WO2022121086A1 - 一种适用于多路USB Type-C的充电系统及充电方法 - Google Patents
一种适用于多路USB Type-C的充电系统及充电方法 Download PDFInfo
- Publication number
- WO2022121086A1 WO2022121086A1 PCT/CN2021/072223 CN2021072223W WO2022121086A1 WO 2022121086 A1 WO2022121086 A1 WO 2022121086A1 CN 2021072223 W CN2021072223 W CN 2021072223W WO 2022121086 A1 WO2022121086 A1 WO 2022121086A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- type
- vref
- vint
- target
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000006243 chemical reaction Methods 0.000 claims abstract description 51
- 238000004891 communication Methods 0.000 claims abstract description 37
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 20
- 108700025151 PD protocol Proteins 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 102100031786 Adiponectin Human genes 0.000 description 1
- 101000775469 Homo sapiens Adiponectin Proteins 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/30—Charge provided using DC bus or data bus of a computer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention belongs to the technical field of Type-C charging circuits, and in particular relates to a charging system and a charging method suitable for multi-channel USB Type-C.
- USB Universal Serial Bus
- the traditional USB is a commonly used interface. It has only 4 wires, two power wires and two signal wires.
- the maximum output voltage and current of the USB interface is: 5V/1.5A; the signal is serial transmission, The speed can reach 480Mbps, which can meet various industrial and civil needs.
- USB Type-C is a universal serial The hardware interface specification of the bus (USB); the highlights of the new interface are slimmer design, faster transmission speed (up to 40Gbps) and more powerful power transmission (up to 100W); Type-C supports double-sided insertion of the USB interface, It officially solves the worldwide problem of "USB can never be inserted correctly", and the front and back can be plugged at will; at the same time, the USB data cable used with it must also be thinner and lighter.
- USB PD USB Power Delivery Specification
- the USB PD protocol can carry 3A or 5A current, and the output voltage is up to 20V.
- the interface defines a dedicated channel for power transmission protocol communication, which can complete intelligent adaptive charging adjustment between charging and power receiving devices. Improve charging efficiency; using USB PD protocol, one output Type-C port can charge one device.
- n independent AC and DC power supplies are used to supply power to n Type-C ports respectively, and the input of the n AC-DC modules is the input of the adapter
- the terminal is connected to the AC mains; each Type-C port has a corresponding PD chip to perform a protocol handshake with the device (through the CC line).
- the USB PD protocol is used to determine the required Output voltage:
- the PD chip and AC-DC are connected through FB, and FB can directly adjust the output voltage VOUT of the AC-DC module to achieve the target voltage value required by the device;
- the problem is: n independent AC-DC modules are required, so that the designed power circuit is n times the actual demand; for example, a dual-channel Type-C output adapter needs to achieve a single-port maximum output of 60W Power, both AC-DCs are required to output 60W, that is, the total design power of this adapter is 120W.
- n independent AC-DC modules are required, so that the designed power circuit is n times the actual demand; for example, a dual-channel Type-C output adapter needs to achieve a single-port maximum output of 60W Power, both AC-DCs are required to output 60W, that is, the total design power of this adapter is 120W.
- FIG. 2 Another example: in the prior art scheme 2 provided by FIG. 2, a two-stage power supply mode is adopted, and the AC mains is first converted into a fixed intermediate bus voltage Vint through an AC-DC converter AC-DC module, and this voltage is used as the voltage Vint.
- the middle bus is connected to n-way buck converters in parallel; each buck converter is connected to an independent Type-C output; each Type-C port has a corresponding PD chip to perform protocol handshake with the device (via CC line), when the device is connected to the Type-C port, the output voltage required by the device is determined through the USB PD protocol; the PD chip and the buck converter are connected through FB, and FB can directly adjust the output voltage VOUT of the buck converter , to achieve the target voltage value required by the device.
- the existing technical solution 2 only needs one AC-DC module, which greatly reduces the power magnetic components, but the intermediate bus voltage needs to be fixed to be greater than the maximum voltage output by any one Type-C port. This leads to: when the device is not connected, the AC-DC still needs to output the maximum voltage, resulting in high standby power consumption of the system; in addition, after the device is connected, if the output voltage of each buck converter is The output minimum voltage, and its input voltage is fixed, in this case, the system efficiency is poor.
- the present invention overcomes the deficiencies of the prior art, and the technical problem to be solved is: to provide a method that can dynamically adjust the output voltage according to the voltage change of the Type-C port, and is suitable for multi-channel USB Type-C charging with high conversion efficiency. System and charging method.
- the technical scheme adopted in the present invention is:
- a charging system suitable for multi-channel USB Type-C comprising: a power supply module, and a plurality of Type-C voltage conversion modules connected to the power supply module, each of the Type-C voltage conversion modules has a corresponding connection useful Type-C port for connecting the load;
- the power module for outputting the DC voltage Vint
- Each of the described Type-C voltage conversion modules includes:
- the VBUS feedback control circuit is used to obtain the voltage value of the target voltage Vref of the Type-C port connected to the load, as well as the voltage value of the output voltage VBUS, and feedback the compensation circuit through VBUS to control the voltage value of the output voltage VBUS and the target voltage.
- the voltage value of Vref is the same; and detect whether the voltage value of the target voltage Vref of the Type-C port is updated, if there is an update, output the updated digital quantity;
- a single-bus communication circuit communicated with the single-bus communication circuit of other Type-C voltage conversion modules, is used to receive the updated digital quantity and broadcast it, so that all other single-bus communication circuits can receive the updated digital quantity;
- the VINT feedback control circuit is used for receiving the voltage value of the target voltage Vref of the Type-C port output by the VBUS feedback control circuit, and receiving the voltage value of the target voltage Vref_n of other Type-C ports;
- the compensation circuit is fed back through VINT to adjust the voltage value of the DC voltage Vint to be consistent with the adjustment voltage target value VINT_Ref.
- the voltage value of the adjusted voltage target value VINT_Ref is greater than or equal to the target voltage value Vref of the Type-C port.
- the VINT_Ref selection circuit specifically includes:
- Vref_Max is a preset voltage, and its voltage value ⁇ The maximum voltage output by all Type-C ports under all normal operating conditions.
- a charging method suitable for multi-channel USB Type-C includes: a power supply module, and a plurality of Type-C voltage conversion modules connected to the power supply module, each of the Type-C voltage conversion modules corresponding to There is a Type-C port for connecting the load; each Type-C voltage conversion module is provided with a step-down power circuit, a VBUS feedback control circuit, a single bus communication circuit and a VINT feedback control circuit; one of the Type-C ports After connecting the load, include the following steps:
- the power module outputs the DC voltage Vint
- the step-down power circuit converts the initial DC voltage Vint into the output voltage VBUS;
- the VBUS feedback control circuit obtains the voltage value of the target voltage Vref of the Type-C port connected to the load, and obtains the voltage value of the output voltage VBUS, and feeds back the compensation circuit through the VBUS to control the voltage value of the output voltage VBUS and the target voltage Vref The voltage value is the same; and detect whether the voltage value of the target voltage Vref of the Type-C port is updated, if there is an update, output the updated digital quantity;
- the single bus communication circuit is communicatively connected with the single bus communication circuit of other Type-C voltage conversion modules; when receiving the updated digital quantity, broadcast, so that all other single bus communication circuits can receive the updated digital quantity;
- the VINT feedback control circuit receives the voltage value of the target voltage Vref of the Type-C port output by the VBUS feedback control circuit, and receives the voltage value of the target voltage Vref_n of other Type-C ports;
- the target voltage value Vref is compared with the target voltage value Vref_n of the other Type-C ports to output the adjusted voltage target value VINT_Ref; through the VINT feedback compensation circuit, the voltage value of the adjusted DC voltage Vint is consistent with the adjusted voltage target value VINT_Ref.
- the voltage value of the adjusted voltage target value VINT_Ref is greater than or equal to the target voltage value Vref of the Type-C port.
- the VINT_Ref selection circuit compares the target voltage value Vref of the Type-C port with the target voltage values Vref_n of other Type-C ports to output the adjusted voltage target value VINT_Ref, which specifically includes:
- Vref_Max is a preset voltage, and its voltage value ⁇ The maximum voltage output by all Type-C ports under all normal operating conditions.
- the compensation circuit is fed back through VBUS to control the voltage value of the output voltage VBUS to be consistent with the voltage value of the target voltage Vref, specifically including:
- the power module outputs the DC voltage Vint, which specifically includes:
- a rectifier bridge and a voltage conversion circuit the input of the rectifier bridge is connected to the AC power supply terminal, the output terminal of the rectifier bridge is connected to the input terminal of the voltage conversion circuit, and the control terminal of the voltage conversion circuit is connected to the VINT feedback control circuit. connected to the output.
- an isolated power supply is provided on the voltage conversion circuit.
- the voltage conversion circuit is at least one of a flyback circuit, a forward circuit, and a boost circuit+LLC circuit.
- the present invention has the following beneficial effects:
- the present invention is a charging system and charging method suitable for multi-channel USB Type-C, which can update the target output voltage of each Type-C port in real time according to the single-bus communication circuit, and dynamically adjust the Vint voltage, so that the Vint voltage and the VBUS voltage are equal.
- FIG. 1 is a schematic structural diagram of a Type-C charging interface circuit in the prior art
- FIG. 2 is a schematic structural diagram of another Type-C charging interface circuit in the prior art
- FIG. 3 is a schematic block diagram of a charging system suitable for multi-channel USB Type-C according to Embodiment 1 of the present invention
- FIG. 4 is a schematic block diagram of a dynamic voltage adjustment in a charging system suitable for a multi-channel USB Type-C according to Embodiment 1 of the present invention
- FIG. 5 is a schematic flowchart of a charging method suitable for multi-channel USB Type-C according to Embodiment 1 of the present invention
- FIG. 6 is a schematic circuit diagram of a power supply module in a charging method suitable for multi-channel USB Type-C according to Embodiment 2 of the present invention
- FIG. 7 is a circuit schematic diagram of a step-down power circuit in a charging method suitable for multi-channel USB Type-C according to Embodiment 2 of the present invention.
- FIG. 8 is a schematic block diagram of a VBUS feedback control circuit in a charging method suitable for multi-channel USB Type-C according to Embodiment 2 of the present invention.
- FIG. 9 is a circuit schematic diagram of a VBUS feedback compensation circuit in a charging method suitable for multi-channel USB Type-C according to Embodiment 2 of the present invention.
- FIG. 10 is a circuit schematic diagram of a VINT feedback control circuit in a charging method suitable for multi-channel USB Type-C according to Embodiment 2 of the present invention
- step S50 is a schematic flowchart of step S50 in a charging method suitable for multi-channel USB Type-C provided by Embodiment 1 of the present invention
- FIG. 12 is a circuit schematic diagram of a VINT feedback control circuit controlling the DC voltage Vint in a charging method suitable for multi-channel USB Type-C according to Embodiment 2 of the present invention
- FIG. 13 is a circuit connection diagram of each single-bus communication circuit in a charging method suitable for multi-channel USB Type-C according to Embodiment 2 of the present invention.
- FIG. 3 is a schematic block diagram of a charging system suitable for multi-channel USB Type-C provided by Embodiment 1 of the present invention
- FIG. 4 is a charging system suitable for multi-channel USB Type-C provided by Embodiment 1 of the present invention.
- the principle block diagram of dynamically adjusting the voltage as shown in Figure 3 and Figure 4, a charging system suitable for multi-channel USB Type-C includes: a power module, and a plurality of Type-C voltage conversion modules connected to the power module, Each of the Type-C voltage conversion modules is correspondingly connected with a Type-C port for connecting a load;
- the Type-C voltage conversion module can be multiple, including: Type-C voltage conversion module 1, Type-C voltage conversion module 2, . . . , Type-C voltage conversion module n; correspondingly,
- the Type-C ports may also be multiple, including: Type-C port 1, Type-C port 2, . . . , Type-C port n.
- the power module is used to output the DC voltage Vint
- Each of the Type-C voltage conversion modules includes:
- the VBUS feedback control circuit is used to obtain the voltage value of the target voltage Vref of the Type-C port 30 connected to the load, as well as the voltage value of the output voltage VBUS, and feedback the compensation circuit through VBUS to control the voltage value of the output voltage VBUS and the target voltage
- the voltage value of the voltage Vref is consistent; and detect whether the voltage value of the target voltage Vref of the Type-C port has been updated, if there is an update, output the updated digital quantity;
- the single-bus communication circuit is connected to the single-bus communication circuit of other Type-C voltage conversion modules through the bus to receive the updated digital quantity and broadcast it on the bus, so that all other single-bus communication circuits can receive the the number of updates;
- the VINT feedback control circuit is used for receiving the voltage value of the target voltage Vref of the Type-C port output by the VBUS feedback control circuit, and receiving the voltage value of the target voltage Vref_n of other Type-C ports;
- the compensation circuit is fed back through VINT to adjust the voltage value of the DC voltage Vint to be consistent with the adjustment voltage target value VINT_Ref.
- the voltage value of the adjustment voltage target value VINT_Ref is greater than or equal to the target voltage value Vref of the Type-C port.
- VINT_Ref selection circuit specifically includes:
- Vref_Max is a preset voltage, and its voltage value ⁇ The maximum voltage output by all Type-C ports under all normal operating conditions.
- the default agreement can be used to make a judgment based on the port identifier. If the port with the smallest port ID takes precedence, then port 1 is the maximum value, or if the port with the largest port ID is given priority, then port 5 is the maximum value.
- FIG. 5 is a schematic flowchart of a charging method suitable for multi-channel USB Type-C according to Embodiment 1 of the present invention
- a charging method suitable for multi-channel USB Type-C includes: a power supply module, and a plurality of Type-C voltage conversion modules connected to the power supply module, each of the Type-C voltage conversion modules is correspondingly connected with a Type-C port for connecting the load; it is characterized in that: each Type-C voltage conversion module The C voltage conversion module is equipped with a step-down power circuit, a VBUS feedback control circuit, a single bus communication circuit and a VINT feedback control circuit; after one of the Type-C ports is connected to the load, the following steps are included:
- the power module outputs the DC voltage Vint
- the step-down power circuit converts the initial DC voltage Vint into the output voltage VBUS;
- the VBUS feedback control circuit obtains the voltage value of the target voltage Vref of the Type-C port connected to the load, and obtains the voltage value of the output voltage VBUS, and feeds back the compensation circuit through the VBUS to control the voltage value of the output voltage VBUS and the target voltage Vref The voltage value is the same; and detect whether the voltage value of the target voltage Vref of the Type-C port is updated, if there is an update, output the updated digital quantity;
- the single bus communication circuit is communicatively connected with the single bus communication circuit of other Type-C voltage conversion modules through the bus; when receiving the updated digital quantity, broadcast on the bus, so that all other single bus communication circuits can receive the the number of updates;
- the VINT feedback control circuit receives the voltage value of the target voltage Vref of the Type-C port output by the VBUS feedback control circuit, and receives the voltage value of the target voltage Vref_n of other Type-C ports;
- the target voltage value Vref is compared with the target voltage value Vref_n of the other Type-C ports to output the adjusted voltage target value VINT_Ref; through the VINT feedback compensation circuit, the voltage value of the adjusted DC voltage Vint is consistent with the adjusted voltage target value VINT_Ref.
- the voltage value of the adjusted voltage target value VINT_Ref is greater than or equal to the target voltage value Vref of the Type-C port.
- the VINT_Ref selection circuit compares the target voltage value Vref of the Type-C port with the target voltage values Vref_n of other Type-C ports to output the adjusted voltage target value VINT_Ref, which specifically includes:
- Vref_Max is a preset voltage, and its voltage value ⁇ The maximum voltage output by all Type-C ports under all normal operating conditions.
- the compensation circuit is fed back through VBUS to control the voltage value of the output voltage VBUS to be consistent with the voltage value of the target voltage Vref, which specifically includes:
- the present invention is a charging system and charging method suitable for multi-channel USB Type-C, which can update the target output voltage of each Type-C port in real time according to the single-bus communication circuit, and dynamically adjust the Vint voltage, so that the Vint voltage and the VBUS voltage are equal.
- FIG. 6 is a circuit schematic diagram of a power supply module in a charging method suitable for multi-channel USB Type-C according to Embodiment 2 of the present invention; as shown in FIG. 6 , in step S10, the power supply module outputs a DC voltage Vint, specifically includes: a rectifier bridge and a voltage conversion circuit, the input of the rectifier bridge is connected to the AC power supply terminal, the output terminal of the rectifier bridge is connected to the input terminal of the voltage conversion circuit, and the control terminal of the voltage conversion circuit is connected to The outputs of the VINT feedback control circuit are connected.
- the power module in this embodiment can convert the AC power into a DC voltage Vint, and provide power supply for each Type-C voltage conversion module, wherein the DC voltage Vint is controlled by the VINT feedback control circuit.
- the voltage conversion circuit is provided with an isolated power supply.
- the voltage conversion circuit is at least one of a flyback circuit, a forward circuit, a boost circuit+LLC circuit.
- the power module in the present invention can also be set to other forms, for example, the voltage conversion circuit can be an active clamp flyback circuit, or an active clamp forward circuit, etc.; in addition, the diode in this embodiment can also be used Replace the switch tube, such as MOSFET, BJT, IGBT, etc., to reduce the power loss caused by diode conduction.
- the switch tube such as MOSFET, BJT, IGBT, etc.
- FIG. 7 is a circuit schematic diagram of a step-down power circuit in a charging method suitable for multi-channel USB Type-C according to Embodiment 2 of the present invention; as shown in FIG. 7 , the DC voltage Vint (higher voltage) , the step-down power circuit is used to convert the DC voltage Vint into the output voltage VBUS (lower voltage) of the Type-C port; in this embodiment, each Type-C port corresponds to a step-down power circuit; this embodiment , the actual output voltage of the step-down power voltage is determined by the VBUS feedback control circuit.
- FIG. 8 is a schematic block diagram of a VBUS feedback control circuit in a charging method suitable for multi-channel USB Type-C according to Embodiment 2 of the present invention; as shown in FIG. 8 , the VBUS feedback control circuit communicates with the Type-C port The target voltage Vref is obtained (through the CC line), and the VBUS voltage is sampled. After passing through the VBUS feedback compensation circuit, the step-down power circuit is controlled to achieve the VBUS voltage reaching the target voltage value negotiated through the Type-C port;
- the Type-C module in this embodiment is a dedicated port control module for the Type-C port, which is responsible for the plug-in and pull-out detection of the Type-C port device, receives and sends USB PD communications, and communicates with external devices according to the Type-C port.
- Vref may also be proportional to the target output voltage to ensure that the feedback compensation circuit can formally identify the target output voltage; in addition, Vref is not only used for In addition to controlling the VBUS voltage by the VBUS feedback compensation circuit, it will also be transmitted to the VINT feedback control circuit to participate in the control of Vint; and detect whether the voltage value of the target voltage Vref of the Type-C port has been updated. If there is an update, output the updated digital quantity and its digital value amount to a single bus communication circuit.
- FIG. 9 is a circuit schematic diagram of a VBUS feedback compensation circuit in a charging method suitable for multi-channel USB Type-C according to Embodiment 2 of the present invention; as shown in FIG. 9 , in the VBUS feedback compensation circuit, the actual output voltage VBUS Both the target output voltage Vref and the target output voltage Vref are sampled, and the error amplification unit in the VBUS feedback compensation circuit will compare the error value between VBUS and Vref, and adjust the PWM signal to change the VBUS voltage value, and finally adjust the VBUS voltage to Vref.
- FIG. 10 is a circuit schematic diagram of a VINT feedback control circuit in a charging method suitable for multi-channel USB Type-C provided by Embodiment 2 of the present invention
- FIG. A schematic flowchart of step S50 in the Type-C charging method as shown in Figure 10 and Figure 11 , the VINT feedback control circuit includes: a VINT_Ref selection circuit and a VINT feedback compensation circuit.
- the VINT feedback in this embodiment is used.
- the control circuit obtains the target voltage Vref of the Type-C port from the VBUS feedback control circuit, and receives the output target voltages Vref1...n of the remaining Type-C ports from the single-bus communication circuit; the VINT_Ref selection circuit compares the received Vrefn with each other. Compare the Vref of this Type-C port;
- Vref Max(Vref1,Vref2...Vrefn);
- Vref' can be equal to the target output voltage Vref of the Type-C port, or equal to the target voltage Vref of the Type-C port plus a preset bias voltage VINT_Offset, as shown in the following formula shown:
- the VINT_Offset is used to compensate for some additional voltage drops that may be caused by the step-down power circuit; specifically, the VINT_Offset can have different preset values according to different practical application products.
- Vref_Max is a preset voltage, which is greater than or equal to the maximum voltage output by all ports under all normal working conditions; for example, the VBUS voltage of each Type-C port may output 5-20V , then Vref_Max needs to be preset to 20V or above.
- the VINT_Ref selection circuit in this embodiment can control the adjustment voltage target value VINT_Ref input to the VINT feedback compensation circuit, and VINT_Ref is used as the input reference of the error amplifier, which is the target voltage for closed-loop adjustment of VINT; after VINT_Ref is sent to the VINT feedback compensation circuit , form a closed-loop control with the sampled Vint signal, and finally adjust to make the Vint signal equal to VINT_Ref.
- the VINT feedback control circuit samples the DC voltage Vint (or scaled proportional Vint), this voltage is used as the feedback voltage, and VINT_Ref is used as the adjusted target voltage to compare with the sampled DC voltage Vint.
- the VINT feedback control circuit controls the current flowing through the secondary side of the feedback optocoupler. This optocoupler current can be transferred to the primary side of the optocoupler in a linear ratio, and the current on the primary side of the optocoupler will be used to adjust the output voltage of the ACDC. Vint.
- FIG. 12 is a circuit schematic diagram of a VINT feedback control circuit controlling the DC voltage Vint in a charging method suitable for multi-channel USB Type-C according to Embodiment 2 of the present invention; as shown in FIG. 12 , in this embodiment, the It is a structure of one primary power supply (power module) and n secondary power supplies (Type-C voltage conversion module); n VINT feedback control circuits are connected together through OPTO, and are connected to the feedback loop of the power supply module at the same time; VINT_Ref When the target voltage of this Type-C port is not the highest among all Type-C ports (Vref ⁇ Max(Vref1,Vref2...Vrefn)), the selection circuit will adjust the voltage reference VINT_Ref in the VINT feedback compensation circuit to Vref_Max, so that Vref_Max It is always greater than the DC voltage Vint, so that the VINT feedback compensation circuit in this circuit is always in a saturated state, and its output OPTO current will be equal to zero, which will not affect the normal regulation
- FIG. 13 is a circuit connection diagram of each single-bus communication circuit in a charging method suitable for multi-channel USB Type-C according to Embodiment 2 of the present invention; as shown in FIG. 13 , the Type-C port output of each channel is A single line is connected. This single line is connected to each Type-C single bus communication circuit.
- Vref is updated in the Type-C module in the VBUS feedback control circuit
- the updated digital quantity will be transmitted to the single bus.
- Communication module and broadcast on this single bus in the form of digital bus, so that the single bus communication circuit in all other Type-C ports can receive this data.
- the voltage value format of the target voltage Vref in the single-bus communication circuit is a digital quantity, and when it is finally output to the VBUS feedback compensation circuit or the VINT feedback compensation circuit, it needs to be converted into an analog quantity through a digital-to-analog converter; or In the single bus communication circuit, the received voltage value of the target voltage Vref is directly converted into an analog value, and the analog value is provided for the subsequent circuit.
- the VBUS feedback control circuit and the VINT feedback control circuit are both shown as the voltage after proportional scaling (for example, through a resistor divider network), as the input voltage of the VBUS/VINT feedback compensation circuit; in the actual application process, this
- the scaling ratio can be any value from 0 to 1, and the scaling ratio is applied to other corresponding parameters in the present invention, such as: Vref, VINT_Ref and so on.
- a charging system and charging method suitable for multi-channel USB Type-C provided by the present invention can realize two-level power supply control.
- the output bus voltage of the first-level power supply (the DC voltage Vint ) dynamically adjusts according to the target voltage requested by each Type-C port, which improves the efficiency of each step-down power circuit; at the same time, the method of dynamically adjusting the output voltage of the present invention can realize multiple feedback loops to control a single physical quantity
- the feasible structure is extremely practical.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本发明提供的一种适用于多路USB Type-C的充电系统及充电方法,包括:电源模块、Type-C电压转换模块和Type-C端口,Type-C电压转换模块包括:降压功率电路、VBUS反馈控制电路、单总线通信电路和VINT反馈控制电路,VBUS反馈控制电路获取连接负载的Type-C端口的目标电压Vref和输出电压VBUS的电压值,并控制输出电压VBUS与目标电压Vref的电压值一致,VINT反馈控制电路接收Type-C端口的目标电压Vref的电压值,以及接收其他Type-C端口的目标电压Vref_n的电压值;对目标电压值Vref与目标电压值Vref_n进行比较,输出调整电压目标值VINT_Ref;通过VINT反馈补偿电路调整直流电压VIN的电压值与调整电压目标值VINT_Ref一致;具有可根据Type-C端口的电压变化动态调整输出电压,且转化效率较高的有益效果,适用于Type-C充电电路的技术领域。
Description
本发明属于Type-C充电电路的技术领域,具体涉及一种适用于多路USB Type-C的充电系统及充电方法。
通用串行总线(Universal Serial Bus,缩写:USB)是连接计算机系统与外部设备的一种串口总线标准,也是一种输入输出接口的技术规范,被广泛地应用于个人电脑和移动设备等信息通讯产品,并扩展至摄影器材、数字电视(机顶盒)、游戏机等其它相关领域。
传统的USB是一种常用的接口,它只有4根线,两根电源线和两根信号线,其USB接口的最大输出电压和电流是:5V/1.5A;其信号是串行传输方式,速度可以达到480Mbps,可以满足各种工业和民用需要。
随着移动设备对传输速率,充电功率,接口尺寸越来越严苛的要求,新一代的USB接口USB Type-C(简称Type-C)应运而生;USB Type-C是一种通用串行总线(USB)的硬件接口规范;新版接口的亮点在于更加纤薄的设计、更快的传输速度(最高40Gbps)以及更强悍的电力传输(最高100W);Type-C支持USB接口双面插入,正式解决了“USB永远插不准”的世界性难题,正反面随便插;同时与它配套使用的USB数据线也必须更细和更轻便。
为了支持最高100W的输出功率,相配套的USB Power Delivery Specification(简称USB PD)也随后推出;USB PD协议规定,供电端和供电设备之间可以通过PD的通信协议进行协商,以决定供电端能提供给设备的合适电压,供电端通过PD广播告知设备端其能提供的电压档位,设备端可以根据自身的需求,从提供选择的电压档位中请求任意一个。
USB PD协议,能承载3A或5A的电流,输出电压最高到20V,同时接口中定义了用于功率传输协议通讯的专有通道,可以在充电和受电设备间完成智能的自适应充电调节,提升充电效率;采用USB PD协议,一个输出Type-C端口,可以对一台设备进行充电。
随着支持Type-C端口的设备逐渐增多,一个适配器上存在多个Type-C端口,同时对多台设备进行充电成为可能;然而,现有技术方案中,对于一个适配器带 多个Type-C端口的应用普遍存在功率过高的问题。
如:附图1提供的现有技术方案一中,采用n个独立的交直流电源(AC-DC模块)分别给n个Type-C端口供电,n个AC-DC模块的输入为适配器的输入端,与交流市电连接;每一个Type-C端口有一个相对应的PD芯片与设备进行协议握手(通过CC线),当设备接入Type-C端口后,通过USB PD协议确定设备需要的输出电压;PD芯片与AC-DC之间通过FB连接,FB可以直接调节AC-DC模块的输出电压VOUT,来达到设备需要的目标电压值;
在这一方案中,存在的问题是:需要n个独立的AC-DC模块,使得设计的功率电路为实际需求的n倍;如一个双路Type-C输出的适配器要实现单口最大60W的输出功率,需要两个AC-DC均能输出60W,即此适配器的总设计功率为120W。这样导致的系统成本,体积,重量都大幅增加,功率器件在大部分使用场景下使用率较低,经济性差。
其设计总功率需要满足如下表所示:
单独C1 | 单独C2 | 双口C1+C2 | |
PD广播功率C1 | 60W | 无 | 60W |
PD广播功率C2 | 无 | 60W | 60W |
输出总功率 | 60W | 60W | 120W |
再如:附图2提供的现有技术方案二中,采用了两级电源的模式,交流市电首先通过一个交直流变换器AC-DC模块转化为一个固定的中间母线电压Vint,此电压作为中间母线,后面并联接入n路的降压变换器;每一路降压变换器连接一个独立的Type-C输出;每一个Type-C端口有一个相对应的PD芯片与设备进行协议握手(通过CC线),当设备接入Type-C端口后,通过USB PD协议确定设备需要的输出电压;PD芯片与降压变换器之间通过FB连接,FB可以直接调节降压变换器的输出电压VOUT,来达到设备需要的目标电压值。
现有技术方案二与现有技术方案一相比,只需要一个AC-DC模块,大幅减少了功率磁性元件,但是中间母线电压需要固定为大于任意一路Type-C端口输出的最大电压。这样导致:在未接入设备的情况下,AC-DC依然需要输出最大电压,导致系统的待机功耗较高;此外,在接入设备后,若每一路的降压变换器输出电压均为输出最小电压,而其输入电压固定,这种情况下,系统效率较差。
发明内容
本发明克服现有技术存在的不足,所要解决的技术问题为:提供一种可根据Type-C端口的电压变化动态调整输出电压,且转化效率较高的适用于多路USB Type-C的充电系统及充电方法。
为了解决上述技术问题,本发明采用的技术方案为:
一种适用于多路USB Type-C的充电系统,包括:电源模块,以及与电源模块连接的多个Type-C电压转换模块,每个所述的Type-C电压转换模块均对应的连接有用于连接负载的Type-C端口;
所述电源模块,用于输出直流电压Vint;
每个所述的Type-C电压转换模块均包括:
降压功率电路,用于将直流电压Vint转换为输出电压VBUS;
VBUS反馈控制电路,用于获取连接负载的Type-C端口的目标电压Vref的电压值,以及获取输出电压VBUS的电压值,并通过VBUS反馈补偿电路,以控制输出电压VBUS的电压值与目标电压Vref的电压值一致;以及检测Type-C端口的目标电压Vref的电压值是否有更新,如有更新,输出更新的数字量;
单总线通信电路,与其他Type-C电压转换模块的单总线通信电路通信连接,用于接收更新的数字量,并广播,使其他所有的单总线通信电路均可以接收到该更新的数字量;
VINT反馈控制电路,用于接收VBUS反馈控制电路输出的Type-C端口的目标电压Vref的电压值,以及接收其他Type-C端口的目标电压Vref_n的电压值;
通过VINT_Ref选择电路对Type-C端口的目标电压值Vref与其他Type-C端口的目标电压值Vref_n进行比较,以输出调整电压目标值VINT_Ref;
通过VINT反馈补偿电路,以调整直流电压Vint的电压值与调整电压目标值VINT_Ref一致。
可选地,所述VINT反馈控制电路中,所述调整电压目标值VINT_Ref的电压值大于等于该Type-C端口的目标电压值Vref。
可选地,所述VINT_Ref选择电路,具体包括:
对Type-C端口的目标电压Vref的电压值与其他Type-C端口的目标电压Vref_n的电压值进行比较;
当目标电压Vref的电压值等于所有Type-C端口的目标电压Vref_n的最大电压值时,VINT_Ref选择电路输出的调整电压目标值VINT_Ref=Vref’;其中:所述的Vref’=Vref或Vref’=Vref+VINT_Offset;所述的VINT_Offset为偏置电压;
当目标电压Vref的电压值小于所有Type-C端口的目标电压Vref_n的最大电压值时,VINT_Ref选择电路输出的调整电压目标值VINT_Ref=Vref_Max;其中:Vref_Max为一个预设的电压,其电压值≥所有Type-C端口在所有正常工作情况下输出的最大电压。
相应地,一种适用于多路USB Type-C的充电方法,包括:电源模块,以及与电源模块连接的多个Type-C电压转换模块,每个所述的Type-C电压转换模块均对应的连接有用于连接负载的Type-C端口;每个Type-C电压转换模块上均设置有降压功率电路、VBUS反馈控制电路、单总线通信电路和VINT反馈控制电路;其中一个Type-C端口连接负载后,包括以下步骤:
S10,电源模块输出直流电压Vint;
S20,降压功率电路将初始直流电压Vint转换为输出电压VBUS;
S30,VBUS反馈控制电路获取连接负载的Type-C端口的目标电压Vref的电压值,以及获取输出电压VBUS的电压值,并通过VBUS反馈补偿电路,以控制输出电压VBUS的电压值与目标电压Vref的电压值一致;以及检测Type-C端口的目标电压Vref的电压值是否有更新,如有更新,输出更新的数字量;
S40,单总线通信电路与其他Type-C电压转换模块的单总线通信电路通信连接;当接收更新的数字量时,广播,使其他所有的单总线通信电路均可以接收到该更新的数字量;
S50,VINT反馈控制电路接收VBUS反馈控制电路输出的Type-C端口的目标电压Vref的电压值,以及接收其他Type-C端口的目标电压Vref_n的电压值;通过VINT_Ref选择电路对Type-C端口的目标电压值Vref与其他Type-C端口的目标电压值Vref_n进行比较,以输出调整电压目标值VINT_Ref;通过VINT反馈补偿电路,以调整直流电压Vint的电压值与调整电压目标值VINT_Ref一致。
可选地,所述步骤S50中,所述调整电压目标值VINT_Ref的电压值大于等于该Type-C端口的目标电压值Vref。
可选地,所述步骤S50中,所述VINT_Ref选择电路对Type-C端口的目标电压值Vref与其他Type-C端口的目标电压值Vref_n进行比较,以输出调整电压目标值VINT_Ref,具体包括:
对Type-C端口的目标电压Vref的电压值与其他Type-C端口的目标电压Vref_n的电压值进行比较;
当目标电压Vref的电压值等于所有Type-C端口的目标电压Vref_n的最大电压值时,VINT_Ref选择电路输出的调整电压目标值VINT_Ref=Vref’;其中:所述的Vref’=Vref,或Vref’=Vref+VINT_Offset;所述的VINT_Offset为偏置电压;
当目标电压Vref的电压值小于所有Type-C端口的目标电压Vref_n的最大电压值时,VINT_Ref选择电路输出的调整电压目标值VINT_Ref=Vref_Max;其中:Vref_Max为一个预设的电压,其电压值≥所有Type-C端口在所有正常工作情况下输出的最大电压。
可选地,所述步骤S30中,通过VBUS反馈补偿电路,以控制输出电压VBUS的电压值与目标电压Vref的电压值一致,具体包括:
比较Type-C端口的目标电压Vref的电压值与输出电压VBUS的电压值的差值,通过差分放大电路调节输出值PWM的大小,以调整输出电压VBUS的电压值,使输出电压VBUS的电压值等于目标电压Vref的电压值。
可选地,所述步骤S10中,所述电源模块输出直流电压Vint,具体包括:
整流桥和电压转换电路,所述整流桥的输入断与交流电源端相连,所述整流桥的输出端与电压转换电路的输入端相连,所述电压转换电路的控制端与VINT反馈控制电路的输出端相连。
可选地,所述电压转换电路上设置有隔离式电源。
可选地,所述电压转换电路为反激电路、正激电路、升压电路+LLC电路中的至少一种。
本发明与现有技术相比具有以下有益效果:
本发明一种适用于多路USB Type-C的充电系统及充电方法,可以依据单总线通信电路实时更新各个Type-C端口的目标输出电压,动态的调节Vint电压,使得Vint电压与VBUS电压之间的电压差保持在一个最小的范围,提升了系统整 体效率;同时本方案也解决了多个反馈电路同时控制一个反馈量的问题,多个反馈电路均未从电路中断开,而是通过切换参考的方式实现,保证各当不同输出Type-C端口电压变化调整时Vint电压的稳定;同时,在每一个Type-C端口单独插入负载的时候,依然能够以最大的输出功率进行输出,充分利用了功率器件,提高了用户体验,实用性极强。
下面结合附图对本发明做进一步详细的说明;
图1为现有技术中的一种Type-C充电接口电路的结构示意图;
图2为现有技术中的另一种Type-C充电接口电路的结构示意图;
图3为本发明实施例一提供的一种适用于多路USB Type-C的充电系统原理框图;
图4为本发明实施例一提供的一种适用于多路USB Type-C的充电系统中动态调整电压的原理框图;
图5为本发明实施例一提供的一种适用于多路USB Type-C的充电方法的流程示意图;
图6为本发明实施例二提供的一种适用于多路USB Type-C的充电方法中电源模块的电路原理图;
图7为本发明实施例二提供的一种适用于多路USB Type-C的充电方法中降压功率电路的电路原理图;
图8为本发明实施例二提供的一种适用于多路USB Type-C的充电方法中VBUS反馈控制电路的原理框图;
图9为本发明实施例二提供的一种适用于多路USB Type-C的充电方法中VBUS反馈补偿电路的电路原理图;
图10为本发明实施例二提供的一种适用于多路USB Type-C的充电方法中VINT反馈控制电路的电路原理图;
图11为本发明实施例一提供的一种适用于多路USB Type-C的充电方法中步骤S50的流程示意图;
图12为本发明实施例二提供的一种适用于多路USB Type-C的充电方法中VINT反馈控制电路控制直流电压Vint的电路原理图;
图13为本发明实施例二提供的一种适用于多路USB Type-C的充电方法中各个单总线通信电路的电路连接图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例;基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使图面简洁,各图中只示意性地表示出了与本发明相关的部分,它们并不代表其作为产品的实际结构。另外,以使图面简洁便于理解,在有些图中具有相同结构或功能的部件,仅示意性地绘示了其中的一个,或仅标出了其中的一个。在本文中,“一个”不仅表示“仅此一个”,也可以表示“多于一个”的情形。
为便于对本公开实施例的理解,下面将结合附图以具体实施例为例做进一步的解释说明,且各个附图并不构成对本公开实施例的限定。
在本发明的一个实施例中:
图3为本发明实施例一提供的一种适用于多路USB Type-C的充电系统原理框图;图4为本发明实施例一提供的一种适用于多路USB Type-C的充电系统中动态调整电压的原理框图;如图3、图4所示,一种适用于多路USB Type-C的充电系统,包括:电源模块,以及与电源模块连接的多个Type-C电压转换模块,每个所述的Type-C电压转换模块均对应的连接有用于连接负载的Type-C端口;
具体实施过程中,所述的Type-C电压转换模块可为多个,包括:Type-C电压转换模块1、Type-C电压转换模块2,…,Type-C电压转换模块n;对应的,所述的Type-C端口也可为多个,包括:Type-C端口1、Type-C端口2,…,Type-C端口n。
本实施例中,所述电源模块,用于输出直流电压Vint;
每个所述的Type-C电压转换模块包括:
降压功率电路,用于将直流电压Vint转换为输出电压VBUS;
VBUS反馈控制电路,用于获取连接负载的Type-C端口30的目标电压Vref的电压值,以及获取输出电压VBUS的电压值,并通过VBUS反馈补偿电路,以控 制输出电压VBUS的电压值与目标电压Vref的电压值一致;以及检测Type-C端口的目标电压Vref的电压值是否有更新,如有更新,输出更新的数字量;
单总线通信电路,通过总线与其他Type-C电压转换模块的单总线通信电路通信连接,用于接收更新的数字量,并在总线上广播,使其他所有的单总线通信电路均可以接收到该更新的数字量;
VINT反馈控制电路,用于接收VBUS反馈控制电路输出的Type-C端口的目标电压Vref的电压值,以及接收其他Type-C端口的目标电压Vref_n的电压值;
通过VINT_Ref选择电路对Type-C端口的目标电压值Vref与其他Type-C端口的目标电压值Vref_n进行比较,以输出调整电压目标值VINT_Ref;
通过VINT反馈补偿电路,以调整直流电压Vint的电压值与调整电压目标值VINT_Ref一致。
具体地,所述VINT反馈控制电路中,所述调整电压目标值VINT_Ref的电压值大于等于该Type-C端口的目标电压值Vref。
进一步地,所述VINT_Ref选择电路,具体包括:
对Type-C端口的目标电压Vref的电压值与其他Type-C端口的目标电压Vref_n的电压值进行比较;
当目标电压Vref的电压值等于所有Type-C端口的目标电压Vref_n的最大电压值时,VINT_Ref选择电路输出的调整电压目标值VINT_Ref=Vref’;其中:所述的Vref’=Vref或Vref’=Vref+VINT_Offset;所述的VINT_Offset为偏置电压;
当目标电压Vref的电压值小于所有Type-C端口的目标电压Vref_n的最大电压值时,VINT_Ref选择电路输出的调整电压目标值VINT_Ref=Vref_Max;其中:Vref_Max为一个预设的电压,其电压值≥所有Type-C端口在所有正常工作情况下输出的最大电压。
本实施例中,若有多路Type-C端口的Vref值均等于最大值,可以默认约定依据端口标识来做出判断,比如,1,2,5端口的Vref值均等于最大值,可以以端口标识最小的端口优先,则为端口1为最大值,或者以端口标识最大的端口优先,则为端口5为最大值。
图5为本发明实施例一提供的一种适用于多路USB Type-C的充电方法的流 程示意图;如图5所示,一种适用于多路USB Type-C的充电方法,包括:电源模块,以及与电源模块连接的多个Type-C电压转换模块,每个所述的Type-C电压转换模块均对应的连接有用于连接负载的Type-C端口;其特征在于:每个Type-C电压转换模块上均设置有降压功率电路、VBUS反馈控制电路、单总线通信电路和VINT反馈控制电路;其中一个Type-C端口连接负载后,包括以下步骤:
S10,电源模块输出直流电压Vint;
S20,降压功率电路将初始直流电压Vint转换为输出电压VBUS;
S30,VBUS反馈控制电路获取连接负载的Type-C端口的目标电压Vref的电压值,以及获取输出电压VBUS的电压值,并通过VBUS反馈补偿电路,以控制输出电压VBUS的电压值与目标电压Vref的电压值一致;以及检测Type-C端口的目标电压Vref的电压值是否有更新,如有更新,输出更新的数字量;
S40,单总线通信电路通过总线与其他Type-C电压转换模块的单总线通信电路通信连接;当接收更新的数字量时,在总线上广播,使其他所有的单总线通信电路均可以接收到该更新的数字量;
S50,VINT反馈控制电路接收VBUS反馈控制电路输出的Type-C端口的目标电压Vref的电压值,以及接收其他Type-C端口的目标电压Vref_n的电压值;通过VINT_Ref选择电路对Type-C端口的目标电压值Vref与其他Type-C端口的目标电压值Vref_n进行比较,以输出调整电压目标值VINT_Ref;通过VINT反馈补偿电路,以调整直流电压Vint的电压值与调整电压目标值VINT_Ref一致。
具体地,所述步骤S50中,所述调整电压目标值VINT_Ref的电压值大于等于该Type-C端口的目标电压值Vref。
进一步地,所述步骤S50中,所述VINT_Ref选择电路对Type-C端口的目标电压值Vref与其他Type-C端口的目标电压值Vref_n进行比较,以输出调整电压目标值VINT_Ref,具体包括:
对Type-C端口的目标电压Vref的电压值与其他Type-C端口的目标电压Vref_n的电压值进行比较;
当目标电压Vref的电压值等于所有Type-C端口的目标电压Vref_n的最大电压值时,VINT_Ref选择电路输出的调整电压目标值VINT_Ref=Vref’;其中:所述的Vref’=Vref,或Vref’=Vref+VINT_Offset;所述的VINT_Offset为偏 置电压;
当目标电压Vref的电压值小于所有Type-C端口的目标电压Vref_n的最大电压值时,VINT_Ref选择电路输出的调整电压目标值VINT_Ref=Vref_Max;其中:Vref_Max为一个预设的电压,其电压值≥所有Type-C端口在所有正常工作情况下输出的最大电压。
本实施例中,所述步骤S30中,通过VBUS反馈补偿电路,以控制输出电压VBUS的电压值与目标电压Vref的电压值一致,具体包括:
比较Type-C端口的目标电压Vref的电压值与输出电压VBUS的电压值的差值,通过差分放大电路调节输出值PWM的大小,以调整输出电压VBUS的电压值,使输出电压VBUS的电压值等于目标电压Vref的电压值。
本发明一种适用于多路USB Type-C的充电系统及充电方法,可以依据单总线通信电路实时更新各个Type-C端口的目标输出电压,动态的调节Vint电压,使得Vint电压与VBUS电压之间的电压差保持在一个最小的范围,提升了系统整体效率;同时本方案也解决了多个反馈电路同时控制一个反馈量的问题,多个反馈电路均未从电路中断开,而是通过切换参考的方式实现,保证各当不同输出Type-C端口电压变化调整时Vint电压的稳定;同时,在每一个Type-C端口单独插入负载的时候,依然能够以最大的输出功率进行输出,充分利用了功率器件,提高了用户体验。
实施例二
图6为本发明实施例二提供的一种适用于多路USB Type-C的充电方法中电源模块的电路原理图;如图6所示,所述步骤S10中,所述电源模块输出直流电压Vint,具体包括:整流桥和电压转换电路,所述整流桥的输入断与交流电源端相连,所述整流桥的输出端与电压转换电路的输入端相连,所述电压转换电路的控制端与VINT反馈控制电路的输出端相连。
本实施例中的电源模块,能够将交流电源转换为直流电压Vint,为各个Type-C电压转换模块提供电源供给,其中所述的直流电压Vint受VINT反馈控制电路控制。
具体地,所述电压转换电路上设置有隔离式电源。
进一步地,所述电压转换电路为反激电路、正激电路、升压电路+LLC电路 中的至少一种。
本发明中的电源模块还可设置为其他形式,如:电压转换电路可为有源钳位的反激电路、或有源钳位的正激电路等;此外,本实施例中的二极管也可用开关管代替,如MOSFET、BJT、IGBT等,以减少二极管导通所造成的功率损耗。
图7为本发明实施例二提供的一种适用于多路USB Type-C的充电方法中降压功率电路的电路原理图;如图7所示,所述的直流电压Vint(较高电压),降压功率电路用于将直流电压Vint转化为Type-C端口的输出电压VBUS(较低电压);本实施例中,每一个Type-C端口均对应于一个降压功率电路;本实施例中,降压功率电压的实际输出电压由VBUS反馈控制电路决定。
图8为本发明实施例二提供的一种适用于多路USB Type-C的充电方法中VBUS反馈控制电路的原理框图;如图8所示,所述VBUS反馈控制电路与Type-C端口通信(通过CC线)获得目标电压Vref,并采样VBUS电压,经过VBUS反馈补偿电路后,控制降压功率电路实现VBUS的电压达到通过Type-C端口协商后的目标电压值;
本实施例中的Type-C模块为Type-C端口专用的端口控制模块,其负责Type-C端口设备的插入拔出检测,接收和发送USB PD通信,并依据本Type-C端口与外部设备协商的结果,确定本路Type-C端口需要输出的目标电压Vref;Vref也可能是与目标输出电压成正比例关系,以确保反馈补偿电路能够正式的识别到目标输出电压;此外,Vref除了用于VBUS反馈补偿电路控制VBUS电压外,还会传递到VINT反馈控制电路参与Vint的控制;以及检测Type-C端口的目标电压Vref的电压值是否有更新,如有更新,输出更新的数字量其数字量至单总线通信电路。
图9为本发明实施例二提供的一种适用于多路USB Type-C的充电方法中VBUS反馈补偿电路的电路原理图;如图9所示,在VBUS反馈补偿电路中,实际输出电压VBUS与目标输出电压Vref均被采样,VBUS反馈补偿电路中的误差放大单元将会比较VBUS与Vref的误差值,并通过调节PWM信号来改变VBUS电压值,最终使得VBUS电压调整为Vref。
图10为本发明实施例二提供的一种适用于多路USB Type-C的充电方法中VINT反馈控制电路的电路原理图;图11为本发明实施例一提供的一种适用于多 路USB Type-C的充电方法中步骤S50的流程示意图;如图10、图11所示,所述的VINT反馈控制电路包括:VINT_Ref选择电路和VINT反馈补偿电路,使用时,本实施例中的VINT反馈控制电路从VBUS反馈控制电路得到本Type-C端口的目标电压Vref,从单总线通信电路处接收到其余各Type-C端口的输出目标电压Vref1…n;VINT_Ref选择电路将接收到的各个Vrefn与本Type-C端口的Vref进行比较;
当本Type-C端口的Vref等于所有端口最大的输出目标电压时,即:
Vref=Max(Vref1,Vref2…Vrefn);
VINT_Ref选择电路的选择开关切换至Vref’;Vref’可以等于本Type-C端口的目标输出电压Vref,或者等于本Type-C端口目标电压Vref加上一个预设的偏置电压VINT_Offset,如下述公式所示:
Vref’=Vref或者Vref’=Vref+VINT_Offset。
具体地,所述的VINT_Offset用于补偿降压功率电路可能会导致的一些额外的压降;具体地,VINT_Offset可以依据不同的实际应用产品做不同的预设值。
当本Type-C端口的Vref不等于即小于所有其它Type-C端口最大的输出目标电压时,即:
Vref<Max(Vref1,Vref2…Vrefn);
VINT_Ref选择电路的选择开关切换至Vref_Max,其中:Vref_Max为一个预设的电压,其大于等于所有端口在所有正常工作情况下输出的最大电压;如各Type-C端口的VBUS电压可能输出5-20V,则Vref_Max需要预设为20V或20V以上。
本实施例中的VINT_Ref选择电路能够控制输入到VINT反馈补偿电路的调整电压目标值VINT_Ref,VINT_Ref做为其中误差放大器的输入参考,是闭环调节VINT的目标电压;VINT_Ref被送入VINT反馈补偿电路后,与采样到的Vint信号形成闭环控制,最终调节使得Vint信号等于VINT_Ref。
如图10所示的VINT反馈控制电路中,VINT反馈控制电路采样直流电压Vint(或缩放正比例Vint),此电压作为反馈电压,同时VINT_Ref作为调节的目标电压与采样的直流电压Vint进行比较,经过补偿电路后,VINT反馈控制电路控制流过反馈光耦副边的电流,此光耦电流可以以线性比例传递到光耦原边,此光 耦原边的电流将被用来调节ACDC的输出电压Vint。
图12为本发明实施例二提供的一种适用于多路USB Type-C的充电方法中VINT反馈控制电路控制直流电压Vint的电路原理图;如图12所示,本实施例中,采用的是一个一级电源(电源模块),n个二级电源(Type-C电压转换模块)的结构;n个VINT反馈控制电路通过OPTO连接在一起,并同时接入电源模块的反馈环路;VINT_Ref选择电路在本Type-C端口的目标电压不是所有Type-C端口中最高时(Vref≠Max(Vref1,Vref2…Vrefn)),会将VINT反馈补偿电路中的电压参考VINT_Ref调节至Vref_Max,使得Vref_Max始终大于直流电压Vint,使得本路中的VINT反馈补偿电路始终处于饱和状态,其输出OPTO电流将会等于零,不会影响到VINT的正常调节。
图13为本发明实施例二提供的一种适用于多路USB Type-C的充电方法中各个单总线通信电路的电路连接图;如图13所示,每一路的Type-C端口输出均通过一根单线进行连接,此单线与每个Type-C的单总线通信电路相连,当VBUS反馈控制电路中的Type-C模块中有Vref进行更新时,其更新的数字量将会传递到单总线通信模块,并以数字总线的方式在此单总线上进行广播,使其它所有的Type-C端口中的单总线通信电路均可以接收到此数据。
本实施例中,单总线通信电路中的目标电压Vref的电压值格式为数字量,在最终输出至VBUS反馈补偿电路或者VINT反馈补偿电路时,其需要通过数模转换器转化为模拟量;或者在单总线通信电路中将接收到的目标电压Vref的电压值直接转换为模拟量,为后续电路提供模拟值。
本发明中的VBUS反馈控制电路、VINT反馈控制电路中均示意为电压经过正比例缩放后(如:经过电阻分压网络),作为VBUS/VINT反馈补偿电路的输入电压;在实际应用过程中,此缩放比例可以为0-1中的任意值,且缩放比例应用至本发明中的其它相应参数,如:Vref、VINT_Ref等。
本发明提供的一种适用于多路USB Type-C的充电系统及充电方法,能够实现两级电源控制,采用本发明提供的技术方案,可以使第一级电源的输出母线电压(直流电压Vint)动态的根据每一路Type-C端口请求的目标电压进行动态调整,提升了每一路的降压功率电路的效率;同时,本发明动态调整输出电压的方式,可以实现多反馈环路控制单一物理量的可行结构,实用性极强。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
Claims (10)
- 一种适用于多路USB Type-C的充电系统,包括:电源模块,以及与电源模块连接的多个Type-C电压转换模块,每个所述的Type-C电压转换模块均对应的连接有用于连接负载的Type-C端口;其特征在于:所述电源模块,用于输出直流电压Vint;每个所述的Type-C电压转换模块均包括:降压功率电路,用于将直流电压Vint转换为输出电压VBUS;VBUS反馈控制电路,用于获取连接负载的Type-C端口的目标电压Vref的电压值,以及获取输出电压VBUS的电压值,并通过VBUS反馈补偿电路,以控制输出电压VBUS的电压值与目标电压Vref的电压值一致;以及检测Type-C端口的目标电压Vref的电压值是否有更新,如有更新,输出更新的数字量;单总线通信电路,与其他Type-C电压转换模块的单总线通信电路通信连接,用于接收更新的数字量,并广播,使其他所有的单总线通信电路均可以接收到该更新的数字量;VINT反馈控制电路,用于接收VBUS反馈控制电路输出的Type-C端口的目标电压Vref的电压值,以及接收其他Type-C端口的目标电压Vref_n的电压值;通过VINT_Ref选择电路对Type-C端口的目标电压值Vref与其他Type-C端口的目标电压值Vref_n进行比较,以输出调整电压目标值VINT_Ref;通过VINT反馈补偿电路,以调整直流电压Vint的电压值与调整电压目标值VINT_Ref一致。
- 根据权利要求1所述的一种适用于多路USB Type-C的充电系统,其特征在于:所述VINT反馈控制电路中,所述调整电压目标值VINT_Ref的电压值大于等于该Type-C端口的目标电压值Vref。
- 根据权利要求1所述的一种适用于多路USB Type-C的充电系统,其特征在于:所述VINT_Ref选择电路,具体包括:对Type-C端口的目标电压Vref的电压值与其他Type-C端口的目标电压Vref_n的电压值进行比较;当目标电压Vref的电压值等于所有Type-C端口的目标电压Vref_n的最大电压值时,VINT_Ref选择电路输出的调整电压目标值VINT_Ref=Vref’;其中:所述的Vref’=Vref或Vref’=Vref+VINT_Offset;所述的VINT_Offset为偏 置电压;当目标电压Vref的电压值小于所有Type-C端口的目标电压Vref_n的最大电压值时,VINT_Ref选择电路输出的调整电压目标值VINT_Ref=Vref_Max;其中:Vref_Max为一个预设的电压,其电压值≥所有Type-C端口在所有正常工作情况下输出的最大电压。
- 一种适用于多路USB Type-C的充电方法,包括:电源模块,以及与电源模块连接的多个Type-C电压转换模块,每个所述的Type-C电压转换模块均对应的连接有用于连接负载的Type-C端口;其特征在于:每个Type-C电压转换模块上均设置有降压功率电路、VBUS反馈控制电路、单总线通信电路和VINT反馈控制电路;其中一个Type-C端口连接负载后,包括以下步骤:S10,电源模块输出直流电压Vint;S20,降压功率电路将初始直流电压Vint转换为输出电压VBUS;S30,VBUS反馈控制电路获取连接负载的Type-C端口的目标电压Vref的电压值,以及获取输出电压VBUS的电压值,并通过VBUS反馈补偿电路,以控制输出电压VBUS的电压值与目标电压Vref的电压值一致;以及检测Type-C端口的目标电压Vref的电压值是否有更新,如有更新,输出更新的数字量;S40,单总线通信电路与其他Type-C电压转换模块的单总线通信电路通信连接;当接收更新的数字量时,广播,使其他所有的单总线通信电路均可以接收到该更新的数字量;S50,VINT反馈控制电路接收VBUS反馈控制电路输出的Type-C端口的目标电压Vref的电压值,以及接收其他Type-C端口的目标电压Vref_n的电压值;通过VINT_Ref选择电路对Type-C端口的目标电压值Vref与其他Type-C端口的目标电压值Vref_n进行比较,以输出调整电压目标值VINT_Ref;通过VINT反馈补偿电路,以调整直流电压Vint的电压值与调整电压目标值VINT_Ref一致。
- 根据权利要求4所述一种适用于多路USB Type-C的充电方法,其特征在于:所述步骤S50中,所述调整电压目标值VINT_Ref的电压值大于等于该Type-C端口的目标电压值Vref。
- 根据权利要求4所述一种适用于多路USB Type-C的充电方法,其特征在于:所述步骤S50中,所述VINT_Ref选择电路对Type-C端口的目标电压值Vref 与其他Type-C端口的目标电压值Vref_n进行比较,以输出调整电压目标值VINT_Ref,具体包括:对Type-C端口的目标电压Vref的电压值与其他Type-C端口的目标电压Vref_n的电压值进行比较;当目标电压Vref的电压值等于所有Type-C端口的目标电压Vref_n的最大电压值时,VINT_Ref选择电路输出的调整电压目标值VINT_Ref=Vref’;其中:所述的Vref’=Vref,或Vref’=Vref+VINT_Offset;所述的VINT_Offset为偏置电压;当目标电压Vref的电压值小于所有Type-C端口的目标电压Vref_n的最大电压值时,VINT_Ref选择电路输出的调整电压目标值VINT_Ref=Vref_Max;其中:Vref_Max为一个预设的电压,其电压值≥所有Type-C端口在所有正常工作情况下输出的最大电压。
- 根据权利要求4所述一种适用于多路USB Type-C的充电方法,其特征在于:所述步骤S30中,通过VBUS反馈补偿电路,以控制输出电压VBUS的电压值与目标电压Vref的电压值一致,具体包括:比较Type-C端口的目标电压Vref的电压值与输出电压VBUS的电压值的差值,通过差分放大电路调节输出值PWM的大小,以调整输出电压VBUS的电压值,使输出电压VBUS的电压值等于目标电压Vref的电压值。
- 根据权利要求4所述一种适用于多路USB Type-C的充电方法,其特征在于:所述步骤S10中,所述电源模块输出直流电压Vint,具体包括:整流桥和电压转换电路,所述整流桥的输入断与交流电源端相连,所述整流桥的输出端与电压转换电路的输入端相连,所述电压转换电路的控制端与VINT反馈控制电路的输出端相连。
- 根据权利要求8所述一种适用于多路USB Type-C的充电方法,其特征在于:所述电压转换电路上设置有隔离式电源。
- 根据权利要求8所述一种适用于多路USB Type-C的充电方法,其特征在于:所述电压转换电路为反激电路、正激电路、升压电路+LLC电路中的至少一种。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011425422.5 | 2020-12-08 | ||
CN202011425422.5A CN112531844B (zh) | 2020-12-08 | 2020-12-08 | 一种适用于多路USB Type-C的充电系统及充电方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022121086A1 true WO2022121086A1 (zh) | 2022-06-16 |
Family
ID=74996756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/072223 WO2022121086A1 (zh) | 2020-12-08 | 2021-01-15 | 一种适用于多路USB Type-C的充电系统及充电方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112531844B (zh) |
WO (1) | WO2022121086A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115313593A (zh) * | 2022-08-04 | 2022-11-08 | 湖南炬神电子有限公司 | 一种大功率电源充电器 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113257170B (zh) * | 2021-06-17 | 2021-09-24 | 深圳市新龙鹏科技有限公司 | TypeC设备功率校正方法、装置、设备及存储介质 |
CN113410995B (zh) * | 2021-07-12 | 2022-03-29 | 深圳慧能泰半导体科技有限公司 | 一种电源电路和电源设备 |
CN113890394B (zh) * | 2021-10-18 | 2022-07-26 | 瀚昕微电子(无锡)有限公司 | 电力转换器及其控制方法及usb pd充电器 |
CN114567033B (zh) * | 2022-02-21 | 2022-09-13 | 湖南炬神电子有限公司 | 一种提高多口充电器转换效率电路 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180189223A1 (en) * | 2016-12-31 | 2018-07-05 | Intel Corporation | Universal serial bus type-c power delivery |
CN110752634A (zh) * | 2019-10-12 | 2020-02-04 | 深圳慧能泰半导体科技有限公司 | USB Type-C接口电路及其充电方法、USB装置及电子设备 |
CN111190847A (zh) * | 2019-12-16 | 2020-05-22 | 深圳慧能泰半导体科技有限公司 | 基于USB Type-C接口电路的功率调节方法及其电路、电子设备 |
CN111917152A (zh) * | 2020-07-07 | 2020-11-10 | 珠海智融科技有限公司 | 提高电源效率的方法、终端、存储介质及充电装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108512282B (zh) * | 2018-05-16 | 2020-10-27 | 维沃移动通信有限公司 | 一种供电电路、终端设备及其供电控制方法 |
CN110289658A (zh) * | 2019-07-16 | 2019-09-27 | 青米(北京)科技有限公司 | 一种usb多口输出电源管理装置 |
CN111628537B (zh) * | 2020-04-24 | 2022-07-29 | 杭州士兰微电子股份有限公司 | 多路充电电路及其协议控制模块和控制方法 |
CN111864872B (zh) * | 2020-07-28 | 2023-08-29 | 深圳英驱新能源有限公司 | 可读存储介质、充电模块及其功率分配方法 |
CN111934400A (zh) * | 2020-09-23 | 2020-11-13 | 深圳英集芯科技有限公司 | 多口快充效率调整电路和方法、快充芯片及快充供电设备 |
-
2020
- 2020-12-08 CN CN202011425422.5A patent/CN112531844B/zh active Active
-
2021
- 2021-01-15 WO PCT/CN2021/072223 patent/WO2022121086A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180189223A1 (en) * | 2016-12-31 | 2018-07-05 | Intel Corporation | Universal serial bus type-c power delivery |
CN110752634A (zh) * | 2019-10-12 | 2020-02-04 | 深圳慧能泰半导体科技有限公司 | USB Type-C接口电路及其充电方法、USB装置及电子设备 |
CN111190847A (zh) * | 2019-12-16 | 2020-05-22 | 深圳慧能泰半导体科技有限公司 | 基于USB Type-C接口电路的功率调节方法及其电路、电子设备 |
CN111917152A (zh) * | 2020-07-07 | 2020-11-10 | 珠海智融科技有限公司 | 提高电源效率的方法、终端、存储介质及充电装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115313593A (zh) * | 2022-08-04 | 2022-11-08 | 湖南炬神电子有限公司 | 一种大功率电源充电器 |
Also Published As
Publication number | Publication date |
---|---|
CN112531844A (zh) | 2021-03-19 |
CN112531844B (zh) | 2021-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022121086A1 (zh) | 一种适用于多路USB Type-C的充电系统及充电方法 | |
CN204068695U (zh) | 功率转换系统 | |
US20180262115A1 (en) | Bus controller | |
CN101834541B (zh) | 一种高功率因数恒流电路 | |
CN111934400A (zh) | 多口快充效率调整电路和方法、快充芯片及快充供电设备 | |
US11056964B2 (en) | Power supply device with multiple wide-volt age range outputs and control method thereof | |
CN111917152B (zh) | 提高电源效率的方法、终端、存储介质及充电装置 | |
TWI252968B (en) | Power supply device and single photo-coupler control circuit thereof | |
US10020751B1 (en) | Multi-output control system and operating method for the same | |
US20240266965A1 (en) | Hybrid power conversion circuit | |
CN105307305B (zh) | 一种led电源控制装置及电视机 | |
TWI818582B (zh) | 電壓轉換器 | |
CN217486369U (zh) | 控制电路及电源电路 | |
CN217388256U (zh) | 一种多Type C接口动态供电电路、装置及显示设备 | |
CN103427654A (zh) | 零交叉调整率的双路输出dc/dc电源实现电路 | |
CN113410995B (zh) | 一种电源电路和电源设备 | |
CN114784930A (zh) | 一种双口usb-pd ac充电器及其控制方法 | |
CN214544139U (zh) | 多路输入的供电电源 | |
CN115313863A (zh) | 基于输出需求调节pfc和llc拓扑输出电压的电路和方法 | |
CN209982350U (zh) | 一种电源电路与电能表 | |
CN103178513A (zh) | 一种直流远供电源的均流电路 | |
CN217445063U (zh) | 通过快充协议及多路电源切换供电的快充电源插座装置 | |
CN110445622B (zh) | 一种支持低压有线联网的通信设备 | |
US12088214B2 (en) | Power supply conversion device and charging control method | |
CN217362929U (zh) | 控制电路及电源电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21901805 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21901805 Country of ref document: EP Kind code of ref document: A1 |