WO2022121369A1 - 电机启动控制方法及装置、处理器、存储介质 - Google Patents
电机启动控制方法及装置、处理器、存储介质 Download PDFInfo
- Publication number
- WO2022121369A1 WO2022121369A1 PCT/CN2021/113736 CN2021113736W WO2022121369A1 WO 2022121369 A1 WO2022121369 A1 WO 2022121369A1 CN 2021113736 W CN2021113736 W CN 2021113736W WO 2022121369 A1 WO2022121369 A1 WO 2022121369A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- next cycle
- operation mode
- output waveform
- position sensor
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 230000007704 transition Effects 0.000 claims description 43
- 230000008859 change Effects 0.000 claims description 19
- 238000004590 computer program Methods 0.000 claims description 17
- 238000001514 detection method Methods 0.000 claims description 9
- 230000007423 decrease Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 description 13
- 230000005284 excitation Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000009191 jumping Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P1/00—Arrangements for starting electric motors or dynamo-electric converters
- H02P1/02—Details of starting control
- H02P1/04—Means for controlling progress of starting sequence in dependence upon time or upon current, speed, or other motor parameter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P1/00—Arrangements for starting electric motors or dynamo-electric converters
- H02P1/16—Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
- H02P29/024—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
- H02P29/028—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
- H02P29/032—Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
Definitions
- the present application relates to the field of motor control, and in particular, to a motor startup control method and device, a processor, and a storage medium.
- the output waveform of the position sensor that detects the position of the motor rotor will become narrower and narrower. Since the output waveform of the position sensor in the next cycle cannot be predicted, and the lead angle of the motor It is set according to the change of the current waveform of the position sensor, so when the output waveform of the position sensor becomes narrower and narrower, the leading angle of the motor cycle and the transition edge position of the output waveform of the position sensor will be closer and closer. , which leads to the phenomenon that the position of the next leading angle of the motor, that is, the next commutation point of the motor set following the current waveform of the position sensor, will lag behind the next transition edge in the output waveform of the position sensor.
- the embodiments of the present application provide a motor startup control method and device, a processor, and a storage medium, so as to at least solve the problem in the related art when the output waveform of the position sensor becomes narrower and narrower as the motor speed increases during the motor startup process.
- a motor startup control method including: acquiring an output waveform of a position sensor; Lead angle position; detect whether there is a transition edge of the next cycle in the output waveform of the position sensor before the lead angle position of the next cycle, and determine the lead angle position of the next cycle and the next cycle.
- the commutation direction of the operating mode is reversed.
- determining the lead angle position of the motor in the next cycle according to the waveform of the current cycle in the output waveform of the position sensor includes: acquiring the current cycle in the output waveform of the position sensor The phase change information of the waveform of the cycle; based on the phase change information of the waveform of the current cycle, determine the lead angle position of the motor in the next cycle, wherein, as the rotation speed of the motor increases, the position sensor The phase of the output waveform gradually becomes smaller, and the leading angle position of the next cycle gradually lags behind.
- the relative positional relationship between the transition edge positions of the next cycle includes: if the transition of the next cycle does not appear in the output waveform of the position sensor before the lead angle position of the next cycle edge, determine that the relative position relationship is the first position relationship; if the transition edge of the next cycle appears in the output waveform of the position sensor before the lead angle position of the next cycle, determine that the The relative positional relationship is the second positional relationship.
- controlling the motor to start according to the current operating mode includes: controlling the motor to commutate according to the current operating mode.
- determining a target operation mode based on the current operation mode, and controlling the motor to start according to the target operation mode includes: determining an operation mode in which a commutation direction is opposite to that of the current operation mode is the target operation mode; the motor is controlled to commutate according to the target operation mode.
- a motor starting control device including: an acquisition module for acquiring the output waveform of the position sensor; The waveform of the cycle determines the lead angle position of the next cycle of the motor; the position detection module is used to detect whether the output waveform of the position sensor appears before the lead angle position of the next cycle.
- the control module used for if the relative positional relationship is the first positional relationship, then Controlling the motor to start according to the current operation mode; if the relative positional relationship is the second positional relationship, determining a target operation mode based on the current operation mode, and controlling the motor to start according to the target operation mode, wherein all The first positional relationship is opposite to the second positional relationship, and the commutation directions of the target operating mode and the current operating mode are opposite.
- the acquisition module an acquisition unit, is configured to acquire phase change information of the waveform of the current cycle in the output waveform of the position sensor;
- the phase change information of the waveform of the cycle is used to determine the lead angle position of the motor in the next cycle.
- the lead angle position gradually lags behind.
- the position detection module includes: a second determination unit for detecting that the next period does not appear in the output waveform of the position sensor if the next period is before the leading angular position of the next period The jumping edge of , determines that the relative positional relationship is the first positional relationship; the third determining unit is used to detect that if before the lead angle position of the next cycle, the output waveform of the position sensor appears in the output waveform According to the transition edge of the next cycle, the relative positional relationship is determined as the second positional relationship.
- a storage medium is also provided, and the storage medium stores a computer program, and when the computer program is executed by the processor, any one of the above-mentioned motor startup control methods is executed.
- a processor is also provided, and the processor runs a program to execute any one of the above-mentioned motor startup control methods.
- an electronic device including a memory and a processor, wherein the memory stores a computer program, and when the processor runs the computer program, the processor executes any one of the above-mentioned motor startup Control Method.
- the output waveform of the position sensor is acquired; the lead angle position of the motor in the next cycle is determined according to the waveform of the current cycle in the output waveform of the position sensor; the lead angle position in the next cycle is detected; Before the angular position, whether there is a jump edge of the next cycle in the output waveform of the position sensor, determine the relative positional relationship between the leading angular position of the next cycle and the position of the jump edge of the next cycle; if If the relative position relationship is the first position relationship, the motor is controlled to start according to the current operation mode; if the relative position relationship is the second position relationship, the target operation mode is determined based on the current operation mode, and the motor is controlled according to the current operation mode.
- the target operation mode is started, wherein the first positional relationship is opposite to the second positional relationship, and the target operation mode is opposite to the commutation direction of the current operation mode, so as to prevent the motor from being driven due to lead during the start-up process of the motor.
- the excitation logic error occurs and the motor overcurrent protection stops, which realizes the technical effect of protecting the motor from starting under the normal operation logic, and solves the problem that the output waveform of the position sensor becomes narrower and narrower as the motor speed increases during the motor starting process of the related technology. , the technical problem of shutdown caused by overcurrent protection of the motor due to an error in the advance excitation logic.
- FIG. 1 is a flowchart of a method for controlling motor startup according to an embodiment of the present application
- FIG. 2 shows a schematic diagram of the principle of a motor startup control method according to an embodiment of the present application
- FIG. 3 is a schematic structural diagram of a motor starting control device according to an embodiment of the present application.
- an embodiment of a motor starting control method is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings may be executed in a computer system such as a set of computer-executable instructions, and although A logical order is shown in the flowcharts, but in some cases steps shown or described may be performed in an order different from that herein.
- Fig. 1 is a flow chart of a motor startup control method according to an embodiment of the present application. As shown in Fig. 1 , the motor startup control method includes the following steps:
- Step S102 acquiring the output waveform of the position sensor
- Step S104 determining the lead angle position of the next cycle of the motor according to the waveform of the current cycle in the output waveform of the position sensor;
- Step S106 Detect whether a transition edge of the next cycle appears in the output waveform of the position sensor before the lead angle position of the next cycle, and determine the lead angle position of the next cycle and the next cycle. The relative positional relationship between the transition edge positions of ;
- Step S108 if the relative positional relationship is the first positional relationship, control the motor to start according to the current operation mode; if the relative positional relationship is the second positional relationship, determine the target operation mode based on the current operation mode, and controlling the motor to start according to the target operation mode, wherein the first position relationship is opposite to the above-mentioned second position relationship, and the commutation direction of the target operation mode and the current operation mode is opposite.
- the output waveform of the position sensor is obtained; the lead angle position of the motor in the next cycle is determined according to the waveform of the current cycle in the output waveform of the position sensor; Before the lead angle position, determine whether the next cycle transition edge occurs in the output waveform of the position sensor, and determine the relative position between the next cycle lead angle position and the next cycle transition edge position If the relative position relationship is the first position relationship, the motor is controlled to start according to the current operation mode; if the relative position relationship is the second position relationship, the target operation mode is determined based on the current operation mode, and The motor is controlled to start according to the target operation mode, wherein the first position relationship is opposite to the second position relationship, and the target operation mode is opposite to the commutation direction of the current operation mode, thereby preventing the motor from During the start-up process, the phenomenon of motor overcurrent protection shutdown occurs due to the error of the advanced excitation logic, which realizes the technical effect of protecting the motor from starting under the normal operation logic, and solves the problem that the position of the
- the motor may be any type of motor, and the motor may be installed in any type of electrical equipment, for example, household appliances such as air conditioners and the like.
- FIG. 2 shows a schematic diagram of the principle of a motor starting control method according to an embodiment of the present application.
- the dashed line a shows the lead angle position.
- b shows the position of the transition edge in the output waveform of the position sensor, and the waveform shown by the dotted line in the figure is the lead angle of the next cycle of the motor to follow the current position in the output waveform of the position sensor.
- the position sensor waveform when the phase of the periodic waveform changes; the horizontal solid line c between the dotted line a and the transition edge position b of the output waveform of the sensor is used to identify the lead angle as the motor speed increases, and the position sensor next cycle The transitions change between edge positions.
- the output waveform of the position sensor becomes narrower and narrower due to the higher and higher speed of the motor. Since the output waveform of the position sensor in the next cycle cannot be predicted, the lead angle of the motor in one cycle is based on the position sensor.
- the waveform change of the current cycle in the output waveform is set, so when the motor speed gradually increases, the output waveform of the position sensor becomes narrower and narrower, resulting in the leading angle of the motor cycle and the position of the transition edge of the output waveform of the position sensor.
- the position of the next leading angle of the upper motor will appear, that is, the next commutation point of the motor set following the current waveform of the position sensor will lag behind the next transition edge in the output waveform of the position sensor. The phenomenon.
- the motor can be controlled to commutate directly in the opposite direction of the current operation mode, thereby avoiding the occurrence of shutdown caused by the direct overcurrent protection of the motor due to an error in the advance excitation logic during the motor startup process.
- determining the lead angle position of the motor in the next cycle according to the waveform of the current cycle in the output waveform of the position sensor includes:
- Step S202 acquiring phase change information of the waveform of the current cycle in the output waveform of the position sensor
- Step S204 determining the leading angular position of the motor in the next cycle based on the phase change information of the waveform of the current cycle, wherein, as the rotation speed of the motor increases, the phase of the output waveform of the position sensor gradually becomes smaller, and the leading angle position of the next cycle gradually lags behind.
- the relative positional relationship between the lead angle position and the transition edge position of the next cycle including:
- Step S302 if the transition edge of the next cycle does not appear in the output waveform of the position sensor before the lead angle position of the next cycle, if it is detected that the lead angle position is at the waveform transition edge position When the first orientation of , determine that the relative positional relationship is the first positional relationship;
- Step S304 if the transition edge of the next cycle appears in the output waveform of the position sensor before the lead angle position of the next cycle, determine that the relative positional relationship is the second positional relationship.
- controlling the motor to start according to the current operation mode includes: controlling the motor to perform phase commutation according to the current operation mode.
- determining a target operation mode based on the current operation mode, and controlling the motor to start according to the target operation mode including:
- Step S402 determining an operation mode in which the commutation direction is opposite to the commutation direction of the current operation mode as the target operation mode;
- Step S404 controlling the motor to commutate according to the target operation mode.
- the direct overcurrent protection of the motor causes the motor to stop due to an error in the advance excitation logic.
- the position and position of the lead angle of the next cycle can be determined by detecting whether the transition edge of the next cycle occurs in the output waveform of the position sensor before the lead angle position of the next cycle.
- the control motor is commutated according to the current operation mode.
- the transition edge of the next cycle ie, the second position relationship
- the motor is controlled to directly reverse the transition edge position.
- the direction is commutated, so as to avoid errors due to the advance excitation logic during the motor start-up process, so as to avoid the situation that the motor is stopped due to direct overcurrent protection.
- FIG. 3 is a schematic structural diagram of a motor starting control apparatus according to an embodiment of the present application, as shown in FIG. 3 ,
- the motor starting control device includes: an acquisition module 300, a determination module 302, a position detection module 304 and a control module 306, wherein:
- the acquisition module 300 is used to acquire the output waveform of the position sensor; the determination module 302 is used to determine the lead angle position of the motor in the next cycle according to the waveform of the current cycle in the output waveform of the position sensor; the position detection module 304 , used to detect whether a transition edge of the next cycle occurs in the output waveform of the position sensor before the lead angle position of the next cycle, and determine the lead angle position of the next cycle and the next cycle.
- control module 306 is configured to control the motor to start according to the current operation mode if the relative positional relationship is the first positional relationship; if the relative positional relationship is the first positional relationship two positional relationship, the target operation mode is determined based on the current operation mode, and the motor is controlled to start according to the target operation mode, wherein the first positional relationship is opposite to the second positional relationship, and the target operation The mode is opposite to the commutation direction of the current operating mode.
- the acquisition module 300, the determination module 302, the position detection module 304 and the control module 306 correspond to steps S102 to S108 in Embodiment 1.
- the application scenarios are the same, but are not limited to the content disclosed in the first embodiment. It should be noted that the module can be run in a computer terminal as a part of the device.
- the acquisition module includes: an acquisition unit configured to acquire phase change information of the waveform of the current cycle in the output waveform of the position sensor; a first determination unit, for determining the lead angle position of the motor in the next cycle based on the phase change information of the waveform of the current cycle, wherein, as the rotation speed of the motor increases, the phase of the output waveform of the position sensor gradually increases becomes smaller, the lead angle position gradually lags behind.
- the position detection module 304 includes: a second determination unit, configured to detect that the output waveform of the position sensor does not appear before the lead angle position of the next cycle The jump edge of the next cycle determines that the relative positional relationship is the first positional relationship; the third determining unit is configured to detect if the position sensor is in the position sensor before the lead angle position of the next cycle. The transition edge of the next cycle appears in the output waveform, and the relative positional relationship is determined to be the second positional relationship.
- the various modules can be implemented by software or hardware, for example, for the latter, it can be implemented in the following manner: the various modules can be located in the same processor; or, the various modules can be implemented in any The combined way is in different processors.
- the motor starting control device may also include a processor and a memory.
- the acquisition module 300, the determination module 302, the position detection module 304, and the control module 306 are all stored in the memory as program units, and executed by the processor and stored in the memory. in the program unit to achieve the corresponding function.
- the processor includes a kernel, and the corresponding program unit is called from the memory by the kernel, and one or more of the kernels can be set.
- Memory may include non-persistent memory in computer readable media, random access memory (RAM) and/or non-volatile memory, such as read only memory (ROM) or flash memory (flash RAM), the memory including at least one memory chip.
- an embodiment of a storage medium is also provided.
- a computer program is stored in the storage medium, wherein when the computer program is run by the processor, any one of the above-mentioned motor startup control methods is executed.
- the storage medium may be located in any computer terminal in a computer terminal group in a computer network, or in any mobile terminal in a mobile terminal group, and a computer program is stored in the storage medium.
- the device where the storage medium is located is controlled to perform the following functions: acquiring the output waveform of the position sensor; determining the lead of the next cycle of the motor according to the waveform of the current cycle in the output waveform of the position sensor angular position; detect whether the transition edge of the next cycle appears in the output waveform of the position sensor before the leading angular position of the next cycle, and determine the leading angular position of the next cycle and the next cycle If the relative position relationship is the first position relationship, the motor is controlled to start according to the current operation mode; if the relative position relationship is the second position relationship, based on the The current operation mode determines a target operation mode, and controls the motor to start according to the target operation mode, wherein the first positional relationship is opposite to the second positional relationship, and the target operation mode is the same as the current operation mode.
- the commutation direction is opposite.
- the device where the storage medium is located is controlled to perform the following functions: acquiring phase change information of the waveform of the current cycle in the output waveform of the position sensor; based on the waveform of the current cycle Phase change information to determine the lead angle position of the motor in the next cycle, wherein, as the rotation speed of the motor increases, the phase of the output waveform of the position sensor gradually decreases, and the lead angle of the next cycle is The angular position gradually lags behind.
- the device where the storage medium is located is controlled to perform the following function: if there is no transition of the next cycle in the output waveform of the position sensor before the advance angle position of the next cycle edge, determine that the relative position relationship is the first position relationship; if the transition edge of the next cycle appears in the output waveform of the position sensor before the lead angle position of the next cycle, determine that the The relative positional relationship is the second positional relationship.
- the device where the storage medium is located is controlled to perform the following function: controlling the motor to perform commutation according to the current operating mode.
- the device where the storage medium is located is controlled to perform the following functions: determine an operation mode whose commutation direction is opposite to the commutation direction of the current operation mode as the target operation mode; control the motor according to the desired operation mode The target operating mode is commutated.
- an embodiment of a processor is also provided.
- the processor is configured to run a computer program, wherein when the computer program runs, any one of the above-mentioned motor startup control methods is executed.
- an embodiment of an electronic device including a memory and a processor, wherein a computer program is stored in the memory, and the processor is configured to run the computer program to execute any one of the foregoing Motor start control method.
- an embodiment of a computer program product is also provided, which, when executed on a data processing device, is adapted to execute a program initialized with the steps of any one of the above-mentioned motor starting control methods.
- the disclosed technical content can be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the above-mentioned units may be a logical function division.
- multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
- the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of units or modules, and may be in electrical or other forms.
- the units described above as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
- the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
- the above-mentioned integrated units are implemented in the form of software functional units and sold or used as independent products, they may be stored in a computer-readable non-volatile storage medium.
- the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art, or the whole or part of the technical solution, which is stored in a non-volatile
- a computer device which may be a personal computer, a server, or a network device, etc.
- the aforementioned non-volatile storage media include: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other storage devices medium of program code.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
一种电机启动控制方法及装置、处理器、存储介质。所述电机启动控制方法包括:获取位置传感器的输出波形;根据所述位置传感器的输出波形中的当前周期的波形确定所述电机的下一周期的超前角位置;检测在所述下一周期的超前角位置之前,所述位置传感器的输出波形中是否出现下一周期的跳变沿,确定所述下一周期的超前角位置与所述下一周期的跳变沿位置之间的相对位置关系;若所述相对位置关系为第一位置关系,则控制所述电机按照当前运行方式启动;若所述相对位置关系为第二位置关系,则基于所述当前运行方式确定目标运行方式,并控制所述电机按照所述目标运行方式启动,其中,所述第一位置关系与所述第二位置关系相反,所述目标运行方式与所述当前运行方式的换相方向相反。
Description
相关申请的交叉引用
本申请要求于2020年12月7日提交中国专利局,申请号为202011419020.4,申请名称为“电机启动控制方法及装置、处理器、非易失性存储介质”的中国专利申请的优先权,在此将其全文引入作为参考。
本申请涉及电机控制领域,具体而言,涉及一种电机启动控制方法及装置、处理器、存储介质。
在电机启动过程中,随着电机转速越来越高,检测电机转子位置的位置传感器的输出波形会越来越窄,由于位置传感器的下一个周期的输出波形无法进行预测,而电机的超前角是根据位置传感器的当前波形的变化设定的,所以在位置传感器的输出波形越来越窄的情况下,电机后面周期的超前角与位置传感器的输出波形的跳变沿位置会越来越近,导致出现电机的下一个超前角的位置,即跟随位置传感器的当前波形而设定的电机的下一个换相点,会滞后于位置传感器的输出波形中的下一个跳变沿的现象。
此时,如果电机还是按照跟随位置传感器的当前波形而设定电机的下一个周期的超前角进行换相,则会出现按照原方向连续输出PWM的情况,导致超前励磁逻辑出错,直接导致电机过流保护停机。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本申请实施例提供了一种电机启动控制方法及装置、处理器、存储介质,以至少解决相关技术在电机启动过程中,随着电机转速上升而位置传感器的输出波形越来越窄时,由于超前励磁逻辑出错而电机过流保护导致停机的技术问题。
根据本申请实施例的一个方面,提供了一种电机启动控制方法,包括:获取位置传感器的输出波形;根据所述位置传感器的输出波形中的当前周期的波形确定所述电机的下一周期的超前角位置;检测在所述下一周期的超前角位置之前,所述位置传感器的输出波形中的是 否出现下一周期的跳变沿,确定所述下一周期的超前角位置与所述下一周期的跳变沿位置之间的相对位置关系;若所述相对位置关系为第一位置关系,则控制所述电机按照当前运行方式启动;若所述相对位置关系为第二位置关系,则基于所述当前运行方式确定目标运行方式,并控制所述电机按照所述目标运行方式启动,其中,所述第一位置关系与所述第二位置关系相反,所述目标运行方式与所述当前运行方式的换相方向相反。
在一些实施例中,根据所述位置传感器的输出波形中的当前周期的波形确定所述电机的下一周期的超前角位置,包括:获取所述位置传感器的所述输出波形中的所述当前周期的波形的相位变化信息;基于所述当前周期的波形的相位变化信息,确定所述电机的所述下一周期的超前角位置,其中,随着所述电机的转速上升,所述位置传感器的输出波形的相位逐渐变小,所述下一周期的超前角位置逐渐滞后。
在一些实施例中,所述检测在所述下一周期的超前角位置之前,所述位置传感器的输出波形中是否出现下一周期的跳变沿,确定所述下一周期的超前角位置与所述下一周期的跳变沿位置之间的相对位置关系,包括:若在所述下一周期的超前角位置之前,所述位置传感器的输出波形中未出现所述下一周期的跳变沿,确定所述相对位置关系为所述第一位置关系;若在所述下一周期的超前角位置之前,所述位置传感器的输出波形中出现所述下一周期的跳变沿,确定所述相对位置关系为所述第二位置关系。
在一些实施例中,控制所述电机按照当前运行方式启动,包括:控制所述电机按照所述当前运行方式进行换相。
在一些实施例中,基于所述当前运行方式确定目标运行方式,并控制所述电机按照所述目标运行方式启动,包括:确定换相方向与所述当前运行方式的换相方向相反的运行方式为所述目标运行方式;控制所述电机按照所述目标运行方式进行换相。
根据本申请实施例的另一方面,还提供了一种电机启动控制装置,包括:获取模块,用于获取位置传感器的输出波形;确定模块,用于根据所述位置传感器的输出波形中的当前周期的波形确定所述电机的下一周期的超前角位置;位置检测模块,用于检测在所述下一周期的超前角位置之前,所述位置传感器的输出波形中的是否出现下一周期的跳变沿,确定所述下一周期的超前角位置与所述下一周期的跳变沿位置之间的相对位置关系;控制模块,用于若所述相对位置关系为第一位置关系,则控制所述电机按照当前运行方式启动;若所述相对位置关系为第二位置关系,则基于所述当前运行方式确定目标运行方式,并控制所述电机按照所述目标运行方式启动,其中,所述第一位置关系与所述第二位置关系相反,所述目标运行方式与所述当前运行方式的换相方向相反。
在一些实施例中,所述获取模块,获取单元,用于获取所述位置传感器的所述输出波形中的所述当前周期的波形的相位变化信息;第一确定单元,用于基于所述当前周期的波形的相位变化信息,确定所述电机的所述下一周期的超前角位置,其中,随着所述电机的转速上升,所述位置传感器的输出波形的相位逐渐变小,则所述超前角位置逐渐滞后。
在一些实施例中,所述位置检测模块,包括:第二确定单元,用于检测若在所述下一周期的超前角位置之前,所述位置传感器的输出波形中未出现所述下一周期的跳变沿,确定所述相对位置关系为所述第一位置关系;第三确定单元,用于检测若在所述下一周期的超前角位置之前,所述位置传感器的输出波形中出现所述下一周期的跳变沿,确定所述相对位置关系为所述第二位置关系。
根据本申请实施例的另一方面,还提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序由处理器运行时,执行任意一上述的电机启动控制方法。
根据本申请实施例的另一方面,还提供了一种处理器,所述处理器运行程序,执行任意一上述的电机启动控制方法。
根据本申请实施例的另一方面,还提供了一种电子设备,包括存储器和处理器,上述存储器中存储有计算机程序,所述处理器运行所述计算机程序时,执行任意一上述的电机启动控制方法。
在本申请实施例中,获取位置传感器的输出波形;根据所述位置传感器的输出波形中的当前周期的波形确定所述电机的下一周期的超前角位置;检测在所述下一周期的超前角位置之前,所述位置传感器的输出波形中是否出现下一周期的跳变沿,确定所述下一周期的超前角位置与所述下一周期跳变沿位置之间的相对位置关系;若所述相对位置关系为第一位置关系,则控制所述电机按照当前运行方式启动;若所述相对位置关系为第二位置关系,则基于上述当前运行方式确定目标运行方式,并控制上述电机按照所述目标运行方式启动,其中,所述第一位置关系与所述第二位置关系相反,所述目标运行方式与所述当前运行方式的换相方向相反,从而防止在电机启动过程中由于超前励磁逻辑出错电机过流保护出现停机,实现了保护电机在正常运行逻辑下启动的技术效果,进而解决了相关技术在电机启动过程中,随着电机转速上升而位置传感器的输出波形越来越窄时,由于超前励磁逻辑出错而电机过流保护导致停机的技术问题。
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示 意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请实施例的一种电机启动控制方法的流程图;
图2示出了根据本申请一实施例的电机启动控制方法的原理示意图;
图3是根据本申请实施例的一种电机启动控制装置的结构示意图。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例1
根据本申请实施例,提供了一种电机启动控制方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1是根据本申请实施例的一种电机启动控制方法的流程图,如图1所示,所述电机启动控制方法包括如下步骤:
步骤S102,获取位置传感器的输出波形;
步骤S104,根据所述位置传感器的输出波形中的当前周期的波形确定所述电机的下一周期的超前角位置;
步骤S106,检测在所述下一周期的超前角位置之前,所述位置传感器的输出波形中是否出现下一周期的跳变沿,确定所述下一周期的超前角位置与所述下一周期的跳变沿位置之间的相对位置关系;
步骤S108,若所述相对位置关系为第一位置关系,则控制所述电机按照当前运行方式启动;若所述相对位置关系为第二位置关系,则基于所述当前运行方式确定目标运行方式,并控制所述电机按照所述目标运行方式启动,其中,所述第一位置关系与上述所述第二位置关系相反,所述目标运行方式与所述当前运行方式的换相方向相反。
在本申请实施例中,通过获取位置传感器的输出波形;根据所述位置传感器的输出波形中的当前周期的波形确定所述电机的下一周期的超前角位置;检测在所述下一周期的超前角位置之前,所述位置传感器的输出波形中的是否出现下一周期的跳变沿,确定所述下一周期的超前角位置与所述下一周期的跳变沿位置之间的相对位置关系;若所述相对位置关系为第一位置关系,则控制所述电机按照当前运行方式启动;若所述相对位置关系为第二位置关系,则基于所述当前运行方式确定目标运行方式,并控制所述电机按照所述目标运行方式启动,其中,所述第一位置关系与所述第二位置关系相反,所述目标运行方式与所述当前运行方式的换相方向相反,从而防止在电机启动过程中由于超前励磁逻辑出错而出现电机过流保护停机的现象,实现了保护电机在正常运行逻辑下启动的技术效果,进而解决了相关技术在电机启动过程中,随着电机转速上升而位置传感器的输出波形越来越窄时,由于超前励磁逻辑出错而电机过流保护导致停机的技术问题。
可选的,所述电机可以为任意一种类型的电机,该电机可以设置在任意一种类型的电器设备中,例如,家电设备,如空调器等。
如图2示出了本申请一实施例的电机启动控制方法的原理示意图。在电机平稳运行过程中时,由于电机转速平稳,位置传感器的输出波形的相位不变,对应的电机超前角也不变,电机按照当前运行方式(即正常启动时的运行方式)进行换相,且该电机在启动后正常运行。
仍如图2所示,虚线a示出了超前角位置。在电机的启动过程中,b示出了位置传感器的输出波形中的跳变沿位置,图中的虚线所示的波形为电机的下一个周期的超前角跟随上位置传感器的输出波形中的当前周期的波形的相位变化时的位置传感器波形;虚线a与传感器的输出波形跳变沿位置b之间的横实线c用于标识超前角随着电机的转速升高,与位置传感器下一个周期的跳变沿位置的之间变化。
在电机启动过程中,由于电机转速越来越高,导致位置传感器的输出波形越来越窄,由于位置传感器下一个周期的输出波形无法预测,而电机秀一个周期的超前角是根据位置传感器的输出波形中的当前周期的波形变化设定的,所以当电机转速逐渐上升时,位置传感器的输出波形越来越窄,导致电机后面周期的超前角与位置传感器的输出波形的跳变沿位置越来越近,从而出现上电机的下一个超前角的位置,即跟随位置传感器的当前波形而设定的电机 的下一个换相点,会滞后于位置传感器的输出波形中的下一个跳变沿的现象。
此时如果电机还是按照当前运行方式进行换相,则会出现按照原方向连续输出PWM的情况,直接导致电机过流保护停机。因而可以控制电机直接按照与该当前运行方式的反方向进行换相,从而避免在电机启动过程,由于超前励磁逻辑出错,电机直接过流保护导致停机的情况出现。
在一种可选的实施例中,根据所述位置传感器的输出波形中的当前周期的波形确定所述电机的下一周期的超前角位置,包括:
步骤S202,获取所述位置传感器的所述输出波形中的所述当前周期的的波形的相位变化信息;
步骤S204,基于所述当前周期的波形的相位变化信息,确定所述电机的所述下一周期的超前角位置,其中,随着所述电机的转速上升,所述位置传感器的输出波形的相位逐渐变小,所述下一周期的超前角位置逐渐滞后。
仍如图2所示,可以看出随着电机转速上升,位置传感器的输出波形的相位逐渐变小,由于电机的下一周期的超前角是跟随位置传感器的当前周期的波形而改变的,所以可以看出前面三个超前角对应的横实线c逐渐变小,同时与对应的位置传感器的同一周期的跳变沿位置也逐渐变近,此时电机按照当前运行方式,即按照跟随位置传感器的当前波形而设定的电机的下一个周期的超前角进行换相时,该电机仍可以正常运行。而随着电机转速再逐渐上升,位置传感器的输出波形越来越窄,可以看到第四条虚线所示的电机这一周期的超前角的位置(即电机跟随位置传感器的输出波形的上一个周期的波形的超前角设定的换相点)滞后于位置传感器的这同一周期的跳变沿位置,如果此时电机仍然按照当前运行方式进行换相,则会出现按照原方向连续输出PWM的情况,直接导致电机过流保护而停机。
在一种可选的实施例中,所述检测在所述下一周期的超前角位置之前,所述位置传感器的输出波形中是否出现下一周期的跳变沿,确定所述下一周期的超前角位置与所述下一周期的跳变沿位置之间的相对位置关系,包括:
步骤S302,若在所述下一周期的超前角位置之前,所述位置传感器的输出波形中未出现所述下一周期的跳变沿若检测所述超前角位置处于所述波形跳变沿位置的第一方位时,确定所述相对位置关系为所述第一位置关系;
步骤S304,若在所述下一周期的超前角位置之前,所述位置传感器的输出波形中出现所述下一周期的跳变沿,确定所述相对位置关系为所述第二位置关系。
在一种可选的实施例中,控制所述电机按照当前运行方式启动,包括:控制所述电机按 照所述当前运行方式进行换相。
在一种可选的实施例中,基于所述当前运行方式确定目标运行方式,并控制所述电机按照所述目标运行方式启动,包括:
步骤S402,确定换相方向与所述当前运行方式的换相方向相反的运行方式为所述目标运行方式;
步骤S404,控制所述电机按照所述目标运行方式进行换相。
为了有效解决在电机启动过程中,由于电机转速上升,当位置传感器的输出波形越来越窄时,由于超前励磁逻辑出错,电机直接过流保护导致停机的情况出现。本申请实施例可以通过检测在所述下一周期的超前角位置之前,所述位置传感器的输出波形中是否出现下一周期的跳变沿,确定所述下一周期的超前角的位置与位置传感器的输出波形中的下一周期的跳变沿位置的相对位置关系,当在所述下一周期的超前角位置之前,所述位置传感器的输出波形中未出现所述下一周期的跳变沿(即第一位置关系)时,控制电机则按照当前运行方式进行换相。当在所述下一周期的超前角位置之前,所述位置传感器的输出波形中出现所述下一周期的跳变沿(即第二位置关系)时,则控制电机直接在跳变沿位置反方向进行换相,从而避免在电机启动过程由于超前励磁逻辑出错,从而可以避免出现电机直接过流保护而停机的情况。
实施例2
根据本申请实施例,还提供了一种用于实施所述电机启动控制方法的装置实施例,图3是根据本申请实施例的一种电机启动控制装置的结构示意图,如图3所示,所述电机启动控制装置,包括:获取模块300、确定模块302、位置检测模块304和控制模块306,其中:
获取模块300,用于获取位置传感器的输出波形;确定模块302,用于根据所述位置传感器的输出波形中的当前周期的波形确定所述电机的下一周期的超前角位置;位置检测模块304,用于检测在所述下一周期的超前角位置之前,所述位置传感器的输出波形中的是否出现下一周期的跳变沿,确定所述下一周期的超前角位置与所述下一周期的跳变沿位置之间的相对位置关系;控制模块306,用于若所述相对位置关系为第一位置关系,则控制所述电机按照当前运行方式启动;若所述相对位置关系为第二位置关系,则基于所述当前运行方式确定目标运行方式,并控制所述电机按照所述目标运行方式启动,其中,所述第一位置关系与所述第二位置关系相反,所述目标运行方式与所述当前运行方式的换相方向相反。
此处需要说明的是,所述获取模块300、确定模块302、位置检测模块304和控制模块 306对应于实施例1中的步骤S102至步骤S108,所述模块与对应的步骤所实现的实例和应用场景相同,但不限于所述实施例1所公开的内容。需要说明的是,所述模块作为装置的一部分可以运行在计算机终端中。
在一种可选的实施例中,所述获取模块,包括:获取单元,用于获取所述位置传感器的所述输出波形中的所述当前周期的波形的相位变化信息;第一确定单元,用于基于所述当前周期的波形的相位变化信息,确定所述电机的所述下一周期的超前角位置,其中,随着所述电机的转速上升,所述位置传感器的输出波形的相位逐渐变小,则所述超前角位置逐渐滞后。
在一种可选的实施例中,所述位置检测模块304,包括:第二确定单元,用于检测若在所述下一周期的超前角位置之前,所述位置传感器的输出波形中未出现所述下一周期的跳变沿,确定所述相对位置关系为所述第一位置关系;第三确定单元,用于检测若在所述下一周期的超前角位置之前,所述位置传感器的输出波形中出现所述下一周期的跳变沿,确定所述相对位置关系为所述第二位置关系。
需要说明的是,所述各个模块是可以通过软件或硬件来实现的,例如,对于后者,可以通过以下方式实现:所述各个模块可以位于同一处理器中;或者,所述各个模块以任意组合的方式位于不同的处理器中。
需要说明的是,本实施例的可选或优选实施方式可以参见实施例1中的相关描述,此处不再赘述。
所述的电机启动控制装置还可以包括处理器和存储器,所述获取模块300、确定模块302、位置检测模块304和控制模块306等均作为程序单元存储在存储器中,由处理器执行存储在存储器中的所述程序单元来实现相应的功能。
处理器中包含内核,由内核去存储器中调取相应的程序单元,所述内核可以设置一个或以上。存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
根据本申请实施例,还提供了一种存储介质的实施例。可选地,在本实施例中,所述存储介质中存储有计算机程序,其中,在所述计算机程序由处理器运行时,执行上述任意一种电机启动控制方法。
在一些实施例中,所述存储介质可以位于计算机网络中计算机终端群中的任意一个计算机终端中,或者位于移动终端群中的任意一个移动终端中,所述存储介质中存储有计算机程序。
在一些实施例中,在程序运行时控制存储介质所在设备执行以下功能:获取位置传感器 的输出波形;根据所述位置传感器的输出波形中的当前周期的波形确定所述电机的下一周期的超前角位置;检测在所述下一周期的超前角位置之前,所述位置传感器的输出波形中是否出现下一周期的跳变沿,确定所述下一周期的超前角位置与所述下一周期的跳变沿位置之间的相对位置关系;若所述相对位置关系为第一位置关系,则控制所述电机按照当前运行方式启动;若所述相对位置关系为第二位置关系,则基于所述当前运行方式确定目标运行方式,并控制所述电机按照所述目标运行方式启动,其中,所述第一位置关系与所述第二位置关系相反,所述目标运行方式与所述当前运行方式的换相方向相反。
在一些实施例中,在程序运行时控制存储介质所在设备执行以下功能:获取所述位置传感器的所述输出波形中的所述当前周期的波形的相位变化信息;基于所述当前周期的波形的相位变化信息,确定所述电机的所述下一周期的超前角位置,其中,随着所述电机的转速上升,所述位置传感器的输出波形的相位逐渐变小,所述下一周期的超前角位置逐渐滞后。
在一些实施例中,在程序运行时控制存储介质所在设备执行以下功能:若在所述下一周期的超前角位置之前,所述位置传感器的输出波形中未出现所述下一周期的跳变沿,确定所述相对位置关系为所述第一位置关系;若在所述下一周期的超前角位置之前,所述位置传感器的输出波形中出现所述下一周期的跳变沿,确定所述相对位置关系为所述第二位置关系。
在一些实施例中,在程序运行时控制存储介质所在设备执行以下功能:控制所述电机按照所述当前运行方式进行换相。
在一些实施例中,在程序运行时控制存储介质所在设备执行以下功能:确定换相方向与所述当前运行方式的换相方向相反的运行方式为所述目标运行方式;控制所述电机按照所述目标运行方式进行换相。
根据本申请实施例,还提供了一种处理器的实施例。可选地,在本实施例中,所述处理器用于运行计算机程序,其中,所述计算机程序运行时执行上述任意一种电机启动控制方法。
根据本申请实施例,还提供了一种电子设备的实施例,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器设置为运行所述计算机程序以执行上述任意一种的电机启动控制方法。
根据本申请实施例,还提供了一种计算机程序产品的实施例,当在数据处理设备上执行时,适于执行初始化有上述任意一种的电机启动控制方法步骤的程序。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取非易失性存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个非易失性存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例上述方法的全部或部分步骤。而前述的非易失性存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。
Claims (11)
- 一种电机启动控制方法,其特征在于,包括:获取位置传感器的输出波形;根据所述位置传感器的输出波形中的当前周期的波形确定所述电机的下一周期的超前角位置;检测在所述下一周期的超前角位置之前,所述位置传感器的输出波形中是否出现下一周期的跳变沿,确定所述下一周期的超前角位置与所述下一周期的跳变沿位置之间的相对位置关系;若所述相对位置关系为第一位置关系,则控制所述电机按照当前运行方式启动;若所述相对位置关系为第二位置关系,则基于所述当前运行方式确定目标运行方式,并控制所述电机按照所述目标运行方式启动,其中,所述第一位置关系与所述第二位置关系相反,所述目标运行方式与所述当前运行方式的换相方向相反。
- 根据权利要求1所述的方法,其特征在于,根据所述位置传感器的输出波形中的当前周期的波形确定所述电机的下一周期的超前角位置,包括:获取所述位置传感器的所述输出波形中的所述当前周期的波形的相位变化信息;基于所述当前周期的波形的相位变化信息,确定所述电机的所述下一周期的超前角位置,其中,随着所述电机的转速上升,所述位置传感器的输出波形的相位逐渐变小,所述下一周期的超前角位置逐渐滞后。
- 根据权利要求1所述的方法,其特征在于,所述检测在所述下一周期的超前角位置之前,所述位置传感器的输出波形中是否出现下一周期的跳变沿,确定所述下一周期的超前角位置与所述下一周期的跳变沿位置之间的相对位置关系,包括:若在所述下一周期的超前角位置之前,所述位置传感器的输出波形中未出现所述下一周期的跳变沿,确定所述相对位置关系为所述第一位置关系;若在所述下一周期的超前角位置之前,所述位置传感器的输出波形中出现所述下一周期的跳变沿,确定所述相对位置关系为所述第二位置关系。
- 根据权利要求3所述的方法,其特征在于,控制所述电机按照当前运行方式启动,包括:控制所述电机按照所述当前运行方式进行换相。
- 根据权利要求3所述的方法,其特征在于,基于所述当前运行方式确定目标运行方式,并控制所述电机按照所述目标运行方式启动,包括:确定换相方向与所述当前运行方式的换相方向相反的运行方式为所述目标运行方式;控制所述电机按照所述目标运行方式进行换相。
- 一种电机启动控制装置,其特征在于,包括:获取模块,用于获取位置传感器的输出波形;确定模块,用于根据所述位置传感器的输出波形中的当前周期的波形确定所述电机的下一周期的超前角位置;位置检测模块,用于检测在所述下一周期的超前角位置之前,所述位置传感器的输出波形中的是否出现下一周期的跳变沿,确定所述下一周期的超前角位置与所述下一周期的跳变沿位置之间的相对位置关系;控制模块,用于若所述相对位置关系为第一位置关系,则控制所述电机按照当前运行方式启动;若所述相对位置关系为第二位置关系,则基于所述当前运行方式确定目标运行方式,并控制所述电机按照所述目标运行方式启动,其中,所述第一位置关系与所述第二位置关系相反,所述目标运行方式与所述当前运行方式的换相方向相反。
- 根据权利要求6所述的装置,其特征在于,所述确定模块,包括:获取单元,用于获取所述位置传感器的所述输出波形中的所述当前周期的波形的相位变化信息;第一确定单元,用于基于所述当前周期的波形的相位变化信息,确定所述电机的所述下一周期的超前角位置,其中,随着所述电机的转速上升,所述位置传感器的输出波形的相位逐渐变小,则所述超前角位置逐渐滞后。
- 根据权利要求6所述的装置,其特征在于,所述位置检测模块,包括:第二确定单元,用于检测若在所述下一周期的超前角位置之前,所述位置传感器的输出波形中未出现所述下一周期的跳变沿,确定所述相对位置关系为所述第一位置关系;第三确定单元,用于检测若在所述下一周期的超前角位置之前,所述位置传感器的输出波形中出现所述下一周期的跳变沿,确定所述相对位置关系为所述第二位置关系。
- 一种存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序由处理器运行时,执行权利要求1至5中任意一项所述的电机启动控制方法。
- 一种处理器,其特征在于,所述处理器运行计算机程序时,执行权利要求1至5中任意一项所述的电机启动控制方法。
- 一种电子设备,包括存储器和处理器,其特征在于,所述存储器中存储有计算机程序,所述处理器运行所述计算机程序时,执行权利要求1至5中任意一项所述的电机启动控制方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011419020.4 | 2020-12-07 | ||
CN202011419020.4A CN112671270B (zh) | 2020-12-07 | 2020-12-07 | 电机启动控制方法及装置、处理器、非易失性存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022121369A1 true WO2022121369A1 (zh) | 2022-06-16 |
Family
ID=75401375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/113736 WO2022121369A1 (zh) | 2020-12-07 | 2021-08-20 | 电机启动控制方法及装置、处理器、存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112671270B (zh) |
WO (1) | WO2022121369A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112671270B (zh) * | 2020-12-07 | 2023-10-24 | 珠海格力电器股份有限公司 | 电机启动控制方法及装置、处理器、非易失性存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103250344A (zh) * | 2010-10-05 | 2013-08-14 | 戴森技术有限公司 | 电机的控制 |
CN106856393A (zh) * | 2015-12-07 | 2017-06-16 | 德昌电机(深圳)有限公司 | 电机控制系统、控制方法及吸尘器 |
CN108450054A (zh) * | 2016-02-04 | 2018-08-24 | 株式会社美姿把 | 电动机驱动装置及电动机驱动方法 |
CN108900117A (zh) * | 2017-05-15 | 2018-11-27 | 株式会社东芝 | 马达驱动装置 |
CN109245630A (zh) * | 2017-07-04 | 2019-01-18 | 迈来芯保加利亚有限公司 | 无传感器bdlc控制 |
CN112671270A (zh) * | 2020-12-07 | 2021-04-16 | 珠海格力电器股份有限公司 | 电机启动控制方法及装置、处理器、非易失性存储介质 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101545430B (zh) * | 2009-05-11 | 2011-05-11 | 福建省莆田市中涵机动力有限公司 | 用霍尔传感器直测提前角的电控ve分配泵 |
GB201006397D0 (en) * | 2010-04-16 | 2010-06-02 | Dyson Technology Ltd | Control of a brushless motor |
CN104702170B (zh) * | 2015-04-01 | 2017-04-19 | 南京航空航天大学 | 用于三相电励磁双凸极电动机的九状态控制策略 |
CN108900120A (zh) * | 2018-07-09 | 2018-11-27 | 西北工业大学 | 永磁无刷电机霍尔位置传感器容错控制方法 |
CN109995275B (zh) * | 2019-03-14 | 2022-06-10 | 江苏方天电力技术有限公司 | 一种电流源型调相机变频启动换相超前角分段控制方法 |
-
2020
- 2020-12-07 CN CN202011419020.4A patent/CN112671270B/zh active Active
-
2021
- 2021-08-20 WO PCT/CN2021/113736 patent/WO2022121369A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103250344A (zh) * | 2010-10-05 | 2013-08-14 | 戴森技术有限公司 | 电机的控制 |
CN106856393A (zh) * | 2015-12-07 | 2017-06-16 | 德昌电机(深圳)有限公司 | 电机控制系统、控制方法及吸尘器 |
CN108450054A (zh) * | 2016-02-04 | 2018-08-24 | 株式会社美姿把 | 电动机驱动装置及电动机驱动方法 |
CN108900117A (zh) * | 2017-05-15 | 2018-11-27 | 株式会社东芝 | 马达驱动装置 |
CN109245630A (zh) * | 2017-07-04 | 2019-01-18 | 迈来芯保加利亚有限公司 | 无传感器bdlc控制 |
CN112671270A (zh) * | 2020-12-07 | 2021-04-16 | 珠海格力电器股份有限公司 | 电机启动控制方法及装置、处理器、非易失性存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN112671270B (zh) | 2023-10-24 |
CN112671270A (zh) | 2021-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI699959B (zh) | 馬達驅動裝置及方法 | |
US7633251B2 (en) | Single-sensor based commutation of multi-phase motor | |
WO2022121369A1 (zh) | 电机启动控制方法及装置、处理器、存储介质 | |
JPH07194170A (ja) | 電動機および電動機の制御方法 | |
JP5721360B2 (ja) | モータ駆動装置およびそれを用いた冷却装置、多相センサレスモータの状態の判定方法 | |
JP2005057922A (ja) | ブラシレスモータ及びブラシレスモータの駆動方法 | |
CN113078854A (zh) | 一种电机控制方法、装置及电机 | |
CN107179911B (zh) | 一种重启管理引擎的方法和设备 | |
CN108574433A (zh) | 一种适用于大功率的无传感器直流无刷电机换相方法 | |
JP2006115641A (ja) | ブラシレスモータの制御方法およびブラシレスモータの制御装置並びに車両用ファンモータ装置 | |
CN112350631B (zh) | 一种排水泵控制方法、装置、设备及存储介质 | |
KR100977085B1 (ko) | 지능형 정렬을 이용한 센서리스 브러시리스 모터의 고속기동방법 | |
CN114944789A (zh) | 转子角度修正方法、装置、设备及存储介质 | |
CN109905059B (zh) | 一种无传感器直流无刷电机控制方法及装置 | |
CN109268299B (zh) | 风机转向检测装置、检测方法及风机 | |
WO2023010681A1 (zh) | 电机闭环切换方法、装置、电子设备及存储介质 | |
KR101837983B1 (ko) | Bldc 팬 모터 제어 방법 | |
CN117792160B (zh) | 转子位置检测方法、装置、计算机设备和存储介质 | |
CN111124504A (zh) | 一种交换机系统的开机控制方法、设备以及存储介质 | |
JP2004129386A (ja) | モータ制御方法 | |
WO2023115861A1 (zh) | 开关磁阻电机的控制方法、装置、烹饪设备和存储介质 | |
JP6739683B1 (ja) | モータ制御装置 | |
CN112583329B (zh) | 电动机控制装置 | |
TWI798151B (zh) | 馬達正反轉偵測器以及具有馬達正反轉偵測器的馬達驅動器 | |
JP5797478B2 (ja) | ブラシレスモータの制御装置及び制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21902078 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21902078 Country of ref document: EP Kind code of ref document: A1 |