WO2022120612A1 - 交流电能检测装置 - Google Patents

交流电能检测装置 Download PDF

Info

Publication number
WO2022120612A1
WO2022120612A1 PCT/CN2020/134698 CN2020134698W WO2022120612A1 WO 2022120612 A1 WO2022120612 A1 WO 2022120612A1 CN 2020134698 W CN2020134698 W CN 2020134698W WO 2022120612 A1 WO2022120612 A1 WO 2022120612A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
under test
cable
circuit
input port
Prior art date
Application number
PCT/CN2020/134698
Other languages
English (en)
French (fr)
Inventor
王帅
余建伟
周杰
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to PCT/CN2020/134698 priority Critical patent/WO2022120612A1/zh
Priority to EP20964557.1A priority patent/EP4177613A4/en
Priority to CN202080027642.4A priority patent/CN114916235A/zh
Publication of WO2022120612A1 publication Critical patent/WO2022120612A1/zh
Priority to US18/155,550 priority patent/US20230176094A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/16Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/08Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods using analogue techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/10Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods using digital techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00286Phase shifter, i.e. the delay between the output and input pulse is dependent on the frequency, and such that a phase difference is obtained independent of the frequency

Definitions

  • the present application relates to the field of electric energy detection, in particular to an AC electric energy detection device.
  • the AC power detection device detects the AC voltage and current of the cable under test, and obtains the power transmitted by the cable under test by calculating the AC voltage and current, so as to perform power statistics.
  • the AC voltage detection part in the existing AC power detection device is measured by a wire directly drawn from the cable under test, as shown in FIG. 1A and FIG. 1B for example.
  • the electrical connection points for AC voltage detection are specially reserved from the neutral wire and live wire of the cable under test, and the wires are drawn out from the electrical connection points to divide the voltage and reduce the voltage with resistors, and then carry out the signal Processing, and finally input into ADC (analog to digital converter, analog-to-digital converter) to realize AC voltage detection.
  • ADC analog to digital converter, analog-to-digital converter
  • the existing AC voltage detection can also be connected to a step-down transformer after the wire is drawn from the electrical connection point. After the step-down transformer is stepped down, signal processing is performed, and finally the ADC is input to realize AC voltage detection.
  • the present application provides an AC power detection device, which can avoid that the installation position of the detection device is limited by electrical connection points, and there is no electrical connection between the detection device and the cable under test, and can detect the amplitude and phase of the voltage under test in real time. On the premise of all harmonics and other information of the tested cable, the safety level of the detection device is improved and the cost is reduced.
  • the present application provides an AC power detection device, the device includes: a voltage detection unit, a current detection unit, and a data processing unit; the voltage detection unit forms a coupling capacitance with the cable under test, and is used for The actual voltage on the cable under test and the coupling capacitance are used to obtain the first voltage, and the first voltage is output to the data processing unit; the current detection unit is used to detect the current of the cable under test, and output the first voltage to the data processing unit; Outputting the measured cable current to the data processing unit; the data processing unit is configured to receive the first voltage and the measured cable current, and determine the first voltage value and the measured cable current Calculate the product of the first voltage value and the voltage magnification of the cable under test to determine the voltage value of the cable under test; according to the voltage value of the cable under test and the current value of the cable under test, calculate the The electrical energy transmitted on the cable under test.
  • the AC power detection device provided by the present application can avoid the problem that the installation position of the AC power detection device is limited by the electrical connection points for AC voltage and current detection. In addition, there is no electrical connection between the AC power detection device and the tested cable. Under the premise of real-time detection of the amplitude, phase and all harmonics of the tested cable, the safety of the AC power detection device can be improved. Regulation level, reducing the cost of the AC power detection device.
  • the voltage detection unit includes: a voltage sensor, an amplifier circuit, and a phase-shift compensation circuit, and the amplifier circuit includes a first input port, a second input port, and a first output port; wherein, The first input port is connected to the voltage sensor, the second input port is connected to the ground wire, and the first output port is connected to the phase-shift compensation circuit;
  • the voltage sensor is a conductive cylindrical structure , the cable under test runs through the voltage sensor, and the voltage sensor and the cable under test form a coupling capacitance;
  • the voltage sensor is used for the actual voltage on the cable under test and the coupling a capacitor to generate an induced voltage;
  • the amplifying circuit is used to amplify the induced voltage by a first multiple, and output a second voltage to the phase-shift compensation circuit through the output port;
  • the phase-shift compensation circuit is used to amplify the induced voltage by a first multiple
  • the second voltage is phase-shifted and amplified by a second multiple to output the first voltage.
  • the voltage sensor is used to form a coupling capacitor with the cable under test, so that the AC power detection device can detect the actual voltage transmitted on the cable under test in a non-contact manner.
  • An induced voltage will be generated on the sensor, but it is not easy to be recognized and detected by the data processing unit because the magnitude of the induced voltage is too small.
  • the amplifying circuit can be used to amplify the induced voltage, and the amplifying circuit can be, but not limited to, an inverse amplifying circuit, a differential amplifying circuit, and the like.
  • the induced voltage is obtained based on capacitive coupling, the actual voltage of the cable under test will lag the current by 90° in the phase of the induced voltage generated by the coupling capacitor.
  • phase-shift compensation circuit is required to recycle the induced voltage The phase lags by 90° so that the phase of the voltage output by the phase-shift compensation circuit is consistent with the phase adjustment of the actual voltage on the cable under test.
  • the phase-shift compensation circuit can also be used to amplify the voltage amplified by the The data processing unit makes it easier to identify detections.
  • the voltage sensor is a closed or non-closed cylindrical structure; the voltage sensor is made of a metal material.
  • the voltage sensor can be a metal material, and the metal material can be copper, aluminum, etc.
  • the voltage sensor can be a copper foil, and the copper foil can be rolled into closed or non-closed , after the copper foil is sheathed outside the cable under test, a coupling capacitance will be generated between the cable under test and the copper foil.
  • the voltage sensor may also have a polygonal cylindrical structure, such as a square cylindrical structure, a rectangular cylindrical structure, and the like.
  • the voltage sensor can also be a non-cylindrical metal bipolar plate structure, and the metal bipolar plates are arranged on both sides of the cable under test, so that the cable under test runs through the metal bipolar plate, so as to be connected with the tested cable.
  • the cable under test forms a coupling capacitance.
  • the voltage detection unit further includes: a SPDT switch and an RMS detection circuit; the SPDT switch includes a second output port, a ground port and a preset voltage input port; the The SPDT switch is connected across the second input port and the ground wire, the second output port is connected to the second input port, and the preset voltage input port is used for receiving an input preset voltage,
  • the ground port is connected to the ground wire;
  • the amplifier circuit includes: a sub-amplifier circuit and a subtraction circuit; the sub-amplifier circuit includes a third input port, a fourth input port and a third output port; the subtraction circuit It includes a fifth input port, a sixth output port and a fourth output port; wherein the first input port is connected to the third input port, the second input port is connected to the fourth input port respectively, and is connected to the third input port.
  • the sixth input port the third output port is connected with the fifth input port, the fourth output port is connected with the first output port; the first output port is also connected with the effective value detection circuit connected;
  • the sub-amplifier circuit is used to amplify the induced voltage by a first multiple, and output the second voltage to the phase-shift compensation circuit ;
  • the sub-amplifier circuit is used to differentially amplify the induced voltage and the preset voltage by a first multiple to obtain a third voltage, and the The subtraction circuit is used to calculate the difference between the third voltage and the preset voltage to obtain a fourth voltage, and output the fourth voltage to the effective value detection circuit through the first output port;
  • the effective value detection circuit for receiving the fourth voltage, and extracting the voltage component of the cable under test and the preset voltage component in the fourth voltage respectively, and according to the voltage component of the cable under test and the preset voltage component The voltage component determines the effective value of the voltage
  • the size of the coupling capacitor C x will change due to changes in the environment, because in actual measurement, it cannot be guaranteed that the position of the cable under test in the voltage sensor is the same every time. It is fixed and unchanged, and since the outer skin of the cable under test is not uniform in thickness and the radius of the cable under test is not fixed, the size of the coupling capacitance is difficult to directly measure. In addition, due to changes in the environment, the dielectric constant of the medium between the voltage sensor and the cable under test also changes. Therefore, the coupling capacitance is not a known quantity that can be directly calculated.
  • the voltage detection unit needs to be calibrated to indirectly obtain the actual voltage on the cable under test and the first The corresponding relationship of the voltage (induced voltage), that is, the voltage magnification of the cable under test. In this way, after each calibration of the voltage detection unit, the voltage value of the cable under test can be obtained according to the first voltage.
  • the coupling capacitance may be equivalent to the corresponding relationship between the actual voltage and the first voltage.
  • the AC power detection device is installed on the cable under test and the position can be fixed for calibration.
  • the sub-amplifier circuit in the amplifying circuit will simultaneously input a The preset voltage of the voltage amplitude and voltage frequency and the induced voltage corresponding to the actual voltage are known, so that the sub-amplifier circuit outputs a third voltage, wherein there are three voltage components in the third voltage, two of which are preset voltages Component on a different phase, the other is the component of the actual voltage.
  • the subtraction circuit Since there are components of the preset voltage on different phases, the subtraction circuit is required to screen out the two components of the preset voltage on different phases and the component that is different in phase from the component of the actual voltage , to obtain the fourth voltage.
  • the fourth voltage is input through the effective value detection circuit, and the effective value of the actual voltage of the cable under test can be determined.
  • the first voltage is output by the voltage detection unit, and the effective value of the actual voltage on the tested cable is determined according to the first voltage and the effective value of the actual voltage of the tested cable.
  • the corresponding relationship with the effective value of the first voltage that is, the amplification factor of the voltage of the cable under test, thereby eliminating the influence caused by the change of the coupling capacitance.
  • the rms detection circuit can calculate the intermediate value, wherein the intermediate values output by the rms detection circuit of different structures are different,
  • the intermediate value there is a linear relationship between the intermediate value and the effective value of the voltage of the cable under test, and those skilled in the art should know various structures of the effective value detection circuit.
  • the apparatus further includes: a power supply unit; the power supply voltage is used to supply power to the voltage detection unit and the data processing unit.
  • the power supply unit can be an external power supply, and the external power supply can supply power to the voltage detection unit, the current detection unit and the data processing unit in the AC power detection device,
  • the way to find the power supply from the outside will lead to a complicated power supply form, and the AC power detection device is limited by the location of the power supply, and can only be detected near the power supply. It can be powered by the built-in battery, but the battery has a lifespan problem , the battery needs to be replaced repeatedly.
  • the power supply unit includes: a power taking transformer, a filter rectifier a circuit and a power management unit; the power taking transformer is configured to generate an induced current based on the actual current on the cable under test, and output the induced current to the filter and rectifier circuit; the filter and rectifier circuit, The inductive current is filtered and rectified to obtain a power supply current; the power management unit is configured to use the power supply current to supply power to the voltage detection unit, the current detection unit and the processing unit respectively.
  • the power supply unit on the AC power detection device can also be designed to take power in a non-contact way, so that the AC power detection device is also not limited by the position of the external power source , it can work normally in any position of the cable under test.
  • the power taking transformer is an annular iron core wound with at least one turn of coils, the annular iron core is a closed or non-closed structure, and the at least one turn of coils is used to connect to the Rectifier filter circuit.
  • the power taking transformer has a similar principle to the commonly used current transformer, but the specific parameters are different, such as the number of turns of the coil wound around the annular iron core, etc. Power supply requirements, set different coil turns ratio.
  • the power management unit is a DC/DC circuit
  • the DC/DC conversion circuit may be composed of switching tubes, diodes, inductors, capacitors and other devices, and the working state of the DC/DC conversion circuit may be This is achieved by adjusting the working state of these devices.
  • the working state of the DC/DC conversion circuit may be: converting the received electrical energy into a voltage suitable for the voltage detection unit, the current detection unit and the data processing unit.
  • the switch tube in the DC/DC conversion circuit is a metal oxide semiconductor tube, and may also be a bipolar junction transistor, and of course, may be other devices that can realize the switch function.
  • the power management unit may further include a battery module, and the DC/DC conversion circuit converts the received power and outputs it to the battery module, when the DC/DC conversion circuit is in a charging state;
  • the voltage detection unit, the current detection unit and the data processing unit are in the working state, the electric energy stored in the battery module is converted into suitable power for the voltage detection unit, the current detection unit and the data processing unit.
  • the voltage is output, and the DC/DC conversion circuit is in a discharge state at this time.
  • the present application provides an AC voltage detection device, the device includes a voltage detection unit and a data processing unit; the voltage detection unit forms a coupling capacitance with the cable under test, and is used for detecting the cable based on the cable under test. The actual voltage on and the coupling capacitor to obtain the first voltage, and output the first voltage to the data processing unit; the data processing unit is configured to receive the first voltage and determine the first voltage value ; Calculate the product of the first voltage value and the voltage magnification of the cable under test to determine the voltage value of the cable under test.
  • the voltage detection unit includes: a voltage sensor, an amplifier circuit, and a phase-shift compensation circuit, and the amplifier circuit includes a first input port, a second input port, and a first output port; wherein, The first input port is connected to the voltage sensor, the second input port is connected to the ground wire, and the first output port is connected to the phase-shift compensation circuit;
  • the voltage sensor is a conductive cylindrical structure , the cable under test runs through the voltage sensor, and the voltage sensor and the cable under test form a coupling capacitance;
  • the voltage sensor is used for the actual voltage on the cable under test and the coupling a capacitor to generate an induced voltage;
  • the amplifying circuit is used to amplify the induced voltage by a first multiple, and output a second voltage to the phase-shift compensation circuit through the output port;
  • the phase-shift compensation circuit is used to amplify the induced voltage by a first multiple
  • the second voltage is phase-shifted and amplified by a second multiple to output the first voltage.
  • the phase shift compensation circuit is specifically configured to delay the phase of the second voltage by 90°.
  • the voltage sensor is a closed or non-closed cylindrical structure; the voltage sensor is made of a metal material.
  • the voltage detection unit further includes: a SPDT switch and an RMS detection circuit; the SPDT switch includes a second output port, a ground port and a preset voltage input port; the The SPDT switch is connected across the second input port and the ground wire, the second output port is connected to the second input port, and the preset voltage input port is used for receiving an input preset voltage,
  • the ground port is connected to the ground wire;
  • the amplifier circuit includes: a sub-amplifier circuit and a subtraction circuit; the sub-amplifier circuit includes a third input port, a fourth input port and a third output port; the subtraction circuit It includes a fifth input port, a sixth output port and a fourth output port; wherein the first input port is connected to the third input port, the second input port is connected to the fourth input port respectively, and is connected to the third input port.
  • the sixth input port the third output port is connected with the fifth input port, the fourth output port is connected with the first output port; the first output port is also connected with the effective value detection circuit connected;
  • the sub-amplifier circuit is used to amplify the induced voltage by a first multiple, and output the second voltage to the phase-shift compensation circuit ;
  • the sub-amplifier circuit is used to differentially amplify the induced voltage and the preset voltage by a first multiple to obtain a third voltage, and the The subtraction circuit is used to calculate the difference between the third voltage and the preset voltage to obtain a fourth voltage, and output the fourth voltage to the effective value detection circuit through the first output port;
  • the effective value detection circuit for receiving the fourth voltage, and extracting the voltage component of the cable under test and the preset voltage component in the fourth voltage respectively, and according to the voltage component of the cable under test and the preset voltage component The voltage component determines the effective value of the voltage
  • the apparatus further includes: a power supply unit; the power supply voltage is used to supply power to the voltage detection unit and the data processing unit.
  • the power supply unit includes: a power taking transformer, a filtering and rectifying circuit, and a power management unit; the power taking transformer is used to generate an induction based on the current on the tested cable and output the induced current to the filtering and rectifying circuit; the filtering and rectifying circuit is used for filtering and rectifying the induced current to obtain a power supply current; the power management unit is used for using the power supply current, Power is supplied to the voltage detection unit and the processing unit, respectively.
  • the power taking transformer is a toroidal iron core wound with at least one turn of a coil, the annular iron core is a closed or non-closed structure, and the at least one turn of the coil is used for connecting the rectifying and filtering circuit;
  • the power management unit is a direct current to direct current DC/DC circuit.
  • the present application provides an AC power detection method, the method includes: receiving a first voltage and a measured cable current, determining a first voltage value and a measured cable current value; calculating the first voltage value The product of the multiplication factor of the voltage of the cable under test is used to determine the voltage value of the cable under test; according to the voltage value of the cable under test and the current value of the cable under test, the electric energy transmitted on the cable under test is calculated.
  • the method further includes: receiving the effective value of the voltage of the cable under test; according to the ratio of the effective value of the first voltage to the effective value of the voltage of the cable under test, Determine the voltage magnification of the cable under test.
  • the present application provides an AC voltage detection method, the method includes: receiving a first voltage, and determining a first voltage value; cable voltage value.
  • the method further includes: receiving the effective value of the voltage of the cable under test; according to the ratio of the effective value of the first voltage to the effective value of the voltage of the cable under test, Determine the voltage magnification of the cable under test.
  • FIG. 1A is a schematic diagram of a circuit structure for detecting voltage by means of resistive voltage division
  • 1B is a schematic diagram of a circuit structure for detecting voltage through a step-down transformer
  • FIG. 2 is a schematic structural diagram of an AC power detection device
  • 3A is a schematic structural diagram of a voltage detection unit
  • 3B is a schematic structural diagram of a voltage sensor
  • 3C is a schematic structural diagram of an inverse amplifier circuit
  • 3D is a schematic structural diagram of a phase-shift compensation circuit
  • 4A is a schematic structural diagram of another voltage detection unit
  • 4B is a schematic structural diagram of an amplifying circuit
  • 4C is a flow chart of the steps of detecting the voltage of the cable under test
  • 5A is a schematic diagram of a structure utilizing an external power supply to supply power
  • Fig. 5B is a kind of structural schematic diagram of utilizing battery to supply power
  • 5C is a schematic diagram of the installation structure of a power supply unit
  • 5D is an equivalent schematic diagram of a power supply unit
  • FIG. 6 is a schematic structural diagram of an AC voltage detection device.
  • the AC power detection device provided in the embodiment of the present application can be used to measure the power transmitted on the cable, and the cable is applied to various power grids for power transmission, and the power grid can be: urban power grid, photovoltaic power grid, micro grid , household power grid, industrial power grid, etc.
  • the electric energy transmitted by the above-mentioned power grid may be either high-frequency alternating current or low-frequency alternating current, and may be high-voltage or low-voltage.
  • the electric energy transmitted on the cable is mainly determined by the specific type of the power grid. There are not many restrictions on this.
  • Safety regulations are the requirements for product safety in product certification, including the safety requirements of product parts and the safety requirements after composing finished products. By simulating the use method and after a series of tests, the products are assessed for possible hazards such as electric shock, fire, mechanical damage, thermal damage, chemical damage, radiation damage, food hygiene and other hazards that may occur under normal or abnormal use.
  • Capacitive coupling also known as electric field coupling or electrostatic coupling, is a coupling method due to the existence of distributed capacitance. Specifically, in a DC circuit, the capacitor is equivalent to an open circuit, and current cannot pass through; while in an AC circuit, as the voltage of one foot of the capacitor gradually increases, the accumulated charge on the electrode plate connected to the foot also gradually increases. As the voltage gradually decreases, the charge accumulated on the corresponding electrode plate also gradually decreases. During the whole process, the capacitor does not actually pass current, but it seems that there is current passing through it. Therefore, the coupling capacitor can approximate the current flow in this way in the AC circuit. Transfer from the previous stage to the next stage.
  • the AC power detection device can detect the AC voltage and current of the cable under test, and obtain the power transmitted by the cable through a certain calculation, which can be used for power statistics.
  • the AC voltage detection part in the existing AC power detection device is measured through the electrical connection point directly drawn from the cable under test.
  • the cable under test can be connected to the voltage divider resistor circuit to divide the voltage and reduce the voltage, and then perform signal processing, or after the electrical connection point is drawn, the cable under test can be connected to the voltage drop.
  • signal processing is performed to finally obtain the AC voltage value on the tested cable.
  • the detection position of the AC power detection device is limited by the electrical connection point drawn from the neutral wire and the live wire on the tested cable when the AC power detection device performs power detection. , and also need to consider the safety insulation of the cable after the electrical connection point is set.
  • a resistance voltage divider circuit or a step-down transformer is bound to be set up to reduce the voltage on the cable under test to facilitate detection. Therefore, the above-mentioned resistance voltage divider circuit or step-down transformer will also increase the AC voltage. The volume and cost of the electric energy detection device bring inconvenience to the detection personnel.
  • FIG. 2 is an AC power detection device.
  • the AC power detection device 10 includes a voltage detection unit 11 , a current detection unit 12 and a data processing unit 13 .
  • the voltage detection unit 11 forms a coupling capacitor with the cable under test, and is used to obtain a first voltage based on the actual voltage on the cable under test and the coupling capacitor, and output the first voltage to the cable under test.
  • the data processing unit 13; the current detection unit 12, for detecting the cable current under test, and outputting the cable current under test to the data processing unit 13; the data processing unit 13 for receiving The first voltage and the current of the cable under test are determined to determine the value of the first voltage and the current value of the cable under test; the product of the first voltage value and the voltage magnification of the cable under test is calculated to determine the cable under test Voltage value; according to the voltage value of the cable under test and the current value of the cable under test, calculate the electric energy transmitted on the cable under test.
  • the voltage detection unit 11 is specifically used to detect the voltage of the cable under test.
  • the voltage detection method is realized by a voltage sensor, rather than directly drawn from the cable, which can well improve the safety regulation of the AC power detection device.
  • a voltage sensor rather than directly drawn from the cable, which can well improve the safety regulation of the AC power detection device.
  • the specific voltage detection method please refer to the description in the following embodiments.
  • the current detection unit 12 may include a current transformer (CT), and the current transformer is an instrument that converts a large current on the primary side into a small current on the secondary side to measure according to the principle of electromagnetic induction.
  • CT current transformer
  • a current transformer consists of a closed iron core and windings. Its primary winding has very few turns (in this application, the primary winding is a cable), and the current transformer is placed on the cable under test in the line of the current to be measured, and the principle of electromagnetic mutual inductance is used to detect The current on the cable under test. Specifically, a magnetic field will be generated around the cable under test. After the current transformer is sheathed on the cable under test, the coil on the current transformer will generate a magnetic field due to the magnetic field of the cable under test. After amplifying the induced current, the measured cable current can be obtained.
  • CT current transformer
  • the data processing unit 13 can be a processor or a controller, for example, can be a general-purpose central processing unit (central processing unit, CPU), general-purpose processor, digital signal processing (digital signal processing, DSP), application-specific integrated circuit ( application specific integrated circuits, ASIC), field programmable gate array (FPGA), or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • CPU central processing unit
  • DSP digital signal processing
  • ASIC application specific integrated circuits
  • FPGA field programmable gate array
  • the above-mentioned processor may also be a combination that realizes computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, etc.
  • the data processing unit 13 may also include an analog-to-digital converter (analog-to-digital converter). to digital converter, ADC), for converting the analog quantity input by the voltage detection unit 11 and the current detection unit 12 into a digital quantity.
  • ADC analog-to-digital converter
  • the data processing unit 13 may, after receiving the first voltage and the current of the cable under test, use the ADC to determine the value of the first voltage and the current value of the cable under test, and calculate the first voltage The product of the value and the amplification factor of the cable voltage to obtain the voltage value of the cable under test, wherein when the voltage detection unit 11 performs voltage detection, the actual voltage on the cable under test will be reduced by a certain proportion , output the first voltage. After amplifying the first voltage by the cable voltage amplification factor, the measured cable voltage value can be obtained. The electric power transmitted on the cable under test can be determined according to the voltage value of the cable under test and the current value of the cable under test, and then the electric power transmitted on the cable under test can be determined according to the transmission time and the transmission electric power. of electrical energy.
  • FIG. 3A is a schematic structural diagram of a voltage detection unit.
  • the voltage detection unit 11 includes: a voltage sensor 301, an amplifier circuit 302 and a phase-shift compensation circuit 303, the amplifier circuit 302 includes a first input port 31, a second input port 32 and a first output port 33;
  • the first input port 31 is connected to the voltage sensor 301, the second input port 32 is connected to the ground wire, and the first output port 33 is connected to the phase-shift compensation circuit 303;
  • the voltage sensor 301 is a conductive cylindrical structure, the cable under test penetrates the voltage sensor 301, and the voltage sensor 301 and the cable under test form a coupling capacitance; the voltage sensor 301 is used for generating an induced voltage based on the actual voltage on the tested cable and the coupling capacitance;
  • the amplifying circuit 302 is configured to amplify the induced voltage by a first multiple, and output a second voltage to the phase-shift compensation circuit through the output port;
  • the phase-shift compensation circuit 303 is configured to phase-shift the second voltage and amplify it by a second multiple, and output the first voltage.
  • the voltage sensor 301 is a closed or non-closed cylindrical structure; the voltage sensor is made of a metal material, wherein the metal material can be copper, aluminum, etc.
  • FIG. 3B is a schematic diagram of the structure of a voltage sensor, the voltage sensor 301 is a copper foil, and the copper foil can be rolled into a closed or non-closed, after the copper foil is sleeved on After the cable under test is connected, a coupling capacitance C x will be generated between the cable under test and the copper foil.
  • Cx will change, which is difficult to measure.
  • the voltage sensor 301 may also have a cylindrical structure other than that shown in FIG. 3B , or a polygonal cylindrical structure, such as a square cylindrical structure, a rectangular cylindrical structure, and the like.
  • the voltage sensor can also be a non-cylindrical metal bipolar plate structure.
  • the metal bipolar plates can be arranged on both sides of the cable under test, so that the cable under test runs through the metal bipolar plate, thereby A coupling capacitance Cx is formed with the cable under test.
  • the amplifying circuit 302 is required to amplify the induced voltage to obtain the second voltage V 2 .
  • the amplifying circuit may be, but is not limited to, an inverse amplifying circuit, a differential amplifying circuit, and the like. Taking an inverse amplifier circuit as an example here, please refer to FIG. 3C , which is a schematic structural diagram of an inverse amplifier circuit.
  • the first multiple amplified by the inverse amplifier circuit is related to the feedback resistance in the inverse amplifier circuit. It is related to R 0 .
  • the phase-shift compensation circuit 303 is configured to phase-shift the second voltage V 2 and amplify it by a second multiple, and finally output the first voltage V 1 .
  • FIG. 3D is a schematic structural diagram of a phase-shift compensation circuit, wherein the effect of the phase-shift compensation circuit 303 to amplify the second voltage V 2 by a second multiple is similar to that of amplifying the induced voltage by a first multiple, It is also used to further amplify the second voltage to make it easier for the ADC in the data processing unit 13 to identify. 1 , R 2 , and R 3 are related.
  • the induced voltage is obtained through capacitive coupling, based on the nature of the coupling capacitor, the voltage is proportional to the charge and inversely proportional to the capacity, and the voltage is the result of the accumulation of the charge, so the voltage will not change suddenly, the current can change suddenly, and the current phase Leading voltage, in the AC steady state circuit, the voltage phase through the capacitor will lag the current by 90°.
  • the phase of the induced voltage is delayed by 90° compared to the actual voltage on the cable under test, and the phase of the second voltage V 2 obtained by amplifying the induced voltage is also delayed by 90°.
  • the phase-shift compensation circuit is specifically configured to delay the phase of the second voltage by 90° through the capacitor C 1 . Since the second voltage V 2 is obtained by reverse amplification of the induced voltage, Therefore, after the induced voltage is amplified by the reverse amplifier circuit, the phase of the second voltage has changed by 180° compared with the induced voltage, and the phase of the induced voltage has been delayed by 90° compared with the actual voltage.
  • phase shift compensation circuit The capacitor C1 in the capacitor C1 again delays the phase of the second voltage by 90°, so that the phase of the first voltage V1 output by the phase shift compensation circuit can be adjusted to be consistent with the phase of the actual voltage on the cable under test.
  • the magnitude of the induced voltage can be obtained by inverse calculation, and the magnitude of the induced voltage can be obtained according to the The corresponding relationship between the actual voltage on the cable can determine the voltage value of the cable under test.
  • the corresponding relationship is related to the size of the coupling capacitor Cx . Those in the art should know that it will not be repeated here.
  • the coupling capacitance C x is regarded as a fixed value, the corresponding relationship between the induced voltage and the actual voltage on the cable under test can be obtained, and then the voltage value of the cable under test can be determined.
  • the size of the coupling capacitor C x will change due to changes in the environment. Please refer to the following formula.
  • the size of the coupling capacitor depends on the following parameters:
  • C x is the coupling capacitance
  • is the dielectric constant of the medium
  • S is the area of the metal plate
  • d is the distance between the metal plates.
  • the voltage sensor 301 in this embodiment may be a conductive cylindrical structure. Therefore, the distance d between the metal plates is related to the position of the cable under test in the voltage sensor 301 , but During actual measurement, it cannot be guaranteed that the position of the cable under test in the voltage sensor 301 is fixed every time the measurement is performed. The radius of the cable is also not fixed, and the size of the coupling capacitance Cx is difficult to measure directly. In addition, due to changes in the environment, the dielectric constant of the medium between the voltage sensor 301 and the cable under test also changes. Therefore, the coupling capacitance Cx is not a known quantity that can be directly measured.
  • the voltage detection unit 11 further includes: a SPDT switch 304 and an RMS detection circuit 305 ;
  • the SPDT switch 304 includes The second output port 39, the ground port 40 and the preset voltage input port 41;
  • the SPDT switch 304 is connected across the second input port 32 and the ground wire, the second output port 39 and the The second input port 32 is connected, the preset voltage input port 41 is used for receiving the input preset voltage V r , and the ground port is connected to the ground wire;
  • the effective value detection circuit 305 is configured to receive the fourth voltage V 4 , and respectively extract the voltage component of the cable under test and the preset voltage component in the fourth voltage V 4 , and The measured cable voltage component and the preset voltage component determine the effective value of the measured cable voltage, and send the measured cable voltage effective value to the data processing unit 13;
  • the amplifying circuit 302 may include: a sub-amplifying circuit 3021 and a subtraction circuit 3022;
  • the sub-amplification circuit 3021 may be an inverse amplifier circuit, the sub-amplification circuit 3021 includes a third input port 34 , a fourth input port 35 and a third output port 38 ; the subtraction circuit 3022 includes a fifth input port 36 , the sixth output port 37 and the fourth output port 41; wherein, the first input port 31 and the third input port 34 are connected, the second input port 32 is respectively connected with the fourth input port 35, connected The sixth input port 37, the third output port 38 are connected to the fifth input port 36, the fourth output port 41 is connected to the first output port 33; the first output port 33 is also connected with the effective value detection circuit 305;
  • the sub-amplifier circuit 3021 When the second output port 32 is connected to the ground port 40, the sub-amplifier circuit 3021 is used to amplify the induced voltage by a first multiple, and output the second voltage V 2 to the phase shifter In the compensation circuit; when the second output port is connected to the preset voltage input port, the sub-amplifier circuit is used to differentially amplify the induced voltage and the preset voltage by a first multiple to obtain a third voltage V 3 , the subtraction circuit 3022 is used to calculate the difference between the third voltage V 3 and the preset voltage to obtain a fourth voltage V 4 , which is sent to the effective value detection circuit 305 through the first output port outputting a fourth voltage V 4 ;
  • the data processing unit 13 is further specifically configured to: receive the effective value of the voltage of the tested cable; according to the difference between the effective value of the first voltage V1 and the voltage of the tested cable The ratio of the effective values to determine the voltage magnification of the cable under test.
  • the process of determining the size of the coupling capacitor Cx is skipped by introducing a preset voltage Vr , and the actual voltage on the cable under test and the first voltage V1 are directly determined (induced voltage) correspondence. Specifically, it can be calculated by, but not limited to, the following methods:
  • the sub-amplifier circuit 3021 inputs the preset voltage V through the fourth input port 35 r , and the subtraction circuit 3022 can also input the preset voltage V r through the sixth output port 37 .
  • the induced voltage and the preset voltage are differentially amplified by the sub-amplification circuit 3021 to obtain a third voltage V 3 .
  • the subtraction circuit 3022 is configured to calculate the difference between the third voltage V 3 and the preset voltage to obtain a fourth voltage V 4 , and output the fourth voltage V 4 to the effective value detection circuit 305 through the first output port.
  • voltage V 4 as an optional implementation manner, the subtraction circuit 3022 may be an instrumentation operational amplifier circuit, and its gain is G.
  • the third voltage V 3 output by the sub-amplifier circuit is:
  • ⁇ r is the angular frequency of the preset voltage V r
  • ⁇ x is the angular frequency of the actual voltage V x on the cable under test.
  • the idea of the embodiment of the present application is to extract the two components by using the effective value detection circuit 305 and Determine the intermediate value X, and determine the effective value of the voltage of the cable under test according to the intermediate value X, according to the V 1 output by the phase-shift compensation circuit 303 at this time, and the actual value of the cable under test.
  • the effective value of the voltage V x to determine the corresponding relationship between the effective value of the actual voltage on the cable under test and the effective value of the first voltage V 1 (induced voltage), that is, the voltage amplification factor of the cable under test , and then eliminate the influence caused by the change of the coupling capacitance Cx , according to the measured cable voltage amplification factor and the real-time detected first voltage V 1 , determine the measured cable voltage amplitude, phase and other information, and the measured cable voltage Information such as harmonics in the AC cable voltage is not lost.
  • the subtraction circuit 3022 in FIG. 4B is required to convert the After the components are screened out, the fourth voltage V 4 is obtained.
  • the fourth voltage V4 is input into the effective value detection circuit. the fourth voltage
  • the effective value detection circuit 305 can extract the voltage component of the cable under test in the fourth voltage V4 and the preset voltage component And according to the voltage component of the cable under test and the preset voltage component, the effective value of the voltage of the cable under test is determined, and the effective value of the voltage of the cable under test is sent to the data processing unit 13 .
  • the effective value detection circuit 305 in FIG. 4A can The intermediate value X is obtained by calculation, wherein the intermediate value X output by the rms detection circuit 305 of different structures is different, but the intermediate value X has a linear relationship with the rms value of the measured cable voltage.
  • the rms detection circuit 305 may be various structures known to those skilled in the art, which will not be limited here.
  • the amplification factor of the voltage of the tested cable is determined, and the data processing unit 13 detects the The obtained first voltage V 1 is used to determine the voltage value of the cable under test.
  • the method for detecting the voltage of the cable under test by using the voltage detection unit 11 in this embodiment of the present application mainly includes the following steps:
  • S404 Determine the voltage value of the cable under test according to the amplification factor of the voltage of the cable under test and the first voltage V 1 detected in real time.
  • the AC power detection device may further include the power supply unit.
  • the power supply unit may be an external power supply, and the external power supply may be used for the power supply in the AC power detection device 10 .
  • the voltage detection unit 11 , the current detection unit 12 and the data processing unit 13 supply power. Referring to FIG. 5A , it is a schematic diagram of using an external power supply to supply power to the AC power detection device.
  • the AC power detection device is limited by the location of the external power supply, and can only be detected near the external power supply, or, as shown in Figure 5B, the power supply unit
  • the battery can also be a built-in battery in the AC power detection device, but the built-in battery has a life problem, and the battery built in the AC power detection device needs to be replaced repeatedly.
  • the embodiments of the present application also provide another power supply mode, which will be described below.
  • the power supply method is explained in detail.
  • the AC power detection device may further include a power supply unit 14 .
  • FIG. 5C is a schematic diagram of the installation of a power supply unit.
  • the power supply unit 14 includes: a power taking transformer 501 , a filtering and rectifying circuit 502, and a power management unit 503;
  • the power taking transformer 501 is used to generate an induced current based on the actual current on the cable under test, and output the induced current to the filtering and rectifying circuit;
  • the filtering and rectifying circuit 502 is used to filter and rectify the induced current to obtain a power supply current;
  • the power management unit 503 is used to use the power supply current to send the voltage detection unit and the current detection unit to the voltage detection unit and the current detection unit respectively. and supply power to the processing unit.
  • the power taking transformer 501 is a toroidal iron core wound with at least one turn of a coil, the annular iron core is a closed or non-closed structure, and the at least one turn of the coil is used for connecting into the rectifier filter circuit; as shown in Figure 5D, Figure 5D is a schematic diagram of the equivalent structure of the power supply unit, the power taking transformer 501 and the commonly used current transformer are similar in principle, but the specific parameters are different, as described The number of turns of the coil wound around the toroidal core is different, etc., and the induced current is also different due to the different number of turns, and then different coil turns ratios can be set according to different power supply requirements.
  • the power management unit is a direct current/direct current (DC/DC) DC/DC circuit
  • the DC/DC conversion circuit may be composed of switch tubes, diodes, inductors, It is composed of devices such as capacitors, and the working state of the DC/DC conversion circuit can be realized by adjusting the working state of these devices (such as switch tubes).
  • the working state of the DC/DC conversion circuit may be: converting the received electrical energy into a suitable working voltage of the voltage detection unit 11 , the current detection unit 12 and the data processing unit 13 .
  • the switch tube in the DC/DC conversion circuit is a metal oxide semiconductor (MOS) tube, or a bipolar junction transistor (BJT), or of course other switches that can realize The functional device is not specifically limited in this application.
  • the power management unit may further include a battery module, and the DC/DC conversion circuit converts the received power and outputs it to the battery module.
  • the DC/DC conversion circuit In the charging state, and when the voltage detection unit 11, the current detection unit 12 and the data processing unit 13 are in the working state, the electric energy stored in the battery module is converted into the voltage detection unit 11, the The current detection unit 12 and the data processing unit 13 output a suitable voltage, and the DC/DC conversion circuit is in a discharge state at this time.
  • the AC power detection device provided by the present application can avoid the problem that the installation position of the AC power detection device is limited by the electrical connection points for AC voltage and current detection. In addition, there is no electrical connection between the AC power detection device and the tested cable. Under the premise of real-time detection of the amplitude, phase and all harmonics of the tested cable, the safety of the AC power detection device can be improved. Regulation level, reducing the cost of the AC power detection device. Further, the AC power detection device provided by the present application can also obtain electricity in a way without electrical connection, so that the AC power detection device is also not limited by the position of the external power supply, and can be used in any position of the tested cable.
  • the voltage detection calibration method provided by the embodiment of the present application can solve the problem of external factors such as the position change of the tested cable in the voltage sensor, the thickness of the cable, etc.
  • the influence of environmental conditions on the accuracy of voltage detection so as to obtain more accurate voltage detection results, and then obtain more accurate electric energy detection results.
  • the present application also provides an AC voltage detection device, as shown in FIG. 6 , the AC voltage detection device 60 includes a voltage detection unit 61 and a data processing unit 62; the voltage detection unit 61, forming a coupling capacitor with the cable under test, for obtaining a first voltage based on the actual voltage on the cable under test and the coupling capacitor, and outputting the first voltage to the data processing unit; the The data processing unit 62 is configured to receive the first voltage and determine the first voltage value; calculate the product of the first voltage value and the amplification factor of the voltage of the cable under test to determine the voltage value of the cable under test.
  • the voltage detection unit 61 includes: a voltage sensor, an amplifier circuit, and a phase-shift compensation circuit, and the amplifier circuit includes a first input port, a second input port, and a first output port; wherein , the first input port is connected with the voltage sensor, the second input port is connected with the ground wire, and the first output port is connected with the phase-shift compensation circuit;
  • the voltage sensor is a conductive cylindrical structure, the cable under test penetrates the voltage sensor, and the voltage sensor and the cable under test form a coupling capacitance; the voltage sensor is used for measuring the actual voltage on the cable and the coupling capacitor to generate an induced voltage; the amplifying circuit is used to amplify the induced voltage by a first multiple, and output a second voltage to the phase-shift compensation circuit through the output port ; The phase-shift compensation circuit is used for phase-shifting the second voltage and amplifying it by a second multiple to output the first voltage.
  • the phase shift compensation circuit is specifically configured to delay the phase of the second voltage by 90°.
  • the voltage sensor is a closed or non-closed cylindrical structure; the voltage sensor is made of a metal material.
  • the voltage detection unit further includes: a single-pole double-throw switch and an effective value detection circuit;
  • the SPDT switch includes a second output port, a ground port and a preset voltage input port; the SPDT switch is bridged between the second input port and the ground wire, and the second output port and all the second input port is connected, the preset voltage input port is used for receiving the input preset voltage, and the ground port is connected with the ground wire;
  • the amplifying circuit includes: a sub-amplifying circuit and a subtraction circuit;
  • the sub-amplification circuit includes a third input port, a fourth input port and a third output port; the subtraction circuit includes a fifth input port, a sixth output port and a fourth output port; wherein the first input port is connected to the third input port, the second input port is connected to the fourth input port and the sixth input port respectively, the third output port is connected to the fifth input port, and the third output port is connected to the fifth input port.
  • Four output ports are connected to the first output port; the first output port is also connected to the effective value detection circuit;
  • the sub-amplifier circuit When the second output port is connected to the ground port, the sub-amplifier circuit is configured to amplify the induced voltage by a first multiple, and output the second voltage to the phase-shift compensation circuit; when When the second output port is connected to the preset voltage input port, the sub-amplifier circuit is used for differentially amplifying the induced voltage and the preset voltage by a first multiple to obtain a third voltage, and the subtraction operation The circuit is configured to calculate the difference between the third voltage and the preset voltage to obtain a fourth voltage, and output the fourth voltage to the effective value detection circuit through the first output port;
  • the effective value detection circuit is used for receiving the fourth voltage, and extracting the voltage component of the tested cable and the preset voltage component in the fourth voltage respectively, and according to the voltage of the tested cable
  • the component and the preset voltage component determine the effective value of the cable voltage under test, and send the effective value of the cable voltage under test to the data processing unit;
  • the data processing unit 62 is specifically configured to: receive the effective value of the measured cable voltage; determine the measured cable voltage according to the ratio of the effective value of the first voltage to the measured cable voltage effective value Cable voltage magnification.
  • the specific manner of the voltage detection of the cable under test by the voltage detection unit 61 may refer to the flowchart shown in FIG. 4C , which will not be repeated here.
  • the apparatus further includes: a power supply unit 63; the power supply voltage is used to supply power to the voltage detection unit and the data processing unit.
  • the power supply unit 63 includes: a power taking transformer, a filtering and rectifying circuit, and a power management unit; the power taking transformer is used to generate a Inducing current, and outputting the induced current to the filtering and rectifying circuit; the filtering and rectifying circuit is used for filtering and rectifying the induced current to obtain a power supply current; the power management unit is used for using the power supply current , respectively supplying power to the voltage detection unit and the processing unit.
  • the power taking transformer is a toroidal iron core wound with at least one turn of a coil, the annular iron core is a closed or non-closed structure, and the at least one turn of the coil is used for connecting the rectifying and filtering circuit;
  • the power management unit is a direct current to direct current DC/DC circuit.
  • the present application further provides an AC power detection method, the method includes: receiving a first voltage and a measured cable current, and determining the first voltage value and the measured cable current Calculate the product of the first voltage value and the voltage magnification of the cable under test to determine the voltage value of the cable under test; according to the voltage value of the cable under test and the current value of the cable under test, calculate the The electrical energy transmitted on the cable under test.
  • the method further includes: receiving an effective value of the voltage of the cable under test; according to a ratio of the effective value of the first voltage to the effective value of the voltage of the cable under test, Determine the voltage magnification of the cable under test;
  • the present application provides an AC voltage detection method, the method includes: receiving a first voltage, and determining a first voltage value; cable voltage value.
  • the method further includes: receiving an effective value of the voltage of the cable under test; according to a ratio of the effective value of the first voltage to the effective value of the voltage of the cable under test, Determine the voltage magnification of the cable under test.
  • the AC power detection apparatus may include corresponding hardware structures and/or software modules for performing various functions.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the embodiments of the present application further provide a computer program, when the computer program runs on a computer, the computer is made to execute the AC power detection method provided by the above embodiments, or the computer is made to execute the above The AC voltage detection method provided by the embodiment.
  • the embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a computer, the computer executes the above-mentioned embodiments. the AC power detection method, or make the computer execute the AC voltage detection method provided by the above embodiments.
  • the storage medium may be any available medium that the computer can access.
  • computer readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or be capable of carrying or storing instructions or data structures in the form of desired program code and any other medium that can be accessed by a computer.
  • the embodiments of the present application further provide a chip, which is used to read a computer program stored in a memory, implement the AC power detection method provided by the above embodiments, or implement the AC voltage provided by the above embodiments Detection method.
  • the embodiments of the present application provide a chip system, where the chip system includes a processor for supporting a computer device to implement the AC power detection method provided by the above embodiments, or to implement the AC voltage detection method provided by the above embodiments. .
  • the chip system further includes a memory for storing necessary programs and data of the computer device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored on or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • Useful media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.
  • a general-purpose processor may be a microprocessor, or alternatively, the general-purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors in combination with a digital signal processor core, or any other similar configuration. accomplish.
  • a software unit may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor such that the processor may read information from, and store information in, the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and storage medium may be provided in the ASIC.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

一种交流电能检测装置(10),包括:电压检测单元(11),与被测线缆形成耦合电容,基于实际电压和耦合电容,得到第一电压,并将第一电压输出给数据处理单元(13);电流检测单元(12),检测被测线缆电流,输出给数据处理单元(13);数据处理单元(13),接收第一电压和被测线缆电流,确定第一电压值和被测线缆电流值,计算第一电压值与被测线缆电压放大倍数的乘积,确定被测线缆电压值;根据被测线缆电压值和被测线缆电流值,计算被测线缆上传输的电能。利用该检测装置(10),能避免检测装置(10)安装位置受限电气连接点,且检测装置(10)与被测线缆之间无电气连接,在实时检测被测线缆电压的幅值、相位以及被测线缆的所有谐波等信息的前提下,能提高检测装置(10)的安规等级,降低成本。

Description

交流电能检测装置 技术领域
本申请涉及电能检测领域,特别涉及一种交流电能检测装置。
背景技术
交流电能检测装置是通过检测被测线缆的交流电压、电流,并通过对交流电压、电流进行计算得到被测线缆传输的电能,从而进行电能统计。
一般来说,现有的交流电能检测装置中的交流电压检测部分是通过直接从被测线缆引出的导线进行测量的,例如图1A和图1B所示。
参阅图1A所示,从被测线缆的零线、火线上专门留出用于交流电压检测的电气连接点,并从电气连接点引出导线后利用电阻进行分压降压后,再进行信号处理,最终输入ADC(analog to digital converter,模拟数字转换器)中以实现交流电压检测。
参阅图1B所示,现有的交流电压检测还可以从电气连接点引出导线后接入降压变压器,经过降压变压器降压后,进行信号处理,最终输入ADC以实现交流电压检测。
然而,以上两种方式需要在被测线缆上留出专门用于交流电压检测接线的电气连接点。因此,交流电能检测装置的安装位置会受到限制,同时还需要考虑电气连接点的安规、成本等各种问题。
发明内容
本申请提供一种交流电能检测装置,能避免检测装置的安装位置受限于电气连接点,并且检测装置与被测线缆之间无电气连接,能在实时检测被测电压的幅值、相位以及被测线缆的所有谐波等信息的前提下,提高检测装置的安规等级,降低成本。
第一方面,本申请提供一种交流电能检测装置,该装置包括:电压检测单元、电流检测单元和数据处理单元;所述电压检测单元,与被测线缆形成耦合电容,用于基于所述被测线缆上的实际电压和所述耦合电容,得到第一电压,并将所述第一电压输出给所述数据处理单元;所述电流检测单元,用于检测被测线缆电流,并将所述被测线缆电流输出给所述数据处理单元;所述数据处理单元,用于接收所述第一电压和所述被测线缆电流,确定第一电压值和被测线缆电流值;计算所述第一电压值与被测线缆电压放大倍数的乘积,确定被测线缆电压值;根据所述被测线缆电压值和所述被测线缆电流值,计算所述被测线缆上传输的电能。
有鉴于此,本申请提供的交流电能检测装置,能避免交流电能检测装置的安装位置受限于进行交流电压、电流检测的电气连接点的问题。并且交流电能检测装置与被测线缆之间无电气连接,在实时检测被测电压的幅值、相位以及被测线缆的所有谐波等信息的前提下,能提高交流电能检测装置的安规等级,降低交流电能检测装置的成本。
在一种可能的实现方式中,所述电压检测单元中包括:电压传感器、放大电路和移相补偿电路,所述放大电路包括第一输入端口、第二输入端口和第一输出端口;其中,所述第一输入端口与所述电压传感器连接,所述第二输入端口与地线连接,所述第一输出端口与所述移相补偿电路连接;所述电压传感器为能够导电的筒状结构,所述被测线缆贯穿所 述电压传感器,所述电压传感器与所述被测线缆形成耦合电容;所述电压传感器,用于基于所述被测线缆上的实际电压和所述耦合电容,生成感应电压;所述放大电路,用于将所述感应电压放大第一倍数,通过所述输出端口向所述移相补偿电路输出第二电压;所述移相补偿电路,用于将所述第二电压进行移相并放大第二倍数,输出所述第一电压。
其中,电压传感器用于与所述被测线缆形成耦合电容,以使交流电能检测装置通过非接触的方式检测被测线缆上传输的实际电压,具体检测实际电压时,在所述电压传感器上会生成感应电压,但因为感应电压的大小过小不易被数据处理单元识别检测出来。而放大电路可以用于将感应电压放大,所述放大电路可以但不限于为:反向放大电路、差分放大电路等等。此外,由于感应电压是基于电容耦合得到的,因此,被测线缆的实际电压在经过耦合电容生成的感应电压的相位会滞后电流90°,因此需要移相补偿电路用于将感应电压的再次相位滞后90°以使移相补偿电路输出的电压相位与被测线缆上的实际电压的相位调整一致,此外,移相补偿电路还可以用于将放大电路放大的电压进行再次放大,以使数据处理单元更容易识别检测。
在一种可能的实现方式中,所述电压传感器为闭合或非闭合的筒状结构;所述电压传感器为金属材料制作的。
为了保证电容耦合的效果,电压传感器可以为金属材料,而金属材料可以为铜、铝等,示例性的,电压传感器可以为铜材质的箔片,并且该铜箔可以卷成闭合或非闭合的,在将所述铜箔套在所述被测线缆外部后,所述被测线缆与所述铜箔之间就会产生耦合电容。并且,电压传感器还可以为多边形筒状结构,例如:正方形筒状结构、长方形筒状结构等等。此外,电压传感器还可以为非筒状的金属双极板结构,将所述金属双极板布置在被测线缆的两侧,使所述被测线缆贯穿金属双极板,从而与所述被测线缆形成耦合电容。
在一种可能的实现方式中,所述电压检测单元还包括:单刀双掷开关和有效值检测电路;所述单刀双掷开关包括第二输出端口、接地端口和预设电压输入端口;所述单刀双掷开关跨接在所述第二输入端口和地线之间,所述第二输出端口和所述第二输入端口连接,所述预设电压输入端口用于接收输入的预设电压,所述接地端口与地线连接;所述放大电路中包括:子放大电路和减法运算电路;所述子放大电路包括第三输入端口、第四输入端口和第三输出端口;所述减法运算电路包括第五输入端口、第六输出端口和第四输出端口;其中,所述第一输入端口和所述第三输入端口连接,所述第二输入端口分别连接所述第四输入端口,连接所述第六输入端口,所述第三输出端口和所述第五输入端口连接,所述第四输出端口和所述第一输出端口连接;所述第一输出端口还与所述有效值检测电路连接;当所述第二输出端口与所述接地端口导通时,所述子放大电路用于将所述感应电压放大第一倍数,将所述第二电压输出给所述移相补偿电路中;当所述第二输出端口与所述预设电压输入端口导通时,所述子放大电路用于将所述感应电压和所述预设电压差分放大第一倍数得到第三电压,所述减法运算电路用于计算所述第三电压和所述预设电压的差值得到第四电压,通过所述第一输出端口向所述有效值检测电路输出第四电压;所述有效值检测电路,用于接收所述第四电压,并分别提取所述第四电压中所述被测线缆电压分量和所述预设电压分量,并根据所述被测线缆电压分量和所述预设电压分量确定所述被测线缆电压的有效值,将所述被测线缆电压的有效值发送至数据处理单元;所述数据处理单元具体用于:接收所述被测线缆电压的有效值;根据所述第一电压的有效值与所述被测线缆电压的有效值的比值,确定所述被测线缆电压放大倍数。
在某些使用场景下,所述耦合电容C x的大小会由于环境的变化而导致变化,由于在实际测量时,无法保证每次测量所述被测线缆在所述电压传感器中的位置都固定不变,并且由于所述被测线缆的外皮薄厚不均,且所述被测线缆的半径也并非固定,所述耦合电容的大小难以直接测量。此外,由于环境的变化,也会导致电压传感器与所述被测线缆之间的介质的介电常数产生变化,因此,所述耦合电容并非为能直接计算的已知量。
有鉴于此,在所述电压传感器与所述被测线缆的相对位置固定后,需要对所述电压检测单元进行校准,以间接得到所述被测线缆上的实际电压与所述第一电压(感应电压)的对应关系,即被测线缆电压放大倍数。如此,在每次对所述电压检测单元进行校准后,根据所述第一电压即可得到所述被测线缆电压值。
由于耦合电容的大小难以直接测量,可以将耦合电容等效到实际电压与所述第一电压的对应关系中。具体来说,将交流电能检测装置安装到被测线缆上待位置固定之后可以进行校准,在第二输出端口与预设电压输入端口连通后,放大电路中的子放大电路会同时输入一个已知电压幅值和电压频率的预设电压以及实际电压对应的感应电压,以使子放大电路输出第三电压,其中,在第三电压中存在三个电压分量,有两个为预设电压的在不同相位上的分量,另一个为实际电压的分量。由于存在所述预设电压在不同相位上的分量,因此需要所述减法运算电路,将两个为预设电压的在不同相位上的分量中,与实际电压的分量相位不相同的分量筛除,得到第四电压,此时,再将所述第四电压输入通过有效值检测电路,能确定该被测线缆的实际电压的有效值。在第二输出端口与地线连通后,由电压检测单元输出第一电压,根据第一电压和被测线缆的实际电压的有效值,确定所述被测线缆上的实际电压的有效值与所述第一电压的有效值的对应关系,即所述被测线缆电压放大倍数,进而消除耦合电容的变化造成的影响。在上述场景下,所述有效值检测电路在提取被测线缆电压分量和所述预设电压分量后,能够计算得到中间值,其中,不同的结构的有效值检测电路输出的中间值不同,但所述中间值与所述被测线缆电压的有效值都存在线性关系,本领域人员应当知晓有效值检测电路的各种结构。
在一种可能的实现方式中,所述装置还包括:供电单元;所述供电电压用于向所述电压检测单元和所述数据处理单元供电。
为了保证交流电能检测装置能够正常工作,供电单元可以为外部供电电源,外部供电电源可以给所述交流电能检测装置中的所述电压检测单元、所述电流检测单元以及所述数据处理单元供电,但从外部寻找供电电源的方式,会导致供电形式较为复杂,并且交流电能检测装置受限于供电电源的位置,只能在供电电源附近进行检测,可以通过内置电池进行供电,但电池存在寿命问题,需要反复更换电池。
有鉴于此,为了解决所述交流电能检测装置受限于所述供电电源的位置或反复更换电池的问题,在一种可能的实现方式中,所述供电单元包括:取电互感器、滤波整流电路和电能管理单元;所述取电互感器,用于基于所述被测线缆上的实际电流,生成感应电流,并向所述滤波整流电路输出所述感应电流;所述滤波整流电路,用于对所述感应电流进行滤波整流,得到供电电流;所述电能管理单元,用于利用所述供电电流,分别向所述电压检测单元、所述电流检测单元和所述处理单元进行供电。
为了使整个交流电能检测装置的安装位置不受限制,因此,交流电能检测装置上的供电单元也可以设计为非接触的方式进行取电,以使交流电能检测装置同样不受外部电源的位置限制,在被测线缆的任何位置下均可以正常工作。
在一种可能的实现方式中,取电互感器为缠绕有至少一匝线圈的环形铁芯,所述环形铁芯为闭合或非闭合的结构,所述至少一匝线圈用于接入所述整流滤波电路。取电互感器与常用的电流互感器有着类似的原理,但具体设置的参数不同,如所述环形铁芯缠绕的线圈匝数不同等等,匝数不同导致感应电流也不同,进而可以根据不同供电需求,设置不同的线圈匝数比。
在一种可能的实现方式中,所述电能管理单元为DC/DC电路,所述DC/DC转换电路可以由开关管、二极管、电感、电容等器件组成,DC/DC转换电路的工作状态可以通过调整这些器件的工作状态来实现。其中,所述DC/DC转换电路的工作状态可以为:将接收的电能转换为所述电压检测单元、所述电流检测单元以及所述数据处理单元适合的电压。具体地,DC/DC转换电路中的开关管为金属氧化物半导体管,也可以为双极结型晶体管,当然也可以是其它可以实现开关功能的器件。此外,所述电能管理单元还可以包括电池模块,所述DC/DC转换电路将接收的电能转换后输出到所述电池模块中,此时所述DC/DC转换电路处于充电状态;并在所述电压检测单元、所述电流检测单元以及所述数据处理单元处于工作状态时,将所述电池模块存储的电能转换为所述电压检测单元、所述电流检测单元以及所述数据处理单元适合的电压进行输出,此时所述DC/DC转换电路处于放电状态。通过在供电单元中设计电池单元,能使交流电能检测装置的供电单元暂时存储电能,在交流电能检测装置需要进行电压检测时,能够向交流电能检测装置供电。
第二方面,本申请提供一种交流电压检测装置,所述装置包括电压检测单元和数据处理单元;所述电压检测单元,与被测线缆形成耦合电容,用于基于所述被测线缆上的实际电压和所述耦合电容,得到第一电压,并将所述第一电压输出给所述数据处理单元;所述数据处理单元,用于接收所述第一电压并确定第一电压值;计算所述第一电压值与被测线缆电压放大倍数的乘积,确定被测线缆电压值。
在一种可能的实现方式中,所述电压检测单元中包括:电压传感器、放大电路和移相补偿电路,所述放大电路包括第一输入端口、第二输入端口和第一输出端口;其中,所述第一输入端口与所述电压传感器连接,所述第二输入端口与地线连接,所述第一输出端口与所述移相补偿电路连接;所述电压传感器为能够导电的筒状结构,所述被测线缆贯穿所述电压传感器,所述电压传感器与所述被测线缆形成耦合电容;所述电压传感器,用于基于所述被测线缆上的实际电压和所述耦合电容,生成感应电压;所述放大电路,用于将所述感应电压放大第一倍数,通过所述输出端口向所述移相补偿电路输出第二电压;所述移相补偿电路,用于将所述第二电压进行移相并放大第二倍数,输出所述第一电压。
在一种可能的实现方式中,所述移相补偿电路具体用于将所述第二电压的相位滞后90°。
在一种可能的实现方式中,所述电压传感器为闭合或非闭合的筒状结构;所述电压传感器为金属材料制作的。
在一种可能的实现方式中,所述电压检测单元还包括:单刀双掷开关和有效值检测电路;所述单刀双掷开关包括第二输出端口、接地端口和预设电压输入端口;所述单刀双掷开关跨接在所述第二输入端口和地线之间,所述第二输出端口和所述第二输入端口连接,所述预设电压输入端口用于接收输入的预设电压,所述接地端口与地线连接;所述放大电路中包括:子放大电路和减法运算电路;所述子放大电路包括第三输入端口、第四输入端口和第三输出端口;所述减法运算电路包括第五输入端口、第六输出端口和第四输出端口; 其中,所述第一输入端口和所述第三输入端口连接,所述第二输入端口分别连接所述第四输入端口,连接所述第六输入端口,所述第三输出端口和所述第五输入端口连接,所述第四输出端口和所述第一输出端口连接;所述第一输出端口还与所述有效值检测电路连接;当所述第二输出端口与所述接地端口导通时,所述子放大电路用于将所述感应电压放大第一倍数,将所述第二电压输出给所述移相补偿电路中;当所述第二输出端口与所述预设电压输入端口导通时,所述子放大电路用于将所述感应电压和所述预设电压差分放大第一倍数得到第三电压,所述减法运算电路用于计算所述第三电压和所述预设电压的差值得到第四电压,通过所述第一输出端口向所述有效值检测电路输出第四电压;所述有效值检测电路,用于接收所述第四电压,并分别提取所述第四电压中所述被测线缆电压分量和所述预设电压分量,并根据所述被测线缆电压分量和所述预设电压分量确定所述被测线缆电压的有效值,将所述被测线缆电压的有效值发送至数据处理单元;所述数据处理单元具体用于:接收所述被测线缆电压的有效值;根据所述第一电压的有效值与所述被测线缆电压的有效值的比值,确定所述被测线缆电压放大倍数。
在一种可能的实现方式中,所述装置还包括:供电单元;所述供电电压用于向所述电压检测单元和所述数据处理单元供电。
在一种可能的实现方式中,所述供电单元包括:取电互感器、滤波整流电路和电能管理单元;所述取电互感器,用于基于所述被测线缆上的电流,生成感应电流,并向所述滤波整流电路输出所述感应电流;所述滤波整流电路,用于对所述感应电流进行滤波整流,得到供电电流;所述电能管理单元,用于利用所述供电电流,分别向所述电压检测单元和所述处理单元进行供电。
在一种可能的实现方式中,所述取电互感器为缠绕有至少一匝线圈的环形铁芯,所述环形铁芯为闭合或非闭合的结构,所述至少一匝线圈用于接入所述整流滤波电路;所述电能管理单元为直流转直流DC/DC电路。
第三方面,本申请提供一种交流电能检测方法,所述方法包括:接收第一电压和被测线缆电流,确定第一电压值和被测线缆电流值;计算所述第一电压值与被测线缆电压放大倍数的乘积,确定被测线缆电压值;根据所述被测线缆电压值和所述被测线缆电流值,计算所述被测线缆上传输的电能。
在一种可能的实现方式中,所述方法还包括:接收所述被测线缆电压的有效值;根据所述第一电压的有效值与所述被测线缆电压的有效值的比值,确定所述被测线缆电压放大倍数。
第四方面,本申请提供交流电压检测方法,所述方法包括:接收第一电压,确定第一电压值;计算所述第一电压值与被测线缆电压放大倍数的乘积,确定被测线缆电压值。
在一种可能的实现方式中,所述方法还包括:接收所述被测线缆电压的有效值;根据所述第一电压的有效值与所述被测线缆电压的有效值的比值,确定所述被测线缆电压放大倍数。
本申请的第二方面至第四方面中每种可能的设计的有益效果可以参照第一方面,此处不再赘述。
附图说明
图1A为一种通过电阻分压方式检测电压的电路结构示意图;
图1B为一种通过降压变压器来检测电压的电路结构示意图;
图2为一种交流电能检测装置的结构示意图;
图3A为一种电压检测单元的结构示意图;
图3B为一种电压传感器的结构示意图;
图3C为一种反向放大电路的结构示意图;
图3D为一种移相补偿电路的结构示意图;
图4A为另一种电压检测单元的结构示意图;
图4B为一种放大电路的结构示意图;
图4C为检测被测线缆的电压的步骤流程图;
图5A为一种利用外部供电电源供电的结构示意图;
图5B为一种利用电池供电的结构示意图;
图5C为一种供电单元的安装结构示意图;
图5D为一种供电单元的等效示意图;
图6为一种交流电压检测装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。本申请实施例提供的交流电能检测装置可以用于测量线缆上传输的电能,所述线缆应用于各类电网上进行电能的传输,所述电网可以为:城市电网、光伏电网、微电网、入户电网、工业电网等等。上述电网传输的电能,既可能是高频交流电,也可能是低频交流电,既可能是高压电,也可能是低压电,线缆上传输的电能主要由电网的具体类型决定,本申请实施例对此并不多做限制。
需要说明的是,在本申请的描述中“至少一个”是指一个或多个,其中,多个是指两个或两个以上。鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
以下,先对本申请实施例中涉及的部分用语进行解释说明,以便于本领域技术人员容易理解。
(1)安规等级(production compliance level),安规是产品认证中对产品安全的要求,包含产品零件的安全的要求、组成成品后的安全要求。通过模拟使用方法,经过一系列的测试,考核产品在正常或非正常使用的情况下可能出现的电击、火灾、机械伤害、热伤害、化学伤害、辐射伤害、食品卫生等等危害。
(2)电容耦合,又称电场耦合或静电耦合,是由于分布电容的存在而产生的一种耦合方式。具体的,在直流电路中,电容相当于断路,电流无法通过;而在交流电路中,随着电容一脚的电压逐步升高,与该脚相连的电极板上所聚集电荷也逐步增多,随着电压逐步降低,相应电极板上所聚集的电荷也逐渐减少,这整个过程中电容实际上没有电流通过,却看似有电流通过,因此耦合电容在交流电路中可以这种方式来近似完成电流由前一级至后 一级的传递。
为了方便理解本申请实施例提供的交流电能检测装置,下面首先介绍一下其应用场景。交流电能检测装置可以通过检测被测线缆的交流电压、电流,通过一定的计算得到线缆传输的电能,用于电能统计。一般来说,现有的交流电能检测装置中的交流电压检测部分是通过直接从被测线缆引出的电气连接点进行测量的。其中,在引出电气连接点后,可以将被测线缆接入分压电阻电路中进行分压降压,然后再进行信号处理,或者在引出电气连接点后,将被测线缆接入降压变压器,经过降压变压器降压后,然后再进行信号处理,最终得到被测线缆上的交流电压值。
然而,利用上述引出通过引出电气连接点来检测的方式,会使得交流电能检测装置在进行电能检测时,检测的位置受限于从被测线缆上的零线、火线上引出的电气连接点,并且还需要考虑设置电气连接点后,线缆的安规绝缘问题。此外,通过引出电气连接点进行检测的方式,势必会设置电阻分压电路或降压变压器来降低被测线缆上的电压以便于检测,因此上述电阻分压电路或降压变压器还会增加交流电能检测装置的体积和成本,给检测人员带来不便。
有鉴于此,对于交流电能检测装置还需要进一步的改进,以提高交流电能检测装置的安规等级,简化交流电能检测装置,节省成本,使检测人员可以通过非接触的电气连接的方式检测交流电能。以下实施例以单相电压检测进行举例介绍,但是以下实施例描述的交流电能检测装置同样可以使用于三线制及双火线的场景,在上述场景下交流电能检测装置的使用方法仅是单相场景下的简单组合,这里不做过多赘述。参阅图2所示,图2为一种交流电能检测装置,该交流电能检测装置10包括:电压检测单元11、电流检测单元12和数据处理单元13。
下面对该装置在检测被测线缆传输的电能的过程中,各个单元的功能进行介绍:
所述电压检测单元11,与被测线缆形成耦合电容,用于基于所述被测线缆上的实际电压和所述耦合电容,得到第一电压,并将所述第一电压输出给所述数据处理单元13;所述电流检测单元12,用于检测被测线缆电流,并将所述被测线缆电流输出给所述数据处理单元13;所述数据处理单元13,用于接收所述第一电压和所述被测线缆电流,确定第一电压值和被测线缆电流值;计算所述第一电压值与被测线缆电压放大倍数的乘积,确定被测线缆电压值;根据所述被测线缆电压值和所述被测线缆电流值,计算所述被测线缆上传输的电能。
其中,所述电压检测单元11具体用于检测被测线缆的电压,进行电压检测的方式是通过电压传感器实现,而非直接从线缆引出,能很好的提高交流电能检测装置的安规等级,具体的进行电压检测的方式可以参阅以下实施例中的描述的内容。
所述电流检测单元12中可以包括电流互感器(current transformer,CT),所述电流互感器是依据电磁感应原理将一次侧大电流转换成二次侧小电流来测量的仪器。电流互感器是由闭合的铁芯和绕组构成。它的一次侧绕组匝数很少(在本申请中一次侧绕组为线缆),串在需要测量的电流的线路中将电流互感器套在被测线缆上,利用电磁互感的原理,检测所述被测线缆上的电流。具体的,在所述被测线缆的周围会产生磁场,在所述电流互感器套在被测线缆后,所述电流互感器上的线圈因所述被测线缆的磁场,会产生感应电流,对所述感应电流放大后,可以得到所述被测线缆电流。
所述数据处理单元13,可以是处理器或控制器,例如,可以是通用中央处理器(central  processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。上述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等,并且所述数据处理单元13中还可以包括模拟数字转换器(analog to digital converter,ADC),用于将所述电压检测单元11与所述电流检测单元12输入的模拟量转化为数字量。
所述数据处理单元13,可以在接收所述第一电压和所述被测线缆电流后,利用所述ADC,确定第一电压值和被测线缆电流值,并计算所述第一电压值与所述线缆电压放大倍数的乘积得到被测线缆电压值,其中,在所述电压检测单元11进行电压检测时,会对所述被测线缆上的实际电压进行一定比例的缩小,输出第一电压。将所述第一电压放大所述线缆电压放大倍数之后,能得到所述被测线缆电压值。根据所述被测线缆电压值和所述被测线缆电流值确定所述被测线缆上传输电功率,进而能根据所述传输时间及传输电功率,确定在所述被测线缆上传输的电能。
在一种可能的实施方式中,参阅图3A所示,图3A为一种电压检测单元的结构示意图。所述电压检测单元11中包括:电压传感器301、放大电路302和移相补偿电路303,所述放大电路302包括第一输入端口31、第二输入端口32和第一输出端口33;其中,所述第一输入端口31与所述电压传感器301连接,所述第二输入端口32与地线连接,所述第一输出端口33与所述移相补偿电路303连接;
所述电压传感器301为能够导电的筒状结构,所述被测线缆贯穿所述电压传感器301,所述电压传感器301与所述被测线缆形成耦合电容;所述电压传感器301,用于基于所述被测线缆上的实际电压和所述耦合电容,生成感应电压;
所述放大电路302,用于将所述感应电压放大第一倍数,通过所述输出端口向所述移相补偿电路输出第二电压;
所述移相补偿电路303,用于将所述第二电压进行移相并放大第二倍数,输出所述第一电压。
在一种可能的实施方式中,所述电压传感器301为闭合或非闭合的筒状结构;所述电压传感器为金属材料制作的,其中金属材料可以为铜、铝等,具体的,在本申请中,参阅图3B所示,图3B为一种电压传感器的结构示意图,电压传感器301为铜材质的箔片,并且该铜箔可以卷成闭合或非闭合的,在将所述铜箔套在所述被测线缆后,所述被测线缆与所述铜箔之间就会产生耦合电容C x。此外,在实际的交流电能检测场景下,由于被测线缆在电压传感器301中位置、线缆粗细等外界环境条件变化,会使得C x产生变化,难以测量。
其中,所述电压传感器301还可以为非图3B所示的圆筒状结构,亦可以为多边形筒状结构,例如:正方形筒状结构、长方形筒状结构等等。此外,电压传感器还可以为非筒状的金属双极板结构,具体可以将所述金属双极板布置在被测线缆的两侧,使所述被测线缆贯穿金属双极板,从而与所述被测线缆形成耦合电容C x
在所述电压传感器301和被测线缆形成耦合电容C x后,所述被测线缆上的交流电压和所述耦合电容通过电容耦合,能形成所述感应电压输入放大电路302中。但由于感应电压的大小过小,不易被所述数据处理单元13中的ADC识别检测出来,因此需要放大电路302 将感应电压放大得到第二电压V 2。其中,放大电路可以但不限于为:反向放大电路、差分放大电路等等。这里以反向放大电路为例,参阅图3C所示,图3C为一种反向放大电路的结构示意图,所述反向放大电路放大的第一倍数与所述反向放大电路中的反馈电阻R 0有关,反馈电阻R 0越大,放大倍数越大,本领域技术人员应当知晓,这里不再赘述。
所述移相补偿电路303,用于将所述第二电压V 2进行移相并放大第二倍数,最终输出所述第一电压V 1。参阅图3D所示,图3D为移相补偿电路的结构示意图,其中,所述移相补偿电路303将第二电压V 2放大第二倍数的作用与将感应电压放大第一倍数的作用相似,同样是用于将第二电压进一步放大,使其更容易被所述数据处理单元13中的ADC进行识别,所述放大电路302放大的第二倍数与所述反向放大电路中的反馈电阻R 1、R 2、R 3有关。并且,由于所述感应电压是经过电容耦合得到电压,基于耦合电容的性质,电压与电荷成正比,与容量成反比,电压是电荷积累的结果,所以电压不会突变,电流可以突变,电流相位超前电压,在交流稳态电路,经过电容的电压相位会滞后电流90°。所述感应电压相比于所述被测线缆上的实际电压的相位要滞后90°,将感应电压放大得到第二电压V 2的相位也会滞后90°。因此,为了保证所述被测线缆上的实际电压的相位信息不丢失,需要将根据所述感应电压放大得到的第二电压V 2的相位进行补偿,以还原实际电压的相位信息。作为一种可选的实施方式,所述移相补偿电路具体用于通过电容C 1将所述第二电压的相位滞后90°,由于第二电压V 2为感应电压经过反向放大得到的,因此,感应电压经反向放大电路放大后,第二电压的相位相比于感应电压变化了180°,而感应电压相比于实际电压的相位已经滞后了90°,因此,通过移相补偿电路中的电容C 1再次将第二电压的相位滞后90°,能使所述移相补偿电路输出的第一电压V 1的相位与所述被测线缆上的实际电压的相位调整到一致。
综上所述,在已知所述第一倍数、所述第二倍数以及所述第一电压V 1后,可以反推计算得到感应电压的大小,并根据所述感应电压与所述被测线缆上的实际电压的对应关系,即可以确定所述被测线缆电压值,所述对应关系与所述耦合电容C x的大小有关,本领域人员应当知晓,这里不再赘述,当将耦合电容C x视作固定值时,能够得到所述感应电压与所述被测线缆上的实际电压的对应关系,进而确定所述被测线缆电压值。
但在某些检测场景下,所述耦合电容C x的大小会由于环境的变化而导致变化,参阅如下公式,耦合电容大小取决于如下参数:
Figure PCTCN2020134698-appb-000001
其中,C x为耦合电容,ε为介质的介电常数,S为金属板的面积,d为金属板之间的间距。
继续参阅图3B所示,本实施例中的电压传感器301可以为导电的筒状结构,因此,金属板间的间距d与所述被测线缆在所述电压传感器301中的位置有关,但在实际测量时,无法保证每次测量所述被测线缆在所述电压传感器301中的位置都固定不变,并且由于所述被测线缆的外皮薄厚不均,且所述被测线缆的半径也并非固定,所述耦合电容C x的大小难以直接测量。此外,由于环境的变化,也会导致电压传感器301与所述被测线缆之间的介质的介电常数产生变化,因此,所述耦合电容C x并非为能直接测量的已知量。基于以上原因,需要在所述电压传感器与所述被测线缆的位置固定后,对所述电压检测单元11进行校准,避免因耦合电容C x变化造成的被测线缆电压测量不准的问题,从而最终能直接得到 所述被测线缆上的实际电压与所述第一电压V 1(感应电压)的对应关系。如此,在每次对所述电压检测单元11进行校准后,根据所述第一电压V 1即可得到所述被测线缆电压值。
可选的,参阅图4A所示,为另一种电压检测单元的结构示意图,所述电压检测单元11还包括:单刀双掷开关304和有效值检测电路305;所述单刀双掷开关304包括第二输出端口39、接地端口40和预设电压输入端口41;所述单刀双掷开关304跨接在所述第二输入端口32和地线之间,所述第二输出端口39和所述第二输入端口32连接,所述预设电压输入端口41用于接收输入的预设电压V r,所述接地端口与地线连接;
所述有效值检测电路305,用于接收所述第四电压V 4,并分别提取所述第四电压V 4中所述被测线缆电压分量和所述预设电压分量,并根据所述被测线缆电压分量和所述预设电压分量确定所述被测线缆电压的有效值,将所述被测线缆电压的有效值发送至数据处理单元13;
其中,在图3A所示的放大电路的基础上,参阅图4B所示,为另一种放大电路的内部结构示意图,所述放大电路302中可以包括:子放大电路3021和减法运算电路3022;
所述子放大电路3021可以为反向放大电路,所述子放大电路3021包括第三输入端口34、第四输入端口35和第三输出端口38;所述减法运算电路3022包括第五输入端口36、第六输出端口37和第四输出端口41;其中,所述第一输入端口31和所述第三输入端口34连接,所述第二输入端口32分别连接所述第四输入端口35,连接所述第六输入端口37,所述第三输出端口38和所述第五输入端口36连接,所述第四输出端口41和所述第一输出端口33连接;所述第一输出端口33还与所述有效值检测电路305连接;
当所述第二输出端口32与所述接地端口40导通时,所述子放大电路3021用于将所述感应电压放大第一倍数,将所述第二电压V 2输出给所述移相补偿电路中;当所述第二输出端口与所述预设电压输入端口导通时,所述子放大电路用于将所述感应电压和所述预设电压差分放大第一倍数得到第三电压V 3,所述减法运算电路3022用于计算所述第三电压V 3和所述预设电压的差值得到第四电压V 4,通过所述第一输出端口向所述有效值检测电路305输出第四电压V 4
继续参照图2所示,所述数据处理单元13还具体用于:接收所述被测线缆电压的有效值;根据所述第一电压V 1的有效值与所述被测线缆电压的有效值的比值,确定所述被测线缆电压放大倍数。
其中,由于所述耦合电容C x的大小由于环境变化会存在无法确定的问题。因此,本实施例中通过引入预设电压V r的方式来跳过确定所述耦合电容C x的大小的过程,直接确定所述被测线缆上的实际电压与所述第一电压V 1(感应电压)的对应关系。具体可以但不限于通过如下方式进行计算:
参阅图4B所示,当所述第二输出端口39与所述第四输出端口41导通时,此时,所述子放大电路3021通过所述第四输入端口35输入所述预设电压V r,并且所述减法运算电路3022通过第六输出端口37也能输入所述预设电压V r。由所述子放大电路3021对所述感应电压和所述预设电压进行差分放大,得到第三电压V 3。所述减法运算电路3022用于计算所述第三电压V 3和所述预设电压的差值得到第四电压V 4,通过所述第一输出端口向所述有效值检测电路305输出第四电压V 4;作为一种可选的实施方式,所述减法运算电路3022可以为仪表运放电路,其增益为G。
具体的,若所述被测线缆上的实际电压为V x,则通过所述子放大电路输出的第三电压 V 3为:
Figure PCTCN2020134698-appb-000002
其中,ω r为所述预设电压V r的角频率,ω x为所述被测线缆上的实际电压V x的角频率。
可以看出,所述第三电压V 3中存在三个电压分量,其中,有两个为所述预设电压的在不同相位上的分量:
Figure PCTCN2020134698-appb-000003
以及
Figure PCTCN2020134698-appb-000004
还有一个为被测线缆上实际电压V x的分量:
Figure PCTCN2020134698-appb-000005
本申请实施例的构思为,通过有效值检测电路305提取分别两部分分量
Figure PCTCN2020134698-appb-000006
Figure PCTCN2020134698-appb-000007
确定中间值X,并根据所述中间值X确定所述被测线缆电压的有效值,根据此时的所述移相补偿电路303输出的V 1,以及被所述被测线缆的实际电压V x的有效值,确定所述被测线缆上的实际电压的有效值与所述第一电压V 1(感应电压)的有效值的对应关系,即所述被测线缆电压放大倍数,进而消除耦合电容C x的变化造成的影响,根据所述被测线缆电压放大倍数和实时检测的第一电压V 1,确定被测线缆电压的幅值、相位等信息,且被测交流线缆电压中的谐波等信息并未丢失。
但由于所述第三电压中存在所述预设电压在不同相位上的分量,因此需要图4B中的所述减法运算电路3022,将所述
Figure PCTCN2020134698-appb-000008
分量筛除后,得到第四电压V 4
将所述第四电压V 4输入到所述有效值检测电路中。所述第四电压
Figure PCTCN2020134698-appb-000009
其中,所述有效值检测电路305可以提取所述第四电压V 4中所述被测线缆电压分量
Figure PCTCN2020134698-appb-000010
和所述预设电压分量
Figure PCTCN2020134698-appb-000011
并根据所述被测线缆电压分量和所述预设电压分量,确定所述被测线缆电压的有效值,将所述被测线缆电压的有效值发送至数据处理单元13。
在上述场景下,图4A中的所述有效值检测电路305在提取被测线缆电压分量和所述预设电压分量后,能够根据所述被测线缆电压分量和所述预设电压分量计算得到中间值X,其中,不同的结构的有效值检测电路305输出的中间值X不同,但所述中间值X与所述被测线缆电压的有效值均存在线性关系,有效值检测电路305可以为各种本领域技术人员已知的结构,这里不做过多限定。
为了确定所述中间值X和所述被测线缆电压的有效值的线性关系,在所述交流电能检测装置实际使用之前,可以先将图4B中的单刀双掷开关304的所述第二输出端口32与所述第四输出端口41导通,并检测多条幅值频率均已知的线缆,得到多组数据(幅值频率均已知的线缆的有效值~中间值X),根据所述多组数据,能够计算所述有效值检测电路305输出的中间值X与线缆的有效值之间存在的线性关系:V x0=k 0X+b 0,其中,k 0和b 0为线性关系的系数,V x0为幅值频率均已知的线缆的有效值。在得到所述中间值X与线缆的有效值之间存在的线性关系。再将实际的被测线缆套入所述交流电能检测装置中,根据此时输出的中间值X确定所述被测线缆电压的有效值,并将所述被测线缆电压的有效值发送至所述数据处理单元13。
实际测量时的场景:当图4B中的单刀双掷开关304的所述第二输出端口32与所述接地端口40导通时,所述子放大电路3021对所述感应电压放大第一倍数,将所述第二电压V 2输入减法运算电路3022,但此时所述减法运算电路3022的所述第六输入端口37接地,因此,最终减法运算电路3022仍然输出第二电压V 2,将所述第二电压V 2输入移相补偿电路303进行移相并放大第二倍数,最终输出所述第一电压V 1。根据所述被测线缆电压的有效值与第一电压V 1的比值,确定所述被测线缆电压放大倍数,所述数据处理单元13根据 所述被测线缆电压放大倍数以及实时检测到的第一电压V 1,确定所述被测线缆电压值。
综上所述,参阅图4C所述的流程图,本申请实施例利用所述电压检测单元11检测被测线缆的电压的方法主要包括如下步骤:
S401,将所述第二输出端口32与所述第四输出端口41导通,检测多条幅值频率均已知的线缆的电压,确定所述中间值X与所述被测线缆电压的有效值的线性关系V x=k 0X+b 0
S402,在实际进行测量时,先将所述交流电能检测装置10安装到被测线缆上,且被测线缆和所述交流电能检测装置的相对位置固定后,保持所述第二输出端口32与所述第四输出端口41导通,得到所述中间值X,根据所述被测线缆电压的有效值的线性关系,确定所述被测线缆的有效值V x
S403,将所述第二输出端口32与所述接地端口40导通,所述电压检测单元11中的移相补偿电路输出第一电压V 1,根据所述被测线缆的有效值V x和所述第一电压V 1的比值,确定所述被测线缆电压放大倍数。
S404,根据所述被测线缆电压放大倍数,以及实时检测的所述第一电压V 1,确定被测线缆电压值。
需要说明的是,所述交流电能检测装置中还可以包括所述供电单元,一种可能的实施方式中,供电单元可以为外部供电电源,外部供电电源可以给所述交流电能检测装置10中的所述电压检测单元11、所述电流检测单元12以及所述数据处理单元13供电,参阅图5A所示,为利用外部供电电源给交流电能检测装置供电的示意图。但从外部寻找供电电源的方式,会导致供电形式较为复杂,并且交流电能检测装置受限于外部供电电源的位置,只能在外部供电电源附近进行检测,或者,参阅图5B所示,供电单元中还可以为交流电能检测装置内置的电池,但通过内置的电池存在寿命问题,需要反复更换交流电能检测装置内置的电池。
在另一些实施例中,为了解决所述交流电能检测装置10受限于外部供电电源的位置或反复更换内置的电池的问题,本申请实施例还提供了另一种供电方式,下面对该供电方式进行具体说明。继续参阅图2所示,所述交流电能检测装置中还可以包括供电单元14,参阅图5C所示,图5C为一种供电单元的安装示意图,所述供电单元14包括:取电互感器501、滤波整流电路502和电能管理单元503;所述取电互感器501,用于基于所述被测线缆上的实际电流,生成感应电流,并向所述滤波整流电路输出所述感应电流;所述滤波整流电路502,用于对所述感应电流进行滤波整流,得到供电电流;所述电能管理单元503,用于利用所述供电电流,分别向所述电压检测单元、所述电流检测单元和所述处理单元进行供电。
在一种可能的实施方式中,所述取电互感器501为缠绕有至少一匝线圈的环形铁芯,所述环形铁芯为闭合或非闭合的结构,所述至少一匝线圈用于接入所述整流滤波电路;图5D所示,图5D为供电单元的等效结构示意图,所述取电互感器501与常用的电流互感器为类似的原理,但具体的参数不同,如所述环形铁芯缠绕的线圈匝数不同等等,匝数不同导致感应电流也不同,进而可以根据不同供电需求,设置不同的线圈匝数比,本领域人员应当知晓,这里不再赘述。
在一种可能的实施方式中,所述电能管理单元为直流转直流(direct current/direct current,DC/DC)DC/DC电路,所述DC/DC转换电路可以由开关管、二极管、电感、电容等器件组成,DC/DC转换电路的工作状态可以通过调整这些器件(例如开关管)的工作 状态来实现。其中,所述DC/DC转换电路的工作状态可以为:将接收的电能转换为所述电压检测单元11、所述电流检测单元12以及所述数据处理单元13适合的工作电压。具体地,DC/DC转换电路中的开关管为金属氧化物半导体(metal oxide semiconductor,MOS)管,也可以为双极结型晶体管(bipolar junction transistor,BJT),当然也可以是其它可以实现开关功能的器件,本申请这里不做具体限定。
在一种可能的实施方式中,所述电能管理单元还可以包括电池模块,所述DC/DC转换电路将接收的电能转换后输出到所述电池模块中,此时所述DC/DC转换电路处于充电状态,并在所述电压检测单元11、所述电流检测单元12以及所述数据处理单元13处于工作状态时,将所述电池模块存储的电能转换为所述电压检测单元11、所述电流检测单元12以及所述数据处理单元13适合的电压进行输出,此时所述DC/DC转换电路处于放电状态。
基于上述实施例提供的交流电能检测装置,本申请提供的交流电能检测装置,可以避免交流电能检测装置的安装位置受限于进行交流电压、电流检测的电气连接点的问题。并且交流电能检测装置与被测线缆之间无电气连接,在实时检测被测电压的幅值、相位以及被测线缆的所有谐波等信息的前提下,能提高交流电能检测装置的安规等级,降低交流电能检测装置的成本。进一步的,本申请提供的交流电能检测装置,还能采用无电气连接的方式进行取电,以使交流电能检测装置同样不受外部电源的位置限制,在被测线缆的任何位置下均可以正常工作,并且,基于本申请交流电能检测装置中的电压检测单元,通过本申请实施例提供的电压检测的校准方法,可以解决因被测线缆在电压传感器中位置变化、线缆粗细等外界环境条件变化而对电压检测精度的影响,从而得到更加准确的电压检测结果,进而得到更准确的电能检测结果。
基于相同的技术构思,本申请还提供了一种交流电压检测装置,参阅图6所示,所述交流电压检测装置60,包括电压检测单元61和数据处理单元62;所述电压检测单元61,与被测线缆形成耦合电容,用于基于所述被测线缆上的实际电压和所述耦合电容,得到第一电压,并将所述第一电压输出给所述数据处理单元;所述数据处理单元62,用于接收所述第一电压并确定第一电压值;计算所述第一电压值与被测线缆电压放大倍数的乘积,确定被测线缆电压值。
在一种可能的实施方式中,所述电压检测单元61中包括:电压传感器、放大电路和移相补偿电路,所述放大电路包括第一输入端口、第二输入端口和第一输出端口;其中,所述第一输入端口与所述电压传感器连接,所述第二输入端口与地线连接,所述第一输出端口与所述移相补偿电路连接;
所述电压传感器为能够导电的筒状结构,所述被测线缆贯穿所述电压传感器,所述电压传感器与所述被测线缆形成耦合电容;所述电压传感器,用于基于所述被测线缆上的实际电压和所述耦合电容,生成感应电压;所述放大电路,用于将所述感应电压放大第一倍数,通过所述输出端口向所述移相补偿电路输出第二电压;所述移相补偿电路,用于将所述第二电压进行移相并放大第二倍数,输出所述第一电压。
在一种可能的实施方式中,所述移相补偿电路具体用于将所述第二电压的相位滞后90°。
在一种可能的实施方式中,所述电压传感器为闭合或非闭合的筒状结构;所述电压传感器为金属材料制作的。
在一种可能的实施方式中,所述电压检测单元还包括:单刀双掷开关和有效值检测电 路;
所述单刀双掷开关包括第二输出端口、接地端口和预设电压输入端口;所述单刀双掷开关跨接在所述第二输入端口和地线之间,所述第二输出端口和所述第二输入端口连接,所述预设电压输入端口用于接收输入的预设电压,所述接地端口与地线连接;
所述放大电路中包括:子放大电路和减法运算电路;
所述子放大电路包括第三输入端口、第四输入端口和第三输出端口;所述减法运算电路包括第五输入端口、第六输出端口和第四输出端口;其中,所述第一输入端口和所述第三输入端口连接,所述第二输入端口分别连接所述第四输入端口,连接所述第六输入端口,所述第三输出端口和所述第五输入端口连接,所述第四输出端口和所述第一输出端口连接;所述第一输出端口还与所述有效值检测电路连接;
当所述第二输出端口与所述接地端口导通时,所述子放大电路用于将所述感应电压放大第一倍数,将所述第二电压输出给所述移相补偿电路中;当所述第二输出端口与所述预设电压输入端口导通时,所述子放大电路用于将所述感应电压和所述预设电压差分放大第一倍数得到第三电压,所述减法运算电路用于计算所述第三电压和所述预设电压的差值得到第四电压,通过所述第一输出端口向所述有效值检测电路输出第四电压;
所述有效值检测电路,用于接收所述第四电压,并分别提取所述第四电压中所述被测线缆电压分量和所述预设电压分量,并根据所述被测线缆电压分量和所述预设电压分量确定所述被测线缆电压的有效值,将所述被测线缆电压的有效值发送至数据处理单元;
所述数据处理单元62具体用于:接收所述被测线缆电压的有效值;根据所述第一电压的有效值与所述被测线缆电压的有效值的比值,确定所述被测线缆电压放大倍数。
其中,所述电压检测单元61对被测线缆的电压检测的具体方式,可以参见图4C所示的流程图,此处不再赘述。
在一种可能的实施方式中,所述装置还包括:供电单元63;所述供电电压用于向所述电压检测单元和所述数据处理单元供电。
在一种可能的实施方式中,所述供电单元63包括:取电互感器、滤波整流电路和电能管理单元;所述取电互感器,用于基于所述被测线缆上的电流,生成感应电流,并向所述滤波整流电路输出所述感应电流;所述滤波整流电路,用于对所述感应电流进行滤波整流,得到供电电流;所述电能管理单元,用于利用所述供电电流,分别向所述电压检测单元和所述处理单元进行供电。
在一种可能的实施方式中,所述取电互感器为缠绕有至少一匝线圈的环形铁芯,所述环形铁芯为闭合或非闭合的结构,所述至少一匝线圈用于接入所述整流滤波电路;所述电能管理单元为直流转直流DC/DC电路。
此外,基于图3A的电压检测单元的结构,本申请还提供一种交流电能检测方法,所述方法包括:接收第一电压和被测线缆电流,确定第一电压值和被测线缆电流值;计算所述第一电压值与被测线缆电压放大倍数的乘积,确定被测线缆电压值;根据所述被测线缆电压值和所述被测线缆电流值,计算所述被测线缆上传输的电能。
在一种可能的实施方式中,所述方法还包括:接收所述被测线缆电压的有效值;根据所述第一电压的有效值与所述被测线缆电压的有效值的比值,确定所述被测线缆电压放大倍数;
此外,本申请提供一种交流电压检测方法,所述方法包括:接收第一电压,确定第一 电压值;计算所述第一电压值与被测线缆电压放大倍数的乘积,确定被测线缆电压值。
在一种可能的实施方式中,所述方法还包括:接收所述被测线缆电压的有效值;根据所述第一电压的有效值与所述被测线缆电压的有效值的比值,确定所述被测线缆电压放大倍数。
以上从方法实施例的角度进行了描述。可以理解的是,为了实现上述方法,交流电能检测装置可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
基于以上实施例,本申请实施例还提供了一种计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行以上实施例提供的交流电能检测方法,或使得所述计算机执行以上实施例提供的交流电压检测方法。
基于以上实施例,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,所述计算机程序被计算机执行时,使得所述计算机执行以上实施例提供的交流电能检测方法,或使得所述计算机执行以上实施例提供的交流电压检测方法。
其中,存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
基于以上实施例,本申请实施例还提供了一种芯片,所述芯片用于读取存储器中存储的计算机程序,实现以上实施例提供的交流电能检测方法,或实现以上实施例提供的交流电压检测方法。
基于以上实施例,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持计算机装置实现以上实施例提供的交流电能检测方法,或实现以上实施例提供的交流电压检测方法。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存该计算机装置必要的程序和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk, SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (20)

  1. 一种交流电能检测装置,其特征在于,所述装置包括:电压检测单元、电流检测单元和数据处理单元;
    所述电压检测单元,与被测线缆形成耦合电容,用于基于所述被测线缆上的实际电压和所述耦合电容,得到第一电压,并将所述第一电压输出给所述数据处理单元;
    所述电流检测单元,用于检测被测线缆电流,并将所述被测线缆电流输出给所述数据处理单元;
    所述数据处理单元,用于接收所述第一电压和所述被测线缆电流,确定第一电压值和被测线缆电流值;计算所述第一电压值与被测线缆电压放大倍数的乘积,确定被测线缆电压值;根据所述被测线缆电压值和所述被测线缆电流值,计算所述被测线缆上传输的电能。
  2. 根据权利要求1所述的装置,其特征在于,所述电压检测单元中包括:电压传感器、放大电路和移相补偿电路,所述放大电路包括第一输入端口、第二输入端口和第一输出端口;其中,所述第一输入端口与所述电压传感器连接,所述第二输入端口与地线连接,所述第一输出端口与所述移相补偿电路连接;
    所述电压传感器为能够导电的筒状结构,所述被测线缆贯穿所述电压传感器,所述电压传感器与所述被测线缆形成耦合电容;所述电压传感器,用于基于所述被测线缆上的实际电压和所述耦合电容,生成感应电压;
    所述放大电路,用于将所述感应电压放大第一倍数,通过所述输出端口向所述移相补偿电路输出第二电压;
    所述移相补偿电路,用于将所述第二电压进行移相并放大第二倍数,输出所述第一电压。
  3. 根据权利要求2所述的装置,其特征在于,所述移相补偿电路具体用于将所述第二电压的相位滞后90°。
  4. 根据权利要求2或3所述的装置,其特征在于,所述电压传感器为闭合或非闭合的筒状结构;所述电压传感器为金属材料制作的。
  5. 根据权利要求2-4任一项所述的装置,其特征在于,所述电压检测单元还包括:单刀双掷开关和有效值检测电路;
    所述单刀双掷开关包括第二输出端口、接地端口和预设电压输入端口;所述单刀双掷开关跨接在所述第二输入端口和地线之间,所述第二输出端口和所述第二输入端口连接,所述预设电压输入端口用于接收输入的预设电压,所述接地端口与地线连接;
    所述放大电路中包括:子放大电路和减法运算电路;
    所述子放大电路包括第三输入端口、第四输入端口和第三输出端口;所述减法运算电路包括第五输入端口、第六输出端口和第四输出端口;其中,所述第一输入端口和所述第三输入端口连接,所述第二输入端口分别连接所述第四输入端口,连接所述第六输入端口,所述第三输出端口和所述第五输入端口连接,所述第四输出端口和所述第一输出端口连接;所述第一输出端口还与所述有效值检测电路连接;
    当所述第二输出端口与所述接地端口导通时,所述子放大电路用于将所述感应电压放大第一倍数,将所述第二电压输出给所述移相补偿电路中;当所述第二输出端口与所述预设电压输入端口导通时,所述子放大电路用于将所述感应电压和所述预设电压差分放大第 一倍数得到第三电压,所述减法运算电路用于计算所述第三电压和所述预设电压的差值得到第四电压,通过所述第一输出端口向所述有效值检测电路输出第四电压;
    所述有效值检测电路,用于接收所述第四电压,并分别提取所述第四电压中所述被测线缆电压分量和所述预设电压分量,并根据所述被测线缆电压分量和所述预设电压分量确定所述被测线缆电压的有效值,将所述被测线缆电压的有效值发送至数据处理单元;
    所述数据处理单元具体用于:
    接收所述被测线缆电压的有效值;
    根据所述第一电压的有效值与所述被测线缆电压的有效值的比值,确定所述被测线缆电压放大倍数。
  6. 根据权利要求1-5任一所述的装置,其特征在于,所述装置还包括:供电单元;所述供电电压用于向所述电压检测单元和所述数据处理单元供电。
  7. 根据权利要求6所述的装置,其特征在于,所述供电单元包括:取电互感器、滤波整流电路和电能管理单元;
    所述取电互感器,用于基于所述被测线缆上的实际电流,生成感应电流,并向所述滤波整流电路输出所述感应电流;
    所述滤波整流电路,用于对所述感应电流进行滤波整流,得到供电电流;
    所述电能管理单元,用于利用所述供电电流,分别向所述电压检测单元、所述电流检测单元和所述处理单元进行供电。
  8. 根据权利要求7所述的装置,其特征在于,所述取电互感器为缠绕有至少一匝线圈的环形铁芯,所述环形铁芯为闭合或非闭合的结构,所述至少一匝线圈用于接入所述整流滤波电路;所述电能管理单元为直流转直流DC/DC电路。
  9. 一种交流电压检测装置,其特征在于,所述装置包括电压检测单元和数据处理单元;
    所述电压检测单元,与被测线缆形成耦合电容,用于基于所述被测线缆上的实际电压和所述耦合电容,得到第一电压,并将所述第一电压输出给所述数据处理单元;
    所述数据处理单元,用于接收所述第一电压并确定第一电压值;计算所述第一电压值与被测线缆电压放大倍数的乘积,确定被测线缆电压值。
  10. 根据权利要求9所述的装置,其特征在于,所述电压检测单元中包括:电压传感器、放大电路和移相补偿电路,所述放大电路包括第一输入端口、第二输入端口和第一输出端口;其中,所述第一输入端口与所述电压传感器连接,所述第二输入端口与地线连接,所述第一输出端口与所述移相补偿电路连接;
    所述电压传感器为能够导电的筒状结构,所述被测线缆贯穿所述电压传感器,所述电压传感器与所述被测线缆形成耦合电容;所述电压传感器,用于基于所述被测线缆上的实际电压和所述耦合电容,生成感应电压;
    所述放大电路,用于将所述感应电压放大第一倍数,通过所述输出端口向所述移相补偿电路输出第二电压;
    所述移相补偿电路,用于将所述第二电压进行移相并放大第二倍数,输出所述第一电压。
  11. 根据权利要求10所述的装置,其特征在于,所述移相补偿电路具体用于将所述第二电压的相位滞后90°。
  12. 根据权利要求10或11所述的装置,其特征在于,所述电压传感器为闭合或非闭合的筒状结构;所述电压传感器为金属材料制作的。
  13. 根据权利要求10-12任一项所述的装置,其特征在于,所述电压检测单元还包括:单刀双掷开关和有效值检测电路;
    所述单刀双掷开关包括第二输出端口、接地端口和预设电压输入端口;所述单刀双掷开关跨接在所述第二输入端口和地线之间,所述第二输出端口和所述第二输入端口连接,所述预设电压输入端口用于接收输入的预设电压,所述接地端口与地线连接;
    所述放大电路中包括:子放大电路和减法运算电路;
    所述子放大电路包括第三输入端口、第四输入端口和第三输出端口;所述减法运算电路包括第五输入端口、第六输出端口和第四输出端口;其中,所述第一输入端口和所述第三输入端口连接,所述第二输入端口分别连接所述第四输入端口,连接所述第六输入端口,所述第三输出端口和所述第五输入端口连接,所述第四输出端口和所述第一输出端口连接;所述第一输出端口还与所述有效值检测电路连接;
    当所述第二输出端口与所述接地端口导通时,所述子放大电路用于将所述感应电压放大第一倍数,将所述第二电压输出给所述移相补偿电路中;当所述第二输出端口与所述预设电压输入端口导通时,所述子放大电路用于将所述感应电压和所述预设电压差分放大第一倍数得到第三电压,所述减法运算电路用于计算所述第三电压和所述预设电压的差值得到第四电压,通过所述第一输出端口向所述有效值检测电路输出第四电压;
    所述有效值检测电路,用于接收所述第四电压,并分别提取所述第四电压中所述被测线缆电压分量和所述预设电压分量,并根据所述被测线缆电压分量和所述预设电压分量确定所述被测线缆电压的有效值,将所述被测线缆电压的有效值发送至数据处理单元;
    所述数据处理单元具体用于:
    接收所述被测线缆电压的有效值;
    根据所述第一电压的有效值与所述被测线缆电压的有效值的比值,确定所述被测线缆电压放大倍数。
  14. 根据权利要求9-13任一所述的装置,其特征在于,所述装置还包括:供电单元;所述供电电压用于向所述电压检测单元和所述数据处理单元供电。
  15. 根据权利要求14所述的装置,其特征在于,所述供电单元包括:取电互感器、滤波整流电路和电能管理单元;
    所述取电互感器,用于基于所述被测线缆上的电流,生成感应电流,并向所述滤波整流电路输出所述感应电流;
    所述滤波整流电路,用于对所述感应电流进行滤波整流,得到供电电流;
    所述电能管理单元,用于利用所述供电电流,分别向所述电压检测单元和所述处理单元进行供电。
  16. 根据权利要求15所述的装置,其特征在于,所述取电互感器为缠绕有至少一匝线圈的环形铁芯,所述环形铁芯为闭合或非闭合的结构,所述至少一匝线圈用于接入所述整流滤波电路;所述电能管理单元为直流转直流DC/DC电路。
  17. 一种交流电能检测方法,其特征在于,所述方法包括:
    接收第一电压和被测线缆电流,确定第一电压值和被测线缆电流值;
    计算所述第一电压值与被测线缆电压放大倍数的乘积,确定被测线缆电压值;
    根据所述被测线缆电压值和所述被测线缆电流值,计算所述被测线缆上传输的电能。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    接收所述被测线缆电压的有效值;
    根据所述第一电压的有效值与所述被测线缆电压的有效值的比值,确定所述被测线缆电压放大倍数。
  19. 一种交流电压检测方法,其特征在于,所述方法包括:
    接收第一电压,确定第一电压值;
    计算所述第一电压值与被测线缆电压放大倍数的乘积,确定被测线缆电压值。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    接收所述被测线缆电压的有效值;
    根据所述第一电压的有效值与所述被测线缆电压的有效值的比值,确定所述被测线缆电压放大倍数。
PCT/CN2020/134698 2020-12-08 2020-12-08 交流电能检测装置 WO2022120612A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/134698 WO2022120612A1 (zh) 2020-12-08 2020-12-08 交流电能检测装置
EP20964557.1A EP4177613A4 (en) 2020-12-08 2020-12-08 AC CURRENT DETECTION DEVICE
CN202080027642.4A CN114916235A (zh) 2020-12-08 2020-12-08 交流电能检测装置
US18/155,550 US20230176094A1 (en) 2020-12-08 2023-01-17 Alternating-current energy detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/134698 WO2022120612A1 (zh) 2020-12-08 2020-12-08 交流电能检测装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/155,550 Continuation US20230176094A1 (en) 2020-12-08 2023-01-17 Alternating-current energy detection apparatus

Publications (1)

Publication Number Publication Date
WO2022120612A1 true WO2022120612A1 (zh) 2022-06-16

Family

ID=81974094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134698 WO2022120612A1 (zh) 2020-12-08 2020-12-08 交流电能检测装置

Country Status (4)

Country Link
US (1) US20230176094A1 (zh)
EP (1) EP4177613A4 (zh)
CN (1) CN114916235A (zh)
WO (1) WO2022120612A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510284A (zh) * 2011-09-23 2012-06-20 中达电通股份有限公司 一种交流电压信号和交流电流信号的校准方法及其装置
CN108072789A (zh) * 2016-11-11 2018-05-25 弗兰克公司 非接触式电参数测量系统
WO2020001933A1 (de) * 2018-06-28 2020-01-02 Siemens Mobility GmbH Sensoreinrichtung und verfahren zur bestimmung einer wechselspannung
WO2020109283A2 (en) * 2018-11-29 2020-06-04 Trust Power Ltd Non-invasive electricity monitoring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510284A (zh) * 2011-09-23 2012-06-20 中达电通股份有限公司 一种交流电压信号和交流电流信号的校准方法及其装置
CN108072789A (zh) * 2016-11-11 2018-05-25 弗兰克公司 非接触式电参数测量系统
WO2020001933A1 (de) * 2018-06-28 2020-01-02 Siemens Mobility GmbH Sensoreinrichtung und verfahren zur bestimmung einer wechselspannung
WO2020109283A2 (en) * 2018-11-29 2020-06-04 Trust Power Ltd Non-invasive electricity monitoring

Also Published As

Publication number Publication date
EP4177613A1 (en) 2023-05-10
CN114916235A (zh) 2022-08-16
EP4177613A4 (en) 2023-11-01
US20230176094A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
Li et al. Research on a composite voltage and current measurement device for HVDC networks
JP2022185097A (ja) 非接触電気的パラメータ測定システム
US8493054B2 (en) Calibration of non-contact voltage sensors
CN105575639B (zh) 一种宽频电流互感器
CN103913715B (zh) 高压计量箱误差检定系统及误差检定方法
CN107677980A (zh) 一种配电网互感器计量性能一体化检测平台及方法
JP2011158444A (ja) 二次電池の残存容量検出方法および装置
JP6588906B2 (ja) 三相交流電源用のコンデンサブッシングを監視するための方法及び設備
CN115219762B (zh) 一种非接触式电压传感器、电压测量系统及电压测量方法
CN113447698A (zh) 电压测量电路、方法及设备
CN103630797A (zh) 一种变压器匝间短路检测装置
WO2022120612A1 (zh) 交流电能检测装置
JP5767673B2 (ja) 電流波形測定装置
CN211086549U (zh) 一种交流充电设备的接地和错相检测电路
JP6128921B2 (ja) 非停電絶縁診断装置及び非停電絶縁診断方法
WO2015133212A1 (ja) 電圧測定装置および電圧測定方法
CN103460057A (zh) 利用可振动运动地构造的电极无接触地确定电势的方法以及设备
CN106841808B (zh) 中频变压器绕组交流电阻的辅助绕组测量方法
Buchhagen et al. Calculation of the frequency response of inductive medium voltage transformers
CN117157534A (zh) 电流检测装置、电能检测装置和电流检测装置的控制方法
CN102768349A (zh) 一种实现等电流共地测量的方法
US12020855B2 (en) Test and measurement instrument for determining magnetic core losses
JP6320077B2 (ja) 分圧誤差測定方法
Castelli The voltages in quadrature bridge with IVD
XiaoBing et al. Improvement on primary standard of dissipation factor at NIM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020964557

Country of ref document: EP

Effective date: 20230202

NENP Non-entry into the national phase

Ref country code: DE