WO2022120607A1 - 三维变形测量系统、方法、装置和存储介质 - Google Patents

三维变形测量系统、方法、装置和存储介质 Download PDF

Info

Publication number
WO2022120607A1
WO2022120607A1 PCT/CN2020/134693 CN2020134693W WO2022120607A1 WO 2022120607 A1 WO2022120607 A1 WO 2022120607A1 CN 2020134693 W CN2020134693 W CN 2020134693W WO 2022120607 A1 WO2022120607 A1 WO 2022120607A1
Authority
WO
WIPO (PCT)
Prior art keywords
map
deformation
measurement point
global
measurement
Prior art date
Application number
PCT/CN2020/134693
Other languages
English (en)
French (fr)
Inventor
刘肖琳
于起峰
傅愉
张跃强
曹动
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2020/134693 priority Critical patent/WO2022120607A1/zh
Publication of WO2022120607A1 publication Critical patent/WO2022120607A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Definitions

  • the present invention relates to the technical field of measuring devices, and more particularly, to a three-dimensional deformation measuring system, method, device and storage medium based on a three-dimensional image laser.
  • 3D deformation measurement of large structures such as bridges, tunnels, dams, stadium domes, etc. Its measurement is of great significance for the force analysis based on multi-dimensional deformation of the structure, for the condition monitoring, life prediction, and accident analysis of the structure.
  • the commonly used 3D deformation measurement instruments in the industry include lidar, automatic total station, total station scanner, etc.
  • lidar can obtain 3D point cloud information, the overall deformation of the structure can be obtained. However, since the point cloud information cannot realize the binding of the measurement points, the lidar cannot obtain the deformation information of a certain measurement point.
  • the automatic total station, total station scanner and other instruments scan in both pitch and yaw directions by using a precision turntable with an absolute position. Although it is possible to monitor the distance change of the measurement point in a certain direction, the deformation of the measurement point in the plane cannot be determined. At the same time, for large-scale long-distance measurements, instruments such as automatic total stations and total station scanners require ultra-high-precision turntables, which are often expensive and require regular adjustment.
  • the present invention provides a three-dimensional deformation measurement system, method, device and storage medium, which can realize the rapid measurement of three-dimensional deformation information while reducing the measurement cost.
  • an embodiment of the present invention provides a three-dimensional deformation measurement system, including:
  • a high-resolution camera used to obtain a first global map of the object to be measured before deformation, and a second global map of the object to be measured after deformation;
  • a telephoto camera used to obtain a first partial map of the object to be measured that includes preset measurement points before deformation, and a second partial map of the object to be measured that includes measurement points after deformation;
  • a laser rangefinder used to obtain the first depth information of the measurement point before the deformation of the object to be measured, and the second depth information of the measurement point after the deformation of the object to be measured;
  • the processor is configured to acquire three-dimensional deformation information of the measurement point according to the first global map, the first local map, the second global map, the second local map, the first depth information and the second depth information.
  • the A processor in terms of acquiring the three-dimensional deformation information of the measurement point according to the first global map, the first local map, the second global map, the second local map, the first depth information and the second depth information, the A processor, specifically for:
  • the three-dimensional deformation information of the measurement point is acquired according to the first in-plane pixel coordinates, the second in-plane pixel coordinates, the first depth information and the second depth information.
  • the processor is further used for:
  • the processor is specifically used for:
  • the processor is specifically used for:
  • the second in-plane pixel coordinates of the measurement point are acquired according to the second global map, the second local map and the global control point.
  • the processor is further used for:
  • the three-dimensional deformation measurement system further includes:
  • Theodolite is used to carry a telephoto camera and a laser rangefinder, and drive the telephoto camera and the laser rangefinder to rotate in the pitch and yaw directions.
  • the laser equivalent emission point of the laser rangefinder is set at the intersection of the rotation axes of the pitch and yaw directions of the theodolite.
  • the telephoto camera is coaxial with the laser rangefinder.
  • an embodiment of the present invention provides a three-dimensional deformation measurement method, comprising:
  • the three-dimensional deformation information of the measurement point is acquired according to the first global map, the first local map, the second global map, the second local map, the first depth information and the second depth information.
  • obtaining the three-dimensional deformation information of the measurement point according to the first global map, the first local map, the second global map, the second local map, the first depth information and the second depth information including:
  • the three-dimensional deformation information of the measurement point is acquired according to the first in-plane pixel coordinates, the second in-plane pixel coordinates, the first depth information and the second depth information.
  • the three-dimensional deformation measurement method further includes:
  • acquiring the first in-plane pixel coordinates of the measurement point according to the first global map and the first local map includes:
  • Obtaining the second in-plane pixel coordinates of the measurement point according to the second global map and the second local map includes:
  • the second in-plane pixel coordinates of the measurement point are acquired according to the second global map, the second local map and the global control point.
  • the deformation measurement method further includes:
  • an embodiment of the present invention further provides a three-dimensional deformation measurement device, comprising a memory and a processor, where the memory is used for storing computer-readable instructions, and the processor is used for executing the computer-readable instructions
  • the instructions are read to implement the method described in any of the preceding embodiments.
  • an embodiment of the present invention further provides a computer storage medium storing a computer program, which implements the method described in any one of the foregoing embodiments when the computer program is executed by a processor.
  • the invention adopts the image registration scheme between the global map and the local map, and cooperates with laser ranging, so as to realize the rapid measurement of the in-plane deformation in the image registration. Specifically, after using image registration to quickly lock the measurement point, laser ranging is used to measure the distance of the measurement point synchronously, and then the deformation of the measurement point in the distance direction is obtained. Therefore, the deformation measurement system provided by the present application can perform accurate three-dimensional deformation measurement without the need for a high-precision rotation system or adjustment of the rotation system, and has the advantages of simple operation, convenient maintenance, and low cost.
  • FIG. 1 is a block diagram of a three-dimensional deformation measurement system according to an embodiment of the present invention.
  • FIG. 2 is an application scenario diagram of a three-dimensional deformation measurement system according to an embodiment of the present invention.
  • Fig. 3 is the schematic diagram of the three-dimensional deformation measurement system in Fig. 2;
  • Fig. 4 is the schematic diagram of the laser coaxial telephoto camera in Fig. 3;
  • FIG. 5 is a schematic diagram of the operation of the three-dimensional deformation measurement system according to an embodiment of the present invention before the object to be measured is deformed;
  • FIG. 6 is a schematic diagram of an operation mode of the three-dimensional deformation measurement system according to an embodiment of the present invention after the object to be measured is deformed;
  • FIG. 7 is a schematic flowchart of a three-dimensional deformation measurement method according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of the process 103 in FIG. 7 .
  • An embodiment of the present invention provides a three-dimensional deformation measurement system 1, as shown in FIG. 1, in an embodiment of the present invention, the three-dimensional deformation system 1 includes:
  • the high-resolution camera 11 is used to obtain a first global map of the object to be measured before deformation, and a second global map of the object to be measured after deformation;
  • the telephoto camera 12 is used to obtain a first partial map of the object to be measured that includes preset measurement points before deformation, and a second partial map of the object to be measured that includes measurement points after deformation;
  • the laser range finder 13 is used to obtain the first depth information of the measurement point before the deformation of the object to be measured, and the second depth information of the measurement point after the deformation of the object to be measured;
  • the processor 14 is configured to acquire three-dimensional deformation information of the measurement point according to the first global map, the first local map, the second global map, the second local map, the first depth information and the second depth information.
  • the high-resolution camera 11 can be a camera capable of collecting large images. Based on this, the three-dimensional deformation measurement system 1 can be applied to large-scale projects where the distance of the shooting object is hundreds of meters and the length and width of the shooting object are both hundreds of meters. , large structures, etc.
  • the processor 14 in terms of acquiring the three-dimensional deformation information of the measurement point according to the first global map, the first local map, the second global map, the second local map, the first depth information and the second depth information, the processor 14, Specifically for:
  • the first in-plane pixel coordinates of the measurement point are acquired according to the first global map and the first local map
  • the second in-plane pixel coordinates of the measurement point are acquired according to the second global map and the second local map.
  • the in-plane pixel coordinates refer to the pixel coordinates of the measurement point in the acquired global map, which are used to describe the position information of the measurement point.
  • an image registration method can be adopted, that is, a local image including measurement points is captured by the telephoto camera 12, and then the local image is matched with the global image captured by the high-resolution camera 11, In this way, the locking of the measurement point is realized, and then the in-plane pixel coordinates of the measurement point are obtained.
  • the processor 14 may acquire the three-dimensional deformation information of the measurement point according to the first in-plane pixel coordinates, the second in-plane pixel coordinates, the first depth information and the second depth information.
  • the processor 14 is also used to set the global control point. Specifically, before the whole measurement process, a stable position can be selected from the object to be measured, that is, it does not change with the change of the engineering structure and can be used as a reference point for the change of the engineering structure as the global control point. Thus, a coordinate system is established based on the global control point to ensure the uniqueness of the global pixel coordinates of each position.
  • the processor 14 is specifically configured to: acquire the measurement points according to the first global map, the first local map and the global control points
  • the processor 14 is specifically used for: according to the second global map, the second local map and the global map
  • the control point gets the second in-plane pixel coordinates of the measurement point.
  • the processor 14 is further configured to obtain the angle information of the measuring instrument according to the first global map and the first partial map, or obtain the angle of the three-dimensional deformation system 1 according to the second global map and the second partial map information, so as to obtain the path information to the next measurement point according to the angle information.
  • the running path of the three-dimensional deformation system 1 is optimized, and the dependence on the high-precision turntable is eliminated while saving time.
  • the theodolite is used as a carrier for driving the movement of the measuring instrument.
  • the three-dimensional deformation measurement system 1 further includes a theodolite 15 for carrying the telephoto camera 12 and the laser rangefinder 13 and driving the telephoto camera 12 and the laser rangefinder 13 to rotate in the pitch and yaw directions.
  • the laser equivalent emission point of the laser range finder 13 is set on the theodolite 15 .
  • the telephoto camera 12 and the laser rangefinder 13 are coaxially arranged.
  • the present invention adopts the image registration scheme between the global map and the local map, and cooperates with the laser ranging, so as to realize the rapid measurement of the in-plane deformation in the image registration. Specifically, after using image registration to quickly lock the measurement point, laser ranging is used to measure the distance of the measurement point synchronously, and then the deformation of the measurement point in the distance direction is obtained. Therefore, the deformation measurement system provided by the present application can perform accurate three-dimensional deformation measurement without the need for a high-precision rotation system or adjustment of the rotation system, and has the advantages of simple operation, convenient maintenance, and low cost.
  • the three-dimensional deformation measurement system 1 can be applied to a distance of several hundred meters from the shooting object, and the length and width of the shooting object are both hundreds of meters, which belongs to large-scale projects and large-scale structures. scene.
  • the three-dimensional deformation measurement system 1 includes a high-resolution camera 11 (not shown), a laser coaxial telephoto camera 16 , a processor 14 (not shown) and a theodolite 15 .
  • the theodolite 15 is used to carry the laser coaxial telephoto camera 16 , and can drive the laser coaxial telephoto camera 16 around the rotation axis AA′ of the pitch direction and the yaw direction
  • the rotation axis BB' rotates.
  • the laser coaxial telephoto camera 16 may include a telephoto camera 12 and a laser rangefinder 13.
  • the telephoto camera 12 may include an imaging lens 121 and an imager 122.
  • the laser rangefinder 13 may include an optical fiber 131 , an optical fiber connection port 132 provided on the side wall of the telephoto camera 12 , and a beam splitter 133 provided inside the telephoto camera 12 and located between the imaging lens 121 and the imager 122 .
  • the optical fiber connection port 132 can emit laser light to the inside of the telephoto camera 12 , and is reflected by the beam splitter 133 and emitted from the imaging lens 121 .
  • the equivalent laser emission point of the laser range finder 13 is located at the rotation axis AA' and offset of the theodolite 15 in the pitch direction. At the intersection G of the rotation axis BB' of the navigation direction.
  • At least one global control point is determined in the object to be measured, denoted as P0, and coordinates are established based on the global control point P0, and its coordinates are set as (x0, y0 ).
  • the high-resolution camera 11 is activated, and a global image of the current state of the object to be measured is photographed, which is denoted as F0.
  • F0 the global image of the current state of the object to be measured.
  • the higher the resolution of the global image the better.
  • Activate the telephoto camera 12 randomly shoot a local image of the object to be measured, register the local image with the global image F0, determine the current angle information of the telephoto camera 12, and determine the direction to the first measurement through the angle information Point to shoot path information.
  • the telephoto camera 12 arrives at the photographing position of the measurement point Pn driven by the theodolite 15, the telephoto camera 12 is activated to photograph the partial image Fn including the measurement point Pn.
  • the measurement point Pn is located in the center of the local image Fn.
  • the resolution of the local image captured by the telephoto camera 12 is often higher than the resolution of the global image captured by the high-resolution camera 11. Therefore, by having a higher resolution local image, the global image of the measurement point can be improved. The determination accuracy of the pixel coordinates in the image.
  • the in-plane pixel coordinates (xn, yn) of the measurement point Pn can be determined.
  • the laser rangefinder is turned on to obtain the depth information zn of the measurement point Pn.
  • the laser range finder can use higher-precision wide-spectrum laser ranging, and thus, the measurement accuracy of depth information is improved by 6-7 orders of magnitude compared to the existing laser ranging accuracy.
  • the current angle information of the current telephoto camera 12 can be determined according to the registration information of the current local image Fn and the global image F0, and the path information to the next measurement point for shooting can be determined through the angle information.
  • the high-resolution camera 11 is activated again to take a picture of the deformed global image of the object to be measured, denoted as F'0.
  • the global graph F'0 is precisely matched with the global control point P0 of the global graph F0, and the deformed global graph F'0 is given the same coordinates as the global graph F0.
  • the telephoto camera 12 when the telephoto camera 12 reaches the photographing position of the measurement point Pn under the driving of the theodolite 15, the telephoto camera 12 is activated to photograph the deformed partial image F'n including the measurement point Pn.
  • the measurement point Pn is located in the center of the local image F'n.
  • the in-plane pixel coordinates (x'n, y'n) By matching the local map F'n with the global map F'0, and based on the coordinates established by the global control point P0, the in-plane pixel coordinates (x'n, y'n). At the same time, turn on the laser rangefinder to obtain the depth information z'n of the measurement point Pn after the deformation of the object to be measured.
  • the current angle information of the current telephoto camera 12 can be determined according to the registration information of the current local image F'n and the global image F'0, and the path to the next measurement point for shooting can be determined through the angle information. information.
  • the three-dimensional deformation information Xn(x'n-xn), Yn(y'n-yn) and Zn(z'n-zn) of the measurement point Pn can be obtained.
  • FIG. 7 is a schematic flowchart of a three-dimensional deformation measurement method according to an embodiment of the present invention. Referring to FIG. 7 , the method includes:
  • 100 Obtain a first global map of the object to be measured before deformation, and a second global map of the object to be measured after deformation;
  • an implementation manner of processing 103 is given, as shown in FIG. 8 , including:
  • the method further includes: setting a global control point.
  • process 104 can be implemented in the following ways:
  • the first in-plane pixel coordinates of the measurement point are acquired according to the first global map, the first local map and the global control point.
  • Process 105 can be implemented in the following ways:
  • the second in-plane pixel coordinates of the measurement point are acquired according to the second global map, the second local map and the global control point.
  • the method further includes: acquiring angle information of the three-dimensional deformation system according to the first global map and the first local map, or acquiring angle information of the three-dimensional deformation system according to the second global map and the second local map. Obtain the path information to the next measurement point based on the angle information.
  • embodiments of the present invention also provide a computer storage medium storing a computer program for implementing the three-dimensional deformation measurement method provided by the foregoing embodiments or implementations of the present invention when executed.
  • the storage medium may include a hard disk, a floppy disk, an optical disk, a magnetic tape, a magnetic disk, a USB flash drive, a flash memory, and the like.
  • An embodiment of the present invention further provides a three-dimensional deformation measurement device, the device includes a memory for storing computer-readable instructions; a processor for executing the computer-readable instructions to implement the foregoing embodiments of the present invention or the implementations provided by the implementations. 3D deformation measurement method.
  • the apparatus may further include an input and output interface for performing data communication.
  • the device may be a computer, an intelligent terminal, a server, and the like.

Abstract

一种三维变形测量系统、方法、装置和存储介质,其中,三维变形测量系统(1)包括:高分辨相机(11),用于获取待测量物体在变形前的第一全局图,以及待测量物体在变形后的第二全局图;望远相机(12),用于获取待测量物体在变形前的包含预设的测量点的第一局部图,以及待测量物体在变形后的包含测量点的第二局部图;激光测距仪(13),用于获取测量点在待测量物体变形前的第一深度信息,以及测量点在待测量物体变形后的第二深度信息;处理器(14),用于根据第一全局图、第一局部图、第二全局图、第二局部图、第一深度信息和第二深度信息获取测量点的三维变形信息。可以在降低测量成本的同时实现三维变形信息的快速测量。

Description

三维变形测量系统、方法、装置和存储介质 技术领域
本发明涉及测量装置技术领域,更为具体而言,涉及一种基于三维影像激光的三维变形测量系统、方法、装置和存储介质。
背景技术
针对桥梁、隧道、大坝、体育场穹顶等大型结构三维变形测量的具有重大需求,其测量对于基于结构多维变形的受力分析,对于结构的状态监测、寿命预测、事故分析等均有重要意义。目前,业内常用的三维变形测量仪器包括激光雷达、自动全站仪、全站扫描仪等。
激光雷达虽然可以获取三维点云信息,从而获取结构的整体形变。但是,由于点云信息无法实现测量点的绑定,因此,激光雷达无法获取某一个测量点的变形信息。
而自动全站仪、全站扫描仪等仪器,通过采用带有绝对位置的精密转台,在俯仰和偏航两个方向上扫描。虽然能够实现监测测量点在某个方向上距离上的变化,但是无法确定该测量点在面内的变形。同时,对于大型远距离的测量,自动全站仪、全站扫描仪等仪器均需要超高精度的转台,而转台往往价格昂贵、且需要定期调校。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种三维变形测量系统、方法、装置和存储介质,在降低测量成本的同时实现三维变形信息的快速测量。
根据本发明的第一方面,本发明的实施方式提供了一种三维变形测量系统,包括:
高分辨相机,用于获取待测量物体在变形前的第一全局图,以及待测量物体在变形后的第二全局图;
望远相机,用于获取待测量物体在变形前的包含预设的测量点的第一局部 图,以及待测量物体在变形后的包含测量点的第二局部图;
激光测距仪,用于获取测量点在待测量物体变形前的第一深度信息,以及测量点在待测量物体变形后的第二深度信息;
处理器,用于根据第一全局图、第一局部图、第二全局图、第二局部图、第一深度信息和第二深度信息获取测量点的三维变形信息。
在本发明的一些实施方式中,在根据第一全局图、第一局部图、第二全局图、第二局部图、第一深度信息和第二深度信息获取测量点的三维变形信息方面,该处理器,具体用于:
根据第一全局图和第一局部图获取测量点的第一面内像素坐标,以及根据第二全局图和第二局部图获取测量点的第二面内像素坐标;
根据第一面内像素坐标、第二面内像素坐标、第一深度信息和第二深度信息获取测量点的三维变形信息。
在本发明的一些实施方式中,该处理器,还用于:
设定全局控制点;
其中,在根据第一全局图和第一局部图获取测量点的第一面内像素坐标方面,该处理器,具体用于:
根据第一全局图、第一局部图和全局控制点获取测量点的第一面内像素坐标;
在根据第二全局图和第二局部图获取测量点的第二面内像素坐标方面,该处理器,具体用于:
根据第二全局图、第二局部图和全局控制点获取测量点的第二面内像素坐标。
在本发明的一些实施方式中,该处理器,还用于:
根据第一全局图和第一局部图获取三维变形测量系统的角度信息,或
根据第二全局图和第二局部图获取三维变形测量系统的角度信息;
根据角度信息获取前往下一个测量点的路径信息。
在本发明的一些实施方式中,该三维变形测量系统,还包括:
经纬仪,用于承载望远相机和激光测距仪,并带动望远相机和激光测距仪在俯仰和偏航方向上转动。
在本发明的一些实施方式中,激光测距仪的激光等效发射点设于经纬仪的俯仰和偏航方向的旋转轴的交点处。
在本发明的一些实施方式中,望远相机与激光测距仪同轴设置。
根据本发明的第二方面,本发明的实施方式提供了一种三维变形测量方法,包括:
获取待测量物体在变形前的第一全局图,以及待测量物体在变形后的第二全局图;
获取待测量物体在变形前的包含预设的测量点的第一局部图,以及待测量物体在变形后的包含测量点的第二局部图;
获取测量点在待测量物体变形前的第一深度信息,以及测量点在待测量物体变形后的第二深度信息;
根据第一全局图、第一局部图、第二全局图、第二局部图、第一深度信息和第二深度信息获取测量点的三维变形信息。
在本发明的一些实施方式中,根据第一全局图、第一局部图、第二全局图、第二局部图、第一深度信息和第二深度信息获取测量点的三维变形信息,包括:
根据第一全局图和第一局部图获取测量点的第一面内像素坐标,以及根据第二全局图和第二局部图获取测量点的第二面内像素坐标;
根据第一面内像素坐标、第二面内像素坐标、第一深度信息和第二深度信息获取测量点的三维变形信息。
在本发明的一些实施方式中,获取待测量物体在变形前的第一全局图,以及待测量物体在变形后的第二全局图之前,该三维变形测量方法,还包括:
设定全局控制点;
其中,根据第一全局图和第一局部图获取测量点的第一面内像素坐标包括:
根据第一全局图、第一局部图和全局控制点获取测量点的第一面内像素坐标;
根据第二全局图和第二局部图获取测量点的第二面内像素坐标包括:
根据第二全局图、第二局部图和全局控制点获取测量点的第二面内像素坐标。
在本发明的一些实施方式中,该变形测量方法,还包括:
根据第一全局图和第一局部图获取三维变形测量系统的角度信息,或
根据第二全局图和第二局部图获取三维变形测量系统的角度信息;
根据角度信息获取前往下一个测量点的路径信息。
根据本发明的第三方面,本发明的实施方式还提供了一种三维变形测量装置,包括存储器和处理器,所述存储器用于存储计算机可读指令,所述处理器用于执行所述计算机可读指令以实现前述任一项实施方式所述的方法。
根据本发明的第四方面,本发明的实施方式还提供了一种计算机存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现前述任一项实施方式所述的方法。
本发明采用全局图和局部图之间的图像配准方案,同时配合激光测距,从而在图像配准中实现面内变形的快速测量。具体而言,在采用图像配准快速锁定测量点后,同步采用激光测距对测量点的距离进行测量,进而获取测量点距离方向上的变形。由此,本申请所提供的变形测量系统,无需高精度旋转系统,也无需对旋转系统进行调校即可进行精准的三维变形测量,具有操作简单、维护方便及成本低廉等优点。
附图说明
图1是根据本发明一种实施方式的三维变形测量系统的框图;
图2是根据本发明一种实施例的三维变形测量系统的应用场景图;
图3是图2中三维变形测量系统的示意图;
图4是图3中激光同轴望远相机的示意图;
图5是根据本发明一种实施例的三维变形测量系统在待测量物体变形前的运作方式的示意图;
图6是根据本发明一种实施例的三维变形测量系统在待测量物体变形后的运作方式的示意图;
图7是根据本发明一种实施方式的三维变形测量方法的流程示意图;
图8是图7中处理103的流程示意图。
具体实施方式
以下结合附图和具体实施方式对本发明的各个方面进行详细阐述。其中,众所周知的模块、单元及其相互之间的连接、链接、通信或操作没有示出或未作详细说明。并且,所描述的特征、架构或功能可在一个或一个以上实施方式中以任何方式组合。本领域技术人员应当理解,下述的各种实施方式只用于举例说明,而非用于限制本发明的保护范围。还可以容易理解,本文所述和附图所示的各实施方式中的模块或单元或处理方式可以按各种不同配置进行组合和设计。
本发明的一种实施方式提供了一种三维变形测量系统1,如图1所示,在本发明的实施方式中,该三维变形系统1包括:
高分辨相机11,用于获取待测量物体在变形前的第一全局图,以及待测量物体在变形后的第二全局图;
望远相机12,用于获取待测量物体在变形前的包含预设的测量点的第一局部图,以及待测量物体在变形后的包含测量点的第二局部图;
激光测距仪13,用于获取测量点在待测量物体变形前的第一深度信息,以及测量点在待测量物体变形后的第二深度信息;
处理器14,用于根据第一全局图、第一局部图、第二全局图、第二局部图、第一深度信息和第二深度信息获取测量点的三维变形信息。
其中,高分辨相机11可以是一种能够采集大幅图像的相机,基于此,该三维变形测量系统1可以应用于拍摄对象距离数百米远,拍摄对象幅面长宽均在数百米的大型工程、大型结构等场景。
在本实施方式中,在根据第一全局图、第一局部图、第二全局图、第二局部图、第一深度信息和第二深度信息获取测量点的三维变形信息方面,处理器14,具体用于:
根据第一全局图和第一局部图获取测量点的第一面内像素坐标,以及根据第二全局图和第二局部图获取测量点的第二面内像素坐标。在本实施方式中,该面内像素坐标指,测量点在获取到的全局图中的像素坐标,用以描述该测量点的位置信息。
具体而言,在本实施方式中,可以采用图像配准的方式,即,通过望远相 机12拍摄包含测量点的局部图,再将局部图与高分辨相机11所拍摄的全局图进行匹配,从而实现测量点的锁定,继而获取测量点的面内像素坐标。
基于此,处理器14可以根据第一面内像素坐标、第二面内像素坐标、第一深度信息和第二深度信息获取测量点的三维变形信息。
同时,为了保证待测量物体中包含测量点在内的每个位置的全局像素坐标是唯一确定的,继而简化后续的处理。在本实施方式中,处理器14还用于设定全局控制点。具体而言,在整个测量过程之前,可以在待测量物体中选取1个稳定的,即,不随着工程结构的变化而发生变化,能够作为工程结构变化的一个参考点的位置作为全局控制点,从而基于该全局控制点建立坐标系,确保每个位置的全局像素坐标的唯一性。
基于此,在根据第一全局图和第一局部图获取测量点的第一面内像素坐标方面,处理器14具体用于:根据第一全局图、第一局部图和全局控制点获取测量点的第一面内像素坐标;在根据第二全局图和第二局部图获取测量点的第二面内像素坐标方面,处理器14具体用于:根据第二全局图、第二局部图和全局控制点获取测量点的第二面内像素坐标。由此,可以保证第一面内像素坐标和第二面内像素坐标的唯一性。
此外,在本实施方式中,处理器14还用于根据第一全局图和第一局部图获取测量仪的角度信息,或根据第二全局图和第二局部图获取该三维变形系统1的角度信息,从而根据该角度信息获取前往下一个测量点的路径信息。由此,优化该三维变形系统1的运行路径,在节省时间的同时,摆脱对高精度转台的依赖。
基于此,在本实施方式中,采用经纬仪作为带动测量仪器运动的载体。具体而言,该三维变形测量系统1还包括经纬仪15,用于承载望远相机12和激光测距仪13,并带动望远相机12和激光测距仪13在俯仰和偏航方向上转动。
进一步的,为了保证激光测距仪13所测的深度信息与获得的面内像素坐标具有明确的关系,在本实施方式中,激光测距仪13的激光等效发射点设于该经纬仪15的俯仰和偏航方向的旋转轴的交点处,且望远相机12与激光测距仪13为同轴设置。具体而言,通过上述设置,保证了激光测距仪13所测的深度信息和面内像素坐标天然紧耦合,由此,避免了获取到深度信息和面内像素 坐标后还需要进行其他数据处理使两者相关联的情况,从而导致其他数据处理方法的引入使深度信息和面内像素坐标之间产生新的标定误差。换句话说,采用上述结构可以提升本实施方式所提供的三维变形测量系统的测量精度。
由此,本发明采用全局图和局部图之间的图像配准方案,同时配合激光测距,从而在图像配准中实现面内变形的快速测量。具体而言,在采用图像配准快速锁定测量点后,同步采用激光测距对测量点的距离进行测量,进而获取测量点距离方向上的变形。由此,本申请所提供的变形测量系统,无需高精度旋转系统,也无需对旋转系统进行调校即可进行精准的三维变形测量,具有操作简单、维护方便及成本低廉等优点。
以下,将结合具体实施例对本发明所提供的三维变形测量系统1进行说明。
如图2和图3所示,在本实施例中,该三维变形测量系统1可以应用于距离拍摄对象距离数百米远,拍摄对象幅面长宽均在数百米,属于大型工程、大型结构的场景。具体而言,该三维变形测量系统1包括高分辨相机11(未示出)、激光同轴望远相机16、处理器14(未示出)和经纬仪15。
如图3所示,在本实施例中,经纬仪15用于承载激光同轴望远相机16,并且可以带动激光同轴望远相机16绕着俯仰方向的旋转轴A-A’和偏航方向的旋转轴B-B’进行转动。
在本实施例中,激光同轴望远相机16可以包括望远相机12和激光测距仪13,如图4所示,望远相机12可以包括成像镜头121和成像仪122,激光测距仪13可以包括光纤131、设于望远相机12侧壁上的光纤连接口132以及设于望远相机12内部且位于成像镜头121和成像仪122之间的分光镜133。
其中,光纤连接口132可以向望远相机12的内部发射激光,经由分光镜133的反射,从成像镜头121射出。同时,为了保证望远相机12和激光测距仪13同轴设置,在本实施例中,激光测距仪13的等效激光发射点位于经纬仪15的俯仰方向的旋转轴A-A’和偏航方向的旋转轴B-B’的交点G处。
以下将参照图5和图6对本实施例所提供的三维变形测量系统1的运作方式进行说明。
在本实施例中,如图5所示,首先,在待测物体中确定至少1个全局控制 点,记为P0,并基于该全局控制点P0建立坐标,设定其坐标为(x0,y0)。启用高分辨相机11,拍摄下待测量物体当前状态的全局图,记为F0,该全局图的分辨率越高越好。启用望远相机12,随机拍摄一幅待测量物体的局部图,将该局部图与全局图F0进行配准,确定望远相机12当前的角度信息,并通过该角度信息确定前往第一个测量点进行拍摄的路径信息。
在本实施例中,待测量物体上事先设置好了若干个测量点,例如,假定设定了100个测量点,记为Pn(n=1,2,3…100)。当望远相机12在经纬仪15的带动下到达测量点Pn的拍摄位置时,启用望远相机12,拍摄下包含该测量点Pn的局部图Fn。优选的,在拍摄时,保证测量点Pn位于局部图Fn的中心。
一般而言,望远相机12拍摄的局部图的分辨率往往是高于高分辨相机11所拍摄的全局图的分辨率,因此,通过具有更高分辨率的局部图,可以提升测量点在全局图中面内像素坐标的判定精度。
基于此,通过将局部图Fn与全局图F0进行匹配,基于其中由全局控制点P0建立的坐标,即可确定测量点Pn的面内像素坐标(xn,yn)。同时,开启激光测距仪,获取测量点Pn的深度信息zn。
在本实施例中,激光测距仪可以采用更高精度的宽光谱激光测距,由此,深度信息的测量精度相对于现有的激光测距精度提升了6-7个数量级。
测量完一个点后,可以根据当前局部图Fn与全局图F0的配准信息确定当前望远相机12当前的角度信息,并通过该角度信息确定前往下一个测量点进行拍摄的路径信息。
当待测量物品完成变形后,如图6所示,再次启用高分辨相机11,拍摄下待测量物体变形后的全局图,记为F’0,同样的,该全局图的分辨率也是越高越好。将全局图F’0与全局图F0的全局控制点P0进行精确匹配,为变形后的全局图F’0赋予与全局图F0相同的坐标。启用望远相机12,随机拍摄一幅待测量物体的局部图,将该局部图与全局图F’0进行配准,确定望远相机12当前的角度信息,并通过该角度信息确定前往第一个测量点进行拍摄的路径信息。
在本实施例中,当望远相机12在经纬仪15的带动下到达测量点Pn的拍摄位置时,启用望远相机12,拍摄下变形后的包含该测量点Pn的局部图F’n。 优选的,在拍摄时,保证测量点Pn位于局部图F’n的中心。
通过将局部图F’n与全局图F’0进行匹配,基于其中由全局控制点P0建立的坐标,即可确定在待测量物体变形后的测量点Pn的面内像素坐标(x’n,y’n)。同时,开启激光测距仪,获取在待测量物体变形后的测量点Pn的深度信息z’n。
测量完一个点后,可以根据当前局部图F’n与全局图F’0的配准信息确定当前望远相机12当前的角度信息,并通过该角度信息确定前往下一个测量点进行拍摄的路径信息。
基于此,即可获得测量点Pn的三维变形信息Xn(x’n-xn),Yn(y’n-yn)和Zn(z’n-zn)。
图7是根据本发明一种实施方式的三维变形测量方法的流程示意图,参照图7,该方法包括:
100:获取待测量物体在变形前的第一全局图,以及待测量物体在变形后的第二全局图;
101:获取待测量物体在变形前的包含预设的测量点的第一局部图,以及待测量物体在变形后的包含测量点的第二局部图;
102:获取测量点在待测量物体变形前的第一深度信息,以及测量点在待测量物体变形后的第二深度信息;
103:根据第一全局图、第一局部图、第二全局图、第二局部图、第一深度信息和第二深度信息获取所述测量点的三维变形信息。
在本实施方式中,给出了一种处理103的实现方式,如图8所示,包括:
104:根据第一全局图和第一局部图获取测量点的第一面内像素坐标;
105:根据第二全局图和第二局部图获取测量点的第二面内像素坐标;
106:根据第一面内像素坐标、第二面内像素坐标、第一深度信息和第二深度信息获取测量点的三维变形信息。
为了保证待测量物体中包含测量点在内的每个位置的全局像素坐标是唯一确定的,继而简化后续的处理。在本实施方式中,在处理100之前,该方法还包括:设定全局控制点。
基于此,处理104可以通过以下方式实现:
根据第一全局图、第一局部图和全局控制点获取测量点的第一面内像素坐标。
处理105可以通过以下方式实现:
根据第二全局图、第二局部图和全局控制点获取测量点的第二面内像素坐标。
同时,为了优化三维变形系统的运行路径,在节省时间的同时,摆脱对高精度转台的依赖。在本实施方式中,该方法还包括:根据第一全局图和第一局部图获取三维变形系统的角度信息,或根据第二全局图和第二局部图获取三维变形系统的角度信息。根据该角度信息获取前往下一个测量点的路径信息。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明可借助软件结合硬件平台的方式来实现。基于这样的理解,本发明的技术方案对背景技术做出贡献的全部或者部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施方式或者实施方式的某些部分所述的方法。
因此,本发明实施方式还提供了一种计算机存储介质,存储有计算机程序,用于在执行时实现本发明前述实施方式或实现方式提供的三维变形测量方法。例如,所述存储介质可以包括硬盘、软盘、光盘、磁带、磁盘、优盘、闪存等。
本发明实施方式还提供了一种三维变形测量装置,该装置包括存储器,用于存储计算机可读指令;处理器,用于执行该计算机可读指令从而实现本发明前述实施方式或实现方式所提供的三维变形测量方法。可选的,在本发明实施方式的一种实现方式中,所述装置还可以包括用于进行数据通信的输入输出接口。例如,所述装置可以是计算机、智能终端、服务器等。
本文所公开的具体实施方式仅用于举例说明本发明,对于本领域技术人员而言,显然可以根据本文的教导进行各种修改,可以采用各种等同的方式实施本发明,因此,本发明上述公开的特定的实施方式仅仅是示例性的,其保护范围不受在此公开的结构或设计的细节所限,除非在权利要求中另有说明。因此,上述公开的特定的示例性的实施方式可进行各种替换、组合或修改,其所有的变形都落入本文公开的范围内。

Claims (10)

  1. 一种三维变形测量系统,其特征在于,所述三维变形测量系统,包括:
    高分辨相机,用于获取待测量物体在变形前的第一全局图,以及所述待测量物体在变形后的第二全局图;
    望远相机,用于获取所述待测量物体在变形前的包含预设的测量点的第一局部图,以及所述待测量物体在变形后的包含所述测量点的第二局部图;
    激光测距仪,用于获取所述测量点在所述待测量物体变形前的第一深度信息,以及所述测量点在所述待测量物体变形后的第二深度信息;
    处理器,用于根据所述第一全局图、所述第一局部图、所述第二全局图、所述第二局部图、所述第一深度信息和所述第二深度信息获取所述测量点的三维变形信息。
  2. 根据权利要求1所述的三维变形测量系统,其特征在于,在根据所述第一全局图、所述第一局部图、所述第二全局图、所述第二局部图、所述第一深度信息和所述第二深度信息获取所述测量点的三维变形信息方面,所述处理器,具体用于:
    根据所述第一全局图和所述第一局部图获取所述测量点的第一面内像素坐标,以及根据所述第二全局图和所述第二局部图获取所述测量点的第二面内像素坐标;
    根据所述第一面内像素坐标、所述第二面内像素坐标、所述第一深度信息和所述第二深度信息获取所述测量点的三维变形信息。
  3. 根据权利要求2所述的三维变形测量系统,其特征在于,所述处理器,还用于:
    设定全局控制点;
    其中,在根据所述第一全局图和所述第一局部图获取所述测量点的第一面内像素坐标方面,所述处理器,具体用于:
    根据所述第一全局图、所述第一局部图和所述全局控制点获取所述测量点的第一面内像素坐标;
    在根据所述第二全局图和所述第二局部图获取所述测量点的第二面内像素坐标方面,所述处理器,具体用于:
    根据所述第二全局图、所述第二局部图和所述全局控制点获取所述测量点的第二面内像素坐标。
  4. 根据权利要求1-3中任意一项所述的三维变形测量系统,其特征在于,所述处理器,还用于:
    根据所述第一全局图和所述第一局部图获取所述三维变形测量系统的角度信息,或
    根据所述第二全局图和所述第二局部图获取所述三维变形测量系统的角度信息;
    根据所述角度信息获取前往下一个测量点的路径信息。
  5. 根据权利要求1所述的三维变形测量系统,其特征在于,所述三维变形测量系统,还包括:
    经纬仪,用于承载所述望远相机和所述激光测距仪,并带动所述望远相机和所述激光测距仪在俯仰和偏航方向上转动。
  6. 根据权利要求5所述的三维变形测量系统,其特征在于,
    所述激光测距仪的激光等效发射点设于所述经纬仪的俯仰和偏航方向的旋转轴的交点处。
  7. 根据权利要求1-6中任意一项所述的三维变形测量系统,其特征在于,
    所述望远相机与所述激光测距仪同轴设置。
  8. 一种三维变形测量方法,其特征在于,所述变形测量方法,包括:
    获取待测量物体在变形前的第一全局图,以及所述待测量物体在变形后的第二全局图;
    获取所述待测量物体在变形前的包含预设的测量点的第一局部图,以及所 述待测量物体在变形后的包含所述测量点的第二局部图;
    获取所述测量点在所述待测量物体变形前的第一深度信息,以及所述测量点在所述待测量物体变形后的第二深度信息;
    根据所述第一全局图、所述第一局部图、所述第二全局图、所述第二局部图、所述第一深度信息和所述第二深度信息获取所述测量点的三维变形信息。
  9. 一种三维变形测量装置,包括存储器和处理器,其特征在于,
    所述存储器用于存储计算机可读指令;
    所述处理器用于执行所述计算机可读指令以实现如权利要求8所述的方法。
  10. 一种可读计算机存储介质,存储有计算机程序,其特征在于,所述计算机程序在被处理器执行时实现如权利要求8所述的方法。
PCT/CN2020/134693 2020-12-08 2020-12-08 三维变形测量系统、方法、装置和存储介质 WO2022120607A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/134693 WO2022120607A1 (zh) 2020-12-08 2020-12-08 三维变形测量系统、方法、装置和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/134693 WO2022120607A1 (zh) 2020-12-08 2020-12-08 三维变形测量系统、方法、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2022120607A1 true WO2022120607A1 (zh) 2022-06-16

Family

ID=81974087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134693 WO2022120607A1 (zh) 2020-12-08 2020-12-08 三维变形测量系统、方法、装置和存储介质

Country Status (1)

Country Link
WO (1) WO2022120607A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117491004A (zh) * 2023-12-29 2024-02-02 三河市皓智精密机械制造有限公司 一种高精密主轴性能测试方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015183550A1 (en) * 2014-05-27 2015-12-03 Bourbaki 13, Inc. Determining three-dimensional information from projections or placement of two-dimensional patterns
CN107152917A (zh) * 2017-07-24 2017-09-12 哈尔滨工业大学 一种立体视觉结构三维变形全场测量方法
CN108458665A (zh) * 2018-02-11 2018-08-28 中铁八局集团第二工程有限公司 利用近景摄影进行隧道快速形变测量的方法
CN109029277A (zh) * 2018-06-27 2018-12-18 常州沃翌智能科技有限公司 一种隧道形变监测系统及方法
CN111043984A (zh) * 2020-01-09 2020-04-21 深圳大学 隧道三维变形监测方法及相关装置
CN111754573A (zh) * 2020-05-19 2020-10-09 新拓三维技术(深圳)有限公司 一种扫描方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015183550A1 (en) * 2014-05-27 2015-12-03 Bourbaki 13, Inc. Determining three-dimensional information from projections or placement of two-dimensional patterns
CN107152917A (zh) * 2017-07-24 2017-09-12 哈尔滨工业大学 一种立体视觉结构三维变形全场测量方法
CN108458665A (zh) * 2018-02-11 2018-08-28 中铁八局集团第二工程有限公司 利用近景摄影进行隧道快速形变测量的方法
CN109029277A (zh) * 2018-06-27 2018-12-18 常州沃翌智能科技有限公司 一种隧道形变监测系统及方法
CN111043984A (zh) * 2020-01-09 2020-04-21 深圳大学 隧道三维变形监测方法及相关装置
CN111754573A (zh) * 2020-05-19 2020-10-09 新拓三维技术(深圳)有限公司 一种扫描方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117491004A (zh) * 2023-12-29 2024-02-02 三河市皓智精密机械制造有限公司 一种高精密主轴性能测试方法及系统
CN117491004B (zh) * 2023-12-29 2024-03-29 三河市皓智精密机械制造有限公司 一种高精密主轴性能测试方法及系统

Similar Documents

Publication Publication Date Title
US10198004B2 (en) Method and apparatus for obtaining range image with UAV, and UAV
JP5992184B2 (ja) 画像データ処理装置、画像データ処理方法および画像データ処理用のプログラム
CN101603812B (zh) 一种超高速实时三维视觉测量装置及方法
US7643135B1 (en) Telescope based calibration of a three dimensional optical scanner
CN104567690A (zh) 一种激光束现场标定方法及装置
US7797120B2 (en) Telescope based calibration of a three dimensional optical scanner
CN204313798U (zh) 一种激光束现场标定装置
JP7007137B2 (ja) 情報処理装置、情報処理方法および情報処理用プログラム
CN111007530A (zh) 激光点云数据处理方法、装置及系统
CN104913766A (zh) 一种激光扫描测量方法及装置
CN111123280B (zh) 激光雷达的定位方法、装置、系统、电子设备及存储介质
CN109887041B (zh) 一种机械臂控制数字相机摄影中心位置和姿态的方法
US11692812B2 (en) System and method for measuring three-dimensional coordinates
CN112291024A (zh) 信息同步方法、信息同步装置及电子设备
US20190304103A1 (en) Position measuring method, position measuring apparatus, and position measuring system
WO2022120607A1 (zh) 三维变形测量系统、方法、装置和存储介质
CN110044266B (zh) 基于散斑投影的摄影测量系统
US20230176201A1 (en) Relative lidar alignment with limited overlap
CN113822920A (zh) 结构光相机获取深度信息的方法、电子设备及存储介质
JP2001296124A (ja) 3次元座標計測方法及び3次元座標計測装置
CN112556596B (zh) 三维变形测量系统、方法、装置和存储介质
Wang et al. The human-height measurement scheme by using image processing techniques
WO2022256976A1 (zh) 稠密点云真值数据的构建方法、系统和电子设备
CN114088019B (zh) 便携式轴线二维偏角的测量装置及其方法
RU2645432C1 (ru) Способ калибровки видеограмметрических систем и контрольное приспособление для его осуществления

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.09.2023)