WO2022121411A1 - 空调系统 - Google Patents

空调系统 Download PDF

Info

Publication number
WO2022121411A1
WO2022121411A1 PCT/CN2021/117576 CN2021117576W WO2022121411A1 WO 2022121411 A1 WO2022121411 A1 WO 2022121411A1 CN 2021117576 W CN2021117576 W CN 2021117576W WO 2022121411 A1 WO2022121411 A1 WO 2022121411A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
conditioning system
bus
air
indoor units
Prior art date
Application number
PCT/CN2021/117576
Other languages
English (en)
French (fr)
Inventor
梅利军
孙良伟
吴田
李文辉
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Publication of WO2022121411A1 publication Critical patent/WO2022121411A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present application relates to the technical field of air-conditioning communication, and in particular, to an air-conditioning system.
  • the existing network architecture is characterized by a multi-layer architecture and network. There are multiple buses in a system. For a site with a complex network architecture, due to the existence of multiple buses, the requirements for market installation and maintenance personnel are higher, resulting in large of human waste.
  • the outdoor unit 110' of the air conditioner, the indoor unit 120' of the air conditioner, the switching device 130', the centralized controller 140', and the wired controller 150' are connected by multiple buses.
  • the specific connection relationship is shown in FIG. 1. As can be seen from Figure 1, due to the large number of buses, it is difficult for installation and maintenance personnel to punch and wire, resulting in an increase in labor costs.
  • the present application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • one aspect of the present application is to provide an air conditioning system.
  • the present application provides an air conditioning system, comprising: at least one air conditioner outdoor unit; a plurality of air conditioner indoor units; The output refrigerant is distributed to one or more air conditioner indoor units; the centralized controller, wherein at least one air conditioner outdoor unit, a plurality of air conditioner indoor units, the switching device and the centralized controller are connected through a bus.
  • the air conditioning system provided by the present application includes at least one air conditioner outdoor unit, a plurality of air conditioner indoor units, a switching device and a centralized controller.
  • the outdoor unit of the air conditioner is used to output the refrigerant to the indoor unit of the air conditioner
  • the switching device is used to distribute the refrigerant output from at least one outdoor unit of the air conditioner to one or more indoor units of the air conditioner.
  • the refrigerant of the air conditioner is distributed to one indoor unit of the air conditioner, and the refrigerant of multiple outdoor units of the air conditioner can also be distributed to the indoor units of the air conditioner through the switching device.
  • the refrigerant of one outdoor unit of the air conditioner can be distributed to multiple indoor units.
  • the air conditioning system in the present application further includes a centralized controller, and connects at least one air conditioner outdoor unit, a plurality of air conditioner indoor units, the switching device and the centralized controller through a bus, so that there is at least one air conditioner outdoor unit on the bus , All data of multiple air conditioner indoor units, switching devices and centralized controllers.
  • one bus is set, and all devices are connected to one bus, which makes the communication structure simpler, and there are no other buses. It is easier for market installation and maintenance personnel to understand, and the installation and maintenance efficiency will be higher.
  • the devices on the same bus can realize any topology wiring such as star, tree, ring, etc., which is convenient for the installation personnel to operate, saves the workload of the installation personnel, and avoids unnecessary installation time.
  • the workload of the installation staff is reduced, thereby reducing the installation cost, thereby reducing the cost of the air-conditioning system, and improving the market competitiveness of the air-conditioning system.
  • the air-conditioning system provided according to the above technical solutions of the present application also has the following additional technical features:
  • the air-conditioning system further includes: a first-type wired controller, where the first-type wired controller is connected to the bus and used to control the operation mode of one or more indoor units of the air conditioner.
  • the air conditioning system also includes the first type of wired controller.
  • the first type of wired controller is used to control the operation mode of one or more indoor units of the air conditioner.
  • the first type of wired controller controls the operation mode of one indoor unit of the air conditioner, thereby realizing a one-control-one operation mode.
  • the first type of wired controller can also control the operation modes of multiple indoor units of the air conditioner, so as to realize one control and multiple operation modes.
  • the first type of wired controller is connected to the bus, so as to realize the control of the indoor unit of the air conditioner, and at the same time, the bus also has the data of the first type of wired controller.
  • the first type of wired controller when used to control the operation mode of an indoor unit of an air conditioner, that is, one control and one mode, since the number of one control and one mode is relatively large, the number of nodes will be relatively large.
  • the mode is separately connected to the air conditioner internal unit that needs to be controlled, and is not connected to the bus, so as to realize the rational arrangement of the bus.
  • the first type of wired controller is used to control the operation mode of multiple indoor units of air conditioners
  • the first type of wired controller is connected to the bus. Since the bus has all the data, the one-control multi-mode can be connected from any position. In this way, the first type of wired controller can select any indoor unit of the air conditioner that you want to control on the man-machine interface. Since one control and multiple modes can be accessed at any node of the bus, there is no need to take a separate bus, the installation cost is lower, the installation cost of the air conditioning system is reduced, and the market competitiveness of the air conditioning system is improved.
  • the air-conditioning system further includes: a plurality of second-type wired controllers, the plurality of second-type wired controllers are connected to a plurality of air conditioner indoor units in one-to-one correspondence, and any second-type wired controller is used for It is used to control the operation mode of the indoor unit of the air conditioner connected to it.
  • the air-conditioning system also includes a second type of wired controller, wherein the number of the second type of wired controller is multiple, and the plurality of second type of wired controller is connected to a plurality of indoor units of the air conditioner one by one. Correspondingly connected, so that each indoor unit of the air conditioner has a second-type wired controller that independently controls its operation mode, so as to avoid interference between the second-type wired controllers and ensure that each second-type wired controller Can work alone.
  • the second type of wired controller is used to control the operation mode of the indoor unit of the air conditioner, so as to realize multiple control and multiple operation modes.
  • the second type of wired controller is connected to the bus.
  • the second type of wired controller can be accessed from any position on the bus when implementing multi-control and multi-mode, which is convenient for operation, thereby realizing With the second type of wired controller, you can select any indoor unit of the air conditioner you want to control on the man-machine interface. Since the multi-control and multi-mode can be connected at any node of the bus, there is no need to set up another bus, the installation cost is lower, the installation cost of the air-conditioning system is reduced, and the market competitiveness of the air-conditioning system is improved.
  • the operation mode includes any one of the following modes: cooling mode, heating mode, dehumidification mode, and air supply mode.
  • the operating modes are specifically defined.
  • the operation mode includes any one of cooling mode, heating mode, dehumidification mode, and air supply mode.
  • the first type of wired controller or a plurality of second type of wired controllers can control different operation modes of the indoor unit of the air conditioner.
  • the first type of wired controller can control one or more indoor units of air conditioners to operate any one of cooling mode, heating mode, dehumidification mode, and air supply mode
  • multiple second-type wired controllers can control multiple indoor air conditioners
  • the indoor unit can operate in any one of cooling mode, heating mode, dehumidification mode and air supply mode.
  • the air conditioning system further includes: at least one non-air conditioner electrical device, at least one non-air conditioner electrical device and at least one air conditioner outdoor unit, a plurality of air conditioner indoor units, a switching device, and a centralized control devices share a single bus.
  • the air-conditioning system also includes non-air-conditioning electrical equipment.
  • the number of non-air conditioner electrical devices is at least one, which is also connected to the bus, so that there is at least one non-air conditioner electrical device on the bus and at least one air conditioner outdoor unit, multiple air conditioner indoor units, switching All data of the device and centralized controller, so that at least one non-air-conditioned electrical equipment can be accessed from any location, and the operation is simple and convenient.
  • the air conditioning system can control not only the outdoor unit of the air conditioner and the indoor unit of the air conditioner, but also the electrical equipment that is not an air conditioner.
  • the air-conditioning system realizes the control of a variety of different electrical equipment, realizes the intelligentization of the air-conditioning system, facilitates the user's life, and reduces the control devices of other equipment and saves costs.
  • the at least one non-air conditioner electrical device includes one or more of the following electrical appliances: refrigerators, lamps, televisions, washing machines, and water heaters.
  • the category of at least one non-air conditioner electrical device is specifically defined.
  • the at least one non-air conditioner electrical device may include one or more of refrigerators, lamps, TVs, washing machines, and water heaters, so that the switching device and the centralized controller can also control the refrigerators, lamps, TVs, washing machines, and water heaters through the bus.
  • One or more of them to improve the user experience and diversify the control. That is to say, the user can control one or more of refrigerators, lamps, TVs, washing machines, and water heaters in addition to the air conditioner through the air conditioning system, so that the user can control multiple different household appliances through one air conditioning system.
  • the user experience is improved, and the cost increase or circuit complexity caused by multiple household appliances requiring different systems or different equipment control is avoided, so that the air conditioner and other different household appliances can be controlled by setting a bus, and These non-air conditioner electrical devices can be connected at any location without affecting the structure of the bus, which is not only convenient for users to install, but also saves manpower and costs.
  • the bus can be used to control refrigerators, lamps, TVs, washing machines, and water heaters at the same time, so that larger electrical equipment can pass through a bus to achieve intelligent and diversified control, which is convenient for users to operate, that is, Said, if a variety of electrical equipment are controlled independently, it is obviously necessary to install different control systems or controllers, and there may be interference or incompatibility between different control systems and controllers, and a bus control is used.
  • the air conditioner can also control a variety of electrical equipment at the same time, which saves unnecessary control systems or controllers, and solves the possible interference or incompatibility between different control systems and controllers. At the same time, it saves unnecessary wiring work for the installer and saves the user's use cost.
  • At least one air conditioner outdoor unit, a plurality of air conditioner indoor units, the switching device and the centralized controller are connected in a star configuration.
  • connection mode of at least one air conditioner outdoor unit, a plurality of air conditioner indoor units, the switching device and the centralized controller is specifically defined.
  • at least one air conditioner outdoor unit, a plurality of air conditioner indoor units, a switching device, and a centralized controller are connected in a star-shaped manner, so that the multiple air conditioner indoor units, the switching device, and the centralized controller are all connected to the at least one air conditioner. Therefore, if a single connection fails, it will only affect the operation of one device or even the system. For example, when the connection between the centralized control device and the outdoor unit fails, other equipment will not be affected by the failure because there is no connection between the two, nor will it affect the operation of the entire air conditioning system.
  • the connection between the centralized control device and the outdoor unit fails, and the rest of the connection lines are still running normally. Only because of the failure of the centralized control device, there is a problem in the communication with the outdoor unit, so that the star connection can be used to easily determine the fault. The location is convenient for maintenance by staff and reduces troubleshooting time.
  • At least one air conditioner outdoor unit, a plurality of air conditioner indoor units, the switching device and the centralized controller are connected in a tree shape.
  • connection mode of at least one air conditioner outdoor unit, a plurality of air conditioner indoor units, the switching device and the centralized controller is specifically defined.
  • at least one air conditioner outdoor unit, a plurality of air conditioner indoor units, the switching device and the centralized controller are connected in a tree-like manner.
  • the tree connection can contain branches, each branch can contain multiple nodes, the distribution is flexible, and the adaptability is wider. This reduces installation costs.
  • At least one air conditioner outdoor unit, a plurality of air conditioner indoor units, the switching device and the centralized controller are connected in a ring shape.
  • connection manner of at least one air conditioner outdoor unit, a plurality of air conditioner indoor units, the switching device and the centralized controller is specifically defined.
  • at least one air conditioner outdoor unit, a plurality of air conditioner indoor units, the switching device and the centralized controller are connected in a ring-shaped manner, so that even if the ring is broken at one point, the air-conditioning system can still operate normally and will not be affected by Influence, meet some high requirements such as the computer room and cannot be shut down.
  • the ring connection has good practicability, and the bus length is short, which is beneficial to saving wiring costs, and the network performance is stable.
  • connection methods can meet almost any scene and arrangement in the market, and market installers can make arbitrary wiring according to the distribution of equipment, which reduces installation costs and requirements.
  • the specific installation method can be adaptively adjusted according to the actual scene and layout requirements.
  • the bus includes any one of the following buses: CAN bus, 485 bus.
  • bus includes one of CAN bus and 485 bus.
  • CAN (Controller Area Network) bus has the advantages of high communication rate, short development cycle, easy implementation, and high cost performance.
  • the data communication between each node of the network formed by CAN bus has strong real-time performance and improves the reliability of the system. and system flexibility.
  • the 485 bus adopts balanced transmission and differential reception, so it has the ability to suppress common mode interference, and at the same time, it has high sensitivity and can detect low voltage, so the transmission signal can be recovered from kilometers away.
  • the 485 bus is very convenient when interconnecting multiple points. A lot of signal lines can be saved, and the 458 bus can be used in the bus application of the air conditioning system in a larger venue.
  • FIG. 1 shows a schematic diagram of a bus arrangement of an air-conditioning system in the related art
  • FIG. 2 shows a schematic diagram of the bus arrangement of the air conditioning system according to the first embodiment of the present application
  • FIG. 3 shows a schematic diagram of the bus arrangement of the air conditioning system according to the second embodiment of the present application
  • FIG. 4 shows a schematic diagram of the bus arrangement of the air conditioning system according to the third embodiment of the present application.
  • FIG. 5 shows a schematic diagram of the bus arrangement of the air conditioning system according to the fifth embodiment of the present application.
  • FIG. 6 shows a schematic diagram of the bus arrangement of the air conditioning system according to the sixth embodiment of the present application.
  • FIG. 7 shows a schematic diagram of the bus arrangement of the air conditioning system according to the seventh embodiment of the present application.
  • 100 air conditioning system 110 air conditioner outdoor unit, 120 air conditioner indoor unit, 130 switching device, 140 centralized controller, 150 first type wired controller, 160 second type wired controller, 170 non-air conditioner electrical equipment.
  • the present application provides an air-conditioning system 100, comprising: at least one air conditioner outdoor unit 110; a plurality of air conditioner indoor units 120; and a switching device 130, where the switching device 130 is used for Distribute the refrigerant output from at least one air conditioner outdoor unit 110 to one or more air conditioner indoor units 120; the centralized controller 140, wherein at least one air conditioner outdoor unit 110, a plurality of air conditioner indoor units 120, a switching device 130 and The centralized controller 140 is connected by a bus.
  • the air conditioning system 100 includes at least one air conditioner outdoor unit 110 , a plurality of air conditioner indoor units 120 , a switching device 130 , and a centralized controller 140 .
  • the outdoor unit of the air conditioner is used to output the refrigerant to the indoor unit 120 of the air conditioner
  • the switching device 130 is used to distribute the refrigerant output from at least one outdoor unit of the air conditioner to one or more indoor units 120 of the air conditioner.
  • the refrigerant of one air conditioner outdoor unit 110 is distributed to one air conditioner indoor unit 120, and the refrigerant of multiple air conditioner outdoor units 110 can also be distributed to multiple air conditioner indoor units 120 through the switching device 130.
  • the switching device 130 can The refrigerant of one air conditioner outdoor unit 110 is distributed to a plurality of air conditioner indoor units 120 .
  • the air conditioning system 100 in the present application further includes a centralized controller 140, and connects at least one air conditioner outdoor unit 110, a plurality of air conditioner indoor units 120, the switching device 130 and the centralized controller 140 through a bus, so that there are All data of at least one air conditioner outdoor unit 110 , a plurality of air conditioner indoor units 120 , switching device 130 and centralized controller 140 .
  • one bus is set, and all devices are connected to one bus, which makes the communication structure simpler, and there are no other buses.
  • the installation and maintenance efficiency will be higher. Since all devices are connected to one bus, the data of all devices are transmitted through the bus, so that the bus has data of all devices, that is, all data, so when installing the centralized controller 140, the installer can choose convenient. At the same time, the devices on the same bus can realize any topology wiring such as star, tree, ring, etc., which is convenient for the installation personnel to operate, saves the workload of the installation personnel, and avoids unnecessary installation time. At the same time, since there is only one bus, the workload of the installation staff is reduced, thereby reducing the installation cost, thereby reducing the cost of the air conditioning system 100 and improving the market competitiveness of the air conditioning system 100 . And because there is only one bus, the number of serial ports to the main MCU (Micro Control Unit, also known as single-chip microcomputer or single-chip microcomputer) is reduced.
  • MCU Micro Control Unit
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the air conditioning system 100 further includes: a first-type wired controller 150, which is connected to the bus and used to control one or more air conditioner indoor units 120 operating modes.
  • the air conditioning system 100 further includes the first type of wired controller 150 .
  • the first type wired controller 150 is used to control the operation mode of one or more air conditioner indoor units 120.
  • the first type wired controller 150 controls the operation mode of one air conditioner indoor unit 120, so as to realize a one-control-one operation mode .
  • the first type of wired controller 150 can also control the operation modes of multiple air conditioner indoor units 120, so as to realize one-control multiple operation modes.
  • the first-type wired controller 150 is connected to the bus, so as to control the indoor unit 120 of the air conditioner, and the bus also has data of the first-type wired controller 150.
  • the first type of wired controller 150 when the first type of wired controller 150 is used to control the operation mode of an indoor unit 120 of an air conditioner, that is, when one control mode is used, since the number of one control mode is relatively large, the number of nodes will be relatively large.
  • One-control-one mode is independently connected to the internal unit of the air conditioner that needs to be controlled, and is not connected to the bus, so as to realize the rational arrangement of the bus.
  • the first type wired controller 150 is used to control the operation modes of multiple air conditioner indoor units 120
  • the first type wired controller 150 is connected to the bus. Since the bus has all data, the one-control multi-mode can be controlled from Access at any location enables the first type of wired controller 150 to select any desired air conditioner indoor unit 120 on the man-machine interface. Since one control and multiple modes can be accessed at any node of the bus, there is no need to take a separate bus, the installation cost is lower, the installation cost of the air conditioning system 100 is reduced, and the market competitiveness of the air conditioning system 100
  • the air conditioning system 100 further includes: a plurality of second-type wired controllers 160 , and the second-type wired controllers 160 are in one-to-one correspondence with the plurality of air conditioner indoor units 120 connected, any second type of wired controller 160 is used to control the operation mode of the indoor unit 120 of the air conditioner connected to it.
  • the air conditioning system 100 further includes the second type wired controller 160, wherein the number of the second type wired controller 160 is multiple, and the plurality of second type wired controllers 160 are connected to the plurality of air conditioners.
  • the indoor units 120 of the air conditioner are connected in one-to-one correspondence, so that each indoor unit 120 of the air conditioner has a second-type wired controller 160 that independently controls its operation mode, so as to avoid interference between the second-type wired controllers 160 and ensure that the Each second-type wired controller 160 can work normally independently.
  • the second type of wired controller 160 is used to control the operation mode of the indoor unit 120 of the air conditioner, so as to realize multiple control and multiple operation modes.
  • the second type of wired controller 160 is connected to the bus.
  • the second type of wired controller 160 can be accessed from any position on the bus when implementing multi-control and multi-mode, which is convenient for operation. Thus, it is realized that the second type of wired controller 160 can select any desired indoor unit 120 of the air conditioner on the man-machine interface. Since the multi-control and multi-mode can be connected at any node of the bus, there is no need to set up another bus, the installation cost is lower, the installation cost of the air conditioning system 100 is reduced, and the market competitiveness of the air conditioning system 100 is improved.
  • the operation mode includes any one of the following modes: cooling mode, heating mode, dehumidification mode, and air supply mode.
  • the operating mode is specifically defined. Specifically, the operation mode includes any one of cooling mode, heating mode, dehumidification mode, and air supply mode.
  • the first-type wired controller 150 or a plurality of second-type wired controllers 160 control different operation modes of the indoor unit 120 of the air conditioner.
  • the first type of wired controller 150 can control one or more indoor units 120 of the air conditioner to operate any one of cooling mode, heating mode, dehumidification mode, and air supply mode
  • multiple second-type wired controllers 160 can control multiple The indoor unit of the room air conditioner operates in any one of cooling mode, heating mode, dehumidification mode and air supply mode.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the air conditioning system 100 further includes: at least one non-air conditioner electrical device 170 , at least one non-air conditioner electrical device 170 and at least one air conditioner outdoor unit 110 , multiple Each air conditioner indoor unit 120, the switching device 130 and the centralized controller 140 share one bus.
  • the air-conditioning system 100 further includes a non-air-conditioning electrical device 170 .
  • the number of non-air conditioner electrical devices 170 is at least one, which is also connected to the bus, so that there is at least one non-air conditioner electrical device 170 and at least one air conditioner outdoor unit 110 and a plurality of air conditioner indoor units on the bus. All the data of the machine 120, the switching device 130 and the centralized controller 140 can be accessed, so that at least one non-air-conditioned electrical device can be accessed from any location, and the operation is simple and convenient.
  • the air conditioning system 100 can control not only the outdoor unit 110 of the air conditioner and the indoor unit 120 of the air conditioner, but also the electrical equipment 170 other than the air conditioner, which is convenient for controlling the air conditioner through the air conditioning system 100.
  • the control of the electric equipment 170 of the air conditioner is to improve the user's experience.
  • the air conditioning system 100 realizes the control of a variety of different electric equipment, realizes the intelligentization of the air conditioning system 100, facilitates the user's life, and reduces other equipment at the same time.
  • the control device saves the cost.
  • the at least one non-air conditioner electrical device 170 includes one or more of the following electrical appliances: refrigerators, lamps, televisions, washing machines, and water heaters.
  • At least one non-air conditioner electrical device 170 may include one or more of refrigerators, lamps, TVs, washing machines, and water heaters, so that the switching device 130 and the centralized controller 140 can also control the refrigerators, lamps, TVs, One or more of washing machines and water heaters to improve user experience and diversify control. That is, the user can control one or more of refrigerators, lamps, TVs, washing machines, and water heaters in addition to the air conditioner through the air conditioning system 100 , so that the user can control multiple different households through one air conditioning system 100 .
  • Electric appliances improve the user experience, avoid the cost increase caused by multiple household appliances requiring different systems or different equipment control, or cause the complexity of the circuit, so that the air conditioner and other different household appliances can be controlled by setting a bus , and these non-air conditioner electrical devices 170 can be connected at any position without affecting the structure of the bus, which is not only convenient for users to install, but also saves manpower and costs.
  • a bus can be used to control refrigerators, lamps, TVs, washing machines, and water heaters at the same time, so that larger electrical equipment can all pass through a single bus to realize intelligent and diversified control, which is convenient for users to operate, and also That is to say, if a variety of electrical equipment are controlled independently, it is obviously necessary to install different control systems or controllers, and there may be interference or incompatibility between different control systems and controllers, and a bus is used. While controlling the air conditioner, it can also control a variety of electrical equipment, which saves unnecessary control systems or controllers, solves the phenomenon of interference or incompatibility between different control systems and controllers, and is convenient for users to operate. At the same time, it saves unnecessary wiring work for the installer, and saves the user's use cost.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • At least one air conditioner outdoor unit 110 , a plurality of air conditioner indoor units 120 , the switching device 130 , and the centralized controller 140 are connected in a star shape.
  • connection manner of at least one air conditioner outdoor unit 110 , a plurality of air conditioner indoor units 120 , the switching device 130 and the centralized controller 140 is specifically defined.
  • at least one air conditioner outdoor unit 110, a plurality of air conditioner indoor units 120, a switching device 130 and a centralized controller 140 are connected in a star-shaped manner, so that the plurality of air conditioner indoor units 120, the switching device 130 and the centralized control All the air conditioners 140 are connected to at least one air conditioner outdoor unit 110, therefore, if there is a fault in a single connection, it will only affect the operation of one device or even the system.
  • connection between the centralized control device and the outdoor unit fails, other devices will not be affected by the failure because there is no connection between the two, and will not affect the operation of the entire air conditioning system 100.
  • the control device fails, the connection between the centralized control device and the outdoor unit is faulty, and the remaining connection lines are still running normally. Only because of the failure of the centralized control device, there is a problem in the communication with the outdoor unit, so that the star connection can be easily judged.
  • the fault location is convenient for maintenance by staff and reduces troubleshooting time.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • At least one air conditioner outdoor unit 110, a plurality of air conditioner indoor units 120, the switching device 130, and the centralized controller 140 are connected in a tree shape.
  • connection manner of at least one air conditioner outdoor unit 110 , a plurality of air conditioner indoor units 120 , the switching device 130 and the centralized controller 140 is specifically defined.
  • at least one air conditioner outdoor unit 110, a plurality of air conditioner indoor units 120, the switching device 130, and the centralized controller 140 are connected in a tree-like manner.
  • the tree-like connection can include branches, each branch can include multiple nodes, the distribution is flexible, and the adaptability is wider. , thereby reducing installation costs.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • At least one air conditioner outdoor unit 110 , a plurality of air conditioner indoor units 120 , the switching device 130 , and the centralized controller 140 are connected in a ring shape.
  • the connection manner of at least one air conditioner outdoor unit 110 , a plurality of air conditioner indoor units 120 , the switching device 130 and the centralized controller 140 is specifically defined.
  • at least one air conditioner outdoor unit 110 , a plurality of air conditioner indoor units 120 , the switching device 130 and the centralized controller 140 are connected in a ring-shaped manner, so that even if the ring is broken at one point, the air-conditioning system 100 can still operate normally. The operation will not be affected, and it can meet some high requirements such as the computer room and cannot be shut down.
  • the ring connection has good practicability, and the bus length is short, which is beneficial to saving wiring costs, and the network performance is stable.
  • connection methods can meet almost any scene and arrangement in the market, and market installers can make arbitrary wiring according to the distribution of equipment, which reduces installation costs and requirements.
  • the specific installation method can be adaptively adjusted according to the actual scene and layout requirements.
  • the bus includes any one of the following buses: CAN bus, 485 bus.
  • the type of bus is specifically defined, and the bus includes one of CAN bus and 485 bus.
  • CAN (Controller Area Network) bus has the advantages of high communication rate, short development cycle, easy implementation, and high cost performance.
  • the data communication between each node of the network formed by CAN bus has strong real-time performance and improves the reliability of the system. and system flexibility.
  • the 485 bus adopts balanced transmission and differential reception, so it has the ability to suppress common mode interference, and at the same time, it has high sensitivity and can detect low voltage, so the transmission signal can be recovered from kilometers away.
  • the 485 bus is very convenient when interconnecting multiple points. Many signal lines can be saved, and 458 bus can be used in the 100 bus application of the air conditioning system in a larger venue.
  • the term “plurality” refers to two or more than two, unless otherwise expressly defined, the orientation or positional relationship indicated by the terms “upper”, “lower” etc. is based on what is shown in the accompanying drawings The orientation or positional relationship is only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation on the application;
  • the terms “connected”, “installed”, “fixed”, etc. should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected, or through the middle media are indirectly connected.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected, or through the middle media are indirectly connected.
  • description of the terms “one embodiment,” “some embodiments,” “a specific embodiment,” etc. means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in this application at least one embodiment or example of .
  • schematic representations of the above terms do not necessarily refer to the same embodiment or instance.
  • the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调系统(100),包括至少一个空调器室外机(110),多个空调器室内机(120),切换装置(130),用于将至少一个空调器室外机(110)输出的冷媒分配至一个或多个空调器室内机(120),集中控制器(140),至少一个空调器室外机(110)、多个空调器室内机(120)、切换装置(130)和集中控制器(140)通过一条总线连接。该空调系统(100)使所有设备上的数据都通过总线进行传输,方便了安装人员操作,节约了安装人员的工作量,从而降低了安装成本及空调系统(100)的成本,提高了市场竞争力。

Description

空调系统
本申请要求于2020年12月09日提交中国专利局、申请号为“202022929994.9”、申请名称为“空调系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调通讯技术领域,具体而言,涉及一种空调系统。
背景技术
现有的网络架构的特点是多层架构和网络,一个系统存在多条总线,当对与网络架构复杂的场地来讲,由于存在多条总线,对市场安装维护人员要求较高,造成较大的人工浪费。
相关技术中空调器室外机110’,空调器室内机120’,切换装置130’,集中控制器140’,线控器150’采用多条总线连接,其具体连接关系,如图1所示,由图1可知,由于总线较多,安装维护人员打孔布线困难,造成人工成本的上升。
申请内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的一个方面在于,提供了一种空调系统。
有鉴于此,根据本申请的一个方面,本申请提供了一种空调系统,包括:至少一个空调器室外机;多个空调器室内机;切换装置,切换装置用于将至少一个空调器室外机输出的冷媒分配至一个或多个空调器室内机;集中控制器,其中,至少一个空调器室外机、多个空调器室内机、切换装置和集中控制器通过一条总线连接。
本申请提供的空调系统包括至少一个空调器室外机、多个空调器室内机、切换装置和集中控制器。其中空调室外机用于将冷媒输出至空调器室内机,切换装置用于分配至少一个空调室外机输出的冷媒,分配至一个或 者多个空调器室内机,例如可以通过切换装置将一个空调器室外机的冷媒分配至一个空调器室内机,也可以通过切换装置将多个空调器室外机的冷媒分配至多个空调器室内机,同样的,切换装置可以将一个空调器室外机的冷媒分配至多个空调器室内机。本申请中的空调系统还包括集中控制器,并将至少一个空调器室外机、多个空调器室内机、切换装置和集中控制器通过一条总线连接,从而使得总线上具有至少一个空调器室外机、多个空调器室内机、切换装置和集中控制器的所有数据。与相关技术中采用多条总线相比,设置一条总线,所有设备都连接在一条总线上,使得通讯架构比较简单,不存在其他总线,市场安装维护人员更容易理解,安装维护效率会更高。由于所有设备都连接在一条总线上,所有设备上的数据都通过总线进行传输,从而使得总线上具备所有设备的数据,即全部的数据,所以安装人员在安装集中控制器时,可以选择方便安装的位置,同时同条总线上的设备可以实现星型、树型、环型等任意拓扑接线,方便了安装人员操作,节约了安装人员的工作量,避免了不必要的安装时间。同时由于只有一条总线,减少了安装工作人员的工作量,从而降低了安装成本,进而降低了空调系统的成本,提高了空调系统的市场竞争力。
另外,根据本申请上述技术方案提供的空调系统,还具有如下附加技术特征:
在一种可能的设计中,空调系统还包括:第一类线控器,第一类线控器与总线连接,用于控制一个或多个空调器室内机的运行模式。
在该设计中,具体限定了空调系统还包括第一类线控器。第一类线控器用于控制一个或多个空调器室内机的运行模式,例如第一类线控器控制一个空调器室内机的运行模式,从而实现一控一的运行模式。第一类线控器也可以控制多个空调器室内机的运行模式,从而实现一控多的运行模式。具体地,第一类线控器连接在总线上,从而实现对空调器室内机的控制,同时总线上也具有第一类线控器的数据。
在一个具体地应用中,采用第一类线控器控制一个空调器室内机的运行模式时,即一控一模式时,由于一控一模式数量比较大,节点会比较多,将一控一模式单独接到需要控制的空调器内机上,而不连接在总线上,从 而实现总线的合理化布置。而在采用第一类线控器控制多个空调器室内机的运行模式时,第一类线控器连接在总线上,由于总线上具有所有数据,从而使得一控多模式可以从任意位置接入,实现了第一类线控器可以在人机交互界面选择任意想要控制的空调器室内机。由于一控多模式可以在总线任意节点位置接入,无需单独再走一条总线,安装成本更低,降低了空调系统的安装成本,有利于提高空调系统的市场竞争力。
在一种可能的设计中,空调系统还包括:多个第二类线控器,多个第二类线控器与多个空调器室内机一一对应连接,任一第二类线控器用于控制与之连接的空调器室内机的运行模式。
在该设计中,具体限定了空调系统还包括第二类线控器,其中第二类线控器的数量为多个,通过多个第二类线控器与多个空调器室内机一一对应连接,以使每个空调器室内机都存在单独控制其运行模式的第二类线控器,从而避免第二类线控器之间的干扰,保证了每个第二类线控器都能单独的正常工作。第二类线控器用于控制空调器室内机的运行模式,从而实现多控多的运行模式。具体地,第二类线控器连接在总线上,由于总线上具有所有数据,从而使得第二类线控器在实现多控多模式时可以从总线的任意位置接入,方便操作,从而实现了第二类线控器可以在人机交互界面选择任意想要控制的空调器室内机。由于多控多模式能够在总线任意节点接入,不需要另设一条总线,安装成本更低,降低了空调系统的安装成本,有利于提高空调系统的市场竞争力。
在一种可能的设计中,运行模式包括以下模式中的任意一种:制冷模式、制热模式、除湿模式、送风模式。
在该设计中,具体限定了运行模式。具体地,运行模式包括制冷模式、制热模式、除湿模式、送风模式任意一种。从而使第一类线控器或多个第二类线控器控制空调器室内机的不同运行模式。例如第一类线控器可以控制一个或多个空调器室内机运行制冷模式、制热模式、除湿模式、送风模式任意一种,多个第二类线控器可以控制多个室内空调器内机运行制冷模式、制热模式、除湿模式、送风模式任意一种。
在一种可能的设计中,空调系统还包括:至少一个非空调器用电设备, 至少一个非空调器用电设备与至少一个空调器室外机、多个空调器室内机、切换装置和集中控制器共用一条总线。
在该设计中,具体限定空调系统还包括非空调器用电设备。具体地,非空调器用电设备的数量为至少一个,同样连接在总线上,以使总线上具有少一个非空调器用电设备与至少一个空调器室外机、多个空调器室内机、切换装置和集中控制器的所有数据,从而使至少一个非空调用电设备可以从任意位置接入,操作简单方便。以使空调系统可以控制除空调器室外机和空调器室内机外,还能控制非空调器用电设备,方便用于通过空调系统控制空调器的同时还能体验对其他非空调器用电设备的控制,以提高用户的使用体验,通过空调系统实现对多种不同用电设备的控制,实现空调系统的智能化,方便了用户的生活,同时减少了其他设备的控制装置,节约了成本。
在一种可能的设计中,至少一个非空调器用电设备包括以下电器中的一种或多种:冰箱、灯具、电视、洗衣机、热水器。
在该设计中,具体限定了至少一个非空调器用电设备的种类。至少一个非空调器用电设备可以包括冰箱、灯具、电视、洗衣机、热水器中的一种或多种,从而使得切换装置和集中控制器还能能够通过总线控制冰箱、灯具、电视、洗衣机、热水器中的一种或多种,以提高用户的使用体验,从而将控制变得多元化。也就是说,用户可以通过空调系统控制空调器外,还能控制冰箱、灯具、电视、洗衣机、热水器中的一种或多种,以使用户能够通过一个空调系统控制多个不同的家用电器,提高了用户的使用体验,避免多个家用电器需要不同的系统或者不同的设备控制导致的成本上升或者造成线路的复杂,从而使得通过设置一条总线就能控制空调器和其他不同的家用电器,并且这些非空调器用电设备可以在任意位置接入都不会影响总线的架构组成,不仅方便用户安装,同时节省人力和成本。
在一个具体的应用中,可以采用总线同时控制冰箱、灯具、电视、洗衣机、热水器,以使较大的用电设备均能通过一条总线,实现智能化多元化控制,方便了用户操作,也就是说,如果多种用电设备均为独立控制,这显然需要安装不同的控制系统或者控制器,而且不同的控制系统和控制 器之间可能存在干扰或者不兼容的现象产生,而采用一条总线控制空调的同时还能控制多种用电设备,则省去了不必要的控制系统或者控制器,解决了不同的控制系统和控制器之间可能存在干扰或者不兼容的现象,在方便用户操作的同时,为安装人员省去不比必要的布线工作,而且节约了用户的使用成本。
在一种可能的设计中,至少一个空调器室外机、多个空调器室内机、切换装置和集中控制器呈星型连接。
在该设计中,具体限定了至少一个空调器室外机、多个空调器室内机、切换装置和集中控制器的连接方式。具体地,至少一个空调器室外机、多个空调器室内机、切换装置和集中控制器以星型的连接方式,以使多个空调器室内机、切换装置和集中控制器均与至少一个空调器室外机相连,因此,单个连接如果存在故障只会影响一个设备甚至系统的运行。例如,当集中控制装置与室外机的连接出现故障时,其他设备由于没有与两种之间存在连接关系,所以并不会受到故障影响,也不会影响整个空调系统的运行,同时如果集中控制装置发生故障时,集中控制装置与室外机的连接出现故障,其余连接线路仍正常运行,只有因为集中控制装置的故障导致与室外机连接的通讯存在问题,从而使得采用星型连接能够容易判断故障位置,方便工作人员的维修,减少排障时间。
在一种可能的设计中,至少一个空调器室外机、多个空调器室内机、切换装置和集中控制器呈树状连接。
在该设计中,具体限定了至少一个空调器室外机、多个空调器室内机、切换装置和集中控制器的连接方式。具体地,至少一个空调器室外机、多个空调器室内机、切换装置和集中控制器以树状连接方式。具体地,树状连接可以包含分支,每个分支可包含多个节点,分布灵活,适应范围更广,非常适合分主次、分等级的层次型空调系统,同时树状连接能够节约总线布置,从而降低安装成本。
在一种可能的设计中,至少一个空调器室外机、多个空调器室内机、切换装置和集中控制器呈环状连接。
在该设计中,在该设计中,具体限定了至少一个空调器室外机、多个 空调器室内机、切换装置和集中控制器的连接方式。具体地,至少一个空调器室外机、多个空调器室内机、切换装置和集中控制器以环状的连接方式,从而使得即使环状断了一处,空调系统还能够正常运行,不会受到影响,满足机房等一些高要求不能停机场合。具体地,环状连接实用性好,且总线长度较短,有利于节约布线成本,且网络性能稳定。
具体地,上诉三种连接方式满足市场几乎任何场景和布置,市场安装人员可以根据设备的分布,任意布线,降低了安装成本和要求。具体的安装方式可根据实际的场景和布置需求进行适应性调整。
在一种可能的设计中,总线包括以下总线中的任意一种:CAN总线、485总线。
在该设计中,具体限定了总线的类型,总线包括CAN总线、485总线中的一种。
CAN(Controller Area Network控制局域网络)总线,具有通信速率高、开发周期短、容易实现、且性价比高等优点,采用CAN总线构成的网络各节点之间的数据通讯实时性强,提高系统的可靠性和系统的灵活性。
485总线采用平衡发送和差分接收,因此具有抑制共模干扰能力,同时具有高灵敏度,能检测低电压,故传输信号能在千米以外得到恢复,同时485总线在多点互连时非常方便,可以省掉许多信号线,在较大场地的空调系统总线应用中,可以采用458总线。
具体地,根据场地和分布的要求选择相配适的总线类型。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了相关技术中空调系统的总线布置示意图;
图2示出了本申请中第一个实施例空调系统的总线布置示意图;
图3示出了本申请中第二个实施例空调系统的总线布置示意图;
图4示出了本申请中第三个实施例空调系统的总线布置示意图;
图5示出了本申请中第五个实施例空调系统的总线布置示意图;
图6示出了本申请中第六个实施例空调系统的总线布置示意图;
图7示出了本申请中第七个实施例空调系统的总线布置示意图。
其中,图1中的附图标记与部件名称之间的对应关系为:
110’空调器室外机,120’空调器室内机,130’切换装置,140’集中控制器,150’线控器。
图2至图7中的附图标记与部件名称之间的对应关系为:
100空调系统,110空调器室外机,120空调器室内机,130切换装置,140集中控制器,150第一类线控器,160第二类线控器,170非空调器用电设备。
具体实施方式
为了能够更清楚地理解本申请的上述方面、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图2至图7描述根据本申请一些实施例的一种空调系统。
实施例一:
如图2所示,根据本申请的一个方面,本申请提供了一种空调系统100,包括:至少一个空调器室外机110;多个空调器室内机120;切换装置130,切换装置130用于将至少一个空调器室外机110输出的冷媒分配至一个或多个空调器室内机120;集中控制器140,其中,至少一个空调器室外机110、多个空调器室内机120、切换装置130和集中控制器140通过一条总线连接。
空调系统100包括至少一个空调器室外机110、多个空调器室内机120、切换装置130和集中控制器140。其中空调室外机用于将冷媒输出至空调 器室内机120,切换装置130用于分配至少一个空调室外机输出的冷媒,分配至一个或者多个空调器室内机120,例如可以通过切换装置130将一个空调器室外机110的冷媒分配至一个空调器室内机120,也可以通过切换装置130将多个空调器室外机110的冷媒分配至多个空调器室内机120,同样的,切换装置130可以将一个空调器室外机110的冷媒分配至多个空调器室内机120。本申请中的空调系统100还包括集中控制器140,并将至少一个空调器室外机110、多个空调器室内机120、切换装置130和集中控制器140通过一条总线连接,从而使得总线上具有至少一个空调器室外机110、多个空调器室内机120、切换装置130和集中控制器140的所有数据。与相关技术中采用多条总线相比,设置一条总线,所有设备都连接在一条总线上,使得通讯架构比较简单,不存在其他总线,市场安装维护人员更容易理解,安装维护效率会更高。由于所有设备都连接在一条总线上,所有设备上的数据都通过总线进行传输,从而使得总线上具备所有设备的数据,即全部的数据,所以安装人员在安装集中控制器140时,可以选择方便安装的位置,同时同条总线上的设备可以实现星型、树型、环型等任意拓扑接线,方便了安装人员操作,节约了安装人员的工作量,避免了不必要的安装时间。同时由于只有一条总线,减少了安装工作人员的工作量,从而降低了安装成本,进而降低了空调系统100的成本,提高了空调系统100的市场竞争力。而且由于只有一条总线,对主MCU(Micro Control Unit微控制单元,又称单片微型计算机或者单片机)的串口数量减少。
实施例二:
在实施例一的基础上,如图3所示,空调系统100还包括:第一类线控器150,第一类线控器150与总线连接,用于控制一个或多个空调器室内机120的运行模式。
在该实施例中,具体限定了空调系统100还包括第一类线控器150。第一类线控器150用于控制一个或多个空调器室内机120的运行模式,例如第一类线控器150控制一个空调器室内机120的运行模式,从而实现一控一的运行模式。第一类线控器150也可以控制多个空调器室内机120的运行模式,从而实现一控多的运行模式。具体地,第一类线控器150连接 在总线上,从而实现对空调器室内机120的控制,同时总线上也具有第一类线控器150的数据。
在一个具体地实施例中,采用第一类线控器150控制一个空调器室内机120的运行模式时,即一控一模式时,由于一控一模式数量比较大,节点会比较多,将一控一模式单独接到需要控制的空调器内机上,而不连接在总线上,从而实现总线的合理化布置。而在采用第一类线控器150控制多个空调器室内机120的运行模式时,第一类线控器150连接在总线上,由于总线上具有所有数据,从而使得一控多模式可以从任意位置接入,实现了第一类线控器150可以在人机交互界面选择任意想要控制的空调器室内机120。由于一控多模式可以在总线任意节点位置接入,无需单独再走一条总线,安装成本更低,降低了空调系统100的安装成本,有利于提高空调系统100的市场竞争力。
实施例三:
在实施例一的基础上,如图4所示,空调系统100还包括:多个第二类线控器160,多个第二类线控器160与多个空调器室内机120一一对应连接,任一第二类线控器160用于控制与之连接的空调器室内机120的运行模式。
在该实施例中,具体限定了空调系统100还包括第二类线控器160,其中第二类线控器160的数量为多个,通过多个第二类线控器160与多个空调器室内机120一一对应连接,以使每个空调器室内机120都存在单独控制其运行模式的第二类线控器160,从而避免第二类线控器160之间的干扰,保证了每个第二类线控器160都能单独的正常工作。第二类线控器160用于控制空调器室内机120的运行模式,从而实现多控多的运行模式。具体地,第二类线控器160连接在总线上,由于总线上具有所有数据,从而使得第二类线控器160在实现多控多模式时可以从总线的任意位置接入,方便操作,从而实现了第二类线控器160可以在人机交互界面选择任意想要控制的空调器室内机120。由于多控多模式能够在总线任意节点接入,不需要另设一条总线,安装成本更低,降低了空调系统100的安装成本,有利于提高空调系统100的市场竞争力。
运行模式包括以下模式中的任意一种:制冷模式、制热模式、除湿模式、送风模式。
在该实施例中,具体限定了运行模式。具体地,运行模式包括制冷模式、制热模式、除湿模式、送风模式任意一种。从而使第一类线控器150或多个第二类线控器160控制空调器室内机120的不同运行模式。例如第一类线控器150可以控制一个或多个空调器室内机120运行制冷模式、制热模式、除湿模式、送风模式任意一种,多个第二类线控器160可以控制多个室内空调器内机运行制冷模式、制热模式、除湿模式、送风模式任意一种。
实施例四:
在上述任意实施例的基础上,如图2所示,空调系统100还包括:至少一个非空调器用电设备170,至少一个非空调器用电设备170与至少一个空调器室外机110、多个空调器室内机120、切换装置130和集中控制器140共用一条总线。
在该实施例中,具体限定空调系统100还包括非空调器用电设备170。具体地,非空调器用电设备170的数量为至少一个,同样连接在总线上,以使总线上具有少一个非空调器用电设备170与至少一个空调器室外机110、多个空调器室内机120、切换装置130和集中控制器140的所有数据,从而使至少一个非空调用电设备可以从任意位置接入,操作简单方便。以使空调系统100可以控制除空调器室外机110和空调器室内机120外,还能控制非空调器用电设备170,方便用于通过空调系统100控制空调器的同时还能体验对其他非空调器用电设备170的控制,以提高用户的使用体验,通过空调系统100实现对多种不同用电设备的控制,实现空调系统100的智能化,方便了用户的生活,同时减少了其他设备的控制装置,节约了成本。
在一个具体的实施例中,至少一个非空调器用电设备170包括以下电器中的一种或多种:冰箱、灯具、电视、洗衣机、热水器。
在该实施例中,具体限定了至少一个非空调器用电设备170的种类。至少一个非空调器用电设备170可以包括冰箱、灯具、电视、洗衣机、热 水器中的一种或多种,从而使得切换装置130和集中控制器140还能能够通过总线控制冰箱、灯具、电视、洗衣机、热水器中的一种或多种,以提高用户的使用体验,从而将控制变得多元化。也就是说,用户可以通过空调系统100控制空调器外,还能控制冰箱、灯具、电视、洗衣机、热水器中的一种或多种,以使用户能够通过一个空调系统100控制多个不同的家用电器,提高了用户的使用体验,避免多个家用电器需要不同的系统或者不同的设备控制导致的成本上升或者造成线路的复杂,从而使得通过设置一条总线就能控制空调器和其他不同的家用电器,并且这些非空调器用电设备170可以在任意位置接入都不会影响总线的架构组成,不仅方便用户安装,同时节省人力和成本。
在一个具体的实施例中,可以采用总线同时控制冰箱、灯具、电视、洗衣机、热水器,以使较大的用电设备均能通过一条总线,实现智能化多元化控制,方便了用户操作,也就是说,如果多种用电设备均为独立控制,这显然需要安装不同的控制系统或者控制器,而且不同的控制系统和控制器之间可能存在干扰或者不兼容的现象产生,而采用一条总线控制空调的同时还能控制多种用电设备,则省去了不必要的控制系统或者控制器,解决了不同的控制系统和控制器之间可能存在干扰或者不兼容的现象,在方便用户操作的同时,为安装人员省去不比必要的布线工作,而且节约了用户的使用成本。
实施例五:
如图5所示,至少一个空调器室外机110、多个空调器室内机120、切换装置130和集中控制器140呈星型连接。
在该实施例中,具体限定了至少一个空调器室外机110、多个空调器室内机120、切换装置130和集中控制器140的连接方式。具体地,至少一个空调器室外机110、多个空调器室内机120、切换装置130和集中控制器140以星型的连接方式,以使多个空调器室内机120、切换装置130和集中控制器140均与至少一个空调器室外机110相连,因此,单个连接如果存在故障只会影响一个设备甚至系统的运行。例如,当集中控制装置与室外机的连接出现故障时,其他设备由于没有与两种之间存在连接关系, 所以并不会受到故障影响,也不会影响整个空调系统100的运行,同时如果集中控制装置发生故障时,集中控制装置与室外机的连接出现故障,其余连接线路仍正常运行,只有因为集中控制装置的故障导致与室外机连接的通讯存在问题,从而使得采用星型连接能够容易判断故障位置,方便工作人员的维修,减少排障时间。
实施例六:
如图6所示,至少一个空调器室外机110、多个空调器室内机120、切换装置130和集中控制器140呈树状连接。
在该实施例中,具体限定了至少一个空调器室外机110、多个空调器室内机120、切换装置130和集中控制器140的连接方式。具体地,至少一个空调器室外机110、多个空调器室内机120、切换装置130和集中控制器140以树状连接方式。具体地,树状连接可以包含分支,每个分支可包含多个节点,分布灵活,适应范围更广,非常适合分主次、分等级的层次型空调系统100,同时树状连接能够节约总线布置,从而降低安装成本。
实施例七:
如图7所示,至少一个空调器室外机110、多个空调器室内机120、切换装置130和集中控制器140呈环状连接。
在该实施例中,在该设计中,具体限定了至少一个空调器室外机110、多个空调器室内机120、切换装置130和集中控制器140的连接方式。具体地,至少一个空调器室外机110、多个空调器室内机120、切换装置130和集中控制器140以环状的连接方式,从而使得即使环状断了一处,空调系统100还能够正常运行,不会受到影响,满足机房等一些高要求不能停机场合。具体地,环状连接实用性好,且总线长度较短,有利于节约布线成本,且网络性能稳定。
具体地,上诉三种连接方式满足市场几乎任何场景和布置,市场安装人员可以根据设备的分布,任意布线,降低了安装成本和要求。具体的安装方式可根据实际的场景和布置需求进行适应性调整。
在一个具体的实施例中,总线包括以下总线中的任意一种:CAN总线、485总线。
在该实施例中,具体限定了总线的类型,总线包括CAN总线、485总线中的一种。
CAN(Controller Area Network控制局域网络)总线,具有通信速率高、开发周期短、容易实现、且性价比高等优点,采用CAN总线构成的网络各节点之间的数据通讯实时性强,提高系统的可靠性和系统的灵活性。
485总线采用平衡发送和差分接收,因此具有抑制共模干扰能力,同时具有高灵敏度,能检测低电压,故传输信号能在千米以外得到恢复,同时485总线在多点互连时非常方便,可以省掉许多信号线,在较大场地的空调系统100总线应用中,可以采用458总线。
具体地,根据场地和分布的要求选择相配适的总线类型。
在本申请的描述中,术语“多个”则指两个或两个以上,除非另有明确的限定,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本申请中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种空调系统,其中,包括:
    至少一个空调器室外机;
    多个空调器室内机;
    切换装置,所述切换装置用于将所述至少一个空调器室外机输出的冷媒分配至一个或多个所述空调器室内机;
    集中控制器,其中,所述至少一个空调器室外机、所述多个空调器室内机、所述切换装置和所述集中控制器通过一条总线连接。
  2. 根据权利要求1所述的空调系统,其中,所述空调系统还包括:
    第一类线控器,所述第一类线控器与所述总线连接,用于控制一个或多个所述空调器室内机的运行模式。
  3. 根据权利要求1所述的空调系统,其中,所述空调系统还包括:
    多个第二类线控器,所述多个第二类线控器与所述多个空调器室内机一一对应连接,任一所述第二类线控器用于控制与之连接的所述空调器室内机的运行模式。
  4. 根据权利要求2或3所述的空调系统,其中,所述运行模式包括以下模式中的任意一种:
    制冷模式、制热模式、除湿模式、送风模式。
  5. 根据权利要求1至3中任一项所述的空调系统,其中,所述空调系统还包括:
    至少一个非空调器用电设备,所述至少一个非空调器用电设备与所述至少一个空调器室外机、所述多个空调器室内机、所述切换装置和所述集中控制器共用一条总线。
  6. 根据权利要求5所述的空调系统,其中,所述至少一个非空调器用电设备包括以下电器中的一种或多种:
    冰箱、灯具、电视、洗衣机、热水器。
  7. 根据权利要求1至3中任一项所述的空调系统,其中,所述至少一个空调器室外机、所述多个空调器室内机、所述切换装置和所述集中控制 器呈星型连接。
  8. 根据权利要求1至3中任一项所述的空调系统,其中,所述至少一个空调器室外机、所述多个空调器室内机、所述切换装置和所述集中控制器呈树状连接。
  9. 根据权利要求1至3中任一项所述的空调系统,其中,所述至少一个空调器室外机、所述多个空调器室内机、所述切换装置和所述集中控制器呈环状连接。
  10. 根据权利要求1至3中任一项所述的空调系统,其中,所述总线包括以下总线中的任意一种:
    CAN总线、485总线。
PCT/CN2021/117576 2020-12-09 2021-09-10 空调系统 WO2022121411A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022929994.9U CN213687018U (zh) 2020-12-09 2020-12-09 空调系统
CN202022929994.9 2020-12-09

Publications (1)

Publication Number Publication Date
WO2022121411A1 true WO2022121411A1 (zh) 2022-06-16

Family

ID=76738636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117576 WO2022121411A1 (zh) 2020-12-09 2021-09-10 空调系统

Country Status (2)

Country Link
CN (1) CN213687018U (zh)
WO (1) WO2022121411A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213687018U (zh) * 2020-12-09 2021-07-13 广东美的暖通设备有限公司 空调系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103062869A (zh) * 2012-12-24 2013-04-24 江苏春兰空调设备有限公司 一种模块式中央空调的群控系统及控制方法
CN103438549A (zh) * 2013-08-06 2013-12-11 青岛海信日立空调系统有限公司 基于图形界面的中央空调集中控制系统和控制方法
EP3098533A1 (en) * 2014-01-30 2016-11-30 Mitsubishi Heavy Industries, Ltd. Air conditioning system and method for controlling same
CN108800455A (zh) * 2018-04-13 2018-11-13 珠海格力电器股份有限公司 空调机组、空调机组的控制方法和中央协调器
CN110260477A (zh) * 2019-05-20 2019-09-20 珠海格力电器股份有限公司 一种基于两芯通讯总线的空调系统、控制方法及存储介质
CN111224790A (zh) * 2020-02-24 2020-06-02 广东美的暖通设备有限公司 供电电路、线控设备和空调器
CN111442509A (zh) * 2020-04-07 2020-07-24 广东美的暖通设备有限公司 空调通讯方法、装置及计算机可读存储介质
CN111442508A (zh) * 2020-04-07 2020-07-24 广东美的暖通设备有限公司 中央空调系统、空调通讯方法、装置及存储介质
CN111442511A (zh) * 2020-04-08 2020-07-24 广东美的暖通设备有限公司 空调通信控制方法、装置及计算机可读存储介质
CN213687018U (zh) * 2020-12-09 2021-07-13 广东美的暖通设备有限公司 空调系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103062869A (zh) * 2012-12-24 2013-04-24 江苏春兰空调设备有限公司 一种模块式中央空调的群控系统及控制方法
CN103438549A (zh) * 2013-08-06 2013-12-11 青岛海信日立空调系统有限公司 基于图形界面的中央空调集中控制系统和控制方法
EP3098533A1 (en) * 2014-01-30 2016-11-30 Mitsubishi Heavy Industries, Ltd. Air conditioning system and method for controlling same
CN108800455A (zh) * 2018-04-13 2018-11-13 珠海格力电器股份有限公司 空调机组、空调机组的控制方法和中央协调器
CN110260477A (zh) * 2019-05-20 2019-09-20 珠海格力电器股份有限公司 一种基于两芯通讯总线的空调系统、控制方法及存储介质
CN111224790A (zh) * 2020-02-24 2020-06-02 广东美的暖通设备有限公司 供电电路、线控设备和空调器
CN111442509A (zh) * 2020-04-07 2020-07-24 广东美的暖通设备有限公司 空调通讯方法、装置及计算机可读存储介质
CN111442508A (zh) * 2020-04-07 2020-07-24 广东美的暖通设备有限公司 中央空调系统、空调通讯方法、装置及存储介质
CN111442511A (zh) * 2020-04-08 2020-07-24 广东美的暖通设备有限公司 空调通信控制方法、装置及计算机可读存储介质
CN213687018U (zh) * 2020-12-09 2021-07-13 广东美的暖通设备有限公司 空调系统

Also Published As

Publication number Publication date
CN213687018U (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
US7669433B2 (en) Multi-air conditioner central control system
KR100649599B1 (ko) 다중지역 통합용 에어컨 시스템
US20110090042A1 (en) Wireless demand response system
CN101650062B (zh) 多联机控制系统及其控制方法
CN101900394B (zh) 基于ZigBee无线技术的楼宇空调控制系统
JP6357235B2 (ja) 分散型発電に基づく空調システム用監視システム及びそれを適用する空調システム
CN103383128A (zh) 多联式中央空调的集中控制系统和控制方法
CN105526647A (zh) 多联机系统及其组网方法
CN202013507U (zh) 一种基于无线技术的分散式空间的电器智能控制系统
CN203810643U (zh) 空调系统
WO2022121411A1 (zh) 空调系统
Jiang et al. Research on building energy management in HVAC control system for university library
CN202160191U (zh) 一种家居智能设备布线系统
CN105783210A (zh) 一种应用于地铁车站的多联机空调系统及其控制方法
CN203982142U (zh) 教学楼教室智能节能控制系统
CN110456705B (zh) 可动态扩展接口的网络控制装置、楼宇自控系统
CN204987364U (zh) 空调机组控制系统
CN208901578U (zh) 一种智能节能空调控制器
CN201680554U (zh) 基于ZigBee无线技术的楼宇空调控制系统
CN217643386U (zh) 多联机空调通信系统
CN218936594U (zh) 一种基于Wi-SUN无线通信网络的风机盘管设备
CN210425445U (zh) 集散式空调控制系统
CN215909200U (zh) 一种群组型风机盘管控制器
CN217561925U (zh) 一种客船空调通风智能集成控制系统
CN211667905U (zh) 并联式风机盘管集中控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/10/2023)