WO2022120956A1 - 无线电能传输自适应频率调节方法及其装置 - Google Patents

无线电能传输自适应频率调节方法及其装置 Download PDF

Info

Publication number
WO2022120956A1
WO2022120956A1 PCT/CN2020/138785 CN2020138785W WO2022120956A1 WO 2022120956 A1 WO2022120956 A1 WO 2022120956A1 CN 2020138785 W CN2020138785 W CN 2020138785W WO 2022120956 A1 WO2022120956 A1 WO 2022120956A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
mismatch
value
degree
adjustment
Prior art date
Application number
PCT/CN2020/138785
Other languages
English (en)
French (fr)
Inventor
黄峻健
赵毓斌
须成忠
刘敦歌
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2022120956A1 publication Critical patent/WO2022120956A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves

Definitions

  • the present invention belongs to the technical field of wireless power transmission, and in particular relates to a method and device for adaptive frequency adjustment of wireless power transmission.
  • Magnetic resonance coupled wireless power transmission technology has the advantages of long-distance power transmission, high-power and high-efficiency transmission, and supporting the charging of multiple devices. Its high-power equipment power transmission capability is used in the power transmission of industrial robots, electric vehicles and other equipment; its low-power power transmission capability is mostly used in the wireless charging of smart phones, computers, and small robots.
  • the current magnetic resonance charging system still has problems such as low transmission efficiency and low power, which affects the actual energy transmission effect.
  • the magnetically coupled resonant wireless power transmission system works in the critical coupling state, the system can obtain higher efficiency; however, when the transmission state changes, the working state of the system may change from the critical coupling state to the over-coupling state, and the system will Frequency splitting occurs, resulting in lower efficiency of the system. Therefore, how to suppress the frequency splitting of the working system is the key to solving the problem of low system efficiency when the transmission distance is variable.
  • Coupling coefficient control of primary side and secondary side coil changing loop parameter control and impedance matching adjustment control.
  • the first method often appears in the form of manual mechanical adjustment in practical applications, and the control accuracy is not high, and it is difficult to precisely control the critical coupling point to achieve the optimal effect.
  • the second method the circuit design is completed, the circuit parameters are difficult to modify, and the system is not adaptive. And the circuit parameters such as quality factor and coil internal resistance are not intuitive enough, the control is difficult, and the test effect is difficult to guarantee.
  • the third method introduces additional reactive power network to increase the order of the system, thus increasing the difficulty of system control.
  • the purpose of the present invention is to provide an adaptive frequency adjustment method and device for wireless power transmission, which aims to solve the problem that the coil area of the existing wireless charging technology is subject to large space constraints or the parameters are difficult to modify after the circuit design is finalized.
  • the present invention provides an adaptive frequency adjustment method for wireless power transmission, the method comprising the following steps:
  • step S1 before the step S1, it further includes preset warning value and alarm value, preset first frequency sweep step size and second frequency sweep step size, and preset first frequency modulation range and second frequency adjustment range.
  • step: the early warning value is smaller than the alarm value; the first frequency sweep step is smaller than the second frequency sweep step; the first frequency adjustment range is smaller than the second frequency adjustment range.
  • the present invention also provides an adaptive frequency adjustment device for wireless power transmission, including a transmitter, a power amplifying module, and a DC power supply module electrically connected to the power amplifying module; the device further includes:
  • a sampling module electrically connected to the power amplifying module and the transmitting terminal, to detect the initial voltage of the transmitting terminal in the initial state after the charging system is turned on; and to continuously detect the real-time voltage of the transmitting terminal after the receiving terminal is connected to the charging system;
  • a storage module electrically connected to the adopting module, and recording the initial voltage and the real-time voltage input by the sampling module;
  • a judgment module which is electrically connected to the storage module, performs a difference calculation between the read initial voltage and the real-time voltage and takes an absolute value, and judges the degree of system mismatch with the obtained absolute value;
  • control module which is electrically connected to the judgment module and the power amplifying module respectively, and uses a segmented frequency sweep method to find the system adjustment frequency when the absolute value is the minimum value according to the degree of system mismatch, and set it as the operating frequency ; suppress frequency splitting.
  • the device further includes:
  • the preset value setting module is electrically connected with the storage module, the judgment module and the control module, respectively, and presets the warning value and the alarm value, presets the first frequency sweep step size and the second frequency sweep step size, and presets the first frequency sweep step.
  • Frequency modulation whole range and second frequency adjustment range the warning value is smaller than the alarm value; the first frequency sweep step size is smaller than the second frequency sweep step size; the first frequency adjustment range is smaller than the second frequency Adjust the range.
  • the present invention enters an initial state after the charging system is turned on, that is, a state in which no receiving end is connected.
  • the initial power parameter information such as voltage value of the transmitter is recorded by the sampling module; the power parameter information includes the power and voltage of the transmitter.
  • the sampling module records the changed power parameters of the transmitting end, compares the power parameters with the initial state, and adjusts the input frequency at the same time, so that the system returns to the initial state, that is, the maximum transmit power state.
  • Fig. 1 is the realization flow chart of the wireless power transmission adaptive frequency adjustment method provided by the first embodiment of the present invention
  • FIG. 2 is a detailed implementation flowchart of the method for adaptive frequency adjustment of wireless power transmission provided by Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural diagram of an apparatus for adaptive frequency adjustment of wireless power transmission according to Embodiment 2 of the present invention.
  • FIG. 1 shows an adaptive frequency adjustment method for wireless power transmission provided by Embodiment 1 of the present invention, and the method includes the following steps:
  • the charging system After the charging system is turned on, if the receiver is not connected, it means that there is no charging device charging, and this is the initial state of the charging system, which means that the input frequency (operating frequency) of the system is consistent with the resonant frequency of the transmitter.
  • the charging system enters the range of over-coupling, and the resonant frequency of the transmitting end is split, and there are two resonant frequencies, which are the same as The original input frequency (operating frequency) of the system is inconsistent. At this time, the transmitter does not resonate, and the transmission efficiency of the system decreases.
  • the real-time voltage is used as the judgment reference, because the real-time voltage is the easiest to obtain, and is also the most intuitive parameter reflecting the impedance change of the transmitter.
  • the real-time voltage is the easiest to obtain, and is also the most intuitive parameter reflecting the impedance change of the transmitter.
  • a more complicated sampling circuit is required to obtain the frequency in the environment.
  • the charging system adjusts the frequency to make the input frequency (working frequency) consistent with the resonant frequency split by the transmitter, the transmitter resonates, and the power parameters of the transmitter, such as voltage and power, are the same as when the receiver is not connected. Both the best resonance shape.
  • the resonance effect is judged by the voltage fluctuation of the transmitting terminal, which is more accurate and easy to control.
  • the resonant frequency of the system can be changed by means of an adjustable capacitor or a capacitor selection circuit.
  • step S1 it also includes the steps of preset warning value and alarm value, preset first frequency sweep step size and second frequency sweep step size, and preset first frequency modulation range and second frequency adjustment range;
  • the pre-warning value is smaller than the alarm value;
  • the first frequency sweep step is smaller than the second frequency sweep step;
  • the first frequency adjustment range is smaller than the second frequency adjustment range.
  • the early warning value is used as the threshold value of the maximum change in the acceptable mismatch of the system, indicating the maximum impact of acceptable frequency splitting.
  • the degree of acceptable system efficiency decline is different, and the specific value of the early warning value needs to be determined according to the actual situation, as a judgment on whether the system does not need to perform frequency adjustment.
  • the alarm value is used as the demarcation value between the unacceptable small-amplitude frequency splitting and large-scale frequency splitting when the system frequency splitting occurs.
  • the degree of acceptable system efficiency decline is different, and the specific value of the alarm value needs to be determined according to the actual situation, as a judgment on whether the system needs to perform frequency adjustment.
  • condition determines the value of the first sweep step.
  • the value of the second frequency sweep step size also needs to be specifically set according to different environments and receiving devices, as well as different acceptable adjustment times.
  • the pre-warning value and the alarm value with different preset values can be used to more accurately determine the degree of system mismatch.
  • Different frequency adjustment ranges can correspond to different degrees of mismatch, and a larger frequency sweep range is used to avoid minor mismatches, which affects the frequency adaptation speed.
  • the same different frequency sweep step sizes also help to distinguish the control of the frequency adjustment speed in the case of moderate and severe mismatches, and give priority to alleviating severe mismatches and improving the frequency adaptation speed.
  • frequency screening is performed with a smaller frequency sweep step to further improve the accuracy of frequency adaptation.
  • step S3 includes the following steps:
  • the scanning frequency bands of different widths can be constructed for the segmental frequency sweep for different degrees of mismatching.
  • step S4 includes the following steps:
  • frequency adjustment is performed only when the degree of mismatch is judged to be moderate or severe, so as to avoid the influence on power transmission caused by frequent changing of the operating frequency.
  • the first frequency adjustment range with a narrower bandwidth is used if the degree is mild, which helps to reduce the adjustment time, and if the degree is heavier, the bandwidth should be adjusted first (if the adjustment is still out of balance, then the bandwidth will be reduced).
  • Adjustment helps to improve the adjustment accuracy, and at the same time, the severe mismatch is adjusted to the moderate mismatch through the frequency sweep with a larger step size, and then a finer adaptation frequency is selected by the frequency sweep with a smaller step size, which not only improves the The speed of frequency adaptation further improves the accuracy of frequency adaptation.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Embodiment 3 shows a wireless power transmission adaptive frequency adjustment device provided in Embodiment 2 of the present invention, including a transmitter, a power amplifying module, and a DC power supply module electrically connected to the power amplifying module; the device further includes:
  • the sampling module is electrically connected to the power amplification module and the transmitter, and detects the initial voltage of the transmitter in the initial state after the charging system is turned on; and continuously detects the real-time voltage of the transmitter after the receiver is connected to the charging system.
  • the storage module is electrically connected with the adopting module, and records the initial voltage and real-time voltage input by the sampling module.
  • the judging module is electrically connected with the storage module, performs difference calculation between the read initial voltage and the real-time voltage, and takes the absolute value, so as to judge the mismatch degree of the system by the obtained absolute value.
  • the control module is electrically connected to the judging module and the power amplifying module respectively. According to the degree of system mismatch, the system adjustment frequency when the absolute value is the minimum value is found by segmental frequency sweeping, and is set as the working frequency; frequency splitting is suppressed.
  • the transmitting end is an LC resonant circuit.
  • the capacitor includes an adjustable capacitor and/or a capacitor selection circuit composed of multiple capacitors with different capacitance values. In order to facilitate the control module to adjust the resonant frequency by changing the capacitance value.
  • the device further includes:
  • the preset value setting module is electrically connected to the storage module, the judgment module and the control module respectively, and presets the warning value and the alarm value, presets the first frequency sweep step size and the second frequency sweep step size, and presets the first frequency modulation
  • the whole circumference and the second frequency adjustment range the early warning value is smaller than the alarm value; the first frequency sweep step is smaller than the second frequency sweep step; the first frequency adjustment range is smaller than the second frequency adjustment range.
  • the judgment module compares the calculated absolute value with the warning value and the alarm value input by the pre-value setting module to judge the degree of system mismatch.
  • the degree of system mismatch is judged to be a slight mismatch.
  • the degree of system mismatch is judged to be moderate mismatch.
  • different frequency bands can be constructed for the segmental frequency sweep for different degrees of mismatch. The lesser the degree is, the less the adjustment time can be, and the greater the degree is to help improve the adjustment accuracy.
  • control module presets the first frequency modulation adjustment range and the second frequency adjustment according to the system mismatch degree obtained by the judgment module, and the first frequency sweep step size and the second frequency sweep step size input by the preset value setting module.
  • the range sets the operating frequency.
  • the power sampling module After the system is turned on, record the voltage of the transmitter in the initial state, that is, the initial voltage V 0 .
  • the power sampling module detects the transmitter voltage (real-time voltage) in real time and is recorded as V 1 .
  • ⁇ V
  • the degree of system mismatch is set to three cases, and the system adopts different frequency adjustments according to the mismatch.
  • the warning value A is the preset value, which is set according to the actual situation. In this case, the system is slightly mismatched, which has little effect on the transmission efficiency. The system does not need to adjust the frequency.
  • the input frequency is the initial frequency F 0 . The system will continue to sample the real-time voltage V 1 and re-match the initial voltage V 0 for comparison.
  • Moderate mismatch When A ⁇ V ⁇ B, the alarm value B is also the preset value, which is set according to the actual situation.
  • the mismatch of the system is that the transmission efficiency is significantly reduced, and the system needs to perform a small-amplitude sweep adjustment to the frequency.
  • the bandwidth of the system adjustment frequency is (F 0 - ⁇ f 1 ) ⁇ (F 0 + ⁇ f 1 ), and the system increases the input frequency F 0 - ⁇ f 1 with a step size until F 0 + ⁇ f 1 .
  • the first frequency adjustment range ⁇ f 1 is The preset value is set according to the actual situation, and the frequency F 1 with the smallest ⁇ V is recorded. The system adjusts the input frequency to F1. The system will continue to sample V 1 and re-compare it to V 0 .
  • the present invention proposes a new method to suppress the problem of system frequency splitting, the method is less subject to space constraints, the system structure is simple, the feasibility is high, and the system efficiency is significantly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)

Abstract

本发明适用无线电能传输技术领域,提供了一种无线电能传输自适应频率调节方法及其装置,该方法包括:先检测充电系统开启后初始状态下发射端的初始电压;在接收端接入充电系统后持续检测发射端的实时电压;并根据初始电压与实时电压的差的绝对值判断系统失匹程度;进一步根据系统失匹程度采用分段扫频的方式找出所述绝对值为最小值时的系统调节频率,并设为工作频率;抑制频率分裂。该方案简化了系统的结构,也不需要复杂的电路设计和参数设置;有效的对系统频率进行调节。对应该方法的装置也具有上述优点。

Description

无线电能传输自适应频率调节方法及其装置 技术领域
本发明属于无线电能传输技术领域,尤其涉及无线电能传输自适应频率调节方法及装置。
背景技术
磁谐振耦合式电能无线传输技术有着远距离电能传输,高功率高效率传输和支持多个设备充电的优点。其大功率设备电能传输能力被运用于工业机器人,电动汽车等设备的电能传输中;其小功率电能传输能力则多运用在智能手机,电脑,小型机器人的无线充电中。
目前的磁谐振式充电系统依旧存在传输效率和功率偏低的等问题,影响实际能量传输效果。当磁耦合谐振式无线电能传输系统工作在临界耦合状态时,系统可以获得较高的效率;然而当传输状态变化时,系统的工作状态可能由临界耦合状态转换到过耦合状态,此时系统会发生频率分裂,导致系统的效率变低。因此,在传输距离多变的情况下如何抑制工作系统频率分裂是解决系统效率低的问题的关键。
目前,最相近似的方法有以下三种。一次侧、二次侧线圈耦合系数控制、改变回路参数控制和阻抗匹配调节控制。第一种方法在实际应用中常以手动机械调节形式出现,控制精度不高,难以精准控制在临界耦合点处达到最优效果。第二种方法中,电路设计完成,电路参数难以修改,系统不具自适应性。并且电路参数如品质因数和线圈内阻也不够直观,控制难度较高,试验效果难以保证。第三种方法引入外加无功网络增加了系统的阶数,从而增加系统控制难度。
发明内容
本发明的目的在于提供无线电能传输自适应频率调节方法及设备,旨在解决由于现有无线充电技术线圈区域受空间约束大或者电路设计定型后参数难以修改的问题。
一方面,本发明提供了一种无线电能传输自适应频率调节方法,所述方法包括下述步骤:
S1.检测充电系统开启后初始状态下发射端的初始电压;
S2.接收端接入充电系统后持续检测发射端的实时电压;
S3.根据初始电压与实时电压的差的绝对值判断系统失匹程度;
S4.根据系统失匹程度采用分段扫频的方式找出所述绝对值为最小值时的系统调节频率,并设为工作频率;抑制频率分裂。
优选的,所述步骤S1前还包括预设预警值和报警值、预设第一扫频步长和第二扫频步长,以及预设第一频率调制整围和第二频率调整范围的步骤;所述预警值小于所述报警值;所述第一扫频步长小于所述第二扫频步长;所述第一频率调整范围小于第二频率调整范围。
一方面,本发明还提供了一种无线电能传输自适应频率调节装置,包括发射端、功率放大模块以及与所述功率放大模块电连接的直流供电模块;所述装置还包括:
采样模块,与所述功率放大模块和所述发射端电连接,检测充电系统开启后初始状态下发射端的初始电压;以及当接收端接入充电系统后持续检测发射端的实时电压;
存储模块,与所述采用模块电连接,记录采样模块输入的所述初始电压和所述实时电压;
判断模块,与所述存储模块电连接,将读取到的所述初始电压与所述实时电压进行差值运算并取绝对值,以得到的所述绝对值判断系统失匹程度;
控制模块,与所述判断模块和所述功率放大模块分别电连接,根据系统失 匹程度采用分段扫频的方式找出所述绝对值为最小值时的系统调节频率,并设为工作频率;抑制频率分裂。
优选的,该装置还包括:
预值设定模块,与所述存储模块和判断模块及控制模块分别电连接,预设预警值和报警值、预设第一扫频步长和第二扫频步长,以及预设第一频率调制整围和第二频率调整范围;所述预警值小于所述报警值;所述第一扫频步长小于所述第二扫频步长;所述第一频率调整范围小于第二频率调整范围。
本发明在充电系统开启后进入初始状态,即无接收端接入的状态。通过采样模块记录发射端初始的功率参数信息如电压值;功率参数信息包含发射端功率和电压。当接收端进入过耦合的范围时,采样模块记录发射端变化后的功率参数,并将功率参数与初始状态对比,同时对输入频率进行调节,使系统回到初始状态,既最大发射功率状态。
附图说明
图1是本发明实施例一提供的无线电能传输自适应频率调节方法的实现流程图;
图2是本发明实施例一提供的无线电能传输自适应频率调节方法的详细实现流程图;
图3是本发明实施例二提供的无线电能传输自适应频率调节装置的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图1-3及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下结合具体实施例对本发明的具体实现进行详细描述:
实施例一:
图1示出了本发明实施例一提供的一种无线电能传输自适应频率调节方法,方法包括下述步骤:
S1.检测充电系统开启后初始状态下发射端的初始电压;
具体的,充电系统开启后无接收端接入表示无充电设备充电,此时为充电系统初始状态,表示系统的输入频率(工作频率)与发射端谐振频率一致。
S2.接收端接入充电系统后持续检测发射端的实时电压;
具体的,当接收端接入充电系统,且传输状态发生变化时,如距离变化、数量变化等,充电系统进入到过耦合的范围,发射端的谐振频率出现分裂现象,存在两个谐振频率,与系统原始的输入频率(工作频率)不一致,此时发射端不谐振,系统传输效率下降。
S3.根据初始电压与实时电压的差的绝对值判断系统失匹程度;
具体的,采用实时电压作为判断参照,是因为实时电压是最容易获取的,也是最直观反映发射端阻抗变化的参数。而现有技术中根据环境中的频率变化来判断系统是否不谐振时,需要更复杂的采样电路才能获得该环境中的频率。
S4.根据系统失匹程度采用分段扫频的方式找出绝对值为最小值时的系统调节频率,并设为工作频率;抑制频率分裂。
具体的,充电系统通过频率调节使输入频率(工作频率)与发射端分裂出的谐振频率一致时,发射端谐振,发射端的功率参数,如电压和功率等数值与接收端未接入时相同,既最佳谐振状。
相对于现有技术中调整线圈位置和数量或者调整电路参数的方案,通过发射端电压的波动来判断谐振效果,更为精确也容易控制。同时,基本不会因为线圈体积或位置变化而受到空间限制。
优选的,可以采用可调电容或者电容选择电路的方式来对系统谐振频率进行改变。
优选的,步骤S1前还包括预设预警值和报警值、预设第一扫频步长和第二 扫频步长,以及预设第一频率调制整围和第二频率调整范围的步骤;预警值小于报警值;第一扫频步长小于第二扫频步长;第一频率调整范围小于第二频率调整范围。
具体的,预警值作为系统可接受失匹最大变化的阈值,表示可接受频率分裂的最大影响。实操中,在不同的环境和接收设备,可接受系统效率下降的程度不同,需要根据实际情况确定预警值的具体数值,作为系统是否不需要进行频率调节的判断。
报警值作为系统频率分裂出现时不可接受的小幅度频率分裂与大幅度频率分裂的分界值。同样的,在不同的环境和接收设备,可接受系统效率下降的程度不同,需要根据实际情况确定报警值的具体数值,作为系统是否需要进行频率调节的判断。
在不可接受的小幅度频率分裂的情况下,发射器谐振谐振偏离初始谐振频率较小,需要系统对频率进行精细的调节,根据在不同的环境和接收设备,可接受调节时间不同,需要根据实际情况确定第一扫频步长的值。
同样的,第二扫频步长的值也需要根据不同的环境和接收设备,以及可接受调节时间不同来具体设置。调节步长越大,充电系统回归轻中度匹或者情况越快,进而使得系统回归轻微失匹情况越快,但是系统的调节越粗糙,系统并不一定是最高传输效率;步长越小,系统越容易调节精度越高,进而提高中度失匹情况的调节精度,系统容易实现最高效率传输,但是意味着调节时间越长。
具体实施时,通过预设数值有差异的预警值和报警值,可以较为精确的判断系统失匹的程度。不同的频率调整范围可以对应不同的失匹程度,避免较轻微的失匹而采用较大的扫频范围,影响频率适应速度。同样的不同的扫频步长也有助于区别对于中度和严重失匹时调整频率速度的控制,优先缓解严重失匹,提高频率适应速度。将严重失匹调整到中度失匹时再以较小的扫频步长进行频率筛选,进一步提高频率适配的准确性。
优选的,步骤S3包括以下步骤:
S31.当绝对值大于0且小于预警值时,判断系统失匹程度为轻微失匹;
S32.当绝对值大于预警值且小于报警值时,判断系统失匹程度为中度失匹;
S33.当绝对值大于报警值时,判断系统失匹程度为严重失匹。
据判断模块的双阈值三区间设置可以为分段扫频分别对不同的失匹程度构建不同宽度的扫描频段,程度较轻则可以减少调整时间,程度较重则有助于提高调整精度。
优选的,步骤S4包括以下步骤:
S41.系统失匹程度为轻微失匹时不作频率调制,工作频率为初始频率;
S42.系统失匹程度为中度失匹时,以初始频率为基点,以第一频率调整范围为正负幅值构建频率调整带宽,以第一扫频步长为递增输入频率在频率调整带宽中进行分段扫频;记录绝对值为最小值时的系统调节频率,并设为工作频率;
S43.系统失匹程度为严重失匹时,以初始频率为基点,以第二频率调整范围为正负幅值构建频率调整带宽,以第二扫频步长为递增输入频率在频率调整带宽中进行分段扫频;记录绝对值为最小值时的系统调节频率,并设为工作频率。
在本发明实施例中,只有在判断失匹程度为中度或者严重时,才进行频率调整,从而避免频繁变换工作频率对电能传输造成影响。而一旦进入了需要调整的区间,则程度较轻则采用带宽较窄的第一频率调整范围,有助于减少调整时间,程度较重则采用先大带宽调整(调整后仍然失匹再小带宽调整)有助于提高调整精度,同时通过较大步长的扫频优先将严重失匹调整为中度失匹,再以较小的步长扫频选取更精细的适配频率,不仅提高了频率的自适应速度,也进一步提高频率自适应的准确性。
实施例二:
图3示出了本发明实施例二提供的一种无线电能传输自适应频率调节装置,包括发射端、功率放大模块以及与功率放大模块电连接的直流供电模块; 装置还包括:
采样模块,与功率放大模块和发射端电连接,检测充电系统开启后初始状态下发射端的初始电压;以及当接收端接入充电系统后持续检测发射端的实时电压。
存储模块,与采用模块电连接,记录采样模块输入的初始电压和实时电压。
判断模块,与存储模块电连接,将读取到的初始电压与实时电压进行差值运算并取绝对值,以得到的绝对值判断系统失匹程度。
控制模块,与判断模块和功率放大模块分别电连接,根据系统失匹程度采用分段扫频的方式找出绝对值为最小值时的系统调节频率,并设为工作频率;抑制频率分裂。
优选的,发射端为LC谐振电路。其中电容包括可调电容和/或多个容值不同的电容组成的电容选择电路。以便于控制模块通过容值的改变来调整谐振频率。
优选的,该装置还包括:
预值设定模块,与存储模块和判断模块及控制模块分别电连接,预设预警值和报警值、预设第一扫频步长和第二扫频步长,以及预设第一频率调制整围和第二频率调整范围;预警值小于报警值;第一扫频步长小于第二扫频步长;第一频率调整范围小于第二频率调整范围。
优选的,判断模块根据计算出的绝对值与预值设定模块输入的预警值和报警值进行比较判断系统失匹程度。
当绝对值大于0且小于预警值时,判断系统失匹程度为轻微失匹。
当绝对值大于预警值且小于报警值时,判断系统失匹程度为中度失匹。
当绝对值大于报警值时,判断系统失匹程度为严重失匹。
根据判断模块的双阈值设置可以为分段扫频分别为不同的失匹程度构建不同的频段,程度较轻则可以减少调整时间,程度较重则有助于提高调整精度。
优选的,控制模块根据判断模块得出的系统失匹程度,以及预值设定模块 输入的第一扫频步长、第二扫频步长预设第一频率调制整范围和第二频率调整范围对工作频率进行设定。
系统失匹程度为轻微失匹时不作频率调制,工作频率为初始频率;
系统失匹程度为中度失匹时,以初始频率为基点,以第一频率调整范围为正负幅值构建频率调整带宽,以第一扫频步长为递增输入频率在频率调整带宽中进行分段扫频;记录绝对值为最小值时的系统调节频率,并设为工作频率。
系统失匹程度为严重失匹时,以初始频率为基点,以第二频率调整范围为正负幅值构建频率调整带宽,以第二扫频步长为递增输入频率在频率调整带宽中进行分段扫频;记录绝对值为最小值时的系统调节频率,并设为工作频率。
实施例三:
在具体操作时,可以采用如下方案进行频率自适应。
系统开启后,记录初始状态下发射端的电压,即初始电压V 0。功率采样模块实时检测发射端电压(实时电压)记做V 1。ΔV=|V 0-V 1|记做系统失匹程度。将系统失匹程度设置为三种情况,系统根据失匹情况采取不同的频率调整。
轻微失匹情况:当0≤ΔV<A时,预警值A为预设值,根据实际情况设定。在这种情况下,系统轻微失匹,对传输效率影响较小,系统不需要做频率调整,输入频率为初始频率F 0,系统将继续保持对实时电压V 1的采样并重新与初始电压V 0进行比较。
中度失匹情况:当A≤ΔV<B时,报警值B也为预设值,根据实际情况设定。在这种情况下,系统的失匹是传输效率明显降低,系统需要对频率进行小幅度扫频调整。系统调整频率的带宽为(F 0-Δf 1)~(F 0+Δf 1),系统以a步长递增输入频率F 0-Δf 1直至F 0+Δf 1,第一频率调整范围Δf 1为预设值,根据实际情况设定,记录ΔV最小的频率F 1。系统将输入频率调整为F 1。系统继续系统将继续保持对V 1的采样并重新与V 0进行比较。
严重失匹情况:当ΔV≥B时,系统的失匹严重影响了系统传输效率,频率 分裂严重,因此,系统调整的频率带宽增大至(F 0-Δf 2)~(F 0+Δf 2),此时,Δf 2>Δf 1。系统以b步长递增输入频率F 0-Δf 2直至F 0+Δf 2,第二频率调整范围Δf 2根据实际情况设置,此时b>a。记录ΔV最小时的F 2,系统将输入频率(工作频率)调整为F 2。系统将继续保持对实时电压V 1的采样并重新与初始电压V 0进行比较。
在本发明实施例中,针对现有技术的缺点,本发明提出新的方法抑制系统频率分裂的问题,该方法受空间约束小,系统结构简单,可行性高,同时系统效率提升明显。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种无线电能传输自适应频率调节方法,其特征在于,所述方法包括下述步骤:
    S1.检测充电系统开启后初始状态下发射端的初始电压;
    S2.接收端接入充电系统后持续检测发射端的实时电压;
    S3.根据初始电压与实时电压的差的绝对值判断系统失匹程度;
    S4.根据系统失匹程度采用分段扫频的方式找出所述绝对值为最小值时的系统调节频率,并设为工作频率;抑制频率分裂。
  2. 如权利要求1所述的方法,其特征在于,所述步骤S1前还包括预设预警值和报警值、预设第一扫频步长和第二扫频步长,以及预设第一频率调制整围和第二频率调整范围的步骤;所述预警值小于所述报警值;所述第一扫频步长小于所述第二扫频步长;所述第一频率调整范围小于第二频率调整范围。
  3. 如权利要求2所述的方法,其特征在于,所述步骤S3包括以下步骤:
    S31.当所述绝对值大于0且小于所述预警值时,判断系统失匹程度为轻微失匹;
    S32.当所述绝对值大于所述预警值且小于所述报警值时,判断系统失匹程度为中度失匹;
    S33.当所述绝对值大于所述报警值时,判断系统失匹程度为严重失匹。
  4. 如权利要求3所述的方法,其特征在于,所述步骤S4包括以下步骤:
    S41.所述系统失匹程度为轻微失匹时不作频率调制,工作频率为初始频率;
    S42.所述系统失匹程度为中度失匹时,以所述初始频率为基点,以所述第一频率调整范围为正负幅值构建频率调整带宽,以所述第一扫频步长为递增输入频率在所述频率调整带宽中进行分段扫频;记录所述绝对值为最小值时的系统调节频率,并设为工作频率;
    S43.所述系统失匹程度为严重失匹时,以所述初始频率为基点,以所述第二频率调整范围为正负幅值构建频率调整带宽,以所述第二扫频步长为递增输 入频率在所述频率调整带宽中进行分段扫频;记录所述绝对值为最小值时的系统调节频率,并设为工作频率。
  5. 一种无线电能传输自适应频率调节装置,包括发射端、功率放大模块以及与所述功率放大模块电连接的直流供电模块;其特征在于,所述装置还包括:
    采样模块,与所述功率放大模块和所述发射端电连接,检测充电系统开启后初始状态下发射端的初始电压;以及当接收端接入充电系统后持续检测发射端的实时电压;
    存储模块,与所述采用模块电连接,记录采样模块输入的所述初始电压和所述实时电压;
    判断模块,与所述存储模块电连接,将读取到的所述初始电压与所述实时电压进行差值运算并取绝对值,以得到的所述绝对值判断系统失匹程度;
    控制模块,与所述判断模块和所述功率放大模块分别电连接,根据系统失匹程度采用分段扫频的方式找出所述绝对值为最小值时的系统调节频率,并设为工作频率;抑制频率分裂。
  6. 如权利要求5所述的装置,其特征在于,还包括:
    预值设定模块,与所述存储模块和判断模块及控制模块分别电连接,预设预警值和报警值、预设第一扫频步长和第二扫频步长,以及预设第一频率调制整围和第二频率调整范围;所述预警值小于所述报警值;所述第一扫频步长小于所述第二扫频步长;所述第一频率调整范围小于第二频率调整范围。
  7. 如权利要求6所述的装置,其特征在于,所述判断模块根据计算出的绝对值与所述预值设定模块输入的预警值和报警值进行比较判断系统失匹程度;
    当所述绝对值大于0且小于所述预警值时,判断系统失匹程度为轻微失匹;
    当所述绝对值大于所述预警值且小于所述报警值时,判断系统失匹程度为中度失匹;
    当所述绝对值大于所述报警值时,判断系统失匹程度为严重失匹。
  8. 如权利要求5所述的装置,其特征在于,所述控制模块根据所述判断模 块得出的系统失匹程度,以及预值设定模块输入的所述第一扫频步长、所述第二扫频步长所述预设第一频率调制整围和所述第二频率调整范围对工作频率进行设定;
    所述系统失匹程度为轻微失匹时不作频率调制,工作频率为初始频率;
    所述系统失匹程度为中度失匹时,以所述初始频率为基点,以所述第一频率调整范围为正负幅值构建频率调整带宽,以所述第一扫频步长为递增输入频率在所述频率调整带宽中进行分段扫频;记录所述绝对值为最小值时的系统调节频率,并设为工作频率;
    所述系统失匹程度为严重失匹时,以所述初始频率为基点,以所述第二频率调整范围为正负幅值构建频率调整带宽,以所述第二扫频步长为递增输入频率在所述频率调整带宽中进行分段扫频;记录所述绝对值为最小值时的系统调节频率,并设为工作频率。
PCT/CN2020/138785 2020-12-10 2020-12-24 无线电能传输自适应频率调节方法及其装置 WO2022120956A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011432379.5 2020-12-10
CN202011432379.5A CN114629253A (zh) 2020-12-10 2020-12-10 无线电能传输自适应频率调节方法及其装置

Publications (1)

Publication Number Publication Date
WO2022120956A1 true WO2022120956A1 (zh) 2022-06-16

Family

ID=81894774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138785 WO2022120956A1 (zh) 2020-12-10 2020-12-24 无线电能传输自适应频率调节方法及其装置

Country Status (2)

Country Link
CN (1) CN114629253A (zh)
WO (1) WO2022120956A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170187355A1 (en) * 2015-12-24 2017-06-29 Intel Corporation Reactance shift detection in a wireless power transmitter
CN107124043A (zh) * 2016-02-25 2017-09-01 三星电机株式会社 无线电力发送器及用于无线发送电力的方法
CN207134877U (zh) * 2017-08-30 2018-03-23 中惠创智(深圳)无线供电技术有限公司 一种金属异物检测系统、无线发射机及无线供电系统
CN108667156A (zh) * 2018-06-08 2018-10-16 深圳东洲新能源科技有限公司 一种磁耦合共振式智能电路
US10411525B2 (en) * 2017-03-07 2019-09-10 Witricity Corporation System and method for frequency prediction
CN209767209U (zh) * 2019-06-25 2019-12-10 兰州大学 自调谐无线充电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170187355A1 (en) * 2015-12-24 2017-06-29 Intel Corporation Reactance shift detection in a wireless power transmitter
CN107124043A (zh) * 2016-02-25 2017-09-01 三星电机株式会社 无线电力发送器及用于无线发送电力的方法
US10411525B2 (en) * 2017-03-07 2019-09-10 Witricity Corporation System and method for frequency prediction
CN207134877U (zh) * 2017-08-30 2018-03-23 中惠创智(深圳)无线供电技术有限公司 一种金属异物检测系统、无线发射机及无线供电系统
CN108667156A (zh) * 2018-06-08 2018-10-16 深圳东洲新能源科技有限公司 一种磁耦合共振式智能电路
CN209767209U (zh) * 2019-06-25 2019-12-10 兰州大学 自调谐无线充电装置

Also Published As

Publication number Publication date
CN114629253A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
CN108574345A (zh) 一种无线电能传输设备发射端自适应调谐装置及调谐方法
WO2012097540A1 (zh) 一种智能自适应阻抗匹配调节的方法和装置
CN103947169B (zh) 用于助听器的自动fsk调谐电路和方法
US11063443B2 (en) Tuning circuit, tuning method and resonance-type contactless power supply
CN110554236B (zh) 一种无线电能传输恒压或恒流输出的频率在线检测方法
US20230129480A1 (en) Electronic device and control method therefor
CN107069997B (zh) 一种无线电能传输设备发送端动态调谐装置及调谐方法
CN112737142B (zh) 无线充电系统的互感检测方法、控制方法及相应的系统
US11018648B1 (en) Sonic logging broadband impedance matching transformer modular design method and module
CN110853318A (zh) 一种远距离lc无源无线传感系统
CN104834345A (zh) 水下磁谐振式无线电能传输最大功率追踪方法
CN111682655A (zh) 一种用于无线电能传输系统的动态阻抗匹配系统及方法
WO2022120956A1 (zh) 无线电能传输自适应频率调节方法及其装置
CN113765232A (zh) 一种基于三次谐波注入的分数阶恒流输出无线电能传输装置
CN104135085A (zh) 一种无线电能传输设备发送端频率跟踪调谐方法
CN103944280B (zh) 一种无线电能传输设备发送端动态调谐装置及其调谐方法
US20150180266A1 (en) Wireless charging optimization
CN110718971A (zh) 一种基于改进型副边辅助线圈的电动汽车无线充电传输系统以及副边谐振状态估计方法
US10965173B2 (en) Distance detection methods and systems for wireless power transmission device
CN108416242A (zh) 一种自适应环境的低频rfid阅读器及其谐振参数调整方法
CN113541822B (zh) 用于变电站密封柜体的超声波数据传输系统及其方法
CN115693982B (zh) 无线充电发射端的金属异物检测方法
CN103944279B (zh) 一种无线电能传输设备接收端动态调谐装置及其调谐方法
WO2014136257A1 (ja) 受電装置
Nakanishi et al. Data transmission system using magnetic resonance wireless power transfer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964885

Country of ref document: EP

Kind code of ref document: A1