WO2022121266A1 - 一种燃气轮机储能系统及峰谷发电方式 - Google Patents

一种燃气轮机储能系统及峰谷发电方式 Download PDF

Info

Publication number
WO2022121266A1
WO2022121266A1 PCT/CN2021/099969 CN2021099969W WO2022121266A1 WO 2022121266 A1 WO2022121266 A1 WO 2022121266A1 CN 2021099969 W CN2021099969 W CN 2021099969W WO 2022121266 A1 WO2022121266 A1 WO 2022121266A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
outlet
gas
heat exchanger
compressor
Prior art date
Application number
PCT/CN2021/099969
Other languages
English (en)
French (fr)
Inventor
靳普
Original Assignee
至玥腾风科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 至玥腾风科技集团有限公司 filed Critical 至玥腾风科技集团有限公司
Publication of WO2022121266A1 publication Critical patent/WO2022121266A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/003Gas-turbine plants with heaters between turbine stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/02Plural gas-turbine plants having a common power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Definitions

  • the invention relates to the field of energy utilization of gas turbines, in particular to a gas turbine energy storage system and a peak-valley power generation method.
  • Distributed energy systems combine the advantages of energy saving, environmental protection and high security. It is an effective way to alleviate the energy crisis, reduce environmental pollution and greenhouse gas emissions, improve energy security, and achieve sustainable development strategies.
  • micro gas turbine is one of the best ways to provide clean, reliable, high-quality, multi-purpose small distributed energy. fast.
  • Distributed energy systems based on micro-turbines are expected to be widely used in residential buildings, office buildings and other occasions due to their advantages of small size and light weight, strong fuel adaptability, low fuel consumption rate, low noise and vibration, low pollution emissions and low maintenance costs. .
  • the peak and valley electricity consumption of residential electricity is a new type of electricity price that has been piloted among urban residents. It divides 24 hours a day into two time periods, and calls 8:00-22:00 a total of 14 hours as the peak period, and the execution peak electricity price is 0.568 yuan/kwh; 22:00-8:00 the next day, a total of 10 The hour is called the valley section, and the valley electricity price is 0.288 yuan/kwh.
  • peak-valley electricity price is to encourage residents to take advantage of the favorable conditions of low-valley electricity price to consume a large amount of low-valley electricity, such as electric water heaters, air conditioners and other electrical equipment.
  • shifting the peak power consumption to the trough period not only alleviates the peak power supply and demand gap, but also promotes the optimal allocation of power resources, which is a win-win strategy of "peak shaving and valley filling".
  • the gas turbine can generate electricity separately during the peak and valley periods, it will greatly reduce the electricity cost of users during the peak period, and the energy saved in the valley period can also be effectively utilized.
  • the purpose of the present invention is to provide a gas turbine energy storage system and a peak-valley power generation method in view of the shortcomings of the prior art.
  • the present invention adopts the following scheme:
  • a gas turbine energy storage system the gas turbine generator set includes a core machine and a free machine
  • the core machine includes a compressor, a turbine and a combustion chamber
  • the compressor and the turbine are respectively sleeved at both ends of the same rotating shaft
  • the outlet of the compressor is connected to combustion
  • the air outlet of the combustion chamber is connected to the air inlet end of the turbine
  • the free machine includes a free turbine and a generator
  • the turbine and the generator are respectively sleeved on both ends of the free rotating shaft.
  • the high temperature and high pressure gas ejected after ignition and combustion in the combustion chamber drives the turbine to do work, and the turbine drives the coaxial compressor to work.
  • the high-temperature and high-pressure gas after working on the turbine is discharged, and the free turbine on the rear side is driven to rotate, thereby driving the coaxial generator to generate electricity.
  • the compressor is provided with a spare outlet, the spare outlet is connected to the first heat exchanger and then connected to the air storage tank inlet, the turbine outlet is connected to the second heat exchanger inlet and then connected to the free turbine inlet, and the air storage box outlet is connected to the second heat exchanger.
  • the heater merges with the exhaust from the turbine.
  • the gas discharged from the backup outlet of the compressor is cooled by heat exchange with the first heat exchanger, and then enters the gas storage tank for storage, and the first heat exchanger discharges the gas from the backup outlet of the compressor.
  • turn on the gas turbine close the backup outlet of the compressor and the inlet of the gas storage box, and open the outlet of the gas storage box.
  • the heat exchange is carried out in the device, and the gas with relatively uniform temperature is obtained, which merges with the exhaust gas of the turbine, and jointly promotes the rotation of the free turbine and drives the coaxial generator to generate electricity.
  • the first heat exchanger when the first heat exchanger is a liquid heat exchanger, the temperature of the gas discharged from the backup outlet of the compressor and the first heat exchanger is reduced after heat exchange, and then enters the gas storage tank for storage.
  • the liquid temperature when the liquid is water, distilled water or domestic hot water can be obtained to supply users;
  • the first heat exchanger is a gas heat exchanger, the gas discharged from the spare outlet of the compressor exchanges heat with the first heat exchanger After the temperature decreases, it enters the gas storage box for storage, and the gas temperature in the first heat exchanger increases, which can be used to connect with the lithium bromide unit for refrigeration or connect with the medium heating device to heat the medium heating or/and connect with the air purifier After purification Delivered to the user as heating.
  • the second heat exchanger is a gas heat exchanger, which is used for heat exchange between the high-pressure low-temperature gas stored in the valley section of the gas storage tank and the high-temperature and high-pressure gas discharged from the turbine to form gas with a relatively uniform temperature.
  • the compressor is driven and started by the motor.
  • the above-mentioned motor is a heuristic-integrated motor.
  • the heuristic-integrated motor is initially used as a motor to drive the micro gas turbine to rotate. After being accelerated to be able to operate independently, the heuristic-integrated motor is converted into a generator to generate electricity.
  • the core machine of the present invention is also provided with a regenerator.
  • the regenerator includes a first inlet, a first outlet, a second inlet, and a second outlet; the working medium enters the first inlet of the regenerator from the outlet of the compressor after being compressed by the compressor, and flows from the first inlet.
  • the outlet flows out, enters the combustion chamber and enters the turbine inlet after being burned.
  • the working medium enters the second inlet of the regenerator from the turbine outlet after being worked by the turbine. After heat exchange in the regenerator, it flows out from its second outlet and passes through the second heat exchange. After the heat exchange, the free turbine is pushed to do work, and the generator is driven to generate electricity.
  • a solar reflector and a solar collector are also included.
  • the solar collector is arranged on a micro-turbine; the micro-turbine is located above the solar reflector, and the solar collector is located on the focus point of the solar reflector (such as a dish reflector).
  • the solar energy collecting device is a heat absorbing plate, and the heat absorbing plate is wrapped on the shell of the regenerator, or used as part or all of the shell of the regenerator.
  • the invention adopts the power generation method of peak and valley startup: in the valley section of electricity consumption, close the outlet of the compressor and the outlet of the air storage box, open the backup outlet of the compressor, the inlet of the first heat exchanger and the inlet of the air storage box, the compressor is started, and the air is cooled by After being compressed, it enters the first heat exchanger from the standby outlet, and transfers heat to the user.
  • the high-pressure gas after heat exchange and cooling enters the gas storage box from the inlet of the gas storage tank for storage, which avoids the complete shutdown of the gas turbine in the valley section of electricity consumption, and effectively utilizes
  • high-pressure gas is prepared for use in the peak electricity consumption period, and waste heat is recovered through the first heat exchanger during the process; in the peak electricity consumption period, the backup outlet of the compressor, the first heat exchanger and the inlet of the gas storage box are closed , open the outlet of the compressor, the outlet of the air storage box, and the second heat exchanger.
  • the working medium enters from the inlet of the compressor and is compressed by the compressor, and then enters the combustion chamber from its outlet, and ignites and burns in the combustion chamber.
  • the high-pressure gas drives the turbine to do work
  • the turbine drives the coaxial compressor to work
  • the high-temperature and high-pressure gas after doing work on the turbine is discharged into the second heat exchanger.
  • the high-pressure low-temperature gas stored in the valley section of the gas storage box enters the second heat exchanger.
  • the free turbine drives the free turbine to do work and drives the generator to generate electricity.
  • the high-pressure gas stored in the valley section of electricity consumption is used in the peak period of electricity consumption, and the power generation efficiency is higher.
  • the regenerator is installed to significantly improve the heat utilization rate of the gas turbine.
  • the high-temperature gas discharged from the core turbine is introduced into the regenerator to heat the gas compressed from the compressor, fully recycle the heat generated by the combustion gas, and improve the combustion efficiency.
  • the temperature of the gas in front of the chamber improves the combustion efficiency, generates more heat, and makes the gas temperature discharged from the turbine higher, forming a virtuous cycle, which in turn increases the temperature and energy of the gas entering the turbine of the free machine, and improves the power generation efficiency of the free machine.
  • the gas turbine of the present invention is a multi-stage turbine, including a core machine and a free machine.
  • the process complexity is smaller than that of a single-stage turbine, the shaft length is shorter, the parts on the shaft are less arranged, and the vibration phenomenon is gentler.
  • the energy storage structure of the present invention is simple, the utilization rate of the high-pressure gas in the gas storage box is improved while the overall cost is reduced, the gas storage process does not require too many devices, the energy consumption is reduced, and the storage capacity is improved.
  • the gas utilization process does not require excessive treatment of the high-pressure gas.
  • the inspired integrated motor also ensures the utilization of the energy generated by the rotation of the core machine turbine, and the power generation efficiency is high.
  • FIG. 1 is a schematic diagram of a gas turbine energy storage system of the present invention.
  • FIGS 2 and 3 are schematic diagrams of two other embodiments of the gas turbine energy storage system of the present invention.
  • the gas turbine generator set includes a core machine and a free machine
  • the core machine includes a compressor 102, a turbine 104 and a combustion chamber 105
  • the compressor 102 and the turbine 104 are respectively set in the same
  • the outlet of the compressor 102 is connected to the combustion chamber 105
  • the outlet of the combustion chamber is connected to the inlet end of the turbine
  • the free machine includes a free turbine 301 and a generator 302
  • the free turbine 301 and the generator 302 are respectively sleeved on both ends of the free rotating shaft .
  • the working medium enters from the inlet of the compressor 102 and is compressed by the compressor 102 and then enters the combustion chamber 105 from its outlet.
  • the high-temperature and high-pressure gas ejected after ignition and combustion in the combustion chamber 105 pushes the turbine 104 to do work, and the turbine 104 drives
  • the coaxial compressor 102 works to discharge the high-temperature and high-pressure gas after working on the turbine 104 , and pushes the free turbine 301 on the rear side to rotate, thereby driving the coaxial generator 302 to generate electricity.
  • the compressor 102 is provided with a backup outlet, the backup outlet is connected to the first heat exchanger 901 and then connected to the inlet of the air storage tank 900, the air outlet of the turbine 104 is connected to the inlet of the second heat exchanger 902 and then connected to the inlet of the free turbine 301, and the air storage box
  • the outlet 900 is connected to a second heat exchanger 902 where the exhaust from the turbine 104 joins.
  • the waste heat of the gas discharged from the backup outlet of the compressor 102 is recycled; when the electricity consumption peaks, the gas turbine is turned on, the backup outlet of the compressor 102 and the inlet of the gas storage box 900 are closed, and the outlet of the gas storage box 900 is opened, and electricity is used in the gas storage box 900
  • the gas stored in the trough stage undergoes heat exchange in the second heat exchanger 902 to obtain gas with a relatively uniform temperature, which is combined with the exhaust gas of the turbine 104 to jointly drive the free turbine 301 to rotate and then drive the coaxial generator 302 to generate electricity.
  • the gas discharged from the standby outlet of the compressor 102 undergoes heat exchange with the first heat exchanger 901 and the temperature decreases, and then enters the gas storage tank 900 for storage.
  • the temperature of the liquid in the heat exchanger 901 increases, and when the liquid is water, distilled water or domestic hot water can be obtained to supply users;
  • the first heat exchanger 901 is a gas heat exchanger, the gas discharged from the standby outlet of the compressor 102 is the same as that of the first heat exchanger.
  • the temperature of the first heat exchanger 901 decreases after heat exchange, and then enters the gas storage tank 900 for storage.
  • the temperature of the gas in the first heat exchanger 901 increases, which can be used to connect with the lithium bromide unit for cooling or connect with the medium heating device to heat the medium for heating Or/and connected with an air purifier, after purification, it is delivered to the user as warm air.
  • the second heat exchanger is a gas heat exchanger, and is used for heat exchange between the high-pressure and low-temperature gas stored in the valley section of the gas storage tank 900 and the high-temperature and high-pressure gas discharged from the turbine 104 to form gas with a relatively uniform temperature.
  • the compressor 102 is driven and started by the inspiring integrated motor 103, which initially acts as a motor to drive the micro gas turbine to rotate. After being accelerated to be able to operate independently, the inspiring integrated motor is converted into a generator to generate electricity.
  • the core machine of the present invention is further provided with a regenerator 101 .
  • the regenerator 101 includes a first inlet 1011, a first outlet 1012, a second inlet 1013, and a second outlet 1014; the working medium enters the regenerator 101 from the outlet of the compressor 102 after being compressed by the compressor 102.
  • the first inlet 1011 flows out from the first outlet 1012, enters the combustion chamber 105 and enters the inlet of the turbine 104 after being burned. After heat exchange in 101, it flows out from its second outlet 1014, and after heat exchange through the second heat exchanger 902, it pushes the free turbine 301 to do work, and drives the generator 302 to generate electricity.
  • a solar reflector 2 and a solar collector 21 are also included, and the solar collector 21 is arranged on a micro-turbine; the micro-turbine is located above the solar reflector 2, and the solar collector 21 is located on the The solar reflector 2 (such as a dish reflector) converges on the spot.
  • the solar energy collecting device 2 is a heat absorbing plate, and the heat absorbing plate is covered on the casing of the regenerator 101 , or used as part or all of the casing of the regenerator 101 .
  • the light increases the heat accumulated on the daytime regenerator 101, which can generate more electricity and heat.
  • the present invention adopts the peak-valley power generation method: in the valley section of electricity consumption, close the outlet of the compressor 102 and the outlet of the gas storage box 900, open the backup outlet of the compressor 102, the inlet of the first heat exchanger 901 and the inlet of the gas storage box 900, and the compressor 102 is opened.
  • the engine 102 starts, the air is compressed and enters the first heat exchanger 901 from the standby outlet to transfer heat to the user, and the high-pressure gas after heat exchange and cooling enters the gas storage tank 900 from the inlet of the gas storage tank 900 for storage, avoiding the gas turbine
  • the power consumption valley section is completely shut down, and this period is effectively used to prepare high-pressure gas for use in the power consumption peak section, and the waste heat is recovered through the first heat exchanger 901 during this process; in the power consumption peak section, close the compressor 102 standby outlet , the inlet of the first heat exchanger 901 and the gas storage box 900, open the outlet of the compressor 102, the outlet of the gas storage box 900, and the second heat exchanger 902.
  • the working fluid enters the inlet of the compressor 102 and is compressed by the compressor 102. It enters the combustion chamber 105 from its outlet, and the high-temperature and high-pressure gas ejected after ignition and combustion in the combustion chamber 105 drives the turbine 104 to do work.
  • the high-pressure low-temperature gas stored in the gas storage tank 900 enters the second heat exchanger 902, and after heat exchange with the high-temperature and high-pressure gas discharged from the turbine 104, it pushes the free turbine 301 to do work and drives power generation.
  • Machine 302 generates electricity.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种燃气轮机储能系统及峰谷发电方式,燃气轮机储能系统包括核心机和自由机;核心机包括压气机(102)、涡轮(104)和燃烧室(105);自由机包括自由涡轮(301)和发电机(302);压气机(102)设置一备用出口,该备用出口连接第一换热器(901)后连接至储气箱(900)入口,涡轮(104)出气端连接至第二换热器(902)入口后连接自由涡轮(301)入口,储气箱(900)出口连接至第二换热器(902)与涡轮(104)的排气汇合。

Description

一种燃气轮机储能系统及峰谷发电方式 技术领域
本发明涉及燃气轮机的能量利用领域,具体为一种燃气轮机储能系统及峰谷发电方式。
背景技术
分布式能源系统集节能、环保和高安全性等优势于一身,是缓解能源危机,减少环境污染和温室气体排放,提高能源安全性,实现可持续发展战略的有效途径。作为分布式能源系统的重要发展方向,微型燃气轮机是提供清洁、可靠、高质量、多用途的小型分布式能源的最佳方式之一,目前在美国、日本、欧盟等发达国家和地区及国内发展迅速。基于微型燃气轮机的分布式能源系统由于其尺寸小重量轻、燃料适应性强、燃料消耗率低、噪音震动小、污染排放低及维护费用低等优势有望广泛应用到为居民楼、办公楼等场合。
但现有的微型燃气轮机的分布式能源系统,仍存在排出的高温废气的余热未被高效利用、热循环效率不高,造成能源浪费等缺点。
根据物价局经济贸易委员会电力工业局联合发文的文件精神,居民生活用电峰谷电,是在城市居民当中开展试点的一种新电价类别。它是将一天24小时划分成两个时间段,把8:00-22:00共14小时称为峰段,执行峰电价为0.568元/kwh;22:00-次日8:00共10个小时称为谷段,执行谷电价为0.288元/kwh。"峰谷电价"意义在于,鼓励居民利用低谷电价的优惠条件大量消费低谷电力,比如电热水器、空调和其他电器设备。同时,对电力部门来说,将高峰用电转移到低谷时段,既缓解了高峰电力供需缺口,又促进了电力资源的优化配置,是一项"削峰填谷"的双赢策略。
燃气轮机作为发电机组,如果能在峰谷时段分开发电,则会大大降低用户峰段用电成本,在谷段节约的能源也可以被有效利用。
发明内容
本发明的目的在于针对现有技术存在的不足,提供一种燃气轮机储能系统及峰谷发电方式。
为实现上述目的,本发明采取下述方案:
一种燃气轮机储能系统,燃气轮机发电机组包括核心机和自由机,所述核心机包括压气机、涡轮和燃烧室,所述压气机和涡轮分别套设在同一转轴两端,压气机出口连通燃烧室,燃烧室出气口连通涡轮进气端;自由机包括自由涡轮和发电机,所述涡轮和发电机分别套设于自由转轴的两端。燃气轮机正常工作时,工质从压气机入口进入经压气机压缩后从其出口进入燃烧室,在燃烧室内点火并燃烧后喷出的高温高压气体推动涡轮做功,涡轮带动同轴的压气机工作,对涡轮做功后的高温高压气体排出,推动其后侧的自由涡轮转动进而带动与其同轴的发电机发电。
压气机设置一备用出口,该备用出口连接第一换热器后连接至储气箱入口,涡轮出气端连接至第二换热器入口后连接自由涡轮入口,储气箱出口连接至第二换热器与涡轮的排气汇合。在用电低谷时,仅开启压气机,压气机备用出口排出的气体与第一换热器进行热交换后温度降低,之后进入储气箱存储起来,第一换热器对压气机备用出口排出的气体余热进行回收利用;在用电高峰时,开启燃气轮机,关闭压气机备用出口及储气箱入口,开启储气箱的出口,储气箱内在用电低谷阶段储存的气体在第二换热器内进行热交换,得到温度相对均匀的气体、与涡轮的排气汇合,共同推动自由涡轮转动进而带动与其同轴的发电机发电。
具体地,当第一换热器为液体换热器时,压气机备用出口排出的气体与第一换热器进行热交换后温度降低,之后进入储气箱存储起来,第一换热器内液体温度升高,当该液体为水时,可获得蒸馏水或生活热水供给用户;第一换热器为气体换热器时,压气机备用出口排出的气体与第一换热器进行热交换后温度降低,之后进入储气箱存储起来,第一换热器内气体温度升高,可用于与溴 化锂机组连接制冷或和介质供暖装置连接以加热介质供暖或/和空气净化器连接经净化后作为暖气输送至用户。
第二换热器为气体热交换器,用于将储气箱内在谷段存储的高压低温气体和涡轮排出的高温高压气体进行热交换,形成温度相对均匀的气体。
进一步地,压气机通过电机带动启动。
进一步地,上述电机为启发一体式电机,所述启发一体式电机起初作为电动机带动微型燃气轮机旋转,待加速到能独立运行后,所述启发一体式电机转化为发电机发电。
进一步地,本发明的核心机还设有回热器。所述回热器包括第一进口、第一出口、第二进口、第二出口;工质从压气机入口进入经压气机压缩后从其出口进入回热器的第一入口,并从第一出口流出、进入燃烧室燃烧后进入涡轮入口,工质经涡轮做工后从涡轮出口进入回热器的第二入口,在回热器内换热后从其第二出口流出、经第二换热器换热后推动自由涡轮做功,带动发电机发电。
进一步地,还包括太阳能反射镜、太阳能收集装置,太阳能收集装置设在微型燃气轮机上;微型燃气轮机位于太阳能反射镜上方,并使太阳能收集装置位于太阳能反射镜(比如碟式反光镜)聚点上。
所述太阳能收集装置为吸热板,吸热板包覆在回热器外壳上,或作为回热器的部分或全部外壳。
本发明采用峰谷启动的发电方式:在用电谷段,关闭压气机出口、储气箱出口,开启压气机备用出口、第一换热器入口及储气箱入口,压气机启动,空气被压缩后从备用出口进入第一换热器,将热量传递给用户,换热降温后的高压气体从储气箱入口进入储气箱内存储,避免了燃气轮机在用电谷段完全停机,有效利用该时段制备高压气体以供用电峰段使用,并在该过程中通过第一换热器进行余热回收;在用电峰段,关闭压气机备用出口、第一换热器及储气箱入口,开启压气机出口、储气箱出口、第二换热器,此时,工质从压气机入口进入经压气机压缩后从其出口进入燃烧室,在燃烧室内点火并燃烧后喷出的高温 高压气体推动涡轮做功,涡轮带动同轴的压气机工作,对涡轮做功后的高温高压气体排出进入第二换热器,同时,储气箱内在谷段存储的高压低温气体进入第二换热器,与涡轮排出的高温高压气体换热汇合后一同推动自由涡轮做功,带动发电机发电。
本发明与现有技术相比的优点在于:
1、在峰谷时段分开发电,大大降低用户峰段用电成本,在谷段节约的能源也可以被有效利用。
2、避免了燃气轮机在用电谷段完全停机,有效利用该时段制备高压气体以供用电峰段使用,并在该过程中通过第一换热器进行余热回收。
3、用电峰段利用了在用电谷段存储的高压气体,发电效率更高。
4、设置回热器显著提高燃气轮机的热量利用率,通过核心机涡轮排出的高温气体导入回热器,对从压气机压缩后的气体进行加热,充分循环利用燃烧气体产生的热量,提高进入燃烧室前气体的温度,提高燃烧效率,产生更多的热,使涡轮排出的气体温度更高,形成良性循环,进而增加了进入自由机涡轮内气体的温度和能量,提高自由机的发电效率。
5、设置太阳能收集装置,提高回热器的温度,光照增加了日间回热器上聚集的热量,可以产生更多的电能和热。
6、本发明的燃气轮机为多级涡轮,包括核心机和自由机,工艺复杂度比单级涡轮小,且轴长更短,轴上零件布置更少,震动现象较平缓。在压气机气体的回收利用方面,本发明的储能结构简单,在降低整体成本的同时提高了储气箱中高压气体的利用率,储气过程不需要过多的装置,减少能源消耗,储气利用过程不需要对高压气体进行过多处理,仅需将高压低温气体与核心机涡轮排出的高温高压气体混合即可用于推动自由机涡轮转动,充分利用涡轮排气进行自由机的发电,同时启发一体式电机又保证了核心机涡轮转动产生的能量的利用,发电效率高。
附图说明
图1为本发明的燃气轮机储能系统示意图。
图2、3为本发明的燃气轮机储能系统另外两种实施方式示意图。
附图标记:101-回热器,1011-第一进口,1012-第一出口,1013-第二进口,1014-第二出口,102-压气机,103-启发一体式电机,104-涡轮,105-燃烧室,2-太阳能反射镜,21-太阳能收集装置,301-自由涡轮,302-发电机,900-储气箱,901-第一换热器,902-第二换热器。
具体实施方式
实施例1
如图1所示,一种燃气轮机储能系统,燃气轮机发电机组包括核心机和自由机,所述核心机包括压气机102、涡轮104和燃烧室105,压气机102和涡轮104分别套设在同一转轴两端,压气机102出口连通燃烧室105,燃烧室出气口连通涡轮进气端;自由机包括自由涡轮301和发电机302,自由涡轮301和发电机302分别套设于自由转轴的两端。燃气轮机正常工作时,工质从压气机102入口进入经压气机102压缩后从其出口进入燃烧室105,在燃烧室105内点火并燃烧后喷出的高温高压气体推动涡轮104做功,涡轮104带动同轴的压气机102工作,对涡轮104做功后的高温高压气体排出,推动其后侧的自由涡轮301转动进而带动与其同轴的发电机302发电。
压气机102设置一备用出口,该备用出口连接第一换热器901后连接至储气箱900入口,涡轮104出气端连接至第二换热器902入口后连接自由涡轮301入口,储气箱900出口连接至第二换热器902与涡轮104的排气汇合。在用电低谷时,仅开启压气机102,压气机102备用出口排出的气体与第一换热器901进行热交换后温度降低,之后进入储气箱900存储起来,第一换热器901对压气机102备用出口排出的气体余热进行回收利用;在用电高峰时,开启燃气轮机,关闭压气机102备用出口及储气箱900入口,开启储气箱900的出口,储气箱900内在用电低谷阶段储存的气体在第二换热器902内进行热交换,得到温度相对均匀的气体、与涡轮104的排气汇合,共同推动自由涡轮301转动进 而带动与其同轴的发电机302发电。
具体地,当第一换热器901为液体换热器时,压气机102备用出口排出的气体与第一换热器901进行热交换后温度降低,之后进入储气箱900存储起来,第一换热器901内液体温度升高,当该液体为水时,可获得蒸馏水或生活热水供给用户;第一换热器901为气体换热器时,压气机102备用出口排出的气体与第一换热器901进行热交换后温度降低,之后进入储气箱900存储起来,第一换热器901内气体温度升高,可用于与溴化锂机组连接制冷或和介质供暖装置连接以加热介质供暖或/和空气净化器连接经净化后作为暖气输送至用户。
第二换热器为气体热交换器,用于将储气箱900内在谷段存储的高压低温气体和涡轮104排出的高温高压气体进行热交换,形成温度相对均匀的气体。
其中,压气机102通过启发一体式电机103带动启动,所述启发一体式电机103起初作为电动机带动微型燃气轮机旋转,待加速到能独立运行后,所述启发一体式电机转化为发电机发电。
实施例2
参见图2,在实施例1的基础上,本发明的核心机还设有回热器101。所述回热器101包括第一进口1011、第一出口1012、第二进口1013、第二出口1014;工质从压气机102入口进入经压气机102压缩后从其出口进入回热器101的第一入口1011,并从第一出口1012流出、进入燃烧室105燃烧后进入涡轮104入口,工质经涡轮104做工后从涡轮104出口进入回热器101的第二入口1013,在回热器101内换热后从其第二出口1014流出、经第二换热器902换热后推动自由涡轮301做功,带动发电机302发电。
实施例3
参见图3,在实施例2的基础上,还包括太阳能反射镜2、太阳能收集装置21,太阳能收集装置21设在微型燃气轮机上;微型燃气轮机位于太阳能反射镜2上方,并使太阳能收集装置21位于太阳能反射镜2(比如碟式反光镜)聚点上。
所述太阳能收集装置2为吸热板,吸热板包覆在回热器101外壳上,或作为回热器101的部分或全部外壳。光照增加了日间回热器101上聚集的热量,可以产生更多的电能和热。
本发明采用峰谷启动的发电方式:在用电谷段,关闭压气机102出口、储气箱900出口,开启压气机102备用出口、第一换热器901入口及储气箱900入口,压气机102启动,空气被压缩后从备用出口进入第一换热器901,将热量传递给用户,换热降温后的高压气体从储气箱900入口进入储气箱900内存储,避免了燃气轮机在用电谷段完全停机,有效利用该时段制备高压气体以供用电峰段使用,并在该过程中通过第一换热器901进行余热回收;在用电峰段,关闭压气机102备用出口、第一换热器901及储气箱900入口,开启压气机102出口、储气箱900出口、第二换热器902,此时,工质从压气机102入口进入经压气机102压缩后从其出口进入燃烧室105,在燃烧室105内点火并燃烧后喷出的高温高压气体推动涡轮104做功,涡轮104带动同轴的压气机102工作,对涡轮104做功后的高温高压气体排出进入第二换热器902,同时,储气箱900内在谷段存储的高压低温气体进入第二换热器902,与涡轮104排出的高温高压气体换热汇合后一同推动自由涡轮301做功,带动发电机302发电。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安 装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种燃气轮机储能系统,其特征在于,燃气轮机发电机组包括核心机和自由机,所述核心机包括压气机、涡轮和燃烧室,所述压气机和涡轮分别套设在同一转轴两端,压气机出口连通燃烧室,燃烧室出气口连通涡轮进气端;自由机包括自由涡轮和发电机,所述涡轮和发电机分别套设于自由转轴的两端;
    压气机设置一备用出口,该备用出口连接第一换热器后连接至储气箱入口,涡轮出气端连接至第二换热器入口后连接自由涡轮入口,储气箱出口连接至第二换热器与涡轮的排气汇合。
  2. 根据权利要求1所述的一种燃气轮机储能系统,其特征在于,第一换热器为液体换热器。
  3. 根据权利要求1所述的一种燃气轮机储能系统,其特征在于,第一换热器为气体换热器。
  4. 根据权利要求1所述的一种燃气轮机储能系统,其特征在于,第二换热器为气体热交换器。
  5. 根据权利要求1所述的一种燃气轮机储能系统,其特征在于,压气机通过电机带动启动。
  6. 根据权利要求5所述的一种燃气轮机储能系统,其特征在于,电机为启发一体式电机,所述启发一体式电机起初作为电动机带动微型燃气轮机旋转,待加速到能独立运行后,所述启发一体式电机转化为发电机发电。
  7. 根据权利要求1-6任一项所述的一种燃气轮机储能系统,其特征在于,核心机还设有回热器;所述回热器包括第一进口、第一出口、第二进口、第二出口;工质从压气机入口进入经压气机压缩后从其出口进入回热器的第一入口,并从第一出口流出、进入燃烧室燃烧后进入涡轮入口,工质经涡轮做工后从涡轮出口进入回热器的第二入口,在回热器内换热后从其第二出口流出、经第二换热器换热后推动自由涡轮做功,带动发电机发电。
  8. 根据权利要求7所述的一种燃气轮机储能系统,其特征在于,还包括太 阳能反射镜、太阳能收集装置,太阳能收集装置设在微型燃气轮机上;微型燃气轮机位于太阳能反射镜上方,并使太阳能收集装置位于太阳能反射镜聚点上。
  9. 根据权利要求8所述的一种燃气轮机储能系统,其特征在于,所述太阳能收集装置为吸热板,吸热板包覆在回热器外壳上,或作为回热器的部分或全部外壳。
  10. 根据权利要求1-9任一项所述的一种燃气轮机储能系统的峰谷启动发电方式,其特征在于,在用电谷段,关闭压气机出口、储气箱出口,开启压气机备用出口、第一换热器入口及储气箱入口,压气机启动,空气被压缩后从备用出口进入第一换热器,将热量传递给用户,换热降温后的高压气体从储气箱入口进入储气箱内存储,有效利用该时段制备高压气体以供用电峰段使用;在用电峰段,关闭压气机备用出口、第一换热器及储气箱入口,开启压气机出口、储气箱出口、第二换热器,此时,工质从压气机入口进入经压气机压缩后从其出口进入燃烧室,在燃烧室内点火并燃烧后喷出的高温高压气体推动涡轮做功,涡轮带动同轴的压气机工作,对涡轮做功后的高温高压气体排出进入第二换热器,同时,储气箱内在谷段存储的高压低温气体进入第二换热器,与涡轮排出的高温高压气体换热汇合后一同推动自由涡轮做功,带动发电机发电。
PCT/CN2021/099969 2020-12-07 2021-06-15 一种燃气轮机储能系统及峰谷发电方式 WO2022121266A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011428499.8 2020-12-07
CN202011428499.8A CN112502838B (zh) 2020-12-07 2020-12-07 一种燃气轮机储能系统及峰谷发电方式

Publications (1)

Publication Number Publication Date
WO2022121266A1 true WO2022121266A1 (zh) 2022-06-16

Family

ID=74970063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099969 WO2022121266A1 (zh) 2020-12-07 2021-06-15 一种燃气轮机储能系统及峰谷发电方式

Country Status (2)

Country Link
CN (1) CN112502838B (zh)
WO (1) WO2022121266A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112502838B (zh) * 2020-12-07 2023-10-20 刘慕华 一种燃气轮机储能系统及峰谷发电方式

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0377565B1 (en) * 1987-05-13 1995-02-15 HILL ENVIRONMENTAL, Inc. Retrofit of simple cycle gas turbines for compressed air energy storage application
CN102822474A (zh) * 2009-12-08 2012-12-12 德赛尔-兰德公司 用于具有附加发电膨胀器的压缩空气储能应用的简单循环燃气轮机的改造
CN103244215A (zh) * 2013-05-08 2013-08-14 中国能源建设集团广东省电力设计研究院 提升压缩空气储能技术能量转换效率的方法及装置
CN103291455A (zh) * 2013-05-08 2013-09-11 中国能源建设集团广东省电力设计研究院 热电联供的压缩空气储能方法及储能系统
CN107524521A (zh) * 2017-09-13 2017-12-29 北京黄铉动力科技有限公司 涡轮压缩空气发动机
CN107939525A (zh) * 2017-11-07 2018-04-20 中国能源建设集团广东省电力设计研究院有限公司 压缩空气储能系统中的燃气膨胀机做功系统及方法
CN109915345A (zh) * 2019-04-23 2019-06-21 山东大学 一种带喷射器多级优化的压缩空气储能系统及方法
CN112502838A (zh) * 2020-12-07 2021-03-16 至玥腾风科技集团有限公司 一种燃气轮机储能系统及峰谷发电方式

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115859A (ja) * 1999-10-19 2001-04-24 Toshiba Corp Caes発電システム
CN103016152B (zh) * 2012-12-06 2014-10-01 中国科学院工程热物理研究所 一种新型流程的超临界空气储能系统
EP4382735A2 (en) * 2017-03-09 2024-06-12 Hydrostor Inc. A thermal storage apparatus for a compressed gas energy storage system
CN214366402U (zh) * 2020-12-07 2021-10-08 靳普 一种燃气轮机储能系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0377565B1 (en) * 1987-05-13 1995-02-15 HILL ENVIRONMENTAL, Inc. Retrofit of simple cycle gas turbines for compressed air energy storage application
CN102822474A (zh) * 2009-12-08 2012-12-12 德赛尔-兰德公司 用于具有附加发电膨胀器的压缩空气储能应用的简单循环燃气轮机的改造
CN103244215A (zh) * 2013-05-08 2013-08-14 中国能源建设集团广东省电力设计研究院 提升压缩空气储能技术能量转换效率的方法及装置
CN103291455A (zh) * 2013-05-08 2013-09-11 中国能源建设集团广东省电力设计研究院 热电联供的压缩空气储能方法及储能系统
CN107524521A (zh) * 2017-09-13 2017-12-29 北京黄铉动力科技有限公司 涡轮压缩空气发动机
CN107939525A (zh) * 2017-11-07 2018-04-20 中国能源建设集团广东省电力设计研究院有限公司 压缩空气储能系统中的燃气膨胀机做功系统及方法
CN109915345A (zh) * 2019-04-23 2019-06-21 山东大学 一种带喷射器多级优化的压缩空气储能系统及方法
CN112502838A (zh) * 2020-12-07 2021-03-16 至玥腾风科技集团有限公司 一种燃气轮机储能系统及峰谷发电方式

Also Published As

Publication number Publication date
CN112502838A (zh) 2021-03-16
CN112502838B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
CN104716644B (zh) 一种可再生能源冷热电微网系统及控制方法
CN103225598B (zh) 一种压缩空气与储热介质同时储能的方法及系统
CN103807009B (zh) 太阳能与替代燃料互补的分布式内燃机冷热电系统及方法
CN207064027U (zh) 风光互补的空气压缩储能与发电一体化系统
CN206957774U (zh) 一种采用熔融盐蓄热的压缩空气储能发电系统
CN106762143A (zh) 太阳能化学回热燃气轮机系统
CN108800628A (zh) 一种基于太阳能热化学储能的热电联供系统
CN215170241U (zh) 一种火电厂储能调峰耦合系统
WO2022121266A1 (zh) 一种燃气轮机储能系统及峰谷发电方式
CN101968042A (zh) 多级全效太阳能热发电方法
CN205477921U (zh) 一种沼气天然气联合驱动冷热电联供系统
CN214366402U (zh) 一种燃气轮机储能系统
CN208831160U (zh) 一种多能互补综合发电系统
CN205227916U (zh) 利用内燃机尾气集成热化学过程的互补型分布式能源系统
CN207501486U (zh) 一种实现天然气和太阳能相结合的家用冷热电三联供系统
CN110108045A (zh) 一种太阳能供能装置
CN211625419U (zh) 太阳能与燃气热电联合供能系统
CN210087561U (zh) 基于太阳能的微小型冷热电联供系统
CN114243071A (zh) 一种压缩空气储能和固体氧化物燃料电池相结合额高效储能方法
CN114382560A (zh) 一种光伏发电与压缩空气储能耦合的热电联产系统
CN208347882U (zh) 一种sofc燃料电池与内燃机燃气分布式耦合系统
CN2470714Y (zh) 一种双级热泵采暖供热装置
CN108167088B (zh) 热源转换装置及泛能站余热综合利用系统
CN207750114U (zh) 一种利用垃圾填埋气内燃机排气的低温余热发电装置
CN205503281U (zh) 一种太阳能化学回热燃气轮机系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21901978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.09.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21901978

Country of ref document: EP

Kind code of ref document: A1