WO2022121553A1 - 随机接入信道的配置方法、装置、电子设备和存储介质 - Google Patents

随机接入信道的配置方法、装置、电子设备和存储介质 Download PDF

Info

Publication number
WO2022121553A1
WO2022121553A1 PCT/CN2021/127620 CN2021127620W WO2022121553A1 WO 2022121553 A1 WO2022121553 A1 WO 2022121553A1 CN 2021127620 W CN2021127620 W CN 2021127620W WO 2022121553 A1 WO2022121553 A1 WO 2022121553A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
ssb
random access
threshold condition
rsrp
Prior art date
Application number
PCT/CN2021/127620
Other languages
English (en)
French (fr)
Inventor
毛欢欢
于泳
魏浩
李萍
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022121553A1 publication Critical patent/WO2022121553A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method, apparatus, electronic device, and storage medium for configuring a random access channel.
  • 2-step random access (2-step Random access, 2-step RA) is a new access method introduced by the R16 protocol specification.
  • the original 4-step RA is reduced to 2 steps, which significantly reduces the delay, but not all Both random access scenarios can use 2-step RACH. Therefore, it is necessary to choose whether to use 2-step RA or 4-step RA according to different situations, and then perform corresponding RACH configuration.
  • the main configuration method of random channel access is: first, use 2-step RACH or 4-step RACH according to the reference signal receiving power (Reference Signal Receiving Power, RSRP) threshold, and then perform synchronization signal and physical layer broadcast channel block ( Synchronization Signal and Physical Broadcast Channel Block, SSB).
  • RSRP Reference Signal Receiving Power
  • An embodiment of the present application provides a method for configuring a random access channel, the method includes the following steps: receiving a radio resource management RRC message, wherein the RRC message carries association information between SSB and a random access type RA-TYPE , the RA-TYPE includes 2-step random access RA and 4-step RA; determine the SSB to be configured; determine the RA-TYPE to be configured according to the association information between the SSB to be configured and the RA-TYPE; The configuration of the random access channel is completed according to the to-be-configured SSB and the to-be-configured RA-TYPE.
  • the embodiment of the present application further provides a random access channel configuration device, including: a receiving module, configured to receive a radio resource management RRC message, wherein the RRC message carries the association between the SSB and the random access type RA-TYPE information, the RA-TYPE includes 2-step random access RA and 4-step RA; the selection module is used to determine the SSB to be configured, and determine the SSB to be configured according to the association information between the SSB to be configured and the RA-TYPE The configured RA-TYPE; a configuration module, configured to complete the configuration of the random access channel according to the to-be-configured SSB and the to-be-configured RA-TYPE determined by the selection module.
  • a receiving module configured to receive a radio resource management RRC message, wherein the RRC message carries the association between the SSB and the random access type RA-TYPE information, the RA-TYPE includes 2-step random access RA and 4-step RA
  • the selection module is used to determine the SS
  • Embodiments of the present application also provide an electronic device, including:
  • the memory stores instructions executable by the at least one processor, the instructions are processed by the at least one processor
  • the processor executes, so that the at least one processor can execute the above-mentioned configuration method of the random access channel.
  • Embodiments of the present application further provide a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the above-mentioned method for configuring a random access channel is implemented.
  • FIG. 1 is a flowchart of a method for configuring a random access channel provided by a first embodiment of the present application
  • FIG. 2 is a schematic diagram of a bitmap indication in a method for configuring a random access channel provided by the first embodiment of the present application;
  • step 102 in the method for configuring a random access channel provided by the first embodiment of the present application
  • FIG. 4 is a flowchart of a method for configuring a random access channel provided by a second embodiment of the present application
  • FIG. 5 is a flowchart of a method for configuring a random access channel provided by a third embodiment of the present application.
  • FIG. 6 is a flowchart of a method for configuring a random access channel provided by a fourth embodiment of the present application.
  • FIG. 7 is a schematic diagram of beam allocation in a method for configuring a random access channel provided by a fifth embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an apparatus for configuring a random access channel provided by a sixth embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by a seventh embodiment of the present application.
  • the main purpose of the embodiments of this application is to propose a random access channel configuration method, device, electronic device, and storage medium, aiming to meet the buffer limitation brought by hardware, so that the random access channel, system and system can be configured based on beams.
  • the access success rate is improved and the delay is reduced.
  • the first embodiment of the present application relates to a method for configuring a random access channel, the execution subject is a user equipment, as shown in FIG. 1 , and specifically includes:
  • Step 101 Receive a radio resource management RRC message, wherein the RRC message carries the association information between the SSB and the random access type RA-TYPE, and the RA-TYPE includes 2-step random access RA and 4-step RA.
  • the SSB is a synchronization signal and a physical layer broadcast channel block
  • the association information between the SSB and the random access type (Random Access-Type, RA-TYPE) may be represented in the form of a bitmap , which can also be represented in the form of a mask.
  • the RRC message carries the association information between SSB and RA-TYPE.
  • the RA-TYPE can be selected according to the service type and requirements of the user equipment or according to the beam width.
  • the 4-step RA will not meet the RSRP condition but cannot meet the hardware restriction condition.
  • the specific SSB corresponding to the far-field beam is set as the 4-step RA to avoid access failure.
  • the bitmap name of the association information between SSB and RA-TYPE can be defined as RATypeSSBbitmap
  • the value of each bit of the RATypeSSBbitmap directly indicates the default value of the RA-TYPE associated with the SSB.
  • the length of the RATypeSSBbitmap is the number of SSBs used by the system. When the value of a bit in the RATypeSSBbitmap is 1, it means that the SSB corresponds to
  • the RA-TYPE is 2-step RA, that is, a 2-step RACH beam is configured.
  • the mask name of the association information between SSB and RA-TYPE can be defined as RATypeSSBResMaskIndex, and one RATypeSSBResMaskIndex corresponds to a pre-
  • the set association relationship the association relationship is the mapping relationship between SSB and RA-TYPE
  • the length of RATypeSSBResMaskIndex can be 4 bits
  • the SSB indicated in the table content adopts 2-step RA.
  • RATypeSSBResMaskIndex SSB Resource 0 all SSBs 1 every odd SSBs 2 every even SSBs 3 the first half SSBs 4 the last half SSBs 5 first 8 SSBs 6 first 16 SSBs 7 last 8 SSBs 8 reserved 9 reserved 10 reserved 11 reserved 12 reserved 13 reserved 14 reserved 15 reserved
  • the protocol stipulates that the maximum number of SSBs is 64, the bitmap needs to support a maximum of 64 bits, and the mask needs to support a maximum of 4 bits according to the above example.
  • the RRC message carrying the association information between SSB and RA-TYPE Has little effect. Since the system needs to be disconnected during the SSB reconfiguration, the bitmap or mask of the association information between the SSB and the RA-TYPE carried in the RRC message also needs to be correspondingly reconfigured when the SSB is reconfigured.
  • the RRC message carries the association information between the SSB and the RA-TYPE
  • the RRC message also has a situation where the association information between the SSB and the RA-TYPE is not carried.
  • the selection of TYPE adopts a rule agreed by both parties.
  • the rule can be that 2-step RA is used when SSB number ⁇ M, and M is a positive integer selected according to the actual situation. Therefore, based on this regulation, SSB and RA are defined.
  • -Type association rules you can still perform the following steps to successfully complete the configuration of the random access channel.
  • Step 102 Determine the SSB to be configured.
  • one SSB is selected from all available SSBs according to a certain rule, and the selected SSB is used as the configuration result of the SSB.
  • step 102 includes:
  • Step 301 Obtain msgA reference signal received power thresholds for synchronization signals and physical layer broadcast channel blocks msgA-RSRP-ThresholdSSB and reference signal received power thresholds RSRP-ThresholdSSB for synchronization signals and physical layer broadcast channel blocks.
  • Step 302 Determine the SSB to be configured according to a first threshold condition and a second threshold condition, wherein the first threshold condition is that the SS-RSRP of at least one SSB is greater than the msgA-RSRP-ThresholdSSB, and the second threshold condition is that there is at least one SSB.
  • the SS-RSRP of an SSB is greater than the RSRP-ThresholdSSB.
  • Step 103 Determine the RA-TYPE to be configured according to the association information between the SSB to be configured and the RA-TYPE.
  • a step is generally included: obtaining the RSRP of the downlink loss, and then according to the RSRP of the downlink loss and the normal uplink (Normal UpLink) , NUL) carrier and a Supplementary UpLink (Supplementary UpLink, SUL) carrier selected by the comparison result of the RSRP threshold (rsrp-ThresholdSSB-SUL) carrier type is selected.
  • NUL Supplementary UpLink
  • the RRC message carries the association information of the RA-TYPE corresponding to the SSB
  • the SSB can be directly configured according to the SSB to be configured.
  • search for the RA-TYPE corresponding to the SSB and use the found RA-TYPE as the RA-TYPE to be configured.
  • Step 104 Complete the configuration of the random access channel according to the SSB to be configured and the RA-TYPE to be configured.
  • the corresponding variables are initialized to complete the configuration of the random access channel, and then the corresponding message (msgA or msg1) is directly transmitted.
  • the received RRC message can carry the association information between the SSB and the RA-TYPE, so that after the SSB to be configured can be determined, according to the association information between the SSB to be configured and the RA-TYPE Obtain the RA-TYPE to be configured, and then complete the configuration of the random access channel according to the SSB to be configured and the RA-TYPE to be configured.
  • Step RA so that the buffer limit brought by the hardware can be met when the RA-TYPE to be configured is selected, and the RA-TYPE to be configured is selected based on the beam information SSB, and then the selection of random access channels based on beam selection, Avoid 2-step access failure and fall back to 4-step RA after 2-step access failure, improve the access success rate of the system, and avoid the increase of delay caused by fallback.
  • the second embodiment of the present application relates to a method for configuring a random access channel. This embodiment is roughly the same as the first embodiment, except that step 302 is further refined.
  • the specific process of this embodiment is shown in FIG. 4 . shown, including:
  • Step 401 Receive a radio resource management RRC message, wherein the RRC message carries the association information between the SSB and the random access type RA-TYPE and the reference signal received power threshold of msgA msgA-RSRP-Threshold, and the RA-TYPE includes 2-step random access. Access RA and 4-step RA.
  • the RRC message also carries the reference signal received power threshold msgA-RSRP-Threshold of msgA.
  • Step 402 Obtain msgA's reference signal receive power threshold for synchronization signal and physical layer broadcast channel block msgA-RSRP-ThresholdSSB and the reference signal receive power threshold for synchronization signal and physical layer broadcast channel block RSRP-ThresholdSSB.
  • Step 403 Determine the initial RA-TYPE according to msgA-RSRP-Threshold.
  • the initial RA-TYPE is determined according to the obtained magnitude relationship between the RSRP of the downlink loss and the msgA-RSRP-Threshold, and corresponding parameters are initialized for the determined initial RA-TYPE.
  • step 403 is substantially the same as that in the prior art, and details are not repeated here.
  • Step 404 determine whether the initial RA-TYPE is a 2-step RA.
  • step 405 if yes, go to step 405, if not, go to step 406.
  • Step 405 taking the first threshold condition as the threshold condition, wherein the first threshold condition is that the SS-RSRP in which at least one SSB exists is greater than the msgA-RSRP-ThresholdSSB.
  • Step 406 taking the second threshold condition as the threshold condition, where the second threshold condition is that the SS-RSRP in which at least one SSB exists is greater than the RSRP-ThresholdSSB.
  • Step 407 judge whether the threshold condition is satisfied, if yes, go to step 408, if not, go to step 409.
  • Step 408 taking any SSB that satisfies the threshold condition as the SSB to be configured.
  • Step 409 use any SSB as the SSB to be configured.
  • Step 410 Determine the RA-TYPE to be configured according to the association information between the SSB to be configured and the RA-TYPE.
  • step 410 in this embodiment is substantially the same as step 103 in the first embodiment, and details are not repeated here.
  • Step 411 check whether the initial RA-TYPE is the same as the RA-TYPE to be configured.
  • step 413 if yes, go to step 413, if not, go to step 412.
  • Step 412 Change the initial RA-TYPE to the RA-TYPE to be configured.
  • executing step 403 will actually determine the RA-TYPE to be configured as 2-step RA, and after executing step 412, the Change the RA-TYPE to be configured from 2-step RA to 4-step RA.
  • the initial RA-TYPE is 4-step RA and the RA-TYPE to be configured is 2-step RA
  • executing step 403 will actually determine the RA-TYPE to be configured as 4-step RA, and after executing step 412, the The RA-TYPE to be configured is changed from 4-step RA to 2-step RA.
  • Step 413 Complete the configuration of the random access channel according to the SSB to be configured and the RA-TYPE to be configured.
  • the SSB in step 103 does not need to be reconfigured, and the configuration result of the SSB obtained in step 406 is still used.
  • the preamble resources on the RA resources to be configured by the SSB of the 2-step RA are determined according to the second threshold, and the configured preamble resources can be used for the 2-step RA without following the 3rd Generation Partnership Project ( The content indicated by the configuration specified by the 3rd Generation Partnership Project, 3GPP).
  • the preamble resources on the RA resources to be configured on the SSB that do not indicate 2-step RA can be used for 4-step RA without following the content indicated by the configuration specified by 3GPP.
  • this embodiment directly undertakes the steps of determining the SSB in the prior art, that is, steps 401 to 409, so that the existing random access channel configuration is There are few changes in the process, which can be compatible with existing protocols and reduce the difficulty of method implementation.
  • the third embodiment of the present application relates to a method for configuring a random access channel.
  • This embodiment is roughly the same as the first embodiment, except that, as shown in FIG. 5 , the process of determining the SSB to be configured in the prior art is Simplified, specifically:
  • Step 501 Receive a radio resource management RRC message, wherein the RRC message carries information to be configured between the SSB and the random access type RA-TYPE, where the RA-TYPE includes 2-step random access RA and 4-step RA.
  • step 401 in this embodiment is substantially the same as step 101 in the first embodiment, and details are not repeated here.
  • Step 502 Obtain msgA's reference signal received power threshold for synchronization signal and physical layer broadcast channel block msgA-RSRP-ThresholdSSB and the reference signal received power threshold for synchronization signal and physical layer broadcast channel block RSRP-ThresholdSSB. Step 503, judging whether the first threshold condition is satisfied.
  • the first threshold condition is that the SS-RSRP in which at least one SSB exists is greater than the msgA-RSRP-ThresholdSSB.
  • step 504 if yes, go to step 504, if not, go to step 505.
  • Step 504 taking any SSB that satisfies the first threshold condition as the SSB to be configured.
  • Step 505 judging whether the second threshold condition is satisfied.
  • the second threshold condition is that the SS-RSRP in which at least one SSB exists is greater than the RSRP-ThresholdSSB.
  • step 506 if yes, go to step 506, if not, go to step 507.
  • Step 506 taking any SSB that satisfies the second threshold condition as the SSB to be configured.
  • Step 507 taking any SSB as the SSB to be configured.
  • Step 508 Determine the to-be-configured RA-TYPE corresponding to the to-be-configured SSB according to the association information between the to-be-configured SSB and the RA-TYPE.
  • step 508 in this embodiment is substantially the same as step 103 in the first embodiment, and details are not repeated here.
  • Step 509 Complete the configuration of the random access channel according to the SSB to be configured and the RA-TYPE to be configured.
  • step 509 in this embodiment is substantially the same as step 104 in the first embodiment, and details are not repeated here.
  • the preamble resource on the RA resource associated with the SSB of the 2-step RA has been indicated. .
  • the configured preamble resources can be used for 4-step RA without being indicated by the configuration specified by 3GPP.
  • this embodiment first selects a BSS from all SSBs as the SSB to be configured , and then choose whether to use the 2-step RA as the RA-TYPE to be configured or the 4-step RA as the RA-TYPE to be configured, which reduces the determination of the initial to-be-configured RA-TYPE and the corresponding initialization operation, so that the operation has no repetition and process flow. Simpler and less latency.
  • the fourth embodiment of the present application relates to a method for configuring a random access channel.
  • This embodiment is substantially the same as the first embodiment, except that, as shown in FIG. 6 , before step 104, it further includes:
  • Step 601 if the RA-TYPE to be configured is 4-step RA, determine whether the SS-RSRP of the SSB to be configured is greater than the preset msgA reference signal received power threshold msgA-RSRP-Threshold.
  • step 602 if yes, go to step 602, if not, go to step 603.
  • the preset msgA-RSRP-Threshold is different from the specific value of the msgA-RSRP-Threshold in the prior art mentioned in the second embodiment, and the preset msgA-RSRP-Threshold is different.
  • Threshold is a value that is artificially set according to actual needs. Through this value, some special cases (satisfying whether the SS-RSRP of the SSB to be configured is greater than the preset msgA reference signal received power threshold msgA-RSRP-Threshold) Filter out and take the appropriate action. Therefore, the filter conditions can be flexibly changed through the preset value, and the actual execution result can be adjusted.
  • Step 602 Update the RA-TYPE to be configured to 2-step RA.
  • Step 603 keep the RA-TYPE to be configured unchanged.
  • the RA-TYPE to be configured when it is determined that the RA-TYPE to be configured is 4-step RA, the SS-RSRP corresponding to the SSB configuration result is greater than the preset msgA reference signal received power threshold msgA-RSRP- Threshold, the RA-TYPE to be configured will be updated from 4-step RA to 2-step RA, and will not be updated in other cases. Therefore, the result of this embodiment is actually to update some RA-TYPEs selected as SSBs configured with 4-step RA to be configured with 2-step RA.
  • the configured preamble resources can be used for 2-stepRA without following the configuration instructions specified by 3GPP.
  • the preamble resource on the RA resource associated with the SSB that does not indicate 2-stepRA is indicated according to the configuration specified in the 3GPP protocol.
  • the preset msgA-RSRP-Threshold can be used to further update some 4-step RAs as the to-be-configured RA-TYPE to 2-step RAs
  • the RA can further reduce the delay and flexibly adjust the range of the user equipment covered by the update.
  • the fifth embodiment of the present application implements the above-mentioned implementation from the perspective of beam allocation as shown in FIG. 7 . example to illustrate.
  • the cell has a total of 24 narrow beams, and the system can calculate To get a maximum realization constraint distance, the formula can be used: Calculate the maximum implementation constraint distance, where TA is the advance timing amount, reflecting the cache capacity limit, and c is the speed of light.
  • the maximum TA difference allowed by the demodulation performance of msgA-PUSCH can also calculate the maximum coverage distance to the beam.
  • the base station side can configure signaling so that the UE in the outer beam does not perform 2-step RA access:
  • Bitmap signaling is: 11111111111111110000000 or mask signaling is: 5.
  • 2-step RA can be implemented on beams 0-15
  • 4-step RA can be implemented on beams 15-23
  • 2-step RA can be implemented on beams 0-15
  • 2-step RA and 4-step RA can be distinguished on beams 15-23 by using a preset RSRP threshold.
  • the base station side can configure signaling to distinguish between different access modes for wide and narrow beams, such as 2-stepRA access for wide beams and 4-stepRA access for narrow beams:
  • Bitmap signaling can be set to 000000000000000000011111111 or mask signaling can be set to 7.
  • 4-stepRA or 2-stepRA can be selected by the user equipment in the co-coverage area.
  • the user equipment in the co-coverage area is based on the transmission characteristics of the data services to be transmitted, such as size or transmission time.
  • the RA-TYPE is further selected by selecting the SSB. Perform 2-step RA on a wide beam to improve access speed and reduce latency, and perform 4-step RA on a narrow beam to enhance coverage.
  • the sixth embodiment of the present application relates to an apparatus for configuring a random access channel, as shown in FIG. 8 , including: a receiving module 801 , a selection module 802 , and a configuration module 803 .
  • the receiving module 801 is configured to receive a radio resource management RRC message, wherein the RRC message carries the association information between the SSB and the random access type RA-TYPE, and the RA-TYPE includes 2-step random access RA and 4-step RA.
  • the selection module 802 is configured to determine the SSB to be configured, and to determine the RA-TYPE to be configured according to the association information between the SSB to be configured and the RA-TYPE.
  • the configuration module 803 is configured to complete the configuration of the random access channel according to the to-be-configured SSB and the to-be-configured RA-TYPE determined by the selection module.
  • this embodiment is a device embodiment corresponding to the first embodiment, and this embodiment can be implemented in cooperation with the first embodiment.
  • the related technical details mentioned in the first embodiment are still valid in this embodiment, and are not repeated here in order to reduce repetition.
  • the relevant technical details mentioned in this embodiment can also be applied in the first embodiment.
  • each module involved in this embodiment is a logical module.
  • a logical unit may be a physical unit, a part of a physical unit, or multiple physical units.
  • a composite implementation of the unit in order to highlight the innovative part of the present application, this embodiment does not introduce units that are not closely related to solving the technical problem raised by the present application, but this does not mean that there are no other units in this embodiment.
  • the eighth embodiment of the present application relates to an electronic device, as shown in FIG. 9 , comprising: at least one processor 901 ; and a memory 902 communicatively connected to the at least one processor 901 ; wherein the memory 902 stores data that can be accessed by at least one processor 901 .
  • the memory 902 and the processor 901 are connected by a bus, and the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors 901 and various circuits of the memory 902 together.
  • the bus may also connect together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface between the bus and the transceiver.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing a means for communicating with various other devices over a transmission medium.
  • the data processed by the processor 901 is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor 901 .
  • Processor 901 is responsible for managing the bus and general processing, and may also provide various functions including timing, peripheral interface, voltage regulation, power management, and other control functions.
  • the memory 902 may be used to store data used by the processor 901 when performing operations.
  • the ninth embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请的实施例涉及通信技术领域,提出了一种随机接入信道的配置方法、装置、电子设备和存储介质。随机接入信道的配置方法包括:接收无线资源管理RRC消息,其中,所述RRC消息携带SSB与随机接入类型RA-TYPE之间的关联信息,所述RA-TYPE包括2步随机接入RA和4步RA;确定待配置的SSB;根据所述待配置的SSB与RA-TYPE之间的所述关联信息确定待配置的RA-TYPE;根据所述待配置的SSB和所述待配置的RA-TYPE完成随机接入信道的配置。

Description

随机接入信道的配置方法、装置、电子设备和存储介质
相关申请的交叉引用
本申请基于申请号为“202011449002.0”、申请日为2020年12月9日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请的实施例涉及通信技术领域,特别涉及一种随机接入信道的配置方法、装置、电子设备和存储介质。
背景技术
2步随机接入(2step Random access,2步RA)是R16协议规范引入的一种新的接入方式,将原有的4步RA精简到2步,显著减少了时延,但是并非所有的随机接入场景都可以使用2步RACH。因此,在需要根据不同情况选择使用2步RA还是4步RA再进行相应的RACH配置。目前主要采用的随机信道接入的配置方法是:先根据参考信号接收功率(Reference Signal Receiving Power,RSRP)阈值来进行使用2步RACH还是4步RACH,然后进行同步信号和物理层广播信道块(Synchronization Signal and Physical Broadcast Channel Block,SSB)的选择。
然而,对于选定2步RA的远场用户设备来说,即使能够满足所有的参考信号接收功率阈值条件,可能会出现由于不能满足硬件带来的缓存限制,如不满足定时提前量(Timing Advance,TA)的条件或者不满足msgA的上行物理共享信道(msgA-Physical Uplink Shared Channel,msgA-PUSCH)解调性能,导致2步RA失败,需要回退到4步RA,降低系统的接入成功率同时增加时延。
发明内容
本申请的实施例提供了一种随机接入信道的配置方法,所述方法包括以下步骤:接收无线资源管理RRC消息,其中,所述RRC消息携带SSB与随机接入类型RA-TYPE的关联信息,所述RA-TYPE包括2步随机接入RA和4步RA;确定待配置的SSB;根据所述待配置的SSB与RA-TYPE之间的所述关联信息确定待配置的RA-TYPE;根据所述待配置的SSB和所述待配置的RA-TYPE完成随机接入信道的配置。
本申请的实施例还提供了一种随机接入信道的配置装置,包括:接收模块,用于接收无线资源管理RRC消息,其中,所述RRC消息携带SSB与随机接入类型RA-TYPE的关联信息,所述RA-TYPE包括2步随机接入RA和4步RA;选择模块,用于确定待配置的SSB,根据所述待配置的SSB与RA-TYPE之间的所述关联信息确定待配置的RA-TYPE;配置模块,用于根据由所述选择模块确定的所述待配置的SSB和所述待配置的RA-TYPE完成随机接入信道的配置。
本申请的实施例还提供了一种电子设备,包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理
器执行,以使所述至少一个处理器能够执行以上所述的随机接入信道的配置方法。
本申请的实施例还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现以上所述的随机接入信道的配置方法。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定。
图1是本申请第一实施例提供的随机接入信道的配置方法的流程图;
图2是本申请第一实施例提供的随机接入信道的配置方法中的位图指示示意图;
图3是本申请第一实施例提供的随机接入信道的配置方法中步骤102的流程图;
图4是本申请第二实施例提供的随机接入信道的配置方法的流程图;
图5是本申请第三实施例提供的随机接入信道的配置方法的流程图;
图6是本申请第四实施例提供的随机接入信道的配置方法的流程图;
图7是本申请第五实施例提供的随机接入信道的配置方法中的波束分配示意图;
图8是本申请第六实施例提供的随机接入信道的配置装置的结构示意图;
图9是本申请第七实施例提供的电子设备的结构示意图。
具体实施方式
本申请实施例的主要目的在于提出一种随机接入信道的配置方法、装置、电子设备和存储介质,旨在实现能够满足硬件带来的缓存限制,使得能够基于波束配置随机接入信道、系统的接入成功率提高、时延减小。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请的第一实施例涉及一种随机接入信道的配置方法,执行主体为用户设备,如图1所示,具体包括:
步骤101,接收无线资源管理RRC消息,其中,RRC消息携带SSB与随机接入类型RA-TYPE之间的关联信息,RA-TYPE包括2步随机接入RA和4步RA。
具体地说,在本实施例中,SSB是同步信号和物理层广播信道块,SSB与随机接入类型(Random Access-Type,RA-TYPE)之间的关联信息可以是以位图的形式表示,也可以是以掩码的形式表示。当然,以上仅为具体的举例说明,在实际的使用过程中SSB与RA-TYPE之间的关联信息的表示形式还可以包括其他形式,此处不做一一赘述。而且RRC消息携带SSB与RA-TYPE之间的关联信息主要可以根据用户设备自身业务类型和需求或者根据波束宽窄选择RA-TYPE,如远场的用户设备需要尽量保证接入成功率,因此,根据4步RA不会发生满足RSRP条件却不能够满足硬件限制条件的情况,将对应远场波束的特定的SSB设定 为4步RA,避免接入失败。
更具体地说,当SSB与RA-TYPE之间的关联信息以位图的形式表示时,如图2所示,可以将SSB与RA-TYPE之间的关联信息的位图名称定义为RATypeSSBbitmap,RATypeSSBbitmap每一位的数值直接指示SSB关联上的RA-TYPE的预设值,其中,RATypeSSBbitmap的长度是系统使用的SSB的个数,当RATypeSSBbitmap某一位上的数值位为1时,表示SSB对应的RA-TYPE为2步RA,即配置2步RACH波束。当SSB与RA-TYPE之间的关联信息以掩码的形式表示时,如下表所示,可以将SSB与RA-TYPE之间的关联信息的掩码名称定义为RATypeSSBResMaskIndex,一个RATypeSSBResMaskIndex对应一种预先设置的关联关系,关联关系是SSB与RA-TYPE的映射关系,RATypeSSBResMaskIndex的长度可以为4比特,表格内容中所指示的SSB均采用2步RA。
RATypeSSBResMaskIndex SSB Resource
0 all SSBs
1 every odd SSBs
2 every even SSBs
3 the first half SSBs
4 the last half SSBs
5 first 8 SSBs
6 first 16 SSBs
7 last 8 SSBs
8 reserved
9 reserved
10 reserved
11 reserved
12 reserved
13 reserved
14 reserved
15 reserved
需要说明的是,协议规定SSB最大个数为64个,位图最多需要支持64比特,掩码按上述示例则最多需要支持4比特,对于携带SSB与RA-TYPE之间的关联信息的RRC消息影响不大。由于SSB重配的过程中系统需要断网,因此,SSB进行重配时也需要将RRC消息中携带的SSB与RA-TYPE的关联信息的位图或者掩码进行相应的重配。虽然上述均为RRC消息携带SSB与RA-TYPE的关联信息的情况,但是RRC消息还存在不携带SSB与RA-TYPE之间的关联信息的情景,具体地说,基于用户设备和基站对RA-TYPE的选择采用一种双方约定的规则,例如,规则可以是当满足SSB号<M时均采用2步RA,M是根据实际情况选定的一个正整数,因此基于这种规定了SSB与RA-TYPE的关联关系的规则,仍然可以执行以下步骤,成功完成对随机接入信道的配置。
步骤102,确定待配置的SSB。
具体地说,本实施例是从所有可用的SSB中依据一定规则选取一个SSB,并将选取的这个SSB作为SSB的配置结果。
更具体地说,如图3所示,步骤102包括:
步骤301,获取msgA对同步信号和物理层广播信道块的参考信号接收功率阈值msgA-RSRP-ThresholdSSB和对同步信号和物理层广播信道块的参考信号接收功率阈值RSRP-ThresholdSSB。
步骤302,根据第一阈值条件和第二阈值条件确定所述待配置的SSB,其中,第一阈值条件为存在至少一个SSB的SS-RSRP大于msgA-RSRP-ThresholdSSB,第二阈值条件为存在至少一个SSB的SS-RSRP大于RSRP-ThresholdSSB。
步骤103,根据待配置的SSB与RA-TYPE之间的关联信息确定待配置的RA-TYPE。
需要说明的是,在本实施例中,在实际的应用中,在步骤101之后一般还包含步骤:获取下行链路损失的RSRP,然后根据下行链路损失的RSRP和正常上行链路(Normal UpLink,NUL)载波和补充上行链路(Supplementary UpLink,SUL)载波之间选择的RSRP阈值(rsrp-ThresholdSSB-SUL)的比较结果选择载波类型。但是由于本实施例的解决的问题是如何选择2步RA还是4步RA,而采用2步RA时使用的载波的类型一定是NUL,因此,可以认为,步骤101之后一定会选择NUL作为载波。
具体地说,在本实施例中,由于RRC消息携带SSB对应的RA-TYPE的关联信息,因此,在从所有的SSB中确定了一个待配置的SSB之后,可以直接根据待配置的SSB在SSB对应的RA-TYPE的关联信息中,查找该SSB对应的RA-TYPE,将查找到的RA-TYPE作为待配置的RA-TYPE。
步骤104,根据待配置的SSB和待配置的RA-TYPE完成随机接入信道的配置。
具体地说,在确定待配置的SSB和待配置的RA-TYPE之后,进行相应的变量初始化,就可以完成随机接入信道的配置,接着就直接进行相应消息(msgA或者msg1)的传输。
本申请实施例相对于现有技术而言,接收的RRC消息能够携带SSB与RA-TYPE的关联信息,使得能够确定待配置的SSB之后,根据待配置的SSB与RA-TYPE之间的关联信息得到待配置的RA-TYPE,然后根据待配置的SSB和待配置的RA-TYPE完成随机接入信道的配置。由于SSB与随机接入类型RA-TYPE的关联信息能够直接确定每个SSB对应的待配置RA-TYPE是2步RA还是4步RA,因此可以直接将不能满足硬件限制条件的SSB定义为对应4步RA,使得选定待配置的RA-TYPE时能够满足硬件带来的缓存限制,且待配置的RA-TYPE是基于波束信息SSB来选择的,进而实现基于波束选择随机接入信道的选择、避免2步接入失败以及2步接入失败后回退到4步RA的情况出现,提高了系统的接入成功率、避免了回退带来的时延增加。
本申请的第二实施例涉及一种随机接入信道的配置方法,本实施例与第一实施例大致相同,区别在于,对步骤302进一步进行了细化,本实施例的具体流程如图4所示,具体包括:
步骤401,接收无线资源管理RRC消息,其中,RRC消息携带SSB与随机接入类型RA-TYPE之间的关联信息和msgA的参考信号接收功率阈值msgA-RSRP-Threshold,RA-TYPE包括2步随机接入RA和4步RA。
具体地说,本实施例中的步骤401中RRC消息还携带msgA的参考信号接收功率阈值 msgA-RSRP-Threshold,其他与第一实施例中的步骤101大致相同,此处就不一一赘述。
通过步骤402-步骤409获取待配置的SSB,具体如下:
步骤402,获取msgA对同步信号和物理层广播信道块的参考信号接收功率阈值msgA-RSRP-ThresholdSSB和对同步信号和物理层广播信道块的参考信号接收功率阈值RSRP-ThresholdSSB。
步骤403,根据msgA-RSRP-Threshold确定初始的RA-TYPE。
具体地说,根据获取的下行链路损失的RSRP和msgA-RSRP-Threshold的大小关系确定初始的RA-TYPE,并确定的初始的RA-TYPE进行相应的参数初始化。
需要说明的是,步骤403与现有技术大致相同,此处就不一一赘述。
步骤404,判断初始的RA-TYPE是否为2步RA。
具体地说,若是,执行步骤405,若否,执行步骤406。
步骤405,将第一阈值条件作为阈值条件,其中,第一阈值条件为存在至少一个SSB的SS-RSRP大于msgA-RSRP-ThresholdSSB。
步骤406,将第二阈值条件作为阈值条件,其中,第二阈值条件为存在至少一个SSB的SS-RSRP大于RSRP-ThresholdSSB。
步骤407,判断是否满足阈值条件,若是,执行步骤408,若否,执行步骤409。
步骤408,将任意一个满足阈值条件的SSB作为待配置的SSB。
步骤409,将任意一个SSB作为待配置的SSB。
步骤410,根据待配置的SSB与RA-TYPE之间的关联信息确定待配置的RA-TYPE。
具体地说,本实施例中步骤410与第一实施例中步骤103大致相同,此处就不一一赘述。
步骤411,检测初始的RA-TYPE与待配置的RA-TYPE是否相同。
具体地说,若是,执行步骤413,若否,执行步骤412。
步骤412,将初始的RA-TYPE更改为待配置的RA-TYPE。
具体地说,若初始的RA-TYPE为2步RA、待配置的RA-TYPE为4步RA,执行步骤403实际上会将待配置的RA-TYPE确定为2步RA,执行步骤412之后则将待配置的RA-TYPE由2步RA更改为4步RA。同样地,若初始的RA-TYPE为4步RA、待配置的RA-TYPE为2步RA,执行步骤403实际上会将待配置的RA-TYPE确定为4步RA,执行步骤412之后则将待配置的RA-TYPE由4步RA更改为2步RA。
步骤413,根据待配置的SSB和待配置的RA-TYPE完成随机接入信道的配置。
需要说明的是,在本实施例中,步骤103中的SSB不需要重新进行配置,仍然沿用步骤406得到的SSB的配置结果。具体地说,在根据第二阈值确定2步RA的SSB待配置的的RA资源上的前导码资源,所配置的前导码资源均可用于2步RA,而不用遵循第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)规定的配置所指示的内容。此时在未指示2-stepRA的SSB待配置的RA资源上的前导码资源,所配置的前导码资源均可用于4步RA,而不用遵循3GPP规定的配置所指示的内容。
本实施例相对于现有技术而言,在第一实施例的基础上,由于直接承接了现有技术中确定SSB的步骤,即步骤401到步骤409,使得对现有随机接入信道配置的流程改动少,进而能够兼容现有协议,减少了方法实现的难度。
本申请的第三实施例涉及一种随机接入信道的配置方法,本实施例与第一实施例大致相 同,区别在于,如图5所示,对现有技术中确定待配置的SSB的过程进行了简化,具体地包括:
步骤501,接收无线资源管理RRC消息,其中,RRC消息携带SSB与随机接入类型RA-TYPE之间的待配置的信息,RA-TYPE包括2步随机接入RA和4步RA。
具体地说,本实施例中的步骤401与第一实施例中的步骤101大致相同,此处就不一一赘述。
通过步骤502-步骤507获取待配置的SSB,具体如下:
步骤502,获取msgA对同步信号和物理层广播信道块的参考信号接收功率阈值msgA-RSRP-ThresholdSSB和对同步信号和物理层广播信道块的参考信号接收功率阈值RSRP-ThresholdSSB。步骤503,判断是否满足第一阈值条件。
需要说明的是,第一阈值条件为存在至少一个SSB的SS-RSRP大于msgA-RSRP-ThresholdSSB。
具体地说,若是,执行步骤504,若否,执行步骤505。
步骤504,将任意一个满足第一阈值条件的SSB作为待配置的SSB。
步骤505,判断是否满足第二阈值条件。
需要说明的是,第二阈值条件为存在至少一个SSB的SS-RSRP大于RSRP-ThresholdSSB。
具体地说,若是,执行步骤506,若否,执行步骤507。
步骤506,将任意一个满足第二阈值条件的SSB作为待配置的SSB。
步骤507,将任意一个SSB作为待配置的SSB。
步骤508,根据待配置的SSB与RA-TYPE之间的关联信息确定待配置的SSB对应的待配置的RA-TYPE。
具体地说,本实施例中的步骤508与第一实施例中的步骤103大致相同,此处就不一一赘述。
步骤509,根据待配置的SSB和待配置的RA-TYPE完成随机接入信道的配置。
具体地说,本实施例中的步骤509与第一实施例中的步骤104大致相同,此处就不一一赘述。需要说明的是,在本实施例中,已指示2-stepRA的SSB关联的RA资源上的前导码资源,所配置的前导码资源均可用于2步RA,而不用遵循3GPP规定的配置所指示。此时在未指示2步RA的SSB关联的RA资源上的前导码资源,所配置的前导码资源均可用于4-stepRA,而不用遵循3GPP规定的配置所指示。
本实施例相对于现有技术而言,在第一实施例的基础上,由于省略了现有技术中获取第二RA-TYPE的步骤,先从所有的SSB中选择一个BSS作为待配置的SSB,再选择是将2步RA作为待配置的RA-TYPE还是将4步RA作为待配置的RA-TYPE,减少了确定初始的待配置RA-TYPE和相应的初始化操作,使得操作无重复、流程更加简单、时延更小。
本申请的第四实施例涉及一种随机接入信道的配置方法,本实施例与第一实施例大致相同,区别在于,如图6所示,在步骤104之前还包括:
步骤601,若待配置的RA-TYPE为4步RA,判断待配置的SSB的SS-RSRP是否大于预设的msgA的参考信号接收功率阈值msgA-RSRP-Threshold。
具体地说,若是,执行步骤602,若否,执行步骤603。
需要说明的是,在本实施例中,预设的msgA-RSRP-Threshold和第二实施例中提到的现 有技术中的msgA-RSRP-Threshold的具体数值不同,预设的msgA-RSRP-Threshold是人为地根据实际需求设定的数值,通过这个数值,将某些特殊的情况(满足待配置的SSB的SS-RSRP是否大于预设的msgA的参考信号接收功率阈值msgA-RSRP-Threshold)筛选出来,进行相应的操作。因此通过预设数值可以灵活地改变筛选条件,调整实际的执行结果。
步骤602,将待配置的RA-TYPE更新为2步RA。
步骤603,保持待配置的RA-TYPE不变。
具体地说,在本实施例中,在已经确定了待配置的RA-TYPE为4步RA时,SSB的配置结果对应的SS-RSRP大于预设的msgA的参考信号接收功率阈值msgA-RSRP-Threshold,待配置的RA-TYPE会由4步RA更新为2步RA,其他情况不会更新。因此,本实施例的结果实际上是将部分RA-TYPE选定为配置4步RA的SSB更新为配置2步RA。
需要说明的是,在已指示2-stepRA的SSB关联的RA资源上的前导码资源,所配置的前导码资源均可用于2-stepRA,而不用遵循3GPP规定的配置所指示。此时在未指示2-stepRA的SSB关联的RA资源上的前导码资源,按照3GPP协议规定的配置指示。
本实施例相对于现有技术而言,在第一实施例的基础上,能够采用预设的msgA-RSRP-Threshold进一步将部分选定4步RA作为待配置的RA-TYPE更新为将2步RA作为待配置的RA-TYPE,使得时延进一步减小,且能够灵活调整更新所覆盖用户设备的范围。
为了使本领域技术人员能够更清楚地理解以上本申请第一至四实施例公开的随机接入信道的配置方法,本申请第五实施例以如图7所示的波束分配的角度对上述实施例进行说明。
在需要解决远场用户设备因为不满足硬件的限制条件导致2步RA失败的问题时,如图7所示,该小区共有24个窄波束,系统根据自身的2步RA的缓存能力,可计算得到一个最大的实现约束距离,可以采用公式:
Figure PCTCN2021127620-appb-000001
计算最大的实现约束距离,其中,TA为提前定时量,反映了缓存能力限制,c为光速。
当多个用户设备同时接入时,msgA-PUSCH解调性能允许的最大TA差,同样可计算的到波束最大的覆盖距离。
由于最大的实现约束距离涵盖第一、二层波束,但未全部涵盖第三层波束,因此,第三岑波束上会出现由于不满足硬件的限制条件导致的接入失败。此时,基站侧可通过配置信令,实现外层波束的UE不进行2步RA接入:
位图信令为:11111111111111110000000或者掩码信令为:5。
在此信令配置下,根据实施例一、二三,可实现波束0~15上实现2步RA,在波束15~23上实现4步RA。根据实施例四,可实现波束0~15上实现2步RA,在波束15~23上实现通过预设的RSRP阈值区分2-stepRA和4-stepRA。
在需要根据自身的业务类型和需求选择RA-TYPE时,如图7所示的宽窄波束共覆盖的场景:在相同覆盖区域内,有1层、2层或n层(n>2)波束,以2层波束为例。在图7的第一、二层波束覆盖上,另有一层宽波束,分别为窄波束(0,1)合成宽波束24,窄波束(2,3)合成宽波束25,窄波束(4,5)合成宽波束25,窄波束(5,7)合成宽波束27,窄波束(8,9)合成宽波束28,窄波束(10,11)合成宽波束29,窄波束(12,13)合成宽波束30,窄波束(14,15)合成宽波束31。
此时,基站侧可通过配置信令,实现宽窄波束不同接入方式区分,如宽波束进行2-stepRA接入,窄波束进行4-stepRA接入:
通过如下方式配置信令:位图信令可设为0000000000000000000000011111111或者掩码信令可设为7。
在上述信令配置下,4-stepRA或2-stepRA可供该共覆盖区域中的用户设备选择,在共覆盖区域的用户设备,基于所需传输的数据业务的传输特点,如大小或传输时延要求等,根据实施例一二三通过选择SSB来进一步选择RA-TYPE。在宽波束上进行2-step RA,提高接入速度减少时延,在窄波束上进行4-stepRA,以增强覆盖。
此外,应当理解的是,上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请第六实施例涉及一种随机接入信道的配置装置,如图8所示,包括:接收模块801、选择模块802、配置模块803。
接收模块801用于接收无线资源管理RRC消息,其中,RRC消息携带SSB与随机接入类型RA-TYPE的关联信息,RA-TYPE包括2步随机接入RA和4步RA。
选择模块802,用于确定待配置的SSB,根据待配置的SSB与RA-TYPE之间的关联信息确定待配置的RA-TYPE。
配置模块803,用于根据由选择模块确定的待配置的SSB和待配置的RA-TYPE完成随机接入信道的配置。
不难发现,本实施例为与第一实施例相对应的装置实施例,本实施例可与第一实施例互相配合实施。第一实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在第一实施例中。
值得一提的是,本实施例中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施例中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
本申请的第八实施例涉及一种电子设备,如图9所示,包括:至少一个处理器901;以及,与至少一个处理器901通信连接的存储器902;其中,存储器902存储有可被至少一个处理器901执行的指令,指令被至少一个处理器901执行,以使至少一个处理器901能够执行上述任一方法实施例所描述的随机接入信道的配置方法。
其中,存储器902和处理器901采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器901和存储器902的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器901处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传输给处理器901。
处理器901负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器902可以被用于存储处理器901在执行操作时所使用的数据。
本申请第九实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种随机接入信道的配置方法,包括:
    接收无线资源管理RRC消息,其中,所述RRC消息携带SSB与随机接入类型RA-TYPE之间的关联信息,所述RA-TYPE包括2步随机接入RA和4步RA;
    确定待配置的SSB;
    根据所述待配置的SSB与RA-TYPE之间的所述关联信息确定待配置的RA-TYPE;根据所述待配置的SSB和所述待配置的RA-TYPE完成随机接入信道的配置。
  2. 根据权利要求1所述的方法,其中,所述确定待配置的SSB,包括:
    获取msgA对同步信号和物理层广播信道块的参考信号接收功率阈值msgA-RSRP-ThresholdSSB和对同步信号和物理层广播信道块的参考信号接收功率阈值RSRP-ThresholdSSB;
    根据第一阈值条件和第二阈值条件确定所述待配置的SSB,其中,所述第一阈值条件为存在至少一个所述SSB的SS-RSRP大于所述msgA-RSRP-ThresholdSSB,所述第二阈值条件为存在至少一个所述SSB的所述SS-RSRP大于所述RSRP-ThresholdSSB。
  3. 根据权利要求2所述的方法,其中,所述RRC消息还携带msgA的参考信号接收功率阈值msgA-RSRP-Threshold,获取所述SSB的配置结果之前,根据所述msgA-RSRP-Threshold确定初始的RA-TYPE,所述根据第一阈值条件和第二阈值条件确定所述待配置的SSB,包括:
    检测所述初始的RA-TYPE是否为2步RA;
    若是,将所述第一阈值条件作为所述阈值条件;
    若否,将所述第二阈值条件作为所述阈值条件;
    判断是否满足所述阈值条件;
    若是,将任意一个满足所述阈值条件的所述SSB确定为所述待配置的SSB;
    若否,任意一个所述SSB确定为所述待配置的SSB;
    所述根据所述待配置的SSB与RA-TYPE之间的所述关联信息确定待配置的RA-TYPE之后,所述根据所述待配置的SSB和所述待配置的RA-TYPE完成随机接入信道的配置之前,还包括:
    检测所述初始的RA-TYPE与所述待配置的RA-TYPE是否相同;
    若否,将所述初始的RA-TYPE更改为所述待配置的RA-TYPE。
  4. 根据权利要求2所述的方法,其中,所述根据第一阈值条件和第二阈值条件确定所述 待配置的SSB,包括:
    判断是否满足所述第一阈值条件;
    若满足所述第一阈值条件,将任意一个满足所述第一阈值条件的所述SSB确定为所述待配置的SSB;
    若不满足所述第一阈值条件,判断是否满足所述第二阈值条件;
    若满足所述第二阈值条件,将任意一个满足所述第二阈值条件的所述SSB确定为所述待配置的SSB;
    若不满足所述第二阈值条件,将任意一个所述SSB确定为所述待配置的SSB。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述根据所述待配置的SSB和所述待配置的RA-TYPE完成随机接入信道的配置之前,所述根据所述关联信息和所述待配置的SSB确定待配置的RA-TYPE之后,还包括:
    若所述待配置的RA-TYPE为4步RA,判断所述待配置的SSB的所述SS-RSRP是否大于预设的msgA的参考信号接收功率阈值msgA-RSRP-Threshold;
    若是,将所述待配置的RA-TYPE更新为所述2步RA。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述关联信息以位图的形式表示,其中,所述位图的长度为所述SSB的个数,所述位图的每个比特位都分别对应一个所述SSB,所述比特位的数值指示所述SSB对应的所述RA-TYPE为所述2步RA还是4步RA。
  7. 根据权利要求1至6中任一项所述的方法,其中,所述关联关系通过掩码进行指示,其中,所述掩码的长度为所述SSB的个数,一个所述掩码对应一种预先设置的关联关系,所述关联关系是所述SSB与所述RA-TYPE的映射关系。
  8. 一种随机接入信道的配置装置,包括:
    接收模块,用于接收无线资源管理RRC消息,其中,所述RRC消息携带SSB与随机接入类型RA-TYPE的关联信息,所述RA-TYPE包括2步随机接入RA和4步RA;
    选择模块,用于确定待配置的SSB,根据所述待配置的SSB与RA-TYPE之间的所述关联信息确定待配置的RA-TYPE;
    配置模块,用于根据由所述选择模块确定的所述待配置的SSB和所述待配置的RA-TYPE完成随机接入信道的配置。
  9. 一种电子设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理 器执行,以使所述至少一个处理器能够执行如权利要求1至7中任意一项所述随机接入信道的配置方法。
  10. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的随机接入信道的配置方法。
PCT/CN2021/127620 2020-12-09 2021-10-29 随机接入信道的配置方法、装置、电子设备和存储介质 WO2022121553A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011449002.0 2020-12-09
CN202011449002.0A CN114615709A (zh) 2020-12-09 2020-12-09 随机接入信道的配置方法、装置、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2022121553A1 true WO2022121553A1 (zh) 2022-06-16

Family

ID=81857045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127620 WO2022121553A1 (zh) 2020-12-09 2021-10-29 随机接入信道的配置方法、装置、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN114615709A (zh)
WO (1) WO2022121553A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200107369A1 (en) * 2018-09-27 2020-04-02 Hyoungsuk Jeon RACH Type Switching
CN111278157A (zh) * 2019-01-25 2020-06-12 维沃移动通信有限公司 随机接入资源的选择方法及终端
CN111836395A (zh) * 2019-08-06 2020-10-27 维沃移动通信有限公司 随机接入方法、配置方法、终端及网络侧设备
CN111867123A (zh) * 2019-04-26 2020-10-30 华为技术有限公司 随机接入方法和通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200107369A1 (en) * 2018-09-27 2020-04-02 Hyoungsuk Jeon RACH Type Switching
CN111278157A (zh) * 2019-01-25 2020-06-12 维沃移动通信有限公司 随机接入资源的选择方法及终端
CN111867123A (zh) * 2019-04-26 2020-10-30 华为技术有限公司 随机接入方法和通信装置
CN111836395A (zh) * 2019-08-06 2020-10-27 维沃移动通信有限公司 随机接入方法、配置方法、终端及网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION, SANECHIPS: "Introduction of 2-step RACH in 38.321", 3GPP DRAFT; R2-2002413, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. e-meeting; 20200224 - 20200306, 12 March 2020 (2020-03-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051866236 *

Also Published As

Publication number Publication date
CN114615709A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
EP4017202A1 (en) Communication method, communication apparatus, computer storage medium and communication system
KR101781013B1 (ko) 무선 통신 방법, 장치, 및 시스템
EP4203368A1 (en) Data transmission method and device, communication node, and storage medium
US20230299918A1 (en) Method for monitoring control channels and determining transmission configuration indication, and terminal
WO2019029341A1 (zh) 随机接入方法、网络侧设备和移动通信终端
WO2021073329A1 (zh) 一种抑制小区同频干扰的方法、基站及系统
US20230018421A1 (en) System and method for power headroom reporting
CN113055933B (zh) 小区接入方法、用户设备和基站
US20190215850A1 (en) Resource scheduling method and apparatus for logical channel
WO2019095807A1 (zh) 一种功率控制方法、装置、设备及计算机可读存储介质
US20230421318A1 (en) Uplink transmission method and apparatus, and terminal
US20230116823A1 (en) Information synchronization method and apparatus, electronic device, and computer readable storage medium
US10257827B2 (en) Method for configuring frame structure, user equipment and network equipment
WO2022121553A1 (zh) 随机接入信道的配置方法、装置、电子设备和存储介质
WO2019195958A1 (en) Dynamic maximum data burst volume enforcement in user equipment
CN112243296B (zh) 辅小区激活方法及装置
US20230071462A1 (en) Control information communication method and device
US20200413328A1 (en) Information processing method, network device, terminal device
WO2017041501A1 (zh) 一种超级小区生成方法、拆分方法、生成装置、拆分装置、通信系统和计算机可读存储介质
CN114301579B (zh) 一种重复传输的激活方法、终端和网络侧设备
WO2021208803A1 (zh) 资源管理方法、装置、服务器及存储介质
CN112543462B (zh) 一种优先级定义方法和终端
WO2023221805A1 (zh) 通信方法、基站侧设备、网络设备和存储介质
EP4380213A1 (en) Communication method and communication apparatus
CN112512106B (zh) 一种上行功率分配方法、装置、终端设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 02/11/2023 )