WO2022120571A1 - 一种石墨烯基rfid电子标签用高导电性油墨及其制备方法和应用 - Google Patents

一种石墨烯基rfid电子标签用高导电性油墨及其制备方法和应用 Download PDF

Info

Publication number
WO2022120571A1
WO2022120571A1 PCT/CN2020/134533 CN2020134533W WO2022120571A1 WO 2022120571 A1 WO2022120571 A1 WO 2022120571A1 CN 2020134533 W CN2020134533 W CN 2020134533W WO 2022120571 A1 WO2022120571 A1 WO 2022120571A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
water
rfid electronic
ink
concentrated slurry
Prior art date
Application number
PCT/CN2020/134533
Other languages
English (en)
French (fr)
Inventor
蔺洪振
程双
王健
李麟阁
李付锦
Original Assignee
苏州烯时代材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州烯时代材料科技有限公司 filed Critical 苏州烯时代材料科技有限公司
Priority to PCT/CN2020/134533 priority Critical patent/WO2022120571A1/zh
Publication of WO2022120571A1 publication Critical patent/WO2022120571A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations

Definitions

  • the invention belongs to the field of RFID intelligent identification, and particularly relates to a graphene-based RFID electronic label with high conductivity ink and a preparation method and application thereof.
  • RFID Radio Frequency Identification Technology
  • the RFID system consists of electronic tags, readers and computer networks.
  • the electronic tags are used to identify objects and exchange data with the reader through radio waves.
  • the reader is used to transmit the read and write commands of the host to the electronic tags, and the electronic tags
  • the feedback data is transmitted to the host, and the data exchange and management system of the host is responsible for the storage, management and control of the electronic label data information.
  • Electronic tags are composed of antennas and necessary packaging materials. Antennas are the communication bridge between electronic tags and readers, and are a key link in the entire RFID system.
  • the fabrication process of aluminum etched antenna including metal lamination, photoresist printing, and metal etching, is still the mainstream at this stage, but the process is complicated and the cost is high.
  • the subtractive process of etching metal with strong acid is wasteful and not environmentally friendly.
  • the conductive inks used to print the antenna mainly include silver paste, aluminum paste, copper paste and carbon paste, etc. Among them, the antenna obtained by printing with metal paste has the best effect.
  • aluminum and copper metal pastes require high-temperature deoxidation and sintering to exhibit electrical conductivity, which greatly limits the antenna substrate.
  • the increasingly mature graphene conductive paste technology makes it possible to obtain low-cost printed antennas by screen printing, inkjet printing, etc.
  • Graphene is a two-dimensional carbon nanomaterial with a hexagonal honeycomb lattice composed of carbon atoms and sp 2 hybrid orbitals. It has excellent optical, electrical and mechanical properties and has huge application potential.
  • the scientific and industrial circles quickly set off an upsurge in basic research and application product development of graphene materials.
  • the preparation of low-defect single-layer graphene mainly relies on chemical vapor deposition, which is expensive and difficult to mass-produce.
  • the preparation of conductive ink is to combine concentrated graphene slurries or filter cakes with thermosetting or thermoplastic resins
  • the binder materials are mixed, and the graphene solid content in the obtained film is low, and it is difficult to effectively overlap between the lamellae, resulting in that the electrical conductivity is usually not high enough, so it is used more In some low-end applications that do not require high electrical conductivity, the advantages of graphene itself are not fully utilized.
  • the quality of graphene raw materials and applied products in the domestic market is uneven, which further deepens people's doubts about the future prospects of the graphene industry.
  • the high-performance graphene conductive paste suitable for RFID applications is likely to grow into one of the "killer" applications of graphene materials, and will play an important role in the process of breaking down the graphene industry.
  • the technical problem to be solved by the present invention is to overcome one or more deficiencies in the prior art, and to provide a new method for preparing high-conductivity ink for graphene-based RFID electronic tags. It has high quality content, good dispersibility, and can greatly reduce the amount of organic solvents. At the same time, on the premise of ensuring a certain conductivity, the amount of precious metals is minimized, and the printing method is realized to make RFID antennas.
  • the present invention also provides a high-conductivity ink for graphene-based RFID electronic tags prepared by the above method.
  • the invention also provides an RFID electronic label.
  • a preparation method of a highly conductive ink for a graphene-based RFID electronic tag the raw material of the ink comprises a conductive agent, a resin matrix and a solvent, and the conductive agent is a graphene powder or a combination of the graphene powder and other conductive agents.
  • the solvent includes water, a water-miscible organic solvent;
  • the preparation method of the ink includes the following steps: after the graphene powder is mixed with water, it is exfoliated and dispersed by a homogenizer to obtain an aqueous dispersion of graphene, and concentrated to prepare a mass content of graphene of 5%-15%. % of the first concentrated slurry; add a water-miscible organic solvent to the first concentrated slurry, mix, and evaporate part of the water and part of the water-miscible organic solvent to make the mass content of graphene
  • the second concentrated slurry is 50% or more, and the remaining raw materials are added to the second concentrated slurry and mixed to prepare the high-conductivity ink for the graphene-based RFID electronic tag.
  • the mass content of graphene in the first concentrated slurry is 8%-12%, and the mass content of graphene in the second concentrated slurry is 50%-70%.
  • the mass ratio of the conductive agent to the water is 1:45-55.
  • the mass ratio of the other conductive agents to the graphene powder is 0.05-0.5: 1.
  • the D50 of the graphene powder is 5-10 ⁇ m.
  • the other conductive agent is a combination of one or more selected from the group consisting of Ketjen black, carbon nanowires, carbon nanotubes and silver paste.
  • the mass ratio of the first concentrated slurry to the water-miscible organic solvent is 1:1-5.
  • the mass ratio of the second concentrated slurry to the resin matrix is 100:50-70.
  • the water-miscible organic solvent is a combination of one or more selected from ethanol, Cyrene solvent, N-methylpyrrolidone and dimethylformamide.
  • the resin matrix is epoxy resin and/or polyester resin.
  • the water is ultrapure water.
  • the number of graphene layers in the graphene powder is 1-10 layers.
  • the homogenizer is a high-pressure homogenizer, and its working pressure is greater than or equal to 1200 MPa.
  • Another technical solution provided by the present invention is an RFID electronic tag, wherein the RFID electronic tag includes an RFID antenna, and the RFID antenna is made by printing the graphene-based RFID electronic tag with high-conductivity ink.
  • the present invention has the following advantages compared with the prior art:
  • the present invention innovatively adds a water-miscible organic solvent to the aqueous dispersion of graphene, and then evaporates part of the water and part of the organic solvent by means of evaporation, and then obtains a concentrated solution with high-quality graphene content.
  • the conventional direct dispersion method on the one hand, can greatly improve the mass content of graphene while maintaining stable and excellent dispersibility;
  • the composite paste is prepared by blending conductive agents, etc., and on the premise of ensuring a certain conductivity, the amount of precious metals is minimized, and the preparation process of RFID antenna production by printing method is simplified, cheap, flexible, and the application field is more extensive.
  • the RFID antenna made of the invented conductive ink has better conductivity and stable reading distance.
  • Fig. 1 is the highly conductive ink for graphene-based RFID electronic tags prepared in Example 1 (the left side is before mixing, the right side is after mixing);
  • Figure 2 is a picture of the mixed ink on the right side of Figure 1 after standing for a week.
  • Ketjen black purchased from Tianjin Xinglongtai Chemical Products Technology Co., Ltd., brand KQ133-10KG; silver paste purchased from Aladdin; epoxy resin purchased from Shanghai Kaiyin Chemical, brand 904; polyester resin purchased from Shanghai Kaiin Chemical, Designation 831.
  • This example provides a method for preparing a highly conductive ink for graphene-based RFID electronic tags.
  • the raw materials of the ink include a conductive agent, an epoxy resin and a solvent, and the conductive agent is a combination of graphene powder and Ketjen black.
  • the solvent includes ultrapure water, ethanol;
  • the preparation method of the ink includes the following steps: after mixing 0.95g of graphene powder with 50g of ultrapure water, exfoliating and dispersing by a high-pressure homogenizer to obtain an aqueous dispersion of graphene, concentrating to obtain the quality of graphene
  • the first concentrated slurry with a content of 10% 19g of ethanol is added to the first concentrated slurry, mixed, and part of ultrapure water and part of ethanol are distilled off by means of evaporation, and the mass content of graphene is 50%.
  • FIG. 1 is a picture of the mixed ink on the right side of Figure 1 after standing for a week, which shows that there is no delamination or obvious agglomeration, and the stability is good; among them, the high pressure
  • the working parameters of the homogenizer the pressure is 1200MPa, the rotation speed is kept at 565r/min, and the peeling and dispersion time is 1h.
  • This example provides a method for preparing a highly conductive ink for graphene-based RFID electronic tags.
  • the raw materials of the ink include a conductive agent, an epoxy resin and a solvent, and the conductive agent is a combination of graphene powder and Ketjen black.
  • the solvent includes ultrapure water, N-methylpyrrolidone;
  • the preparation method of the ink includes the following steps: after mixing 0.90 g of graphene powder with 50 g of ultrapure water, exfoliating and dispersing by a high-pressure homogenizer to obtain an aqueous dispersion of graphene, and concentrating to obtain the quality of graphene.
  • a second concentrated slurry with a mass content of 60% of graphene, 0.90 g of epoxy resin and 0.10 g of Ketjen black are added to the second concentrated slurry, and mixed to prepare the graphene-based RFID electronic tag with a high Conductive ink; among them, the working parameters of the high-pressure homogenizer: the pressure is 1200MPa, the maintaining speed is 565r/min, and the peeling and dispersing time is 1h.
  • This example provides a method for preparing a highly conductive ink for graphene-based RFID electronic tags.
  • the raw materials of the ink include a conductive agent, an epoxy resin and a solvent, and the conductive agent is a combination of graphene powder and Ketjen black.
  • the solvent includes ultrapure water, N-methylpyrrolidone;
  • the preparation method of the ink includes the following steps: after mixing 0.90 g of graphene powder with 50 g of ultrapure water, exfoliating and dispersing by a high-pressure homogenizer to obtain an aqueous dispersion of graphene, and concentrating to obtain the quality of graphene.
  • a second concentrated slurry with a mass content of 70% of graphene, 0.90 g of epoxy resin and 0.10 g of Ketjen black are added to the second concentrated slurry, and mixed to prepare the graphene-based RFID electronic tag with a high Conductive ink; among them, the working parameters of the high-pressure homogenizer: the pressure is 1200MPa, the maintaining speed is 565r/min, and the peeling and dispersing time is 1h.
  • This example provides a method for preparing a highly conductive ink for graphene-based RFID electronic tags.
  • the raw materials of the ink include a conductive agent, a polyester resin and a solvent, and the conductive agent is a combination of graphene powder and Ketjen black.
  • the solvent includes ultrapure water, dimethylformamide (DMF);
  • the preparation method of the ink includes the following steps: after mixing 0.90 g of graphene powder with 49 g of ultrapure water, peeling and dispersing by a high-pressure homogenizer to obtain an aqueous dispersion of graphene, concentrating to obtain the quality of graphene A first concentrated slurry with a content of 11%; 40 g of dimethylformamide was added to the first concentrated slurry, mixed, and evaporated to remove part of ultrapure water and part of dimethylformamide to prepare graphite A second concentrated slurry with a mass content of 55% olefin, 0.90 g of polyester resin and 0.10 g of Ketjen black are added to the second concentrated slurry, and mixed to prepare the graphene-based RFID electronic tag with a high Conductive ink; among them, the working parameters of the high-pressure homogenizer: the pressure is 1200MPa, the maintaining speed is 565r/min, and the peeling and dispersing time is 1h.
  • This example provides a method for preparing a highly conductive ink for graphene-based RFID electronic tags.
  • the raw materials of the ink include a conductive agent, a polyester resin and a solvent, and the conductive agent is a combination of graphene powder and silver paste.
  • the solvent includes ultrapure water, dimethylformamide (DMF);
  • the preparation method of the ink comprises the following steps: after mixing 0.80 g of graphene powder with 49 g of ultrapure water, exfoliating and dispersing by a high-pressure homogenizer to obtain an aqueous dispersion of graphene, concentrating to obtain the quality of graphene
  • the first concentrated slurry with a content of 10% 24 g of dimethylformamide was added to the first concentrated slurry, mixed, and evaporated to remove part of ultrapure water and part of dimethylformamide to prepare graphite
  • the working parameters of the high-pressure homogenizer the pressure is 1200MPa, the maintaining speed is 565r/min, and the peeling and dispersing time is 1h.
  • the working parameters of the high-pressure homogenizer the pressure is 1200MPa, the rotation speed is maintained at 565r/min, and the peeling and dispersion time is 1h.
  • the conductive inks prepared in the above-mentioned Examples 1-5 and Comparative Example 1 were printed in the following manner: screen printing and rolling process (place the conductive ink on the cleaned and dried polyester screen, and use a manual squeegee).
  • the ink in the mesh was printed on the insulating substrate (film, paper) through the mesh, dried at 50°C for 12h, and compacted by a roller machine, with a thickness of 300 microns) to obtain an RFID antenna structure.
  • the performance test results of the fabricated RFID antennas are shown in Table 1 below:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Conductive Materials (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

本发明公开了一种石墨烯基RFID电子标签用高导电性油墨及其制备方法和应用,其原料包括导电剂、树脂基体和溶剂,导电剂为石墨烯粉体或其与其它导电剂的组合,溶剂包括水、与水互溶的有机溶剂,制备:将石墨烯粉体与水混合分散,得到石墨烯的水性分散液,浓缩成第一浓缩浆料,加入上述有机溶剂,混合,蒸除部分水和部分有机溶剂,制成第二浓缩浆料,添加剩余原料,混合,制成;及上述方法制成的石墨烯基RFID电子标签用高导电性油墨,采用上述油墨印刷制成的RFID天线;该方法制成的油墨中石墨烯质量含量高,分散性好,大幅度地减少了有机溶剂的用量,在保证一定导电性能的前提下,减少了贵重金属的用量,实现印刷方式制作RFID天线。

Description

一种石墨烯基RFID电子标签用高导电性油墨及其制备方法和应用 技术领域
本发明属于RFID智能识别领域,具体涉及一种石墨烯基RFID电子标签用高导电性油墨及其制备方法和应用。
背景技术
近年来,智慧城市、工业4.0、物联网等的快速发展催生了市场对RFID智能识别产品的大量需求,RFID(射频识别技术)已经成为物联网的核心技术之一。RFID系统由电子标签、读写器和计算机网络构成,电子标签用以标识物体并通过无线电波与读写器进行数据交换,读写器用以向电子标签传送主机的读写命令,并将电子标签的反馈数据传送到主机,主机的数据交换与管理系统负责完成电子标签数据信息的存储、管理和控制。
电子标签由天线和必要的封装材料构成,天线是电子标签与读写器之间的通信桥梁,是整个RFID系统中的关键一环。
铝蚀刻天线制作工艺包含金属贴合、光阻印刷、金属蚀刻等过程在现阶段仍占主流地位,但其流程繁杂、成本偏高,以强酸蚀刻金属之减法制程即浪费又不环保。近年来,随着印刷电子产业的发展,采用印刷方法制造RFID电子标签受到人们越来越多的关注。用于印刷天线的导电油墨主要有银浆、铝浆、铜浆与碳浆等,其中以金属浆料印刷所得天线效果最好。然而目前铝、铜金属浆需高温脱氧烧结才能展现导电性,这使得天线底材受到很大限制,而传统碳浆的导电性较低,还难以满足天线应用的电阻要求。被人们寄予厚望的银浆天线也存在制备工艺繁琐、价格昂贵、不耐弯折等缺点。这使得印刷方式制作RFID天线仍无法实现大规模生产并取代目前的铝蚀刻天线。
日益成熟的石墨烯导电浆料技术使得利用丝网印刷、喷墨打印等方式获得低成本的印刷天线成为可能。石墨烯是一种由碳原子以sp 2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,具有优异的光、电、力学特性,拥有巨大的应用潜能。随着首次利用微机械剥离法成功从石墨中分离出石墨烯,科学界和产业界迅速掀起了石墨烯材料基础研究和应用产品研发的 热潮。低缺陷单层石墨烯的制备主要依赖于化学气相沉积法,价格昂贵、难以大规模量产,目前表现出更高市场活力的是氧化石墨烯还原法得到的高缺陷石墨烯以及由石墨经机械/化学剥离得到多层石墨烯。石墨烯因为其二维结构关系,在工业实际应用上的挑战首在如何解决石墨烯粉末容易团聚,不易分散的特性。目前市场上的石墨烯浆料大多数使用了较大量的分散剂/稳定剂以及低浓度的石墨烯,导电油墨的配制则是将浓缩的石墨烯原浆或滤饼与热固或热塑性树脂等粘结剂材料相混合,由此制得的薄膜中的石墨烯固质量含量较低,片层与片层之间难以有效地搭接,导致其导电性通常不够高,因此更多地被使用在某些对电导率要求不高的低端应用场合,没有充分发挥出石墨烯本身的优势。国内市场上石墨烯原料和应用产品质量的良莠不齐,更加深了人们对石墨烯产业未来前景的质疑。而适于RFID用途的高性能石墨烯导电浆料则很有可能成长为石墨烯材料的“杀手”级应用之一,在石墨烯产业破壁的过程中将扮演重要的角色。
发明内容
本发明所要解决的技术问题是克服现有技术中的一个或多个不足,提供一种新的制备石墨烯基RFID电子标签用高导电性油墨的方法,该方法制成的油墨中石墨烯的质量含量高,分散性好,而且可以大幅度地减少有机溶剂的用量,同时在保证一定导电性能的前提下,尽量减少贵重金属的用量,实现了印刷方式制作RFID天线。
本发明同时还提供了一种上述方法制成的石墨烯基RFID电子标签用高导电性油墨。
本发明同时还提供了一种RFID电子标签。
为解决以上技术问题,本发明采取的一种技术方案如下:
一种石墨烯基RFID电子标签用高导电性油墨的制备方法,所述油墨的原料包括导电剂、树脂基体和溶剂,所述导电剂为石墨烯粉体或石墨烯粉体与其它导电剂的组合,所述溶剂包括水、与水互溶的有机溶剂;
所述油墨的制备方法包括如下步骤:将石墨烯粉体与水混合之后,由均质机进行剥离分散,得到石墨烯的水性分散液,浓缩,制成石墨烯的质量含量为5%-15%的第一浓缩浆料;向所述第一浓缩浆料中添加与水互溶 的有机溶剂,混合,采用蒸发方式蒸除部分水和部分与水互溶的有机溶剂,制成石墨烯的质量含量为50%以上的第二浓缩浆料,向所述第二浓缩浆料中添加剩余原料,混合,制成所述石墨烯基RFID电子标签用高导电性油墨。
根据本发明的一些优选方面,所述第一浓缩浆料中石墨烯的质量含量为8%-12%,所述第二浓缩浆料中石墨烯的质量含量为50%-70%。
根据本发明的一些优选方面,所述导电剂与所述水的投料质量比为1∶45-55。
根据本发明的一些具体且优选的方面,当所述导电剂为石墨烯粉体与其它导电剂的组合时,所述其它导电剂与所述石墨烯粉体的投料质量比为0.05-0.5∶1。
根据本发明的一些具体且优选的方面,所述石墨烯粉体的D50为5-10μm。
根据本发明的一些具体且优选的方面,所述其它导电剂为选自科琴黑、碳纳米线、碳纳米管和银浆中的一种或多种的组合。
根据本发明的一些优选方面,所述第一浓缩浆料与所述与水互溶的有机溶剂的投料质量比为1∶1-5。
根据本发明的一些优选方面,所述第二浓缩浆料与所述树脂基体的投料质量比为100∶50-70。
根据本发明的一些优选且具体的方面,所述与水互溶的有机溶剂为选自乙醇、Cyrene溶剂、N-甲基吡咯烷酮和二甲基甲酰胺中的一种或多种的组合。
根据本发明的一些优选且具体的方面,所述树脂基体为环氧树脂和/或聚酯树脂。
根据本发明的一些优选且具体的方面,所述水为超纯水。
根据本发明的一些优选且具体的方面,所述石墨烯粉体中的石墨烯的层数为1-10层。
根据本发明的一些优选方面,所述均质机为高压均质机,其工作压力大于等于1200MPa。
本发明提供的又一技术方案:一种上述所述的制备方法制成的石墨烯基RFID电子标签用高导电性油墨。
本发明提供的又一技术方案:一种RFID电子标签,所述RFID电子标签包括RFID天线,所述RFID天线为采用上述所述的石墨烯基RFID电子标签用高导电性油墨印刷制成。
由于以上技术方案的采用,本发明与现有技术相比具有如下优点:
本发明创新地在石墨烯的水性分散液中添加与水互溶的有机溶剂,进而以蒸发的方式蒸出部分水和部分有机溶剂,进而获得石墨烯高质量含量的浓缩液,此种方式相比常规直接分散的方式,一方面能够极大地提升石墨烯的质量含量的同时保持稳定且优异的分散性,另一方面,还能够大幅度地减少有机溶剂的用量,同时将石墨烯浆料与其他导电剂等共混制备复合浆料,在保证一定导电性能的前提下,尽量减少贵重金属的用量,实现印刷方式制作RFID天线制备工艺简化、价格低廉、柔性以及应用领域更加广泛化;此外,由本发明的导电油墨制成的RFID天线,其导电性与稳定读取距离更优异。
附图说明
图1为实施例1所制备的石墨烯基RFID电子标签用高导电性油墨(左侧为混匀前,右侧为混匀后);
图2为图1中右侧混匀的油墨静置一周后的图片。
具体实施方式
以下结合具体实施例对上述方案做进一步说明;应理解,这些实施例是用于说明本发明的基本原理、主要特征和优点,而本发明不受以下实施例的范围限制;实施例中采用的实施条件可以根据具体要求做进一步调整,未注明的实施条件通常为常规实验中的条件。
下述中,如无特殊说明,所有的原料均来自于商购或者通过本领域的常规方法制备而得。石墨烯粉体的配制:将石墨烯(购自苏州烯时代材料科技有限公司,石墨烯层数为1-10层)与水混合分散形成均一稳定的石墨烯水溶液,然后将石墨烯水溶液烘干,利用粉碎机进行粉碎处理后备用,平均粒径为6μm。科琴黑,购自天津星龙泰化工产品科技有限公司, 牌号KQ133-10KG;银浆购自Aladdin;环氧树脂购自上海凯茵化工,牌号904;聚酯树脂购自上海凯茵化工,牌号831。
实施例1
本例提供一种石墨烯基RFID电子标签用高导电性油墨的制备方法,所述油墨的原料包括导电剂、环氧树脂和溶剂,所述导电剂为石墨烯粉体与科琴黑的组合,所述溶剂包括超纯水、乙醇;
所述油墨的制备方法包括如下步骤:将0.95g石墨烯粉体与50g超纯水混合之后,由高压均质机进行剥离分散,得到石墨烯的水性分散液,浓缩,制成石墨烯的质量含量为10%的第一浓缩浆料;向所述第一浓缩浆料中添加19g乙醇,混合,采用蒸发方式蒸除部分超纯水和部分乙醇,制成石墨烯的质量含量为50%的第二浓缩浆料,向所述第二浓缩浆料中添加0.95g环氧树脂和0.05g科琴黑,混合,制成所述石墨烯基RFID电子标签用高导电性油墨,参见图1所示,该制成的油墨混匀后分散均匀,图2为图1右侧混匀的油墨静置一周后的图片,显示并未发生分层或明显团聚现象,稳定性较好;其中,高压均质机工作参数:压力为1200MPa,保持转速565r/min,剥离分散时间为1h。
实施例2
本例提供一种石墨烯基RFID电子标签用高导电性油墨的制备方法,所述油墨的原料包括导电剂、环氧树脂和溶剂,所述导电剂为石墨烯粉体与科琴黑的组合,所述溶剂包括超纯水、N-甲基吡咯烷酮;
所述油墨的制备方法包括如下步骤:将0.90g石墨烯粉体与50g超纯水混合之后,由高压均质机进行剥离分散,得到石墨烯的水性分散液,浓缩,制成石墨烯的质量含量为8%的第一浓缩浆料;向所述第一浓缩浆料中添加45g N-甲基吡咯烷酮,混合,采用蒸发方式蒸除部分超纯水和部分N-甲基吡咯烷酮,制成石墨烯的质量含量为60%的第二浓缩浆料,向所述第二浓缩浆料中添加0.90g环氧树脂和0.10g科琴黑,混合,制成所述石墨烯基RFID电子标签用高导电性油墨;其中,高压均质机工作参数:压力为1200MPa,保持转速565r/min,剥离分散时间为1h。
实施例3
本例提供一种石墨烯基RFID电子标签用高导电性油墨的制备方法,所述油墨的原料包括导电剂、环氧树脂和溶剂,所述导电剂为石墨烯粉体与科琴黑的组合,所述溶剂包括超纯水、N-甲基吡咯烷酮;
所述油墨的制备方法包括如下步骤:将0.90g石墨烯粉体与50g超纯水混合之后,由高压均质机进行剥离分散,得到石墨烯的水性分散液,浓缩,制成石墨烯的质量含量为9%的第一浓缩浆料;向所述第一浓缩浆料中添加30g N-甲基吡咯烷酮,混合,采用蒸发方式蒸除部分超纯水和部分N-甲基吡咯烷酮,制成石墨烯的质量含量为70%的第二浓缩浆料,向所述第二浓缩浆料中添加0.90g环氧树脂和0.10g科琴黑,混合,制成所述石墨烯基RFID电子标签用高导电性油墨;其中,高压均质机工作参数:压力为1200MPa,保持转速565r/min,剥离分散时间为1h。
实施例4
本例提供一种石墨烯基RFID电子标签用高导电性油墨的制备方法,所述油墨的原料包括导电剂、聚酯树脂和溶剂,所述导电剂为石墨烯粉体与科琴黑的组合,所述溶剂包括超纯水、二甲基甲酰胺(DMF);
所述油墨的制备方法包括如下步骤:将0.90g石墨烯粉体与49g超纯水混合之后,由高压均质机进行剥离分散,得到石墨烯的水性分散液,浓缩,制成石墨烯的质量含量为11%的第一浓缩浆料;向所述第一浓缩浆料中添加40g二甲基甲酰胺,混合,采用蒸发方式蒸除部分超纯水和部分二甲基甲酰胺,制成石墨烯的质量含量为55%的第二浓缩浆料,向所述第二浓缩浆料中添加0.90g聚酯树脂和0.10g科琴黑,混合,制成所述石墨烯基RFID电子标签用高导电性油墨;其中,高压均质机工作参数:压力为1200MPa,保持转速565r/min,剥离分散时间为1h。
实施例5
本例提供一种石墨烯基RFID电子标签用高导电性油墨的制备方法,所述油墨的原料包括导电剂、聚酯树脂和溶剂,所述导电剂为石墨烯粉体与银浆的组合,所述溶剂包括超纯水、二甲基甲酰胺(DMF);
所述油墨的制备方法包括如下步骤:将0.80g石墨烯粉体与49g超纯水混合之后,由高压均质机进行剥离分散,得到石墨烯的水性分散液,浓 缩,制成石墨烯的质量含量为10%的第一浓缩浆料;向所述第一浓缩浆料中添加24g二甲基甲酰胺,混合,采用蒸发方式蒸除部分超纯水和部分二甲基甲酰胺,制成石墨烯的质量含量为65%的第二浓缩浆料,向所述第二浓缩浆料中添加0.80g聚酯树脂和0.20g银浆,混合,制成所述石墨烯基RFID电子标签用高导电性油墨;其中,高压均质机工作参数:压力为1200MPa,保持转速565r/min,剥离分散时间为1h。
对比例1
采用高压均质机将50g的超纯水和0.95g的石墨烯粉体进行剥离分散,然后一步浓缩成石墨烯的质量含量为50%的浆料,然后加入0.95g环氧树脂和0.05g科琴黑,充分混合,制备得到导电性油墨;其中,高压均质机工作参数:压力为1200MPa,保持转速565r/min,剥离分散时间为1h。
性能测试
将上述实施例1-5以及对比例1制成的导电油墨按照如下印刷方式:采用丝网印刷和辊压工艺(将导电油墨放置在已处理干净干燥的聚酯丝网上,利用手动刮墨板将网内的油墨通过网孔印刷到绝缘基底(薄膜,纸张)上,50℃干燥12h,通过对辊机进行压实,厚度为300微米),制得RFID天线结构。已制作的RFID天线性能测试结果具体参见下表1:
表1
Figure PCTCN2020134533-appb-000001
本实施例提供一种上述实施例只为说明本发明的技术构思及特点,其 目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (13)

  1. 一种石墨烯基RFID电子标签用高导电性油墨的制备方法,所述油墨的原料包括导电剂、树脂基体和溶剂,所述导电剂为石墨烯粉体或石墨烯粉体与其它导电剂的组合,其特征在于,所述溶剂包括水、与水互溶的有机溶剂,所述导电剂与所述水的投料质量比为1∶45-55,所述石墨烯粉体的D50为5-10μm;
    所述油墨的制备方法包括如下步骤:将石墨烯粉体与水混合之后,由均质机进行剥离分散,得到石墨烯的水性分散液,浓缩,制成石墨烯的质量含量为5%-15%的第一浓缩浆料;向所述第一浓缩浆料中添加与水互溶的有机溶剂,混合,采用蒸发方式蒸除部分水和部分与水互溶的有机溶剂,制成石墨烯的质量含量为50%以上的第二浓缩浆料,向所述第二浓缩浆料中添加剩余原料,混合,制成所述石墨烯基RFID电子标签用高导电性油墨;其中,当所述导电剂为石墨烯粉体与其它导电剂的组合时,所述其它导电剂与所述石墨烯粉体的投料质量比为0.05-0.5∶1,所述其它导电剂为选自科琴黑、碳纳米线、碳纳米管和银浆中的一种或多种的组合;所述第一浓缩浆料与所述与水互溶的有机溶剂的投料质量比为1∶1-5,所述第二浓缩浆料与所述树脂基体的投料质量比为100∶50-70。
  2. 一种石墨烯基RFID电子标签用高导电性油墨的制备方法,所述油墨的原料包括导电剂、树脂基体和溶剂,所述导电剂为石墨烯粉体或石墨烯粉体与其它导电剂的组合,其特征在于,所述溶剂包括水、与水互溶的有机溶剂;
    所述油墨的制备方法包括如下步骤:将石墨烯粉体与水混合之后,由均质机进行剥离分散,得到石墨烯的水性分散液,浓缩,制成石墨烯的质量含量为5%-15%的第一浓缩浆料;向所述第一浓缩浆料中添加与水互溶的有机溶剂,混合,采用蒸发方式蒸除部分水和部分与水互溶的有机溶剂,制成石墨烯的质量含量为50%以上的第二浓缩浆料,向所述第二浓缩浆料中添加剩余原料,混合,制成所述石墨烯基RFID电子标签用高导电性油墨。
  3. 根据权利要求2所述的石墨烯基RFID电子标签用高导电性油墨的制备方法,其特征在于,所述第一浓缩浆料中石墨烯的质量含量为8%-12%,所述第二浓缩浆料中石墨烯的质量含量为50%-70%。
  4. 根据权利要求2或3所述的石墨烯基RFID电子标签用高导电性油墨的制备方法,其特征在于,所述导电剂与所述水的投料质量比为1∶45-55。
  5. 根据权利要求2或3所述的石墨烯基RFID电子标签用高导电性油墨的制备方法,其特征在于,当所述导电剂为石墨烯粉体与其它导电剂的组合时,所述其它导电剂与所述石墨烯粉体的投料质量比为0.05-0.5∶1,所述其它导电剂为选自科琴黑、碳纳米线、碳纳米管和银浆中的一种或多种的组合。
  6. 根据权利要求2或3所述的石墨烯基RFID电子标签用高导电性油墨的制备方法,其特征在于,所述第一浓缩浆料与所述与水互溶的有机溶剂的投料质量比为1∶1-5。
  7. 根据权利要求2或3所述的石墨烯基RFID电子标签用高导电性油墨的制备方法,其特征在于,所述第二浓缩浆料与所述树脂基体的投料质量比为100∶50-70。
  8. 根据权利要求1或2所述的石墨烯基RFID电子标签用高导电性油墨的制备方法,其特征在于,所述与水互溶的有机溶剂为选自乙醇、Cyrene溶剂、N-甲基吡咯烷酮和二甲基甲酰胺中的一种或多种的组合;和/或,所述树脂基体为环氧树脂和/或聚酯树脂。
  9. 根据权利要求1或2所述的石墨烯基RFID电子标签用高导电性油墨的制备方法,其特征在于,所述水为超纯水。
  10. 根据权利要求1或2所述的石墨烯基RFID电子标签用高导电性油墨的制备方法,其特征在于,所述石墨烯粉体中的石墨烯的层数为1-10层。
  11. 根据权利要求1或2所述的石墨烯基RFID电子标签用高导电性油墨的制备方法,其特征在于,所述均质机为高压均质机,其工作压力大于等于1200MPa。
  12. 一种权利要求1-11中任一项所述的制备方法制成的石墨烯基RFID电子标签用高导电性油墨。
  13. 一种RFID电子标签,所述RFID电子标签包括RFID天线,其特征在于,所述RFID天线为采用权利要求12所述的石墨烯基RFID电子标签用高导电性油墨印刷制成。
PCT/CN2020/134533 2020-12-08 2020-12-08 一种石墨烯基rfid电子标签用高导电性油墨及其制备方法和应用 WO2022120571A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/134533 WO2022120571A1 (zh) 2020-12-08 2020-12-08 一种石墨烯基rfid电子标签用高导电性油墨及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/134533 WO2022120571A1 (zh) 2020-12-08 2020-12-08 一种石墨烯基rfid电子标签用高导电性油墨及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022120571A1 true WO2022120571A1 (zh) 2022-06-16

Family

ID=81973947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134533 WO2022120571A1 (zh) 2020-12-08 2020-12-08 一种石墨烯基rfid电子标签用高导电性油墨及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2022120571A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104277592A (zh) * 2014-09-16 2015-01-14 中国科学院化学研究所 一种石墨烯基水性墨水及其喷墨打印透明的图案化导电电极的应用
US20150072162A1 (en) * 2011-04-22 2015-03-12 Northwestern University Methods for preparation of concentrated graphene ink compositions and related composite materials
CN107964283A (zh) * 2017-12-14 2018-04-27 深圳市国创珈伟石墨烯科技有限公司 水性石墨烯导电油墨、制备方法及其应用
RU2665397C1 (ru) * 2017-07-06 2018-08-29 Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН) Способ получения водной суспензии графена для проводящих чернил
CN111073396A (zh) * 2020-01-19 2020-04-28 浙江纳美新材料股份有限公司 一种石墨烯基水性导电油墨及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150072162A1 (en) * 2011-04-22 2015-03-12 Northwestern University Methods for preparation of concentrated graphene ink compositions and related composite materials
CN104277592A (zh) * 2014-09-16 2015-01-14 中国科学院化学研究所 一种石墨烯基水性墨水及其喷墨打印透明的图案化导电电极的应用
RU2665397C1 (ru) * 2017-07-06 2018-08-29 Федеральное государственное бюджетное учреждение науки Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН) Способ получения водной суспензии графена для проводящих чернил
CN107964283A (zh) * 2017-12-14 2018-04-27 深圳市国创珈伟石墨烯科技有限公司 水性石墨烯导电油墨、制备方法及其应用
CN111073396A (zh) * 2020-01-19 2020-04-28 浙江纳美新材料股份有限公司 一种石墨烯基水性导电油墨及其制备方法

Similar Documents

Publication Publication Date Title
CN106928773B (zh) 一种可用于喷墨打印的石墨烯复合导电墨水及其制备方法
CN108929598B (zh) 一种基于喷墨打印的MXene墨水的制备方法及其在MXene柔性电极中的应用
US20170054149A1 (en) Method for making sulfur-graphene composite material
Kim et al. Use of copper ink for fabricating conductive electrodes and RFID antenna tags by screen printing
US8454859B2 (en) Metallic nanofiber ink, substantially transparent conductor, and fabrication method
CN103436074A (zh) 一种水性导电墨的制备方法
CN107317033A (zh) 一种石墨烯/碳纳米管复合导电浆料及其制备方法
CN107513311B (zh) 一种抗氧化的铜-石墨烯复合导电油墨及其制备方法
CN105540573A (zh) 一种高溶解性多褶皱干态氧化石墨烯微球及其制备方法
CN105733367A (zh) 射频识别卷标的导电墨水组合物、天线结构及天线的制造方法
CN105936769A (zh) 一种石墨烯改性的纳米银水性导电油墨及其制备方法
CN107146652B (zh) 一种铜导电浆料及其制备方法和用途
Koh et al. Effective large-area free-standing graphene field emitters by electrophoretic deposition
WO2020239143A1 (zh) 一种石墨烯导电油墨及其制备方法
CN102874799A (zh) 一种气相还原法制备石墨烯和二氧化钛复合材料的方法
WO2022120571A1 (zh) 一种石墨烯基rfid电子标签用高导电性油墨及其制备方法和应用
KR20100004399A (ko) 저차원 소재 고전도성 전도막
Swapnalin et al. Multilayer intercalation: MXene/cobalt ferrite electromagnetic wave absorbing two-dimensional materials
Yuan et al. A novel porous Mo3N2/MoO3 hybrid nanobelt as supercapacitor electrode material
CN108690402A (zh) 石墨纳米片印刷油墨和由其印刷的天线的制备方法和用途
CN110551994B (zh) δ-MnO2纳米片阵列的合成方法
CN112521804B (zh) 一种石墨烯基rfid电子标签用高导电性油墨及其制备方法和应用
Thakur et al. Synthesis and characterization of PANI doped V2O5 nanocomposites for supercapacitor application
CN110165367A (zh) 一种石墨烯天线及其制备方法和应用
Kn et al. Current developments in conductive nano-inks for flexible and wearable electronics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964516

Country of ref document: EP

Kind code of ref document: A1