CN109915345A - 一种带喷射器多级优化的压缩空气储能系统及方法 - Google Patents

一种带喷射器多级优化的压缩空气储能系统及方法 Download PDF

Info

Publication number
CN109915345A
CN109915345A CN201910329775.6A CN201910329775A CN109915345A CN 109915345 A CN109915345 A CN 109915345A CN 201910329775 A CN201910329775 A CN 201910329775A CN 109915345 A CN109915345 A CN 109915345A
Authority
CN
China
Prior art keywords
injector
gas
air
pressure
expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910329775.6A
Other languages
English (en)
Other versions
CN109915345B (zh
Inventor
李珂
王鲁泮
张承慧
马昕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201910329775.6A priority Critical patent/CN109915345B/zh
Publication of CN109915345A publication Critical patent/CN109915345A/zh
Application granted granted Critical
Publication of CN109915345B publication Critical patent/CN109915345B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Abstract

本公开提出了一种带喷射器多级优化的压缩空气储能系统及方法,包括:空气压缩机组,空气膨胀机组,储气装置,喷射器与压力控制阀;所述空气压缩机组与储气装置相连,所述空气压缩机组将空气压入储气装置;所述储气装置与喷射器之间连接有压力控制阀。本公开压缩空气储能系统采用了喷射器的调压方案,相比于传统的系统中减压阀直接降压,该喷射器的应用使得混合气体调压过程中的能量不会减少,并且调压后流入膨胀机入口的气体压力高于传统系统中的入口压力,效率得到提高。

Description

一种带喷射器多级优化的压缩空气储能系统及方法
技术领域
本公开涉及风能存储技术领域,特别是涉及一种带喷射器多级优化的压缩空气储能系统及方法。
背景技术
自工业革命以来,化石燃料的消耗急剧增加,并且燃料的燃烧向大气中排放了大量二氧化碳等温室气体,全球变暖问题日益严重。在此背景之下,可再生能源逐渐进入人们的视野,如风能,水能,太阳能,生物质能等。在众多可再生能源中,风能由于其广泛的分布,使用清洁,成本较低成为最具潜力的可再生能源之一,常用于风力发电系统。然而在风力发电过程中,风能的不稳定性会导致能量输出的波动,从而对风力发电的并网产生一定影响,与此同时,用户负荷侧的能量需求变化也对电网的发-输-配电平衡提出了更高的要求。为了应对上述挑战,人们一直在寻找能源存储的方法,现有的能源存储方式众多,如物理储能,电储能,化学储能等。在各类物理储能中,压缩空气储能拥有规模大,运行成本低,可靠安全等优势,更适用于风力发电系统,在风力的高峰期将大量的风能存储起来用于削峰填谷,平抑电能波动。
压缩空气储能的原理简单,风力的高峰期或负荷需求低谷期时,常温的空气经压缩机压入人工或天然储气装置中,负荷需求高或者风能波动严重时,气体从储气装置释放,经燃烧加热进入涡轮膨胀机发电。相比于传统的非绝热式压缩空气储能系统,绝热式压缩空气储能系统省去了气体在燃烧室燃烧的环节,并增加了压缩与膨胀过程中的换热环节,从而既减少了燃烧带来的环境污染,又利用了压缩过程中释放的大量热能,从而提高了系统储能效率。
发明人在研究中发现,绝热式压缩空气储能系统在压缩存储气体过程中,将气体以8MPa左右的高压存到储气罐中,而在膨胀发电过程中,为了保持发电并网的稳定性,流入膨胀透平机的气体压力为中压4MPa左右。目前的系统大都采用降压阀来实现储气罐中的高压气体到膨胀透平机中中压气体的减压调节,而压力越高意味着气体做功能力越强,降压阀的降压过程直接将气体由高压降至中压这会造成气体大量的能量损失在降压阀中。因此,这一降压过程最终会导致系统效率的降低。
发明内容
本说明书实施方式的目的是提供一种带喷射器多级优化的压缩空气储能系统,在该绝热式压缩空气储能系统中,造成气体能量损失的降压阀被替换成具有混合气体,调整压力功能的喷射器,来尽量减少气体能量的损失。
本说明书实施方式提供一种带喷射器多级优化的压缩空气储能系统,通过以下技术方案实现:
包括:
空气压缩机组,空气膨胀机组,储气装置,喷射器与压力控制阀;
所述空气压缩机组与储气装置相连,所述空气压缩机组将空气压入储气装置;
所述储气装置与喷射器之间连接有压力控制阀;
所述压力控制阀将将储气装置中气体按压力分级流出,不同压力的气体经不同的管道分别至相应喷射器一次入口,作为喷射器工作流体;
所述空气膨胀机组中除最后一级外各级膨胀机的乏气均引出至喷射器的二次入口相连,作为引射流体,高压的工作流体与低压的引射流体在喷射器的中充分混合实现压力调整并将调整后的气体为所述空气膨胀机组做功。
本说明书实施方式提供一种带喷射器多级优化的压缩空气储能方法,通过以下技术方案实现:
包括:
压缩过程:多级空气压缩机组将空气压入高压储气装置中,压缩后的空气升温为高温高压气体;
膨胀过程:储气装置流出的高压气体经分压装置后流入对应的各级喷射器的一次入口,并与对应的各级膨胀机流出的乏气混合后流出,再流经加热装置升温,最后高温中压气体流入各级透平膨胀机做功发电。
在该绝热式压缩空气储能系统中,造成气体能量损失的降压阀被替换成具有混合气体,调整压力功能的喷射器,来尽量减少气体能量的损失。并在此基础上针对压缩空气储能系统的多级膨胀透平机,设计了储气装置中气体流出分压的方式,使得各级透平膨胀机中流出的乏气均能被充分的利用,在喷射器中实现了多级优化,系统的效率获得提高。
与现有技术相比,本公开的有益效果是:
(1)本公开压缩空气储能系统采用了喷射器的调压方案,相比于传统的系统中减压阀直接降压,该喷射器的应用使得混合气体调压过程中的能量不会减少,并且调压后流入膨胀机入口的气体压力高于传统系统中的入口压力,效率得到提高。
(2)传统的系统中,各级膨胀机排出的低压乏汽流经加热器进入下级膨胀机,使得下一级膨胀机做功能力下降。该喷射器使得低压乏汽作为引射流体与高压气体混合,混合后的气体恢复为中压流入膨胀机,系统效率自然提高。
(3)现有技术中提出过用喷射器替换减压阀的想法,但都只是将高压气体与一级膨胀机流出的乏气混合,效率仍有提升空间。本公开在储气罐出口处采用压力控制阀,将储气罐中气体按压力分级流出,并且将除最后一级外各级膨胀机的乏气均引出,高压气体与低压乏气在各级对应的喷射器中混合调压,实现了多级的优化,系统效率进一步提高。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1为本公开实施例所述带喷射器多级优化的压缩空气储能系统的结构示意图;
图2为本公开实施例所述的喷射器结构示意图;
附图标记说明:
1、空气压缩机组,2、各级换热器,3、储气装置(高压储气罐),4、储热装置,5、压力控制阀8MPa,6、压力控制阀6MPa,7、一级喷射器,8、二级喷射器,9、一级透平膨胀机,10、二级透平膨胀机,11、加热器,12、三级透平膨胀机,13、电动机组,14、发电机组。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
现有技术中也提到用喷射器实现不损失气体的情况下,气体压力降低的方法。申请号201811475523.6,公开的“一种喷射膨胀复合式压缩空气储能系统”中,压缩过程,气体经低压压缩机组与高压压缩机组压缩后,分别存入低压储气罐与高压储气罐中;膨胀过程,低压储气罐中的低压气体作为喷射器的一次流体,高压储气罐中的高压气体作为喷射器的二次流体,二者在喷射器中混合,实现气体无损耗的降压。而本公开的是实施例子中,喷射器的一次流体为储气罐中高压、次高压气体,喷射器的二次流体为多级透平膨胀机流出的低压、次低压乏气,目的是实现气体无损耗降压的同时,透平膨胀机流出的乏气能够升压后再进入下一级透平膨胀机,进而充分得到利用。另外,申请号201811475523.6的专利中提到多级喷射器这一概念,其意为多级喷射器通过串并联结构,几个喷射器自身相连接,成为多级喷射器组,目的在于提高喷射器性能,使得高低压气体混合后得到压力更高的中压气体,同时减少损失;而本专利所提到的喷射器多级优化概念,是针对多级透平膨胀机提出的,目的在于使得除最后一级透平膨胀机外,每一级膨胀机流出的乏气都能够进入相应等级的喷射器,在喷射器中与对应的高压与次高压气体混合,从而每一级膨胀机流出的乏气得到充分利用。
实施例子一
该实施例公开了一种带喷射器多级优化的压缩空气储能系统,包括空气压缩机组,空气膨胀机组,储气装置,储热与换热加热装置,喷射器与压力控制阀。参见附图1所示,空气压缩机组1将空气压缩为高温高压气体,经各级换热器2放出热量后存储于储气装置3中,成为低温高压气体,同时放出的热量存储与储热装置4中。当风力大幅度波动,或者负荷需求高于电网供电时,储气装置3中开始释放低温高压气体,气体流经出口相连的两个压力控制阀8MPa 5与压力控制阀6MPa 6,压力控制阀流出的气体分别为次高压气体与高压气体,两种气体经不同的管道分别与一级喷射器7与二级喷射器8一次入口相连接,作为工作气体;而从一级透平膨胀机9流出气体与从二级膨胀机10流出的气体分别为次低压气体与低压气体,两种气体亦经不同的管道分别从一级喷射器7与二级喷射器8的二次入口相连,作为引射流体。高压的工作流体与低压的引射流体在喷射器的中充分混合实现压力调整,调整完后,一级喷射器7流出的中压气体经加热器11加热后流入一级透平膨胀机9做功发电;二级喷射器8流出的次中压气体经加热器11加热后流入三级透平膨胀机12做功发电。三级透平膨胀机12与发电机组14相连,空气压缩机组与电动机组13相连。
再次参见附图1所示,压缩过程中气体压缩产生的热量流经换热装置,以热流体形式存储到储热装置中;膨胀过程中,储热装置中的热流体流出至加热器,为储气罐中流出的高压低温气体加热,热流体对气体进行加热后,热流体变为冷流体,流回至储热装置中再流经换热器与压缩气体进行热交换升温,完成系统热循环。
在具体实施例子中,下面分别对系统中的组成部分进行详细说明:
空气压缩机组或空气膨胀机组所接动力机为发电机/电动机。
空气压缩机组若干台压缩机相连而成的多级压缩机组,空气膨胀机组为若干台高压膨胀机与低压膨胀机相连的多级透平膨胀机组。
具体的,空气膨胀机组:采用活塞型膨胀机组,高压膨胀机与中压膨胀机,低压膨胀机三级相连。
发电机/电动机:一般采用多级电机。压缩机组:采用多级往复式压气机,将机械能通过空气压缩转换成空气内能存储于储气罐中。
储气装置:采用多个高压储气罐,气体经多级压缩后存储于高压储气罐中,储气罐应承受10MPa以上高压。
换热装置:采用直接接触式换热器,如气体冷凝器,冷热流体直接接触进行换热。换热器将气体压缩过程中放出的热量传递存储于储热装置中,该热量用于膨胀过程中气体加热。
储热装置:采用大型的储热罐如储热水箱。
压力调节阀将储气装置中高压空气分压为高压Pa与次高压Pb。
具体的,压力调节阀:采用气体流量调节阀,通过改变阀芯和阀座之间截面积的大小来控制管道气体流量,调整到设定的气体压力。
喷射器如图2所示,为基于拉伐尔喷管的空气喷射器,高压气体与低压气体在喷射器的工作室中混合形成中压气体流出。
具体的,空气喷射器:空气喷射器是利用压缩空气或常压空气作为工作介质。靠气流在喷嘴出口处产生低压来抽吸空气或其他气体,然后把气体混合排出。
每个储气罐出口与两个压力控制阀相连接,压力控制阀流出的气体分别为次高压气体与高压气体,两种气体经不同的管道分别与一级喷射器与二级喷射器一次入口相连接,作为工作气体;而从第一级透平膨胀机流出气体与从第二级膨胀机流出的气体分别为次低压气体与低压气体,两种气体亦经不同的管道分别与以及喷射器与二级喷射器的二次入口相连,作为引射流体。高压的工作流体与低压的引射流体在喷射器的中充分混合实现压力调整。
本公开用于绝热式压缩空气储能的优化有以下优点:喷射器的应用使得混合气体调压过程中的气体能量损耗减少,并且从各级膨胀机出口流出的乏气并未直接流到下一级,而是在喷射器中混合升压后流入下一级膨胀机,使得乏气充分利用,膨胀机发电量增加。储气罐出口处采用压力控制阀,将储气罐中气体按压力分级流出,并且将除最后一级外各级膨胀机的乏气均引出,高压气体与低压乏气在各级对应的喷射器中混合调压,实现了多级的优化,系统整体效率得到提升。
实施例子二
该实施例公开了一种带喷射器多级优化的压缩空气储能方法,包括:
压缩过程中,多级空气压缩机组将空气压入高压储气装置中,压缩后的空气升温为高温高压气体,并释放大量热量,空气流经换热器将热量存储至储热装置中。膨胀过程中,储气装置流出的高压气体经分压装置后流入对应的各级喷射器的一次入口,并与对应的各级膨胀机流出的乏气混合后流出,再流经加热装置升温,最后高温中压气体流入各级透平膨胀机做功发电。
在一实施例子中,压缩过程中,空气经多级压缩机组压入高压储气罐,各个高压储气罐中气体的压力为8~10MPa。每个高压储气罐连接两个压力控制阀TV1 TV2控制气体压力流量,储气罐中高于8MPa的气体经TV1节流到8MPa左右的高压气体Pa,储气罐中介于8MPa与6MPa之间的气体经TV2节流到6MPa左右的次高压气体Pb。
在一实施例子中,膨胀过程中,流入一级透平膨胀机9的入口气体为中压气体Pc范围约为3MPa~5MPa,从一级透平膨胀机9流出的气体为次低压乏气Pd,约为2MPa;流入二级透平膨胀机的气体为一级膨胀机流出的部分乏气,气体压力约为2MPa,从二级透平膨胀机流出的阀气为低压气体Pe约为0.6MPa;流入最后一级膨胀机的气体为混合后的次中压气体,约为1MPa。
本公开设计热工学与机械设计相关知识,通过多级喷射器的压力调整作用,实现了不损耗气体能量的情况下,完成以上储气罐中流出气体与流入各级膨胀机气体的压力调整。第一级喷射器7,原理图如图2所示,节流后6MPa的次高压气体Pb为工作流体,以高流速从喷射器的喷嘴处流入喷射器的混合室中,与此同时,一级膨胀机9流出的2MPa乏气作为引射流体流入喷射器的混合室中,二者混合可在无能量消耗的情况下得到4MPa左右的中压气体Pc,也相应提高了中压Pc的值,透平膨胀机做功增强。第二级喷射器8,原理图同图2,节流后的8MPa高压气体Pa与二级膨胀机流出的0.6MPa低压乏气在喷射器中混合,混合后流出气体为1MPa的次中压气体流入三级透平膨胀机。二级喷射器优化前,流入三级膨胀机的气体为二级膨胀机流出的乏气,仅为0.6MPa,膨胀机做功极低,优化后,乏气与储气罐中的高压气体混合,混合后气体可达1MPa,极大的提高了三级膨胀机的做功发电量。
应用以上的喷射器调压策略,通过压力控制阀与喷射器的配合,实现了膨胀过程中气体极少能量损耗的调压过程;并且从喷射器中流出的气体压力要高于直接流入膨胀机的乏气压力,膨胀机做功增加。从而使本发明既实现了储能过程中风能的高效利用,又实现了膨胀过程中发电量的增加,提高了系统整体效率,使得该系统可应用与风能密集区实现平滑风能的波动,大规模储能发电。
可以理解的是,在本说明书的描述中,参考术语“一实施例”、“另一实施例”、“其他实施例”、或“第一实施例~第N实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

1.一种带喷射器多级优化的压缩空气储能系统,其特征是,包括:
空气压缩机组,空气膨胀机组,储气装置,喷射器与压力控制阀;
所述空气压缩机组与储气装置相连,所述空气压缩机组将空气压入储气装置;
所述储气装置与喷射器之间连接有压力控制阀;
所述压力控制阀将储气装置中气体按压力分级流出,不同压力的气体经不同的管道分别至相应喷射器一次入口,作为喷射器工作流体;
所述空气膨胀机组中除最后一级外各级膨胀机的乏气均引出至喷射器的二次入口相连,作为引射流体,高压的工作流体与低压的引射流体在喷射器的中充分混合实现压力调整并将调整后的气体为所述空气膨胀机组做功。
2.如权利要求1所述的一种带喷射器多级优化的压缩空气储能系统,其特征是,所述压缩空气储能系统还包括储热装置,所述储热装置与所述空气压缩机组相连,所述空气压缩机组中相邻压缩机之间串联有换热器,换热器均连接至储热装置。
3.如权利要求2所述的一种带喷射器多级优化的压缩空气储能系统,其特征是,所述空气压缩机组将空气压缩为高温高压气体,经各级换热器放出热量后存储于储气装置中,同时放出的热量存储在储热装置中。
4.如权利要求1所述的一种带喷射器多级优化的压缩空气储能系统,其特征是,所述储气装置的数量至少为一个,每个所述储气装置的出口与两个压力控制阀相连接,两个压力控制阀流出的气体分别为次高压气体与高压气体。
5.如权利要求4所述的一种带喷射器多级优化的压缩空气储能系统,其特征是,所述喷射器的数量为两个,分别为一级喷射器与二级喷射器,所述一级喷射器与产生次高压气体的压力控制阀相连,所述二级喷射器与产生高压气体的压力控制阀相连。
6.如权利要求5所述的一种带喷射器多级优化的压缩空气储能系统,其特征是,所述空气膨胀机组包括依次串联的第一级透平膨胀机、第二级透平膨胀机及第三级透平膨胀机;
从第一级透平膨胀机流出气体与从第二级膨胀机流出的气体分别为次低压气体与低压气体,两种气体亦经不同的管道分别至一级喷射器与二级喷射器的二次入口;
所述一级喷射器输出的气体经过加热后至第一级透平膨胀机做功;
所述二级喷射器输出的气体经过加热后至第三级透平膨胀机做功。
7.如权利要求5所述的一种带喷射器多级优化的压缩空气储能系统,其特征是,所述一级喷射器、所述二级喷射器与所述空气膨胀机组之间分别串联有加热器。
8.如权利要求5所述的一种带喷射器多级优化的压缩空气储能系统,其特征是,第二级透平膨胀机及第三级透平膨胀机之间的串联有加热器。
9.一种带喷射器多级优化的压缩空气储能方法,其特征是,包括:
压缩过程:多级空气压缩机组将空气压入高压储气装置中,压缩后的空气升温为高温高压气体;
膨胀过程:储气装置流出的高压气体经分压装置后流入对应的各级喷射器的一次入口,并与对应的各级膨胀机流出的乏气混合后流出,再流经加热装置升温,最后高温中压气体流入各级透平膨胀机做功发电。
10.如权利要求9所述的一种带喷射器多级优化的压缩空气储能方法,其特征是,所述空气压缩机组在压缩空气时所释放的热量存储在储热设备中,存储在储热设备中的热量用于对进入空气膨胀机组中的高压气体加热。
CN201910329775.6A 2019-04-23 2019-04-23 一种带喷射器多级优化的压缩空气储能系统及方法 Active CN109915345B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910329775.6A CN109915345B (zh) 2019-04-23 2019-04-23 一种带喷射器多级优化的压缩空气储能系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910329775.6A CN109915345B (zh) 2019-04-23 2019-04-23 一种带喷射器多级优化的压缩空气储能系统及方法

Publications (2)

Publication Number Publication Date
CN109915345A true CN109915345A (zh) 2019-06-21
CN109915345B CN109915345B (zh) 2020-01-10

Family

ID=66978429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910329775.6A Active CN109915345B (zh) 2019-04-23 2019-04-23 一种带喷射器多级优化的压缩空气储能系统及方法

Country Status (1)

Country Link
CN (1) CN109915345B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110242623A (zh) * 2019-07-09 2019-09-17 西安交通大学 一种利用高压天然气余压回收系统及其运行方法
CN111075695A (zh) * 2019-12-25 2020-04-28 西安交通大学 一种喷射器强化储气的压缩空气储能系统及其储气工艺
RU2727945C1 (ru) * 2019-12-12 2020-07-27 Общество С Ограниченной Ответственностью "Аэрогаз" Турбодетандерная энергетическая установка
CN112502838A (zh) * 2020-12-07 2021-03-16 至玥腾风科技集团有限公司 一种燃气轮机储能系统及峰谷发电方式
CN114033515A (zh) * 2021-11-09 2022-02-11 西安西热节能技术有限公司 具有引射汇流装置的液态压缩空气储能方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103244215A (zh) * 2013-05-08 2013-08-14 中国能源建设集团广东省电力设计研究院 提升压缩空气储能技术能量转换效率的方法及装置
CN103291455A (zh) * 2013-05-08 2013-09-11 中国能源建设集团广东省电力设计研究院 热电联供的压缩空气储能方法及储能系统
CN104564344A (zh) * 2015-01-07 2015-04-29 中国能源建设集团广东省电力设计研究院有限公司 压缩空气储能系统
CN104835543A (zh) * 2015-01-14 2015-08-12 上海核工程研究设计院 一种核电站反应堆冷却剂系统喷射器试验系统
CN104848584A (zh) * 2015-05-06 2015-08-19 天津大学 太阳能喷射与太阳能光伏蒸汽喷射压缩联合热泵系统
CN107401499A (zh) * 2017-08-31 2017-11-28 翟晓慧 压缩空气储能调压及膨胀机做功系统
CN107939525A (zh) * 2017-11-07 2018-04-20 中国能源建设集团广东省电力设计研究院有限公司 压缩空气储能系统中的燃气膨胀机做功系统及方法
CN207278472U (zh) * 2017-08-31 2018-04-27 翟晓慧 无补燃压缩空气储能系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103244215A (zh) * 2013-05-08 2013-08-14 中国能源建设集团广东省电力设计研究院 提升压缩空气储能技术能量转换效率的方法及装置
CN103291455A (zh) * 2013-05-08 2013-09-11 中国能源建设集团广东省电力设计研究院 热电联供的压缩空气储能方法及储能系统
CN104564344A (zh) * 2015-01-07 2015-04-29 中国能源建设集团广东省电力设计研究院有限公司 压缩空气储能系统
CN104835543A (zh) * 2015-01-14 2015-08-12 上海核工程研究设计院 一种核电站反应堆冷却剂系统喷射器试验系统
CN104848584A (zh) * 2015-05-06 2015-08-19 天津大学 太阳能喷射与太阳能光伏蒸汽喷射压缩联合热泵系统
CN107401499A (zh) * 2017-08-31 2017-11-28 翟晓慧 压缩空气储能调压及膨胀机做功系统
CN207278472U (zh) * 2017-08-31 2018-04-27 翟晓慧 无补燃压缩空气储能系统
CN107939525A (zh) * 2017-11-07 2018-04-20 中国能源建设集团广东省电力设计研究院有限公司 压缩空气储能系统中的燃气膨胀机做功系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭祚刚 等: "《匹配新能源电能并网的压缩空气储能站性能研究》", 《南方能源建设》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110242623A (zh) * 2019-07-09 2019-09-17 西安交通大学 一种利用高压天然气余压回收系统及其运行方法
CN110242623B (zh) * 2019-07-09 2023-08-01 西安交通大学 一种利用高压天然气余压回收系统及其运行方法
RU2727945C1 (ru) * 2019-12-12 2020-07-27 Общество С Ограниченной Ответственностью "Аэрогаз" Турбодетандерная энергетическая установка
CN111075695A (zh) * 2019-12-25 2020-04-28 西安交通大学 一种喷射器强化储气的压缩空气储能系统及其储气工艺
CN112502838A (zh) * 2020-12-07 2021-03-16 至玥腾风科技集团有限公司 一种燃气轮机储能系统及峰谷发电方式
WO2022121266A1 (zh) * 2020-12-07 2022-06-16 至玥腾风科技集团有限公司 一种燃气轮机储能系统及峰谷发电方式
CN112502838B (zh) * 2020-12-07 2023-10-20 刘慕华 一种燃气轮机储能系统及峰谷发电方式
CN114033515A (zh) * 2021-11-09 2022-02-11 西安西热节能技术有限公司 具有引射汇流装置的液态压缩空气储能方法及系统
CN114033515B (zh) * 2021-11-09 2023-04-28 西安西热节能技术有限公司 具有引射汇流装置的液态压缩空气储能方法及系统

Also Published As

Publication number Publication date
CN109915345B (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
US6134873A (en) Method of operating a combustion turbine power plant at full power at high ambient temperature or at low air density using supplemental compressed air
CN109915345A (zh) 一种带喷射器多级优化的压缩空气储能系统及方法
US5934063A (en) Method of operating a combustion turbine power plant having compressed air storage
MX2014011923A (es) Sistema, metodo y aparato para inyeccion de aire comprimido para motores de turbina de combustion interna.
CN103233820A (zh) 压缩空气蓄能与联合循环集成的发电系统
US10677162B2 (en) Grid scale energy storage systems using reheated air turbine or gas turbine expanders
CN111306842A (zh) 适应不同季节的变工况多能联供系统及方法
CN104088703A (zh) 间冷热预热汽轮机的压缩空气蓄能-联合循环集成系统
CN109505666A (zh) 一种喷射膨胀复合式压缩空气储能系统
CN112412561B (zh) 压缩空气储能系统和火力发电厂控制系统耦合控制方法
US11499477B2 (en) System, method and apparatus for improving gas turbine performance with compressed air energy storage
CN209586452U (zh) 一种喷射膨胀复合式压缩空气储能系统
CN115118017A (zh) 一种开放式液态二氧化碳储能系统
CN113339088B (zh) 温压协同控制的水上光伏耦合压缩二氧化碳储能系统和方法
CN111075695B (zh) 一种喷射器强化储气的压缩空气储能系统及其储气工艺
CN212538358U (zh) 适应不同季节的变工况多能联供系统
CN104136742A (zh) 燃气发电站
CN105756732B (zh) 一种lng/液氧直燃混合工质动力循环发电装置
CN114991895B (zh) 一种耦合压缩空气储能的燃煤发电机组及其运行方法
CN112761745B (zh) 一种火力发电机组热水储能系统及方法
Kemble et al. Thermoeconomics of a ground-based CAES plant for peak-load energy production system
CN109812307A (zh) 天然气压力能回收装置及方法
CN113982893B (zh) 可调峰储能的闭式微型燃气轮机循环系统及其操作方法
Al-Hamed et al. A Multigenerational Solar Energy-Driven System for a Residential Building
CN116085084A (zh) 一种集成储热与储压的发电系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant