WO2022121071A1 - 基于波前调制的相位成像及元件检测的装置和方法 - Google Patents

基于波前调制的相位成像及元件检测的装置和方法 Download PDF

Info

Publication number
WO2022121071A1
WO2022121071A1 PCT/CN2021/070200 CN2021070200W WO2022121071A1 WO 2022121071 A1 WO2022121071 A1 WO 2022121071A1 CN 2021070200 W CN2021070200 W CN 2021070200W WO 2022121071 A1 WO2022121071 A1 WO 2022121071A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measured
module
light source
sample
Prior art date
Application number
PCT/CN2021/070200
Other languages
English (en)
French (fr)
Inventor
潘兴臣
刘诚
朱健强
Original Assignee
中国科学院上海光学精密机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海光学精密机械研究所 filed Critical 中国科学院上海光学精密机械研究所
Publication of WO2022121071A1 publication Critical patent/WO2022121071A1/zh
Priority to US17/875,392 priority Critical patent/US20220381619A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/957Light-field or plenoptic cameras or camera modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/126The splitting element being a prism or prismatic array, including systems based on total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J2009/0226Fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J2009/0234Measurement of the fringe pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J2009/0249Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods with modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J2009/0261Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods polarised
    • G01J2009/0265Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods polarised with phase modulation

Definitions

  • the present invention relates to wavefront phase recovery, wavefront detection and imaging, in particular to a device and method for phase imaging and component detection based on wavefront modulation.
  • the wavefront phase information cannot be directly measured by the detector, but can only be achieved by indirect measurement.
  • digital holography is an extremely important phase measurement and imaging technology, which is widely used in the fields of material chemistry, biomedicine, precision testing and manufacturing, but the elimination of twin images is a key problem faced by interferometry technology.
  • the instrument usually uses the four-step phase shift method to eliminate twin images, but this method has a complex structure and requires a precise phase shift system. With the increase of the measurement aperture, the cost increases exponentially, and the core technology is monopolized by foreign countries.
  • phase recovery technology can also realize phase measurement. It uses the recorded intensity information to reconstruct the phase information through iterative calculation. In theory, it can reach or even exceed the diffraction limit resolution resolution, and has the phase under sampling. Recovery, multi-modal phase recovery capability, which is incomparable to interferometry.
  • the present invention proposes a wavefront modulation-based phase imaging and component detection device and method . From the perspective of light field coding, the accurate measurement of the complex amplitude of the light field to be measured is completely achieved through iterative calculation, and at the same time, it can effectively eliminate the twin image problem, has the ability of multi-modal (multi-wavelength) reconstruction, and theoretically can achieve diffraction limit resolution. , can be widely used in phase imaging, optical component surface detection, polarization distribution measurement, etc., with a wide range of applications.
  • a phase imaging device based on wavefront modulation which is characterized by comprising: a light source module, a light field beam splitting module, a polarization control module, a beam combining coding module, a light spot detector and a control and data processing module;
  • the light source module is used for outputting coherent light sources
  • the optical field beam splitting module is used to divide the coherent light source into two beams with known complex amplitude distributions, one as the illumination light for the sample to be tested, and the other as the wavefront modulated light;
  • the polarization control module is used to control the polarization state between the illumination beam and the wavefront modulated beam, and control the polarization state of the two beams to be parallel, vertical or an angle between 0 and 90 degrees according to different measurement requirements;
  • the beam combining coding module is used to use the outgoing light or reflected light of the sample to be tested as the light to be tested, and to spatially overlap the light to be tested and the wavefront modulated light to form a coded light field, and the overlapping area is located at spot detector;
  • the light spot detector is used to receive the light beam of the object to be measured, obtain the light intensity distribution map of the object to be measured, and output it to the control and data processing module; and obtain the encoded light field intensity distribution map;
  • the control and data processing module is used to control the spot detector to record data, and to process the light intensity distribution map and the encoded light field intensity distribution map of the object to be measured, so as to reconstruct the complex amplitude distribution of the sample to be measured.
  • an imaging module is also included for receiving the light beam of the object to be measured, so that the sample to be measured is imaged on the light spot detector.
  • the coherent light source is a single-wavelength coherent light source, a broad-spectrum coherent light source, or a laser cluster, including a plurality of light sources with the same or different wavelengths.
  • Coherence; the first beam expander and the second beam expander beam expand the incident light into parallel light, spherical wave or structured light.
  • the light source module is a coherent light source
  • the light field beam splitting module is composed of a beam splitter, a first reflector, a first beam expander, and a second beam expander
  • the polarization control module is a first polarization control module.
  • the beam combining coding module realizes the spatial overlap of the object light to be measured and the wavefront modulated light by controlling the angle of the beam splitter and the first reflecting mirror;
  • the control and data processing module is a computer;
  • the light generated by the coherent light source is divided into transmitted light and reflected light after passing through the first polarizer and the beam splitter in sequence.
  • the transmitted light is incident on the spot detector through the first beam expander, and the reflected light is sequentially After passing through the first reflecting mirror, the second beam expander and the sample to be tested, it reaches the spot detector; the outgoing light of the first beam expander is used as wavefront modulated light, and the outgoing light of the second beam expander is used as wavefront modulated light.
  • the transmitted light and reflected light separated by the beam splitter are wavefront encoded on the target surface of the spot detector, the corresponding interference fringes are not limited by sampling requirements, and the spot detector is controlled by a computer.
  • the light source module is a coherent light source
  • the light field beam splitting module is composed of a beam splitter, a first reflector, a first beam expander, and a second beam expander
  • the polarization control module is composed of a second polarizer.
  • the beam-combining coding module realizes the spatial overlap of the object light to be measured and the wavefront modulated light by controlling the angle of the beam splitter and the first reflecting mirror;
  • the control and data processing module is a computer ;
  • the coherent light source is divided into transmitted light and reflected light after passing through the beam splitter.
  • the transmitted light is incident on the spot detector through the second polarizer and the first beam expander in sequence, and the reflected light passes through the first beam in sequence.
  • the reflector, the second beam expander, and the sample to be tested reach the spot detector; the outgoing light of the first beam expander is used as wavefront modulated light, and the outgoing light of the second beam expander is used as the object to be tested
  • the light spot detector simultaneously records the coded light field intensity distribution map containing two polarization states and the light intensity distribution map of the object to be measured, and the light spot detector is controlled by a computer.
  • the light source module is a coherent light source
  • the light field beam splitting module is composed of a beam splitter, a first reflector, a first beam expander, and a second beam expander
  • the polarization control module is a first polarization control module.
  • the beam combining coding module realizes the spatial overlap of the object light to be measured and the wavefront modulated light by controlling the angle of the beam splitter and the first reflecting mirror
  • the imaging module is a lens group
  • the control and data processing The module is a computer;
  • the coherent light source is divided into transmitted light and reflected light after passing through the first polarizer and the beam splitter in sequence, the transmitted light is incident to the spot detector through the first beam expander, and the reflected light passes through the first After the reflector, the second beam expander, the sample to be tested and the lens group reach the spot detector; the outgoing light of the first beam expander is used as the wavefront modulated light, and the outgoing light of the lens group is used as the light to be measured Object light; when the sample to be tested is a large-diameter element, the lens group condenses the emitted light of the sample to be tested; when the sample to be tested is a tiny sample, the lens group amplifies the emitted light of the sample to be tested, and the spot detector is controlled by a computer.
  • the light source module is a coherent light source
  • the light field beam splitting module is composed of a fiber beam splitter, a fiber collimator, a transflector and a collimating lens
  • the polarization control module is split by the coherent light source and the fiber
  • the polarization parameters of the device are realized, the beam combining coding module is realized by controlling the angle of the optical fiber collimator, the imaging module is a lens group, the reflective sample is a reflective sample, and the control and data processing module is a computer ;
  • the coherent light source fiber is coupled into the fiber beam splitter and divided into two beams, one beam is collimated by the fiber collimator into parallel light or spherical wave and then reaches the spot detector, and the other beam is reflected by the lens as a point light source. After that, it becomes parallel light through the collimating lens, and irradiates the reflective sample. After being reflected by the reflective sample, it is incident on the spot detector and imaged through the collimating lens, the lens and the lens group in turn.
  • the spot detector is composed of computer control.
  • the light source module is a coherent light source
  • the light field beam splitting module is composed of a beam splitter, a first reflector, a first beam expander and a second beam expander
  • the polarization control module is the first polarization control module.
  • the beam combining coding module is composed of a second reflector and a lens
  • the imaging module is a lens group
  • the sample to be tested is a transmission sample
  • the control and data processing module is a computer
  • the coherent light source is divided into transmitted light and reflected light after passing through the first polarizer and the beam splitter in sequence. Detector, the reflected light reaches the spot detector after passing through the first reflector, the second beam expander, the sample to be tested, the lens group and the lens in turn; the outgoing light of the first beam expander is used as Wavefront modulated light, the outgoing light of the lens group is used as the object light to be measured; when the sample to be tested is a large-diameter element, the outgoing light of the sample to be tested is beam-condensed by the lens group, and when the sample to be tested is a tiny sample, the lens The group amplifies the outgoing light of the sample to be tested, and the spot detector is controlled by a computer.
  • the light source module is a coherent light source
  • the optical field beam splitting module is composed of a fiber beam splitter, a fiber collimator and a variable aperture
  • the polarization control module passes the polarization of the coherent light source and the fiber beam splitter.
  • the parameters are realized, the beam combining coding module is realized by controlling the angle of the fiber output head of the fiber beam splitter, the imaging module is a lens group, the sample to be tested is a transmission sample, and the control and data processing module is computer;
  • the coherent light source is divided into two beams after being coupled into the optical fiber beam splitter by the optical fiber.
  • the measuring object light reaches the spot detector, and another beam is incident on the spot detector as a point light source, and acts as a wavefront modulated light, and the spot detector is controlled by a computer.
  • the light source module is composed of a first single-wavelength laser, a second single-wavelength laser and a fiber combiner.
  • the light source module as a laser cluster, includes but is not limited to two single-wavelength lasers, and can be multiple
  • the laser is composed together, or it is a single laser containing multiple wavelengths.
  • the optical field beam splitting module is composed of a fiber beam splitter, a fiber collimator, a transflector and a spherical reflector.
  • the polarization control module passes through the The polarization parameters of the first single-wavelength laser, the second single-wavelength laser and the fiber beam combiner are realized, the beam combination coding module is realized by controlling the exit angle of the fiber collimator, and the control and data processing module is a computer ;
  • the fiber beam combiner After the first single-wavelength laser and the second single-wavelength laser are combined by the fiber beam combiner, they are again divided into two beams by the fiber beam splitter, and each beam contains the first single-wavelength laser and the second single-wavelength laser at the same time.
  • One of the laser beams is collimated by a fiber collimator as parallel light or spherical wave and then reaches the spot detector as wavefront modulated light, and the other beam is collimated as a point light source through a transflective mirror and a spherical mirror to be parallel light or
  • the spherical wave is used as the illumination light for the reflective sample.
  • the reflective sample is a plane, spherical, free-form surface or irregular spherical structure. After the reflected light of the reflected sample is reflected by the spherical mirror, it passes through the lens to reach the spot detector, and As the object light to be measured, the spot detector is controlled by the computer.
  • the light source module is a coherent light source
  • the light field beam splitting module consists of a beam splitter, a first reflector, a first objective lens, a first aperture, a second objective lens, a second aperture, a transflective mirror and a collimator. It consists of a straight lens, the polarization control module is determined by the polarization parameters of the coherent light source, the beam combining coding module is realized by controlling the angle of the first reflector and the optical axis of the first objective lens, and the imaging module is a lens group ;
  • the control and data processing module is a computer;
  • the coherent light source is divided into transmitted light and reflected light after passing through a beam splitter.
  • Wavefront modulated light the reflected light is collimated into parallel light after passing through the second objective lens, the second small hole, the transmissive mirror and the collimating lens in sequence, which is used as the illumination light of the reflective sample, after being reflected by the reflective sample , after passing through the collimating lens, the mirror lens and the lens group in sequence, it reaches the spot detector as the object to be measured.
  • the reflective sample is a large-diameter element
  • the lens group condenses the reflected light of the reflective sample.
  • the reflective sample is a tiny sample
  • the lens group amplifies the reflected light from the reflective sample, and the spot detector is controlled by a computer.
  • the light source module is a coherent light source
  • the light field beam splitting module is composed of a prism, a first reflecting mirror and a collimating lens
  • the polarization control module is determined by the polarization parameters of the coherent light source
  • the beam combining code is The module is realized by controlling the angle of the first mirror, and the control and data processing module is a computer;
  • the coherent light source is output from an optical fiber, and as a point light source, it is divided into transmitted light and reflected light by a prism, wherein the transmitted light is reflected by the first reflector, reflected by the prism again, and then reaches the spot detector and is used as wavefront modulated light, wherein The reflected light is collimated by the collimating lens and then becomes parallel light, which is used as the illumination light of the reflective sample.
  • the reflected light of the reflective sample passes through the collimating lens and the prism in turn, and then reaches the spot detector and is used as the object to be measured.
  • the spot detector is controlled by a computer.
  • ER is the complex amplitude of the wavefront modulated light, and the error function is calculated at the same time where ⁇ represents the summation of pixel points;
  • angle() means taking the phase
  • j means the imaginary number
  • the light source module output the coherent light source, adjust the light intensity and polarization control module of the coherent light source, and use the spot detector to record the light intensity distribution diagram I O of the object to be tested containing multiple modalities and the existence of multiple modal wavefronts.
  • the coded light field intensity diagram I C when the light beam is modulated, the multi-mode indicates that the light field contains multiple incoherent modes, which can be lasers of the same wavelength emitted by different polarization states, different wavelengths or different lasers;
  • the light intensity distribution diagram I O of the object to be measured is composed of N incoherent modes, and the corresponding initial phase distributions are:
  • the corresponding optical complex amplitudes of the object to be measured are obtained as N ⁇ 2, where N ⁇ represents the energy ratio of the Nth mode in different pixel points in the light intensity distribution of the object to be measured, which is a two-dimensional matrix;
  • N E R is the complex amplitude of the N-th mode of the wavefront modulated light, and the error function is calculated at the same time in Represents the summation of pixel points;
  • N ⁇ represents the energy ratio of the N-th mode in different pixel points in the encoded light field intensity map, which is a two-dimensional matrix
  • the limited space includes limited spectrum, limited focal plane distribution and limited spatial distribution on a specific position surface;
  • the present invention Since there is no frequency interception process in digital holography, high-frequency information is not lost, and combined with the feature that the phase recovery technology can achieve diffraction-limited resolution, the present invention has higher spatial resolution.
  • the present invention has loose sampling requirements, and the interference fringes can still achieve wavefront reconstruction under undersampling.
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of a phase imaging device based on wavefront modulation according to the present invention.
  • FIG. 2 is a schematic structural diagram of Embodiment 2 of a phase imaging device based on wavefront modulation according to the present invention.
  • FIG. 3 is a schematic structural diagram of Embodiment 3 of a phase imaging device based on wavefront modulation according to the present invention.
  • FIG. 4 is a schematic structural diagram of Embodiment 4 of a phase imaging device based on wavefront modulation according to the present invention.
  • FIG. 5 is a schematic structural diagram of Embodiment 5 of the phase imaging device based on wavefront modulation according to the present invention.
  • FIG. 6 is a schematic structural diagram of Embodiment 6 of the phase imaging device based on wavefront modulation according to the present invention.
  • FIG. 7 is a schematic structural diagram of Embodiment 7 of a phase imaging device based on wavefront modulation according to the present invention.
  • FIG. 8 is a schematic structural diagram of Embodiment 8 of a phase imaging device based on wavefront modulation according to the present invention.
  • FIG. 9 is a schematic structural diagram of Embodiment 9 of a phase imaging device based on wavefront modulation according to the present invention.
  • 1-coherent light source 2-first polarizer, 3-beam splitter, 4-first beam expander, 5-first reflector, 6-second beam expander, 7-sample to be tested, 8-spot detector, 9-second polarizer, 10-third polarizer, 11-lens group, 12-fiber beam splitter, 13-fiber collimator, 14-reflection sample, 15-collimating lens , 16-lens mirror, 17-first single-wavelength laser, 18-second single-wavelength laser, 19-fiber combiner, 20-spherical mirror, 21-first objective lens, 22-first aperture, 23 -Second objective lens, 24-Second aperture, 25-Object light to be measured, 26-Wavefront modulated light, 27-Prism, 28-Iris diaphragm, 29-Computer, 30-Second mirror.
  • a biological sample complex-amplitude transmittance measurement device is arranged using the optical path shown in Figure 1.
  • the light source module is a He-Ne laser.
  • the generated light passes through the first polarizer and the beam splitter in turn and is divided into transmitted light and reflected light.
  • Light, the transmitted light is collimated into 30mm diameter parallel light after passing through the first beam expander, incident on the spot detector, and used as wavefront modulated light.
  • the pixel size of the spot detector is 4096 ⁇ 4096, and the pixel size is 9
  • the reflected light passes through the first reflector and the second beam expander in turn, it becomes a parallel beam and irradiates the biological slice of the sample to be tested.
  • the transmitted light propagates for 10 mm and then reaches the spot detector and is used as the light of the object to be tested. ;
  • the object light to be measured and the wavefront modulated light are wavefront encoded on the target surface of the spot detector, and the angle between the optical axes of the two beams is 10 degrees.
  • a complex amplitude transmittance detection device of a birefringent optical element is arranged by the optical path shown in Figure 2.
  • the coherent light source is a laser with a wavelength of 526.5 nm, which is divided into transmitted light and reflected light after passing through a beam splitter. The transmitted light is in turn.
  • the second polarizer and the first beam expander are incident on the spot detector.
  • the emitted light from the first beam expander is a diverging spherical wave, and at the same time, it is used as a wavefront modulated light.
  • the second beam expander becomes parallel light, it is used as the illumination light of the element to be tested, and the emitted light of the element to be tested is used as the light of the object to be tested.
  • the light source module output the coherent light source, adjust the light intensity of the coherent light source and the polarization control module so that the polarization angle of the wavefront modulated light and the illumination light of the sample to be tested is 45 degrees, and use the spot detector to record the two polarization states respectively.
  • the light intensity distribution diagram I O of the object to be measured is composed of two incoherent polarization modes, that is, it is considered that there are two light fields of p-polarization and s-polarization in the light field at the same time, and the corresponding initial phase distributions are:
  • the corresponding optical complex amplitudes of the object to be measured are obtained as Among them, N ⁇ represents the energy ratio of the Nth mode in different pixel points in the light intensity distribution diagram of the object to be measured, which is a two-dimensional matrix, and N is 1 or 2;
  • N E R is the complex amplitude of the N-th mode of the wavefront modulated light, and the error function is calculated at the same time in Represents the summation of pixel points;
  • N ⁇ represents the energy ratio of the N-th mode in different pixel points in the encoded light field intensity map, which is a two-dimensional matrix
  • optical complex amplitudes NE ′ O of the object to be tested in different modes after updating are respectively constrained by the limited spectral space, and further updated optical complex amplitudes of the object to be tested in different modes are obtained.
  • Fxy(r) represents the hole function with radius r, the center is the strongest frequency point of N E′ O , and r gradually increases with the increase of the number of iterations;
  • a microscopic phase measurement device is arranged using the optical path shown in Figure 3.
  • the coherent light source outputs ns pulsed light with a wavelength of 351 nm, which is divided into transmitted light and reflected light after passing through the first polarizer and the beam splitter in sequence.
  • the transmitted light passes through the first beam expander equipped with a random scattering sheet and becomes a speckle light field, which is incident on the spot detector and is used as wavefront modulated light.
  • the reflected light passes through the first reflector and the second beam expander in sequence.
  • the sample to be tested and the lens group reach the spot detector, the lens group magnifies the sample to be tested by 10 times and images it on the spot detector, which is used as the object light to be measured.
  • the spot detector (8) is controlled by the computer (29 )control.
  • a surface detection device for large-diameter components is arranged by the optical path shown in Figure 4.
  • the 633nm coherent laser generated by the coherent light source is divided into two beams after passing through the fiber beam splitter, and one beam is collimated into parallel light through the fiber collimator. After reaching the spot detector, it is used as wavefront modulated light, and the other beam is reflected by the lens as a point light source, and then becomes parallel light through the collimating lens, and irradiates the reflective sample. After being reflected by the reflective sample, After passing through the collimating lens, the lens and the lens group in sequence, it is incident on the spot detector and imaged, the light beam is used as the object light to be measured, and the spot detector is controlled by the computer.
  • An optical element transmittance measurement device which is arranged by the optical path shown in Figure 5, the coherent light source is divided into two paths by the beam splitter after passing through the first polarizer, and the transmitted light is expanded by the first beam expander to a diameter of The spherical wave, after being reflected by the mirror and the lens, reaches the spot detector as a wavefront modulated light field.
  • the modulated light field is reconstructed by coherent modulation imaging technology or Ptychography phase recovery algorithm and used as a known condition.
  • the reflected light passes through the reflector and the second beam expander in turn and becomes parallel light with a diameter of 300mm. After passing through the imaging system, it passes through the lens to reach the spot detector and is used as the object light to be measured.
  • the imaging system has a focal length of 1m. Aspherical lens, the spot detector is located 10mm behind the focal point, and the sample to be tested with a diameter of 300mm is placed close to the imaging system. At this time, the spot detector is located on the defocusing surface of the component to be tested.
  • imaging can be achieved by digital focusing.
  • a biological sample phase imaging device is arranged using the optical path shown in Figure 6.
  • the coherent light source ns pulse light, the wavelength in the center is 1053 nm
  • one beam is used as a point light source to irradiate the spot detection. It is used as wavefront modulated light on the device, and the other beam is transformed into parallel light through the fiber collimator and irradiated on the sample to be tested.
  • An iris diaphragm is placed in front of the sample to be tested. device.
  • a dual-wavelength reflective free-form surface element detection device is arranged using the optical path shown in Figure 7.
  • One beam is collimated by the fiber collimator to a 50mm diameter parallel light and reaches the spot detector as a wavefront modulated light. It reaches the spherical reflector, and is collimated so that parallel light containing two wavelengths is irradiated on the reflective free-form surface optical element. After reflection, it passes through the spherical reflector and the transflective mirror in sequence and then reaches the spot detector as the object light to be measured. .
  • the spot detector to record the light intensity distribution diagram 10 of the object to be tested including two wavelengths and the coded light field intensity diagram IC when there are two wavelength wavefront modulated beams;
  • the light intensity distribution diagram I O of the object to be measured is composed of the superposition of the beam intensities of two wavelengths, corresponding to ⁇ 1 and ⁇ 2 respectively, and the corresponding initial phase distributions are:
  • the corresponding optical complex amplitudes of the object to be measured are obtained as Among them, N ⁇ represents the energy ratio of the Nth wavelength in different pixel points in the light intensity distribution diagram of the object to be measured, which is a two-dimensional matrix, and N is 1 or 2.
  • different wavelengths correspond to different modes;
  • N E R is the complex amplitude of the N-th mode of the wavefront modulated light, and the error function is calculated at the same time in Represents the summation of pixel points;
  • N ⁇ represents the energy ratio of the N-th mode in different pixel points in the encoded light field intensity map, which is a two-dimensional matrix
  • optical complex amplitudes NE ′ O of the object to be tested in different modes after updating are respectively constrained by the limited spectral space, and further updated optical complex amplitudes of the object to be tested in different modes are obtained.
  • Fxy(r) represents the hole function with radius r, the center is the strongest frequency point of N E′ O , and r gradually increases with the increase of the number of iterations;
  • the reflected light corresponding to the two wavelengths of the sample to be tested is obtained.
  • a standard reflector After replacing the sample to be tested with a standard reflector, repeat the above steps to record and reconstruct the reflected light corresponding to different wavelengths of the standard reflector, divide it with the reflected light of the free-form surface element to be tested, and obtain the free-form surface to be tested element at two wavelengths.
  • the complex amplitude reflectivity of , through wavelength synthesis, a reflective surface type without phase wrapping can be obtained.
  • a reflective optical element detection device adopts the measurement optical path shown in Figure 8, and a quasi-continuous light laser with a wavelength of 526 nm is used as a coherent light source. After the small hole, it becomes a diverging spherical wave, which reaches the spot detector and is used as wavefront modulated light. The reflected light of the beam splitter passes through the second objective lens and the second small hole in turn and becomes a spherical wave. After being reflected by the lens, it reaches the focal length of After the 2m collimating lens, it becomes a parallel light with a diameter of 500mm. After it is irradiated on the reflective sample, the reflected light passes through the mirror and the lens group in turn, and reaches the spot detector as the object to be measured.
  • the surface and reflective sample are in a conjugate relationship with respect to the collimating lens and the lens group, that is, the image plane of the reflective sample is located at the target surface of the spot detector.
  • the reflective sample is a standard mirror
  • record the cavity calibration data when the reflective sample is the sample to be measured, record the measurement data, and reconstruct the complex amplitude distribution of the spot detection surface in the two cases through iterative calculation and reconstruction.
  • the difference divided by 2 is the surface distribution of the component to be tested.
  • a reflective optical element detection device using the measurement optical path shown in Figure 9, the emitted light from a coherent light source (fiber laser) with a wavelength of 526 nm is used as a point light source, and after passing through a prism, the transmitted light is reflected by a mirror and then reflected by the prism again. It is irradiated on the spot detector as wavefront modulated light.
  • the prism reflected light becomes parallel light after passing through the collimating lens and irradiates the reflective sample.
  • the reflective sample is close to the collimating lens. After reflection, it passes through the collimating lens, After the prism, it reaches the spot detector and is used as the object light to be measured.
  • the reflective sample is a standard mirror
  • record a set of cavity calibration data when the reflective sample is a sample to be measured, record a set of measurement data, and obtain the complex amplitude distribution of the spot detection surface in both cases through iterative calculation and reconstruction , propagating it back to the frequency plane where the collimating lens is located, and the phase difference between the two is 2, which is the surface distribution of the element to be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种基于波前调制的相位成像及元件检测的装置和方法,针对现有干涉测量技术在孪生像消除、极限分辨率、欠采样波前测量、多模态测量方面的不足,提出一种基于波前调制的相位成像及元件检测的装置和方法,从光场编码的角度,完全通过迭代计算实现对待测光场复振幅的精确测量,同时能够有效消除孪生像问题、具备多模态(多波长)重建能力、理论上能够达到衍射极限分辨率,能够广泛应用于相位成像、光学元件面型检测、偏振分布测量,具备广泛的适用范围。

Description

基于波前调制的相位成像及元件检测的装置和方法 技术领域
本发明涉及波前相位恢复、波前检测及成像,特别是一种基于波前调制的相位成像及元件检测的装置和方法。
背景技术
为获得波前分布的完整信息,不仅需要得到振幅分布,还需要完整的相位信息,但不同于强度信息,波前相位信息无法通过探测器直接测量,只能通过间接测量的方式实现,干涉测量和数字全息是极为重要的相位测量及成像技术,广泛应用于材料化学、生物医学、精密检测及制造等领域,但孪生像的消除问题是干涉测量技术所面临的关键问题,目前商业化的干涉仪通常采用四步相移法来消除孪生像,但这种方法结构复杂,需要精密相移系统,随着测量口径的增加,成本随指数增加,且核心技术被国外所垄断,同时干涉法主要的数据来源为干涉条纹,因此常规干涉法必须满足采样要求,当采样间隔过大时,将难以实现相位测量。除此之外,相位恢复技术同样能够实现相位测量,其利用记录的强度信息,通过迭代计算可实现对相位信息的重建,理论上能够达到甚至超过衍射极限分辨率分辨率,具备欠采样下相位恢复、多模态相位恢复能力,这是干涉法难以比拟的,由于不需要参考光,理论上是一种优于干涉法的相位测量技术,但由于其收敛性要求较高,通常需要多幅衍射光斑或者严格的约束条件,虽然能够广泛应用于X射线和电子束成像领域,但在可见光波段的实用性优势并不明显,因此发展适用性强、无孪生像问题、计算速度快、理论上能够达到衍射极限分辨率、能够实现欠采样下相位测量、具备多模态测量能力的相位检测及成像技术,是基础研究和工业应用领域中的迫切需求。
发明内容
本发明针对上述现有干涉测量技术在孪生像消除、极限分辨率、欠采样波前测量、多模态测量等方面的不足,提出一种基于波前调制的相位成像及元件检测的装置和方法,从光场编码的角度,完全通过迭代计算实现对待测光场复振幅的精确测量,同时能够有效消除孪生像问题、具备多模态(多波长)重建能力、理论上能够达到衍射极限分辨率,能够广泛应用于相位成像、光学元件面型检测、偏振分布测 量等,具备广泛的适用范围。
本发明的技术解决方案如下:
一种基于波前调制的相位成像装置,其特点在于,包括:光源模块、光场分束模块、偏振控制模块、合束编码模块、光斑探测器和控制与数据处理模块;
所述的光源模块,用于输出相干光源;
所述的光场分束模块,用于将相干光源分为两束复振幅分布已知的光束,一束作为待测样品的照明光,一束作为波前调制光;
所述的偏振控制模块,用来控制照明光束和波前调制光束之间的偏振态,根据测量需求不同控制两束光偏振态为平行、垂直或0到90度之间的角度;
所述的合束编码模块,用于将经待测样品的出射光或反射光作为待测物光,以及将待测物光与波前调制光进行空间重叠,形成编码光场,重叠区域位于光斑探测器;
所述的光斑探测器,用于接收待测物光光束,获得待测物光强度分布图,并输出至控制与数据处理模块;以及获得编码光场强度分布图;
所述的控制与数据处理模块,用于控制光斑探测器记录数据,并对待测物光强度分布图和编码光场强度分布图进行处理,重建待测样品的复振幅分布。
进一步,还包括成像模块,用于接收待测物光光束,使待测样品在光斑探测器上成像。
所述的相干光源是单波长相干光源、宽谱相干光源,或者是激光器簇,包含多个相同或不同波长的光源,相同光源或同一波长的激光是相干的,不同光源或不同波长之间非相干;所述的第一扩束器和第二扩束器将入射光扩束为平行光、球面波或者结构光。
所述的光源模块为相干光源,所述的光场分束模块由分束镜、第一反射镜、第一扩束器、第二扩束器组成,所述的偏振控制模块为第一偏振片,所述的合束编码模块通过控制分束镜和第一反射镜角度实现待测物光与波前调制光的空间重叠;所述的控制与数据处理模块为计算机;
所述的相干光源产生的光依次经过第一偏振片、分束镜后分为透射光和反射光,所述的透射光经过第一扩束器入射至光斑探测器,所述的反射光依次经过第一反射镜、第二扩束器、待测样品后,到达光斑探测器;所述的第一扩束器的出射光作为波前调制光,所述的第二扩束器的出射光作为待测物光;所述分束镜分出的透射光和反射光在光斑探测器靶面上进行波前编码,对应的干涉条纹不受限于采样要求,光斑探测器由计算机控制。
所述的光源模块为相干光源,所述的光场分束模块由分束镜、第一反射镜、第 一扩束器、第二扩束器组成,所述的偏振控制模块由第二偏振片、第三偏振片组成,所述的合束编码模块通过控制分束镜和第一反射镜角度实现待测物光与波前调制光的空间重叠;所述的控制与数据处理模块为计算机;
所述的相干光源经过分束镜后分为透射光和反射光,所述的透射光依次经过第二偏振片和第一扩束器入射至光斑探测器,所述的反射光依次经过第一反射镜、第二扩束器、待测样品后到达光斑探测器;所述的第一扩束器的出射光作为波前调制光,所述的第二扩束器的出射光作为待测物光,光斑探测器同时记录包含两个偏振态的编码光场强度分布图,以及待测物光强度分布图,该光斑探测器由计算机控制。
所述的光源模块为相干光源,所述的光场分束模块由分束镜、第一反射镜、第一扩束器、第二扩束器组成,所述的偏振控制模块为第一偏振片,所述的合束编码模块通过控制分束镜和第一反射镜角度实现待测物光与波前调制光的空间重叠,所述的成像模块为透镜组;所述的控制与数据处理模块为计算机;
所述的相干光源依次经过第一偏振片和分束镜后分为透射光和反射光,所述的透射光经过第一扩束器入射至光斑探测器,所述的反射光依次经过第一反射镜、第二扩束器、待测样品和透镜组后,到达光斑探测器;所述的第一扩束器的出射光作为波前调制光,所述的透镜组的出射光作为待测物光;当待测样品为大口径元件时,透镜组对待测样品出射光进行缩束,当待测样品为微小样品时,透镜组对待测样品出射光进行放大,光斑探测器由计算机控制。
所述的光源模块为相干光源,所述的光场分束模块由光纤分束器、光纤准直器、透反镜和准直透镜组成,所述的偏振控制模块通过相干光源及光纤分束器的偏振参数实现,所述的合束编码模块通过控制光纤准直器角度来实现,所述的成像模块为透镜组,反射型样品为反射式样品,所述的控制与数据处理模块为计算机;
所述的相干光源光纤耦合进光纤分束器后分为二束,一束经过光纤准直器准直为平行光或球面波后到达光斑探测器,另一束作为点光源经过透反镜反射后经过准直透镜变为平行光,照射到反射型样品上,经该反射型样品反射后,依次经准直透镜、透反镜和透镜组后入射到光斑探测器并成像,光斑探测器由计算机控制。
所述的光源模块为相干光源,所述的光场分束模块由分束镜、第一反射镜、第一扩束器和第二扩束器组成,所述的偏振控制模块时第一偏振片,所述的合束编码模块由第二反射镜和透反镜组成,所述的成像模块为透镜组,待测样品为透射式样品,所述的控制与数据处理模块为计算机;
所述的相干光源依次经过第一偏振片和分束镜后分为透射光和反射光,所述的透射光依次经过第一扩束器、第二反射镜和透反镜后,入射至光斑探测器,所述的反射光依次经过第一反射镜、第二扩束器、待测样品、透镜组和透反镜后,到达光 斑探测器;所述的第一扩束器的出射光作为波前调制光,所述的透镜组的出射光作为待测物光;当待测样品为大口径元件时,透镜组对待测样品出射光进行缩束,当待测样品为微小样品时,透镜组对待测样品出射光进行放大,光斑探测器由计算机控制。
所述的光源模块为相干光源,所述的光场分束模块由光纤分束器、光纤准直器和可变光阑组成,所述的偏振控制模块通过相干光源及光纤分束器的偏振参数实现,所述的合束编码模块通过控制光纤分束器光纤输出头的角度来实现,所述的成像模块为透镜组,待测样品为透射式样品,所述的控制与数据处理模块为计算机;
所述的相干光源经光纤耦合进光纤分束器后分为二束,一束经过光纤准直器准直为平行光或球面波后,依次经过可变光阑、待测样品后,作为待测物光到达光斑探测器,另一束作为点光源入射到光斑探测器,并作为波前调制光,光斑探测器由计算机控制。
所述的光源模块为由第一单波长激光器、第二单波长激光器和光纤合束器组成,所述的光源模块作为激光器簇,包括但不限于由2台单波长激光器组成,可以是多台激光器共同组成,或者是包含多个波长的单台激光器,所述的光场分束模块由光纤分束器、光纤准直器、透反镜和球面反射镜组成,所述的偏振控制模块通过第一单波长激光器、第二单波长激光器和光纤合束器的偏振参数实现,所述的合束编码模块通过控制光纤准直器的出射角度来实现,所述的控制与数据处理模块为计算机;
所述的第一单波长激光器、第二单波长激光器经光纤合束器合束后,再次经过光纤分束器分为两束,每束都同时包含第一单波长激光器、第二单波长激光器的激光,其中一束经过光纤准直器准直为平行光或球面波后作为波前调制光到达光斑探测器,另外一束作为点光源经过透反镜和球面反射镜准直为平行光或者球面波后作为反射型样品的照明光,反射型样品为平面、球面、自由曲面或者非规则球面结构,反射样品的反射光经过球面反射镜反射后,穿过透反镜到达光斑探测器,并作为待测物光,光斑探测器由计算机控制。
所述的光源模块为相干光源,所述的光场分束模块由分束镜、第一反射镜、第一物镜、第一小孔、第二物镜、第二小孔、透反镜和准直透镜组成,所述的偏振控制模块由相干光源的偏振参数决定,所述的合束编码模块通过控制第一反射镜角度和第一物镜的光轴来实现,所述的成像模块为透镜组;所述的控制与数据处理模块为计算机;
所述的相干光源经过分束镜后分为透射光和反射光,所述的透射光依次经过第一反射镜、第一物镜和第一小孔后,成为球面波入射至光斑探测器并作为波前调制光,所述的反射光依次经过第二物镜、第二小孔、透反镜和准直透镜后,准直为平 行光,作为反射型样品的照明光,经过反射型样品反射后,依次透过准直透镜、透反镜和透镜组后,作为待测物光到达光斑探测器,当反射型样品为大口径元件时,透镜组对反射型样品反射光进行缩束,当反射型样品为微小样品时,透镜组对反射型样品反射光进行放大,光斑探测器由计算机控制。
所述的光源模块为相干光源,所述的光场分束模块由棱镜、第一反射镜和准直透镜组成,所述的偏振控制模块由相干光源的偏振参数决定,所述的合束编码模块通过控制第一反射镜角度来实现,所述的控制与数据处理模块为计算机;
所述的相干光源为光纤输出,作为点光源被棱镜分为透射光和反射光,其中透射光经过第一反射镜反射后,再次被棱镜反射后到达光斑探测器并作为波前调制光,其中反射光经过准直透镜准直后变为平行光,并作为反射型样品的照明光,反射型样品的反射光依次透过准直透镜、棱镜后,到达光斑探测器并作为待测物光,光斑探测器由计算机控制。
利用上述基于波前调制的相位成像装置进行相位测量的方法,其特点在于,包括以下步骤:
S1.打开光源模块,输出相干光源,调整相干光源的光强和偏振控制模块,利用光斑探测器分别记录待测物光强度分布图I O和存在波前调制光束时的编码光场强度图I C
S2.对待测物光强度分布图I O的相位分布进行重建,具体是:
①设待测物光强度分布图I O对应的初始相位分布
Figure PCTCN2021070200-appb-000001
得到待测物光复振幅
Figure PCTCN2021070200-appb-000002
②计算待测物光与波前调制光重叠后的编码光场E C,公式如下:
E C=E O+E R
式中,E R为波前调制光复振幅,同时计算误差函数
Figure PCTCN2021070200-appb-000003
其中∑表示像素点求和;
③利用实际记录的编码光场强度图I C对波前调制光复振幅E C进行振幅更新,得到更新后的编码光场复振幅
Figure PCTCN2021070200-appb-000004
其中angle()表示取相位,j表示虚数;
④从更新后的编码光场复振幅E′ C中去掉波前调制过程,得到更新的待测物光复振幅E′ O=E′ C-E R
⑤对更新后的待测物光光复振幅E′ O进行空间有限的条件约束并得到进一步更新的待测物光复振幅E″ O,并作为下一次迭代的初始猜测,根据具体情况选择,空间有限包括频谱有限、焦平面分布有限及特定位置面上空间分布有限等;
⑥重复步骤②-⑤,直到误差函数RMS值趋于稳定或不变,得到最终的待测物光复振幅
Figure PCTCN2021070200-appb-000005
⑦将
Figure PCTCN2021070200-appb-000006
传播到待测物体所在的面或者像面后,除以对应的照明光复振幅,即得到待测物体的复振幅透过率或者反射率函数,完成迭代计算。
利用上述基于波前调制的相位成像装置进行多模态相位测量的方法,其特点在于,包括以下步骤:
S1.打开光源模块,输出相干光源,调整相干光源的光强和偏振控制模块,利用光斑探测器分别记录包含多个模态的待测物光强度分布图I O和存在多个模态波前调制光束时的编码光场强度图I C,所述的多模态表示光场中包含多个非相干模式,可以是不同偏振态、不同波长或者不同激光器发出的相同波长激光;
S2.对待测物光强度分布图I O的相位分布进行重建,具体是:
①设待测物光强度分布图I O由N个非相干模式组成,对应的初始相位分布分别为:
Figure PCTCN2021070200-appb-000007
得到对应的待测物光复振幅分别为
Figure PCTCN2021070200-appb-000008
Figure PCTCN2021070200-appb-000009
N≥2,其中 Nα表示待测物光强度分布图中第N个模式在不同像素点所占的能量比,是一个二维矩阵;
②计算编码光场分布,其中待测物光第N个模式与波前调制光第N个模式重叠后的编码光场 NE C,公式如下:
NE CNE O+ NE R
式中, NE R为波前调制光第N个模式的复振幅,同时计算误差函数
Figure PCTCN2021070200-appb-000010
其中
Figure PCTCN2021070200-appb-000011
表示像素点求和;
③利用实际记录的编码光场强度图I C对所有模式下的编码光场进行更新,其中波前调制光第N个模式的复振幅 NE C更新方法如下:
Figure PCTCN2021070200-appb-000012
其中 Nβ表示编码光场强度图中第N个模式在不同像素点所占的能量比,是一个二维矩阵;
④去掉不同模式下的波前调制过程,得到更新的待测物光第N个模式复振幅 NE′ ONE′ C- NE R
⑤对更新后的不同模式下待测物光光复振幅 NE′ O分别进行空间有限的条件约束并得到进一步更新的不同模式下待测物光复振幅 NE″ O,并作为下一次迭代的初始猜测,根据具体情况选择,空间有限包括频谱有限、焦平面分布有限及特定位置面上空间分布有限等;
⑥重复步骤②-⑤,直到误差函数RMS值趋于稳定或不变,得到最终的不同模式下待测物光复振幅
Figure PCTCN2021070200-appb-000013
⑦将
Figure PCTCN2021070200-appb-000014
传播到待测物体所在的面或者像面后,除以对应模式的照明光复振幅,即得到待测物体第N个模式对应的复振幅透过率或者反射率函数,完成迭代计算。与现有技术相比,本发明的技术效果:
1)在不增加光斑数量的条件下,只需要通过迭代计算就可以消除孪生像问题,不需要常规的四步相移等方法。
2)由于不存在数字全息中频率截取过程,高频信息不丢失,结合相位恢复技术能够达到衍射极限分辨率的特点,本发明具备更高的空间分辨率。
3)本发明具备宽松的采样要求,干涉条纹在欠采样下仍然可以实现波前重建。
4)具备多状态测量能力,可实现对不同偏振态或不同波长复振幅分布的同时重建。
附图说明
图1是本发明基于波前调制的相位成像装置实施例1结构示意图。
图2是本发明基于波前调制的相位成像装置实施例2结构示意图。
图3是本发明基于波前调制的相位成像装置实施例3结构示意图。
图4是本发明基于波前调制的相位成像装置实施例4结构示意图。
图5是本发明基于波前调制的相位成像装置实施例5结构示意图。
图6是本发明基于波前调制的相位成像装置实施例6结构示意图。
图7是本发明基于波前调制的相位成像装置实施例7结构示意图。
图8是本发明基于波前调制的相位成像装置实施例8结构示意图。
图9是本发明基于波前调制的相位成像装置实施例9结构示意图。
图中:1-相干光源,2-第一偏振片,3-分束镜,4-第一扩束器,5-第一反射镜,6-第二扩束器,7-待测样品,8-光斑探测器,9-第二偏振片,10-第三偏振 片,11-透镜组,12-光纤分束器,13-光纤准直器,14-反射型样品,15-准直透镜,16-透反镜,17-第一单波长激光器,18-第二单波长激光器,19-光纤合束器,20-球面反射镜,21-第一物镜,22-第一小孔,23-第二物镜,24-第二小孔,25-待测物光,26-波前调制光,27-棱镜,28-可变光阑,29-计算机,30-第二反射镜。
具体实施方式
为让本发明的上述优点能明显易懂,以下结合附图对本发明的具体实施方式进行详细说明。需要说明的是,本发明不应局限于下述的具体实施的内容,本领域的技术人员应该从下述实施方式所体现的精神来理解本发明,各技术术语可以基于本发明的精神实质来做最宽泛的理解。
实施例1
一种生物样品复振幅透射率测量装置,采用图1所示光路进行排布,光源模块为He-Ne激光器,所产生的光依次经过第一偏振片、分束镜后分为透射光和反射光,所述的透射光经过第一扩束器后准直为30mm口径平行光,入射至光斑探测器,并作为波前调制光,光斑探测器像素尺数为4096×4096,像素尺寸为9微米,所述的反射光依次经过第一反射镜、第二扩束器后,变为平行光束照射到待测样品生物切片上,其透射光传播10mm后到达光斑探测器并作为待测物光;待测物光和波前调制光在光斑探测器靶面上进行波前编码,两束光光轴夹角10度。
实施例2
一种双折射光学元件复振幅透射率检测装置,采用图2所示光路进行排布,相干光源为波长526.5nm激光,经过分束镜后分为透射光和反射光,所述的透射光依次经过第二偏振片和第一扩束器入射至光斑探测器,第一扩束器的出射光为发散球面波,同时作为波前调制光,所述的反射光依次经过第一反射镜、第二扩束器变为平行光后,作为待测元件照明光,待测元件出射光作为待测物光。
打开光源模块,输出相干光源,调整相干光源的光强和偏振控制模块,使波前调制光和待测样品照明光偏振角度为45度,利用光斑探测器分别记录包含两个偏振态的待测物光强度分布图I O和存在两个偏振态波前调制光束时的编码光场强度图I C
对待测物光强度分布图I O的相位分布进行重建,具体是:
①设待测物光强度分布图I O由2个非相干偏振模式模式组成,即认为光场中同时存在p偏振和s偏振两种光场,对应的初始相位分布分别为:
Figure PCTCN2021070200-appb-000015
得到对应的 待测物光复振幅分别为
Figure PCTCN2021070200-appb-000016
其中 Nα表示待测物光强度分布图中第N个模式在不同像素点所占的能量比,是一个二维矩阵,N为1或2;
②计算编码光场分布,其中待测物光第N个模式与波前调制光第N个模式重叠后的编码光场 NE C,公式如下:
NE CNE O+ NE R
式中, NE R为波前调制光第N个模式的复振幅,同时计算误差函数
Figure PCTCN2021070200-appb-000017
其中
Figure PCTCN2021070200-appb-000018
表示像素点求和;
③利用实际记录的编码光场强度图I C对所有模式下的编码光场进行更新,其中波前调制光第N个模式的复振幅 NE C更新方法如下:
Figure PCTCN2021070200-appb-000019
其中 Nβ表示编码光场强度图中第N个模式在不同像素点所占的能量比,是一个二维矩阵;
④去掉不同模式下的波前调制过程,得到更新的待测物光第N个模式复振幅 NE′ ONE′ C- NE R
⑤对更新后的不同模式下待测物光光复振幅 NE′ O分别进行频谱空间有限的条件约束并得到进一步更新的不同模式下待测物光复振幅
Figure PCTCN2021070200-appb-000020
并作为下一次迭代的初始猜测,其中
Figure PCTCN2021070200-appb-000021
Figure PCTCN2021070200-appb-000022
分别表示傅里叶变换和逆傅里叶变换,Fxy(r)表示半径为r的孔函数,中心为 NE′ O的频率最强点,r随迭代次数的增加逐渐增加;
⑥重复步骤②-⑤,直到误差函数RMS值趋于稳定或不变,得到最终的不同模式下待测物光复振幅
Figure PCTCN2021070200-appb-000023
⑦将
Figure PCTCN2021070200-appb-000024
传播到待测物体所在的面或者像面后,除以对应模式的照明光复振幅,即得到待测物体第N个模式对应的复振幅透过率或者反射率函数,完成迭代计算。
调整相干光源的光强和偏振控制模块,使波前调制光和待测样品照明光偏振角度分别为0度和90度,各记录一组数据,同时将待测样品照明光调整为圆偏振光再记录一组,重复上述迭代计算,利用重建结果分析待测样品的双折射特性。
实施例3
一种显微相位测量装置,采用图3所示光路进行排布,相干光源输出波长351nm的ns脉冲光,依次经过第一偏振片和分束镜后分为透射光和反射光,所述的透射光经过装有随机散射片的第一扩束器变为散斑光场,入射至光斑探测器,并作为波前调制光,所述的反射光依次经过第一反射镜、第二扩束器、待测样品和透镜组后,到达光斑探测器,透镜组将放大待测样品放大10倍后成像于光斑探测器上,并作为待测物光,光斑探测器(8)由计算机(29)控制。
实施例4
一种大口径元件面型检测装置,采用图4所示光路进行排布,相干光源产生的633nm相干激光经光纤分束器后分为二束,一束经过光纤准直器准直为平行光后到达光斑探测器,作为波前调制光,另一束作为点光源经过透反镜反射后,再经过准直透镜变为平行光,照射到反射型样品上,经该反射型样品反射后,依次经准直透镜、透反镜和透镜组后入射到光斑探测器并成像,该光束作为待测物光,光斑探测器由计算机控制。
实施例5
一种光学元件透射率测量装置,采用图5所示光路进行排布,相干光源经过第一偏振片后被分束镜分为两路,透射光经过第一扩束器后扩束为口径为球面波,经过反射镜和透反镜反射后到达光斑探测器作为波前调制光场,所述调制光场采用相干调制成像技术或者Ptychography相位恢复算法进行重建并作为已知条件,分束镜的反射光依次经过反射镜和第二扩束器后变为口径是300mm的平行光,经过成像系统后穿过透反镜到达光斑探测器并作为待测物光,此处成像系统为焦距1m的非球面透镜,光斑探测器位于焦点后10mm处,直径300mm的待测样品紧贴成像系统放置,此时光斑探测器位于待测元件离焦面上,当重建得到待测物光光场分布后,可以通过数字聚焦实现成像。
实施例6
一种生物样品相位成像装置,采用图6所示的光路进行排布,相干光源(ns脉冲光,中心内波长为1053nm)经过光纤分束器分束后,一束作为点光源照射到光斑探测器上作为波前调制光,另外一束经过光纤准直器变为平行光照射到待测样品上,待测样品前放置可变光阑,待测样品出射光作为待测物光到达光斑探测器。
实施例7
一种双波长反射式自由曲面元件检测装置,采用图7所示的光路进行排布,第一单波长激光器(λ1=632nm)和第二单波长激光器(λ2=633nm)经过光纤合束器合束后,再次经过光纤分束器分束,一束经过光纤准直器准直为口径50mm的平行光 到达光斑探测器,作为波前调制光,一束作为点光源,经过透反镜反射后到达球面反射镜,并准直为包含两个波长的平行光照射到反射型自由曲面光学元件上,经过反射后,依次经过球面反射镜、透反镜后到达光斑探测器,作为待测物光。
打开光源模块,利用光斑探测器分别记录包含两个波长的待测物光强度分布图I O和存在两个波长波前调制光束时的编码光场强度图I C
对待测物光强度分布图I O的相位分布进行重建,具体是:
①设待测物光强度分布图I O由2个波长的光束强度叠加组成,分别对应λ1和λ2,对应的初始相位分布分别为:
Figure PCTCN2021070200-appb-000025
得到对应的待测物光复振幅分别为
Figure PCTCN2021070200-appb-000026
其中 Nα表示待测物光强度分布图中第N个波长在不同像素点所占的能量比,是一个二维矩阵,N为1或2,此时不同波长对应不同模式;
②计算编码光场分布,其中待测物光第N个模式与波前调制光第N个模式重叠后的编码光场 NE C,公式如下:
NE CNE O+ NE R
式中, NE R为波前调制光第N个模式的复振幅,同时计算误差函数
Figure PCTCN2021070200-appb-000027
其中
Figure PCTCN2021070200-appb-000028
表示像素点求和;
③利用实际记录的编码光场强度图I C对所有模式下的编码光场进行更新,其中波前调制光第N个模式的复振幅 NE C更新方法如下:
Figure PCTCN2021070200-appb-000029
其中 Nβ表示编码光场强度图中第N个模式在不同像素点所占的能量比,是一个二维矩阵;
④去掉不同模式下的波前调制过程,得到更新的待测物光第N个模式复振幅 NE′ ONE′ C- NE R
⑤对更新后的不同模式下待测物光光复振幅 NE′ O分别进行频谱空间有限的条件约束并得到进一步更新的不同模式下待测物光复振幅
Figure PCTCN2021070200-appb-000030
并作为下一次迭代的初始猜测,其中
Figure PCTCN2021070200-appb-000031
Figure PCTCN2021070200-appb-000032
分别表示傅里叶变换和逆傅里叶变换,Fxy(r)表示半径为r的孔函数,中心为 NE′ O的频率最强点,r随迭代次数 的增加逐渐增加;
⑥重复步骤②-⑤,直到误差函数RMS值趋于稳定或不变,得到最终的不同模式下待测物光复振幅
Figure PCTCN2021070200-appb-000033
Figure PCTCN2021070200-appb-000034
传播到待测物体所在的面后,获得待测样品两个波长对应的反射光。将待测样品替换为标准反射镜后,按照上述步骤重复记录并重建标准反射镜不同波长对应的反射光,同自由曲面待测元件的反射光相除,得到两个波长下自由曲面待测元件的复振幅反射率,通过波长合成,可以得到无相位包裹的反射面型。
实施例8
一种反射式光学元件检测装置,采用图8所示的测量光路,波长526nm的准连续光激光器作为相干光源,经过分束镜分束后,透射光依次经过反射镜、第一物镜和第一小孔后成为发散球面波,到达光斑探测器并作为波前调制光,分束镜的反射光依次经过第二物镜、第二小孔后变为球面波,经过透反镜反射后到达焦距为2m的准直透镜后,成为直径为500mm的平行光,其照射到反射型样品上后,反射光依次经过透反镜和透镜组后,作为待测物光到达光斑探测器,光斑探测器靶面和反射型样品相对准直透镜和透镜组互为共轭关系,即反射型样品的像面位于光斑探测器靶面位置。当反射型样品为标准反射镜时,记录空腔校准数据,当反射型样品为待测样品时,记录测量数据,通过迭代计算重建得到两种情况下光斑探测面的复振幅分布,两者相位差除以2即为待测元件的面型分布。
实施例9
一种反射式光学元件检测装置,采用图9所示的测量光路,波长526nm相干光源(光纤激光器)出射光作为点光源,经过棱镜后,其透射光经过反射镜反射后再次经过棱镜反射,并照射到光斑探测器上作为波前调制光,棱镜反射光经过准直透镜后变为平行光照射到反射型样品上,反射型样品紧贴准直透镜,经过反射后,依次经过准直透镜、棱镜后到达光斑探测器并作为待测物光。当反射型样品为标准反射镜时,记录一组空腔校准数据,当反射型样品为待测样品时,记录一组测量数据,通过迭代计算重建得到两种情况下光斑探测面的复振幅分布,将其逆向传播到准直透镜所在频面,两者相位差处以2即为待测元件的面型分布。

Claims (14)

  1. 一种基于波前调制的相位成像装置,其特征在于,包括:光源模块、光场分束模块、偏振控制模块、合束编码模块、光斑探测器和控制与数据处理模块;
    所述的光源模块,用于输出相干光源;
    所述的光场分束模块,用于将相干光源分为两束复振幅分布已知的光束,一束作为待测样品的照明光,一束作为波前调制光;
    所述的偏振控制模块,用来控制照明光束和波前调制光束之间的偏振态,根据测量需求不同控制两束光偏振态为平行、垂直或0到90度之间的角度;
    所述的合束编码模块,用于将经待测样品的出射光或反射光作为待测物光,以及将待测物光与波前调制光进行空间重叠,形成编码光场,重叠区域位于光斑探测器;
    所述的光斑探测器,用于接收待测物光光束,获得待测物光强度分布图,并输出至控制与数据处理模块;以及获得编码光场强度分布图;
    所述的控制与数据处理模块,用于控制光斑探测器记录数据,并对待测物光强度分布图和编码光场强度分布图进行处理,重建待测样品的复振幅分布。
  2. 根据权利要求1所述的基于波前调制的相位成像装置,其特征在于,还包括成像模块,用于接收待测物光光束,使待测样品在光斑探测器上成像。
  3. 根据权利要求1所述的基于波前调制的相位成像装置,其特征在于,所述的相干光源(1)是单波长相干光源、宽谱相干光源,或者是激光器簇,包含多个相同或不同波长的光源,相同光源或同一波长的激光是相干的,不同光源或不同波长之间非相干;所述的第一扩束器(4)和第二扩束器(6)将入射光扩束为平行光、球面波或者结构光。
  4. 根据权利要求1所述的基于波前调制的相位成像装置,其特征在于,所述的光源模块为相干光源(1),所述的光场分束模块由分束镜(3)、第一反射镜(5)、第一扩束器(4)、第二扩束器(6)组成,所述的偏振控制模块为第一偏振片(2),所述的合束编码模块通过控制分束镜(3)和第一反射镜(5)角度实现待测物光(25)与波前调制光(26)的空间重叠;所述的控制与数据处理模块为计算机(29);
    所述的相干光源(1)产生的光依次经过第一偏振片(2)、分束镜(3)后分为透射光和反射光,所述的透射光经过第一扩束器(4)入射至光斑探测器(8),所述的反射光依次经过第一反射镜(5)、第二扩束器(6)、待测样品(7)后,到达光斑探测器(8);所述的第一扩束器(4)的出射光作为波前调制光(26),所述的第二扩束器(6)的出射光作为待测物光(25);所述分束镜(3)分出的透射光和反射光 在光斑探测器(8)靶面上进行波前编码,对应的干涉条纹不受限于采样要求,光斑探测器(8)由计算机(29)控制。
  5. 根据权利要求1所述的基于波前调制的相位成像装置,其特征在于,所述的光源模块为相干光源(1),所述的光场分束模块由分束镜(3)、第一反射镜(5)、第一扩束器(4)、第二扩束器(6)组成,所述的偏振控制模块由第二偏振片(9)、第三偏振片(10)组成,所述的合束编码模块通过控制分束镜(3)和第一反射镜(5)角度实现待测物光(25)与波前调制光(26)的空间重叠;所述的控制与数据处理模块为计算机(29);
    所述的相干光源(1)经过分束镜(3)后分为透射光和反射光,所述的透射光依次经过第二偏振片(9)和第一扩束器(4)入射至光斑探测器(8),所述的反射光依次经过第一反射镜(5)、第二扩束器(6)、待测样品(7)后到达光斑探测器(8);所述的第一扩束器(4)的出射光作为波前调制光(26),所述的第二扩束器(6)的出射光作为待测物光(25),光斑探测器(8)同时记录包含两个偏振态的编码光场强度分布图,以及待测物光强度分布图,该光斑探测器(8)由计算机(29)控制。
  6. 根据权利要求2所述的基于波前调制的相位成像装置,其特征在于,所述的光源模块为相干光源(1),所述的光场分束模块由分束镜(3)、第一反射镜(5)、第一扩束器(4)、第二扩束器(6)组成,所述的偏振控制模块为第一偏振片(2),所述的合束编码模块通过控制分束镜(3)和第一反射镜(5)角度实现待测物光(25)与波前调制光(26)的空间重叠,所述的成像模块为透镜组(11);所述的控制与数据处理模块为计算机(29);
    所述的相干光源(1)依次经过第一偏振片(2)和分束镜(3)后分为透射光和反射光,所述的透射光经过第一扩束器(4)入射至光斑探测器(8),所述的反射光依次经过第一反射镜(5)、第二扩束器(6)、待测样品(7)和透镜组(11)后,到达光斑探测器(8);所述的第一扩束器(4)的出射光作为波前调制光(26),所述的透镜组(11)的出射光作为待测物光(25);当待测样品(7)为大口径元件时,透镜组(11)对待测样品(7)出射光进行缩束,当待测样品(7)为微小样品时,透镜组(11)对待测样品(7)出射光进行放大,光斑探测器(8)由计算机(29)控制。
  7. 根据权利要求2所述的基于波前调制的相位成像装置,其特征在于,所述的光源模块为相干光源(1),所述的光场分束模块由光纤分束器(12)、光纤准直器(13)、透反镜(16)和准直透镜(15)组成,所述的偏振控制模块通过相干光源(1)及光纤分束器(12)的偏振参数实现,所述的合束编码模块通过控制光纤准直器(13)角度来实现,所述的成像模块为透镜组(11),反射型样品(14)为反射式样品,所 述的控制与数据处理模块为计算机(29);
    所述的相干光源(1)经光纤耦合进光纤分束器(12)后分为二束,一束经过光纤准直器(13)准直为平行光或球面波后到达光斑探测器(8),另一束作为点光源经过透反镜(16)反射后经过准直透镜(15)变为平行光,照射到反射型样品(14)上,经该反射型样品(14)反射后,依次经准直透镜(15)、透反镜(16)和透镜组(11)后入射到光斑探测器(8)并成像,光斑探测器(8)由计算机(29)控制。
  8. 根据权利要求2所述的基于波前调制的相位成像装置,其特征在于,所述的光源模块为相干光源(1),所述的光场分束模块由分束镜(3)、第一反射镜(5)、第一扩束器(4)和第二扩束器(6)组成,所述的偏振控制模块时第一偏振片(2),所述的合束编码模块由第二反射镜(30)和透反镜(16)组成,所述的成像模块为透镜组(11),待测样品(7)为透射式样品,所述的控制与数据处理模块为计算机(29);
    所述的相干光源(1)依次经过第一偏振片(2)和分束镜(3)后分为透射光和反射光,所述的透射光依次经过第一扩束器(4)、第二反射镜(30)和透反镜(16)后,入射至光斑探测器(8),所述的反射光依次经过第一反射镜(5)、第二扩束器(6)、待测样品(7)、透镜组(11)和透反镜(16)后,到达光斑探测器(8);所述的第一扩束器(4)的出射光作为波前调制光(26),所述的透镜组(11)的出射光作为待测物光(25);当待测样品(7)为大口径元件时,透镜组(11)对待测样品(7)出射光进行缩束,当待测样品(7)为微小样品时,透镜组(11)对待测样品(7)出射光进行放大,光斑探测器(8)由计算机(29)控制。
  9. 根据权利要求1所述的基于波前调制的相位成像装置,其特征在于,所述的光源模块为相干光源(1),所述的光场分束模块由光纤分束器(12)、光纤准直器(13)和可变光阑(28)组成,所述的偏振控制模块通过相干光源(1)及光纤分束器(12)的偏振参数实现,所述的合束编码模块通过控制光纤分束器(12)光纤输出头的角度来实现,所述的成像模块为透镜组(11),待测样品(7)为透射式样品,所述的控制与数据处理模块为计算机(29);
    所述的相干光源(1)经光纤耦合进光纤分束器(12)后分为二束,一束经过光纤准直器(13)准直为平行光或球面波后,依次经过可变光阑(28)、待测样品(7)后,作为待测物光(25)到达光斑探测器(8),另一束作为点光源入射到光斑探测器(8),并作为波前调制光(26),光斑探测器(8)由计算机(29)控制。
  10. 根据权利要求1所述的基于波前调制的相位成像装置,其特征在于,所述的光源模块为由第一单波长激光器(17)、第二单波长激光器(18)和光纤合束器(19)组成,所述的光源模块作为激光器簇,包括至少二台单波长激光器或者是包含多个 波长的单台激光器,所述的光场分束模块由光纤分束器(12)、光纤准直器(13)、透反镜(16)和球面反射镜(20)组成,所述的偏振控制模块通过第一单波长激光器(17)、第二单波长激光器(18)和光纤合束器(19)的偏振参数实现,所述的合束编码模块通过控制光纤准直器(13)的出射角度来实现,所述的控制与数据处理模块为计算机(29);
    所述的第一单波长激光器(17)、第二单波长激光器(18)的输出光经光纤合束器(19)合束后,再经过光纤分束器(12)分为两束,每束都同时包含第一单波长激光器(17)和第二单波长激光器(18)的激光,其中一束经过光纤准直器(13)准直为平行光或球面波后作为波前调制光(26)到达光斑探测器(8),另外一束作为点光源经过透反镜(16)和球面反射镜(20)准直为平行光或者球面波后作为反射型样品(14)的照明光,反射型样品(14)为平面、球面、自由曲面或者非规则球面结构,反射样品(14)的反射光经过球面反射镜(20)反射后,穿过透反镜(16)到达光斑探测器(8),并作为待测物光(25),光斑探测器(8)由计算机(29)控制。
  11. 根据权利要求2所述的基于波前调制的相位成像装置,其特征在于,所述的光源模块为相干光源(1),所述的光场分束模块由分束镜(3)、第一反射镜(5)、第一物镜(21)、第一小孔(22)、第二物镜(23)、第二小孔(24)、透反镜(16)和准直透镜(15)组成,所述的偏振控制模块由相干光源(1)的偏振参数决定,所述的合束编码模块通过控制第一反射镜(5)角度和第一物镜(21)的光轴来实现,所述的成像模块为透镜组(11);所述的控制与数据处理模块为计算机(29);
    所述的相干光源(1)经过分束镜(3)后分为透射光和反射光,所述的透射光依次经过第一反射镜(5)、第一物镜(21)和第一小孔(22)后,成为球面波入射至光斑探测器(8)并作为波前调制光(26),所述的反射光依次经过第二物镜(23)、第二小孔(24)、透反镜(16)和准直透镜(15)后,准直为平行光,作为反射型样品(14)的照明光,经过反射型样品(14)反射后,依次透过准直透镜(15)、透反镜(16)和透镜组(11)后,作为待测物光(25)到达光斑探测器(8),当反射型样品(14)为大口径元件时,透镜组(11)对反射型样品(14)反射光进行缩束,当反射型样品(14)为微小样品时,透镜组(11)对反射型样品(14)反射光进行放大,光斑探测器(8)由计算机(29)控制。
  12. 根据权利要求1所述的基于波前调制的相位成像装置,其特征在于,所述的光源模块为相干光源(1),所述的光场分束模块由棱镜(27)、第一反射镜(5)和准直透镜(15)组成,所述的偏振控制模块由相干光源(1)的偏振参数决定,所述的合束编码模块通过控制第一反射镜(5)角度来实现,所述的控制与数据处理模 块为计算机(29);
    所述的相干光源(1)为光纤输出,作为点光源被棱镜(27)分为透射光和反射光,其中透射光经过第一反射镜(5)反射后,再次被棱镜(27)反射后到达光斑探测器(8)并作为波前调制光(26),其中反射光经过准直透镜(15)准直后变为平行光,并作为反射型样品(14)的照明光,反射型样品(14)的反射光依次透过准直透镜(15)、棱镜(27)后,到达光斑探测器(8)并作为待测物光(25),光斑探测器(8)由计算机(29)控制。
  13. 利用权利要求1所述的基于波前调制的相位成像装置进行相位测量的方法,其特征在于包括以下步骤:
    S1.打开光源模块,输出相干光源,调整相干光源的光强和偏振控制模块,利用光斑探测器分别记录待测物光强度分布图I O和存在波前调制光束时的编码光场强度图I C
    S2.对待测物光强度分布图I O的相位分布进行重建,具体是:
    ①设待测物光强度分布图I O对应的初始相位分布
    Figure PCTCN2021070200-appb-100001
    得到待测物光复振幅
    Figure PCTCN2021070200-appb-100002
    ②计算待测物光与波前调制光重叠后的编码光场E C,公式如下:
    E C=E O+E R
    式中,E R为波前调制光复振幅,同时计算误差函数
    Figure PCTCN2021070200-appb-100003
    其中Σ表示像素点求和;
    ③利用实际记录的编码光场强度图I C对波前调制光复振幅E C进行振幅更新,得到更新后的编码光场复振幅
    Figure PCTCN2021070200-appb-100004
    其中angle()表示取相位,j表示虚数;
    ④从更新后的编码光场复振幅E′ C中去掉波前调制过程,得到更新的待测物光复振幅E′ O=E′ C-E R
    ⑤对更新后的待测物光光复振幅E′ O进行空间有限的条件约束并得到进一步更新的待测物光复振幅E″ O,并作为下一次迭代的初始猜测,根据具体情况选择,空间有限包括频谱有限、焦平面分布有限及特定位置面上空间分布有限等;
    ⑥重复步骤②-⑤,直到误差函数RMS值趋于稳定或不变,得到最终的待测物光复振幅
    Figure PCTCN2021070200-appb-100005
    ⑦将待测物光复振幅
    Figure PCTCN2021070200-appb-100006
    传播到待测物体所在的面或者像面后,除以对应的照明光复振幅,即得到待测物体的复振幅透过率或者反射率函数,完成迭代计算。
  14. 利用权利要求1所述的基于波前调制的相位成像装置进行多模态相位测量的方法,其特征在于包括以下步骤:
    S1.打开光源模块,输出相干光源,调整相干光源的光强和偏振控制模块,利用光斑探测器分别记录包含多个模态的待测物光强度分布图I O和存在多个模态波前调制光束时的编码光场强度图I C,所述的多模态表示光场中包含多个非相干模式,可以是不同偏振态、不同波长或者不同激光器发出的相同波长激光;
    S2.对待测物光强度分布图I O的相位分布进行重建,具体是:
    ①设待测物光强度分布图I O由N个非相干模式组成,对应的初始相位分布分别为:
    Figure PCTCN2021070200-appb-100007
    得到对应的待测物光复振幅分别为
    Figure PCTCN2021070200-appb-100008
    Figure PCTCN2021070200-appb-100009
    其中 Nα表示待测物光强度分布图中第N个模式在不同像素点所占的能量比,是一个二维矩阵;
    ②计算编码光场分布,其中待测物光第N个模式与波前调制光第N个模式重叠后的编码光场 NE C,公式如下:
    NE CNE O+ NE R
    式中, NE R为波前调制光第N个模式的复振幅,同时计算误差函数
    Figure PCTCN2021070200-appb-100010
    其中
    Figure PCTCN2021070200-appb-100011
    表示像素点求和;
    ③利用实际记录的编码光场强度图I C对所有模式下的编码光场进行更新,其中波前调制光第N个模式的复振幅 NE C更新方法如下:
    Figure PCTCN2021070200-appb-100012
    其中 Nβ表示编码光场强度图中第N个模式在不同像素点所占的能量比,是一个二维矩阵;
    ④去掉不同模式下的波前调制过程,得到更新的待测物光第N个模式复振幅 NE′ ONE′ C- NE R
    ⑤对更新后的不同模式下待测物光光复振幅 NE′ O分别进行空间有限的条件约束并得到进一步更新的不同模式下待测物光复振幅 NE″ O,并作为下一次迭代的初始猜测,根据具体情况选择,空间有限包括频谱有限、焦平面分布有限及特定位置面 上空间分布有限等;
    ⑥重复步骤②-⑤,直到误差函数RMS值趋于稳定或不变,得到最终的不同模式下待测物光复振幅
    Figure PCTCN2021070200-appb-100013
    ⑦将
    Figure PCTCN2021070200-appb-100014
    传播到待测物体所在的面或者像面后,除以对应模式的照明光复振幅,即得到待测物体第N个模式对应的复振幅透过率或者反射率函数,完成迭代计算。
PCT/CN2021/070200 2020-12-11 2021-01-05 基于波前调制的相位成像及元件检测的装置和方法 WO2022121071A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/875,392 US20220381619A1 (en) 2020-12-11 2022-07-27 Device and method for phase imaging and element detection based on wavefront modulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011459692.8 2020-12-11
CN202011459692.8A CN112683794A (zh) 2020-12-11 2020-12-11 基于波前调制的相位成像及元件检测的装置和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/875,392 Continuation US20220381619A1 (en) 2020-12-11 2022-07-27 Device and method for phase imaging and element detection based on wavefront modulation

Publications (1)

Publication Number Publication Date
WO2022121071A1 true WO2022121071A1 (zh) 2022-06-16

Family

ID=75449258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070200 WO2022121071A1 (zh) 2020-12-11 2021-01-05 基于波前调制的相位成像及元件检测的装置和方法

Country Status (3)

Country Link
US (1) US20220381619A1 (zh)
CN (1) CN112683794A (zh)
WO (1) WO2022121071A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115128042A (zh) * 2022-06-30 2022-09-30 华中科技大学 一种离焦扫描的轴向叠层衍射成像方法和系统
CN115313128A (zh) * 2022-07-07 2022-11-08 北京工业大学 一种基于多谱段中波红外皮秒全光纤激光器的干扰系统
CN116430581A (zh) * 2023-03-03 2023-07-14 中国科学院上海高等研究院 部分相干光经过自由空间及光学元件的传播的计算方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020064108A1 (en) * 2018-09-27 2020-04-02 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method of and apparatus for forming and shifting a light intensity distribution in a focal area of an objective lens
CN114062384B (zh) * 2021-10-27 2024-05-24 复旦大学 一种检测掩模版缺陷的方法和装置
CN115035035B (zh) * 2022-05-09 2024-05-10 中国科学院上海高等研究院 一种x射线经过非均匀短程介质的传播的计算方法
CN114859577B (zh) * 2022-07-07 2022-10-28 浙江大学 一种基于生物组织成像的自适应光学校正系统
CN117969677A (zh) * 2024-03-28 2024-05-03 之江实验室 基于编码相位成像的声场探测方法、系统、设备、介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153573A (ja) * 2004-11-26 2006-06-15 Laserfront Technologies Inc 干渉計
US20120182591A1 (en) * 2010-12-17 2012-07-19 Canon Kabushiki Kaisha Apparatus and method for irradiating a scattering medium
US20150002844A1 (en) * 2013-06-26 2015-01-01 Korea Advanced Institute Of Science And Technology Method and Apparatus for Manipulating Near Field Using Light Scattering
CN110376135A (zh) * 2019-08-08 2019-10-25 中国人民解放军军事科学院国防科技创新研究院 一种太赫兹超分辨显微成像系统
WO2020065841A1 (ja) * 2018-09-27 2020-04-02 オリンパス株式会社 光走査装置、撮像装置、光走査装置の調整装置及び光走査装置の調整方法
CN111208089A (zh) * 2020-01-13 2020-05-29 中国科学院上海光学精密机械研究所 长距离端面粗糙晶体体内缺陷测量装置和方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995223A (en) * 1998-06-01 1999-11-30 Power; Joan Fleurette Apparatus for rapid phase imaging interferometry and method therefor
EP1476715B1 (en) * 2002-01-24 2018-10-10 Icos Vision Systems N.V. Improved spatial wavefront analysis and 3d measurement
KR101159495B1 (ko) * 2004-03-11 2012-06-22 이코스비젼 시스팀스 엔.브이. 파면 조정 및 향상된 3?d 측정을 위한 방법 및 장치
WO2007002898A2 (en) * 2005-06-29 2007-01-04 University Of South Florida Variable tomographic scanning with wavelength scanning digital interface holography
WO2007116365A2 (en) * 2006-04-07 2007-10-18 Ecole Polytechnique Federale De Lausanne (Epfl) Method and apparatus to measure and compute the amplitude point spread function and associated parameters of a coherent optical imaging system
WO2010122530A1 (en) * 2009-04-24 2010-10-28 Ecole Polytechnique Federale De Lausanne (Epfl) A method and apparatus for enhanced spatial bandwidth wavefronts reconstructed from digital interferograms or holograms
JP5563439B2 (ja) * 2010-12-22 2014-07-30 日本電信電話株式会社 光位相測定装置、光位相測定方法およびプログラム
CN102645739B (zh) * 2012-03-20 2013-12-25 中国科学院上海光学精密机械研究所 透射型样品相位显微装置和相位显微方法
CN102954758B (zh) * 2012-10-30 2015-04-08 哈尔滨工程大学 基于同步载频移相的干涉检测装置与检测方法
US10054423B2 (en) * 2012-12-27 2018-08-21 Nova Measuring Instruments Ltd. Optical method and system for critical dimensions and thickness characterization
DE102015101251A1 (de) * 2015-01-28 2016-07-28 Carl Zeiss Ag Optische Kohärenztomographie zur Messung an der Retina
EP3303985A4 (en) * 2015-05-28 2018-06-27 Cylite Pty Ltd High resolution 3-d spectral domain optical imaging apparatus and method
CN105158921B (zh) * 2015-10-26 2017-08-08 山东师范大学 一种基于互补随机抽样的无透镜衍射成像方法
CN105466668B (zh) * 2015-12-24 2018-01-12 中国科学院上海光学精密机械研究所 点衍射干涉波像差测量仪及光学系统波像差的检测方法
DE102016100721B3 (de) * 2016-01-18 2017-03-23 Trumpf Scientific Lasers Gmbh + Co. Kg Relativphasenmessung zum kohärenten Kombinieren von Laserstrahlen
CN107036711B (zh) * 2017-03-20 2018-06-19 中国科学院上海光学精密机械研究所 多波长复合光场在线测量装置和测量方法
CN107014784B (zh) * 2017-05-25 2019-08-20 山东师范大学 一种散射介质矢量透射矩阵的测量装置和方法
CN107796837B (zh) * 2017-10-09 2019-10-29 南京大学 一种成像装置、成像方法及成像系统
CN108152949B (zh) * 2017-11-23 2019-07-30 北京理工大学 一种基于空间部分相干光的衍射光学元件的设计方法
EP3730917B1 (en) * 2018-01-19 2022-03-09 Mitsubishi Electric Corporation Wavefront measurement device and wavefront measurement system
CN109708854B (zh) * 2018-12-17 2020-11-10 中国科学院上海光学精密机械研究所 基于波前测量的光学元件缺陷检测装置和检测方法
CN111474188B (zh) * 2019-01-24 2021-07-27 中国科学院上海光学精密机械研究所 基于动态调制的单次曝光波前重建和相位成像装置和方法
US10715256B1 (en) * 2019-02-18 2020-07-14 Nokia Solutions And Networks Oy Recovery of phase-modulated data from an optical signal via intensity measurements
CN110119028B (zh) * 2019-05-10 2020-08-25 中南大学 用于任意光束的振幅、相位和偏振的整形算法及其光路
CN110411333A (zh) * 2019-06-28 2019-11-05 北方工业大学 一种新型激光偏振相移干涉层析测量装置及方法
CN111736334B (zh) * 2020-06-22 2022-03-29 武汉市艾玻睿光电科技有限公司 一种基于空间光调制器实现复振幅光场调控的装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153573A (ja) * 2004-11-26 2006-06-15 Laserfront Technologies Inc 干渉計
US20120182591A1 (en) * 2010-12-17 2012-07-19 Canon Kabushiki Kaisha Apparatus and method for irradiating a scattering medium
US20150002844A1 (en) * 2013-06-26 2015-01-01 Korea Advanced Institute Of Science And Technology Method and Apparatus for Manipulating Near Field Using Light Scattering
WO2020065841A1 (ja) * 2018-09-27 2020-04-02 オリンパス株式会社 光走査装置、撮像装置、光走査装置の調整装置及び光走査装置の調整方法
CN110376135A (zh) * 2019-08-08 2019-10-25 中国人民解放军军事科学院国防科技创新研究院 一种太赫兹超分辨显微成像系统
CN111208089A (zh) * 2020-01-13 2020-05-29 中国科学院上海光学精密机械研究所 长距离端面粗糙晶体体内缺陷测量装置和方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115128042A (zh) * 2022-06-30 2022-09-30 华中科技大学 一种离焦扫描的轴向叠层衍射成像方法和系统
CN115128042B (zh) * 2022-06-30 2024-04-19 华中科技大学 一种离焦扫描的轴向叠层衍射成像方法和系统
CN115313128A (zh) * 2022-07-07 2022-11-08 北京工业大学 一种基于多谱段中波红外皮秒全光纤激光器的干扰系统
CN115313128B (zh) * 2022-07-07 2024-04-26 北京工业大学 一种基于多谱段中波红外皮秒全光纤激光器的干扰系统
CN116430581A (zh) * 2023-03-03 2023-07-14 中国科学院上海高等研究院 部分相干光经过自由空间及光学元件的传播的计算方法
CN116430581B (zh) * 2023-03-03 2024-05-24 中国科学院上海高等研究院 部分相干光经过自由空间及光学元件的传播的计算方法

Also Published As

Publication number Publication date
US20220381619A1 (en) 2022-12-01
CN112683794A (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2022121071A1 (zh) 基于波前调制的相位成像及元件检测的装置和方法
US10185069B2 (en) Skew mirrors, methods of use, and methods of manufacture
US7633631B2 (en) Three-dimensional microscope and method for obtaining three-dimensional image
JP5629802B2 (ja) 干渉測定法およびデジタルホログラフィ顕微鏡
US5042950A (en) Apparatus and method for laser beam diagnosis
JP4130222B2 (ja) 移相回折干渉計
JP4690130B2 (ja) 顕微鏡結像システムおよび高アパーチャ結像システムのエミュレーションのための、特にマスク検査のための方法
US20200264559A1 (en) Holographic Imaging Device and Data Processing Method Therefor
US20190187612A1 (en) Ellipsometry Device and Ellipsometry Method
JP6364551B2 (ja) 干渉計
US11835746B2 (en) Coherent skew mirrors
US9863841B2 (en) Measuring device having ideal wavefront generator for detecting point diffraction interferometric wavefront aberration of measured optical system and method for detecting wavefront aberration thereof
US8363316B2 (en) Digital holographic microscopy
US3764216A (en) Interferometric apparatus
Takeuchi et al. Visible light point-diffraction interferometer for testing of EUVL optics
Sirohi A Course Of Experiments With He-Ne Lasers
Jiang et al. Phase retrieval of on-axis digital holography with modified coherent diffraction imaging
Ahmad et al. Quantitative phase microscopy and tomography with spatially incoherent light
Machikhin et al. Spectral holographic imaging of transparent objects in Mach− Zehnder interferometer using acousto-optic filter
Balyan X-ray crystal-diffraction Fourier holography
CN108051089B (zh) 一种基于渥拉斯顿棱镜的测量样品偏振态的方法与系统
CN115327876B (zh) 一种基于led的部分相干反射式离轴数字全息微纳测量系统
TWI804128B (zh) 量測物體三維複合表面輪廓之方法與裝置
JPH116784A (ja) 非球面形状測定装置および測定方法
US20230168482A1 (en) Phase-shifting diffraction phase interferometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21901790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21901790

Country of ref document: EP

Kind code of ref document: A1