WO2022121094A1 - 兼具无功补偿及输出电流可调的融冰装置 - Google Patents

兼具无功补偿及输出电流可调的融冰装置 Download PDF

Info

Publication number
WO2022121094A1
WO2022121094A1 PCT/CN2021/074088 CN2021074088W WO2022121094A1 WO 2022121094 A1 WO2022121094 A1 WO 2022121094A1 CN 2021074088 W CN2021074088 W CN 2021074088W WO 2022121094 A1 WO2022121094 A1 WO 2022121094A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary winding
transformer
inverter circuit
current
voltage
Prior art date
Application number
PCT/CN2021/074088
Other languages
English (en)
French (fr)
Inventor
杨芳
唐小亮
周亚兵
Original Assignee
广东电网有限责任公司清远供电局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东电网有限责任公司清远供电局 filed Critical 广东电网有限责任公司清远供电局
Publication of WO2022121094A1 publication Critical patent/WO2022121094A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G7/00Overhead installations of electric lines or cables
    • H02G7/16Devices for removing snow or ice from lines or cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • the embodiments of the present application relate to a microgrid current regulation technology, for example, to an ice melting device with both reactive power compensation and adjustable output current.
  • the thermal ice melting method is mainly used for line ice melting.
  • the DC ice melting method and the AC short-circuit ice melting method are relatively mature thermal ice melting methods.
  • Charles R S of Dartmouth College in the United States, etc. from the perspective of skin effect and dielectric loss, proposed a high-frequency (8-200kHz) AC ice-melting method for transmission lines.
  • the above methods of melting ice have a series of shortcomings, such as small current adjustment range, low applicable voltage level, introduction of a large number of harmonics, etc., so they can only be applied in certain specific occasions. Therefore, it is urgent to study a new type of ice melting device to adjust current in a wide range, filter out harmonics, and compensate for power factor.
  • the present application provides an ice melting device with both reactive power compensation and adjustable output current.
  • the ice melting device can realize a wide range of output current adjustment, thereby realizing line ice melting, and at the same time realizing dynamic reactive power compensation and filtering. function, improve the power quality of the power grid, and the control device has a simple structure design and low cost.
  • the embodiment of the present application provides an ice melting device with both reactive power compensation and adjustable output current.
  • the ice melting device includes: at least one transformer, at least one inverter circuit, a fundamental wave electrical signal detection module and a control module, wherein , the transformer includes a primary winding and a secondary winding, the primary winding is connected in series or in parallel between the power grid and the harmonic source, the secondary winding is connected with the inverter circuit, and the inverter circuit is connected with the control module connection; the fundamental wave electrical signal detection module is respectively connected with the primary winding and the control module for detecting the current or voltage of the primary winding;
  • the control module is used to control the output fundamental current of the inverter circuit to inject into the secondary winding according to the current of the primary winding, so as to adjust the impedance of the primary winding, thereby regulating the output current.
  • Line ice melting can be achieved at critical ice melting current;
  • the fundamental wave voltage output from the inverter circuit is controlled to be injected into the secondary winding according to the voltage of the primary winding, so as to adjust the impedance of the primary winding, thereby realizing the reactive power compensation function.
  • the primary winding is connected in series between the power grid and the harmonic source, the first end of the primary winding is connected to the power grid, and the second end of the primary winding is connected to the harmonic source. source connection;
  • the ice melting device further includes a passive filter, the passive filter is connected in parallel between the power grid and the harmonic source, and the first ends of the passive filter are respectively connected to the primary winding.
  • the second end of the device is connected to the harmonic source, and the second end is respectively connected to the power grid and the harmonic source.
  • the passive filter includes a first inductor, a second inductor, a first capacitor, and a second capacitor, and the first end of the first inductor is respectively connected with the second end of the primary winding and the first capacitor.
  • the first ends of the two inductors are connected, the second ends of the first inductors are connected to the first ends of the first capacitors, the second ends of the second inductors are connected to the first ends of the second capacitors,
  • the second end of the first capacitor is respectively connected to the second end of the second capacitor, the power grid, and the harmonic source.
  • the fundamental wave electrical signal detection module includes a current detection module, and the current detection module is electrically connected to the primary winding and the control module, respectively.
  • the primary winding is connected in parallel between the grid and the harmonic source.
  • the fundamental wave electrical signal detection module includes a voltage detection module, and the voltage detection module is electrically connected to the primary winding and the control module, respectively.
  • two transformers are included, which are a first transformer and a second transformer respectively, the primary winding of the first transformer is connected in series between the power grid and the harmonic source, and the first transformer of the primary winding of the first transformer is connected in series.
  • the terminal is connected to the power grid, and the second terminal of the primary winding of the first transformer is connected to the harmonic source;
  • the primary winding of the second transformer is connected in parallel between the grid and the harmonic source.
  • it includes two inverter circuits, namely a first inverter circuit and a second inverter circuit, the first inverter circuit is connected to the secondary winding of the first transformer, and the second inverter circuit is connected to the secondary winding of the first transformer.
  • the inverter circuit is connected to the secondary winding of the second transformer, and the first inverter circuit and the second inverter circuit are respectively connected to the control module.
  • the inverter circuit is a voltage-type inverter circuit.
  • a third capacitor and a third inductor are further included, the third capacitor is connected in parallel with both ends of the secondary winding, and the third inductor is connected between the secondary winding and the inverter circuit.
  • the present application provides an ice melting device with both reactive power compensation and adjustable output current.
  • the ice melting device includes: at least one transformer, at least one inverter circuit, a fundamental wave electrical signal detection module and a control module, wherein the transformer It includes a primary winding and a secondary winding, the primary winding is connected in series or parallel between the power grid and the harmonic source, the secondary winding is connected with the inverter circuit, and the inverter circuit is connected with the control module; the fundamental wave electrical signal detection module is respectively connected with the primary winding and the control module.
  • the module is connected to detect the current or voltage of the primary winding; the control module is used to control the output fundamental current of the inverter circuit to inject into the secondary winding according to the current of the primary winding to adjust the impedance of the primary winding, thereby regulating the output current.
  • the critical ice melting current of the line is reached, the line ice melting can be realized; or, according to the voltage of the primary winding, the inverter circuit output fundamental voltage is injected into the secondary winding to adjust the impedance of the primary winding, thereby realizing the reactive power compensation function.
  • the output current can be adjusted in a wide range, so as to realize the ice melting of the line, and at the same time, the dynamic reactive power compensation and filtering functions can be realized, and the power quality of the power grid can be improved, and the control device has a simple structure design and low cost. .
  • FIG. 1 is a schematic structural diagram of a series connection of primary windings of an ice melting device with both reactive power compensation and adjustable output current in the first embodiment of the present application;
  • FIG. 2 is a schematic structural diagram of a parallel connection of primary windings of an ice melting device with both reactive power compensation and adjustable output current in Embodiment 1 of the present application;
  • FIG. 3 is a schematic structural diagram of an ice melting device with both reactive power compensation and adjustable output current according to the second embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of a transformer in Embodiment 2 of the present application.
  • FIG. 5 is a schematic diagram of a T-type equivalent circuit of a transformer according to the second embodiment of the present application.
  • FIG. 6 is a schematic diagram of a fundamental equivalent circuit of a series-type active filter in Embodiment 2 of the present application.
  • FIG. 7 is a schematic diagram of a harmonic equivalent circuit of a series-type active filter in Embodiment 2 of the present application.
  • FIG. 8 is a schematic structural diagram of an ice melting device with both reactive power compensation and adjustable output current according to Embodiment 3 of the present application;
  • FIG. 9 is a schematic diagram of a fundamental wave equivalent circuit of a parallel active filter in Embodiment 3 of the present application.
  • FIG. 10 is a schematic diagram of a harmonic equivalent circuit of a parallel active filter in Embodiment 3 of the present application.
  • FIG. 11 is a schematic structural diagram of an ice melting device with both reactive power compensation and adjustable output current according to the fourth embodiment of the present application.
  • AC short-circuit ice melting method AC short-circuit ice-melting is to install the ice-melting short-circuit wire at a certain point of the transmission line, and then transmit the ice-melting current to the line through the medium-voltage power distribution device, and rely on the heat generated by the short-circuit current to melt the ice on the line.
  • the AC short-circuit ice-melting method can be divided into three-phase short-circuit ice-melting method and two-phase short-circuit ice-melting method. This method can operate normally within a certain voltage range, but for lines with a voltage level of 500kV and above, it is difficult to meet the large-capacity ice melting power supply, so this method is not feasible.
  • the method converts AC power into DC power through a converter device, and heats the ice-covered line to melt the ice-covered line.
  • the DC ice melting usually uses a 6-pulse or 12-pulse rectifier, the 6-pulse rectifier will introduce the 5th and 7th harmonics, while the 12-pulse rectifier will introduce the 11th and 13th harmonics.
  • the present application provides an ice melting device with both reactive power compensation and adjustable output current, through which the output current can be adjusted in a wide range, so as to realize line ice melting, and at the same time, dynamic Power compensation and filtering functions are used to improve the power quality of the power grid, and the control device has a simple structure design and low cost.
  • FIG. 1 is a schematic structural diagram of a series connection of primary windings of an ice melting device with both reactive power compensation and adjustable output current provided in the first embodiment of the application
  • the ice melting device includes: at least one transformer 10, at least one inverter circuit 20, a fundamental wave electrical signal detection module 30 and a control module 40, wherein the transformer 10 includes a primary winding W1 and a secondary winding W2 , the primary winding W1 is connected in series or in parallel between the power grid 50 and the harmonic source (ie the load) 60, respectively, as shown in Figure 1, the primary winding W1 is connected in series between the power grid 50 and the harmonic source (ie the load) 60 60; As shown, the primary winding W1 is connected in parallel between the grid 50 and the harmonic source (ie, load) 60 .
  • the secondary winding W2 is connected to the inverter circuit 20, and the inverter circuit 20 is connected to the control module 40;
  • the fundamental wave electrical signal detection module 30 is respectively connected to the primary winding W1 and the control module 40 for detecting the current or voltage of the primary winding W1;
  • the control module 40 is configured to control the fundamental current of the inverter circuit 20 to be injected into the secondary winding W2 according to the current of the primary winding W1, so as to adjust the impedance of the primary winding W1;
  • the output fundamental voltage of the inverter circuit 20 is controlled to be injected into the secondary winding W2 according to the voltage of the primary winding W1, so as to adjust the impedance of the primary winding W1.
  • the ice melting device when the primary winding W1 is connected in series between the power grid 50 and the harmonic source (ie the load) 60, the ice melting device further includes a passive filter, and the passive filter can be connected in parallel between the power grid 50 and the harmonic source (ie the load) 60 between. Passive filters are used to receive harmonic currents flowing from the primary winding of the transformer.
  • the implementation process of the ice melting device is: referring to FIG. 1 , taking the primary winding connected in series between the power grid and the harmonic source (ie, the load) as an example, by connecting the primary winding W1 of the transformer to the power grid in series Between 50 and the harmonic source (ie, the load) 60, the fundamental wave electric signal detection module 30 is used to detect the fundamental wave current component on the side of the primary winding W1, and the control module 40 controls the inverter circuit to follow the fundamental wave current on the side of the primary winding W1 to generate another fundamental wave.
  • the wave current is injected into the W2 side of the secondary winding in reverse phase, so that the fundamental wave current on the W1 side of the primary winding and the fundamental wave current on the W2 side of the secondary winding meet the fundamental wave current compensation conditions, even if the main magnetic flux of the fundamental wave current is zero.
  • the transformer presents a very low impedance to the fundamental wave current, which is close to a short circuit to the fundamental wave current, and at the same time presents an excitation impedance to the harmonic current, which isolates the harmonic current.
  • the role of the harmonic current is forced to flow into the passive filter.
  • the output current can be adjusted in a wide range, so as to realize the ice melting of the line, and at the same time, it has the filtering function and improves the power quality of the power grid, and the control device has a simple structure design and low cost.
  • the control module 40 controls the voltage-type inverter circuit to follow the primary voltage based on the detected fundamental voltage on the primary winding W1 side of the transformer.
  • the fundamental wave voltage on the winding side generates a fundamental wave voltage and is applied to the secondary winding side, so that the W1 side of the primary winding of the transformer presents the fundamental wave voltage as an adjustable reactor for reactive power compensation, and the harmonic voltage presents as a transformer primary
  • the short-circuit impedance of the winding W1 side most of the harmonic voltage generated by the load will flow into the primary winding W1 side of the transformer, thus playing a filtering role. Therefore, the functions of filtering and reactive power compensation can be realized by tracking and controlling the fundamental wave voltage, and the structure of the entire reactive power compensation system is very simple and easy to implement.
  • the technical solution of this embodiment is to provide an ice melting device with both reactive power compensation and adjustable output current.
  • the ice melting device includes: at least one transformer, at least one inverter circuit, a fundamental wave electrical signal detection module and a control Module, wherein the transformer includes a primary winding and a secondary winding, the primary winding is connected in series or parallel between the power grid and the harmonic source (that is, the load), the secondary winding is connected with the inverter circuit, and the inverter circuit is connected with the control module;
  • the signal detection module is respectively connected with the primary winding and the control module to detect the current or voltage of the primary winding;
  • the control module is used to control the output fundamental current of the inverter circuit to inject into the secondary winding according to the current of the primary winding, so as to adjust the voltage of the primary winding.
  • the line can be ice-melting; or, according to the voltage of the primary winding, the output fundamental voltage of the inverter circuit is controlled to inject into the secondary winding to adjust the voltage of the primary winding. impedance, so as to realize the reactive power compensation function. Therefore, the control module controls the inverter circuit to output the fundamental wave current according to the fundamental wave current of the primary winding of the transformer and inject it into the secondary winding side of the transformer to adjust the impedance of the primary winding side of the transformer, thereby adjusting the output current.
  • the line ice melting can be realized; or, according to the fundamental wave voltage of the primary winding of the transformer, the inverter circuit is controlled to output the fundamental wave voltage and injected into the secondary winding side of the transformer to adjust the primary winding of the transformer. impedance, so as to realize the reactive power compensation function. Therefore, the functions of dynamic reactive power compensation and adjustable output current can be realized, so as to realize the ice melting of the line, and at the same time, the power quality of the power grid can be improved, and the control device has a simple structure design and low cost.
  • FIG. 3 is a schematic structural diagram of an ice melting device with both reactive power compensation and adjustable output current provided in Embodiment 2 of the present application.
  • the primary winding W1 is connected in series between the power grid 50 and the harmonic source (ie, the load) 60 , the first end of the primary winding W1 is connected to the power grid 50 , and the second end of the primary winding W2 is connected to the power grid 50 .
  • the harmonic source (ie load) 60 is connected;
  • the ice melting device further includes a passive filter 70, the passive filter 70 is connected in parallel between the power grid 50 and the harmonic source (ie the load) 60, and the first end of the passive filter 70 is respectively connected with the second end of the primary winding W1 It is connected to the harmonic source (ie the load) 60 , and the second end is connected to the power grid 50 and the harmonic source (ie the load) 60 respectively.
  • the power grid 50 includes an inductive element Ls and a voltage source Us connected in series, one end of the inductive element Ls is connected to the first end of the primary winding W1, and the other end of the inductive element Ls is connected to one electrode of the voltage source Us,
  • the other electrode of the voltage source Us is connected with a harmonic source (ie, load) 60 and a passive filter 70 , and the harmonic source (ie, load) 60 can be from a harmonic signal at the load end.
  • the current on the side of the primary winding W1 includes the fundamental wave current component and the harmonic current component.
  • the fundamental wave electrical signal detection module 30 detects the fundamental wave current on the side of the primary winding W1 in real time, and the control module 40 controls the inverter circuit 20 to follow the side of the primary winding W1.
  • the fundamental wave current of the primary winding generates a fundamental wave current and is injected into the secondary winding W2 side in reverse. The main flux will become zero.
  • the transformer presents a very low impedance to the fundamental wave current, which is close to a short circuit to the fundamental wave current, and at the same time presents an excitation impedance to the harmonic current, which plays a role in isolating the harmonic current.
  • the harmonic currents are forced to flow into the passive filter 70 .
  • the passive filter 70 includes a first inductor L1, a second inductor L2, a first capacitor C1 and a second capacitor C2, and the first end of the first inductor L1 is respectively connected to the first end of the primary winding W1.
  • the two terminals are connected to the first terminal of the second inductor L2, the second terminal of the first inductor L1 is connected to the first terminal of the first capacitor C1, and the second terminal of the second inductor L2 is connected to the first terminal of the second capacitor C2 , the second end of the first capacitor C1 is respectively connected to the second end of the second capacitor C2 , the power grid 50 , and the harmonic source (ie, the load) 60 .
  • the fundamental wave current injected on the W2 side of the secondary winding and the fundamental wave current on the W1 side of the primary winding meet the fundamental wave compensation conditions, the main magnetic flux of the fundamental wave current will become zero, and the harmonic current will present excitation impedance, which makes the harmonic current
  • the current is forced to flow into the passive filter 70 composed of the first inductor L1 , the second inductor L2 , the first capacitor C1 and the second capacitor C2 , thereby realizing filtering of harmonic components.
  • the fundamental wave electrical signal detection module includes a current detection module 31 , and the current detection module 31 is electrically connected to the primary winding W1 and the control module 40 , respectively.
  • the current detection module 31 may be a current sensor, which is used to detect the fundamental current of the primary winding W1 side of the transformer in real time and send it to the control module 40 .
  • the current detection module 31 is also connected to the secondary winding (not shown in the figure) for detecting the fundamental wave current on the secondary winding side.
  • the inverter circuit is a voltage-type inverter circuit.
  • the voltage type inverter circuit includes a first transistor Q11 , a second transistor Q12 , a third transistor Q13 , a fourth transistor Q14 and a voltage source U d1 , the first end of the first transistor Q11, the second transistor Q11
  • the first end of the transistor Q12 is electrically connected to the positive electrode of the voltage source U d1
  • the second end of the first transistor Q11 is electrically connected to the first end of the third transistor Q13 and the first end of the secondary winding W2, respectively
  • the second end of the transistor Q14 is electrically connected to the first end of the fourth transistor Q14 and the second end of the secondary winding W2 respectively, the second end of the third transistor Q13, the second end of the fourth transistor Q14 and the negative electrode of the voltage source U d2 electrical connection.
  • the first transistor Q11, the second transistor Q12, the third transistor Q13, and the fourth transistor Q14 may be NPN transistors.
  • the control terminal of the first transistor Q11, the control terminal of the second transistor Q12, the control terminal of the third transistor Q13 and the control terminal of the fourth transistor Q14 are respectively electrically connected to the control module 40, and the control module 40 can control the first transistor Q11, The second transistor Q12, the third transistor Q13, and the fourth transistor Q14 are turned on or off, so as to control the magnitude of the current supplied by the voltage-source inverter circuit to the secondary winding W2.
  • the ice melting device further includes a third capacitor C3 and a third inductor L3, the third capacitor C3 is connected in parallel to both ends of the secondary winding W2, and the third inductor L3 is connected to the secondary winding W2. and the inverter circuit 20.
  • the third inductor L3 is used to improve the stability of the current injected by the inverter circuit 20 into the secondary winding W2.
  • FIG. 4 is a schematic structural diagram of a transformer provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of a T-type equivalent circuit of a transformer provided by an embodiment of the present application
  • FIG. 6 is a series-connected type transformer provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a harmonic equivalent circuit of a series-type active filter provided by an embodiment of the present application.
  • the transformer 10 is a series transformer with bilateral excitation as shown in FIG. 4 .
  • the fundamental current i 2 is converted to the primary winding W1 of the transformer 10 and becomes i 2 ′
  • the leakage impedance of the primary winding W1 is Z 1
  • Z 1 r 1 +jx 1
  • the fundamental wave current i 1 (1) in the current on the primary winding W1 side is detected by the current detection module 31 , and a fundamental wave current i 2 (1) is generated by the control module 40 using the voltage - type inverter circuit to track the current.
  • (1) and i 1 (1) have the same frequency. If i 2 (1) is injected into the W2 side of the secondary winding of the transformer in reverse, then according to the superposition principle, it can be divided into two cases for analysis.
  • Z 1 (1) is the fundamental leakage impedance of the primary winding of the transformer.
  • the equivalent impedance of the transformer is:
  • Z m (1) is the harmonic excitation impedance of the primary winding of the transformer.
  • the control module 40 controls the voltage-type inverter circuit according to the detected fundamental wave current on the primary winding W1 side of the transformer to follow the fundamental wave current on the primary winding side to generate a fundamental wave current and inject it into the secondary winding side in reverse phase,
  • the fundamental current main flux will be zero.
  • the transformer presents a very low impedance to the fundamental current (ie the leakage impedance Z 1 (1) on the primary winding side), and at the same time presents an excitation impedance to the harmonic current (ie to n The subharmonic is nZ m (1) ).
  • the leakage impedance is generally much smaller than the excitation impedance.
  • the ratio of the excitation impedance Z m (1) to the leakage impedance Z 1 (1) exceeds 100, then the leakage of the nth harmonic excitation impedance nZ m (1) to the fundamental wave Impedance will exceed 100n. Therefore, in the series-type transformer active filter shown in Figure 3, the transformer only increases the impedance of the system to the harmonic current, but closes the short-circuit to the fundamental current, which truly plays the role of harmonic isolation and makes the harmonic current. Current is forced into the passive filter branch. This realizes reactive power compensation and filtering functions. At this time, the equivalent impedance of the primary side of the transformer is the smallest, and the output current is the largest.
  • the equivalent impedance of the fundamental wave on the primary side can be changed, thereby adjusting the output current.
  • the output current is greater than the critical ice melting current, the line ice melting can be realized.
  • the primary winding of the transformer is connected in series between the power grid 50 and the harmonic source (ie, the load) 60
  • the current detection module 31 is used to detect the fundamental wave current component on the side of the primary winding W1
  • the control module 40 controls the inverter circuit
  • the fundamental current on the primary winding to generate a fundamental current and inject it into the secondary winding in reverse phase, so that the fundamental current on the primary winding and the fundamental current on the secondary winding meet the fundamental current compensation conditions.
  • the transformer presents a very low impedance to the fundamental current, close to a short circuit to the fundamental current, and at the same time presents an excitation impedance to the harmonic current, which isolates the harmonic current.
  • the harmonic current is forced to flow into the passive filter.
  • the functions of dynamic reactive power compensation and filtering are realized, the power quality of the power grid is improved, and the structure design of the control device is simple and the cost is low.
  • FIG. 8 is a schematic structural diagram of an ice melting device with both reactive power compensation and adjustable output current in the third embodiment of the present application
  • FIG. 9 is a fundamental wave of a parallel active filter in the third embodiment of the present application Schematic diagram of an equivalent circuit
  • FIG. 10 is a schematic diagram of a harmonic equivalent circuit of a parallel active filter in the third embodiment of the present application. 8 , the primary winding W1 is connected in parallel between the power grid 50 and the harmonic source (ie, the load) 60 , the secondary winding is connected to the inverter circuit 20 , and the inverter circuit 20 is connected to the control module 40 .
  • control module 40 controls the inverter circuit 20 to generate a fundamental wave voltage and applies it to the secondary winding W2 side according to the fundamental wave voltage on the primary winding W1 side detected in real time.
  • the fundamental wave electrical signal detection module includes a voltage detection module 32, and the voltage detection module 32 is electrically connected to the primary winding W1 and the control module 40, respectively.
  • the voltage detection module 32 may be a voltage transformer, which is used for real-time detection of the fundamental wave voltage on the side of the primary winding W1 of the transformer and sent to the control module 40 .
  • the voltage detection module 32 is also connected to the secondary winding (not shown in the figure), and is used for detecting the fundamental wave voltage on the secondary winding side.
  • the primary winding W1 of the transformer is connected in parallel between the power grid 50 and the harmonic source (ie, the load) 60, and the voltage of the primary winding W1 is u 1 , and the voltage detection module 32 detects the fundamental wave voltage of the primary winding W1 1 (1 ) , the control module 40 uses the fundamental wave voltage u 1 (1) as a reference signal, and controls the voltage-type inverter circuit to follow the fundamental wave voltage u 1 (1) to generate a fundamental wave voltage u 2 (1) , and convert the fundamental wave voltage u 2 (1) The wave voltage u 2 (1) is applied to the W2 side of the secondary winding of the transformer. According to the superposition principle, the fundamental wave voltage and the harmonic voltage are analyzed respectively:
  • is the controlled parameter
  • k is the transformation ratio of the transformer.
  • the equivalent impedance Z ax (1) of the secondary winding is:
  • the inductive reactive power has a linear relationship with the coefficient ⁇ , so it is especially suitable for the reactive power compensation system.
  • the proportional coefficient ⁇ is controlled, it can also be made capacitive. It can be seen from this that the reactive power compensation can be realized by the technical solutions of the embodiments of the present application without adding a capacitive reactive power compensation device in the system, the system structure is very simple, and the realization cost is low.
  • the transformer presents a short-circuit impedance to the harmonic voltage, and its equivalent circuit diagram can refer to FIG. 10 . Therefore, if the excitation impedance is ignored, the equivalent impedance Z AX (n) of the harmonic component is:
  • control module 40 controls the voltage-type inverter circuit according to the detected fundamental wave voltage on the primary winding W1 side of the transformer to follow the fundamental wave voltage on the primary winding side to generate a fundamental wave voltage and apply it to the secondary winding side, so that the transformer
  • the primary winding W1 side presents the fundamental wave voltage as an adjustable reactor for reactive power compensation
  • the harmonic voltage presents as the short-circuit impedance of the transformer primary winding W1 side, most of the harmonic voltage generated by the load will flow into the transformer.
  • the primary winding W1 side thus playing the role of filtering.
  • the structure of the whole filtering system is very simple, and the functions of filtering and reactive power compensation can be realized only by tracking and controlling the single frequency of the fundamental wave voltage.
  • FIG. 11 is a schematic structural diagram of an ice melting device with both reactive power compensation and adjustable output current provided in Embodiment 4 of the present application.
  • the ice melting device includes two transformers, namely a first transformer 11 and a second transformer 12, and the primary winding A1 of the first transformer 11 is connected in series between the power grid 50 and the harmonic source (ie load) 60, and the first end of the primary winding A1 of the first transformer 11 is connected to the grid 50, and the second end of the primary winding A1 of the first transformer 11 is connected to the harmonic source (ie the load) 60;
  • the primary winding B2 of the second transformer 12 is connected in parallel between the grid 50 and the harmonic source (ie load) 60 .
  • the current detection module 31 is connected to the primary winding A1 of the first transformer 11 to detect the fundamental current on the primary winding A1 side of the first transformer 11 and send it to the control module 40 ;
  • the voltage detection module 32 is connected to the second transformer 12
  • the primary winding B2 of the second transformer 12 is connected to detect the fundamental wave voltage on the side of the primary winding B2 of the second transformer 12 and send it to the control module 40 .
  • the ice melting device includes two inverter circuits, namely a first inverter circuit 21 and a second inverter circuit 22 , the first inverter circuit 21 and the secondary inverter of the first transformer 11 .
  • the winding A2 is connected
  • the second inverter circuit 22 is connected to the secondary winding B2 of the second transformer 12
  • the first inverter circuit 21 and the second inverter circuit 22 are respectively connected to the control module 40 .
  • both the first inverter circuit 21 and the second inverter circuit 22 may be voltage-type inverter circuits.
  • the first inverter circuit 21 includes a transistor Q11, a transistor Q12, a transistor Q13, a transistor Q14 and a voltage source Ud1, wherein the transistor Q11, the transistor Q12, the transistor Q13, and the transistor Q14 may be NPN transistors.
  • the second inverter circuit 22 includes a transistor Q21, a transistor Q22, a transistor Q23, a transistor Q24 and a voltage source Ud2, wherein the transistor Q21, the transistor Q22, the transistor Q23 and the transistor Q24 may be NPN transistors.
  • the capacitor element C3 is connected in parallel with the side of the secondary winding A2 of the first transformer 11
  • the capacitor element C4 is connected in parallel with the side of the secondary winding B2 of the second transformer 12
  • An inductive element L3 is connected between the secondary winding A2 side of the first transformer 11 and the first inverter circuit 21
  • an inductive element is connected between the secondary winding B2 side of the second transformer 12 and the second inverter circuit 22 .
  • L4 are used to stabilize the line current.
  • the implementation process of the ice melting device is as follows: the primary winding A1 of the first transformer 11 is connected in series between the power grid 50 and the harmonic source (ie, the load) 60, and the primary winding B1 of the second transformer 12 is connected in parallel Connected between the power grid 50 and the harmonic source (ie, the load) 60, the current detection module 31 is used to detect the fundamental current component on the primary winding A1 side of the first transformer 11, and the voltage detection module 32 detects the primary winding B1 side of the second transformer 12. Fundamental voltage component.
  • the control module 40 controls the first inverter circuit 21 to follow the fundamental wave current on the primary winding A1 side of the first transformer 11 to generate a fundamental wave current and inject it into the secondary winding A2 side of the first transformer 11 in reverse phase, so that the first transformer 11
  • the fundamental wave current on the side of the primary winding A1 and the fundamental wave current on the side of the secondary winding A2 satisfy the fundamental wave current compensation condition.
  • the first transformer 11 presents a very low impedance to the fundamental wave current, and is close to a short circuit to the fundamental wave current, and at the same time presents an excitation impedance to the harmonic current.
  • the harmonic current acts as an isolation force, forcing the harmonic current to flow into the primary winding B1 of the second transformer 12 connected in parallel.
  • the control module 40 controls the second inverter circuit 22 to follow the fundamental wave voltage on the primary winding B1 side of the second transformer 12 according to the detected fundamental wave voltage on the primary winding B1 side of the second transformer 12 to generate a fundamental wave voltage and apply it to
  • the primary winding B1 side of the second transformer 12 presents the fundamental voltage as an adjustable reactor for reactive power compensation
  • the harmonic voltage presents as the primary winding B1 of the second transformer 12
  • the short-circuit impedance of the side, most of the harmonic voltage generated by the load will flow into the B1 side of the primary winding of the second transformer 12, thus playing the role of filtering.
  • the structure of the whole filtering system is very simple, and the functions of filtering and reactive power compensation can be realized only by tracking and controlling the single frequency of the fundamental wave voltage. Therefore, the control module controls the first inverter circuit to output the fundamental wave current according to the fundamental wave current of the primary winding of the first transformer and inject it into the secondary winding side of the first transformer, so as to adjust the impedance of the primary winding side of the first transformer , so as to adjust the output current, when the current reaches the critical ice melting current of the line, the ice melting of the line can be realized; and according to the fundamental wave voltage of the primary winding of the second transformer, the second inverter circuit is controlled to output the fundamental wave voltage and inject it into the second inverter circuit.
  • the secondary winding side of the transformer is used to adjust the impedance of the primary winding of the second transformer, realizing the functions of dynamic reactive power compensation and filtering, improving the power quality of the power grid, and the control device has a simple structure design and low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种兼具无功补偿及输出电流可调的融冰装置。该融冰装置包括:至少一个变压器(10)、至少一个逆变电路(20)、基波电信号检测模块(30)和控制模块(40),变压器(10)包括一次绕组(W1)和二次绕组(W2),一次绕组(W1)串联或并联连接在电网(50)和谐波源(60)之间,二次绕组(W2)与逆变电路(20)连接,逆变电路(20)与控制模块(40)连接;基波电信号检测模块(30)分别与一次绕组(W1)和控制模块(40)连接,用于检测一次绕组(W1)的电流或电压;控制模块(40)用于根据一次绕组(W1)的电流控制逆变电路(20)输出基波电流注入到二次绕组(W2),以调节一次绕组(W1)的阻抗,从而调节输出电流,当电流达到线路的临界融冰电流时即可实现线路融冰;或,根据一次绕组(W1)的电压控制逆变电路(20)输出基波电压注入到二次绕组(W2),以调节一次绕组(W1)的阻抗,实现无功补偿功能。

Description

兼具无功补偿及输出电流可调的融冰装置
本申请要求在2020年12月07日提交中国专利局、申请号为202011436279.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及微网电流调控技术,例如涉及一种兼具无功补偿及输出电流可调的融冰装置。
背景技术
为防止冰期的线路覆冰导致产生冰灾事故,国内外学者研究了多种融冰方法,按照原理不同可划分为热力融冰法、机械除冰法、自然除冰法及其他除冰方法。目前主要应用热力融冰法进行线路融冰,其中,直流融冰法与交流短路融冰法是较为成熟的热力融冰方法。在2001年,美国Dartmouth学院的Charles R S等,从集肤效应和介质损耗的角度出发,提出了输电线路高频(8~200kHz)交流融冰方法。以上融冰方法有一系列缺点,如电流调节范围小、适用电压等级低、引入大量谐波等,因此只在某些特定场合才能应用。因此,研究一种新型融冰装置来实现大范围调节电流、滤除谐波、补偿功率因数是迫切需要的。
发明内容
本申请提供一种兼具无功补偿及输出电流可调的融冰装置,通过该融冰装置可以实现输出电流的大范围调节,从而实现线路融冰,同时还能实现动态无功补偿和滤波功能,提高电网的电能质量,且控制装置结构设计简单,成本低。
本申请实施例提供了一种兼具无功补偿及输出电流可调的融冰装置,该融冰装置包括:至少一个变压器、至少一个逆变电路、基波电信号检测模块和控制模块,其中,所述变压器包括一次绕组和二次绕组,所述一次绕组串联或并联连接在电网和谐波源之间,所述二次绕组与所述逆变电路连接,所述逆变电路与所述控制模块连接;所述基波电信号检测模块分别与所述一次绕组和所述控制模块连接,用于检测所述一次绕组的电流或电压;
所述控制模块用于根据所述一次绕组的电流控制所述逆变电路输出基波电流注入到所述二次绕组,以调节所述一次绕组的阻抗,从而调节输出电流,当电流达到线路的临界融冰电流时即可实现线路融冰;
或者,根据所述一次绕组的电压控制所述逆变电路输出基波电压注入到所 述二次绕组,以调节所述一次绕组的阻抗,从而实现无功补偿功能。
可选地,所述一次绕组串联连接在所述电网和所述谐波源之间,所述一次绕组的第一端与所述电网连接,所述一次绕组的第二端与所述谐波源连接;
所述融冰装置还包括无源滤波器,所述无源滤波器并联连接在所述电网和所述谐波源之间,且所述无源滤波器的第一端分别与所述一次绕组的第二端和谐波源连接,第二端分别与所述电网和谐波源连接。
可选地,所述无源滤波器包括第一电感、第二电感、第一电容和第二电容,所述第一电感的第一端分别与所述一次绕组的第二端和所述第二电感的第一端连接,所述第一电感的第二端与所述第一电容的第一端连接,所述第二电感的第二端与所述第二电容的第一端连接,所述第一电容的第二端分别与所述第二电容的第二端、所述电网、所述谐波源连接。
可选地,所述基波电信号检测模块包括电流检测模块,所述电流检测模块分别与所述一次绕组和所述控制模块电连接。
可选地,所述一次绕组并联连接在所述电网和所述谐波源之间。
可选地,所述基波电信号检测模块包括电压检测模块,所述电压检测模块分别与所述一次绕组和所述控制模块电连接。
可选地,包括两个所述变压器,分别为第一变压器和第二变压器,所述第一变压器的一次绕组串联连接在电网和谐波源之间,且所述第一变压器的一次绕组的第一端与所述电网连接,所述第一变压器的一次绕组的第二端与所述谐波源连接;
所述第二变压器的一次绕组并联连接在所述电网和所述谐波源之间。
可选地,包括两个所述逆变电路,分别为第一逆变电路和第二逆变电路,所述第一逆变电路与所述第一变压器的二次绕组连接,所述第二逆变电路与所述第二变压器的二次绕组连接,所述第一逆变电路和所述第二逆变电路分别与所述控制模块连接。
可选地,所述逆变电路为电压型逆变电路。
可选地,还包括第三电容和第三电感,所述第三电容并联连接在所述二次绕组的两端,所述第三电感连接在所述二次绕组和逆变电路之间。
本申请通过提供一种兼具无功补偿及输出电流可调的融冰装置,该融冰装置包括:至少一个变压器、至少一个逆变电路、基波电信号检测模块和控制模块,其中,变压器包括一次绕组和二次绕组,一次绕组串联或并联连接在电网和谐波源之间,二次绕组与逆变电路连接,逆变电路与控制模块连接;基波电 信号检测模块分别与一次绕组和控制模块连接,用于检测一次绕组的电流或电压;控制模块用于根据一次绕组的电流控制逆变电路输出基波电流注入到二次绕组,以调节一次绕组的阻抗,从而调节输出电流,当电流达到线路的临界融冰电流时即可实现线路融冰;或者,根据一次绕组的电压控制逆变电路输出基波电压注入到二次绕组,以调节一次绕组的阻抗,从而实现无功补偿功能。由此,通过该融冰装置可以实现输出电流的大范围调节,从而实现线路融冰,同时还能实现动态无功补偿和滤波功能,提高电网的电能质量,且控制装置结构设计简单,成本低。
附图说明
图1是本申请实施例一中的一种兼具无功补偿及输出电流可调的融冰装置的一次绕组串联连接的结构示意图;
图2是本申请实施例一中的一种兼具无功补偿及输出电流可调的融冰装置的一次绕组并联连接的结构示意图;
图3是本申请实施例二中的一种兼具无功补偿及输出电流可调的融冰装置的结构示意图;
图4是本申请实施例二中的一种变压器的结构示意图;
图5是本申请是实施二中的一种变压器T型等效电路示意图;
图6是本申请实施例二中的一种串联型有源滤波器基波等效电路示意图;
图7是本申请实施例二中的一种串联型有源滤波器谐波等效电路示意图;
图8是本申请实施例三中的一种兼具无功补偿及输出电流可调的融冰装置的结构示意图;
图9是本申请实施例三中的一种并联型有源滤波器基波等效电路示意图;
图10是本申请实施例三中的一种并联型有源滤波器谐波等效电路示意图;
图11是本申请实施例四中的一种兼具无功补偿及输出电流可调的融冰装置的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此 处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
目前常用的几种融冰方法大致如下:
(1)交流短路融冰法。交流短路融冰是将融冰短接线装在输电线路的某一点上,再通过中压配电装置对线路输送融冰电流,并依靠短路电流产生的热量融化线路上的覆冰。交流短路融冰法可以分为三相短路融冰法以及两相短路融冰法。该方法在一定电压范围内可以正常运行,但是对于500kV及其以上电压等级的线路,由于很难满足大容量的融冰电源,因此,采用该方法是行不通的。
(2)直流融冰法。该方法通过换流装置把交流电源转化为直流电源,并对覆冰线路加热使得线路覆冰融化的方法。但是由于直流融冰通常采用6脉波或者12脉波的整流装置,6脉波整流装置会引入5次和7次谐波,而12脉波整流装置会引入11和13次谐波。
(3)机械除冰法。通过使用自动机械装置产生的动力破坏线路上的冰体,从而使得覆冰从线路上脱落。该方法方便易用,但是效率不高且安全性极差。
有鉴于此,本申请提供一种兼具无功补偿及输出电流可调的融冰装置,通过该融冰装置可以实现输出电流的大范围调节,从而实现线路融冰,同时还能实现动态无功补偿和滤波功能,提高电网的电能质量,且控制装置结构设计简单,成本低。
实施例一
图1为本申请实施例一中提供的一种兼具无功补偿及输出电流可调的融冰装置的一次绕组串联连接的结构示意图,图2为本申请实施例一中提供的一种兼具无功补偿及输出电流可调的融冰装置的一次绕组并联连接的结构示意图。参考图1和图2,该融冰装置包括:至少一个变压器10、至少一个逆变电路20、基波电信号检测模块30和控制模块40,其中,变压器10包括一次绕组W1和二次绕组W2,一次绕组W1串联或并联连接在电网50和谐波源(即负载)60之间,分别如图1所示,一次绕组W1串联连接在电网50和谐波源(即负载)60之间;如图2所示,一次绕组W1并联连接在电网50和谐波源(即负载)60之间。
二次绕组W2与逆变电路20连接,逆变电路20与控制模块40连接;基波电信号检测模块30分别与一次绕组W1和控制模块40连接,用于检测一次绕组W1的电流或电压;
控制模块40用于根据一次绕组W1的电流控制逆变电路20输出基波电流注入到二次绕组W2,以调节一次绕组W1的阻抗;
或者,根据一次绕组W1的电压控制逆变电路20输出基波电压注入到二次绕组W2,以调节一次绕组W1的阻抗。
其中,当一次绕组W1串联连接在电网50和谐波源(即负载)60之间时,该融冰装置还包括无源滤波器,无源滤波器可以并联连接在电网50和谐波源(即负载)60之间。无源滤波器用于接收变压器一次绕组流出的谐波电流。
在本实施例的技术方案中,该融冰装置的实现过程为:参考图1,以一次绕组串联连接在电网和谐波源(即负载)之间为例,通过将变压器一次绕组W1串联连接在电网50和谐波源(即负载)60之间,利用基波电信号检测模块30检测一次绕组W1侧的基波电流成分,控制模块40控制逆变电路跟随一次绕组W1侧的基波电流产生另一个基波电流并反相注入到二次绕组W2侧,使得一次绕组W1侧的基波电流与二次绕组W2侧的基波电流满足基波电流补偿条件,即使基波电流主磁通为零。当满足条件时,从变压器的一次绕组W1侧看进去,变压器对基波电流呈现很低的阻抗,对基波电流接近短路,而同时对谐波电流呈现励磁阻抗,对谐波电流起到了隔离的作用,使谐波电流被迫流入到无源滤波器中。由此,实现输出电流的大范围调节,从而实现线路融冰,同时兼具滤波功能,提高电网的电能质量,且控制装置结构设计简单,成本低。
参考图2,以一次绕组W1并联连接在电网50和谐波源(即负载)60之间为例,控制模块40根据检测到的变压器一次绕组W1侧的基波电压控制电压型逆变电路跟随该一次绕组侧的基波电压产生一个基波电压并施加到二次绕组侧,使得变压器一次绕组W1侧对基波电压呈现为一个可调电抗器进行无功补偿,而对谐波电压呈现为变压器一次绕组W1侧的短路阻抗,负载产生的谐波电压的大部分将流入到变压器的一次绕组W1侧,从而起到了滤波的作用。因此,通过对基波电压进行跟踪控制就可以实现滤波和无功补偿的功能,且整个无功补偿系统结构非常简单,容易实现。
本实施例的技术方案,通过提供一种兼具无功补偿及输出电流可调的融冰装置,该融冰装置包括:至少一个变压器、至少一个逆变电路、基波电信号检测模块和控制模块,其中,变压器包括一次绕组和二次绕组,一次绕组串联或并联连接在电网和谐波源(即负载)之间,二次绕组与逆变电路连接,逆变电路与控制模块连接;基波电信号检测模块分别与一次绕组和控制模块连接,用于检测一次绕组的电流或电压;控制模块用于根据一次绕组的电流控制逆变电路输出基波电流注入到二次绕组,以调节一次绕组的阻抗,从而调节输出电流,当电流达到线路的临界融冰电流时即可实现线路融冰;或者,根据一次绕组的 电压控制逆变电路输出基波电压注入到二次绕组,以调节一次绕组的阻抗,从而实现无功补偿功能。由此,通过控制模块根据变压器的一次绕组的基波电流控制逆变电路输出基波电流并注入到变压器的二次绕组侧,以调节变压器的一次绕组侧的阻抗,从而调节输出电流,当电流达到线路的临界融冰电流时即可实现线路融冰;或者,根据变压器的一次绕组的基波电压控制逆变电路输出基波电压并注入到变压器的二次绕组侧,以调节变压器的一次绕组的阻抗,从而实现无功补偿功能。由此可实现动态无功补偿和输出电流可调的功能,从而实现对线路的融冰,同时还能提高电网的电能质量,且控制装置结构设计简单,成本低。
实施例二
图3是本申请实施例二中提供的一种兼具无功补偿及输出电流可调的融冰装置的结构示意图。在上述实施例的基础上,参考图3,一次绕组W1串联连接在电网50和谐波源(即负载)60之间,一次绕组W1的第一端与电网50连接,一次绕组W2的第二端与谐波源(即负载)60连接;
融冰装置还包括无源滤波器70,无源滤波器70并联连接在电网50和谐波源(即负载)60之间,且无源滤波器70的第一端分别与一次绕组W1的第二端和谐波源(即负载)60连接,第二端分别与电网50和谐波源(即负载)60连接。
其中,电网50包括相互串联连接的电感性元件Ls和电压源Us,电感性元件Ls的一端与一次绕组W1的第一端连接,电感性元件Ls的另一端与电压源Us的一个电极连接,电压源Us的另一个电极与谐波源(即负载)60、无源滤波器70连接,谐波源(即负载)60可来自负载端的谐波信号。
其中,一次绕组W1侧的电流包括基波电流成分和谐波电流成分,基波电信号检测模块30实时检测一次绕组W1侧的基波电流,控制模块40控制逆变电路20跟随一次绕组W1侧的基波电流产生一个基波电流并反相注入到二次绕组W2侧,当二次绕组W2侧注入的基波电流和一次绕组W1侧的基波电流满足基波补偿条件时,基波电流主磁通将变为零。此时,从变压器的一次绕组W1看进去,变压器对基波电流呈现很低的阻抗,对基波电流接近短路,而同时对谐波电流呈现励磁阻抗,对谐波电流起到了隔离的作用,使谐波电流被迫流入到无源滤波器70中。
可选地,继续参考图3,无源滤波器70包括第一电感L1、第二电感L2、第一电容C1和第二电容C2,第一电感L1的第一端分别与一次绕组W1的第二 端和第二电感L2的第一端连接,第一电感L1的第二端与第一电容C1的第一端连接,第二电感L2的第二端与第二电容C2的第一端连接,第一电容C1的第二端分别与第二电容C2的第二端、电网50、谐波源(即负载)60连接。
其中,当二次绕组W2侧注入的基波电流和一次绕组W1侧的基波电流满足基波补偿条件时,基波电流主磁通将变为零,谐波电流呈现励磁阻抗,使谐波电流被迫流入到第一电感L1、第二电感L2、第一电容C1和第二电容C2组成的无源滤波器70中,由此实现对谐波成分进行过滤。
可选地,继续参考图3,基波电信号检测模块包括电流检测模块31,电流检测模块31分别与一次绕组W1和控制模块40电连接。
其中,电流检测模块31可以为电流传感器,用于实时检测变压器一次绕组W1侧的基波电流并发送给控制模块40。该电流检测模块31还与二次绕组连接(图中未示出),用于检测二次绕组侧的基波电流。
可选地,逆变电路为电压型逆变电路。
具体的,参考图3,该电压型逆变电路包括第一晶体管Q11、第二晶体管Q12、第三晶体管Q13、第四晶体管Q14和电压源U d1,第一晶体管Q11的第一端、第二晶体管Q12的第一端与电压源U d1的正极电连接,第一晶体管Q11的第二端分别与第三晶体管Q13的第一端和二次绕组W2的第一端电连接,第二晶体管Q12的第二端分别与第四晶体管Q14的第一端和二次绕组W2的第二端电连接,第三晶体管Q13的第二端、第四晶体管Q14的第二端与电压源U d2的负极电连接。
其中,第一晶体管Q11、第二晶体管Q12、第三晶体管Q13、第四晶体管Q14可以为NPN型三极管。第一晶体管Q11的控制端、第二晶体管Q12的控制端、第三晶体管Q13的控制端和第四晶体管Q14的控制端分别与控制模块40电连接,通过控制模块40可以控制第一晶体管Q11、第二晶体管Q12、第三晶体管Q13、第四晶体管Q14的导通或者关断,进而可以控制电压型逆变电路向二次绕组W2提供电流的大小。
可选地,继续参考图3,该融冰装置还包括第三电容C3和第三电感L3,第三电容C3并联连接在二次绕组W2的两端,第三电感L3连接在二次绕组W2和逆变电路20之间。
其中,第三电感L3用于提高逆变电路20向二次绕组W2注入的电流的稳定性。
图4是本申请实施例提供的一种变压器的结构示意图,图5是本申请是本实施例提供的一种变压器T型等效电路示意图,图6是本申请实施例提供的一 种串联型有源滤波器基波等效电路示意图,图7是本申请实施例提供的一种串联型有源滤波器谐波等效电路示意图。
可选地,参考图4,设变压器10一次绕组W1的匝数为N1,二次绕组的匝数为N2,则一次绕组W1和二次绕组W2的匝数比为k=N 1/N 2。若将此变压器10的一次绕组W1串联连接在电网和负载之间,则在一次绕组W1侧便有电流流过。通过电流检测模块31实时检测一次绕组W1侧的电流i 1,并通过控制模块40采用电压型逆变电路跟踪该电流从而产生一个基波电流i 2,将该基波电流i 2反相注入到变压器10的二次绕组W2侧,则此变压器10即为如图4所示的双边励磁的串联变压器。参考图5的变压器等效电路,将基波电流i 2折算到变压器10一次绕组W1后变为i 2′,一次绕组W1的漏阻抗为Z 1,Z 1=r 1+jx 1,变压器二次绕组W2折算到一次绕组W1侧的漏阻抗为Z 2′,Z 2′=r 2′+jx 2′,变压器的励磁阻抗为Z m,Z m=r m+jx m
参考图3,将变压器串联连接在电网50和谐波源(即负载)60之间,则变压器一次绕组W1侧的电流(即电网系统的电流)由基波电流和所有n次谐波电流组成,即i 1=i 1 (1)+∑i 1 (n)
通过电流检测模块31检测一次绕组W1侧的电流中的基波电流i 1 (1),通过控制模块40利用电压型逆变电路跟踪该电流产生一个基波电流i 2 (1),由于i 2 (1)和i 1 (1)具有相同的频率,将i 2 (1)反相注入到变压器的二次绕组W2侧,则根据叠加原理,可以分成两种情况进行分析。
首先,参考图6,对于基波,当注入到二次绕组W2侧的基波电流满足
Figure PCTCN2021074088-appb-000001
Figure PCTCN2021074088-appb-000002
则从AX端看进去,变压器的等效阻抗为:
Z AX (1)=Z 1 (1)
其中,Z 1 (1)是变压器一次绕组的基波漏阻抗。
其次,参考图7,对于n次谐波,由于通过压型逆变电路产生的基波电流i 2 (1)中只含有基波成分,不含谐波成分,因此,变压器二次绕组对于谐波相当于开路,则从AX端看进去,变压器的等效阻抗为:
Figure PCTCN2021074088-appb-000003
其中,Z m (1)是变压器一次绕组的谐波励磁阻抗。
由此可知,控制模块40根据检测到的变压器一次绕组W1侧的基波电流控制电压型逆变电路跟随该一次绕组侧的基波电流产生一个基波电流并反相注入到二次绕组侧,当注入的基波电流和变压器一次侧电流的基波成分满足基波补偿条件:
Figure PCTCN2021074088-appb-000004
基波电流主磁通将为零。此时,从变压器的一次绕组侧看进去,变压器对基波电流呈现很低的阻抗(即一次绕组侧的漏阻抗Z 1 (1)),而同时对谐波电流呈现励磁阻抗(即对n次谐波为nZ m (1))。漏阻抗一般远小于励磁阻抗,对基波电流,励磁阻抗Z m (1)和漏阻抗Z 1 (1)的比值超过100,则n次谐波励磁阻抗nZ m (1)与基波的漏阻抗会超过100n。因此在图3的这种串联型的变压器有源滤波器中,变压器仅仅提高了系统对谐波电流的阻抗,而对基波电流接近短路,从而真正起到了谐波隔离的作用,使谐波电流被迫流入无源滤波器支路。由此实现无功补偿和滤波功能。此时变压器一次侧的等效阻抗最小,输出电流最大。改变注入到二次绕组W2侧的基波电流的大小,即可改变一次侧基波等效阻抗,从而调节输出电流,当输出电流大于临界融冰电流时,即可实现线路融冰。
本实施例的技术方案,通过将变压器一次绕组串联连接在电网50和谐波源(即负载)60之间,利用电流检测模块31检测一次绕组W1侧的基波电流成分,控制模块40控制逆变电路跟随一次绕组侧的基波电流产生一个基波电流并反相 注入到二次绕组侧,使得一次绕组侧的基波电流与二次绕组侧的基波电流满足基波电流补偿条件。当满足条件时,从变压器的一次绕组侧看进去,变压器对基波电流呈现很低的阻抗,对基波电流接近短路,而同时对谐波电流呈现励磁阻抗,对谐波电流起到了隔离的作用,使谐波电流被迫流入到无源滤波器中。由此,实现动态无功补偿和滤波功能,提高电网的电能质量,且控制装置结构设计简单,成本低。改变注入到二次绕组W2侧的基波电流的大小,即可改变一次侧基波等效阻抗,从而调节输出电流,当输出电流大于临界融冰电流时,即可实现线路融冰。
实施例三
图8是本申请实施例三中的一种兼具无功补偿及输出电流可调的融冰装置的结构示意图;图9是本申请实施例三中的一种并联型有源滤波器基波等效电路示意图;图10是本申请实施例三中的一种并联型有源滤波器谐波等效电路示意图。在上述实施例的基础上,参考图8,一次绕组W1并联连接在电网50和谐波源(即负载)60之间,二次绕组与逆变电路20连接,逆变电路20与控制模块40连接。
其中,控制模块40根据实时检测的一次绕组W1侧的基波电压,控制逆变电路20产生一个基波电压并施加到二次绕组W2侧。
可选地,基波电信号检测模块包括电压检测模块32,电压检测模块32分别与一次绕组W1和控制模块40电连接。
其中,电压检测模块32可以为电压互感器,用于实时检测变压器一次绕组W1侧的基波电压并发送给控制模块40。该电压检测模块32还与二次绕组连接(图中未示出),用于检测二次绕组侧的基波电压。
参考图8,变压器的一次绕组W1并联连接在电网50和谐波源(即负载)60之间,设一次绕组W1的电压为u 1,电压检测模块32检测一次绕组W1的基波电压u 1 (1),控制模块40以该基波电压u 1 (1)为参考信号,控制电压型逆变电路跟随该基波电压u 1 (1)产生一个基波电压u 2 (1),并将该基波电压u 2 (1)施加到变压器的二次绕组W2侧,根据叠加原理对基波电压和谐波电压分别进行分析:
首先,对于基波电压,参考图9,可以得到变压器的一次绕组和二次绕组的基波电压方程为:
Figure PCTCN2021074088-appb-000005
当二次绕组施加的基波电压与一次绕组的基波电压满足一定的倍数关系时,即满足
Figure PCTCN2021074088-appb-000006
也即满足:
Figure PCTCN2021074088-appb-000007
其中,α为被控参数,k为变压器的变比。
联立上述几个式子,可得:
Figure PCTCN2021074088-appb-000008
Figure PCTCN2021074088-appb-000009
则一次绕组的等效阻抗Z AX (1)为:
Figure PCTCN2021074088-appb-000010
二次绕组的等效阻抗Z ax (1)为:
Figure PCTCN2021074088-appb-000011
设并联的一次绕组侧的系统电压基本保持不变,该变压器吸收的基波感性无功为:
Figure PCTCN2021074088-appb-000012
该感性无功与系数α呈线性关系,因此特别适合于无功补偿的系统,当控制比例系数α还可以使其呈容性。由此可知,系统中不用加容性无功补偿装置而通过本申请实施例的技术方案即可实现无功补偿,系统结构非常简单,且实现成本低。
其次,对于谐波电压,由于变压器的二次绕组W2侧没有施加任何的谐波电压,则该变压器对谐波电压呈现短路阻抗,其等效电路图可以参考图10。因此,若忽略掉励磁阻抗,则谐波成分的等效阻抗Z AX (n)为:
Z AX (n)=r 1+r′ 2+jn(x 1+x′ 2)
由此可知,控制模块40根据检测到的变压器一次绕组W1侧的基波电压控制电压型逆变电路跟随该一次绕组侧的基波电压产生一个基波电压并施加到二次绕组侧,使得变压器一次绕组W1侧对基波电压呈现为一个可调电抗器进行无功补偿,而对谐波电压呈现为变压器一次绕组W1侧的短路阻抗,负载产生的谐波电压的大部分将流入到变压器的一次绕组W1侧,从而起到了滤波的作用。整个滤波系统结构非常简单,只需对基波电压这种单一频率进行跟踪控制就可以实现滤波和无功补偿的功能。
实施例四
图11是本申请实施例四中提供的一种兼具无功补偿及输出电流可调的融冰装置的结构示意图。在上述实施例的基础上,参考图11,该融冰装置包括两个变压器,分别为第一变压器11和第二变压器12,第一变压器11的一次绕组A1串联连接在电网50和谐波源(即负载)60之间,且第一变压器11的一次绕组A1的第一端与电网50连接,第一变压器11的一次绕组A1的第二端与谐波源(即负载)60连接;
第二变压器12的一次绕组B2并联连接在电网50和谐波源(即负载)60之间。
具体的,电流检测模块31与第一变压器11的一次绕组A1连接,用于检测第一变压器11的一次绕组A1侧的基波电流并发送给控制模块40;电压检测模块32与第二变压器12的一次绕组B2连接,用于检测第二变压器12的一次绕组B2侧的基波电压并发送给控制模块40。
可选地,继续参考图11,该融冰装置包括两个逆变电路,分别为第一逆变电路21和第二逆变电路22,第一逆变电路21与第一变压器11的二次绕组A2连接,第二逆变电路22与第二变压器12的二次绕组B2连接,第一逆变电路21和第二逆变电路22分别与控制模块40连接。
其中,第一逆变电路21和第二逆变电路22均可以为电压型逆变电路。第一逆变电路21包括晶体管Q11、晶体管Q12、晶体管Q13、晶体管Q14和电压源Ud1,其中,晶体管Q11、晶体管Q12、晶体管Q13、晶体管Q14可以为NPN型三极管。第二逆变电路22包括晶体管Q21、晶体管Q22、晶体管Q23、晶体管Q24和电压源Ud2,其中,晶体管Q21、晶体管Q22、晶体管Q23、晶体管Q24可以为NPN型三极管。
可选地,参考图11,第一变压器11的二次绕组A2侧并联有电容元件C3,第二变压器12的二次绕组B2侧并联有电容元件C4。第一变压器11的二次绕组A2侧与第一逆变电路21之间连接有电感性元件L3,第二变压器12的二次绕组B2侧与第二逆变电路22之间连接有电感性元件L4。其中,电感性元件L3、L4用于稳定线路电流。
在本实施的技术方案中,该融冰装置的实现过程为:将第一变压器11的一次绕组A1串联连接在电网50和谐波源(即负载)60之间,第二变压器12的一次绕组B1并联连接在电网50和谐波源(即负载)60之间,利用电流检测模块31检测第一变压器11的一次绕组A1侧的基波电流成分,电压检测模块32检测第二变压器12的一次绕组B1侧的基波电压成分。控制模块40控制第一逆变电路21跟随第一变压器11的一次绕组A1侧的基波电流产生一个基波电流并反相注入到第一变压器11的二次绕组A2侧,使得第一变压器11的一次绕组A1侧的基波电流与其二次绕组A2侧的基波电流满足基波电流补偿条件。当满足条件时,从第一变压器11的一次绕组A1侧看进去,第一变压器11对基波电流呈现很低的阻抗,对基波电流接近短路,而同时对谐波电流呈现励磁阻抗,对谐波电流起到了隔离的作用,使谐波电流被迫流入到并联连接的第二变压器12的一次绕组B1中。同时控制模块40根据检测到的第二变压器12一次绕组B1侧的基波电压控制第二逆变电路22跟随该第二变压器12的一次绕组B1侧的基波电压产生一个基波电压并施加到第二变压器12的二次绕组B2侧,使得第二变压器12一次绕组B1侧对基波电压呈现为一个可调电抗器进行无功补偿,而对谐波电压呈现为第二变压器12一次绕组B1侧的短路阻抗,负载产生的谐波电压的大部分将流入到第二变压器12一次绕组B1侧,从而起到了滤波的作用。整个滤波系统结构非常简单,只需对基波电压这种单一频率进行跟踪控制就可以实现滤波和无功补偿的功能。由此,通过控制模块根据第一变压器的一次绕组的基波电流控制第一逆变电路输出基波电流并注入到第一变压器的二次 绕组侧,以调节第一变压器的一次绕组侧的阻抗,从而调节输出电流,当电流达到线路的临界融冰电流时即可实现线路融冰;以及根据第二变压器的一次绕组的基波电压控制第二逆变电路输出基波电压并注入到第二变压器的二次绕组侧,以调节第二变压器的一次绕组的阻抗,实现了动态无功补偿和滤波功能,提高了电网的电能质量,且控制装置结构设计简单,成本低。

Claims (10)

  1. 一种兼具无功补偿及输出电流可调的融冰装置,包括:至少一个变压器、至少一个逆变电路、基波电信号检测模块和控制模块,其中,所述变压器包括一次绕组和二次绕组,所述一次绕组串联或并联连接在电网和谐波源之间,所述二次绕组与所述逆变电路连接,所述逆变电路与所述控制模块连接;所述基波电信号检测模块分别与所述一次绕组和所述控制模块连接,用于检测所述一次绕组的电流或电压;
    所述控制模块用于根据所述一次绕组的电流控制所述逆变电路输出基波电流注入到所述二次绕组,以调节所述一次绕组的阻抗,从而调节输出电流,当电流达到线路的临界融冰电流时即可实现线路融冰;
    或者,根据所述一次绕组的电压控制所述逆变电路输出基波电压注入到所述二次绕组,以调节所述一次绕组的阻抗,从而实现无功补偿功能。
  2. 根据权利要求1所述的兼具无功补偿及输出电流可调的融冰装置,其中,所述一次绕组串联连接在所述电网和所述谐波源之间,所述一次绕组的第一端与所述电网连接,所述一次绕组的第二端与所述谐波源连接;
    所述融冰装置还包括无源滤波器,所述无源滤波器并联连接在所述电网和所述谐波源之间,且所述无源滤波器的第一端分别与所述一次绕组的第二端和谐波源连接,第二端分别与所述电网和谐波源连接。
  3. 根据权利要求2所述的兼具无功补偿及输出电流可调的融冰装置,其中,所述无源滤波器包括第一电感、第二电感、第一电容和第二电容,所述第一电感的第一端分别与所述一次绕组的第二端和所述第二电感的第一端连接,所述第一电感的第二端与所述第一电容的第一端连接,所述第二电感的第二端与所述第二电容的第一端连接,所述第一电容的第二端分别与所述第二电容的第二端、所述电网、所述谐波源连接。
  4. 根据权利要求2所述的兼具无功补偿及输出电流可调的融冰装置,其中,所述基波电信号检测模块包括电流检测模块,所述电流检测模块分别与所述一次绕组和所述控制模块电连接。
  5. 根据权利要求1所述的兼具无功补偿及输出电流可调的融冰装置,其中,所述一次绕组并联连接在所述电网和所述谐波源之间。
  6. 根据权利要求5所述的兼具无功补偿及输出电流可调的融冰装置,其中,所述基波电信号检测模块包括电压检测模块,所述电压检测模块分别与所述一次绕组和所述控制模块电连接。
  7. 根据权利要求1所述的兼具无功补偿及输出电流可调的融冰装置,其中,所述融冰装置包括两个所述变压器,分别为第一变压器和第二变压器,所述第 一变压器的一次绕组串联连接在电网和谐波源之间,且所述第一变压器的一次绕组的第一端与所述电网连接,所述第一变压器的一次绕组的第二端与所述谐波源连接;
    所述第二变压器的一次绕组并联连接在所述电网和所述谐波源之间。
  8. 根据权利要求7所述的兼具无功补偿及输出电流可调的融冰装置,其中,所述融冰装置包括两个所述逆变电路,分别为第一逆变电路和第二逆变电路,所述第一逆变电路与所述第一变压器的二次绕组连接,所述第二逆变电路与所述第二变压器的二次绕组连接,所述第一逆变电路和所述第二逆变电路分别与所述控制模块连接。
  9. 根据权利要求1所述的兼具无功补偿及输出电流可调的融冰装置,其中,所述逆变电路为电压型逆变电路。
  10. 根据权利要求1所述的兼具无功补偿及输出电流可调的融冰装置,还包括第三电容和第三电感,所述第三电容并联连接在所述二次绕组的两端,所述第三电感连接在所述二次绕组和逆变电路之间。
PCT/CN2021/074088 2020-12-07 2021-01-28 兼具无功补偿及输出电流可调的融冰装置 WO2022121094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011436279.X 2020-12-07
CN202011436279.XA CN112531730B (zh) 2020-12-07 2020-12-07 一种兼具无功补偿及输出电流可调的融冰装置

Publications (1)

Publication Number Publication Date
WO2022121094A1 true WO2022121094A1 (zh) 2022-06-16

Family

ID=74999097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074088 WO2022121094A1 (zh) 2020-12-07 2021-01-28 兼具无功补偿及输出电流可调的融冰装置

Country Status (2)

Country Link
CN (1) CN112531730B (zh)
WO (1) WO2022121094A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300307B (zh) * 2021-04-29 2022-12-27 珠海万力达电气自动化有限公司 一种具有双网融冰功能的铁路电力系统互联装备及控制方法
CN113363984A (zh) * 2021-07-28 2021-09-07 广东电网有限责任公司 一种有源滤波器和三相有源滤波系统
CN113889957B (zh) * 2021-09-26 2023-06-16 武汉理工大学 一种基于分布式潮流控制的非接触耦合式融冰拓扑及融冰方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU705583A1 (ru) * 1977-08-01 1979-12-25 Ордена Ленина Производственное Энергетическое Объединение "Донбассэнерго" Устройство дл плавки гололеда на линии электропередачи переменного тока
EP2020380A2 (en) * 2007-08-02 2009-02-04 Honeywell International Inc. Aircraft icing sensor
CN203071849U (zh) * 2012-12-13 2013-07-17 武汉理工大学 高压大功率电动机软起动限流补偿与谐波滤波一体化装置
CN107196263A (zh) * 2017-07-21 2017-09-22 国网湖南省电力公司 集约型融冰装置无功补偿与融冰并行时的svg控制方法
CN111431126A (zh) * 2020-05-11 2020-07-17 广东电网有限责任公司清远供电局 一种在线融冰装置
CN111431125A (zh) * 2020-05-11 2020-07-17 广东电网有限责任公司清远供电局 一种在线融冰装置
CN111478262A (zh) * 2020-05-11 2020-07-31 广东电网有限责任公司清远供电局 一种基于线性变压器的在线融冰装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201699418U (zh) * 2010-04-22 2011-01-05 武汉市通益电气有限公司 新型并联有源滤波器
CN201699644U (zh) * 2010-04-22 2011-01-05 武汉市通益电气有限公司 基于检测系统电压的磁通补偿可调电抗器
CN106129947B (zh) * 2016-09-18 2018-04-27 湖北科技学院 一种交流输电线路导线防冰兼静止无功补偿装置
CN106207863A (zh) * 2016-09-26 2016-12-07 南京工程学院 一种基于电网间同期并列装置的统一潮流控制器融冰方法
CN106887855A (zh) * 2017-05-04 2017-06-23 广东电网有限责任公司电力科学研究院 一种新型并联电能质量控制器
CN107370153A (zh) * 2017-07-21 2017-11-21 华中科技大学 一种有源电力滤波装置
CN107248743A (zh) * 2017-07-21 2017-10-13 华中科技大学 一种针对指定次谐波的有源电力滤波装置
CN109873423A (zh) * 2019-03-21 2019-06-11 华中科技大学 一种串联混合型电能质量控制器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU705583A1 (ru) * 1977-08-01 1979-12-25 Ордена Ленина Производственное Энергетическое Объединение "Донбассэнерго" Устройство дл плавки гололеда на линии электропередачи переменного тока
EP2020380A2 (en) * 2007-08-02 2009-02-04 Honeywell International Inc. Aircraft icing sensor
CN203071849U (zh) * 2012-12-13 2013-07-17 武汉理工大学 高压大功率电动机软起动限流补偿与谐波滤波一体化装置
CN107196263A (zh) * 2017-07-21 2017-09-22 国网湖南省电力公司 集约型融冰装置无功补偿与融冰并行时的svg控制方法
CN111431126A (zh) * 2020-05-11 2020-07-17 广东电网有限责任公司清远供电局 一种在线融冰装置
CN111431125A (zh) * 2020-05-11 2020-07-17 广东电网有限责任公司清远供电局 一种在线融冰装置
CN111478262A (zh) * 2020-05-11 2020-07-31 广东电网有限责任公司清远供电局 一种基于线性变压器的在线融冰装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KE DAI, PEIGUO LIU, JIAN XIONG, JIAN CHEN: "Study on dual-DSP-controued three-phase series-parallel compensated line-interactive UPS system (delta-conversion UPS)", ELECTRIC MACHINES AND DRIVES CONFERENCE, 2003. IEMDC'03, vol. 1, 1 June 2003 (2003-06-01) - 4 June 2003 (2003-06-04), pages 436 - 442, XP010644797, ISBN: 978-0-7803-7817-9 *
LI, DAYI: "Research on a Series Hybrid Active Power Filter Based on Fundamental Magnetic Flux Compensation", CHINESE DOCTORAL DISSERTATIONS & MASTER'S THESES FULL-TEXT DATABASE (DOCTOR), 1 March 2005 (2005-03-01), XP055940650 *

Also Published As

Publication number Publication date
CN112531730A (zh) 2021-03-19
CN112531730B (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
WO2022121094A1 (zh) 兼具无功补偿及输出电流可调的融冰装置
Tang et al. Highly reliable transformerless photovoltaic inverters with leakage current and pulsating power elimination
Fujita et al. The unified power quality conditioner: the integration of series-and shunt-active filters
Liu et al. Power quality improvement using controllable inductive power filtering method for industrial DC supply system
US20070109823A1 (en) Multi-level active filter
CN109217687A (zh) 基于mmc的配电网电力电子变压器及其控制方法
CN101183791A (zh) 一种静止无功补偿器和有源电力滤波器联合运行系统及其控制方法
Li et al. A high-power active filtering system with fundamental magnetic flux compensation
CN111740455A (zh) 一种交流不平衡电压与直流脉动电压统一补偿的母线接口变换器控制方法
Cheng et al. Operations of the dominant harmonic active filter (DHAF) under realistic utility conditions
CN107437808B (zh) 一种即插即用的针对指定次谐波的有源电力滤波装置
CN110311411A (zh) 弱电网下并网逆变器带阻前馈补偿系统及方法
CN109510213B (zh) 基于牵引-补偿变压器的同相供电综合补偿装置及其方法
CN107437809B (zh) 一种即插即用的有源电力滤波装置
WO2022121095A1 (zh) 基于新型磁控可调电抗器的微网融冰电流控制装置及其控制方法
CN107171325B (zh) 一种即插即用集成模块化有源谐波隔离器
Helali et al. Robustness of smart transformer based-on sliding mode controller under grid perturbations
Tran et al. Analysis of the characteristics of the new converter transformer based on the matrix model
Wu et al. Voltage source converter control under distorted grid voltage for hybrid ac-dc distribution links
Habibolahzadeh et al. Rating reduction and optimized DC-link voltage of the HPQC in co-phase traction power system
CN112636352B (zh) 一种电能质量控制器、控制方法及系统
CN206850431U (zh) 一种即插即用集成模块化有源谐波隔离器
CN105717388A (zh) 一种变压器测试平台
Alarcon et al. Design and implementation of a 3-phase series active filter to compensate voltage disturbances
CN106300356A (zh) 一种中线谐波电流抑制器及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21901813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21901813

Country of ref document: EP

Kind code of ref document: A1