其中,在所述链路状态信息为下行链路状态信息的情况下,所述第一通信节点获取与所述第一通信节点关联的回传路径的链路状态信息,包括以下至少一项:
    所述第一通信节点获取与下游节点之间的下行回传链路的第一链路状态信息;
    所述第一通信节点接收所述下行回传路径上的下游节点上报的第二链路状态信息;其中,所述第二链路状态信息包括以下至少一项:所述下行回传路径上的下游节点所获取到的链路状态信息、所述下行回传路径上的下游节点的下游节点所上报的链路状态信息。
  3. 根据权利要求2所述的方法,其中,所述方法还包括:
    所述第一通信节点将所述下行链路状态信息传输给所述第一通信节点的上游节点,其中,所述下行链路状态信息包括以下至少一项:所述第一链路状态信息、所述第二链路状态信息。
  4. 根据权利要求3所述的方法,其中,所述第一通信节点将所述下行链路状态信息传输给所述第一通信节点的上游节点,包括以下至少之一:
    所述第一通信节点向所述上游节点传输第一冗余容量值,其中,所述第一冗余容量值为所述第一链路状态信息所指示的冗余容量值;
    所述第一通信节点向所述上游节点传输第二冗余容量值,其中,所述第二冗余容量值为所述第一链路状态信息所指示的冗余容量值与所述第二链路状态信息所指示的冗余容量值中较小的冗余容量值;
    所述第一通信节点向所述上游节点传输第一传输时延值,其中,所述第 一传输时延值为所述第一链路状态信息所指示的传输时延值;
    所述第一通信节点向所述上游节点传输第二传输时延值,其中,所述第二传输时延值为所述第一链路状态信息所指示的传输时延值与所述第二链路状态信息所指示的传输时延值之和。
  5. 根据权利要求1所述的方法,其中,在所述链路状态信息为上行链路状态信息的情况下,所述第一通信节点获取与所述第一通信节点关联的回传路径的链路状态信息,包括以下至少一项:
    所述第一通信节点获取第三链路状态信息,其中,所述第三链路状态信息为所述第一通信节点与上游节点之间的回传链路的链路状态信息;
    所述第一通信节点接收上行回传路径上的上游节点传递的第四链路状态信息;其中,所述第四链路状态信息包括以下至少之一:所述上行回传路径上的上游节点所获取到的链路状态信息、所述上行回传路径上的上游节点的上游节点所传输的链路状态信息。
  6. 根据权利要求5所述的方法,其中,所述方法还包括:
    所述第一通信节点将所述上行链路状态信息传输给所述回传路径上的下游节点,其中,所述上行链路状态信息包括以下至少一项:所述第三链路状态信息、所述第四链路状态信息。
  7. 根据权利要求6所述的方法,其中,所述第一通信节点将所述上行链路状态信息传输给所述回传路径上的下游节点,包括以下至少一项:
    所述第一通信节点向所述下游节点传输第三冗余容量值,其中,所述第三冗余容量值为第三链路状态信息所指示的冗余容量值;
    所述第一通信节点向所述下游节点传输第四冗余容量值,其中,所述第四冗余容量值为所述第三链路状态信息所指示的冗余容量值与所述第四链路状态信息所指示的冗余容量值中较小的冗余容量值;
    所述第一通信节点向所述下游节点传输第三传输时延值,其中,所述第三传输时延值为所述第三链路状态信息所指示的传输时延值;
    所述第一通信节点向所述下游节点传输第四传输时延值,其中,所述第 四传输时延值为所述第三链路状态信息所指示的传输时延值与所述第四链路状态信息所指示的传输时延值之和。
  8. 根据权利要求1所述的方法,其中,在所述链路状态信息包括以下至少一项:冗余容量、传输时延的情况下,所述第一通信节点根据所述目标信息确定目标回传路径,包括:
    所述第一通信节点从所述链路状态信息中确定出目标链路状态信息,其中,所述目标链路状态至少满足以下条件之一:所述冗余容量大于第一预设门限、所述传输时延小于第二预设门限;
    所述第一通信节点根据所述目标链路状态信息确定所述目标回传路径。
  9. 根据权利要求8所述的方法,其中,所述第一预设门限和所述第二预设门限由待传输的数据包的传输需求确定。
  10. 根据权利要求1所述的方法,其中,在所述第一通信节点获取所述目标信息之前,所述方法还包括:
    所述第一通信节点获取与自身关联的回传链路的链路状态信息;
    所述第一通信节点向第二通信节点传输与自身关联的回传链路的链路状态信息,其中,所述第二通信节点是通信系统中控制所有第一通信节点的节点。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    所述第一通信节点接收所述第二通信节点发送的回传路径标识信息,其中,所述回传路径标识信息用于指示数据包在所述通信系统中传输时所选用的回传路径。
  12. 根据权利要求11所述的方法,其中,所述方法还包括:
    所述第一通信节点接收所述第二通信节点发送的第一配置信息,其中,所述第一配置信息用于指示所述回传路径的冗余容量和/或传输时延。
  13. 根据权利要求8所述的方法,其中,所述链路状态信息在多个通信节点之间传输通过以下至少一项的消息承载:无线资源控制RRC消息、F1-C消息、回传适配协议BAP控制协议数据单元PDU、媒体接入控制层控 制单元。
  14. 根据权利要求13所述的方法,其中,所述消息的格式中至少包括以下之一的域:冗余容量、传输时延、回传链路的标识、BAP路径标识。
  15. 根据权利要求14所述的方法,其中,所述消息的格式中包括多个条目,其中,每一个条目用于指示以下至少一项:回传链路标识的信息、BAP路径标识的信息。
  16. 一种重路由的方法,包括:
    第二通信节点接收通信系统中第一通信节点上报的与自身关联的回传链路的链路状态信息;其中,所述第二通信节点是通信系统中控制所有第一通信节点的节点;
    所述第二通信节点根据所述链路状态信息配置回传路径的标识信息,其中,所述标识信息用于指示数据包在所述通信系统中传输时所选用的回传路径。
  17. 根据权利要求16所述的方法,其中,所述方法还包括:
    所述第二通信节点向所述第一通信节点发送第一配置信息,其中,所述第一配置信息用于指示所述回传路径的冗余容量和/或传输时延。
  18. 根据权利要求16所述的方法,其中,在第二通信节点接收通信系统中第一通信节点上报的链路状态信息之前,所述方法包括:
    所述第二通信节点向所述第一通信节点发送第二配置信息,其中,所述第二配置信息用于指示以下至少一项:用于指示触发所述第一通信节点上报所述链路状态信息、用于指示所述第一通信节点启动局部重路由功能。
  19. 根据权利要求18所述的方法,其中,所述触发的方式包括以下至少一项:周期性触发、事件触发、轮询触发。
  20. 根据权利要求19所述的方法,其中,所述事件触发包括以下至少之一的事件:所述链路状态信息满足预设条件、收到其他通信节点发送的链路状态信息消息、收到流量控制反馈消息。
  21. 根据权利要求16所述的方法,其中,所述链路状态信息在所述第二 通信节点的有效时间为以下至少之一:
    从收到所述链路状态信息之后的预设时长内,其中,所述预设时长由所述第二通信节点确定或由协议约定;
    从收到所述链路状态信息之后直到收到下一个携带同样回传链路标识或BAP路径标识的链路状态信息。
  22. 一种重路由的装置,应用于第一通信节点,包括:
    第一获取模块,用于获取目标信息,其中,所述目标信息包括以下至少一项:与所述第一通信节点关联的回传路径的链路状态信息、回传路径的标识信息;
    确定模块,用于根据所述目标信息确定目标回传路径。
  23. 根据权利要求22所述的装置,其中,在所述链路状态信息为下行链路状态信息的情况下,所述第一获取模块包括以下至少一项:
    第一获取单元,用于获取与下游节点之间的下行回传链路的第一链路状态信息;
    第一接收单元,用于接收所述下行回传路径上的下游节点上报的第二链路状态信息;其中,所述第二链路状态信息包括以下至少一项:所述下行回传路径上的下游节点所获取到的链路状态信息、所述下行回传路径上的下游节点的下游节点所上报的链路状态信息。
  24. 根据权利要求23所述的装置,其中,所述装置还包括:
    第一传输模块,用于将所述下行链路状态信息传输给所述第一通信节点的上游节点,其中,所述下行链路状态信息包括以下至少一项:所述第一链路状态信息、所述第二链路状态信息。
  25. 根据权利要求24所述的装置,其中,所述第一传输模块包括以下至少之一:
    第一传输单元,用于向所述上游节点传输第一冗余容量值,其中,所述第一冗余容量值为所述第一链路状态信息所指示的冗余容量值;
    第二传输单元,用于向所述上游节点传输第二冗余容量值,其中,所述 第二冗余容量值为所述第一链路状态信息所指示的冗余容量值与所述第二链路状态信息所指示的冗余容量值中较小的冗余容量值;
    第三传输单元,用于向所述上游节点传输第一传输时延值,其中,所述第一传输时延值为所述第一链路状态信息所指示的传输时延值;
    第四传输单元,用于向所述上游节点传输第二传输时延值,其中,所述第二传输时延值为所述第一链路状态信息所指示的传输时延值与所述第二链路状态信息所指示的传输时延值之和。
  26. 根据权利要求22所述的装置,其中,在所述链路状态信息为上行链路状态信息的情况下,所述第一获取模块包括以下至少一项:
    第二获取单元,用于获取第三链路状态信息,其中,所述第三链路状态信息为所述第一通信节点与上游节点之间的回传链路的链路状态信息;
    第二接收单元,用于接收上行回传路径上的上游节点传递的第四链路状态信息;其中,所述第四链路状态信息包括以下至少之一:所述上行回传路径上的上游节点所获取到的链路状态信息、所述上行回传路径上的上游节点的上游节点所传输的链路状态信息。
  27. 根据权利要求26所述的装置,其中,所述装置还包括:
    第二传输模块,用于将所述上行链路状态信息传输给所述回传路径上的下游节点,其中,所述上行链路状态信息包括以下至少一项:所述第三链路状态信息、所述第四链路状态信息。
  28. 根据权利要求27所述的装置,其中,所述第二传输模块包括以下至少一项:
    第五传输单元,用于向所述下游节点传输第三冗余容量值,其中,所述第三冗余容量值为第三链路状态信息所指示的冗余容量值;
    第六传输单元,用于向所述下游节点传输第四冗余容量值,其中,所述第四冗余容量值为所述第三链路状态信息所指示的冗余容量值与所述第四链路状态信息所指示的冗余容量值中较小的冗余容量值;
    第七传输单元,用于向所述下游节点传输第三传输时延值,其中,所述 第三传输时延值为所述第三链路状态信息所指示的传输时延值;
    第八传输单元,用于向所述下游节点传输第四传输时延值,其中,所述第四传输时延值为所述第三链路状态信息所指示的传输时延值与所述第四链路状态信息所指示的传输时延值之和。
  29. 根据权利要求22所述的装置,其中,在所述链路状态信息包括以下至少一项:冗余容量、传输时延的情况下,所述确定模块包括:
    第一确定单元,用于从所述链路状态信息中确定出目标链路状态信息,其中,所述目标链路状态至少满足以下条件之一:所述冗余容量大于第一预设门限、所述传输时延小于第二预设门限;
    第二确定单元,用于从根据所述目标链路状态信息确定所述目标回传路径。
  30. 根据权利要求29所述的装置,其中,所述第一预设门限和所述第二预设门限由待传输的数据包的传输需求确定。
  31. 根据权利要求22所述的装置,其中,所述装置还包括:
    第二获取模块,用于在获取所述目标信息之前,获取与自身关联的回传链路的链路状态信息;
    第三传输模块,用于向第二通信节点传输与自身关联的回传链路的链路状态信息,其中,所述第二通信节点是通信系统中控制所有第一通信节点的节点。
  32. 根据权利要求31所述的装置,其中,所述装置还包括:
    第一接收模块,用于接收所述第二通信节点发送的标识信息,其中,所述标识信息用于指示数据包在所述通信系统中传输时所选用的回传路径。
  33. 根据权利要求32所述的装置,其中,所述装置还包括:
    第二接收模块,用于接收所述第二通信节点发送的第一配置信息,其中,所述第一配置信息用于指示所述回传路径的冗余容量和/或传输时延。
  34. 根据权利要求29所述的装置,其中,所述链路状态信息在多个通信节点之间传输通过以下至少一项的消息承载:无线资源控制RRC消息、F1-C 消息、BAP控制协议数据单元PDU、媒体接入控制层控制单元。
  35. 根据权利要求34所述的装置,其中,所述消息的格式中至少包括以下之一的域:冗余容量、传输时延、回传链路的标识、BAP路径标识。
  36. 根据权利要求35所述的装置,其中,所述消息的格式中包括多个条目,其中,每一个条目用于指示以下至少一项:回传链路标识的信息、BAP路径标识的信息。
  37. 一种重路由的装置,应用于第二通信节点,包括:
    第三接收模块,用于接收通信系统中第一通信节点上报的与自身关联的回传链路的链路状态信息;其中,所述第二通信节点是通信系统中控制所有第一通信节点的节点;
    配置模块,用于根据所述链路状态信息配置回传路径的标识信息,其中,所述标识信息用于指示数据包在所述通信系统中传输时所选用的回传路径。
  38. 根据权利要求36所述的装置,其中,所述装置还包括:
    第一发送模块,用于向所述第一通信节点发送第一配置信息,其中,所述第一配置信息用于指示所述回传路径的冗余容量和/或传输时延。
  39. 根据权利要求37所述的装置,其中,所述装置包括:
    第二发送模块,用于在接收通信系统中第一通信节点上报的链路状态信息之前,向所述第一通信节点发送第二配置信息,其中,所述第二配置信息用于指示以下至少一项:用于指示触发所述第一通信节点上报所述链路状态信息、用于指示所述第一通信节点启动局部重路由功能。
  40. 根据权利要求39所述的装置,其中,所述触发的方式包括以下至少一项:周期性触发、事件触发、轮询触发。
  41. 根据权利要求40所述的装置,其中,所述事件触发包括以下至少之一的事件:所述链路状态信息满足预设条件、收到其他通信节点发送的链路状态信息消息、收到流量控制反馈消息。
  42. 根据权利要求37所述的装置,其中,所述链路状态信息在所述第二通信节点的有效时间为以下至少之一:
    从收到所述链路状态信息之后的预设时长内,其中,所述预设时长由所述第二通信节点确定或由协议约定;
    从收到所述链路状态信息之后直到收到下一个携带同样链路标识或BAP路径标识的链路状态信息。
  43. 一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至15任一项所述的重路由的方法步骤,或如权利要求16至21任一项所述的重路由的方法步骤。
  44. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至15任一项所述的重路由的方法步骤,或如权利要求16至21任一项所述的重路由的方法步骤。
  45. 一种芯片,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至15中任一项所述的重路由的方法的步骤,或者实现如权利要求16至21中任一项所述的重路由的方法的步骤。
  46. 一种计算机程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1至15中任一项所述的重路由的方法的步骤,或者实现如权利要求16至21中任一项所述的重路由的方法的步骤。
  47. 一种通信设备,被配置为执行如权利要求1至15中任一项所述的重路由的方法的步骤,或者被配置为执行如权利要求16至21中任一项所述的重路由的方法的步骤。
PCT/CN2021/136402 2020-12-11 2021-12-08 重路由方法及装置、通信设备 WO2022121934A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023533925A JP2023551953A (ja) 2020-12-11 2021-12-08 再ルーティング方法及び装置、通信機器
EP21902639.0A EP4262263A4 (en) 2020-12-11 2021-12-08 REROUTE METHOD AND DEVICE AND COMMUNICATION DEVICE
KR1020237016202A KR20230088430A (ko) 2020-12-11 2021-12-08 리라우팅 방법 및 장치, 통신기기
US18/310,171 US20230269653A1 (en) 2020-12-11 2023-05-01 Rerouting method and apparatus, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011460042.5 2020-12-11
CN202011460042.5A CN114630344A (zh) 2020-12-11 2020-12-11 重路由方法及装置、通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/310,171 Continuation US20230269653A1 (en) 2020-12-11 2023-05-01 Rerouting method and apparatus, and communication device

Publications (1)

Publication Number Publication Date
WO2022121934A1 true WO2022121934A1 (zh) 2022-06-16

Family

ID=81895087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136402 WO2022121934A1 (zh) 2020-12-11 2021-12-08 重路由方法及装置、通信设备

Country Status (6)

Country Link
US (1) US20230269653A1 (zh)
EP (1) EP4262263A4 (zh)
JP (1) JP2023551953A (zh)
KR (1) KR20230088430A (zh)
CN (1) CN114630344A (zh)
WO (1) WO2022121934A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220225060A1 (en) * 2021-01-14 2022-07-14 Qualcomm Incorporated Selective forwarding of rrc reconfiguration messages in iab

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581778A (zh) * 2019-08-13 2019-12-17 中兴通讯股份有限公司 一种路由方法、bsr的生成方法、装置和存储介质
CN110636628A (zh) * 2018-06-21 2019-12-31 中兴通讯股份有限公司 信息传输方法及装置
CN112217716A (zh) * 2019-07-10 2021-01-12 北京三星通信技术研究有限公司 数据包路由的方法及设备、数据包传输的控制方法及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110636628A (zh) * 2018-06-21 2019-12-31 中兴通讯股份有限公司 信息传输方法及装置
CN112217716A (zh) * 2019-07-10 2021-01-12 北京三星通信技术研究有限公司 数据包路由的方法及设备、数据包传输的控制方法及设备
CN110581778A (zh) * 2019-08-13 2019-12-17 中兴通讯股份有限公司 一种路由方法、bsr的生成方法、装置和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUTUREWEI: "Remaining Issues for IAB Routing", 3GPP DRAFT; R2-1914514, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, Nevada, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051816581 *
See also references of EP4262263A4 *

Also Published As

Publication number Publication date
US20230269653A1 (en) 2023-08-24
JP2023551953A (ja) 2023-12-13
KR20230088430A (ko) 2023-06-19
CN114630344A (zh) 2022-06-14
EP4262263A1 (en) 2023-10-18
EP4262263A4 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
EP3764578B1 (en) Communication method and device
CN112088542B (zh) 用于处置拒绝时的无线电接入网通知区域(rna)更新配置的方法和设备
EP3836618A1 (en) Data transmission method and apparatus, and service switching method and apparatus
AU2019249989B2 (en) Message transmission method, apparatus and system
RU2770842C1 (ru) Системы, устройства и способы для обработки отказов линии радиосвязи в беспроводных ретрансляционных сетях
EP3826274A1 (en) Flow control method and apparatus
WO2018045877A1 (zh) 网络切片控制方法及相关设备
CN110583095A (zh) 第五代中服务质量规则管理
US11968565B2 (en) User plane information reporting method and apparatus
JP2020527903A (ja) 2次ノードを追加するための方法およびその装置
US11570846B2 (en) Discard timer operation in wireless communication
WO2021031022A1 (zh) 链路切换的方法和通信设备
KR20180134612A (ko) 무선 통신 시스템에서 혼잡을 제어하기 위한 장치 및 방법
CN110581778A (zh) 一种路由方法、bsr的生成方法、装置和存储介质
US9357580B2 (en) Method for switching communication connection mode, communication system, base station, transmitter and receiver
CN112715053A (zh) 用于处理无线中继网络中的无线电链路监测和无线电链路故障的系统、设备和方法
US20210219171A1 (en) Communication method and device
US20230269653A1 (en) Rerouting method and apparatus, and communication device
CN116866981A (zh) 通信方法和装置
WO2022082602A1 (en) Method and apparatus for packet rerouting
WO2016115868A1 (zh) 接入技术网络间的网络资源调整方法及终端
US20230247523A1 (en) Routing selection method and apparatus and system
JP7493622B2 (ja) データ転送のサポート
WO2014000611A1 (zh) 传输数据的方法和装置
WO2023274127A1 (zh) 路由选择、重路由及路由配置方法、iab节点和cu节点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237016202

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023533925

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021902639

Country of ref document: EP

Effective date: 20230711