WO2022121716A1 - 触觉传感器及其参数测试方法、装置、设备、程序及介质 - Google Patents

触觉传感器及其参数测试方法、装置、设备、程序及介质 Download PDF

Info

Publication number
WO2022121716A1
WO2022121716A1 PCT/CN2021/133884 CN2021133884W WO2022121716A1 WO 2022121716 A1 WO2022121716 A1 WO 2022121716A1 CN 2021133884 W CN2021133884 W CN 2021133884W WO 2022121716 A1 WO2022121716 A1 WO 2022121716A1
Authority
WO
WIPO (PCT)
Prior art keywords
tactile
grating
sensing point
tactile sensing
inner core
Prior art date
Application number
PCT/CN2021/133884
Other languages
English (en)
French (fr)
Inventor
李凯伟
黎雄
张中
郑宇�
张正友
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Publication of WO2022121716A1 publication Critical patent/WO2022121716A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings

Definitions

  • the present application relates to the field of optics, and in particular to a tactile sensor and its parameter testing method, device, equipment, program and medium.
  • tactile sensors for imitating tactile functions in intelligent robots are particularly important.
  • tactile sensors may include different types of tactile sensors (eg, optical tactile sensors) based on different principles (eg, optical principles).
  • the traditional optical tactile sensor can be fiber grating, which is mainly composed of quartz glass and has no flexibility.
  • the embodiments of the present application provide a tactile sensor and a parameter testing method, apparatus, device, program and medium thereof, which help to improve the flexibility and sensing spatial resolution of the tactile sensor.
  • the tactile sensor includes: an inner core, a cladding layer, and a plurality of waveguide gratings, the cladding layer wraps the plurality of waveguide gratings and the inner core, each waveguide grating is a periodic structure, and the inner core is a periodic structure. serpentine structure;
  • the tactile sensor includes a plurality of tactile sensing points, each tactile sensing point corresponds to a waveguide grating, and the waveguide gratings corresponding to different tactile sensing points have different grating periods.
  • an embodiment of the present application provides a method for testing a parameter of a tactile sensor, including:
  • the sensing parameter corresponding to each target wavelength drift is determined as the sensing parameter of each tactile sensing point, and the sensing parameter includes temperature or pressure.
  • One aspect of the embodiments of the present application provides a parameter testing device for a tactile sensor, including:
  • a drift amount determination module configured to acquire the grating spectrum of each tactile sensing point corresponding to each waveguide grating, and determine the target wavelength drift amount corresponding to each tactile sensing point based on the grating spectrum of each tactile sensing point;
  • a first determination module configured to acquire multiple sets of first correspondences between wavelength drifts and sensing parameters, and determine the respective target wavelength drifts based on the respective target wavelength drifts and the multiple sets of first correspondences Corresponding sensing parameters;
  • the second determining module is configured to determine the sensing parameter corresponding to each target wavelength drift amount as the sensing parameter of each tactile sensing point, and the sensing parameter includes temperature or pressure.
  • One aspect of the present application provides a computer device, including: a processor, a memory, and a network interface;
  • the processor is connected to a memory and a network interface, wherein the network interface is used to provide a data communication function, the memory is used to store a computer program, and the processor is used to call the computer program to execute the above aspect in the embodiments of the present application. Parametric test methods for tactile sensors.
  • One aspect of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, the computer program includes program instructions, and when the program instructions are executed by a processor, perform a parameter test of a tactile sensor method.
  • a computer program product or computer program comprising computer instructions stored in a computer readable storage medium.
  • a processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions to cause the computer device to perform a method of parametric testing of the tactile sensor.
  • FIG. 1 is a schematic structural diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 2 is an application scenario diagram of a tactile sensor parameter test provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a tactile sensor provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a tactile sensing point provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a waveguide grating provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a tactile sensor provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a tactile sensor provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a parameter testing method for a tactile sensor provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a parameter testing method for a tactile sensor provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a parameter testing device for a tactile sensor provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a computer device provided by an embodiment of the present application.
  • Artificial intelligence is a theory, method, technology and application system that uses digital computers or machines controlled by digital computers to simulate, extend and expand human intelligence, perceive the environment, acquire knowledge and use knowledge to obtain the best results.
  • artificial intelligence is a comprehensive technique of computer science that attempts to understand the essence of intelligence and produce a new kind of intelligent machine that can respond in a similar way to human intelligence.
  • Artificial intelligence is to study the design principles and implementation methods of various intelligent machines, so that the machines have the functions of perception, reasoning and decision-making.
  • artificial intelligence technology has been researched and applied in many fields, such as common smart homes, smart wearable devices, virtual assistants, smart speakers, smart marketing, unmanned driving, autonomous driving, drones , intelligent robots, intelligent medical care, intelligent customer service, etc.
  • artificial intelligence technology will be applied in more fields and play more and more important value.
  • FIG. 1 is a schematic structural diagram of a network architecture provided by an embodiment of the present application.
  • the network architecture may include a server 10 and a user terminal cluster, and the user terminal cluster may include one or more user terminals, as shown in FIG. 1 , specifically may include a user terminal 100a, a user terminal 100b, 100c, ..., user terminal 100n.
  • the server 10 may be an independent physical server, or a server cluster or distributed system composed of multiple physical servers, or may provide cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services, cloud Cloud servers for basic cloud computing services such as communications, middleware services, domain name services, security services, content delivery network (CDN), and big data and artificial intelligence platforms.
  • Any user terminal in the user terminal cluster may include, but is not limited to, a camera, an attendance machine, a monitor, a tablet device, a desktop computer, a notebook computer, a mobile phone, or any other terminal device capable of completing information interaction.
  • the computer device in this embodiment of the present application may be an entity terminal integrated with a tactile sensor, and the entity terminal may be the server 10 shown in FIG. 1 , or may be a user terminal 100a, a user terminal 100b, a user . . . Any one of the user terminals 100n can be specifically determined according to the actual application scenario, which is not limited here.
  • the server 10 will take the server 10 as an example for illustration.
  • the user terminal 100a, the user terminal 100b, the user terminal 100c, . . . , and the user terminal 100n can be respectively connected to the above-mentioned server 10 through a network, so that each user terminal can exchange data with the server 10 through the network connection. .
  • the server 10 may send prompt information for the foregoing sensing parameters to a user (eg, a user corresponding to the user terminal 100a) based on the sensing parameters of each tactile sensing point.
  • the tactile sensor here may be a sensor for imitating tactile function in an intelligent robot system.
  • the parameters tested by the tactile sensor may be collectively referred to as sensing parameters, such as temperature, pressure, or other parameters, which may be specifically determined according to actual application scenarios, and are not limited herein.
  • the computer equipment provided in the embodiments of the present application may be a control center of an intelligent robot (which can be understood as a controller, a control system, or a data processing center of an intelligent robot, etc.).
  • FIG. 2 is an application scenario diagram of a tactile sensor parameter test provided by the present application.
  • the tactile sensor eg, the tactile sensor 2
  • the tactile sensor 2 can be disposed on the grasping part (eg, the robotic finger) of the intelligent robot (eg, the intelligent robot 1 ), that is, the tactile sensor 2 is used as the sensing unit of the robotic finger of the intelligent robot 1 .
  • the tactile sensor 2 may include a plurality of tactile sensing points, such as 36 tactile sensing points or other numbers.
  • the computer equipment can determine each tactile sensing point corresponding to each waveguide grating in the tactile sensor 2, and collect the grating spectrum of each tactile sensing point, based on each tactile sensing point The grating spectrum of , determines the target wavelength shift corresponding to each tactile sensing point.
  • the transmission spectrum and/or reflection spectrum of the waveguide grating corresponding to the tactile sensing point may be collectively referred to as the grating spectrum.
  • a waveguide grating can reflect light of a specific wavelength through periodic refractive index changes, and a waveguide grating is a reflective structure with periodic refractive index modulation.
  • the difference between the wavelength corresponding to the i-th concave or convex peak on the original band and the wavelength corresponding to the i-th concave or convex peak on the band after the original band shift in the grating spectrum may be referred to as Target wavelength drift, where i is a positive integer.
  • the wave band after the original wave band shift here can be the sensing parameters of each tactile sensing point (such as the pressure generated after the intelligent robot 1 grabs the item 3 or the temperature when the intelligent robot 1 grabs the item 3) after the change, each tactile sensor The band formed after the original band corresponding to the sense point drifts.
  • the computer device can obtain multiple sets of first correspondences between the wavelength drift and the sensing parameters, and obtain multiple sets of first correspondences based on each target wavelength drift from the multiple sets of first correspondences.
  • the sensing parameters corresponding to each target wavelength drift amount are determined, and the sensing parameters corresponding to each target wavelength drift amount are determined as the sensing parameters of each tactile sensing point in the tactile sensor 2 .
  • the sensing parameters include temperature
  • the computer device can predict the temperature of the item 3 based on the tactile sensor 2, or when the intelligent robot 1 grabs the item 3, the computer device can be based on the tactile sensor. 2.
  • the computer device can determine whether the pressure of each tactile sensing point changes based on the tactile sensor 2, so that when the pressure of each tactile sensing point changes, it is determined that the object 3 will slide or the intelligent robot 1 will not grasp it. firm and send a prompt message to the above user.
  • the user can issue an instruction to the intelligent robot 1 based on the prompt information to control the intelligent robot 1 to re-grab the item 3 or adjust the position of the item 3, so that the item 3 no longer slides or the intelligent robot 1 firmly grasps the item 3.
  • the computer device can determine the sensing parameters of each tactile sensor based on the first correspondence between the target wavelength drift and the sensing parameters, which improves the accuracy of testing the sensing parameters;
  • the accuracy of sensing parameter testing is higher and the applicability is stronger.
  • FIG. 3 is a schematic structural diagram of a tactile sensor provided by an embodiment of the present application.
  • a tactile sensor eg, tactile sensor 3
  • the cladding can wrap around multiple waveguide gratings and the inner core.
  • the inner core can be a photosensitive non-stretchable transparent and highly transparent material (such as SU8 photoresist or other materials), and the cladding can be a thermosetting stretchable transparent and highly transparent silicone material (such as OE-6560 photolithography) glue or other materials), and the optical refractive index of the inner core is greater than the optical refractive index of the cladding, the inner core may be a serpentine structure, and each waveguide grating may be a periodic structure.
  • the serpentine structure of the inner core can resist bending and stretching, the performance of the sensor may not be affected, and at the same time, the tactile sensor may be made more flexible.
  • the waveguide grating with periodic structure in the tactile sensor can improve the sensing spatial resolution of the tactile sensor.
  • a spin coating can be applied on the inner core.
  • Layer markers eg, black markers
  • the marker is, for example, located outside the inner core and kept in line with the extending direction of the inner core to mark the optical path of the inner core.
  • the difference between the optical index of refraction of the inner core and the optical index of refraction of the cladding may be greater than or equal to a predetermined optical index of refraction difference (eg, 0.04 or other value) to achieve less bending of the tactile sensor
  • a predetermined optical index of refraction difference eg, 0.04 or other value
  • the curvature of the radius improves the sensing spatial resolution of the tactile sensor.
  • the sensing spatial resolution can be less than or equal to 1 mm.
  • the preset light refractive index difference here may be a default value set by a user or a light refractive index difference configured by the touch sensor.
  • the tactile sensor 3 may include a plurality of tactile sensing points (such as 36 or other tactile sensing points) Sensing point), one tactile sensing point corresponds to one waveguide grating, and the grating period of the waveguide grating corresponding to different tactile sensing points is different, so that different tactile sensing points can be distinguished according to the grating period of the waveguide grating.
  • FIG. 4 is a schematic structural diagram of a tactile sensing point provided by an embodiment of the present application. As shown in FIG.
  • the structure of the tactile sensing point in the above-mentioned tactile sensor 3 can be as shown in 4 a in FIG. 4 .
  • the inner core (such as an inner core with a line width of 2 ⁇ m or other inner core line width) has a grating period around it.
  • a waveguide grating with periodic changes such as a waveguide grating with a rectangular periodic structure with the same height as the inner core. In other words, the waveguide grating is periodically distributed around the inner core.
  • the cross-sectional top view of the inner core of the tactile sensing point structure as shown in 4a in Figure 4 can be shown as 4b in Figure 4,
  • the cladding can wrap the waveguide grating and the inner core, and the periphery of the inner core is a waveguide grating with a periodic structure , and there is also a marker (such as a black marker) on the periphery of the inner core, which can be used to mark the optical path of the inner core to clearly observe the optical path of the inner core in an optical instrument.
  • the waveguide grating can be a rectangular periodic structure, a triangular periodic structure, a cylindrical periodic structure or other periodic structures, and the waveguide grating can be the same height as the inner core, and the waveguide grating can be different from the inner core.
  • the waveguide grating may not have a contact surface with the inner core, the waveguide grating may have a contact surface with the upper surface of the inner core, or have other positional relationship or other contact relationship with the inner core.
  • the waveguide grating here can be a waveguide grating obtained from one of the above-mentioned waveguide grating structures or a combination of the two structures.
  • each waveguide grating may, for example, comprise at least one of the following: a rectangular periodic structure, a triangular periodic structure, and a cylindrical periodic structure.
  • the specific structure of the waveguide grating can be determined according to the actual application scenario, which is not limited here. For the convenience of description, the specific structure of the waveguide grating will be exemplified below with reference to FIG. 5 .
  • FIG. 5 is a schematic structural diagram of a waveguide grating provided by an embodiment of the present application.
  • a waveguide grating with a periodic structure can be made outside the inner core waveguide, so that the inner core waveguide can generate Bragg reflection for the tactile sensor. normal work.
  • each waveguide grating produces Bragg reflection from the inner core.
  • the grating period change of the waveguide grating causes the grating spectrum corresponding to the waveguide grating to change, and the change of the grating spectrum reflects the sensing point at the tactile sensing point corresponding to the waveguide grating. parameter changes.
  • the waveguide grating 10 may be a rectangular periodic structure with unequal heights from the inner core
  • the waveguide grating 11 may be a triangular periodic structure with unequal heights from the inner core Structure
  • the waveguide grating 12 can be a cylindrical periodic structure that is not the same height as the inner core and has no contact surface with the inner core.
  • the waveguide grating 13 can be It is a rectangular periodic structure with a contact surface with the upper surface of the inner core.
  • the surface of the tactile sensor may be provided with at least one protrusion, such as a circular truncated or drum-shaped, short cylindrical and other protrusion structures.
  • at least one protrusion such as a circular truncated or drum-shaped, short cylindrical and other protrusion structures.
  • each protrusion under force exerts pressure on at least three tactile sensing points it covers.
  • the applied pressure may include, for example, normal force (ie, normal pressure) and tangential force.
  • the force deformation of the at least three tactile sensing points causes a grating period change of the waveguide grating corresponding to the three tactile sensing points.
  • the structure of the at least three tactile sensing points is a center-symmetrical distribution structure, and the center position of one protrusion coincides with the symmetrical center of the at least three tactile sensing points.
  • FIG. 6 is a schematic structural diagram of a tactile sensor provided by an embodiment of the present application. As shown in FIG. 6 , the surface of the tactile sensor 3 shown in FIG. 3 may be provided with at least one protrusion, for example, nine circular truncated cones.
  • FIG. 7 is a schematic structural diagram of a tactile sensor provided by an embodiment of the present application. As shown in FIG.
  • the tactile sensor 7 can include 27 tactile sensing points, 9 circular truncated cones can be set on the surface of the tactile sensor 7, and 3 tactile sensing points can be covered under one circular truncated cone (such as the circular truncated cone 20 ), and The center position of the circular truncated 10 may coincide with the symmetrical centers of the three tactile sensing points it covers.
  • the sensed parameter is temperature.
  • the temperature-changed tactile sensing point deforms the corresponding wave grating, and the grating period of the deformed wave grating changes, thereby causing changes in the grating spectrum corresponding to the waveguide grating, such as target wavelength shift. On this basis, according to the target wavelength drift, the temperature change of the tactile sensing point can be determined.
  • the inner core is a photosensitive non-stretchable transparent and high-transmittance material
  • the cladding layer is a thermosetting stretchable transparent and highly-transparent silicone material
  • the Young's modulus is low, and it is more likely to be deformed by compression to generate a changing optical signal, thereby improving the sensing sensitivity.
  • the serpentine structure of the inner core resists bending and stretching, it can make the tactile sensor more flexible without affecting the sensor performance. Meanwhile, due to the waveguide grating with periodic structure in the tactile sensor, the sensing spatial resolution of the tactile sensor is improved.
  • FIG. 8 is a schematic flowchart of a parameter testing method of a tactile sensor provided by an embodiment of the present application.
  • the method can be executed by a computer device, and the computer device can be a physical terminal integrated with a tactile sensor, so the method can also be executed by a tactile sensor in the computer device.
  • the following will take a computer device as an example for description, and the method may include the following steps S101-S103:
  • Step S101 acquiring the grating spectrum of each tactile sensing point corresponding to each waveguide grating, and determining the target wavelength shift amount corresponding to each tactile sensing point based on the grating spectrum of each tactile sensing point.
  • the computer device may determine the effective index of refraction of the inner core based on the shape, size, optical index of refraction of the inner core, and the optical index of refraction of the cladding. Further, the computer device may determine the grating period of each waveguide grating based on the preset reflection wavelength corresponding to each waveguide grating, the effective refractive index of the inner core, and the order of each waveguide grating.
  • the preset reflection wavelength may be a wavelength set by a user or a default wavelength value. It should be understood that the formula for determining the grating period ⁇ of any waveguide grating by the computer device can be shown as the following formula (1):
  • can represent the preset reflection wavelength
  • n eff can represent the effective refractive index of the inner core
  • n can represent the order of any waveguide grating
  • n is a positive integer.
  • the order of the n-order waveguide grating is n.
  • the computer device can determine the grating period of each waveguide grating based on the above formula (1). Since the grating period of each waveguide grating is different, each tactile sensing point corresponding to each waveguide grating can be determined based on the grating period of each waveguide grating. When the temperature of each tactile sensing point changes, the tactile sensor material will expand slightly, so that the grating period of the waveguide grating becomes larger, and the elastic light effect caused by the temperature change will cause the refractive index of the tactile sensor material to change. , so that the effective refractive index of the inner core changes.
  • the center wavelength of the concave peak on the transmission spectrum of each tactile sensing point will shift or the center wavelength of the convex peak on the reflection band of each tactile sensing point will shift due to the change of temperature. (Can be abbreviated as wavelength drift) to determine the size of the temperature change.
  • the central wavelength of the concave peak on the transmission spectrum of each tactile sensing point shifts or the central wavelength of the convex peak on the reflection band of each tactile sensing point shifts, so the wavelength shift The size of the amount to judge the size of the pressure change.
  • the computer device can collect the grating spectrum (such as transmission spectrum or reflection spectrum) of each tactile sensing point based on the spectrometer, and determine the target wavelength shift corresponding to each tactile sensing point based on the transmission spectrum or reflection spectrum of each tactile sensing point quantity.
  • one tactile sensing point corresponds to one target wavelength drift
  • the target wavelength drift corresponding to different tactile sensing points may be the same or different, which can be determined according to the actual application scenario, and is not limited here.
  • the grating spectrum of the tactile sensing point may be a transmission spectrum
  • the transmission spectrum includes a first transmission band and a second transmission band
  • the second transmission band may be a shifted transmission band of the first transmission band.
  • the transmission band before the sensing parameter of the tactile sensing point is changed may be collectively referred to as the first transmission band
  • the transmission band after the sensing parameter of the tactile sensing point is changed may be collectively referred to as the second transmission band in this embodiment of the present application. band.
  • the computer device can determine, from the transmission spectrum of each tactile sensing point, the first transmission wavelength of the first concave peak on the first transmission wavelength band corresponding to each tactile sensing point, and the second concave peak on the second transmission wavelength band.
  • the second concave peak corresponds to the first concave peak, for example, the i-th concave peak on the first transmission band corresponds to the i-th concave peak on the second transmission band.
  • the computer device may determine the target wavelength shift amount corresponding to each tactile sensing point based on the first transmission wavelength and the second transmission wavelength. Specifically, the computer device may determine the difference between the first transmission wavelength and the second transmission wavelength as the target wavelength shift corresponding to any tactile sensing point, so as to obtain the target wavelength shift corresponding to each tactile sensing point.
  • the grating spectrum of the tactile sensing point may be a reflection spectrum
  • the reflection spectrum includes a first reflection band and a second reflection band
  • the second reflection band is a reflection band after the first reflection band is shifted.
  • the reflection band before the sensing parameter of the tactile sensing point is changed may be collectively referred to as the first reflection band
  • the reflection band after the sensing parameter of the tactile sensing point is changed may be collectively referred to as the second reflection in the embodiment of the present application band.
  • the computer device can determine, from the reflection spectrum of each tactile sensing point, the first reflection wavelength of the first convex peak on the first reflection band corresponding to each tactile sensing point, and the wavelength of the second convex peak on the second reflection band.
  • the second convex peak is a convex peak corresponding to the first convex peak on the second reflection wavelength band, for example, the i-th convex peak on the first reflection wavelength band corresponds to the i-th convex peak on the second reflection wavelength band.
  • the computer device may determine the target wavelength shift amount of each tactile sensing point based on the first reflection wavelength and the second reflection wavelength. Specifically, the computer device may determine the difference between the first reflection wavelength and the second reflection wavelength as the target wavelength shift corresponding to any tactile sensing point, so as to obtain the target wavelength shift corresponding to each tactile sensing point.
  • Step S102 Obtain multiple sets of first correspondence between the wavelength drift and sensing parameters, and determine the sensing parameter corresponding to each target wavelength drift from the multiple sets of first correspondences based on each target wavelength drift.
  • the computer device may acquire multiple sets of first correspondences between wavelength drifts and sensing parameters from the sensor database, where the data formats of the multiple sets of first correspondences may be tables, key-value pairs or other data formats.
  • the sensing parameters may include temperature, pressure or other parameters.
  • the sensor database here may include multiple sets of first correspondences between wavelength shifts and sensing parameters pre-stored by the user, or multiple sets of first correspondences between wavelength shifts and sensing parameters configured by default in the tactile sensor .
  • the plurality of sets of first correspondences between the wavelength shift amount and the sensing parameter in the sensor database may be as shown in Table 1 below. Among them, Table 1 is the corresponding relationship table between the wavelength drift and the sensing parameters.
  • Wavelength drift Sensing parameters Wavelength drift 1 Sensing parameter 1 ... ... Wavelength drift m Sensing parameter m
  • the computer equipment can determine the corresponding wavelengths of each target wavelength from the multiple sets of first correspondences based on the respective target wavelength drifts. sensing parameters. Assuming that the sensing parameters include pressure, the larger the target wavelength drift, the greater the pressure corresponding to the target wavelength drift. Assuming that the multiple sets of first correspondences between the wavelength drift and the sensing parameters are shown in Table 1 above, if any target wavelength drift corresponding to any tactile sensing point is wavelength drift 1, the computer equipment can The m groups of first correspondences in 1 determine the sensing parameter corresponding to any target wavelength drift as sensing parameter 1 corresponding to wavelength drift 1, and then the sensing parameters corresponding to each target wavelength drift can be determined.
  • Step S103 determining the sensing parameters corresponding to each target wavelength drift amount as the sensing parameters of each tactile sensing point.
  • the sensed parameter may include temperature, pressure, or other parameters.
  • the tactile sensor can be arranged on the grasping part of the intelligent robot (such as a mechanical finger).
  • the computer device can directly determine the temperature of the item.
  • the computer equipment can determine that the object slips or the intelligent robot is not grasping firmly when the pressure of each tactile sensing point changes, and sends a prompt message to the user.
  • the user can issue an instruction to the intelligent robot based on the prompt information, and control the intelligent robot to re-grab the item or adjust the position of the item, so that the item no longer slides or the intelligent robot firmly grasps the item.
  • the computer device may determine the target wavelength shift corresponding to each tactile sensing point based on the grating spectrum of each tactile sensing point, where the target wavelength The amount of drift can then be used to determine the sensing parameters of each tactile sensing point. Further, the computer device can determine the sensing parameters corresponding to each target wavelength drift from multiple sets of first correspondences based on each target wavelength drift, and determine the sensing parameters corresponding to each target wavelength drift as each tactile sensor. The sensing parameters (such as temperature or pressure) of the sensing point, so that the sensing parameters of each tactile sensing point can be accurately tested based on the drift of each target wavelength. At the same time, due to the high sensing spatial resolution and sensing sensitivity of the tactile sensor Larger and more flexible, the sensing parameter test has higher accuracy and greater applicability.
  • FIG. 9 is a schematic flowchart of a parameter testing method of a tactile sensor provided by an embodiment of the present application.
  • the method can be executed by a computer device, and the computer device can be a physical terminal integrated with a tactile sensor, so the method can also be executed by a tactile sensor in the computer device.
  • the following will take a computer device as an example for description, and the method may include the following steps S201-S205:
  • Step S201 collecting the grating spectrum of each tactile sensing point corresponding to each waveguide grating, and determining the target wavelength shift amount corresponding to each tactile sensing point based on the grating spectrum of each tactile sensing point.
  • Step S202 Obtain multiple sets of first correspondences between wavelength drifts and sensing parameters, and determine sensing parameters corresponding to each target wavelength drift based on each target wavelength drift and the multiple sets of first correspondences.
  • Step S203 determining the sensing parameters corresponding to each target wavelength drift amount as the sensing parameters of each tactile sensing point.
  • Step S204 acquiring the second corresponding relationship of each protrusion.
  • the computer device may obtain the second correspondence from the sensor database, and the second correspondence of a protrusion includes the difference between the pressure of each tactile sensing point covered by the protrusion and the tangential force of the protrusion Correspondence between.
  • the data format of the second correspondence here may be a table, a key-value pair, or other data formats.
  • the sensor database here may include multiple sets of second correspondences pre-stored by the user, or multiple sets of second correspondences configured by default of the tactile sensor.
  • Step S205 based on the pressure of each tactile sensing point covered by each protrusion and the second corresponding relationship of each protrusion, determine the tangential force corresponding to the pressure of each tactile sensing point, and assign each tactile sensing point to the corresponding tangential force.
  • the tangential force corresponding to the pressure of the point is determined as the tangential force of the protrusion corresponding to each tactile sensing point.
  • the computer device may determine the tangential force of each protrusion based on the pressure of each tactile sensing point covered by the protrusion.
  • the protrusion is a truncated truncated cone, and any truncated truncated cone in the at least one truncated truncated cone may be referred to as a target truncated truncated cone in this embodiment of the present application.
  • the tangential force of different truncated cones can be the same or different.
  • a susceptor on the tactile sensor can cover at least three waveguide gratings with different periods, when the susceptor receives positive pressure, the covered at least three waveguide gratings are under the same force, and when the susceptor receives both positive pressure and tangential force, the The force of the covered at least three waveguide gratings is inconsistent, and the sensing signal (such as the wavelength shift of the above-mentioned tactile sensing points) generated when the force of the at least three covered waveguide gratings is inconsistent can be used to judge the circular cone.
  • the magnitude and direction of the tangential force can be used to judge the circular cone.
  • the tactile sensing point 1 of the tactile sensing points covered by the target circular frustum has the largest pressure, which indicates that the direction of the tangential force received by the target circular frustum is inclined to the orientation where the tactile sensing point 1 is located.
  • the computer device may determine the target wavelength shift corresponding to each tactile sensing point based on the grating spectrum of each tactile sensing point, where the target wavelength The amount of drift can then be used to determine the sensing parameters of each tactile sensing point. Further, the computer device can determine the sensing parameters corresponding to each target wavelength drift from multiple sets of first correspondences based on each target wavelength drift, and determine the sensing parameters corresponding to each target wavelength drift as each tactile sensor. Sensing parameters (such as temperature or pressure) of the sensing points, so that the temperature or pressure of each tactile sensing point can be accurately tested based on the drift of each target wavelength.
  • Sensing parameters such as temperature or pressure
  • the computer device can also determine the tangential force received by the target truncated truncated in at least one truncated truncated based on the pressure of each tactile sensing point, and can test the tangential force of the truncated truncated while testing the temperature or pressure of each tactile sensing point, and Due to the high sensing spatial resolution, greater sensing sensitivity and flexibility of the tactile sensor, the sensing parameter testing accuracy is higher and the applicability is stronger.
  • FIG. 10 is a schematic structural diagram of a parameter testing device for a tactile sensor provided by an embodiment of the present application.
  • the parameter testing device of the tactile sensor can be a computer program (including program code) running in the computer equipment, for example, the parameter testing device of the tactile sensor is an application software; the parameter testing device of the tactile sensor can be used to execute this Corresponding steps in the methods provided in the application examples.
  • the parameter testing apparatus 1 of the tactile sensor can run on a computer device or a tactile sensor, and the computer device can be the server 10 in the embodiment corresponding to FIG. 1 above, and the tactile sensor can be the above-mentioned FIG. 3 tactile sensor 3.
  • the parameter testing device 1 of the tactile sensor may include: a refractive index determination module 10, a grating period determination module 20, a sensing point determination module 30, a drift amount determination module 40, a first determination module 50, a second determination module 60, and an acquisition module 70 and a tangential force determination module 80 .
  • the drift amount determination module 40 is configured to acquire the grating spectrum of each tactile sensing point, and determine the target wavelength drift amount corresponding to each tactile sensing point based on the grating spectrum of each tactile sensing point.
  • the grating spectrum of the tactile sensing point is a transmission spectrum
  • the transmission spectrum includes a first transmission band and a second transmission band
  • the second transmission band is the transmission band after the first transmission band is shifted
  • the drift amount determination module 40 may include: a first wavelength determination unit 401 and a first drift amount determination unit 402 .
  • the first wavelength determination unit 401 is configured to determine, from the transmission spectrum of each tactile sensing point, the first transmission wavelength of the first concave peak on the first transmission band corresponding to each tactile sensing point, and the second transmission wavelength in the second transmission band.
  • the first drift amount determination unit 402 is configured to determine the target wavelength drift amount corresponding to each touch sensing point based on the first transmission wavelength and the second transmission wavelength.
  • the specific implementation of the first wavelength determination unit 401 and the first drift amount determination unit 402 may refer to the description of step S101 in the above-mentioned embodiment corresponding to FIG. 8 , which will not be repeated here.
  • the grating spectrum of the touch sensing point is a reflection spectrum
  • the reflection spectrum includes a first reflection band and a second reflection band
  • the second reflection band is a reflection band after the first reflection band is shifted.
  • the drift amount determination module 40 includes: a second wavelength determination unit 403 and a second drift amount determination unit 404 .
  • the second wavelength determining unit 403 is configured to determine, from the reflection spectrum of each tactile sensing point, the first reflection wavelength of the first convex peak in the first reflection band corresponding to each tactile sensing point, and the second reflection wavelength in the second reflection band The second reflection wavelength of the second convex peak, wherein the second convex peak corresponds to the first convex peak;
  • the second drift amount determining unit 404 is configured to determine the target wavelength drift amount corresponding to each tactile sensing point based on the first reflection wavelength and the second reflection wavelength.
  • the specific implementation manner of the second wavelength determination unit 403 and the second drift amount determination unit 404 may refer to the description of step S101 in the embodiment corresponding to FIG. 8 above, which will not be repeated here.
  • the first determination module 50 is configured to acquire multiple sets of first correspondences between the wavelength drift and sensing parameters, and determine the transmission corresponding to each target wavelength drift from the multiple sets of first correspondences based on each target wavelength drift. sense parameters.
  • the second determination module 60 is configured to determine the sensing parameter corresponding to each target wavelength drift amount as the sensing parameter of each tactile sensing point, and the sensing parameter includes temperature or pressure.
  • the parameter testing device 1 of the above-mentioned tactile sensor also includes:
  • the refractive index determination module 10 is configured to determine the effective refractive index of the inner core based on the shape, size, optical refractive index of the inner core and the optical refractive index of the cladding.
  • the grating period determination module 20 is configured to determine the grating period of each waveguide grating based on the preset reflection wavelength, the effective refractive index of the inner core and the order of each waveguide grating.
  • the sensing point determination module 30 is configured to determine each tactile sensing point corresponding to each waveguide grating based on the grating period of each waveguide grating.
  • the sensing parameters of each tactile sensing point include the pressure of each tactile sensing point
  • the parameter testing device 1 of the above-mentioned tactile sensor also includes:
  • the acquisition module 70 is used to acquire the second correspondence of each protrusion, and the second corresponding relationship of each protrusion includes the difference between the pressure of each tactile sensing point covered under the protrusion and the tangential force of the protrusion.
  • the tangential force determination module 80 is configured to determine the tangential force corresponding to the pressure of each tactile sensing point based on the pressure of each tactile sensing point covered by each protrusion and the second corresponding relationship of each protrusion, and determine the tangential force corresponding to the pressure of each tactile sensing point.
  • the tangential force corresponding to the pressure of each tactile sensing point is determined as the tangential force of the protrusion corresponding to each tactile sensing point.
  • the refractive index determination module 10 the grating period determination module 20 , the sensing point determination module 30 , the drift determination module 40 , the first determination module 50 , the second determination module 60 , the acquisition module 70 and the tangential force determination module 80
  • the description of the beneficial effects of using the same method will not be repeated.
  • FIG. 11 is a schematic structural diagram of a computer device provided by an embodiment of the present application.
  • the computer device 1000 may be the server 10 in the above-mentioned embodiment corresponding to FIG. 1 , and the computer device 1000 may include: at least one processor 1001 , such as a CPU, at least one network interface 1004 , user interface 1003 , memory 1005, at least one communication bus 1002.
  • the communication bus 1002 is used to realize the connection communication between these components.
  • the user interface 1003 may include a display screen (Display) and a keyboard (Keyboard), and the network interface 1004 may optionally include a standard wired interface and a wireless interface (eg, a WI-FI interface).
  • the memory 1005 may be high-speed RAM memory or non-volatile memory, such as at least one disk memory.
  • the memory 1005 may optionally also be at least one storage device located remotely from the aforementioned processor 1001 .
  • the memory 1005 as a computer storage medium may include an operating system, a network communication module, a user interface module, and a device control application program.
  • the network interface 1004 is mainly used for network communication with the user terminal;
  • the user interface 1003 is mainly used for providing an input interface for the user;
  • device control application to achieve:
  • the sensing parameter corresponding to each target wavelength drift is determined as the sensing parameter of each tactile sensing point, and the sensing parameter includes temperature or pressure.
  • the computer device 1000 described in this embodiment of the present application may execute the description of the parameter testing method of the tactile sensor in the foregoing embodiment corresponding to FIG. 8 and/or FIG. 9 , and may also execute the foregoing embodiment corresponding to FIG. 10 .
  • the description of the parameter testing device 1 for the tactile sensor in the above description will not be repeated here.
  • the description of the beneficial effects of using the same method will not be repeated.
  • the embodiment of the present application also provides a computer-readable storage medium, and the computer-readable storage medium stores the computer program executed by the parameter testing device 1 of the tactile sensor mentioned above, And the computer program includes program instructions, when the processor executes the program instructions, it can execute the description of the parameter testing method of the tactile sensor in the embodiment corresponding to FIG. 8 and FIG. 9 , therefore, it will not be repeated here. .
  • the description of the beneficial effects of using the same method will not be repeated.
  • program instructions may be deployed to execute on one computing device, or on multiple computing devices located at one site, or alternatively, on multiple computing devices distributed across multiple sites and interconnected by a communications network
  • multiple computing devices distributed in multiple locations and interconnected by a communication network can form a blockchain system.
  • a computer program product or computer program including computer instructions stored in a computer-readable storage medium.
  • the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the parameter testing method of the tactile sensor provided in the embodiments of the present application.
  • the above-mentioned computer-readable storage medium may be the parameter testing apparatus of the tactile sensor provided in any of the foregoing embodiments or an internal storage unit of the above-mentioned device, such as a hard disk or a memory of an electronic device.
  • the computer-readable storage medium can also be an external storage device of the electronic device, such as a pluggable hard disk, a smart media card (SMC), a secure digital (SD) card equipped on the electronic device, Flash card (flash card), etc.
  • the above-mentioned computer-readable storage medium may also include a magnetic disk, an optical disk, a read-only memory (ROM) or a random access memory (RAM), and the like.
  • the computer-readable storage medium may also include both an internal storage unit of the electronic device and an external storage device.
  • the computer-readable storage medium is used to store the computer program and other programs and data required by the electronic device.
  • the computer-readable storage medium can also be used to temporarily store data that has been or will be output.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

触觉传感器(2、3、7)及其参数测试方法、装置(1)、设备(1000)、程序及介质。其中一种触觉传感器(2、3、7)包括:内芯、包层以及多个波导光栅(10、11、12、13),包层包裹多个波导光栅(10、11、12、13)和内芯,每个波导光栅(10、11、12、13)为周期性结构,内芯为蛇形结构。其中,触觉传感器(2、3、7)中包括多个触觉传感点,每个触觉传感点对应一个波导光栅(10、11、12、13),不同的触觉传感点对应的波导光栅(10、11、12、13)具有不同的光栅周期。可使触觉传感器(2、3、7)更具有柔性,并提高了触觉传感器(2、3、7)的传感空间分辨率。

Description

触觉传感器及其参数测试方法、装置、设备、程序及介质
本申请要求于2020年12月9日提交中国专利局、申请号为202011428587.8、申请名称为“触觉传感器及其参数测试方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学领域,尤其涉及触觉传感器及其参数测试方法、装置、设备、程序及介质。
背景技术
随着智能机器人行业的不断发展,用于在智能机器人中模仿触觉功能的触觉传感器显得尤为重要。目前,触觉传感器可以包括基于不同原理(如光学原理)的不同类型的触觉传感器(如光学触觉传感器)。传统的光学触觉传感器可以为光纤光栅,光纤光栅主要由石英玻璃构成,不具备柔性。
发明内容
本申请实施例提供触觉传感器及其参数测试方法、装置、设备、程序及介质,有助于提高触觉传感器的柔性和传感空间分辨率。
本申请实施例一方面提供一种触觉传感器,该触觉传感器包括:内芯、包层以及多个波导光栅,包层包裹多个波导光栅和内芯,每个波导光栅为周期性结构,内芯为蛇形结构;
其中,触觉传感器中包括多个触觉传感点,每个触觉传感点对应一个波导光栅,不同的触觉传感点对应的波导光栅具有不同的光栅周期。
本申请实施例一方面提供一种触觉传感器的参数测试方法,包括:
获取各波导光栅对应的各触觉传感点对应的光栅光谱;
基于所述各触觉传感点的光栅光谱确定所述各触觉传感点对应的目标波长漂移量;
获取波长漂移量和传感参数之间的多组第一对应关系,基于各目标波长漂移量从所述多组第一对应关系中确定出所述各目标波长漂移量对应的传感参数;
将所述各目标波长漂移量对应的传感参数确定为所述各触觉传感点的传感参数,所述传感参数包括温度或者压力。
本申请实施例一方面提供一种触觉传感器的参数测试装置,包括:
漂移量确定模块,用于获取各波导光栅对应的各触觉传感点的光栅光谱,基于所述各触觉传感点的光栅光谱确定所述各触觉传感点对应的目标波长漂移量;
第一确定模块,用于获取波长漂移量和传感参数之间的多组第一对应关系,基于各目标波长漂移量和所述多组第一对应关系中确定出所述各目标波长漂移量对应的传感参数;
第二确定模块,用于将所述各目标波长漂移量对应的传感参数确定为所述各触觉传感点的传感参数,所述传感参数包括温度或者压力。
本申请一方面提供了一种计算机设备,包括:处理器、存储器、网络接口;
该处理器与存储器、网络接口相连,其中,网络接口用于提供数据通信功能,该存储器用于存储计算机程序,该处理器用于调用该计算机程序,以执行本申请实施例中上述一 方面中的触觉传感器的参数测试方法。
本申请一方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被处理器执行时,执行触觉传感器的参数测试方法。
根据本申请的一个方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行触觉传感器的参数测试方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种网络架构的结构示意图;
图2是本申请实施例提供的一种触觉传感器参数测试的应用场景图;
图3是本申请实施例提供的一种触觉传感器的结构示意图;
图4是本申请实施例提供的一种触觉传感点的结构示意图;
图5是本申请实施例提供的一种波导光栅的结构示意图;
图6是本申请实施例提供的一种触觉传感器的结构示意图;
图7是本申请实施例提供的一种触觉传感器的结构示意图;
图8是本申请实施例提供的一种触觉传感器的参数测试方法的流程示意图;
图9是本申请实施例提供的一种触觉传感器的参数测试方法的流程示意图;
图10是本申请实施例提供的一种触觉传感器的参数测试装置的结构示意图;
图11是本申请实施例提供的一种计算机设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
人工智能(artificial intelligence,AI)是利用数字计算机或者数字计算机控制的机器模拟、延伸和扩展人的智能,感知环境、获取知识并使用知识获得最佳结果的理论、方法、技术及应用系统。换句话说,人工智能是计算机科学的一个综合技术,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。人工智能也就是研究各种智能机器的设计原理与实现方法,使机器具有感知、推理与决策的功能。随着人工智能技术研究和进步,人工智能技术在多个领域展开研究和应用,例如常见的智能家居、智能穿戴设备、虚拟助理、智能音箱、智能营销、无人驾驶、自动驾驶、无人机、智能机器人、智能医疗、智能客服等。随着技术的发展,人工智能技术将在更多的领域得到应用,并发挥越来越重要的价值。
请参见图1,图1是本申请实施例提供的一种网络架构的结构示意图。如图1所示,该网络架构可以包括服务器10和用户终端集群,该用户终端集群可以包括一个或多个用户终端,如图1所示,具体可以包括用户终端100a、用户终端100b、用户终端100c、…、用户终端100n。其中,服务器10可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式系统,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、内容分发网络(content delivery network,CDN)、以及大数据和人工智能平台等基础云计算服务的云服务器。用户终端集群中的任一用户终端可以包括但不限于摄像头、考勤机、监控仪、平板设备、台式电脑、笔记本电脑、手机或者其他任何能够完成信息交互的终端设备。
可以理解,本申请实施例中的计算机设备可以为集成有触觉传感器的实体终端,该实体终端可以为如图1所示的服务器10,也可以为用户终端100a、用户终端100b、用户终端100c、…、用户终端100n中的任一个,具体可根据实际应用场景确定,在此不做限定。为方便描述,下面将以服务器10为例进行示例说明。如图1所示,用户终端100a、用户终端100b、用户终端100c、…、用户终端100n可以分别与上述服务器10进行网络连接,以便于每个用户终端可以通过该网络连接与服务器10进行数据交互。服务器10在确定触觉传感器中各触觉传感点的传感参数之后,可以基于各触觉传感点的传感参数向用户(如用户终端100a对应的用户)发送针对上述传感参数的提示信息。这里的触觉传感器可以为用于在智能机器人系统中模仿触觉功能的传感器。本申请实施例可以将触觉传感器所测试的参数统称为传感参数,如温度、压力或者其它参数,具体可根据实际应用场景确定,在此不作限制。
在智能机器人应用场景下,本申请实施例中提供的计算机设备可以是智能机器人的控制中心(可以理解为智能机器人的控制器、控制系统或者数据处理中心等)。为便于理解,请参见图2,图2是本申请提供的一种触觉传感器参数测试的应用场景图。如图2所示,触觉传感器(如触觉传感器2)可以设置于智能机器人(如智能机器人1)的抓取部位(如机械手指),即将触觉传感器2作为智能机器人1的机械手指的感知单元。其中,触觉传感器2可以包括多个触觉传感点,如36个或者其它数量的触觉传感点。在智能机器人1抓取物品(如物品3)时,计算机设备可确定触觉传感器2中各波导光栅对应的各触觉传感点,并采集各触觉传感点的光栅光谱,基于各触觉传感点的光栅光谱确定各触觉传感点对应的目标波长漂移量。本申请实施例可以将触觉传感点对应的波导光栅的透射光谱和/或反射光谱统称为光栅光谱。波导光栅可以通过周期性的折射率变化反射特定波长的光,且波导光栅是一种周期性折射率调制的反射结构。本申请实施例可以将光栅光谱中原波段上第i个凹峰或者凸峰对应的波长,以及原波段漂移之后的波段上第i个凹峰或者凸峰对应的波长之间的差值称之为目标波长漂移量,其中,i为正整数。这里的原波段漂移之后的波段可以为各触觉传感点的传感参数(如智能机器人1抓取物品3后产生的压力或者智能机器人1抓取物品3时的温度)改变之后,各触觉传感点对应的原波段发生漂移之后所形成的波段。
在确定各触觉传感点对应的目标波长漂移量之后,计算机设备可以获取波长漂移量和传感参数之间的多组第一对应关系,基于各目标波长漂移量从多组第一对应关系中确定出各目标波长漂移量对应的传感参数,并将各目标波长漂移量对应的传感参数确定为触觉传感器2中各触觉传感点的传感参数。假设传感参数包括温度,在智能机器人1的机械手指靠近物品3时,计算机设备可基于触觉传感器2预测物品3的温度,或者在智能机器人1 抓取到物品3时,计算机设备可基于触觉传感器2确定物品3的温度,并向控制智能机器人1的用户发送提示信息以提示该用户物品3的温度。假设传感参数包括压力,计算机设备可基于触觉传感器2确定各触觉传感点的压力是否发生改变,从而在各触觉传感点的压力改变时确定物品3会发生滑动或者智能机器人1抓取不牢固,并向上述用户发送提示信息。这时,用户可以基于该提示信息对智能机器人1下发指令,控制智能机器人1重新抓取物品3或者调整物品3的位置,以使物品3不再发生滑动或者智能机器人1牢固地抓取物品3。
由此可见,在本申请实施例中,计算机设备可以基于目标波长漂移量与传感参数之间的第一对应关系,确定各触觉传感器的传感参数,提高了测试传感参数的准确度;另外,由于该触觉传感器的传感空间分辨率高、传感灵敏度更大且具有柔性,因此传感参数测试的准确度更高,适用性更强。
进一步地,为便于理解,请参见图3,图3是本申请实施例提供的一种触觉传感器的结构示意图。如图3所示,触觉传感器(如触觉传感器3)可以包括内芯、包层以及多个波导光栅。
包层可包裹多个波导光栅和内芯。内芯可以为光敏性不可拉伸的透明高透光材料(如SU8光刻胶或者其它材料),包层可以为热固型可拉伸的透明高透光硅胶材料(如OE-6560光刻胶或者其它材料),且内芯的光折射率大于包层的光折射率,内芯可以为蛇形结构,每个波导光栅可以为周期性结构。
综上,在根据本申请的实施例中,由于内芯的蛇形结构可抵抗弯曲和拉伸,因此可以不影响传感器性能,同时使该触觉传感器更具有柔性。另外,触觉传感器中具有周期性结构的波导光栅,可以提高触觉传感器的传感空间分辨率。
在一些实施例中,由于内芯和包层都是由透明高透光材料制成,为了避免在光学仪器中无法对触觉传感器3的内芯光路进行观察,因此可以在内芯上旋涂一层标记物(如黑色标记物)以标记内芯的光路。标记物例如处于内芯外部并保持与内芯的延伸方向一致,以标记内芯的光路。
在一些实施例中,内芯的光折射率和包层的光折射率之间的差异可以大于或者等于预设光折射率差值(如0.04或者其它值),以实现触觉传感器的更小弯曲半径(如500μm或者其它值)的弯曲,从而提高了触觉传感器的传感空间分辨率,如传感空间分辨率可以小于或者等于1mm。这里的预设光折射率差值可以为用户设置的默认值或者触觉传感器所配置的光折射率差值。
如图3所示,由触觉传感器3中传感部分(即触觉传感点)结构的局部放大图可以得到,触觉传感器3中可以包括多个触觉传感点(如36个或者其它数值的触觉传感点),一个触觉传感点对应一个波导光栅,且不同的触觉传感点对应的波导光栅的光栅周期不同,从而可以根据波导光栅的光栅周期分辨不同的触觉传感点。请一并参见图4,图4是本申请实施例提供的一种触觉传感点的结构示意图。如图4所示,上述触觉传感器3中触觉传感点的结构可以如图4中的4a所示,内芯(如2μm线宽或者其它内芯线宽的内芯)的周围具有随光栅周期呈周期性变化的波导光栅,如与内芯等高的矩形周期性结构的波导光栅。换言之,波导光栅在内芯外围呈周期性分布。如图4中的4a所示的触觉传感点结构的内芯截面俯视图可以如图4中的4b所示,包层可包裹波导光栅和内芯,内芯外围为具有周期性结构的波导光栅,且内芯外围还具有标记物(如黑色标记物),该标记物可用于标记内芯光路以在光学仪器中清晰地观察内芯光路。
在一些实施方式中,波导光栅可以为矩形周期性结构、三角形周期性结构、圆柱形周期性结构或者其它形状的周期性结构,且波导光栅可以与内芯等高、波导光栅可以与内芯不等高、波导光栅可以与内芯不具有接触面、波导光栅可以与内芯的上表面具有接触面、或者与内芯具有其它位置关系或者其它接触关系。这里的波导光栅可以是由上述波导光栅结构中的一种结构或者两种结构组合得到的波导光栅。换言之,每个波导光栅例如可以包括以下中至少一个:矩形周期性结构、三角形周期性结构和圆柱形周期性结构。波导光栅的具体结构可根据实际应用场景确定,在此不作限制。为方便描述,下面结合图5将对波导光栅的具体结构进行示例说明。参见图5,图5是本申请实施例提供的一种波导光栅的结构示意图。由于光不仅可以在内芯波导的内部传输,也可以在内芯波导的附近传输,因此可以在内芯波导的外部做具有周期性结构的波导光栅,使内芯波导产生布拉格反射以供触觉传感器正常工作。这里,每个波导光栅使内芯产生布拉格反射。在多个波导光栅中一个波导光栅发生光栅周期变化时,该波导光栅的光栅周期变化引起该波导光栅对应的光栅光谱的变化,光栅光谱的变化反映该波导光栅对应的触觉传感点处传感参数的变化。
如图5中的5a所示,波导光栅10可以为与内芯不等高的矩形周期性结构,如图5中的5b所示,波导光栅11可以为与内芯不等高的三角形周期性结构,如图5中的5c所示,波导光栅12可以为与内芯不等高且与内芯不具有接触面的圆柱形周期性结构,如图5中的5d所示,波导光栅13可以为与内芯上表面具有接触面的矩形周期性结构。
在一些实施方式中,触觉传感器的表面可设置有至少一个凸起,例如为圆台或鼓形、短圆柱形等凸起结构。如9个圆台或者其它数值的圆台,至少一个凸起中的一个凸起下可完全覆盖至少三个触觉传感点。这里,受力的每个凸起对其覆盖的至少三个触觉传感点施加压力。所施加压力例如可以包括正向力(即法向压力)和切向力。所述至少三个触觉传感点受力变形引起所述三个触觉传感点对应的波导光栅发生光栅周期变化。
在一些实施例中,上述至少三个触觉传感点的结构为中心对称分布结构,且一个凸起的中心位置与至少三个触觉传感点的对称中心重合。参见图6,图6是本申请实施例提供的一种触觉传感器的结构示意图。如图6所示,如上述图3所示的触觉传感器3的表面上可设置有至少一个凸起,例如为9个圆台。一个圆台(如圆台10)下可完全覆盖至少三个触觉传感点(如4个触觉传感点),圆台10的中心位置可与其4个触觉传感点的对称中心重合,或者圆台10边缘可与其所覆盖的圆环标记物边缘对齐。请一并参见图7,图7是本申请实施例提供的一种触觉传感器的结构示意图。如图7所示,触觉传感器7中可包含27个触觉传感点,该触觉传感器7的表面上可设置9个圆台,一个圆台(如圆台20)下可覆盖3个触觉传感点,且圆台10的中心位置可与其所覆盖的3个触觉传感点的对称中心重合。
在一些实施例中,传感参数为温度。温度变化的触觉传感点使得相应的波动光栅发生形变,发生形变的波动光栅发生光栅周期变化,从而引起该波导光栅对应的光栅光谱的变化,例如目标波长漂移。在此基础上,根据目标波长漂移,可以确定触觉传感点的温度变化。在本申请实施例中,由于制得触觉传感器的材料(例如,内芯为光敏性不可拉伸的透明高透光材料,包层为热固型可拉伸的透明高透光硅胶材料)的杨氏模量低,更容易受压变形产生变化的光信号,从而提高了传感灵敏度。由于内芯的蛇形结构可抵抗弯曲和拉伸,因此可以不影响传感器性能,同时使该触觉传感器更具有柔性。同时,由于触觉传感器中具有周期性结构的波导光栅,因此提高了触觉传感器的传感空间分辨率。
请参见图8,图8是本申请实施例提供的一种触觉传感器的参数测试方法的流程示意 图。如图8所示,该方法可以由计算机设备执行,该计算机设备可以为集成有触觉传感器的实体终端,因此该方法也可以通过计算机设备中的触觉传感器执行。为方便描述,下面将以计算机设备为例进行说明,该方法可包括以下步骤S101-步骤S103:
步骤S101,获取各波导光栅对应的各触觉传感点的光栅光谱,基于各触觉传感点的光栅光谱确定各触觉传感点对应的目标波长漂移量。
在一些实施方式中,计算机设备可以基于内芯的形状、尺寸、光折射率以及包层的光折射率确定内芯的有效折射率。进一步地,计算机设备可以基于各波导光栅对应的预设反射波长、内芯的有效折射率以及各波导光栅的阶数,确定各波导光栅的光栅周期。其中,预设反射波长可以为用户设置的波长或者默认波长值。应当理解,计算机设备确定任一波导光栅的光栅周期Λ的公式可以如下述公式(1)所示:
Figure PCTCN2021133884-appb-000001
其中,λ可以表示预设反射波长,n eff可以表示内芯的有效折射率,n可以表示任一波导光栅的阶数,n为正整数,如1阶波导光栅的阶数为1,即n=1,n阶波导光栅的阶数为n。
进一步地,计算机设备可基于上述公式(1)确定各波导光栅的光栅周期,由于各波导光栅的光栅周期不同,因此可以基于各波导光栅的光栅周期确定各波导光栅对应的各触觉传感点。在各触觉传感点的温度改变时,触觉传感器材料会发生轻微膨胀,从而使波导光栅的光栅周期变大,同时由于温度改变引起的弹光效应会导致触觉传感器材料的折射率也会发生改变,从而使内芯的有效折射率发生变化。可以得到,由于温度的变化会导致各触觉传感点的透射光谱上凹峰的中心波长发生漂移或者各触觉传感点的反射波段上凸峰的中心波长发生漂移,因此可通过中心波长漂移量(可以简称为波长漂移量)的大小来判断温度改变的大小。在各触觉传感点的压力改变时,各触觉传感点的透射光谱上凹峰的中心波长发生漂移或者各触觉传感点的反射波段上凸峰的中心波长发生漂移,因此可通过波长漂移量的大小来判断压力改变的大小。这时,计算机设备可以基于光谱仪采集各触觉传感点的光栅光谱(如透射光谱或者反射光谱),并基于各触觉传感点的透射光谱或者反射光谱确定各触觉传感点对应的目标波长漂移量。其中,一个触觉传感点对应一个目标波长漂移量,不同触觉传感点对应的目标波长漂移量可以相同,也可以不同,具体可根据实际应用场景确定,在此不作限制。
在一些实施方式中,触觉传感点的光栅光谱可以为透射光谱,透射光谱中包括第一透射波段和第二透射波段,第二透射波段可以为第一透射波段漂移后的透射波段。本申请实施例可以将触觉传感点的传感参数改变之前的透射波段统称为第一透射波段,本申请实施例可以将触觉传感点的传感参数改变之后的透射波段统称为第二透射波段。计算机设备可以从各触觉传感点的透射光谱中确定出与各触觉传感点对应的第一透射波段上第一凹峰的第一透射波长、以及第二透射波段上的第二凹峰的第二透射波长。其中第二凹峰与第一凹峰对应,比如,第一透射波段上第i个凹峰对应第二透射波段上的第i个凹峰。进一步地,计算机设备可以基于第一透射波长与第第二透射波长,确定各触觉传感点对应的目标波长漂移量。具体地,计算机设备可以将第一透射波长与第二透射波长之间的差值确定为任一触觉传感点对应的目标波长漂移量,以得到各触觉传感点对应的目标波长漂移量。
在一些实施方式中,触觉传感点的光栅光谱可以为反射光谱,反射光谱中包括第一反 射波段和第二反射波段,第二反射波段为第一反射波段漂移后的反射波段。本申请实施例可以将触觉传感点的传感参数改变之前的反射波段统称为第一反射波段,本申请实施例可以将触觉传感点的传感参数改变之后的反射波段统称为第二反射波段。计算机设备可以从各触觉传感点的反射光谱中确定出与各触觉传感点对应的第一反射波段上第一凸峰的第一反射波长,以及第二反射波段上的第二凸峰的第二反射波长。其中,第二凸峰为第二反射波段上与第一凸峰对应的凸峰,比如,第一反射波段上第i个凸峰对应第二反射波段上的第i个凸峰。进一步地,计算机设备可以基于第一反射波长与第二反射波长,确定各触觉传感点的目标波长漂移量。具体地,计算机设备可以将第一反射波长与第二反射波长之间的差值确定为任一触觉传感点对应的目标波长漂移量,以得到各触觉传感点对应的目标波长漂移量。
步骤S102,获取波长漂移量和传感参数之间的多组第一对应关系,基于各目标波长漂移量从多组第一对应关系中确定出各目标波长漂移量对应的传感参数。
在一些实施方式中,计算机设备可以从传感器数据库中获取波长漂移量和传感参数之间的多组第一对应关系,这里的多组第一对应关系的数据格式可以为表格、键值对或者其它数据格式。其中,传感参数可包括温度、压力或者其它参数。这里的传感器数据库中可以包含用户预先存储的波长漂移量和传感参数之间的多组第一对应关系,或者触觉传感器默认配置的波长漂移量和传感参数之间的多组第一对应关系。例如,传感器数据库中的波长漂移量和传感参数之间的多组第一对应关系可以如下述表1所示。其中,表1为波长漂移量和传感参数的对应关系表。
表1
波长漂移量 传感参数
波长漂移量1 传感参数1
波长漂移量m 传感参数m
进一步地,计算机设备在获取到波长漂移量和传感参数之间的多组第一对应关系之后,可以基于各目标波长漂移量从多组第一对应关系中确定出各目标波长漂移量对应的传感参数。假设传感参数包括压力,目标波长漂移量越大,目标波长漂移量对应的压力就越大。假设波长漂移量和传感参数之间的多组第一对应关系如上述表1所示,若任一触觉传感点对应的任一目标波长漂移量为波长漂移量1,计算机设备可以基于表1中的m组第一对应关系,确定任一目标波长漂移量对应的传感参数为波长漂移量1对应的传感参数1,进而可以确定各目标波长漂移量对应的传感参数。
步骤S103,将各目标波长漂移量对应的传感参数确定为各触觉传感点的传感参数。
在一些实施方式中,传感参数可包括温度、压力或者其它参数。触觉传感器可以设置于智能机器人的抓取部位(如机械手指),在智能机器人抓取物品时,假设传感参数为温度,计算机设备可直接确定该物品的温度。假设传感参数为压力,计算机设备可以在各触觉传感点的压力发生改变时,确定物品发生滑动或者智能机器人抓取不牢固,并向用户发送提示信息。这时,用户可以基于该提示信息对智能机器人下发指令,控制智能机器人重新抓取物品或者调整物品的位置,以使物品不再发生滑动或者智能机器人牢固地抓取物品。
在本申请实施例中,计算机设备在确定各波导光栅对应的各触觉传感点之后,可以基于各触觉传感点的光栅光谱确定各触觉传感点对应的目标波长漂移量,这里的目标波长漂 移量后续可以用于确定各触觉传感点的传感参数。进一步地,计算机设备可以基于各目标波长漂移量从多组第一对应关系中确定出各目标波长漂移量对应的传感参数,并将各目标波长漂移量对应的传感参数确定为各触觉传感点的传感参数(如温度或者压力),从而可以基于各目标波长漂移量准确测试各触觉传感点的传感参数,同时,由于该触觉传感器的传感空间分辨率高、传感灵敏度更大且具有柔性,传感参数测试的准确度更高,适用性更强。
进一步地,请参见图9,图9是本申请实施例提供的一种触觉传感器的参数测试方法的流程示意图。如图9所示,该方法可以由计算机设备执行,该计算机设备可以为集成有触觉传感器的实体终端,因此该方法也可以通过计算机设备中的触觉传感器执行。为方便描述,下面将以计算机设备为例进行说明,该方法可包括以下步骤S201-步骤S205:
步骤S201,采集各波导光栅对应的各触觉传感点的光栅光谱,基于各触觉传感点的光栅光谱确定各触觉传感点对应的目标波长漂移量。
步骤S202,获取波长漂移量和传感参数之间的多组第一对应关系,基于各目标波长漂移量和多组第一对应关系中确定出各目标波长漂移量对应的传感参数。
步骤S203,将各目标波长漂移量对应的传感参数确定为各触觉传感点的传感参数。
其中,该步骤S201-步骤S203的具体实现方式可以参见上述图8所对应实施例中对步骤S101-步骤S103的描述,这里将不再继续进行赘述。
步骤S204,获取各凸起的第二对应关系。
在一些实施方式中,计算机设备可以从传感器数据库中获取第二对应关系,一个凸起的第二对应关系中包括该凸起下覆盖的各触觉传感点的压力与凸起的切向力之间的对应关系。这里的第二对应关系的数据格式可以为表格、键值对或者其它数据格式。这里的传感器数据库中可以包含用户预先存储的多组第二对应关系,或者触觉传感器默认配置的多组第二对应关系。
步骤S205,基于各凸起所覆盖的各触觉传感点的压力和所述各凸起的第二对应关系,确定出各触觉传感点的压力对应的切向力,并将各触觉传感点的压力对应的切向力确定为各触觉传感点对应的凸起的切向力。
在一些实施方式中,在获取各凸起的第二对应关系之后,计算机设备可以基于凸起所覆盖的各触觉传感点的压力,确定各凸起的切向力。例如,凸起为圆台,本申请实施例可以将至少一个圆台中的任意一个圆台称之为目标圆台。不同圆台的切向力可以相同,也可以不同。由于触觉传感器上的一个圆台可以覆盖至少三个不同周期的波导光栅,当圆台收到正压力时,所覆盖的至少三个波导光栅受力一致,当圆台同时受到正压力和切向力时,所覆盖的至少三个波导光栅受力不一致,可通过所覆盖的至少三个波导光栅受力不一致时产生的传感信号(如上述各触觉传感点的波长漂移量)来判断该圆台所受切向力的大小和方向。例如,该目标圆台所覆盖的各触觉传感点中的触觉传感点1的压力最大,则表明了该目标圆台受到的切向力的方向倾斜至触觉传感点1所在的方位。
在本申请实施例中,计算机设备在确定各波导光栅对应的各触觉传感点之后,可以基于各触觉传感点的光栅光谱确定各触觉传感点对应的目标波长漂移量,这里的目标波长漂移量后续可以用于确定各触觉传感点的传感参数。进一步地,计算机设备可以基于各目标波长漂移量从多组第一对应关系中确定出各目标波长漂移量对应的传感参数,并将各目标波长漂移量对应的传感参数确定为各触觉传感点的传感参数(如温度或者压力),从而可以基于各目标波长漂移量准确测试各触觉传感点的温度或者压力。另外,计算机设备也可 以基于各触觉传感点的压力确定至少一个圆台中的目标圆台受到的切向力,可在测试各触觉传感点的温度或者压力的同时测试圆台的切向力,并且由于该触觉传感器的传感空间分辨率高、传感灵敏度更大且具有柔性,传感参数测试的准确度更高,适用性更强。
进一步地,请参见图10,图10是本申请实施例提供的一种触觉传感器的参数测试装置的结构示意图。该触觉传感器的参数测试装置可以是运行于计算机设备中的一个计算机程序(包括程序代码),例如,该触觉传感器的参数测试装置为一个应用软件;该触觉传感器的参数测试装置可以用于执行本申请实施例提供的方法中的相应步骤。如图10所示,该触觉传感器的参数测试装置1可以运行于计算机设备或者触觉传感器,该计算机设备可以为上述图1所对应实施例中的服务器10,该触觉传感器可以为上述图3中的触觉传感器3。该触觉传感器的参数测试装置1可以包括:折射率确定模块10、光栅周期确定模块20、传感点确定模块30、漂移量确定模块40、第一确定模块50、第二确定模块60、获取模块70以及切向力确定模块80。
漂移量确定模块40,用于获取各触觉传感点的光栅光谱,基于各触觉传感点的光栅光谱确定各触觉传感点对应的目标波长漂移量。
其中,触觉传感点的光栅光谱为透射光谱,透射光谱中包括第一透射波段和第二透射波段,第二透射波段为第一透射波段漂移后的透射波段;
漂移量确定模块40可以包括:第一波长确定单元401和第一漂移量确定单元402。
第一波长确定单元401,用于从各触觉传感点的透射光谱中确定出与各触觉传感点对应的第一透射波段上第一凹峰的第一透射波长、以及第二透射波段上的第二凹峰的第二透射波长,其中第二凹峰与第一凹峰对应;
第一漂移量确定单元402,用于基于第一透射波长与第二透射波长,确定各触觉传感点对应的目标波长漂移量。
其中,该第一波长确定单元401和第一漂移量确定单元402的具体实现方式可以参见上述图8所对应实施例中对步骤S101的描述,这里将不再继续进行赘述。
其中,触觉传感点的光栅光谱为反射光谱,反射光谱中包括第一反射波段和第二反射波段,第二反射波段为第一反射波段漂移后的反射波段。
漂移量确定模块40包括:第二波长确定单元403和第二漂移量确定单元404。
第二波长确定单元403,用于从各触觉传感点的反射光谱中确定出与各触觉传感点对应的第一反射波段上第一凸峰的第一反射波长,以及第二反射波段上的第二凸峰的第二反射波长,其中第二凸峰与第一凸峰对应;
第二漂移量确定单元404,用于基于第一反射波长与第二反射波长,确定各触觉传感点对应的目标波长漂移量。
其中,该第二波长确定单元403和第二漂移量确定单元404的具体实现方式可以参见上述图8所对应实施例中对步骤S101的描述,这里将不再继续进行赘述。
第一确定模块50,用于获取波长漂移量和传感参数之间的多组第一对应关系,基于各目标波长漂移量从多组第一对应关系中确定出各目标波长漂移量对应的传感参数。
第二确定模块60,用于将各目标波长漂移量对应的传感参数确定为各触觉传感点的传感参数,传感参数包括温度或者压力。
其中,上述触觉传感器的参数测试装置1还包括:
折射率确定模块10,用于基于内芯的形状、尺寸、光折射率以及包层的光折射率确定内芯的有效折射率。
光栅周期确定模块20,用于基于预设反射波长、内芯的有效折射率以及各波导光栅的阶数,确定各波导光栅的光栅周期。
传感点确定模块30,用于基于各波导光栅的光栅周期确定各波导光栅对应的各触觉传感点。
其中,各触觉传感点的传感参数包括各触觉传感点的压力;
上述触觉传感器的参数测试装置1还包括:
获取模块70,用于获取各凸起的第二对应关系,每个凸起的第二对应关系包括该凸起下覆盖的各触觉传感点的压力与该凸起的切向力之间的对应关系;
切向力确定模块80,用于基于各凸起所覆盖的各触觉传感点的压力和各凸起的第二对应关系,确定出各触觉传感点的压力对应的切向力,并将各触觉传感点的压力对应的切向力确定为各触觉传感点对应的凸起的切向力。
其中,该折射率确定模块10、光栅周期确定模块20、传感点确定模块30、漂移量确定模块40、第一确定模块50、第二确定模块60、获取模块70以及切向力确定模块80的具体实现方式可以参见上述图8所对应实施例中对步骤S101-步骤S103的描述和/或上述图9所对应实施例中对步骤S201-步骤S205的描述,这里将不再继续进行赘述。另外,对采用相同方法的有益效果描述,也不再进行赘述。
进一步地,请参见图11,图11是本申请实施例提供的一种计算机设备的结构示意图。如图11所示,该计算机设备1000可以为上述图1对应实施例中的服务器10,该计算机设备1000可以包括:至少一个处理器1001,例如CPU,至少一个网络接口1004,用户接口1003,存储器1005,至少一个通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。其中,用户接口1003可以包括显示屏(Display)、键盘(Keyboard),网络接口1004可选地可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器1005可选地还可以是至少一个位于远离前述处理器1001的存储装置。如图11所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及设备控制应用程序。
在图11所示的计算机设备1000中,网络接口1004主要用于与用户终端进行网络通信;而用户接口1003主要用于为用户提供输入的接口;而处理器1001可以用于调用存储器1005中存储的设备控制应用程序,以实现:
获取各波导光栅对应的各触觉传感点的光栅光谱,基于各触觉传感点的光栅光谱确定各触觉传感点对应的目标波长漂移量;
获取波长漂移量和传感参数之间的多组第一对应关系,基于各目标波长漂移量和多组第一对应关系中确定出各目标波长漂移量对应的传感参数;
将各目标波长漂移量对应的传感参数确定为各触觉传感点的传感参数,该传感参数包括温度或者压力。
应当理解,本申请实施例中所描述的计算机设备1000可执行前文图8和/或图9所对应实施例中对该触觉传感器的参数测试方法的描述,也可执行前文图10所对应实施例中对该触觉传感器的参数测试装置1的描述,在此不再赘述。另外,对采用相同方法的有益效果描述,也不再进行赘述。
此外,这里需要指出的是:本申请实施例还提供了一种计算机可读存储介质,且该计算机可读存储介质中存储有前文提及的触觉传感器的参数测试装置1所执行的计算机程 序,且该计算机程序包括程序指令,当该处理器执行该程序指令时,能够执行前文图8和图9所对应实施例中对该触觉传感器的参数测试方法的描述,因此,这里将不再进行赘述。另外,对采用相同方法的有益效果描述,也不再进行赘述。对于本申请所涉及的计算机可读存储介质实施例中未披露的技术细节,请参照本申请方法实施例的描述。作为示例,程序指令可被部署为在一个计算设备上执行,或者在位于一个地点的多个计算设备上执行,又或者,在分布在多个地点且通过通信网络互连的多个计算设备上执行,分布在多个地点且通过通信网络互连的多个计算设备可以组成区块链系统。
本申请的一个方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行本申请实施例中提供的触觉传感器的参数测试方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,上述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。上述计算机可读存储介质可以是前述任一实施例提供的触觉传感器的参数测试装置或者上述设备的内部存储单元,例如电子设备的硬盘或内存。该计算机可读存储介质也可以是该电子设备的外部存储设备,例如该电子设备上配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。上述计算机可读存储介质还可以包括磁碟、光盘、只读存储记忆体(read-only memory,ROM)或随机存储记忆体(random access memory,RAM)等。进一步地,该计算机可读存储介质还可以既包括该电子设备的内部存储单元也包括外部存储设备。该计算机可读存储介质用于存储该计算机程序以及该电子设备所需的其他程序和数据。该计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
本申请的权利要求书和说明书及附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置展示该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (18)

  1. 一种触觉传感器,所述触觉传感器包括:内芯、包层以及多个波导光栅,所述包层包裹所述多个波导光栅和所述内芯,每个波导光栅为周期性结构,所述内芯为蛇形结构;
    其中,所述触觉传感器中包括多个触觉传感点,每个触觉传感点对应一个波导光栅,不同的触觉传感点对应的波导光栅具有不同的光栅周期。
  2. 根据权利要求1所述的触觉传感器,其中,所述每个波导光栅使所述内芯产生布拉格反射,在所述多个波导光栅中一个波导光栅发生光栅周期变化时,该波导光栅的光栅周期变化引起该波导光栅对应的光栅光谱的变化,所述光栅光谱的变化反映该波导光栅对应的触觉传感点处传感参数的变化。
  3. 根据权利要求1所述的触觉传感器,其中,所述内芯的光折射率大于所述包层的光折射率。
  4. 根据权利要求3所述的触觉传感器,其中,所述内芯为光敏性不可拉伸的透明高透光材料,所述包层为热固型可拉伸的透明高透光硅胶材料,所述内芯的光折射率与所述包层的光折射率的差异达到预设光折射率差值。
  5. 根据权利要求1所述的触觉传感器,其中,所述每个波导光栅包括以下中至少一个:矩形周期性结构、三角形周期性结构和圆柱形周期性结构。
  6. 根据权利要求1所述的触觉传感器,其中,所述传感参数为压力,所述触觉传感器的表面具有至少一个凸起,每个凸起覆盖至少三个触觉传感点,受力的所述每个凸起对其覆盖的所述至少三个触觉传感点施加压力,所述至少三个触觉传感点受力变形引起所述三个触觉传感点对应的波导光栅发生光栅周期变化。
  7. 根据权利要求6所述的触觉传感器,其中,所述凸起为圆台,所述至少三个触觉传感点的结构为中心对称分布结构,所述圆台的中心位置与所述圆台覆盖的所述至少三个触觉传感点的对称中心重合。
  8. 根据权利要求1所述的触觉传感器,进一步包括:标记物,处于所述内芯外部并保持与所述内芯的延伸方向一致,以标记所述内芯的光路。
  9. 根据权利要求1所述的触觉传感器,其中,所述传感参数为温度,温度变化的触觉传感点使得对应的波动光栅发生形变,发生所述形变的波动光栅发生光栅周期变化。
  10. 一种触觉传感器的参数测试方法,应用于计算机设备,其中,所述触觉传感器包括:内芯、包层以及多个波导光栅,所述包层包裹所述多个波导光栅和所述内芯,每个波导光栅为周期性结构,所述内芯为蛇形结构;所述触觉传感器中包括多个触觉传感点,每个触觉传感点对应一个波导光栅,不同的触觉传感点对应的波导光栅具有不同的光栅周期;
    所述方法包括:
    获取各波导光栅对应的各触觉传感点的光栅光谱;
    基于所述各触觉传感点的光栅光谱确定所述各触觉传感点对应的目标波长漂移量;
    获取波长漂移量和传感参数之间的多组第一对应关系,基于各目标波长漂移量从所述多组第一对应关系中确定出所述各目标波长漂移量对应的传感参数;
    将所述各目标波长漂移量对应的传感参数确定为所述各触觉传感点的传感参数,所述传感参数包括温度或者压力。
  11. 根据权利要求10所述的方法,还包括:
    基于所述内芯的形状、尺寸、光折射率以及所述包层的光折射率确定所述内芯的有效折射率;
    基于各波导光栅对应的预设反射波长、所述内芯的有效折射率以及所述各波导光栅的阶数,确定所述各波导光栅的光栅周期;
    基于所述各波导光栅的光栅周期确定所述各波导光栅对应的各触觉传感点。
  12. 根据权利要求10所述的方法,其中,所述触觉传感点的光栅光谱为透射光谱,所述透射光谱中包括第一透射波段和第二透射波段,所述第二透射波段为所述第一透射波段漂移后的透射波段;
    所述基于所述各触觉传感点的光栅光谱确定所述各触觉传感点对应的目标波长漂移量,包括:
    从所述各触觉传感点的透射光谱中确定出与各触觉传感点对应的第一透射波段上第一凹峰的第一透射波长、以及第二透射波段上的第二凹峰的第二透射波长,其中所述第二凹峰与所述第一凹峰对应;
    基于所述第一透射波长与所述第二透射波长,确定所述各触觉传感点对应的目标波长漂移量。
  13. 根据权利要求10所述的方法,其中,所述触觉传感点的光栅光谱为反射光谱,所述反射光谱中包括第一反射波段和第二反射波段,所述第二反射波段为所述第一反射波段漂移后的反射波段;
    所述基于所述各触觉传感点的光栅光谱确定所述各触觉传感点对应的目标波长漂移量,包括:
    从所述各触觉传感点的反射光谱中确定出与所述各触觉传感点对应的第一反射波段上第一凸峰的第一反射波长,以及第二反射波段上的第二凸峰的第二反射波长,其中所述第二凸峰与所述第一凸峰对应;
    基于所述第一反射波长与所述第二反射波长,确定所述各触觉传感点的目标波长漂移 量。
  14. 根据权利要求10所述的方法,其中,所述各触觉传感点的传感参数包括所述各触觉传感点的压力,所述传感器的表面具有至少一个凸起,每个凸起覆盖至少三个触觉传感点;
    所述方法还包括:
    获取各凸起的第二对应关系,每个凸起的第二对应关系包括该凸起下覆盖的各触觉传感点的压力与该凸起的切向力之间的对应关系;
    基于各凸起所覆盖的各触觉传感点的压力和所述各凸起的第二对应关系,确定出所述各触觉传感点的压力对应的切向力,并将所述各触觉传感点的压力对应的切向力确定为所述各触觉传感点对应的凸起的切向力。
  15. 一种触觉传感器的参数测试装置,所述参数测试装置应用于计算机设备,其中触觉传感器包括:内芯、包层以及多个波导光栅,所述包层包裹所述多个波导光栅和所述内芯,每个波导光栅为周期性结构,所述内芯为蛇形结构;其中,所述触觉传感器中包括多个触觉传感点,每个触觉传感点对应一个波导光栅,不同的触觉传感点对应的波导光栅具有不同的光栅周期;所述参数测试装置包括:
    漂移量确定模块,用于获取各波导光栅对应的各触觉传感点的光栅光谱,基于所述各触觉传感点的光栅光谱确定所述各触觉传感点对应的目标波长漂移量;
    第一确定模块,用于获取波长漂移量和传感参数之间的多组第一对应关系,基于各目标波长漂移量和所述多组第一对应关系中确定出所述各目标波长漂移量对应的传感参数;
    第二确定模块,用于将所述各目标波长漂移量对应的传感参数确定为所述各触觉传感点的传感参数,所述传感参数包括温度或者压力。
  16. 一种计算机设备,包括:处理器、存储器以及网络接口;
    所述处理器与存储器、网络接口相连,其中,网络接口用于提供数据通信功能,所述存储器用于存储程序代码,所述处理器用于调用所述程序代码,以执行权利要求10-14中任一项所述的方法。
  17. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被处理器执行时,执行权利要求10-14任一项所述的方法。
  18. 一种计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中,计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行如权利要求10至14中任一项的方法。
PCT/CN2021/133884 2020-12-09 2021-11-29 触觉传感器及其参数测试方法、装置、设备、程序及介质 WO2022121716A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011428587.8A CN114608630B (zh) 2020-12-09 2020-12-09 触觉传感器及其参数测试方法、装置及存储介质
CN202011428587.8 2020-12-09

Publications (1)

Publication Number Publication Date
WO2022121716A1 true WO2022121716A1 (zh) 2022-06-16

Family

ID=81857100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133884 WO2022121716A1 (zh) 2020-12-09 2021-11-29 触觉传感器及其参数测试方法、装置、设备、程序及介质

Country Status (2)

Country Link
CN (1) CN114608630B (zh)
WO (1) WO2022121716A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090008778A (ko) * 2007-07-19 2009-01-22 한국과학기술원 광섬유의 미소굽힘 특성을 이용한 촉각센서와 그 제조방법및 이를 이용한 분포형 하중 측정장치
CN103968980A (zh) * 2014-05-20 2014-08-06 山东大学 新型的光纤触觉阵列传感器及制作方法
CN107248548A (zh) * 2017-05-25 2017-10-13 电子科技大学 一种基于压电薄膜的可穿戴检声器
CN108871388A (zh) * 2018-05-10 2018-11-23 刘正勇 光纤触觉传感器及传感阵列
CN109405761A (zh) * 2018-11-14 2019-03-01 深圳市迈步机器人科技有限公司 光纤传感器、形变检测装置、检测方法及数据手套
CN209199655U (zh) * 2018-11-28 2019-08-02 人民电缆集团有限公司 光纤复合高压电力电缆
US10562190B1 (en) * 2018-11-12 2020-02-18 National Central University Tactile sensor applied to a humanoid robots

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7539361B2 (en) * 2006-10-05 2009-05-26 Harris Corporation Fiber optic device for measuring a parameter of interest
CN203385668U (zh) * 2013-05-16 2014-01-08 成都谱视科技有限公司 狭缝波导串联型光栅fp腔光学生化传感芯片
CN103558183B (zh) * 2013-07-31 2015-06-17 电子科技大学 嵌有fp腔的mz干涉式光学生化传感芯片
CN203848958U (zh) * 2014-05-20 2014-09-24 山东大学 新型的光纤触觉阵列传感器
CN104316996B (zh) * 2014-11-03 2018-01-16 东南大学 一种聚合物集成波导布拉格光栅折射率传感器
CN109932113B (zh) * 2019-02-20 2021-07-06 天津大学 力触觉超高空间分辨率的啁啾光纤光栅测量系统
CN111256889B (zh) * 2020-01-07 2021-05-04 腾讯科技(深圳)有限公司 触觉传感器、触觉事件的检测方法、装置及智能机器人

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090008778A (ko) * 2007-07-19 2009-01-22 한국과학기술원 광섬유의 미소굽힘 특성을 이용한 촉각센서와 그 제조방법및 이를 이용한 분포형 하중 측정장치
CN103968980A (zh) * 2014-05-20 2014-08-06 山东大学 新型的光纤触觉阵列传感器及制作方法
CN107248548A (zh) * 2017-05-25 2017-10-13 电子科技大学 一种基于压电薄膜的可穿戴检声器
CN108871388A (zh) * 2018-05-10 2018-11-23 刘正勇 光纤触觉传感器及传感阵列
US10562190B1 (en) * 2018-11-12 2020-02-18 National Central University Tactile sensor applied to a humanoid robots
CN109405761A (zh) * 2018-11-14 2019-03-01 深圳市迈步机器人科技有限公司 光纤传感器、形变检测装置、检测方法及数据手套
CN209199655U (zh) * 2018-11-28 2019-08-02 人民电缆集团有限公司 光纤复合高压电力电缆

Also Published As

Publication number Publication date
CN114608630B (zh) 2023-03-31
CN114608630A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
US20170047056A1 (en) Method for playing virtual musical instrument and electronic device for supporting the same
CN104111088B (zh) 用于确定便携式电子装置的传感器精度的系统和方法
US9886338B1 (en) Health check solution evaluating system status
CN107003872B (zh) 集中客户端应用管理
CN110199276A (zh) 用方面标记查询
Lakka et al. Competitive dynamics in the operating systems market: Modeling and policy implications
CN102368224A (zh) 一种硬件检测的处理方法及装置
CN110147317A (zh) 代码测试方法及装置、电子设备和存储介质
US20220278902A1 (en) Split decision trees on client and server
US11786823B2 (en) System and method for creating personalized game experiences
CN104106040A (zh) 图表缩放的视觉表示
CN109711160A (zh) 应用程序检测方法、装置及神经网络系统
Geldard The saltatory effect in vision.
WO2022121716A1 (zh) 触觉传感器及其参数测试方法、装置、设备、程序及介质
CN112147625A (zh) 一种标定方法、装置、单目激光测量设备及标定系统
CN117377926A (zh) 用于提供基于虚拟现实环境的训练和认证的系统和方法
CN110351299A (zh) 一种网络连接检测方法和装置
CN103034367A (zh) 触摸屏的校准方法
KR102182593B1 (ko) 스마트글라스 디스플레이 모듈의 광학적 성능을 평가하기 위한 장치 및 방법
US11126266B1 (en) Vibrational input elements
CN109074382A (zh) 数据库查询创建
US11887014B2 (en) Dynamic question recommendation
Leffers et al. Polymer-optical sensor glove prototype based on eccentric FBGs
US11500863B2 (en) Field inheritance removal system
KR102643508B1 (ko) 게임 상에서 게임 캐릭터의 성장 코스를 제공하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.11.2023)