WO2022121563A1 - 可调隔声装置以及控制隔声的方法 - Google Patents

可调隔声装置以及控制隔声的方法 Download PDF

Info

Publication number
WO2022121563A1
WO2022121563A1 PCT/CN2021/128383 CN2021128383W WO2022121563A1 WO 2022121563 A1 WO2022121563 A1 WO 2022121563A1 CN 2021128383 W CN2021128383 W CN 2021128383W WO 2022121563 A1 WO2022121563 A1 WO 2022121563A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound insulation
circuit
body structure
adjustable
coupling mechanism
Prior art date
Application number
PCT/CN2021/128383
Other languages
English (en)
French (fr)
Inventor
张宇敏
黄立锡
Original Assignee
香港大学浙江科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港大学浙江科学技术研究院 filed Critical 香港大学浙江科学技术研究院
Publication of WO2022121563A1 publication Critical patent/WO2022121563A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects

Definitions

  • Embodiments of the present disclosure relate to an adjustable sound insulation device and method of controlling sound insulation.
  • noise pollution is considered to be the third largest public hazard after air pollution and water pollution, which not only brings a lot of inconvenience to people's daily life, work and study, but also deeply affects people's health.
  • Embodiments of the present disclosure provide an adjustable sound insulation device and a method for controlling sound insulation, which can selectively change the electrical impedance of a controllable circuit according to a variable noise source, so that the effective isolation spectrum varies with working conditions noise.
  • At least one embodiment of the present disclosure provides an adjustable sound insulation device, comprising:
  • the sound insulation body structure is configured to be propelled by sound waves
  • An electromechanical coupling mechanism wherein at least a part of the electromechanical coupling mechanism is fixedly connected to the sound insulation body structure, and the moving sound insulation body structure drives at least a part of the electromechanical coupling mechanism to move for the sound insulation body structure.
  • controllable circuit wherein the controllable circuit is conductively connected to the electromechanical coupling mechanism and provides a mechanical impedance through the sound insulation body structure converted into motion by the electromechanical, and the controllable circuit can selectively change the electrical impedance , so that the mechanical impedance of the sound insulation body structure can be adjusted.
  • the controllable circuit includes a plurality of branch circuits that are connected in parallel and respectively have different electrical impedances, and the electromechanical coupling mechanism can be selectively coupled Electrically connected to one of the plurality of branch circuits of the controllable circuit such that the mechanical impedance to the sound insulating body structure is adjustable.
  • the sound insulation body structure includes a sound insulation membrane
  • the sound insulation membrane includes a non-breathable membrane-like structure or a plate-like structure, or,
  • the sound insulation membrane includes a partially breathable membrane-like structure or a plate-like structure.
  • At least part of the electromechanical coupling mechanism includes a conductor, the electromechanical coupling mechanism further includes a magnet for providing a magnetic field during operation, the electromechanical coupling mechanism
  • the conductor is fixedly connected with the sound insulation body structure and is driven by the moving sound insulation body structure to move, so as to cut the magnetic field, and the conductor generates an induced current.
  • the conductor includes a single-layer or multi-layer coil
  • the magnet includes two magnets disposed opposite to each other.
  • the sound insulation body structure is suspended from the installation frame through an elastic suspension component, so that the sound insulation body structure is pushed by the sound waves and Reciprocating motion.
  • the coil is wound on a cylindrical body and the cylindrical body is fixedly connected to the sound insulation body structure, and the sound insulation body structure passes through
  • the suspension assembly moves along the axial direction of the cylindrical body, and drives the coil to move along the axial direction of the cylindrical body.
  • the electromechanical coupling mechanism further includes a magnetic conductive component for conducting the magnetic field, and the magnetic conductive component includes:
  • first magnetic conductive member a first magnetic conductive member, wherein the first magnetic conductive member is sleeved on the outer side of the coil and guides the magnetic field of the first polarity side of the magnet to pass through the first magnetic conductive member;
  • the second magnetic conductive member includes a first part and a second part, and the first part of the second magnetic conductive member is inserted into the inner side of the coil along the axial direction of the cylinder,
  • the second portion of the second magnetic conductive member is along the radial direction of the cylinder and guides the magnetic field of the second polarity side of the magnet through the second portion of the second magnetic conductive member to the first portion, The magnetic field is thereby directed through the coil for cutting by the moving coil.
  • both ends of the conductor are electrically connected to the controllable circuit through wires, and the controllable circuit is an active circuit or a passive circuit. circuit.
  • each of the branch circuits of the controllable circuit includes a controllable switch, which is used to control the on or off of the branch circuit. open so that the electromechanical coupling mechanism is selectively conductively connected to one of a plurality of branch circuits of the controllable circuit.
  • each of the branch circuits of the controllable circuit further includes a first capacitor, a first capacitor, a second capacitor connected in series with the controllable switch An inductance and a first resistance, for at least two of the branch circuits, the parameter values of any one or more of the first capacitance, the first inductance, and the first resistance included therein are respectively unequal.
  • the controllable circuit further includes a negative impedance circuit, and each of the controllable switches is associated with a corresponding first capacitor, a first inductor, a first A circuit formed by connecting a resistor in series is respectively connected in series with the negative impedance circuit to form a plurality of the branch circuits with negative impedance circuits, so as to adjust the electrical impedance of the plurality of branch circuits.
  • both ends of the conductor are respectively connected to the ground end and the circuit end of the controllable circuit
  • a circuit formed by connecting each controllable switch and the corresponding first capacitor, first inductor and first resistor in series is connected between the circuit terminal of the controllable circuit and the negative impedance circuit, and is located at the ground
  • the electronics between the terminals and the negative impedance circuit have negative impedance.
  • the electronic device located between the ground terminal and the negative impedance circuit includes resistance and/or inductance.
  • the negative impedance circuit includes:
  • an operational amplifier wherein the negative input terminal of the operational amplifier is connected to a circuit formed by the controllable switch being connected in series with the corresponding first capacitor, the first inductor and the first resistor, and the positive input terminal of the operational amplifier is connected in series connected with the electronic device;
  • a second balancing resistor wherein the second balancing resistor is connected to the positive input terminal and the output terminal of the operational amplifier respectively, and the resistance values of the first balancing resistor and the second balancing resistor are equal or unequal.
  • At least one embodiment of the present disclosure provides a method for controlling sound insulation, including:
  • the electrical impedance of the controllable circuit can be selectively changed, and the mechanical impedance is provided to the sound insulating body structure through the electromechanical conversion, so that the mechanical impedance of the sound insulating body structure can be adjusted. tune.
  • the electrical impedance of the controllable circuit can be selectively changed, including:
  • the electromechanical coupling mechanism is selectively conductively connected to one of a plurality of branch circuits included in the controllable circuit.
  • FIG. 1 is a schematic structural diagram of an adjustable sound insulation device provided by some embodiments of the present disclosure
  • FIG. 2 is a schematic three-dimensional structural diagram of an adjustable sound insulation device provided by some embodiments of the present disclosure
  • FIG. 3 is a schematic cross-sectional view of an electromechanical coupling mechanism provided by some embodiments of the present disclosure
  • FIG. 4 is a schematic circuit diagram of a controllable circuit provided by some embodiments of the present disclosure.
  • FIG. 5 is a schematic circuit diagram of a controllable circuit provided by other embodiments of the present disclosure.
  • FIG. 6 is a schematic diagram of the experimental effect of the adjustable sound insulation device using the equivalent series circuit shown in FIG. 4 according to some embodiments of the present disclosure.
  • the principle of the general sound insulation board is to use the impedance of the sound insulation board to not match the impedance of the medium in which the sound wave propagates.
  • the sound wave is incident on the interface between the sound insulation board and the propagation medium, most of the energy of the sound wave is reflected due to the huge change in impedance. , so that it cannot penetrate the sound insulation board (ie sound insulation).
  • the traditional sound insulation boards are mostly multi-layer composite plywood in the form of sandwiches, which makes the sound waves reflect multiple times to strengthen the sound insulation.
  • traditional sound insulation boards have some insurmountable shortcomings, such as the inability of traditional sound insulation boards to effectively isolate low-frequency noise.
  • the main noise component of rotating machinery is usually pure tone noise related to the rotational speed, and the frequency of the main component of the noise is also different according to different working conditions.
  • the traditional sound insulation board is equivalent to a single-degree-of-freedom or multi-free vibration system, and its sound transmission rate is very high at the resonant frequency of the plate. When close to the resonant frequency of the baffle, the baffle cannot effectively isolate the noise under these rotational speed conditions.
  • At least one embodiment of the present disclosure provides an adjustable sound insulation device, comprising:
  • the sound insulation body structure is configured to be propelled by sound waves
  • An electromechanical coupling mechanism wherein at least part of the electromechanical coupling mechanism is fixedly connected to the sound insulation body structure, and the moving sound insulation body structure drives at least part of the electromechanical coupling mechanism to move for electromechanical conversion of the electromechanical coupling mechanism;
  • controllable circuit wherein the controllable circuit is conductively connected with the electromechanical coupling mechanism and provides mechanical impedance through the electromechanical conversion into the motion of the sound insulation body structure, and the controllable circuit can selectively change the electrical impedance, so that the mechanical impedance of the sound insulation body structure Adjustable.
  • At least one embodiment of the present disclosure also provides a method for controlling sound insulation, the method comprising:
  • the electrical impedance of the controllable circuit can be selectively changed, and the mechanical impedance is provided to the sound insulation body structure through the electromechanical conversion, and the mechanical impedance is provided to the sound insulation body structure through the electromechanical conversion, so that The mechanical impedance of the sound insulation body structure is adjustable.
  • the adjustable sound insulation device or the method for controlling sound insulation of the above embodiments can selectively change the electrical impedance of the controllable circuit according to the variable noise source, so as to effectively isolate the noise whose frequency spectrum changes with the working conditions.
  • the controllable circuit in at least one embodiment of the present disclosure further includes a plurality of branch circuits that are connected in parallel and have different electrical impedances respectively, and the electromechanical coupling mechanism can be selectively conductively connected to one of the plurality of branch circuits of the controllable circuit , so that the mechanical impedance of the sound insulation body structure can be adjusted, and the adjustable sound insulation device of this embodiment can selectively conduct different branch circuits in the controllable circuit, so as to provide variable mechanical impedance for the sound insulation body structure, In order to effectively isolate the noise whose spectrum varies with operating conditions.
  • FIG. 1 is a schematic structural diagram of an adjustable sound insulation device provided by some embodiments of the present disclosure.
  • FIG. 2 is a schematic three-dimensional structural diagram of an adjustable sound insulation device provided by some embodiments of the present disclosure.
  • the adjustable sound insulation device includes a sound insulation body structure 3 , an electromechanical coupling mechanism 4 and a controllable circuit 6 .
  • the sound insulation body structure 3 is propelled to move by sound waves, and the sound waves are sound waves that need to be sound-insulated.
  • At least part of the electromechanical coupling mechanism 4 is fixedly connected to the sound insulation body structure 3 , and the moving sound insulation body structure 3 drives at least part of the electromechanical coupling mechanism 4 to move for electromechanical conversion of the electromechanical coupling mechanism 4 .
  • the controllable circuit 6 is conductively connected to the electromechanical coupling mechanism 4 and provides mechanical impedance through electromechanical conversion to the moving sound insulation body structure 3 , so as to realize the adjustable mechanical impedance of the sound insulation body structure 3 .
  • the adjustable sound insulation device can be used alone, or can be used in combination with multiple adjustable sound insulation devices, for example, it is arranged on at least part of the wall of a space that needs sound insulation (such as a house), so as to block at least part of the sound from the outside of the space from entering the inside this space.
  • the sound insulating body structure 3 includes a sound insulating membrane 31 that includes a non-breathable membrane-like structure or a plate-like structure (eg, a sheet), or the sound insulating membrane 31 includes a partially breathable Membrane structure or plate structure.
  • the partially breathable film-like structure or plate-like structure is a film-like structure or plate-like structure composed of materials with a flow resistance greater than 20kPas/m 2 , such as metal films such as aluminum films and stainless steel films, and inorganic materials such as plastics and carbon fibers.
  • the manufactured plate-like structure, the film-like structure or the plate-like structure made of organic materials such as biopolymer materials, are not limited in the present disclosure.
  • the sound insulation film 31 since the sound insulation film 31 is propelled by sound waves to move, the sound insulation film 31 may be referred to as the vibration film 31 in the embodiment of the present disclosure.
  • the sound insulation film 31 in the following examples is referred to as the vibration film 31 , but this is only an example of a different naming and wording, and will not have any limiting effect on the features of the sound insulation body structure of the present disclosure.
  • the sound insulation body structure of the present disclosure is not limited to the diaphragm 31.
  • the sound insulation body structure of the adjustable sound insulation device below is mainly described by taking the diaphragm 31 as the sound insulation body structure as an example.
  • the sound insulation body structure of each example herein can also be a sound insulation body of any other shape and structure, which is not limited in the present disclosure.
  • the sound wave when a sound wave is incident obliquely and pushes the diaphragm 31 to move, the sound wave can be decomposed into an axial sound wave and a tangential sound wave, and the tangential sound wave component will not interact with the diaphragm, that is, the tangential sound wave component also It does not penetrate the diaphragm, so tangential sound waves are generally not considered.
  • the diaphragm 31 may be a flat film-like structure or a plate-like structure (not shown) with a certain thickness, such as a circle, a cone, an ellipse, a square and other shapes.
  • the diaphragm 31 may also be a three-dimensional structure surrounded by a film with a certain thickness, such as the horn-shaped structure shown in FIG. 1 and FIG. 2 , or a cuboid or any other three-dimensional structure.
  • the diaphragm 31 can have any shape and thickness, for example, the dynamic mass of the diaphragm 31 is less than 20g per square decimeter, as long as the diaphragm 31 can supply sound waves (as shown in FIG. 2 ).
  • the incident noise source can be incident to push the motion.
  • the diaphragm 31 is suspended from the mounting frame 1 by elastic suspension components, so that the diaphragm 31 is pushed and reciprocated by sound waves.
  • the mounting frame 1 may be a fixed structure of any material, for example, may be made of metal, wood or other materials, which is not limited in the present disclosure.
  • the suspension component may be any elastic material and structure, as long as the diaphragm 31 can be suspended from the mounting frame 1 , which is not limited in the present disclosure.
  • FIG. 3 is a schematic cross-sectional view of an electromechanical coupling mechanism 4 provided by some embodiments of the present disclosure, wherein the horizontal and vertical directions of the paper shown in FIG. 3 are consistent with the horizontal and vertical directions of the paper shown in FIG. 1 .
  • the electromechanical coupling mechanism 4 includes a conductor and a magnet.
  • the magnet is used to provide a magnetic field during operation.
  • the conductor is fixedly connected to the diaphragm 31 and is driven by the moving diaphragm 31 to cut the magnetic field.
  • the conductor comprises a single or multi-layer coil 8, and the magnet comprises two magnets 10 (eg, electromagnets) disposed in opposition.
  • the coil 8 is formed of a metal wire, such as a copper wire followed by an aluminum wire, etc., which is not limited in the present disclosure.
  • the coil 8 is wound on the cylinder 81 and the cylinder 81 is fixedly connected to the diaphragm 31, so that the moving diaphragm 31 can drive the coil 8 to move (that is, the coil 8 is a movable coil), and the moving diaphragm 31 can drive the coil 8 to move.
  • the coil 8 cuts the magnetic field, and the coil 8 generates an induced current.
  • the cylindrical body 81 is fixedly connected to the side of the diaphragm 31 away from the mounting frame 1 , so that the coil 8 wound on the cylindrical body 81 and the diaphragm 31 have the same vibration speed.
  • the suspension assembly when the diaphragm 31 is a horn-shaped structure, the suspension assembly includes a first suspension member 2 and a second suspension member 7 , and the second suspension member 7 and the first suspension member will be formed by the second suspension member 7 and the first suspension member.
  • the suspension components formed by the cooperation are called double suspensions, and are used to determine the movement of the diaphragm 31 along the axial direction of the cylinder body 81 .
  • the first suspension member 2 and/or the second suspension member 7 may adopt a spring-like structural member, such as using a rubber ring or an elastic sheet to bond the diaphragm 31 to suspend the diaphragm to the mounting frame 1, which is not covered in this disclosure. limit.
  • the two first suspension members 2 are respectively connected to the upper and lower ends of the large end side of the diaphragm 31 (that is, the side of the diaphragm 31 close to the mounting frame 1 ) and the mounting frame 1 .
  • the two second suspension members 7 are respectively connected with the upper and lower ends of the small end side of the diaphragm 31 (that is, the side of the diaphragm 31 away from the mounting frame 1 ) and the electromechanical coupling mechanism 4 , wherein the two second suspension members are 7.
  • the two second suspension members 7 are inclined to such an extent that the force between the two second suspension members 7 and the diaphragm 31 is shown in FIG. 2 .
  • the vertical direction ie the radial direction of the cylinder 81
  • the cylinder 81 moves in the axial direction to prevent the coil 8 from touching the magnet 10 during the movement.
  • the suspension assembly when the diaphragm 31 is a rectangular parallelepiped structure (not shown), the suspension assembly includes a first suspension member 2 connected to the side of the diaphragm 31 close to the mounting frame 1 and the mounting frame 1, At this time, when the suspension assembly does not include the second suspension member 7 , the diaphragm 31 can also be moved along the axial direction of the cylindrical body 81 . It is worth noting that the diaphragms 31 shown in FIGS. 1 to 3 are all static shapes that are not driven by sound waves to move.
  • the diaphragm 31 suspended on the mounting frame 1 is equivalent to a spring vibrator system, and the present disclosure does not limit the shape, size and material of the diaphragm 31, as long as the diaphragm 31 can reciprocate like a spring vibrator system The movement only needs to drive the coil 8 to move, which will not be repeated in the present disclosure.
  • the electromechanical coupling mechanism 4 further includes a magnetic conducting component for conducting the magnetic field generated by the magnet 10 .
  • the magnetic conductive assembly includes a first magnetic conductive member 9 and a second magnetic conductive member 11 , and each magnet 10 is disposed between the first magnetic conductive member 9 and the second magnetic conductive member 11 .
  • the first magnetic conductive member 9 is sleeved on the outer side of the coil 8 and guides the magnetic field of the first polarity side (eg S pole) of the magnet 10 through the first magnetic conductive member 9 .
  • the second magnetic conductive member 11 includes a first portion 1101 and a second portion 1102 .
  • the first portion 1101 of the second magnetic conductive member 11 is inserted into the inner side of the cylindrical body 81 along the axial direction of the cylindrical body 81 , which also means that it is inserted into the inner side of the coil 8 . inside.
  • the second portion 1102 of the second magnetic conductive member 11 is along the radial direction of the cylinder 81 and guides the magnetic field of the second polarity side (eg N pole) of the magnet 10 through the second portion 1102 of the second magnetic conductive member 11 until The first part 1101 finally guides the magnetic field through the coil 8 , so that the moving coil 8 cuts the magnetic circuit formed by the first magnetic conductive member 9 , the magnet 10 and the second magnetic conductive member 11 .
  • the first magnetic conductive member 9 is a washer (ie, a washer), and the second magnetic conductive member 11 is a magnetic conductive core. It is worth noting that the present disclosure does not limit the magnetic conductive materials of the first magnetic conductive member 11 and the second magnetic conductive member 11 , as long as the magnetic conductivity can be achieved, which will not be repeated in this disclosure.
  • the coupling strength n of the electromechanical coupling structure 4 is Bl, where B is the magnetic field strength generated by the electromechanical coupling structure 4, and l is the effective length of the coil.
  • the coupling strength B1 may be in the range of 0.1 ⁇ 100 Tm, which is also exemplary rather than a limitation of the present disclosure.
  • any electromechanical coupling mechanism that can generate a single-layer or multi-layer coil cutting magnetic field can be used to construct the intelligent adjustable sound insulation device of the present disclosure, not limited to the moving coil electromagnetic-mechanical coupling structure of the above-mentioned embodiment,
  • the conductor is a copper film or an aluminum film, etc.
  • the electromechanical coupling mechanism of the present disclosure is not limited to an electromagnetic-mechanical coupling structure, but can also be other types of mechanisms such as piezoelectric ceramics, which are not limited in this disclosure.
  • both ends of the coil 8 of the electromechanical coupling structure 4 are electrically connected to the controllable circuit 6 through wires 5 respectively.
  • the controllable circuit 6 can be a passive circuit or an active circuit, and can be freely adjusted according to the actual situation of the coil.
  • FIG. 4 is a schematic circuit diagram of a controllable circuit 6 according to some embodiments of the disclosure.
  • the controllable circuit 6 includes a plurality of branch circuits, and each branch circuit of the controllable circuit 6 includes a controllable switch respectively, and the conduction or disconnection of the branch circuit is controlled by a control signal, so that the electromechanical
  • the coupling mechanism 4 can be selectively conductively connected to one of the multiple branch circuits of the controllable circuit 6 , and the induced current generated by the coil 8 will flow through the entire circuit loop formed by the coil 8 and the controllable circuit 6 .
  • Each branch circuit has different circuit parameters. According to the different parameters of the circuit, the sound insulation frequency band of the sound insulation device is also different. That is, connecting one of the branch circuits through a controllable switch can be adjusted and effectively sound insulation.
  • each branch circuit of the controllable circuit 6 further includes a first capacitor 12, a first inductor 13 and a first resistor 14 for connecting in series with the controllable switch.
  • the parameter values of any one or more of the first capacitor 12, the first inductor 13, and the first resistor 14 included therein are not equal, respectively, so that the electrical impedance of each branch circuit can be different, The mechanical impedance of the diaphragm 31 is adjusted, that is, the mechanical impedance of the intelligent adjustable sound insulation device is adjusted by adjusting the circuit.
  • controllable switch 15 includes any device with a voltage or current switching function, such as a field effect transistor, a triode, a clarinet, a thyristor switch, a programmable resistance switch, etc., that is, the controllable switch 15 may be in other forms. can be replaced by a controllable switch, for example, a manual switch can also be used instead.
  • the controllable switch 15 in the following embodiments is mainly described by taking the field effect transistor 15 as the controllable switch as an example, but the present disclosure does not limit the specific form of the controllable switch.
  • the field effect transistor 15 when the controllable switch includes the field effect transistor 15, the field effect transistor 15 is connected to the control voltage signal source 16, wherein the voltage signal provided by the control voltage signal source 16 for the field effect transistor 15 is higher than the connection of the field effect transistor 15
  • the branch circuit where the field effect transistor 15 is located is turned on, otherwise, the branch circuit where the field effect transistor 15 is located is disconnected. Therefore, the field effect transistor 15 and the control voltage signal source 16 together form a controllable switch for controlling each Each branch circuit is switched on and off, so that the electromechanical coupling mechanism 4 can be selectively conductively connected to one of the multiple branch circuits of the controllable circuit.
  • controllable circuit 6 also includes a negative impedance circuit.
  • the circuits formed by connecting each FET 15 in series with the corresponding first capacitor 12 , the first inductor 13 and the first resistor 14 are respectively connected in series with the negative impedance circuit to form a plurality of negative impedance circuits. Branch circuits of impedance circuits to adjust the electrical impedance of multiple branch circuits.
  • the branch circuit shown in FIG. 4 is formed by the first capacitor 12 , the first inductor 13 , the first resistor 14 , and the field effect transistor 15 connected in series in sequence, but this is only an example, as long as these few The devices may be connected in series, and the sequence of connecting the devices in series is not limited in the present disclosure.
  • both ends of the coil 8 are respectively connected to the ground terminal b (ie the GND terminal 23 ) and the circuit terminal a of the controllable circuit 6 , and each FET 15 is connected to the corresponding first capacitor 12 ,
  • a circuit formed by connecting an inductor 13 and a first resistor 14 in series is connected between the circuit terminal a of the controllable circuit 6 and the negative impedance circuit, and the electronic device between the GND terminal 22 and the negative impedance circuit has a negative impedance.
  • the negative impedance circuit includes an operational amplifier 18, wherein the operational amplifier 18 includes a positive input, a negative input, and an output.
  • the negative input terminal of the operational amplifier 18 is connected to the circuit formed by the FET 15 being connected in series with the corresponding first capacitor 12, the first inductor 13 and the first resistor 14, and the positive input terminal of the operational amplifier 18 is connected to the electronic device (eg Resistor 20) is connected.
  • a 1 ohm resistor connected between ground 23 (or ground 22 ) and the positive input of op amp 18 would appear as a -1 ohm resistor to the input of a negative impedance circuit resistance, that is, showing negative impedance.
  • the electronics located between the GND terminal 22 and the negative impedance circuit include resistance and/or inductance.
  • the electronic device located between the GND terminal 22 and the negative impedance circuit includes a resistor 20 and an inductor 21 connected in series, wherein the resistor 20 is a negative resistor and the inductor 21 is a negative inductor.
  • the resistance value of the resistor 20 and the inductance value of the inductor 21 are denoted as R ⁇ and L ⁇ , respectively.
  • the positive capacitance value of the first capacitor 12 is denoted as C +
  • the positive inductance and inductance value of the first inductor 13 is denoted as L +
  • the positive resistance value of the first resistor 14 is denoted as R + ;
  • the coil 8 is a metal coil and has Inductance and resistance
  • the resistance value and inductance value are recorded as R C and L C respectively.
  • the coil 8 can be connected by a circuit composed of any passive discrete devices.
  • the controllable circuit 6 should use a negative impedance circuit to connect the coil 8 .
  • the negative impedance circuit further includes a first balance resistor 17 and a second balance resistor 19, wherein the first balance resistor 17 is connected to the negative input terminal and the output terminal of the operational amplifier 18, respectively, and the second balance resistor 19 It is connected to the positive input terminal and the output terminal of the operational amplifier 18, respectively.
  • the resistance values R b of the first balancing resistor 17 and the second balancing resistor 19 may be equal, and the resistance value R b may be any resistance value; or, the resistance values of the first balancing resistor 17 and the second balancing resistor 19 may also be It may not be equal, which is not limited in the present disclosure.
  • the negative impedance circuit is jointly realized by the first balance resistor 17, the second balance resistor 19 and the operational amplifier 18, but the present disclosure is not limited to this, and can also be implemented in other ways, the present disclosure is here I won't go into details.
  • the branch circuits included in the controllable circuit 6 of the present disclosure are not limited to the circuit forms of the above examples, but may also be circuits of any other form, which will not be repeated in the present disclosure.
  • FIG. 4 only illustrates a controllable circuit including three branch circuits, which is exemplary rather than a limitation of the present disclosure, and can be freely adjusted according to actual needs. , the embodiments of the present disclosure will not be exhaustive or described in detail here.
  • the sound insulation body structure 3 and the electromechanical coupling mechanism 4 included in the above-mentioned adjustable sound insulation device may adopt a moving coil speaker, that is, the adjustable sound insulation device of at least one embodiment of the present disclosure uses a moving coil speaker and The controllable circuit adjusts the sound insulation frequency band of the sound insulation device to make it suitable for isolating the variable sound source.
  • the moving coil loudspeaker is used as a sound insulation device rather than a sound production device.
  • branch circuit of the present disclosure can also realize the adjustable sound insulation effect of the adjustable sound insulation device even if the branch circuit does not include a negative impedance circuit, and specifically needs to be freely adjusted according to the actual situation.
  • the branch circuit when one of the branch circuits is turned on, the branch circuit is equivalent to a circuit of series resistance, capacitance, and inductance, and the equivalent resistance R, equivalent capacitance C, and equivalent inductance of the branch circuit are L are:
  • R R c +R + +R - (1)
  • is the angular frequency of the diaphragm, for example, the angular frequency of the diaphragm is consistent with the angular frequency of the sound wave (such as variable noise), and the angular frequency also changes with the variable noise;
  • m is the vibration of the diaphragm. mass;
  • k is the stiffness of the whole formed by the diaphragm and suspension components;
  • d is the mechanical damping of the diaphragm.
  • v is the vibration speed of the diaphragm, that is, the speed of the coil cutting the magnetic field;
  • F L is the Lorentz force that the coil is subjected to in the magnetic field after the branch circuit is connected, and the Lorentz force is:
  • I is the induced current generated by the coil, that is, the current I is generated by the induced electromotive force driving the coil loop, namely:
  • E is the induced electromotive force
  • the coupling strength in formula (8) is equal to Bl; when the electromechanical coupling structure is other types of electromechanical coupling structures, Bl in formula (8) can be It is represented by the coupling strength ⁇ , that is, ⁇ is the coupling strength of this other type of electromechanical coupling structure at this time.
  • the embodiment of the present disclosure provides additional mechanical impedance to the diaphragm through the circuit impedance.
  • the sound transmission loss TL of the diaphragm is:
  • ⁇ o is the density of the medium (such as air)
  • c o is the velocity of the medium (such as air)
  • A is the area of the diaphragm
  • Imag is the imaginary part of the impedance
  • Real is the real part of the impedance.
  • the sound transmission loss TL of the diaphragm is a measure of the loss of sound, and the sound insulation efficiency varies with sound sources of different frequencies.
  • the embodiments of the present disclosure can adjust the mechanical impedance of the adjustable sound insulation device by adjusting the circuit.
  • the sound insulation performance is represented by the transmission loss TL, and the unit is dB.
  • the sound transmission loss TL is determined by the impedance of the sound insulation device. Therefore, the adjustment circuit adjusts the operating frequency and sound insulation performance of the sound insulation device.
  • the controllable circuit of the adjustable sound insulation device includes 6 branch circuits, and each of the 6 branch circuits included in the controllable circuit will be selectively turned on And the sound insulation performance without adding branch circuits is compared, and Figure 6 and the following Table 1 are obtained.
  • Table 1 lists the equivalent circuit parameters and diaphragm parameters of the six branch circuits. The abscissa is the frequency, and the ordinate is the sound transmission loss.
  • the circuits 1 to 6 shown in FIG. 6 respectively represent the six branch circuits in the controllable circuit.
  • the effective operating frequency band of the sound insulation device can be intelligently adjusted by simply adjusting the circuit parameters.
  • the capacitance parameters of branch circuits 1 to 6 are 6000uF, 2000uF, 990uF, 540uF, 200uF, and 100uF, respectively
  • the corresponding center frequency of the sound insulation band (that is, the frequency at which the highest point of sound insulation is located) They are 98Hz, 155Hz, 226Hz, 290Hz, 532Hz, and 691Hz, respectively, and the frequency bands where the sound insulation exceeds 10dB and 20dB are correspondingly increased compared with those without branch circuits.
  • controllable circuit 6 of the present disclosure may also include a single adjustable circuit, that is, the single adjustable circuit shown in FIG. 5 replaces the multiple branch circuits shown in FIG. 4 .
  • the single adjustable circuit includes at least one of an adjustable capacitance, an adjustable inductance and an adjustable resistance, thereby making the impedance of the circuit adjustable; for example, the single adjustable circuit includes an adjustable capacitance 24 and an adjustable inductance 25 and adjustable resistance 27, wherein the capacitance value, inductance value and resistance value of the adjustable capacitance 24, adjustable inductance 25 and adjustable resistance 27 are respectively adjustable, thereby providing a larger adjustment range or a finer adjustment step size .
  • the negative impedance circuit in the single adjustable circuit and the electronic device between the GND terminal 22 and the negative impedance circuit can be exemplified with reference to FIG.
  • the adjustable components such as the adjustable capacitor 24, the adjustable inductance 25, and the adjustable resistance 27 in FIG. 5 can be realized by methods such as thyristor and impedance transformation circuits, which are not limited herein. , and will not be repeated here, as long as the capacitance value, inductance value and resistance value can be adjusted.
  • the effective sound insulation spectrum of the adjustable sound insulation device of the embodiment of the present disclosure can also be changed through the circuit, so that the effective sound insulation frequency band of the sound insulation device matches the noise source, and can be adjusted in a wide range, which can be adjusted in a wide range.
  • the adjustable sound insulation device of the embodiments of the present disclosure can be applied to variable noise sources existing in any scenario, which is not limited in the present disclosure.
  • the adjustable sound insulation device when using the adjustable sound insulation device to control the sound insulation, can be directly arranged on any object that can generate a variable noise source (such as the above-mentioned rotating machinery).
  • the flow of the method for controlling sound insulation provided by the above examples may include more or less operations, and these operations may be performed sequentially or in parallel.
  • the above-described flow of the method of controlling sound insulation includes a number of operations occurring in a particular order, it should be clearly understood that the order of the various operations is not limited.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

一种可调隔声装置以及控制隔声的方法,该装置包括:隔声本体结构(3),配置为能由声波推动运动;机电耦合机构(4),其中,机电耦合机构(4)的至少部分与隔声本体结构(3)固定连接,并由运动的隔声本体结构(3)带动机电耦合机构(4)的至少部分进行运动以用于机电耦合机构(4)的机电转换;可控电路(6),与机电耦合机构(4)导电连接并通过机电转换为运动的隔声本体结构(3)提供机械阻抗,可控电路(6)可选择性地改变电阻抗,使得对于隔声本体结构(3)的机械阻抗可调。该可调隔声装置根据可变噪声源,通过可选择性地改变可控电路(6)的电阻抗,以使得有效隔离频谱随工况变化的噪声。

Description

可调隔声装置以及控制隔声的方法 技术领域
本公开的实施例涉及一种可调隔声装置以及控制隔声的方法。
背景技术
当今社会,噪声污染被认为是仅次于大气污染和水污染的第三大公害,不仅给人们的日常生活、工作和学习带来许多不便,还深深影响了人们的身体健康。
例如在一些生产加工型企业内,各种机械设备运转会产生较大的噪声,机械振动的噪声很容易使工人疲劳,影响其身心健康。
此外,振动噪声还会对相同工作环境下其它精密设备的使用造成不利影响,因此,机械设备的隔声技术已经成为热点的工程技术问题。
发明内容
本公开的实施例提供了一种可调隔声装置以及控制隔声的方法,可以根据可变噪声源,通过可选择性地改变可控电路的电阻抗,以使得有效隔离频谱随工况变化的噪声。
本公开至少一实施例提供了一种可调隔声装置,包括:
隔声本体结构,配置为能由声波推动运动;
机电耦合机构,其中,所述机电耦合机构的至少部分与所述隔声本体结构固定连接,并由运动的所述隔声本体结构带动所述机电耦合机构的至少部分进行运动以用于所述机电耦合机构的机电转换;
可控电路,其中,所述可控电路与所述机电耦合机构导电连接并通过所述机电转换为运动的所述隔声本体结构提供机械阻抗,所述可控电路可选择性地改变电阻抗,使得对于所述隔声本体结构的机械阻抗可调。
例如,在本公开至少一实施例提供的一种可调隔声装置中,所述可控电路包括并联且分别具有不同电阻抗的多条分支电路,并可选择性地将所述机电耦合机构与所述可控电路的多条分支电路的其中之一导电连接,使得对于所述隔声本体结构的机械阻抗可调。
例如,在本公开至少一实施例提供的一种可调隔声装置中,所述隔声本体结构包括隔声膜,所述隔声膜包括非透气的膜状结构或板状结构,或者,所述隔声膜包括部分透气的膜状结构或板状结构。
例如,在本公开至少一实施例提供的一种可调隔声装置中,所述机电耦合机构的至少部分包括导体,所述机电耦合机构还包括用于在工作中提供磁场的磁体,所述导体与所述隔声本体结构固定连接并由运动的所述隔声本体结构带动进行运动,以切割所述磁场,所述导体产生感应电流。
例如,在本公开至少一实施例提供的一种可调隔声装置中,所述导体包括单层或者多层的线圈,所述磁体包括相对设置的两个磁铁。
例如,在本公开至少一实施例提供的一种可调隔声装置中,所述隔声本体结构通过弹性的悬挂组件悬挂于安装框架,以使所述隔声本体结构被所述声波推动并往复运动。
例如,在本公开至少一实施例提供的一种可调隔声装置中,所述线圈绕在筒体上并且所述筒体与所述隔声本体结构固定连接,所述隔声本体结构通过所述悬挂组件沿着所述筒体的轴向进行运动,带动所述线圈沿着所述筒体的轴向进行运动。
例如,在本公开至少一实施例提供的一种可调隔声装置中,所述机电耦合机构还包括用于传导所述磁场的导磁组件,所述导磁组件包括:
第一导磁件,其中,所述第一导磁件套设在所述线圈的外侧并引导所述磁铁的第一极性侧的磁场通过所述第一导磁件;
第二导磁件,其中,所述第二导磁件包括第一部分和第二部分,所述第二导磁件的第一部分沿着所述筒体的轴向插至所述线圈的内侧,所述第二导磁件的第二部分沿着所述筒体的径向方向并引导所述磁铁的第二极性侧的磁场通过所述第二导磁件的第二部分直至第一部分,从而引导所述磁场通过所述线圈,供运动的所述线圈进行切割。
例如,在本公开至少一实施例提供的一种可调隔声装置中,所述导体的两端分别通过导线与所述可控电路导电连接,所述可控电路为有源电路或无源电路。
例如,在本公开至少一实施例提供的一种可调隔声装置中,所述可控电路的每条所述分支电路分别包括可控开关,用于控制所述分支电路的导通或断开,以使所述机电耦合机构可选择性地与所述可控电路的多条分支电路的其中之一导电连接。
例如,在本公开至少一实施例提供的一种可调隔声装置中,所述可控电路的每条所述分支电路还包括用于与所述可控开关串联连接的第一电容、第一电感和第一电阻,对于至少两条所述分支电路,其中包括的第一电容、第一电感、第一电阻中的任一种或多种的参数值分别不相等。
例如,在本公开至少一实施例提供的一种可调隔声装置中,所述可控电路还包括负阻抗电路,每个所述可控开关与对应的第一电容、第一电感、第一电阻串联连接形成的电路分别与所述负阻抗电路串联连接,形成多条带有负阻抗电路的所述分支电路,以调整多条所述分支电路的电阻抗。
例如,在本公开至少一实施例提供的一种可调隔声装置中,所述导体的两端分别与所述可控电路的接地端和电路端连接,
每个所述可控开关与对应的第一电容、第一电感、第一电阻串联连接形成的电路连接于所述可控电路的电路端与所述负阻抗电路之间,并且位于所述接地端与所述负阻抗电路之间的电子器件具有负阻抗。
例如,在本公开至少一实施例提供的一种可调隔声装置中,位于所述接地端与所述负阻抗电路之间的电子器件包括电阻和/或电感。
例如,在本公开至少一实施例提供的一种可调隔声装置中,所述负阻抗 电路包括:
运算放大器,其中,所述运算放大器的负极输入端与由所述可控开关与对应的第一电容、第一电感、第一电阻串联连接形成的电路进行连接,所述运算放大器的正极输入端与所述电子器件连接;
第一平衡电阻,其中,所述第一平衡电阻分别与所述运算放大器的负极输入端和输出端连接;
第二平衡电阻,其中,所述第二平衡电阻分别与所述运算放大器的正极输入端和输出端连接,所述第一平衡电阻和所述第二平衡电阻的电阻值相等或不相等。
本公开至少一实施例提供了一种控制隔声的方法,包括:
将机电耦合机构的至少部分与隔声本体结构固定连接;
提供电阻抗可选择性地进行改变的可控电路;
接收声波以推动运所述隔声本体结构运动,运动的所述隔声本体结构带动所述机电耦合机构的至少部分进行运动,使得所述机电耦合机构的机电转换;
根据变化的所述声波,可选择性地改变所述可控电路的电阻抗,并通过所述机电转换为所述隔声本体结构提供机械阻抗,使得对于所述隔声本体结构的机械阻抗可调。
例如,在本公开至少一实施例提供的一种控制隔声的方法中,可选择性地改变所述可控电路的电阻抗,包括:
可选择性地将所述机电耦合机构与所述可控电路包括的多条分支电路的其中之一导电连接。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一些实施例提供的一种可调隔声装置的结构示意图;
图2为本公开一些实施例提供的一种可调隔声装置的立体结构示意图;
图3为本公开一些实施例提供的机电耦合机构的剖面示意图;
图4为本公开一些实施例提供的可控电路的电路示意图;
图5本公开另一些实施例提供的可控电路的电路示意图;以及
图6为本公开一些实施例提供的使用图4所示等效串联电路的可调隔声装置的实验效果示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而 不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另有定义,本公开实施例使用的所有术语(包括技术和科学术语)具有与本公开所属领域的普通技术人员共同理解的相同含义。还应当理解,诸如在通常字典里定义的那些术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非本公开实施例明确地这样定义。
本公开实施例中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
一般的隔声板的原理是利用隔声板的阻抗与声波传播的媒介的阻抗不匹配,当声波入射至隔声板与传播媒介的界面时,由于阻抗变化巨大,导致声波大部分能量被反射了,从而无法穿透隔声板(即隔声)。
传统的隔声板多为三明治形式的多层复合夹板,使得声波在多次反射加强隔声,多层复合夹板通常质量比较重,在需要轻薄的场合无法应用。同时,传统隔音板材有一些难以克服的缺点,例如传统的隔音板无法有效隔绝低频噪声。
旋转机械的主要噪声成分通常是跟转速有关的纯音噪声,根据工况不同噪声的主要成分的频率亦不同。传统隔音板等效于一个单自由度或者多自由振动系统,在板材的共振频率下其透声率非常高,当旋转机械(诸如电机、发动机、涡轮机等)在某些工况下产生纯音噪声与隔音板的共振频率接近时,隔音板无法有效隔绝这些转速条件下的噪声。
因此,针对频谱可变的声源(例如随着旋转机械转速变化而变化的噪声),传统的隔声技术却无法针对不同工况下的噪声进行有效隔离。
本公开至少一实施例提供了一种可调隔声装置,包括:
隔声本体结构,配置为能由声波推动运动;
机电耦合机构,其中,机电耦合机构的至少部分与隔声本体结构固定连接,并由运动的隔声本体结构带动机电耦合机构的至少部分进行运动以用于机电耦合机构的机电转换;
可控电路,其中,可控电路与机电耦合机构导电连接并通过机电转换为运动的隔声本体结构提供机械阻抗,可控电路可选择性地改变电阻抗,使得对于隔声本体结构的机械阻抗可调。
本公开至少一实施例还提供了一种控制隔声的方法,该方法包括:
将机电耦合机构的至少部分与隔声本体结构固定连接;
提供电阻抗可选择性地进行改变的可控电路;
接收声波以推动运隔声本体结构运动,运动的隔声本体结构带动机电耦合机构的至少部分进行运动,使得机电耦合机构的机电转换;
根据变化的声波,可选择性地改变所述可控电路的电阻抗,并通过所述机电转换为所述隔声本体结构提供机械阻抗,并通过机电转换为隔声本体结构提供机械阻抗,使得对于隔声本体结构的机械阻抗可调。
上述实施例的可调隔声装置或控制隔声的方法可以根据可变噪声源,可选择性地改变可控电路的电阻抗,以使得有效隔离频谱随工况变化的噪声。
本公开至少一实施例中的可控电路还包括并联且分别具有不同电阻抗的多条分支电路,并可选择性地将机电耦合机构与可控电路的多条分支电路的其中之一导电连接,使得对于隔声本体结构的机械阻抗可调,该实施例的可调隔声装置可选择性地导通可控电路中不同的分支电路,用以为隔声本体结构提供的机械阻抗可变,以有效隔离频谱随工况变化的噪声。
下面结合附图对本公开的实施例及其示例进行详细说明。
图1为本公开一些实施例提供的一种可调隔声装置的结构示意图。图2为本公开一些实施例提供的一种可调隔声装置的立体结构示意图。
如图1-图2结合所示,该可调隔声装置包括隔声本体结构3、机电耦合机构4和可控电路6。隔声本体结构3由声波推动进行运动,该声波即为需要被隔音处理的声波。机电耦合机构4的至少部分与隔声本体结构3固定连接,并由运动的隔声本体结构3带动机电耦合机构4的至少部分进行运动以用于机电耦合机构4的机电转换。可控电路6与机电耦合机构4导电连接,并通过机电转换为运动的隔声本体结构3提供机械阻抗,以实现隔声本体结构3的机械阻抗可调。
该可调隔声装置可以单独使用,也可以多个可调隔声装置组合使用,例如设置在需要隔音的空间(例如房屋)的至少部分壁上,以阻挡该空间外侧至少部分声音传入至该空间内侧。
例如,在一些示例中,隔声本体结构3包括隔声膜31,该隔声膜31包括非透气的膜状结构或板状结构(例如薄板),或者,该隔声膜31包括部分透气的膜状结构或板状结构。比如,该部分透气的膜状结构或板状结构为流阻大于20kPas/m 2的材料构成的膜状结构或板状结构,例如,铝膜及不锈钢膜等金属膜,塑料、碳纤维等无机材料制成的板状结构,生物聚合材料等有机材料制成的膜状结构或板状结构,本公开对此不作限制。
需要说明的是,由于隔声膜31由声波推动进行运动,则隔声膜31在本公开实施例中可称之为振膜31,例如下文示例的隔声膜31均以振膜31为称,但是这仅仅为一种不同命名和文字表述的示例,不会对本公开的隔声本体结构的特征起到任何限制作用。还需要说明的是,本公开的隔声本体结构不仅限于该振膜31,下文的可调隔声装置的隔声本体结构主要是以振膜31作为隔声本体结构为例进行说明的,当然,本文各个示例的隔声本体结构也可以 是任何其他形态和结构的隔声本体,本公开对此不作限制。
例如,当声波倾斜着入射并推动振膜31运动的时候,该声波可分解为轴向声波和切向声波,而切向声波的分量是不会与振膜相互作用,即切向声波分量亦不会穿透振膜,所以一般不考虑切向声波。
例如,在一些示例中,振膜31可以是具有一定厚度的平面的膜状结构或板状结构(未图示),比如形状可以是圆形、锥形、椭圆形、方形及其它形状。又例如,在一些示例中,振膜31还可以是具有一定厚度的膜状围成的立体结构体,例如图1和图2所示的喇叭状结构,也可以是长方体以及其他任意的立体结构,本公开对此不作限制,即振膜31可以具有任意的形状和任意的厚度,例如,振膜31的动质量在20g每平方分米以下,只要振膜31能够供声波(图2所示的入射噪声源)入射进行推动运动即可。
例如,在一些示例中,振膜31通过弹性的悬挂组件悬挂于安装框架1,以使振膜31被声波推动并往复运动。安装框架1可以是任意材质的固定结构,比如可由金属、木材或者其它材质制成,本公开对此不作限制。悬挂组件可以是任意弹性材料及结构,只要能够实现将振膜31悬挂于安装框架1即可,本公开对此不作限制。
图3为本公开一些实施例提供的机电耦合机构4的剖面示意图,其中,图3所示纸面的横向和纵向是与图1所示纸面的横向和纵向一致。
如图3所示,机电耦合机构4包括导体和磁体,磁体用于在工作中提供磁场,导体与振膜31固定连接并由运动的振膜31带动运动以切割磁场。
例如,在一些示例中,导体包括单层或者多层的线圈8,磁体包括相对设置的两个磁铁10(例如电磁铁)。比如,线圈8由金属线形成,比如由铜线后铝线等制成,本公开对此不作限制。
例如,在图3示例中,线圈8绕在筒体81上并且筒体81与振膜31固定连接,使得运动的振膜31能够带动线圈8运动(即线圈8为可动线圈),运动的线圈8切割磁场,并且线圈8会产生感应电流。例如,筒体81固定连接在振膜31的远离安装框架1的一侧,使得绕在筒体81上的线圈8与振膜31具有同样的振动速度。
例如,在图1-图3示例中,当振膜31为喇叭状结构时,此时悬挂组件包括第一悬挂件2和第二悬挂件7,并且将由第二悬挂件7和第一悬挂件2配合形成的悬挂组件称为双悬挂,用以确定振膜31沿着筒体81的轴向进行运动。例如,第一悬挂件2和/或第二悬挂件7可以采用弹簧状的结构件,比如采用橡胶圈或者弹波片粘接振膜31实现悬挂振膜于安装框架1,本公开对此不作限制。
例如,在图1-图3示例中,两个第一悬挂件2分别与振膜31的大端一侧(即振膜31靠近安装框架1的一侧)的上下端以及安装框架1进行连接,两个第二悬挂件7分别与振膜31的小端一侧(即振膜31远离安装框架1的一侧)的上下端以及机电耦合机构4进行连接,其中,两个第二悬挂件7相较于筒体81的轴向呈一定的倾斜状态,并且两个第二悬挂件7各自倾斜的 程度可以使两个第二悬挂件7分别与振膜31之间的作用力在图2的竖向方向(即筒体81的径向方向)上相互抵消,以使振膜31能够沿着双悬挂所确定的轴线方向(即筒体81的轴向)进行运动,进而带动线圈8沿着筒体81的轴向进行运动,避免线圈8在运动过程中触碰到磁铁10。
又例如,在一些示例中,当振膜31为长方体结构(未图示)时,悬挂组件包括与振膜31的靠近安装框架1的一侧以及安装框架1进行连接的第一悬挂件2,此时悬挂组件可不包括第二悬挂件7时,也能使振膜31也沿着筒体81的轴向进行运动。值得注意的是,图1-图3所示的振膜31均为未受声波驱动运动的静态形态。
由此可见,悬挂于安装框架1的振膜31等效于一个弹簧振子系统,且本公开对振膜31的形状、尺寸和材料等均不作限制,只要振膜31能够像弹簧振子系统进行往复运动带动线圈8运动即可,本公开在此不作赘述。
此外,在一些示例中,机电耦合机构4还包括导磁组件,用于传导磁铁10产生的磁场。
例如,在图2示例中,导磁组件包括第一导磁件9和第二导磁件11,每个磁铁10设置在第一导磁件9和第二导磁件11之间。
例如,第一导磁件9套设在线圈8的外侧并引导磁铁10的第一极性侧(例如S极)的磁场通过第一导磁件9。第二导磁件11包括第一部分1101和第二部分1102,第二导磁件11的第一部分1101沿着筒体81的轴向插至筒体81的内侧,也意味着插至线圈8的内侧。第二导磁件11的第二部分1102沿着筒体81的径向方向并引导磁铁10的第二极性侧(例如N极)的磁场通过第二导磁件11的第二部分1102直至第一部分1101,最终引导磁场通过线圈8,以供运动的线圈8切割由第一导磁件9、磁铁10和第二导磁件11共同构成的磁路。
例如,在一些示例中,第一导磁件9为华司(即垫圈),第二导磁件11为导磁铁芯。值得说明的是,本公开对第一导磁件11和第二导磁件11的导磁材料不作限制,只要能够实现导磁的作用即可,本公开在此不做赘述。
例如,在图3的示例中,机电耦合结构4的耦合强度η为Bl,其中,B为机电耦合结构4产生的磁场强度,l为线圈有效长度。示例地,耦合强度Bl可以在0.1~100Tm,其也是示例性的,而不是对本公开的限制。
值得说明的是,任意可以产生单层或者多层线圈切割磁场的机电耦合机构都可用于构造本公开的智能可调隔声装置,不仅限于上述实施例的动圈式的电磁-机械耦合结构,例如,导体是铜膜或铝膜等也可以实现;另外,本公开的机电耦合机构也不仅限于电磁-机械耦合结构,还可以是诸如压电陶瓷等其他类型的机构,本公开在此不作限制,只要是能够实现机电转换并能与可控电路配合来为振膜提供额外的机械阻抗的机电耦合机构,都涵盖在本公开的保护范围,本公开在此也不做赘述。
例如,如图1-图3结合所示,机电耦合结构4的线圈8的两端通过导线5分别与可控电路6导电连接。例如,可控电路6可以是无源电路,亦可以 是有源电路,具体可以根据线圈的实际情况进行自由调整。
图4为本公开一些实施例的可控电路6的电路示意图。
如图4所示,可控电路6包括多条分支电路,可控电路6的每条分支电路分别包括可控开关,并通过控制信号来控制该分支电路的导通或断开,以使机电耦合机构4可选择性地与可控电路6的多条分支电路的其中之一导电连接,而上述线圈8产生的感应电流会流过该线圈8与可控电路6形成的整个电路环路。每条分支电路具有不同的电路参数,根据电路的参数不同,则隔声装置的隔声频带亦不相同,即通过可控开关连通其中一条分支电路,能够可调并有效地隔声。
例如,在一些示例中,可控电路6的每条分支电路还包括用于与可控开关串联连接的第一电容12、第一电感13和第一电阻14。对于至少两条分支电路,其中包括的第一电容12、第一电感13、第一电阻14中的任一种或多种的参数值分别不相等,这样能够使各个分支电路的电阻抗不同,使得振膜31的机械阻抗可调,即通过调整电路来调整智能可调隔声装置的机械阻抗。
例如,在一些示例中,可控开关15包括场效应管、三极管、单簧管、可控硅开关、可编程电阻开关等任意一种具有电压或者电流开关功能的器件,即可控开关15可由其他形式的可控开关代替,例如也可用手动开关代替。下文实施例的可控开关15主要是以场效应管15作为可控开关为例进行说明的,但是本公开对可控开关的具体形式不作限制。
例如,当可控开关包括场效应管15时,场效应管15与控制电压信号源16连接,其中,当控制电压信号源16为场效应管15提供的电压信号高于场效应管15的连通阈值时,场效应管15所在的分支电路导通,反之,场效应管15所在的分支电路断开,由此,场效应管15与控制电压信号源16共同组成可控开关,用于控制每个分支电路的通断,以实现机电耦合机构4可选择性地与可控电路的多条分支电路的其中之一导电连接。
例如,在一些示例中,可控电路6还包括负阻抗电路。例如,在图4示例中,每个场效应管15与对应的第一电容12、第一电感13、第一电阻14串联连接形成的电路分别与负阻抗电路串联连接,形成多条带有负阻抗电路的分支电路,以调整多条分支电路的电阻抗。
需要说明的是,图4所示的分支电路是由第一电容12、第一电感13、第一电阻14、场效应管15依次串联连接形成,但此仅仅为一种示例,只要让这几个器件串联连接即可,至于对各器件串联的次序,本公开对此不作限制。
例如,在图4示例中,线圈8的两端分别与可控电路6的接地端b(即GND端23)和电路端a连接,每个场效应管15与对应的第一电容12、第一电感13、第一电阻14串联连接形成的电路连接于可控电路6的电路端a与负阻抗电路之间,并且位于GND端22与负阻抗电路之间的电子器件具有负阻抗。
例如,在图4示例中,负阻抗电路包括运算放大器18,其中,运算放大 器18包括正极输入端、负极输入端和输出端。运算放大器18的负极输入端与由场效应管15与对应的第一电容12、第一电感13、第一电阻14串联连接形成的电路进行连接,运算放大器18的正极输入端与电子器件(例如电阻20)连接。
例如,在接地端23(或接地端22)与运算放大器18的正极输入端之间连接一个1欧姆的电阻,则对于负阻抗电路的输入端而言,该电阻表现为一个-1欧姆电阻值的电阻,即表现为负阻抗性。
例如,位于GND端22与负阻抗电路之间的电子器件包括电阻和/或电感。例如,在图4示例中,位于GND端22与负阻抗电路之间的电子器件包括串联的电阻20和电感21,其中,电阻20为负电阻,电感21为负电感。
例如,电阻20的电阻值和电感21的电感值分别为记为R -和L -。另外,第一电容12的正电容电容值记为C +,第一电感13的正电感电感值记为L +,第一电阻14的正电阻值记为R +;线圈8为金属线圈并具有电感及电阻,其电阻值和电感值分别记为R C以及L C
例如,若线圈8的电阻值R C低于设定电阻值(例如0.5欧姆)时,可使用任意无源分立器件组成的电路连接线圈8。又例如,若线圈8的电阻值R C高于设定电阻值(例如0.5欧姆)时,可控电路6要采用负阻抗电路来连接线圈8。
例如,在一些示例中,负阻抗电路还包括第一平衡电阻17和第二平衡电阻19,其中,第一平衡电阻17分别与运算放大器18的负极输入端和输出端连接,第二平衡电阻19分别与运算放大器18的正极输入端和输出端连接。示例地,第一平衡电阻17和第二平衡电阻19的电阻值R b可以相等,并且电阻值R b可为任意电阻值;或者,第一平衡电阻17和第二平衡电阻19的电阻值也可以不相等,本公开对此不作限制。
需要说明的是,上述示例是由第一平衡电阻17、第二平衡电阻19和运算放大器18共同实现负阻抗电路,但是本公开并不局限于此,还可以由其它方式实现,本公开在此不做赘述。而且,本公开的可控电路6包括的分支电路不仅限于上述示例的电路形式,还可以其他任何形式的电路,本公开在此不作赘述。
需要说明的是,为了表述清楚、简洁,图4仅图示出了一种包含三条分支电路的可控电路,其是示例性的,而不是对本公开的限制,具体可以根据实际需要进行自由调整,本公开实施例在此不做穷举和赘述。
例如,在一些示例中,上述的可调隔声装置包括的隔声本体结构3和机电耦合机构4可以采用动圈扬声器,即本公开至少一实施例的可调隔声装置利用动圈扬声器以及可控电路调整隔声装置的隔声频带使之适用于隔离可变声源,此时动圈扬声器是作为隔声器件而非发声器件。
值得说明的是,发明人发现,虽然利用扬声器连接智能电路可以实现较好的吸声效果,但未涉及隔声领域,因为吸声技术要求吸声阻抗与媒介相等 (例如空气),而隔声领域要求隔声器件阻抗显著大于媒介的阻抗,因此两者原理显然不同,即扬声器接入电路的吸声技术无法用于隔声。
值得说明的是,本公开的分支电路不包括负阻抗电路时也能实现可调隔声装置的隔声可调的作用,具体需要根据实际情况进行自由调整。
例如,在一些示例中,当其中一条分支电路接通的时候,该分支电路等效为一个串联电阻、电容、电感的电路,该分支电路的等效电阻R、等效电容C及等效电感L分别为:
R=R c+R ++R -         (1)
L=L c+L ++L -        (2)
C=C +        (3)
因此,第n分支电路的电阻抗Ze n(ω)为:
Ze n(ω)=R+iωL+C/iω      (4)
上式中,ω为振膜的角频率,例如振膜的角频率与声波(例如可变噪声)的角频率一致,并且该角频率随着可变噪声也是变化的;m为振膜的动质量;k为振膜和悬挂组件形成的整体的刚度;d为振膜的机械阻尼。
当第n条分支电路导通时,并且声波由任意一侧推动振膜31运动时,隔声装置的动力学方程为:
Figure PCTCN2021128383-appb-000001
上式中,F=2P IA,是指声压为P I的入射声波作用于面积为A的振膜产生的动态驱动力;v为振膜的振动速度,即线圈切割磁场的速度;F L为连接分支电路后,线圈在磁场中受到的洛伦兹力,该洛伦兹力为:
F L=BlI       (6)
上式中,I是线圈产生的感应电流,即电流I为感应电动势驱动线圈环路产生的,即:
E=Blv=IZ en(ω)      (7)
上式中,E为感应电动势;
利用式(5)-(7),通过抵消电流I、电动势E、洛伦兹力F,可以得到振膜的机械阻抗Z(ω)为:
Figure PCTCN2021128383-appb-000002
上式中,当机电耦合结构为上述示例的电磁-机械耦合结构时,式(8)中的耦合强度等于Bl;当机电耦合结构为其他类型的机电耦合结构时,式(8)的Bl可以用耦合强度η表示,即此时η为该其他类型的机电耦合结构的耦合强度。
由此可知,本公开实施例通过电路阻抗对振膜提供额外的机械阻抗。
此时,振膜的声传递损失TL为:
Figure PCTCN2021128383-appb-000003
上式中,ρ o为媒介(例如空气)的密度,c o为媒介(例如空气)的速度,A为振膜的面积,Imag为取阻抗虚部,Real为取阻抗实部。振膜的声传递损失TL是衡量损失声音的一个数值,且隔声的效率与不同频率的声源而有所不同。
据前所述,本公开实施例可以通过调整电路来调整可调隔声装置的机械阻抗。对于不同形式的电路,只需要将该电路的电阻抗代入公式(4),后续公式(5)~(9)仍然适用。
例如,如公式(9)所示,隔声性能用传递损失TL表示,单位为dB。声传递损失TL由隔声装置的阻抗决定,因此,调整电路即调整了隔声装置的工作频率及隔声性能。
图6为本公开一些实施例提供的使用图4所示的等效串联分支电路的可调隔声装置的实验效果的示意图。例如,在至少一个实施例的实验过程中,该可调隔声装置的可控电路包括6条分支电路,将通过选择性地导通可控电路包括的6条分支电路中的每一条分支电路以及未增加分支电路情况下的隔声性能进行对比,得到图6和下述表1,其中,表1列出了该6条分支电路等效的电路参数及振膜参数,图6所示的横坐标为频率,纵坐标是声传递损失,图6所示的电路1~6分别代表可控电路中的6条分支电路。
表1 可调隔声装置的实验参数
Figure PCTCN2021128383-appb-000004
根据图6所示和表1结合所示,可以看出通过简单的调整电路参数,智能地调整隔声装置的有效工作频带。例如,如图6所示,当分支电路1~6的电容参数分别为6000uF,2000uF,990uF,540uF,200uF,100uF时,则对应的隔声频带中心频率(即隔声最高点所在的频率)为分别98Hz,155Hz, 226Hz,290Hz,532Hz,691Hz,并且它们与未增加分支电路相比,隔声量超过10dB及20dB的频带亦相应的增加。
例如,在一些示例中,本公开的可控电路6还可以包括单一可调电路,即将图5所示的单一可调电路替换图4所示的多条分支电路。
例如,该单一可调电路包括可调电容、可调电感和可调电阻中至少一个,由此使得该电路的阻抗可调;例如,该单一可调电路包括可调电容24、可调电感25和可调电阻27,其中,可调电容24、可调电感25和可调电阻27各自的电容值、电感值和电阻值分别可调,由此提供更大调整范围或更精细的调整步长。
当根据变化的声波,通过调整单一可调电路的参数(例如可调电容24、可调电感25和可调电阻27中的一种或多种的参数值)的方法,使得达到设定条件(例如表1所示的电路参数),从而实现如图6所示的声传递损失效果。如图5所示,该单一可调电路中的负阻抗电路以及位于GND端22与负阻抗电路之间的电子器件可以参照图4示例,本公开实施例在此不做赘述。
例如,在一些示例中,图5中的可调电容24、可调电感25和可调电阻27等这些可调元器件可由诸如可控硅配合阻抗变换电路等方法实现,本公开在此不作限制,并且在此不做赘述,只要能够实现电容值、电感值和电阻值的可调节即可。
由此可知,本公开实施例的可调隔声装置的有效隔声频谱也可以通过电路改变,使得隔声装置的有效隔声频带与噪声源匹配,并在较宽的范围内可调,可以隔离旋转机械(诸如电动新能源汽车发动机等)的产生的可变噪声源,本公开实施例的可调隔声装置可以适用于任何场景下存在的可变噪声源,本公开对此不作限制。
例如,在使用可调隔声装置控制隔声时,可以直接将可调隔声装置设置在任何可以产生可变噪声源的物体上(例如上述的旋转机械)。
需要说明的是,在本公开实施例中,上述示例提供的控制隔声的方法的流程可以包括更多或更少的操作,这些操作可以顺序执行或并行执行。虽然上文描述的控制隔声的方法的流程包括特定顺序出现的多个操作,但是应该清楚地了解,多个操作的顺序并不受限制。本公开的实施例中的控制隔声的方法的具体过程和技术效果可以参考上文中关于可调隔声装置的描述,此处不再赘述。
有以下几点需要说明:
(1)本公开实施例附图只涉及到本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种可调隔声装置,包括:
    隔声本体结构,配置为能由声波推动运动;
    机电耦合机构,其中,所述机电耦合机构的至少部分与所述隔声本体结构固定连接,并由运动的所述隔声本体结构带动所述机电耦合机构的至少部分进行运动以用于所述机电耦合机构的机电转换;
    可控电路,其中,所述可控电路与所述机电耦合机构导电连接并通过所述机电转换为运动的所述隔声本体结构提供机械阻抗,所述可控电路可选择性地改变电阻抗,使得对于所述隔声本体结构的机械阻抗可调。
  2. 如权利要求1所述的可调隔声装置,其中,
    所述可控电路包括并联且分别具有不同电阻抗的多条分支电路,并可选择性地将所述机电耦合机构与所述可控电路的多条分支电路的其中之一导电连接,使得对于所述隔声本体结构的机械阻抗可调。
  3. 如权利要求1所述的可调隔声装置,其中,所述隔声本体结构包括隔声膜,
    所述隔声膜包括非透气的膜状结构或板状结构,或者,所述隔声膜包括部分透气的膜状结构或板状结构。
  4. 如权利要求2所述的可调隔声装置,其中,
    所述机电耦合机构的至少部分包括导体,所述机电耦合机构还包括用于在工作中提供磁场的磁体,
    所述导体与所述隔声本体结构固定连接并由运动的所述隔声本体结构带动进行运动,以切割所述磁场,所述导体产生感应电流。
  5. 如权利要求4所述的可调隔声装置,其中,
    所述导体包括单层或者多层的线圈,所述磁体包括相对设置的两个磁铁。
  6. 如权利要求4所述的可调隔声装置,其中,
    所述隔声本体结构通过弹性的悬挂组件悬挂于安装框架,以使所述隔声本体结构被所述声波推动并往复运动。
  7. 如权利要求6所述的可调隔声装置,其中,所述线圈绕在筒体上并且所述筒体与所述隔声本体结构固定连接,
    所述隔声本体结构通过所述悬挂组件沿着所述筒体的轴向进行运动,带动所述线圈沿着所述筒体的轴向进行运动。
  8. 如权利要求7所述的可调隔声装置,其中,
    所述机电耦合机构还包括用于传导所述磁场的导磁组件,
    所述导磁组件包括:
    第一导磁件,其中,所述第一导磁件套设在所述线圈的外侧并引导所述磁铁的第一极性侧的磁场通过所述第一导磁件;
    第二导磁件,其中,所述第二导磁件包括第一部分和第二部分,所述第二导磁件的第一部分沿着所述筒体的轴向插至所述线圈的内侧,所述第二导磁件的第二部分沿着所述筒体的径向方向并引导所述磁铁的第二极性侧的磁场通过所述第二导磁件的第二部分直至第一部分,从而引导所述磁场通过所述线圈,供运动的所述线圈进行切割。
  9. 如权利要求5所述的可调隔声装置,其中,
    所述导体的两端分别通过导线与所述可控电路导电连接,所述可控电路为有源电路或无源电路。
  10. 如权利要求2或4~9任一所述的可调隔声装置,其中,
    所述可控电路的每条所述分支电路分别包括可控开关,用于控制所述分支电路的导通或断开,以使所述机电耦合机构可选择性地与所述可控电路的多条分支电路的其中之一导电连接。
  11. 如权利要求10所述的可调隔声装置,其中,所述可控电路的每条所述分支电路还包括用于与所述可控开关串联连接的第一电容、第一电感和 第一电阻,
    对于至少两条所述分支电路,其中包括的第一电容、第一电感、第一电阻中的任一种或多种的参数值分别不相等。
  12. 如权利要求11所述的可调隔声装置,其中,所述可控电路还包括负阻抗电路,
    每个所述可控开关与对应的第一电容、第一电感、第一电阻串联连接形成的电路分别与所述负阻抗电路串联连接,形成多条带有负阻抗电路的所述分支电路,以调整多条所述分支电路的电阻抗。
  13. 如权利要求12所述的可调隔声装置,其中,
    所述导体的两端分别与所述可控电路的接地端和电路端连接,
    每个所述可控开关与对应的第一电容、第一电感、第一电阻串联连接形成的电路连接于所述可控电路的电路端与所述负阻抗电路之间,并且位于所述接地端与所述负阻抗电路之间的电子器件具有负阻抗。
  14. 如权利要求13所述的可调隔声装置,其中,
    位于所述接地端与所述负阻抗电路之间的电子器件包括电阻和/或电感。
  15. 如权利要求13或14所述的可调隔声装置,其中,所述负阻抗电路包括:
    运算放大器,其中,所述运算放大器的负极输入端与由所述可控开关与对应的第一电容、第一电感、第一电阻串联连接形成的电路进行连接,所述运算放大器的正极输入端与所述电子器件连接;
    第一平衡电阻,其中,所述第一平衡电阻分别与所述运算放大器的负极输入端和输出端连接;
    第二平衡电阻,其中,所述第二平衡电阻分别与所述运算放大器的正极输入端和输出端连接,所述第一平衡电阻和所述第二平衡电阻的电阻值相等或不相等。
  16. 一种控制隔声的方法,包括:
    将机电耦合机构的至少部分与隔声本体结构固定连接;
    提供电阻抗可选择性地进行改变的可控电路;
    接收声波以推动运所述隔声本体结构运动,运动的所述隔声本体结构带动所述机电耦合机构的至少部分进行运动,使得所述机电耦合机构的机电转换;
    根据变化的所述声波,可选择性地改变所述可控电路的电阻抗,并通过所述机电转换为所述隔声本体结构提供机械阻抗,使得对于所述隔声本体结构的机械阻抗可调。
  17. 如权利要求16所述的控制隔声的方法,其中,
    可选择性地改变所述可控电路的电阻抗,包括:
    可选择性地将所述机电耦合机构与所述可控电路包括的多条分支电路的其中之一导电连接。
PCT/CN2021/128383 2020-12-08 2021-11-03 可调隔声装置以及控制隔声的方法 WO2022121563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011442546.4A CN114613346A (zh) 2020-12-08 2020-12-08 可调隔声装置以及控制隔声的方法
CN202011442546.4 2020-12-08

Publications (1)

Publication Number Publication Date
WO2022121563A1 true WO2022121563A1 (zh) 2022-06-16

Family

ID=81856485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128383 WO2022121563A1 (zh) 2020-12-08 2021-11-03 可调隔声装置以及控制隔声的方法

Country Status (2)

Country Link
CN (1) CN114613346A (zh)
WO (1) WO2022121563A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101650938A (zh) * 2008-08-15 2010-02-17 吴哲 用于空气环境吸声的方法及装置及隔声室制造方法
KR101481707B1 (ko) * 2014-04-17 2015-01-22 주식회사 성지공조기술 가변형 소음기
CN108331789A (zh) * 2018-03-19 2018-07-27 浙江师范大学 一种阻尼可调的磁流变压电排气消音器
CN108487966A (zh) * 2018-03-19 2018-09-04 浙江师范大学 一种阻抗可调式磁流变弹性体消音器
CN109147748A (zh) * 2018-11-06 2019-01-04 南京林业大学 拼接式隔声量可调磁流变液隔声体及其隔声单元
CN110427731A (zh) * 2019-09-05 2019-11-08 南昌航空大学 一种可调节吸声性能的蜂窝结构及其设计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101650938A (zh) * 2008-08-15 2010-02-17 吴哲 用于空气环境吸声的方法及装置及隔声室制造方法
KR101481707B1 (ko) * 2014-04-17 2015-01-22 주식회사 성지공조기술 가변형 소음기
CN108331789A (zh) * 2018-03-19 2018-07-27 浙江师范大学 一种阻尼可调的磁流变压电排气消音器
CN108487966A (zh) * 2018-03-19 2018-09-04 浙江师范大学 一种阻抗可调式磁流变弹性体消音器
CN109147748A (zh) * 2018-11-06 2019-01-04 南京林业大学 拼接式隔声量可调磁流变液隔声体及其隔声单元
CN110427731A (zh) * 2019-09-05 2019-11-08 南昌航空大学 一种可调节吸声性能的蜂窝结构及其设计方法

Also Published As

Publication number Publication date
CN114613346A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
Yuan et al. An efficient low-frequency acoustic energy harvester
Bauer et al. Ferroelectrets: Soft electroactive foams for transducers
CN101998216A (zh) 一种扬声器和便携式电子设备
CN107431853B (zh) 具有密封的声学悬浮室的扬声器外壳
WO2020029959A1 (zh) 多重引擎阵列系统及扬声器
CN104349251B (zh) 扬声器结构
CN108932939B (zh) 一种针对低频有调噪声的薄型吸声结构及其设计方法
WO2022121563A1 (zh) 可调隔声装置以及控制隔声的方法
CN201523448U (zh) 一种扬声器和便携式电子设备
CN1387698A (zh) 多驱动器谐振耦合扬声器
CN208637138U (zh) 亥姆霍兹共振器
TW201515473A (zh) 壓電喇叭
CN111065022A (zh) 一种异步式磁回流结构的平面振膜扬声器
CN105554661A (zh) 电声转换装置
CN206117961U (zh) 一种耳机芯及耳机
CN209572154U (zh) 小型平面振膜扬声器及耳机
KR102277803B1 (ko) 압전 소자들을 갖는 라우드스피커
CN112104956A (zh) 被动辐射器和包含被动辐射器的电声装置
TWI707588B (zh) 喇叭裝置
Olson A history of high-quality studio microphones
CN107786926B (zh) 一种针对含有多个单频分量的低频噪声的薄型吸声结构的设计方法
CN211860539U (zh) 高功率低频率的扬声器
CN1253056C (zh) 平面串联磁路和采用该磁路的电-机-声换能器
TWM469703U (zh) 壓電喇叭
CN214835916U (zh) 一种主动降噪窗户

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902270

Country of ref document: EP

Kind code of ref document: A1