WO2022120508A1 - System and method for structural protection of low-rise buildings - Google Patents

System and method for structural protection of low-rise buildings Download PDF

Info

Publication number
WO2022120508A1
WO2022120508A1 PCT/CL2020/050176 CL2020050176W WO2022120508A1 WO 2022120508 A1 WO2022120508 A1 WO 2022120508A1 CL 2020050176 W CL2020050176 W CL 2020050176W WO 2022120508 A1 WO2022120508 A1 WO 2022120508A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
rise buildings
profiles
energy
protection system
Prior art date
Application number
PCT/CL2020/050176
Other languages
Spanish (es)
French (fr)
Inventor
Guillermo GARCIA BARRENECHE
Original Assignee
Universidad Diego Portales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Diego Portales filed Critical Universidad Diego Portales
Priority to PCT/CL2020/050176 priority Critical patent/WO2022120508A1/en
Publication of WO2022120508A1 publication Critical patent/WO2022120508A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground

Definitions

  • the present invention focuses on the field of systems for seismic protection or other external vibrations that may affect the construction of low-rise buildings, in general, it refers to an attachable device that allows absorbing and localizing the energy caused by a tremor caused by nature or by human beings, thus protecting the buildings and reducing the structural damage that an event, such as a seismic event, may cause.
  • Damping, insulation and energy dissipation systems are systems that are part of or are attached to the construction structures of skyscrapers, buildings, bridges, shopping malls, airports, among others. These allow the structure to be protected, for example, from earthquakes, vibrations, winds, that affect the structure, increasing the periods and providing additional damping and energy absorption, reducing its deformations as the case may be.
  • seismic isolation consists of decoupling the structure from the sub-structure, for which devices called isolators are used, which are strategically located in specific parts of the structure, which, in a seismic event, provide the structure with sufficient flexibility to differentiate as much as possible the natural period of the structure with the natural period of the earthquake, preventing resonance from occurring, which could cause severe damage or collapse of the structure
  • isolators devices used
  • seismic dissipation is one of the essential parts in seismic protection, the function of dissipators is to dissipate accumulations of energy, ensuring that other elements of the structure are not over-exerted, which could cause severe damage to the structure.
  • patent application CL 201703404 mentions a metal energy dissipator, built in a modular way to reduce vibrations in structures induced by earthquakes, wind, and other sources, comprising at least one module consisting of two parallel load plates, between which a variable number of U-shaped metal heat sinks are connected, which deform relatively between the load plates, either vertically or horizontally, in which said load plates are connected to a structure between two points that undergo a relative deformation due to their vibration.
  • this document does not explicitly state that energy dissipators can be easily replaced after an event, nor is it shown a wall or partition that contains adequate socket space for a replaceable energy dissipator.
  • Patent application WO 2013/059952 mentions a device for the dissipation of energy in structures produced by earthquakes, winds or any other natural or artificial cause of vibrations that allows partitions to be transformed into elements that contribute to dissipating energy, improving the dynamic response of structures.
  • said device comprises a partition formed by external plates, which cover its internal structure of the partition formed by vertical elements or uprights and elements horizontal or lower and upper channels, where the lower channel is attached to the floor by means of a fixing system; at least one sink to which the upper channel is attached and which is connected to the floor slab top or to the ceiling of the structure where the partition is installed using a fixing system.
  • this document does not explicitly state that energy dissipators can be easily replaced after an event, nor is it shown a wall or partition that contains adequate socket space for a replaceable energy dissipator.
  • Patent application CN 103669637 indicates an improved replaceable coupling beam for energy dissipation, whose purpose is to provide seismic resistance to structures in high-rise buildings.
  • the replaceable coupling beam is made up of a non-sag section and a replaceable section.
  • the replaceable section is formed by connecting a lead core rubber damper and two “U” type steel plates in parallel, whereby the two “U” type steel plates are arranged symmetrically on the upper and lower side of the shock absorber. lead cored rubber and are fixedly connected with an end plate of the lead cored rubber damper.
  • Patent application CN 106193360 describes a type of removable mild steel damper that can overcome the film effect caused by an earthquake.
  • the shock absorber includes a steel plate that absorbs dissipated energy and a ribbed connecting plate, where the steel plate is embedded, at its upper and lower ends, in the upper ribbed connecting plate and in a lower ribbed connecting plate.
  • a pressure plate fixes the lower end of the steel plate into the opening groove of the corresponding lower grooved connecting plate by means of bolts.
  • This configuration is convenient for steel plate disassembly as it facilitates shock absorber repair.
  • it does not describe the type of wall or partition of which the heat sinks are a part, nor the fitting space for the device itself in the wall or partition.
  • Patent application CN 106401003 discloses a mild steel energy dissipation device for work in various states.
  • the device comprises a top plate, a base plate, an inner layer including an energy absorbing part, and multi-surface outer layers including a plurality of energy absorbing parts.
  • the inner layer energy absorbing piece is longitudinally disposed between the top plate and the base plate; and the energy-absorbing parts of the outer layers are arranged transversely between the top plate and the base plate, and are perpendicular to the energy-absorbing part of the inner layer.
  • said device has the capacity to be replaceable within the structure.
  • Patent application CN 203769109 discloses a mild steel damper that combines several flexibility stages, which comprises at least one stepped deformation member and a plurality of deformation bending members in a single stage.
  • the stepped strain element comprises a low strain point mild steel rectangular plate with at least two stress relief holes and two first energy absorbing X-shaped mild steel sheets; each single-stage flexing member comprises a second energy-absorbing “X”-shaped mild steel sheet.
  • the first “X”-shaped energy-absorbing mild steel sheets and the second “X”-shaped energy-absorbing mild steel sheets have low initial stiffness, small shear displacement, and can also enter quickly. in a creep stage before large earthquakes and function to dissipate energy.
  • Step deformation members and single-stage deformation bending members can be optionally combined according to requirements, and they are simple and convenient to use, replace and repair.
  • said system does not describe the type of wall or partition of which the heat sinks are a part, nor does it describe the fitting space for the device itself in the wall or partition.
  • seismic protection systems or for any type of natural event that causes vibrations in low-rise buildings, such as: hurricanes, storms and gusts of wind, or events caused by human beings, such as collisions or vehicle crashes, where the main function of said system is to concentrate the damage in limited and replaceable points.
  • vibrations in low-rise buildings such as: hurricanes, storms and gusts of wind
  • human beings such as collisions or vehicle crashes
  • the main function of said system is to concentrate the damage in limited and replaceable points.
  • current systems are all designed for large buildings, which range from indexed at various points of the structure and that makes them difficult to replace and with high implementation costs, therefore, they are not even accessible for small houses, small apartments or for the common citizen.
  • the present invention aims at a protection system and method for low-rise buildings that, in the event of events caused by nature or the human being, concentrates possible damages at points estimated for this purpose, protecting and limiting structural damage to the building.
  • the system is comprised of a wall made of profiles and, at a central point of the wall, there is a space adapted to house a replaceable energy dissipating box, made of a material capable of dissipating energy.
  • the method It involves locating these heat sinks at different points in the building and housed in another structural element such as walls or mezzanine structures, to protect it from vibration damage.
  • the elements in which the heat sinks are housed must be lightweight construction systems made of steel, wood or similar materials.
  • the present invention makes it possible to solve this problem, by means of a system of replaceable seismic protection units that are located in various parts of the building and that act as a fuse that absorbs (and locates) the damage generated by the earthquake and that, at the end of the earthquake, it is easy to replace.
  • FIG. 1 Scheme of the System and use and replacement of the heat sinks.
  • the protection system for low-rise buildings is shown.
  • A it look at the parts of the system.
  • B the attachment and replacement of the heatsink within the system is indicated.
  • FIG. 2 Mounting of the heatsink.
  • the different views of the energy dissipating box for its assembly are shown.
  • A a front view is shown.
  • B a side view is shown.
  • C a top view is shown.
  • D an isometric view is shown.
  • FIG. 3 Reference locations for heatsinks.
  • a low-rise building (house) is shown, made up of walls with profiles in which the energy dissipators are attached.
  • FIG. 4 Heatsink with 4 profiles 60CA085. A heatsink design is shown, with the assembly of 4 profiles 60CA085- Ansys R14.5.
  • Figure 5 Force/Strain graph in 60CA085 profiles, linear. A graph is represented with the data obtained from the linear deformation tests, in 60CA085 profiles.
  • Figure 6 Force/Strain plot on 60CA085, non-linear. A graph is represented with the data obtained from the non-linear deformation tests, in 60CA085 profiles.
  • FIG. 7 Heatsink with 4 50C2 profiles. A heatsink design is shown, with the mounting of 4 50C2 profiles.
  • Figure 8 Force/Strain graph in 50C2 profiles, linear. A graph is represented with the data obtained from the linear deformation tests, in 50C2 profiles.
  • Figure 9 Force/Strain graph in 50C2 profiles, non-linear. A graph is represented with the data obtained from the non-linear deformation tests, in 50C2 profiles.
  • FIG. 10 Power dissipation graphs, in both configurations. Comparative graphs are represented, with the data obtained from the non-linear deformation tests in both types of profiles.
  • low-rise building refers to any type of building or structure that is not many stories high, for example, no more than four stories. These types of buildings correspond, for example to houses, condominiums, blocks, small buildings, sheds, commercial premises, among others.
  • the term "profile” refers to a type of structural products or beams, in the case of metal profiles, these are generated by hot rolling, however, other types of profiles are known in the art. market (such as wood). These profiles are used in construction, where they are joined to form structures (for example, walls) and build structures of different sizes. Within the profiles we find different shapes according to their side view, for example, those that have the shape of the letter "C", “I”, “H”, “L”, as well as, with square or circular shapes, among others. . In a preferred embodiment of the invention, the profiles used are made of aluminium.
  • the term "energy dissipator” corresponds to special devices that are introduced in a structure, in order to reduce the deformations and stresses on it. These devices reduce the demand for deformation and stresses produced by forces. (for example, an earthquake), by increasing the structural damping, which results in the stresses induced by the external force in the structure (for example, an earthquake), can be up to 50% smaller than those corresponding to the structure without dissipators, substantially reducing the inelastic incursions (damage) of the structure.
  • forces for example, an earthquake
  • a structure without energy dissipators survives the severe earthquake by dissipating energy in its main elements, which suffer damage. Instead, the structure with dissipators, the energy is absorbed by these devices significantly reducing deformations and structural damage.
  • elastomeric material refers to materials formed by polymers, which are joined by chemical bonds, acquiring a slightly crosslinked final structure.
  • the main characteristic of elastomers is their high elongation or elasticity. and flexibility that these materials have against loads before fracturing or breaking.
  • These elastomers are amorphous polymers that are above their glass transition temperature (Tg), which explains this considerable deformation capacity.
  • Tg glass transition temperature
  • thermosetting elastomers which at heating them do not melt or deform
  • thermoplastic elastomers which melt and deform when heated.
  • the term "foamed cement” corresponds to an ultralight, homogeneous cement consisting of a base cement slurry, gas (usually nitrogen), and surfactants. Foamed cements are commonly used to cement wells that penetrate weak rock or formations with low fracture gradients. It has a cement-based suspension, with a minimum of 20% (by volume) of foam dragged into the mortar, has a density that generally varies from 400 kg/m 3 to 1600 kg/m 3 and is produced exclusively from raw materials. natural raw materials, so it is made up of water, sand, cement and air. It is also known as cellular concrete, lightweight cellular concrete (LCC), and low-density cellular concrete (LCBD).
  • LCC lightweight cellular concrete
  • LCBD low-density cellular concrete
  • collapsible material refers to a type of material, which, in the face of physical changes or external forces, produces a sudden reduction of its volume considerably, which leads to said material deforming or “collapsing”, to absorb the impact of said external force, allowing to protect and maintain the structure intact, in which said collapsible material is immersed.
  • the term "event of nature” refers to some natural disaster that can deform the dissipator, such as: seismic movements, hurricanes, taken, shock waves from volcanic eruptions, landslides or slopes hills, among others.
  • human event refers to some human intervention disaster that can deform the heatsink, such as: a shock, a fall of a heavy object, medium / low power explosions , among other.
  • the invention comprises a box that has thin sheet profiles inside.
  • the function of this box is to be installed at various points (various boxes) of the housing structure (designed for this purpose).
  • the profiles of said box would act as fuses, concentrating the damage of the structure there. Said boxes (after the seismic event) would be replaced by others until the next event.
  • one of the advantages of the invention is that it addresses the problem of protecting ordinary homes and small buildings that do not have seismic protection systems from seismic events, since current solutions to mitigate earthquakes they are always intended for large buildings, which makes them expensive to implement, and they are designed to be linked within the base structure of large buildings, which makes them difficult to replace.
  • this system considered as a whole, allows the constructions made with this system to be protected against possible dangers from the beginning of the construction, where, as exemplified in the figures, the constructions of walls based on aluminum profiles are increasingly used (given their low cost), therefore, the fact that these energy dissipating boxes are attached to the different walls or slabs of the construction, using the same materials, allows future constructions, towns, neighborhoods, houses, among others, have a protection system against external forces, for example earthquakes, something that in Chile, being a seismic country, there is no regulation that requires that housing constructions have energy dissipation protection systems, since anti-seismic protection systems are only required for energy dissipation or damping for large and differences.
  • this invention is a simple and economical solution to carry out, which does not require major interventions to the construction structures.
  • the same construction materials are used, which allows the generation of a low-cost attachable device, which is also replaceable after it fulfills its function, which will help to massify seismic protection in homes and low-rise buildings, which was an unsolved problem in the previous state of the art.
  • FIG 1 the protection system for low-rise buildings is represented that, in the event of events caused by nature or the human being, concentrates the possible damages in points estimated for this purpose.
  • Figure 1A the parts of the system are indicated, which is comprised of a wall (10), made up of profiles and at a central point of the wall, a space (20) is arranged, adapted to house an energy dissipating box.
  • said wall (10) is made up of profiles, which shape an external frame (11), internal profiles (12), which connect the profiles of the external frame, diagonal profiles (13), which start from each internal angle of the frame and end in the space (20), which houses the dissipating box (30).
  • the internal profiles (12) are in a vertical arrangement.
  • said internal profiles (12) may be in a horizontal arrangement, and in another embodiment of the invention, the internal profiles (12) may be combined in a vertical and horizontal arrangement.
  • the material capable of dissipating energy of the dissipating box (30) corresponds to metal sheets, although it is not limited only to this material, since, in other embodiments of the invention, the material capable of dissipating energy from the dissipating box (30), it can be chosen from an elastomeric material, or a foamed cement.
  • the profiles (11, 12, 13) that form the wall (10), are preferably metallic and have a quadrilateral shape, where said profiles (11, 12, 13), can have a type "C", type "I” or type "H", but in a preferred embodiment of the invention, they are metallic of type "C". Even so, this is not limited only to metal profiles, since, for a technician in the area, profiles of other materials known in the art can be used, so the profiles (11, 12, 13) can be, for example, made of wood and quadrilateral in shape.
  • Figure 1 B shows that the space (20), of the protection system for low-rise buildings according to the invention, is adapted to house the energy dissipating box (30), which has the shape of a quadrilateral, where the arrows in bold of the panels of figure 1 B indicate: i) As the energy dissipating box (30), it is inserted in the space (20) (left panel); i) Then, the energy dissipating box (30) is left positioned in the space (20) waiting for some event caused by nature or the human being, so that it concentrates the possible damages in points of the structure (panel center) and; iii) Finally, when said event took place, and the energy dissipating box (30), was deformed absorbing the damage, it is removed from the space (20) and replaced by a new box (right panel).
  • the space (20) adapted to house the energy dissipating box (30) can be found centered or to the vertical axis of the wall (10), or to the axis horizontal axis of the wall (10), or centered on both the vertical and horizontal axis of the wall (10).
  • the energy dissipating box (30) has a quadrilateral shape, which allows it to fit exactly with the quadrilateral of the housing space (20) in the wall (10).
  • the energy dissipating box (30) in a preferred embodiment of the invention, has metal sheets (31) in a vertical position.
  • said metal sheets (31) can be in a horizontal position.
  • This dissipating box (30), indicated in figures 2A-D, is made up of steel plates in the upper and lower part whose function is to distribute the deformations produced by the horizontal loads in the C-shaped or any other dissipating element.
  • said C profiles will be located in the central part and will be fixed to the distributor plates through self-drilling screws.
  • the dissipation of energy then occurs (in this case) when said profiles C suffer deformations such that their material enters the inelastic range.
  • This incursion with cyclic loads (or whose effect is on the structure) generates energy dissipation.
  • said heatsink must be replaced by one with similar characteristics. Schematically, this replacement process is presented in Figure 3.
  • the energy dissipating box (30) can include connection elements, to which pull devices (32) can be coupled for removing the box (for example, a handle), as shown in Figure 2B-D, showing the different views of the energy dissipating box (30).
  • the invention also aims to protect the method for the protection and limitation of structural damage in low-rise buildings, where, Figure 3, shows a low-rise building structure (house), which is made up of the system of the present invention, where said structure has walls (10), made up of profiles, and where it can be seen in the circles and dates of figure 3, where the energy dissipating boxes (30) are attached, in the different walls of the edification.
  • Figure 3 shows a low-rise building structure (house), which is made up of the system of the present invention, where said structure has walls (10), made up of profiles, and where it can be seen in the circles and dates of figure 3, where the energy dissipating boxes (30) are attached, in the different walls of the edification.
  • the method comprises arranging an energy dissipating box (30), with collapsible material at a central point of a wall (10) of profiles (11, 12, 13); in the event of an event of nature, concentrate the structural damage on the energy dissipating box (30); and replace the energy dissipating box (30) that has absorbed the damage, with a new dissipating box (30) with similar characteristics to the original one.
  • the method allows, by coupling a series of dissipators located at different points of the building and housed (in all cases) in another structural element such as walls or mezzanine structures, to dissipate the energy in a better way, where the elements in the that the heat sinks are housed, they must be light construction systems in steel, aluminum, wood or similar.
  • the method comprises that the profiles (11, 12, 13), with which the structure is formed, are metallic and form type "C", type "I” or type "H".
  • the method comprises that the profiles (11, 12, 13) can be made of wood and their shape is quadrilateral, and where the method considers that the material capable of dissipating energy from the dissipating box (30) is select between; metal sheets (31), elastomeric material, or a foamed cement.
  • Example 1 Heatsink with 4 profiles 60CA085.
  • a heatsink with profiles 60CA085 (or also called C63 profiles).
  • This type of heatsink is made up of two 60CA085 profiles oriented on the X+ axis and two profiles oriented on the X- axis, as shown in figure 4.
  • Table 1 Results of the measurement of the non-linear behavior of the heatsink under test with 63CA085 profiles.
  • Example 2 Heatsink with 4 50C2 profiles.
  • a heatsink with 50C2 profiles is evaluated.
  • This type of heatsink is made up of two 50C2 profiles oriented on the X+ axis and two profiles oriented on the X- axis, as shown in figure 7.
  • Figure 10 provides a comparison between the two configurations of profiles used, where the configurations evaluated had the purpose of establishing a frame of reference for the custom design of dissipators and according to the demands of horizontal forces that the structure has and in particular, the component that moves the dissipator away.
  • Graphs A and B of Figure 10 show the sectors that generate energy dissipation. In this way, it is concluded that both configurations are capable of dissipating energy from horizontal loads that generate a cyclic action in the structure.
  • the C63 profiles it is estimated that these would be close to failure under the loads and number of cycles selected.
  • the 50C2 profiles it can be interpreted that this configuration with the selected loads and cycles (different from those of the C63 profiles), would be starting even far from reaching failure.
  • the examples and description of the previous invention support the protection system and method for low-rise buildings which, proving to have a technical advantage over the prior art, since a box-shaped anti-seismic device with coupled profiles of different types, which is removable, inexpensive, easy to handle, and is designed to comply with the protection of low-rise constructions (such as the houses of common people), had not been described in this way. form in the prior state of the art. Therefore, the scope of the system described in the present invention should not be limited only to the components mentioned in the text or the figures, since other designs and conformations of the invention can be given from the detailed description herein.

Abstract

The invention discloses a system and method for the structural protection of low-rise buildings which, in the event of tremors caused by nature or by man, concentrates the possible damage at points provided for this purpose, protecting and limiting the structural damage to the building. The system comprises a wall (10), formed by profiles (11, 12, 13) and, located at a central point in the wall (10), a space (20) adapted to accommodate a replaceable energy dissipation box (30) comprising a material capable of dissipating energy. The method involves the placement of these dissipators at various points in the building, housed (in all cases) in another structural element such as walls or mezzanine structures, to protect against damage. It should be noted that the elements wherein the dissipators are housed shall be lightweight construction systems made of steel, wood or the like.

Description

SISTEMA Y MÉTODO DE PROTECCIÓN ESTRUCTURAL PARA EDIFICACIONES DE BAJA ALTURA. SYSTEM AND METHOD OF STRUCTURAL PROTECTION FOR LOW-RISE BUILDINGS.
DESCRIPCIÓN DESCRIPTION
CAMPO TÉCNICO DE LA INVENCION TECHNICAL FIELD OF THE INVENTION
La presente invención se enfoca al campo de los sistemas para la protección sísmica u otras vibraciones externas que puedan afectar a la construcción de edificaciones de baja altura, en general, se refiere a un dispositivo acoplable que permite absorber y localizar la energía originada por un estremecimiento provocado por la naturaleza o por el ser humano, protegiendo así las edificaciones y reduciendo el daño estructural que pueda ocasionar un evento, como por ejemplo, un evento sísmico. The present invention focuses on the field of systems for seismic protection or other external vibrations that may affect the construction of low-rise buildings, in general, it refers to an attachable device that allows absorbing and localizing the energy caused by a tremor caused by nature or by human beings, thus protecting the buildings and reducing the structural damage that an event, such as a seismic event, may cause.
ANTECEDENTES DE LA INVENCION BACKGROUND OF THE INVENTION
Los sistemas de amortiguación, aislación y disipación de energía son sistemas que son parte o se acoplan a las estructuras de construcción de rascacielos, edificios, puentes, centros comerciales, aeropuertos, entre otros. Estos permiten proteger a la estructura, por ejemplo, de sismos, vibraciones, vientos, que afecten a la estructura, aumentando los períodos y proporcionando amortiguamiento y absorción de energía adicional, reduciendo sus deformaciones según sea el caso. Damping, insulation and energy dissipation systems are systems that are part of or are attached to the construction structures of skyscrapers, buildings, bridges, shopping malls, airports, among others. These allow the structure to be protected, for example, from earthquakes, vibrations, winds, that affect the structure, increasing the periods and providing additional damping and energy absorption, reducing its deformations as the case may be.
En el caso particular, la aislación sísmica, consiste en desacoplar la estructura de la sub-estructura por lo que se utilizan los dispositivos llamados aisladores, que se ubican estratégicamente en partes específicas de la estructura, los cuales, en un evento sísmico, proveen a la estructura la suficiente flexibilidad para diferenciar la mayor cantidad posible el período natural de la estructura con el período natural del sismo, evitando que se produzca resonancia, lo cual podría provocar daños severos o el colapso de la estructura (Tecnoav. URL:
Figure imgf000003_0001
Figure imgf000003_0002
Por otra parte, la disipación sísmica es una de las partes esenciales en la protección sísmica, los disipadores tienen como función, disipar las acumulaciones de energía asegurándose que otros elementos de la estructura no sean sobre exigidos, lo que podría provocar daños severos a la estructura (Tecnoav. URL:
Figure imgf000004_0001
In the particular case, seismic isolation consists of decoupling the structure from the sub-structure, for which devices called isolators are used, which are strategically located in specific parts of the structure, which, in a seismic event, provide the structure with sufficient flexibility to differentiate as much as possible the natural period of the structure with the natural period of the earthquake, preventing resonance from occurring, which could cause severe damage or collapse of the structure (Tecnoav. URL:
Figure imgf000003_0001
Figure imgf000003_0002
On the other hand, seismic dissipation is one of the essential parts in seismic protection, the function of dissipators is to dissipate accumulations of energy, ensuring that other elements of the structure are not over-exerted, which could cause severe damage to the structure. (Technoav. URL:
Figure imgf000004_0001
Por ejemplo, uno de los sistemas más usados en Chile son los de goma de alto amortiguamiento y los neoprénicos. Donde el Edificio Andalucía fue el primer edificio habitacional en Chile con aislación sísmica de base. Actualmente, también se utiliza esta tecnología en obras civiles como el Viaducto Marga-Marga, que fue el primer puente carretero construido con aislación sísmica de base. For example, one of the most used systems in Chile are those made of high cushioning rubber and neoprene. Where the Andalucía Building was the first residential building in Chile with base seismic isolation. Currently, this technology is also used in civil works such as the Marga-Marga Viaduct, which was the first highway bridge built with base seismic isolation.
Sin embargo, el tipo de construcción y materiales que se utilizan en grandes obras civiles, como los edificios, viaductos o puentes anteriormente descritos, difieren mucho de los materiales y tipos de construcción utilizados para edificaciones de baja altura (como por ejemplo viviendas), que suelen ser de materiales más livianos, más comunes, y más baratos, en comparación a los utilizados en grandes estructuras civiles. However, the type of construction and materials used in large civil works, such as the buildings, viaducts or bridges described above, differ greatly from the materials and types of construction used for low-rise buildings (such as houses), which They are usually made of lighter, more common, and cheaper materials, compared to those used in large civil structures.
En este caso, el uso del acero de lámina delgada en la construcción de viviendas es una práctica habitual en la escena mundial gracias a la rapidez de instalación, protección ante agentes adversos, poca masa (y reducción de las fuerzas sísmicas) y capacidad de fabricación industrial. Chile no ha sido ajeno a este sistema, donde empresas como Cintac y Tecno Truss son líderes en este tipo de construcción con la cual, grandes empresas de construcción de viviendas (de 1 y 2 pisos) construyen sus viviendas de forma parcial o total. In this case, the use of thin-sheet steel in the construction of houses is a common practice on the world stage thanks to the speed of installation, protection against adverse agents, low mass (and reduction of seismic forces) and manufacturing capacity. industrial. Chile has not been oblivious to this system, where companies such as Cintac and Tecno Truss are leaders in this type of construction with which large housing construction companies (1 and 2 stories) build their homes partially or totally.
Por tanto, considerando las adversidades que el medio ambiente puede ocasionar en la construcción, y en el caso de los países sísmicos como Chile, se requiere que los sistemas de aislación, disipación y amortiguación de energía estén en constante innovación, para que, tengan una mayor protección, pero a la vez no sean tan costosos de fabricar e implementar, para que puedan masificarse a todo tipo de usuarios y construcciones, y especialmente a las edificaciones de baja altura. Therefore, considering the adversities that the environment can cause in construction, and in the case of seismic countries such as Chile, it is required that the energy insulation, dissipation and damping systems be in constant innovation, so that they have a greater protection, but at the same time are so expensive to manufacture and implement, so that they can be massified to all types of users and constructions, and especially to low-rise buildings.
Debido a este problema, han surgido distintas innovaciones, con el fin de proteger las estructuras o edificaciones ante potenciales fuerzas o peligros externos que puedan dañar la estructura, que utilizan distintos sistemas o dispositivos de amortiguación de la energía y protección ante el daño. Así, se indican en el estado de la técnica, diferentes solicitudes de patentes de invención que utilizan estos dispositivos dentro de sus innovaciones, por ejemplo, la solicitud de patente CL 201703404, menciona un disipador de energía metálico, construido de forma modular para reducir vibraciones en estructuras inducidas por sismos, viento, y otras fuentes, que comprende al menos un módulo que consta de dos placas de carga paralelas, entre las que se conecta un número variable de disipadores metálicos en forma de “U”, los cuales, se deforman relativamente entre las placas de carga, ya sea vertical u horizontalmente, en que dichas placas de carga se conectan a una estructura entre dos puntos que sufren una deformación relativa producto de su vibración. Sin embargo, este documento no señala en forma explícita, que los disipadores de energía puedan ser fácilmente reemplazables después de un evento, tampoco se muestra un muro o tabique que contenga el espacio de encaje adecuado para un disipador de energía reemplazable. Due to this problem, different innovations have emerged, in order to protect structures or buildings against potential external forces or dangers that can damage the structure, which use different systems or devices to absorb energy and protect against damage. Thus, different patent applications for inventions that use these devices within their innovations are indicated in the state of the art, for example, patent application CL 201703404, mentions a metal energy dissipator, built in a modular way to reduce vibrations in structures induced by earthquakes, wind, and other sources, comprising at least one module consisting of two parallel load plates, between which a variable number of U-shaped metal heat sinks are connected, which deform relatively between the load plates, either vertically or horizontally, in which said load plates are connected to a structure between two points that undergo a relative deformation due to their vibration. However, this document does not explicitly state that energy dissipators can be easily replaced after an event, nor is it shown a wall or partition that contains adequate socket space for a replaceable energy dissipator.
La solicitud de patente WO 2013/059952, menciona un dispositivo para la disipación de energía en estructuras producto de sismos, vientos o cualquier otra causa natural o artificial de vibraciones que permite transformar tabiques en elementos que contribuyan a disipar energía mejorando la respuesta dinámica de estructuras, a través de su conexión directa o indirecta, a elementos estructurales mediante dispositivos que permitan acomodar desplazamientos relativos y disipar energía, dicho dispositivo comprende un tabique formado por planchas exteriores, las cuales recubren su estructura interna del tabique formada por elementos verticales o montantes y elementos horizontales o canales inferior y superior, donde el canal inferior va unido al suelo mediante un sistema de fijación; al menos un disipador al cual se une el canal superior y que está conectado a la losa del piso superior o al techo de la estructura donde se instale el tabique mediante un sistema de fijación. Sin embargo, este documento no señala en forma explícita, que los disipadores de energía puedan ser fácilmente reemplazables después de un evento, tampoco se muestra un muro o tabique que contenga el espacio de encaje adecuado para un disipador de energía reemplazable. Patent application WO 2013/059952 mentions a device for the dissipation of energy in structures produced by earthquakes, winds or any other natural or artificial cause of vibrations that allows partitions to be transformed into elements that contribute to dissipating energy, improving the dynamic response of structures. , through its direct or indirect connection, to structural elements by means of devices that allow relative displacements to be accommodated and energy to be dissipated, said device comprises a partition formed by external plates, which cover its internal structure of the partition formed by vertical elements or uprights and elements horizontal or lower and upper channels, where the lower channel is attached to the floor by means of a fixing system; at least one sink to which the upper channel is attached and which is connected to the floor slab top or to the ceiling of the structure where the partition is installed using a fixing system. However, this document does not explicitly state that energy dissipators can be easily replaced after an event, nor is it shown a wall or partition that contains adequate socket space for a replaceable energy dissipator.
La solicitud de patente CN 103669637, indica una viga de acoplamiento reemplazable mejorada para la disipación de energía, cuya finalidad es de otorgar resistencia sísmica de estructuras en edificios de gran altura. La viga de acoplamiento reemplazable se compone de una sección que no cede y una sección reemplazable. La sección reemplazable se forma conectando un amortiguador de caucho con núcleo de plomo y dos placas de acero tipo “U” en paralelo, en donde, las dos placas de acero tipo “U” están dispuestas simétricamente en el lado superior e inferior del amortiguador de caucho con núcleo de plomo y se conectan fijamente con una placa extrema del amortiguador de caucho con núcleo de plomo. Si bien, en este documento se menciona la posibilidad de reemplazar la unidad de disipación, en ningún momento se menciona una posible aplicación en edificios de baja altura, en donde se disponga de muros con un espacio esencialmente adaptado para recibir el dispositivo disipador de energía. Patent application CN 103669637, indicates an improved replaceable coupling beam for energy dissipation, whose purpose is to provide seismic resistance to structures in high-rise buildings. The replaceable coupling beam is made up of a non-sag section and a replaceable section. The replaceable section is formed by connecting a lead core rubber damper and two “U” type steel plates in parallel, whereby the two “U” type steel plates are arranged symmetrically on the upper and lower side of the shock absorber. lead cored rubber and are fixedly connected with an end plate of the lead cored rubber damper. Although this document mentions the possibility of replacing the dissipation unit, at no time is a possible application in low-rise buildings mentioned, where there are walls with a space essentially adapted to receive the energy dissipation device.
La solicitud de patente CN 106193360, describe un tipo de amortiguador de acero dulce desmontable que puede superar el efecto de película provocado por un sismo. El amortiguador incluye una placa de acero que absorbe energía disipada y una placa de conexión acanalada, en donde, la placa de acero se incrusta, por sus extremos superior e inferior, en la placa de conexión acanalada superior y en una placa de conexión acanalada inferior, una placa de presión fija el extremo inferior de la placa de acero en la ranura de apertura de la placa de conexión acanalada inferior correspondiente mediante pernos. Esta configuración es conveniente para el desmontaje de la placa de acero, ya que facilita la reparación del amortiguador. Sin embargo, en este sistema, no describe el tipo de muro o tabique del cual forman parte los disipadores y tampoco el espacio de encaje para el dispositivo mismo en el muro o tabique. La solicitud de patente CN 106401003, divulga un dispositivo de disipación de energía de acero dulce para trabajo en varios estados. El dispositivo comprende una placa superior, una placa base, una capa interna que incluye una pieza de absorción de energía y capas externas de múltiples superficies que incluye una pluralidad de piezas de absorción de energía. La pieza de absorción de energía de la capa interna está dispuesta longitudinalmente entre la placa superior y la placa base; y las piezas de absorción de energía de las capas externas, están dispuestas transversalmente entre la placa superior y la placa base, y son perpendiculares a la pieza de absorción de energía de la capa interna. Sin embargo, no se indica que dicho dispositivo tenga la capacidad de ser reemplazable dentro de la estructura. Patent application CN 106193360 describes a type of removable mild steel damper that can overcome the film effect caused by an earthquake. The shock absorber includes a steel plate that absorbs dissipated energy and a ribbed connecting plate, where the steel plate is embedded, at its upper and lower ends, in the upper ribbed connecting plate and in a lower ribbed connecting plate. , a pressure plate fixes the lower end of the steel plate into the opening groove of the corresponding lower grooved connecting plate by means of bolts. This configuration is convenient for steel plate disassembly as it facilitates shock absorber repair. However, in this system, it does not describe the type of wall or partition of which the heat sinks are a part, nor the fitting space for the device itself in the wall or partition. Patent application CN 106401003 discloses a mild steel energy dissipation device for work in various states. The device comprises a top plate, a base plate, an inner layer including an energy absorbing part, and multi-surface outer layers including a plurality of energy absorbing parts. The inner layer energy absorbing piece is longitudinally disposed between the top plate and the base plate; and the energy-absorbing parts of the outer layers are arranged transversely between the top plate and the base plate, and are perpendicular to the energy-absorbing part of the inner layer. However, it is not indicated that said device has the capacity to be replaceable within the structure.
La solicitud de patente CN 203769109, divulga un amortiguador de acero dulce que combina vahas etapas de flexibilidad, el cual comprende al menos un miembro de deformación escalonada y una pluralidad de miembros de flexión de deformación en una sola etapa. El elemento de deformación escalonada comprende una placa rectangular de acero dulce de bajo punto de deformación con al menos dos orificios de eliminación de tensiones y dos primeras láminas de acero dulce en forma de X que absorben energía; cada miembro de flexión de una sola etapa comprende una segunda hoja de acero dulce en forma de “X” que absorbe energía. Las primeras láminas de acero dulce absorbedores de energía en forma de “X” y las segundas láminas de acero dulce absorbedores de energía en forma de “X”, tienen una rigidez inicial baja, un desplazamiento de cizallamiento pequeño y, además, pueden entrar rápidamente en una etapa de fluencia ante grandes sismos y funcionar pare disipar energía. Los miembros de deformación escalonada y los de miembros de flexión de deformación en una sola etapa, pueden combinarse opcionalmente de acuerdo con los requisitos, y son simples y convenientes de usar, reemplazar y reparar. Sin embargo, dicho sistema, no describe el tipo de muro o tabique del cual forman parte los disipadores y tampoco el espacio de encaje pare el dispositivo mismo en el muro o tabique. Patent application CN 203769109 discloses a mild steel damper that combines several flexibility stages, which comprises at least one stepped deformation member and a plurality of deformation bending members in a single stage. The stepped strain element comprises a low strain point mild steel rectangular plate with at least two stress relief holes and two first energy absorbing X-shaped mild steel sheets; each single-stage flexing member comprises a second energy-absorbing “X”-shaped mild steel sheet. The first “X”-shaped energy-absorbing mild steel sheets and the second “X”-shaped energy-absorbing mild steel sheets have low initial stiffness, small shear displacement, and can also enter quickly. in a creep stage before large earthquakes and function to dissipate energy. Step deformation members and single-stage deformation bending members can be optionally combined according to requirements, and they are simple and convenient to use, replace and repair. However, said system does not describe the type of wall or partition of which the heat sinks are a part, nor does it describe the fitting space for the device itself in the wall or partition.
En consecuencia, actualmente existen soluciones pare la protección de edificaciones usando sistemas antisísmicos, los cuales permiten reducir de forma significativa el daño que puede sufrir una construcción, donde existen diversas configuraciones de estructuras que comprenden un componente que actúa como protector sísmico (dependiendo el tipo de construcción), los cuales son altamente conocidos en el estado de la técnica y están siendo ampliamente utilizados principalmente para lograr reducir los daños producidos por los sismos en los lugares donde estos son frecuentes y de intensidad considerable. Pero, estos sistemas están enfocados a las grandes edificaciones y no se usan a gran escala en las edificaciones de baja altura, porque “son caros” y, por ende, no se han masificado en este tipo de edificaciones. Consequently, there are currently solutions for the protection of buildings using anti-seismic systems, which allow to reduce The damage that a construction can suffer is significant, where there are various configurations of structures that comprise a component that acts as a seismic protector (depending on the type of construction), which are highly known in the state of the art and are being widely used mainly for reduce the damage caused by earthquakes in places where they are frequent and of considerable intensity. But, these systems are focused on large buildings and are not used on a large scale in low-rise buildings, because "they are expensive" and, therefore, they have not become widespread in this type of building.
Por tanto, existe la necesidad de contar con sistemas de protección sísmica, o para cualquier tipo de evento natural que provoque vibraciones en edificaciones de baja altura, como pueden ser: huracanes, tomados y ráfagas de viento, o eventos provocados por el ser humano, como podrían ser colisiones o choques de vehículos, en donde la función principal, de dicho sistema, sea concentrar el daño en puntos acotados y reemplazables. Con el fin de hacerlos de bajo costo, sencillos de aplicar y que estén pensado en cualquier tipo de usuario que desee implementarlos en construcciones pequeñas (o de baja altura), ya que, los sistemas actuales están todos pensados en grandes edificaciones, los cuales van indexados en vahos puntos de la estructura y que los hace de difícil reemplazo y de altos costos de implementación, por lo que, ni siquiera son accesibles para las pequeñas casas, ni departamentos pequeños o para el ciudadano común. Therefore, there is a need to have seismic protection systems, or for any type of natural event that causes vibrations in low-rise buildings, such as: hurricanes, storms and gusts of wind, or events caused by human beings, such as collisions or vehicle crashes, where the main function of said system is to concentrate the damage in limited and replaceable points. In order to make them low-cost, easy to apply and designed for any type of user who wishes to implement them in small (or low-rise) buildings, since current systems are all designed for large buildings, which range from indexed at various points of the structure and that makes them difficult to replace and with high implementation costs, therefore, they are not even accessible for small houses, small apartments or for the common citizen.
RESUMEN DE LA INVENCIÓN SUMMARY OF THE INVENTION
La presente invención apunta a un sistema y método de protección para edificaciones de baja altura que, ante eventos originados por la naturaleza o el ser humano, concentra los posibles daños en puntos estimados para este fin, protegiendo y limitando los daños estructurales de la edificación. El sistema está comprendido por un muro conformado de perfiles y, en un punto central del muro, está dispuesto un espacio adaptado para alojar una caja disipadora de energía reemplazable, conformada por un material capaz de disipar energía. El método, involucra ubicar estos disipadores en distintos puntos de la edificación y alojados en otro elemento estructural como muros o estructuras de entrepiso, para protegerlo de daños de vibraciones. Cabe destacar que los elementos en los que se alojen los disipadores, deben ser sistemas de construcción liviana en acero, madera o materiales similares. The present invention aims at a protection system and method for low-rise buildings that, in the event of events caused by nature or the human being, concentrates possible damages at points estimated for this purpose, protecting and limiting structural damage to the building. The system is comprised of a wall made of profiles and, at a central point of the wall, there is a space adapted to house a replaceable energy dissipating box, made of a material capable of dissipating energy. The method, It involves locating these heat sinks at different points in the building and housed in another structural element such as walls or mezzanine structures, to protect it from vibration damage. It should be noted that the elements in which the heat sinks are housed must be lightweight construction systems made of steel, wood or similar materials.
La presente invención permite solucionar este problema, mediante un sistema de unidades de protección sísmica reemplazables que se ubican en varias partes de la edificación y que actúan como un fusible que absorbe (y localiza) el daño generado por el sismo y que, al finalizar el sismo, es de fácil reemplazo. The present invention makes it possible to solve this problem, by means of a system of replaceable seismic protection units that are located in various parts of the building and that act as a fuse that absorbs (and locates) the damage generated by the earthquake and that, at the end of the earthquake, it is easy to replace.
Es un objetivo del presente invento, proporcionar una solución que sea de fácil aplicación, barato y que sea aplicable para todo usuario, como es el caso de las edificaciones de baja altura, por ejemplo, casas, pequeños departamentos, o locales comerciales, que comúnmente no cuentan con sistemas de protección o disipación de energía ante sismos. It is an objective of the present invention to provide a solution that is easy to apply, cheap and applicable to all users, as is the case of low-rise buildings, for example, houses, small apartments, or commercial premises, which are commonly they do not have protection systems or energy dissipation against earthquakes.
BREVE DESCRIPCIÓN DE LA FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Una descripción detallada de la invención se llevará a cabo en conjunto con las figuras que forman parte de esta solicitud. A detailed description of the invention will be carried out in conjunction with the figures that form part of this application.
Es importante indicar que las figuras sólo actúan como elementos de apoyo para una mejor comprensión de la invención, sin que ellas representen los componentes a una escala real o proporcional. La invención tampoco puede verse limitada sólo a lo que aparece en las figuras, pues ellas representan, en una forma pedagógica, los elementos trascendentes del sistema y del diseño del disipador energía y pueden no incluirse elementos que son de conocimiento general en el estado de la técnica. Así entonces, se tienen las siguientes figuras: It is important to indicate that the figures only act as support elements for a better understanding of the invention, without representing the components at a real or proportional scale. The invention cannot be limited only to what appears in the figures, since they represent, in a pedagogical way, the transcendent elements of the system and the design of the energy dissipator and elements that are generally known in the state of the art may not be included. technique. Thus, we have the following figures:
Figura 1 : Esquema del Sistema y utilización y reemplazo de los disipadores. Se muestra el sistema de protección para edificaciones de baja altura. En A, se observan las partes del sistema. En B, se indica el acoplamiento y reemplazo del disipador dentro del sistema. Figure 1: Scheme of the System and use and replacement of the heat sinks. The protection system for low-rise buildings is shown. In A, it look at the parts of the system. At B, the attachment and replacement of the heatsink within the system is indicated.
Figura 2: Montaje del disipador. Se muestran las diferentes vistas de la caja disipadora de energía para su montaje. En A, se muestra una vista frontal. En B, se muestra una vista lateral. En C, se muestra una vista superior. En D, se muestra una vista ¡sométrica. Figure 2: Mounting of the heatsink. The different views of the energy dissipating box for its assembly are shown. At A, a front view is shown. At B, a side view is shown. In C, a top view is shown. At D, an isometric view is shown.
Figura 3: Ubicaciones de referencia para los disipadores. Se muestra una edificación de baja altura (casa), conformada por muros con perfiles en los que se acopla los disipadores de energía. Figure 3: Reference locations for heatsinks. A low-rise building (house) is shown, made up of walls with profiles in which the energy dissipators are attached.
Figura 4: Disipador con 4 perfiles 60CA085. Se muestra un diseño de disipador, con el montaje de 4 perfiles 60CA085- Ansys R14.5. Figure 4: Heatsink with 4 profiles 60CA085. A heatsink design is shown, with the assembly of 4 profiles 60CA085- Ansys R14.5.
Figura 5: Gráfico Fuerza/Deformación en perfiles 60CA085, lineal. Se representa un gráfico con los datos obtenidos de las pruebas de deformación lineal, en perfiles 60CA085. Figure 5: Force/Strain graph in 60CA085 profiles, linear. A graph is represented with the data obtained from the linear deformation tests, in 60CA085 profiles.
Figura 6: Gráfico Fuerza/Deformación en 60CA085, no - lineal. Se representa un gráfico con los datos obtenidos de las pruebas de deformación no lineal, en perfiles 60CA085. Figure 6: Force/Strain plot on 60CA085, non-linear. A graph is represented with the data obtained from the non-linear deformation tests, in 60CA085 profiles.
Figura 7: Disipador con 4 perfiles 50C2. Se muestra un diseño de disipador, con el montaje de 4 perfiles 50C2. Figure 7: Heatsink with 4 50C2 profiles. A heatsink design is shown, with the mounting of 4 50C2 profiles.
Figura 8: Gráfico Fuerza/Deformación en perfiles 50C2, lineal. Se representa un gráfico con los datos obtenidos de las pruebas de deformación lineal, en perfiles 50C2. Figure 8: Force/Strain graph in 50C2 profiles, linear. A graph is represented with the data obtained from the linear deformation tests, in 50C2 profiles.
Figura 9: Gráfico Fuerza/Deformación en perfiles 50C2, no - lineal. Se representa un gráfico con los datos obtenidos de las pruebas de deformación no lineal, en perfiles 50C2. Figure 9: Force/Strain graph in 50C2 profiles, non-linear. A graph is represented with the data obtained from the non-linear deformation tests, in 50C2 profiles.
Figura 10: Gráficos de disipación de energía, en ambas configuraciones. Se representan gráficos comparativos, con los datos obtenidos de las pruebas de deformación no lineal en ambos tipos de perfiles. Figure 10: Power dissipation graphs, in both configurations. Comparative graphs are represented, with the data obtained from the non-linear deformation tests in both types of profiles.
Todas las referencias numéricas que se realizan a lo largo de toda la descripción deben considerarse en el todo el conjunto de las figuras, pues, se da el caso que en un mismo párrafo se hacen referencias numéricas a elementos que se pueden encontrar en dos o más figuras distintas. All the numerical references that are made throughout the entire description must be considered in the entire set of figures, since the case that in the same paragraph numerical references are made to elements that can be found in two or more different figures.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Para una mejor comprensión del presente invento, es necesario entregar las siguientes definiciones, las que sólo deben ser entendidas como elementos que ayudan al entendimiento de las características técnicas particulares en este campo técnico. For a better understanding of the present invention, it is necessary to provide the following definitions, which should only be understood as elements that help to understand the particular technical characteristics in this technical field.
Como se utiliza en el presente invento, el término “edificación de baja altura" hace referencia a cualquier tipo de construcción o estructura que no cuenta con muchos pisos de altura, por ejemplo, no más de cuatro pisos. Estos tipos de edificaciones corresponden por ejemplo a casas, condominios, block, edificios pequeños, galpones, locales comerciales, entre otros. As used in the present invention, the term "low-rise building" refers to any type of building or structure that is not many stories high, for example, no more than four stories. These types of buildings correspond, for example to houses, condominiums, blocks, small buildings, sheds, commercial premises, among others.
Como se utiliza en el presente invento, el término “perfil’ se refiere a un tipo de productos estructurales o vigas, en el caso de perfiles metálicos, estos se generan por laminación en caliente, sin embargo, otros tipos de perfiles son conocidos en el mercado (como los de madera). Estos perfiles se usan en la construcción, donde se une para formar estructuras (por ejemplo, muros) y edificar estructuras de distintos tamaños. Dentro de los perfiles encontramos de distintas formas según su vista lateral, por ejemplo, los que tienen forma de letra “C”, “I”, “H”, “L”, así como también, con formas cuadradas o circulares, entre otros. En una modalidad preferida de la invención, los perfiles utilizados son de aluminio. As used in the present invention, the term "profile" refers to a type of structural products or beams, in the case of metal profiles, these are generated by hot rolling, however, other types of profiles are known in the art. market (such as wood). These profiles are used in construction, where they are joined to form structures (for example, walls) and build structures of different sizes. Within the profiles we find different shapes according to their side view, for example, those that have the shape of the letter "C", "I", "H", "L", as well as, with square or circular shapes, among others. . In a preferred embodiment of the invention, the profiles used are made of aluminium.
Como se utiliza en el presente invento, el término “disipador de energía" corresponde a dispositivos especiales que se introducen en una estructura, con el fin de reducir las deformaciones y esfuerzos sobre ella. Estos dispositivos reducen la demanda de deformación y esfuerzos producidos por fuerzas externas (por ejemplo, un sismo), mediante el aumento del amortiguamiento estructural, lo que da como resultado que los esfuerzos inducidos por la fuerza externa en la estructura (por ejemplo, un sismo), pueden ser hasta un 50% menores que los correspondientes a la estructura sin disipadores, reduciendo sustancialmente las incursiones inelásticas (daño) de la estructura. En un escenario de sismo, una estructura sin disipadores de energía sobrevive el sismo severo disipando energía en sus elementos principales, los que sufren daño. En cambio, la estructura con disipadores, la energía es absorbida por estos dispositivos reduciendo significativamente las deformaciones y el daño estructural. As used in the present invention, the term "energy dissipator" corresponds to special devices that are introduced in a structure, in order to reduce the deformations and stresses on it. These devices reduce the demand for deformation and stresses produced by forces. (for example, an earthquake), by increasing the structural damping, which results in the stresses induced by the external force in the structure (for example, an earthquake), can be up to 50% smaller than those corresponding to the structure without dissipators, substantially reducing the inelastic incursions (damage) of the structure. In an earthquake scenario, a structure without energy dissipators survives the severe earthquake by dissipating energy in its main elements, which suffer damage. Instead, the structure with dissipators, the energy is absorbed by these devices significantly reducing deformations and structural damage.
Como se utiliza en el presente invento, el término “material elastomérico" se refiere a materiales formados por polímeros, que se encuentran unidos por medio de enlaces químicos adquiriendo una estructura final ligeramente reticulada. La principal característica de los elastómeros es su alta elongación o elasticidad y flexibilidad que disponen dichos materiales frente a cargas antes de fracturarse o romperse. Dichos elastómeros son polímeros amorfos que se encuentran sobre su temperatura de transición vitrea (Tg), lo que explica esa considerable capacidad de deformación. Estos pueden ser elastómeros termoestables (que al calentarlos no se funden o se deforman) o elastómeros termoplásticos (que al calentarlos se funden y se deforman). As used in the present invention, the term "elastomeric material" refers to materials formed by polymers, which are joined by chemical bonds, acquiring a slightly crosslinked final structure. The main characteristic of elastomers is their high elongation or elasticity. and flexibility that these materials have against loads before fracturing or breaking.These elastomers are amorphous polymers that are above their glass transition temperature (Tg), which explains this considerable deformation capacity.These can be thermosetting elastomers (which at heating them do not melt or deform) or thermoplastic elastomers (which melt and deform when heated).
Como se utiliza en el presente invento, el término “cemento espumado” corresponde a un cemento homogéneo y ultraliviano que consta de una lechada de cemento base, gas (normalmente nitrógeno) y surfactantes. Los cementos espumados se utilizan comúnmente para cementar pozos que penetran rocas débiles o formaciones con gradientes bajos de fractura. Tiene una suspensión a base de cemento, con un mínimo de 20% (por volumen) de espuma arrastrada al mortero, posee una densidad que generalmente varía de 400 kg/m3 a 1600 kg/m3 y es producido exclusivamente a partir de materias primas naturales, por lo que se compone de agua, arena, cemento y aire. También es conocido como hormigón celular, concreto celular ligero (CCL), concreto celular de baja densidad (CCBD). As used in the present invention, the term "foamed cement" corresponds to an ultralight, homogeneous cement consisting of a base cement slurry, gas (usually nitrogen), and surfactants. Foamed cements are commonly used to cement wells that penetrate weak rock or formations with low fracture gradients. It has a cement-based suspension, with a minimum of 20% (by volume) of foam dragged into the mortar, has a density that generally varies from 400 kg/m 3 to 1600 kg/m 3 and is produced exclusively from raw materials. natural raw materials, so it is made up of water, sand, cement and air. It is also known as cellular concrete, lightweight cellular concrete (LCC), and low-density cellular concrete (LCBD).
Como se utiliza en el presente invento, el término “material colapsable” se refiere a un tipo de material, que, ante cambios físicos o fuerzas externas, producen una reducción repentina de su volumen de forma considerable, lo que lleva a que dicho material se deforme o “colapse”, para absorber el impacto de dicha fuerza externa, permitiendo proteger y mantener la estructura intacta, en la cual está inmersa dicho material colapsable. As used in the present invention, the term "collapsible material" refers to a type of material, which, in the face of physical changes or external forces, produces a sudden reduction of its volume considerably, which leads to said material deforming or "collapsing", to absorb the impact of said external force, allowing to protect and maintain the structure intact, in which said collapsible material is immersed.
Como se utiliza en el presente invento, el término “evento de la naturaleza" se refiere a algún desastre natural que puede deformar el disipador, como por ejemplo: movimientos sísmicos, huracanes, tomados, ondas expansivas de erupciones volcánicas, derrumbes de suelo o laderas de cerros, entre otros. As used in the present invention, the term "event of nature" refers to some natural disaster that can deform the dissipator, such as: seismic movements, hurricanes, taken, shock waves from volcanic eruptions, landslides or slopes hills, among others.
Como se utiliza en el presente invento, el término “evento del ser humano" se refiere a algún desastre de intervención humana que puede deformar el disipador, como por ejemplo: un choque, una caída de un objeto pesado, explosiones de mediana/baja potencia, entre otras. As used in the present invention, the term "human event" refers to some human intervention disaster that can deform the heatsink, such as: a shock, a fall of a heavy object, medium / low power explosions , among other.
Tal como se indicó en párrafos anteriores, el invento comprende una caja que tiene en su interior perfiles de lámina delgada. La función de esta caja es instalarse en vahos puntos (vahas cajas) de la estructura de la vivienda (pensada para este fin). Cuando se tenga un evento sísmico importante, los perfiles de dicha caja actuarían como fusibles, concentrando ahí el daño de la estructura. Dichas cajas (luego del evento sísmico) serían reemplazadas por otras hasta el próximo evento. As indicated in previous paragraphs, the invention comprises a box that has thin sheet profiles inside. The function of this box is to be installed at various points (various boxes) of the housing structure (designed for this purpose). When there is an important seismic event, the profiles of said box would act as fuses, concentrating the damage of the structure there. Said boxes (after the seismic event) would be replaced by others until the next event.
Por tanto, una de las ventajas de la invención, es que, se aborda la problemática de proteger de los eventos sísmicos, a los hogares comunes y pequeñas edificaciones que no cuentan con sistemas de protección sísmica, ya que las soluciones actuales para mitigar los sismos están siempre pensadas en grandes edificios, lo que las hace costosas de implementar y se diseñan para enlazarse dentro de la estructura basal de grandes construcciones, lo que las hace difíciles de reemplazar. Therefore, one of the advantages of the invention is that it addresses the problem of protecting ordinary homes and small buildings that do not have seismic protection systems from seismic events, since current solutions to mitigate earthquakes they are always intended for large buildings, which makes them expensive to implement, and they are designed to be linked within the base structure of large buildings, which makes them difficult to replace.
Así entonces, a través del presente invento, se ha desarrollado una mejora en el diseño de los sistemas de protección sísmica, o ante otro tipo de evento natural o provocado por el ser humano, ya que, la principal innovación del invento radica en un sistema de protección sísmica de bajo costo y de fácil reemplazo. Donde el usuario final serán los dueños de las casas donde se instalen estos sistemas. Pero el cliente serán las inmobiliarias que deseen adquirir estos aparatos para la construcción de sus viviendas. Así como también, construcción de edificaciones de hasta cuatro pisos que pueden ser residenciales y para la minería, son un objetivo de esta invención. Thus, through the present invention, an improvement has been developed in the design of seismic protection systems, or in the event of another type of natural event or caused by human beings, since the main innovation of the invention lies in a low-cost and easy-to-replace seismic protection system. Where the end user will be the owners of the houses where these systems are installed. But the client will be the real estate agents who wish to acquire these devices for the construction of their homes. As well as, construction of buildings of up to four floors that can be residential and for mining, are an objective of this invention.
Otra de las ventajas, es que ninguna de las soluciones existentes en el mercado, presenta el conjunto de estructura (muro o tabique) al cual se encuentra acoplado el sistema de disipación de energía, con el espacio adaptado para recibir y sacar el disipador de energía, pues, de acuerdo con la solución que presenta el sistema de la presente invención, se debe considerar la caja de disipación y el muro (elemento estructural) con el espacio adecuado para alojar la caja disipadora, como un todo. Another advantage is that none of the existing solutions on the market present the structure set (wall or partition) to which the energy dissipation system is attached, with the space adapted to receive and remove the energy dissipator. Therefore, according to the solution presented by the system of the present invention, the dissipating box and the wall (structural element) with adequate space to house the dissipating box must be considered as a whole.
En base al párrafo anterior, otra de las ventajas es que este sistema considerado como un todo, permite que las construcciones realizadas con este sistema, estén protegidas contra eventuales peligros desde el inicio de la construcción, donde como se ejemplifica en las figuras, las construcciones de muros a base de perfiles de aluminio son cada vez más utilizadas (dado su bajo costo), por ende, el que se acoplen estas cajas disipadoras de energía, en las diferentes paredes o losas de la construcción, utilizando los mismos materiales, permite que las futuras construcciones, poblaciones, barrios casas, entre otros, cuenten con un sistema de protección contra fuerzas externas, por ejemplo terremotos, algo que en Chile, siendo un país sísmico, no existe una regulación que obligue que las construcciones de viviendas, cuenten con sistemas de protección de disipación de energía, ya que, solo se exigen sistemas de protección antisísmico para disipación o amortiguación de energía a los grandes edificios. Based on the previous paragraph, another advantage is that this system, considered as a whole, allows the constructions made with this system to be protected against possible dangers from the beginning of the construction, where, as exemplified in the figures, the constructions of walls based on aluminum profiles are increasingly used (given their low cost), therefore, the fact that these energy dissipating boxes are attached to the different walls or slabs of the construction, using the same materials, allows future constructions, towns, neighborhoods, houses, among others, have a protection system against external forces, for example earthquakes, something that in Chile, being a seismic country, there is no regulation that requires that housing constructions have energy dissipation protection systems, since anti-seismic protection systems are only required for energy dissipation or damping for large and differences.
En consecuencia, esta invención es una solución simple y económica de realizar, que no requiere grandes intervenciones a las estructuras de construcción actuales, se utilizan los mismo materiales de construcción, lo que permite generar un dispositivo acopladle de bajo consto, que además es reemplazable luego de que este cumple su función, lo que permitirá ayudar a masificar la protección sísmica en viviendas y edificaciones de baja altura, el cual era un problema no resuelto en el estado de la técnica previo. Consequently, this invention is a simple and economical solution to carry out, which does not require major interventions to the construction structures. current, the same construction materials are used, which allows the generation of a low-cost attachable device, which is also replaceable after it fulfills its function, which will help to massify seismic protection in homes and low-rise buildings, which was an unsolved problem in the previous state of the art.
Así entonces, se pretende explicar las ventajas técnicas de la invención través de las figuras que acompañan esta reinvención, por ejemplo, en la figura 1 , se representa el sistema de protección para edificaciones de baja altura que, ante eventos originados por la naturaleza o el ser humano, concentra los posibles daños en puntos estimados para este fin. En la figura 1A, se indican las partes del sistema, el cual está comprendido por un muro (10), conformado de perfiles y en un punto central del muro, está dispuesto un espacio (20), adaptado para alojar una caja disipadora de energía (30), reemplazable conformada por un material capaz de disipar energía, dicho muro (10), está formado por perfiles, que dan forma a un marco externo (11 ), perfiles internos (12), que conectan los perfiles del marco externo, perfiles diagonales (13), que nacen de cada ángulo interno del marco y terminan en el espacio (20), que aloja la caja disipadora (30). Thus, it is intended to explain the technical advantages of the invention through the figures that accompany this reinvention, for example, in figure 1, the protection system for low-rise buildings is represented that, in the event of events caused by nature or the human being, concentrates the possible damages in points estimated for this purpose. In Figure 1A, the parts of the system are indicated, which is comprised of a wall (10), made up of profiles and at a central point of the wall, a space (20) is arranged, adapted to house an energy dissipating box. (30), replaceable, made up of a material capable of dissipating energy, said wall (10), is made up of profiles, which shape an external frame (11), internal profiles (12), which connect the profiles of the external frame, diagonal profiles (13), which start from each internal angle of the frame and end in the space (20), which houses the dissipating box (30).
Cabe destacar que, en una modalidad preferida de la invención, los perfiles internos (12) se encuentran en una disposición vertical. Sin embargo, en otra modalidad, dichos perfiles internos (12) se pueden encontrar en una disposición horizontal, y en otra modalidad de la invención, los perfiles internos (12) se pueden encontrar combinados en una disposición vertical y horizontal. It should be noted that, in a preferred embodiment of the invention, the internal profiles (12) are in a vertical arrangement. However, in another embodiment, said internal profiles (12) may be in a horizontal arrangement, and in another embodiment of the invention, the internal profiles (12) may be combined in a vertical and horizontal arrangement.
En cuanto al material capaz de disipar energía de la caja disipadora (30), una modalidad preferida de la invención, dicho material corresponde a láminas metálicas, aunque no se limita sólo a este material, ya que, en otras modalidades de la invención, el material capaz de disipar energía de la caja disipadora (30), puede ser elegido de entre un material elastomérico, o un cemento espumado. Por otra parte, los perfiles (11 , 12, 13) que forman el muro (10), son preferentemente metálicos y de forma cuadrilátera, donde dichos perfiles (11 , 12, 13), pueden tener forma tipo “C”, tipo “I” o tipo “H”, pero en una modalidad preferida de la invención, son metálicos de tipo “C”. Aun así, esto no se limita solamente a perfiles metálicos, ya que, para un técnico del área, se pueden utilizar perfiles de otros materiales conocidos en la técnica, por lo que los perfiles (11 , 12, 13), pueden ser, por ejemplo, de madera y de forma cuadrilátera. As for the material capable of dissipating energy of the dissipating box (30), a preferred embodiment of the invention, said material corresponds to metal sheets, although it is not limited only to this material, since, in other embodiments of the invention, the material capable of dissipating energy from the dissipating box (30), it can be chosen from an elastomeric material, or a foamed cement. On the other hand, the profiles (11, 12, 13) that form the wall (10), are preferably metallic and have a quadrilateral shape, where said profiles (11, 12, 13), can have a type "C", type "I" or type "H", but in a preferred embodiment of the invention, they are metallic of type "C". Even so, this is not limited only to metal profiles, since, for a technician in the area, profiles of other materials known in the art can be used, so the profiles (11, 12, 13) can be, for example, made of wood and quadrilateral in shape.
La figura 1 B muestra que el espacio (20), del sistema de protección para edificaciones de baja altura de acuerdo a la invención, esta adaptado para alojar la caja disipadora de energía (30), que tiene forma de un cuadrilátero, donde las flechas en negritas de los paneles de la figura 1 B indican: i) Como la caja disipadora de energía (30), se inserta en el espacio (20) (panel izquierdo); ¡i) Luego, se deja posicionada la caja disipadora de energía (30) en el espacio (20) a la espera de algún evento originado por la naturaleza o el ser humano, para que concentre los posibles daños en puntos de la estructura (panel central) y; iii) Finalmente, cuando dicho evento tuvo lugar, y la caja disipadora de energía (30), se deformó absorbiendo el daño, ésta es removida del espacio (20) y reemplazada por una caja nueva (panel derecho). Figure 1 B shows that the space (20), of the protection system for low-rise buildings according to the invention, is adapted to house the energy dissipating box (30), which has the shape of a quadrilateral, where the arrows in bold of the panels of figure 1 B indicate: i) As the energy dissipating box (30), it is inserted in the space (20) (left panel); i) Then, the energy dissipating box (30) is left positioned in the space (20) waiting for some event caused by nature or the human being, so that it concentrates the possible damages in points of the structure (panel center) and; iii) Finally, when said event took place, and the energy dissipating box (30), was deformed absorbing the damage, it is removed from the space (20) and replaced by a new box (right panel).
Además, se puede apreciar en el panel central de la figura 1 B, que el espacio (20) adaptado para alojar la caja disipadora de energía (30), se puede encontrar centrado o al eje vertical del muro (10), o al eje horizontal del muro (10), o centrado tanto al eje vertical y horizontal del muro (10). In addition, it can be seen in the central panel of figure 1 B, that the space (20) adapted to house the energy dissipating box (30), can be found centered or to the vertical axis of the wall (10), or to the axis horizontal axis of the wall (10), or centered on both the vertical and horizontal axis of the wall (10).
En la figura 2, se aprecia que la caja disipadora de energía (30), tiene una forma de cuadrilátero, que le permite encajar exactamente con el cuadrilátero del espacio (20) de alojamiento en el muro (10). En donde, en la figura 2A, se observa que la caja disipadora de energía (30), en una modalidad preferida de la invención dispone láminas metálicas (31 ) en una posición vertical. Sin embargo, en otra modalidad, dichas láminas metálicas (31 ) pueden estar en una posición horizontal. Esta caja disipadora (30), indicada en las figuras 2A-D, está compuesta por unas placas de acero en la parte superior e inferior cuya función consiste en distribuir las deformaciones producto de las cargas horizontales en los perfiles de acero en forma de C o cualquier otro elemento disipador. En este caso, dichos perfiles C estarán ubicados en la parte central y serán fijados a las placas distribuidoras a través de tomillos autoperforantes. La disipación de energía se produce entonces (en este caso), cuando dichos perfiles C, sufren deformaciones tales, que su material incursiona en el rango inelástico. Dicha incursión con cargas cíclicas (o cuyo efecto lo sea en la estructura) genera la disipación de energía. Al finalizar el evento que generó las cargas horizontales, se debe reemplazar dicho disipador por uno de similares características. De forma esquemática este proceso de reemplazo se presenta en la figura 3. In figure 2, it can be seen that the energy dissipating box (30) has a quadrilateral shape, which allows it to fit exactly with the quadrilateral of the housing space (20) in the wall (10). Where, in Figure 2A, it can be seen that the energy dissipating box (30), in a preferred embodiment of the invention, has metal sheets (31) in a vertical position. However, in another embodiment, said metal sheets (31) can be in a horizontal position. This dissipating box (30), indicated in figures 2A-D, is made up of steel plates in the upper and lower part whose function is to distribute the deformations produced by the horizontal loads in the C-shaped or any other dissipating element. In this case, said C profiles will be located in the central part and will be fixed to the distributor plates through self-drilling screws. The dissipation of energy then occurs (in this case) when said profiles C suffer deformations such that their material enters the inelastic range. This incursion with cyclic loads (or whose effect is on the structure) generates energy dissipation. At the end of the event that generated the horizontal loads, said heatsink must be replaced by one with similar characteristics. Schematically, this replacement process is presented in Figure 3.
En consecuencia, en una modalidad opcional, la caja disipadora de energía (30) puede incluir elementos de conexión, a los que se pueden acoplar dispositivos tiradores (32) para la remoción de la caja (por ejemplo, una manilla), como se observa en la figura 2B-D, que muestran las diferentes vistas de la caja disipadora de energía (30). Consequently, in an optional embodiment, the energy dissipating box (30) can include connection elements, to which pull devices (32) can be coupled for removing the box (for example, a handle), as shown in Figure 2B-D, showing the different views of the energy dissipating box (30).
La invención también pretende proteger el método para la protección y limitación de daños estructurales en edificaciones de baja altura, en donde, la figura 3, muestra una estructura de edificación de baja altura (casa), la cual está conformada por el sistema de la presente invención, donde dicha estructura se dispone de muros (10), conformado por perfiles, y donde se puede apreciar en los círculos y fechas de la figura 3, donde están acopladas las cajas disipadoras de energía (30), en las diferentes paredes de la edificación. Por tanto, el método comprende disponer una caja disipadora de energía (30), con material colapsable en un punto central de un muro (10) de perfiles (11 , 12, 13); en caso de evento de la naturaleza, concentrar los daños estructurales en la caja disipadora de energía (30); y reemplazar la caja disipadora de energía (30) que ha absorbido el daño, por una nueva caja disipadora (30) de similares características a la original. El método permite, que al acoplar una serie de disipadores ubicados en distintos puntos de la edificación y alojados (en todos los casos) en otro elemento estructural como muros o estructuras de entrepiso, se disipe de mejor manera la energía, donde los elementos en los que se alojen los disipadores, deben ser sistemas de construcción liviana en acero, aluminio, madera o similares. The invention also aims to protect the method for the protection and limitation of structural damage in low-rise buildings, where, Figure 3, shows a low-rise building structure (house), which is made up of the system of the present invention, where said structure has walls (10), made up of profiles, and where it can be seen in the circles and dates of figure 3, where the energy dissipating boxes (30) are attached, in the different walls of the edification. Therefore, the method comprises arranging an energy dissipating box (30), with collapsible material at a central point of a wall (10) of profiles (11, 12, 13); in the event of an event of nature, concentrate the structural damage on the energy dissipating box (30); and replace the energy dissipating box (30) that has absorbed the damage, with a new dissipating box (30) with similar characteristics to the original one. The method allows, by coupling a series of dissipators located at different points of the building and housed (in all cases) in another structural element such as walls or mezzanine structures, to dissipate the energy in a better way, where the elements in the that the heat sinks are housed, they must be light construction systems in steel, aluminum, wood or similar.
Por ende, el método comprende que los perfiles (11 , 12, 13), con los que se conforma la estructura, sean metálicos y de forma tipo “C”, tipo “I” o tipo “H”. En otra modalidad preferida, el método comprende que los perfiles (11 , 12, 13), puedan ser de madera y su forma es cuadrilátera, y donde, el método considera que el material capaz de disipar energía de la caja disipadora (30) se seleccione entre; láminas metálicas (31 ), material elastomérico, o un cemento espumado. Therefore, the method comprises that the profiles (11, 12, 13), with which the structure is formed, are metallic and form type "C", type "I" or type "H". In another preferred embodiment, the method comprises that the profiles (11, 12, 13) can be made of wood and their shape is quadrilateral, and where the method considers that the material capable of dissipating energy from the dissipating box (30) is select between; metal sheets (31), elastomeric material, or a foamed cement.
EJEMPLOS EXAMPLES
La descripción de las pruebas de rigor para demostrar el impacto del sistema de protección sísmico, en base al dispositivo de caja removible, de la presente invención, se confirma a través de los siguientes ejemplos comparativos. En donde, los siguientes ejemplos, presentan los resultados obtenidos de una serie de modelaciones numéricas que buscan caracterizar las propiedades del disipador propuesto. Las modelaciones fueron realizadas en el software de elementos finitos Ansys y se incluyen los resultados de los comportamientos lineal y no lineal del material ocupado en el disipador. The description of the rigorous tests to demonstrate the impact of the seismic protection system, based on the removable box device, of the present invention, is confirmed through the following comparative examples. Where, the following examples present the results obtained from a series of numerical modeling that seek to characterize the properties of the proposed dissipator. The modeling was carried out in the Ansys finite element software and the results of the linear and non-linear behavior of the material occupied in the dissipator are included.
Ejemplo 1 : Disipador con 4 perfiles 60CA085. Example 1: Heatsink with 4 profiles 60CA085.
Es importante destacar que, debido a que no se tendrá una configuración única del disipador, se evaluaron dos tipologías con el fin de establecer un marco de referencia para el posterior análisis no lineal, en este ejemplo se evalúa un disipador con perfiles 60CA085 (o también llamados perfiles C63). Este tipo de disipador está compuesto por dos perfiles 60CA085 orientados en el eje X+ y dos perfiles orientados en el eje X-, según como se presenta en la figura 4. Comportamiento lineal del disipador: Para evaluar el comportamiento lineal elástico del disipador, esta configuración con 4 perfiles 60CA085 se sometió a una deformación lineal en el sentido de las X de 0,06 mm, reaccionando así con una fuerza en ese mismo eje, pero en sentido opuesto de 0,041 kN, los datos obtenidos se representan en el gráfico de la figura 5. It is important to highlight that, due to the fact that there will not be a single configuration of the heatsink, two typologies were evaluated in order to establish a reference framework for the subsequent non-linear analysis, in this example a heatsink with profiles 60CA085 (or also called C63 profiles). This type of heatsink is made up of two 60CA085 profiles oriented on the X+ axis and two profiles oriented on the X- axis, as shown in figure 4. Linear behavior of the heatsink: To evaluate the linear elastic behavior of the heatsink, this configuration with 4 60CA085 profiles was subjected to a linear deformation in the X direction of 0.06 mm, thus reacting with a force along the same axis, but in opposite direction of 0.041 kN, the data obtained is represented in the graph of figure 5.
Comportamiento no lineal del disipador: De manera análoga a lo visto en la sección lineal, se presentan los resultados (Tabla 1 ) de las modelaciones realizadas a los disipadores, pero, en esta ocasión considerando el comportamiento no lineal del acero de los elementos. Non-linear behavior of the dissipator: Analogously to what was seen in the linear section, the results (Table 1) of the modeling carried out on the dissipators are presented, but this time considering the non-linear behavior of the steel of the elements.
Tabla 1: Resultados de la medición del comportamiento no lineal del disipador en prueba con perfiles 63CA085.
Figure imgf000019_0001
Table 1: Results of the measurement of the non-linear behavior of the heatsink under test with 63CA085 profiles.
Figure imgf000019_0001
Figure imgf000020_0009
Figure imgf000020_0009
0,16875 0,24555 -0,66065 -1 ,3467 0,71256 0,64812
Figure imgf000020_0001
0.16875 0.24555 -0.66065 -1 .3467 0.71256 0.64812
Figure imgf000020_0001
0,49107 -0,18225 0,65245 0,79632 0,29466 0,53536 0,39335 2,6345 0,09822 9 2,6536 4,2582
Figure imgf000020_0004
Figure imgf000020_0002
0,19642 0,75178 1 ,9311 6,8993 1 ,2049 5,9772
Figure imgf000020_0006
Figure imgf000020_0005
0.49107 -0.18225 0.65245 0.79632 0.29466 0.53536 0.39335 2.6345 0.09822 9 2.6536 4.2582
Figure imgf000020_0004
Figure imgf000020_0002
0.19642 0.75178 1.9311 6.8993 1.2049 5.9772
Figure imgf000020_0006
Figure imgf000020_0005
-0,16875 0,24554 -0,50119 0,11198 0,33354 5,0416
Figure imgf000020_0007
3,603 0,25313 0,36831 -0,72672 -1 ,7358 -1 ,1674 2,2705 0,50625 0,7365 -0,20047 -0,9731
Figure imgf000020_0008
-1 ,4175 0,77715
Figure imgf000020_0010
-0.16875 0.24554 -0.50119 0.11198 0.33354 5.0416
Figure imgf000020_0007
3.603 0.25313 0.36831 -0.72672 -1 .7358 -1 .1674 2.2705 0.50625 0.7365 -0.20047 -0.9731
Figure imgf000020_0008
-1 .4175 0.77715
Figure imgf000020_0010
-0,50625 0,73642 0,27565 2,272 -0,96727 -3,9543
Figure imgf000020_0003
Figure imgf000021_0001
-0.50625 0.73642 0.27565 2.272 -0.96727 -3.9543
Figure imgf000020_0003
Figure imgf000021_0001
Estos datos se muestran gráficamente en la figura 6, donde se puede apreciar la gran cantidad de fuerza y deformidad del disipador en los 4 cuadrantes del eje, lo que da cuenta de su capacidad de amortiguar y proteger la estructura, en una prueba controlada de sismos de gran envergadura, a la cual se sometió el disipador de energía. These data are shown graphically in figure 6, where you can see the great amount of force and deformity of the dissipator in the 4 quadrants of the axis, which accounts for its ability to cushion and protect the structure, in a controlled earthquake test. of great magnitude, to which the energy dissipator was subjected.
Ejemplo 2: Disipador con 4 perfiles 50C2. Example 2: Heatsink with 4 50C2 profiles.
En el caso de este ejemplo, se evalúa un disipador con perfiles 50C2. Este tipo de disipador está compuesto por dos perfiles 50C2 orientados en el eje X+ y dos perfiles orientados en el eje X-, según como se presenta en la figura 7. In the case of this example, a heatsink with 50C2 profiles is evaluated. This type of heatsink is made up of two 50C2 profiles oriented on the X+ axis and two profiles oriented on the X- axis, as shown in figure 7.
Comportamiento lineal del disipador: Para evaluar el comportamiento lineal elástico del disipador, esta configuración con 4 perfiles 50C2, se sometió a una deformación lineal en el sentido de las X de 0,06 mm, reaccionando así con una fuerza en ese mismo eje, pero en sentido opuesto de 0,84 kN, los datos obtenidos se representan en el gráfico de la figura 8. Linear behavior of the heatsink: To evaluate the linear elastic behavior of the heatsink, this configuration with 4 50C2 profiles was subjected to a linear deformation in the X direction of 0.06 mm, thus reacting with a force in that same axis, but in the opposite direction of 0.84 kN, the data obtained are represented in the graph of figure 8.
Comportamiento no lineal del disipador: De manera análoga a lo visto en la sección lineal, se presentan los resultados (Tabla 2) de las modelaciones realizadas a los disipadores, pero, en esta ocasión considerando el comportamiento no lineal del acero de los elementos. Non-linear behavior of the dissipator: Analogously to what was seen in the linear section, the results (Table 2) of the modeling carried out on the dissipators are presented, but this time considering the non-linear behavior of the steel of the elements.
Tabla 2: Resultados de la medición del comportamiento no lineal del disipador en prueba con perfiles 50C2.
Figure imgf000021_0002
0,0065545 0,16386 -0,39456 0,013109 0,091763 -0,23633 0,022941 0,019663
Table 2: Results of the measurement of the non-linear behavior of the heatsink under test with 50C2 profiles.
Figure imgf000021_0002
0.0065545 0.16386 -0.39456 0.013109 0.091763 -0.23633 0.022941 0.019663
0,078084 0,032773 0,15928 0,088486 0,039327 -0,19664 0,40024 0,045881 -0,11143 0,23484 0,055713 0,069424 0,026218 0,065545 0,10159 -0,17871 0,05899 0,2294 -0,44975 0,052436 0,13109 -0,27029 0,042604 0,032772 0.078084 0.032773 0.15928 0.088486 0.039327 -0.19664 0.40024 0.045881 -0.11143 0.23484 0.055713 0.069424 0.026218 0.065559 0.10 17871 0.05899 0.2294 -0.44975 0.052436 0.13109 -0.27029 0.042604 0.032772
0,090838 0,032773 -0,1147 0,17837 0,013109 -0,26218 0,53411 -0,15076 0,33924 0,0065545 -0,03605 0,14435 0,039328 -0,065545 0,12781 -0,14862
Figure imgf000022_0001
-0,032773 0,29494 -0,62736.82E-16 -4,20E-08 0,17041 -0,41691 0,032773 0,045881 -0,20643 0,081931 -0,14092 0,1104 0,098317 -0,32772 0,72294 0,052436 -0,19664 0,49693 0,0065545 0,27087
0.090838 0.032773 -0.1147 0.17837 0.013109 -0.26218 0.53411 -0.15076 0.33924 0.0065545 -0.03605 0.14435 0.039328 -0.065545 0.12781 -0.14862
Figure imgf000022_0001
-0.032773 0.29494 -0.62736.82E-16 -4.20E-08 0.17041 -0.41691 0.032773 0.045881 -0.20643 0.081931 -0.14092 0.1104 0.098317 -0.32772 0.72294 0.052436 -0.19664 0.49693 0.0065545 0.27087
0,065546 -0,062268 0,13109 0.065546 -0.062268 0.13109
0,069885
Figure imgf000022_0004
Figure imgf000022_0002
Figure imgf000022_0003
-1 ,68 -0,13109 4,2 0,32771 -0,81779
0.069885
Figure imgf000022_0004
Figure imgf000022_0002
Figure imgf000022_0003
-1 .68 -0.13109 4.2 0.32771 -0.81779
-0,924 -0,072101 2,352 0,18352 -0,57622-0.924 -0.072101 2.352 0.18352 -0.57622
-0,168 -0,013109 0,504 0,039326 -0,33476-0.168 -0.013109 0.504 0.039326 -0.33476
0,966 0,075377 -2,268 -0,17697 0,030064
Figure imgf000023_0001
Figure imgf000023_0002
Figure imgf000023_0003
Figure imgf000023_0004
Figure imgf000023_0005
0.966 0.075377 -2.268 -0.17697 0.030064
Figure imgf000023_0001
Figure imgf000023_0002
Figure imgf000023_0003
Figure imgf000023_0004
Figure imgf000023_0005
Estos datos se muestran gráficamente en la figura 9, donde se puede apreciar la gran cantidad de fuerza y deformidad del disipador en los 4 cuadrantes del eje, lo que da cuenta de su capacidad de amortiguar y proteger la estructura, en una prueba controlada de sismos de gran envergadura, a la cual se sometió el disipador de energía. These data are shown graphically in figure 9, where you can see the great amount of force and deformity of the dissipator in the 4 quadrants of the axis, which accounts for its ability to cushion and protect the structure, in a controlled earthquake test. of great magnitude, to which the energy dissipator was subjected.
Para un mejor entendimiento de los ejemplos anteriores y los resultados obtenidos en cada una de las pruebas, en la figura 10 se entrega una comparativa entre las dos conformaciones de perfiles utilizados, donde las configuraciones evaluadas tenían como finalidad, establecer un marco de referencia para el diseño de disipadores a la medida y según las demandas de fuerzas horizontales que tenga la estructura y en particular, el componente que aleja al disipador. En los gráficos A y B de la figura 10, se presentan los sectores que generan la disipación de energía. De esta manera se concluye que ambas configuraciones son capaces de disipar energía proveniente de cargas horizontales que generen en la estructura una acción cíclica. En el caso de los perfiles de C63, se estima que estos estarían cerca de la falla ante las cargas y el número de ciclos seleccionados. Por otra parte, para el caso de los perfiles 50C2, se puede interpretar que esta configuración con las cargas y ciclos seleccionados (distintos a los de los perfiles C63), estaría empezando aún lejos de alcanzar la falla. For a better understanding of the previous examples and the results obtained in each of the tests, Figure 10 provides a comparison between the two configurations of profiles used, where the configurations evaluated had the purpose of establishing a frame of reference for the custom design of dissipators and according to the demands of horizontal forces that the structure has and in particular, the component that moves the dissipator away. Graphs A and B of Figure 10 show the sectors that generate energy dissipation. In this way, it is concluded that both configurations are capable of dissipating energy from horizontal loads that generate a cyclic action in the structure. In the case of the C63 profiles, it is estimated that these would be close to failure under the loads and number of cycles selected. On the other hand, in the case of the 50C2 profiles, it can be interpreted that this configuration with the selected loads and cycles (different from those of the C63 profiles), would be starting even far from reaching failure.
Aun así, esto no debe entenderse como que un tipo de perfil es mejor que otro para la construcción del disipador de energía, ya que los gráficos de resistencia de cada perfil, permiten analizar la cantidad de energía que estos son capaces de absorber y su comportamiento, por lo que, un tipo de disipador puede ser mucho mejor para construcciones en lugares sísmicos, mientras que, el otro disipador que tiene una resistencia distinta, puede ser ideal para los lugares con vibraciones fuertes de viento (por ejemplo), mientras que, otros diseños o desarrollos de dispositivos con perfiles distintos a los de los ejemplos, pueden ser ¡dóneos para construcciones en suelos blandos o pantanosos, pero que no estén emplazados en lugares sísmicos. De esta forma se pretende indicar, que cada tipo de disipador generado con configuraciones distintas y resistencias a fuerzas distintas puede tener su uso ideal, al implementarlo en determinados terrenos, construcciones, o lugares geográficos. Even so, this should not be understood as one type of profile being better than another for the construction of the energy dissipator, since the resistance graphs of each profile allow analysis of the amount of energy that they are capable of absorbing and their behavior. Therefore, one type of heatsink can be much better for constructions in seismic places, while the other type of heatsink that has a different resistance, can be ideal for places with vibrations. strong winds (for example), while other designs or developments of devices with profiles other than those of the examples may be suitable for constructions in soft or marshy soils, but not located in seismic locations. In this way, it is intended to indicate that each type of dissipator generated with different configurations and resistance to different forces can have its ideal use, when implemented in certain terrains, constructions, or geographical locations.
Por tanto, los ejemplos y descripción de la invención anteriores, sustentan el sistema y método de protección para edificaciones de baja altura que, demostrándose que presenta una ventaja técnica sobre el arte previo, ya que, un dispositivo antisísmico, en forma de caja, con perfiles acoplados de distintos tipos, el cual es removible, de bajo costo, de fácil manipulación, y que está diseñado para cumplir con la protección de construcciones de baja altura (como son las casas de la gente común), no había sido descrito de esta forma en el estado del arte previo. Por ende, el alcance del sistema descrito en la presente invención no debe limitarse sólo a los componentes mencionados en el texto o las figuras, ya que, otros diseños y conformaciones del invento pueden darse a partir de la descripción aquí detallada. Therefore, the examples and description of the previous invention support the protection system and method for low-rise buildings which, proving to have a technical advantage over the prior art, since a box-shaped anti-seismic device with coupled profiles of different types, which is removable, inexpensive, easy to handle, and is designed to comply with the protection of low-rise constructions (such as the houses of common people), had not been described in this way. form in the prior state of the art. Therefore, the scope of the system described in the present invention should not be limited only to the components mentioned in the text or the figures, since other designs and conformations of the invention can be given from the detailed description herein.

Claims

REIVINDICACIONES
1. Sistema de protección estructural para edificaciones de baja altura que, ante estremecimientos originados por la naturaleza o el ser humano, concentra los posibles daños en puntos estimados para este fin, CARACTERIZADO porque está comprendido por un muro (10), conformado de perfiles y en un punto central del muro, está dispuesto un espacio (20), adaptado para alojar una caja disipadora de energía (30), reemplazable, conformada por un material capaz de disipar energía. 1. Structural protection system for low-rise buildings that, in the event of tremors caused by nature or the human being, concentrates the possible damages in points estimated for this purpose, CHARACTERIZED because it is comprised of a wall (10), made up of profiles and At a central point of the wall, a space (20) is arranged, adapted to house an energy dissipating box (30), replaceable, made of a material capable of dissipating energy.
2. El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 1 , CARACTERIZADO porque el muro (10), está formado por perfiles, que dan forma a un marco externo (11 ), perfiles internos (12), que conectan los perfiles del marco externo, perfiles diagonales (13), que nacen de cada ángulo interno del marco y terminan en el espacio (20), que aloja la caja disipadora (30). 2. The structural protection system for low-rise buildings according to claim 1, CHARACTERIZED because the wall (10) is formed by profiles, which shape an external frame (11), internal profiles (12), which connect the profiles of the external frame, diagonal profiles (13), which are born from each internal angle of the frame and end in the space (20), which houses the dissipating box (30).
3. El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 2, CARACTERIZADO porque los perfiles internos (12) se encuentran en una disposición vertical. 3. The structural protection system for low-rise buildings according to claim 2, CHARACTERIZED in that the internal profiles (12) are in a vertical arrangement.
4. El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 2, CARACTERIZADO porque los perfiles internos (12) se encuentran en una disposición horizontal. 4. The structural protection system for low-rise buildings according to claim 2, CHARACTERIZED in that the internal profiles (12) are in a horizontal arrangement.
5. El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 2, CARACTERIZADO porque los perfiles internos (12) se encuentran combinados en una disposición vertical y horizontal. 5. The structural protection system for low-rise buildings according to claim 2, CHARACTERIZED in that the internal profiles (12) are combined in a vertical and horizontal arrangement.
6. El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 1 , CARACTERIZADO porque el material capaz de disipar energía de la caja disipadora (30), corresponde a láminas metálicas. 6. The structural protection system for low-rise buildings according to claim 1, CHARACTERIZED in that the material capable of dissipating energy from the dissipating box (30), corresponds to metal sheets.
23 23
7. El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 1 , CARACTERIZADO porque el material capaz de disipar energía de la caja disipadora (30), corresponde a un material elastomérico. 7. The structural protection system for low-rise buildings according to claim 1, CHARACTERIZED in that the material capable of dissipating energy from the dissipating box (30), corresponds to an elastomeric material.
8. El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 1 , CARACTERIZADO porque el material capaz de disipar energía de la caja disipadora (30), corresponde a un cemento espumado. 8. The structural protection system for low-rise buildings according to claim 1, CHARACTERIZED in that the material capable of dissipating energy from the dissipating box (30), corresponds to a foamed cement.
9. El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 1 , CARACTERIZADO porque los perfiles (11 , 12, 13), son metálicos y de forma cuadrilátera. 9. The structural protection system for low-rise buildings according to claim 1, CHARACTERIZED because the profiles (11, 12, 13) are metallic and have a quadrilateral shape.
10. El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 1 , CARACTERIZADO porque los perfiles (11 , 12, 13), son metálicos y su forma es tipo “C”, tipo “I” o tipo “H”. 10. The structural protection system for low-rise buildings according to claim 1, CHARACTERIZED because the profiles (11, 12, 13) are metallic and their shape is type "C", type "I" or type "H ”.
11. El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 10, CARACTERIZADO porque los perfiles (11 , 12, 13), metálicos son preferentemente de forma tipo “C”. 11. The structural protection system for low-rise buildings according to claim 10, CHARACTERIZED in that the metal profiles (11, 12, 13) are preferably "C" type.
12. El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 1 , CARACTERIZADO porque los perfiles (11 , 12, 13), son de madera y de forma cuadrilátera. 12. The structural protection system for low-rise buildings according to claim 1, CHARACTERIZED because the profiles (11, 12, 13) are made of wood and have a quadrilateral shape.
13. El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 1 , CARACTERIZADO porque el espacio (20), adaptado para alojar la caja disipadora de energía (30), tiene forma de un cuadrilátero. El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 13, CARACTERIZADO porque el espacio (20) adaptado para alojar la caja disipadora de energía (30), se encuentra centrado respecto al eje vertical del muro (10). El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 13, CARACTERIZADO porque el espacio (20), adaptado para alojar la caja disipadora de energía (30), se encuentra centrado respecto al eje horizontal del muro (10). El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 13, CARACTERIZADO porque el espacio (20), adaptado para alojar la caja disipadora de energía (30), se encuentra centrado respecto al eje vertical y al eje horizontal del muro (10). El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 13, CARACTERIZADO porque la caja disipadora de energía (30), tiene una forma de cuadrilátero que encaja exactamente en el cuadrilátero del espacio (20) de alojamiento. El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 1 , CARACTERIZADO porque la caja disipadora de energía (30), dispone láminas metálicas (31 ) en una posición vertical. El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 1 , CARACTERIZADO porque la caja disipadora de energía (30) dispone láminas metálicas (31 ) en una posición horizontal. El sistema de protección estructural para edificaciones de baja altura de acuerdo a la reivindicación 1 , CARACTERIZADO porque la caja disipadora de energía (30) incluye elementos de conexión, a los que se pueden acoplar dispositivos tiradores (32) para la remoción de la caja. 13. The structural protection system for low-rise buildings according to claim 1, CHARACTERIZED in that the space (20), adapted to house the energy dissipating box (30), has the shape of a quadrilateral. The structural protection system for low-rise buildings according to claim 13, CHARACTERIZED in that the space (20) adapted to house the energy dissipating box (30), is centered with respect to the vertical axis of the wall (10). The structural protection system for low-rise buildings according to claim 13, CHARACTERIZED in that the space (20), adapted to house the energy dissipating box (30), is centered with respect to the horizontal axis of the wall (10). The structural protection system for low-rise buildings according to claim 13, CHARACTERIZED in that the space (20), adapted to house the energy dissipating box (30), is centered with respect to the vertical axis and the horizontal axis of the wall (10). The structural protection system for low-rise buildings according to claim 13, CHARACTERIZED in that the energy dissipating box (30) has a quadrilateral shape that fits exactly in the quadrilateral of the accommodation space (20). The structural protection system for low-rise buildings according to claim 1, CHARACTERIZED in that the energy dissipating box (30) has metal sheets (31) in a vertical position. The structural protection system for low-rise buildings according to claim 1, CHARACTERIZED in that the energy dissipating box (30) has metal sheets (31) in a horizontal position. The structural protection system for low-rise buildings according to claim 1, CHARACTERIZED in that the energy dissipating box (30) includes connection elements, to which pull devices (32) can be attached for the removal of the box.
21. Método para la protección estructural y limitación de daños estructurales en edificaciones de baja altura, CARACTERIZADO por disponer una caja disipadora de energía, con material capaz de disipar energía en un punto central de un muro de perfiles; en caso de estremecimiento originado por la naturaleza o el ser humano, concentrar los daños estructurales en la caja disipadora de energía; y reemplazar la caja disipadora de energía que ha absorbido el daño, por una nueva caja disipadora de similares características a la original. 21. Method for structural protection and limitation of structural damage in low-rise buildings, CHARACTERIZED by having an energy dissipating box, with material capable of dissipating energy at a central point of a profiled wall; in case of tremor caused by nature or human beings, concentrate the structural damage in the energy dissipating box; and replace the energy dissipating box that has absorbed the damage, with a new dissipating box with similar characteristics to the original one.
22. El método de acuerdo a la reivindicación 21 , CARACTERIZADO porque los perfiles, son metálicos y su forma es del tipo “C”, tipo “I” o tipo “H”. 22. The method according to claim 21, CHARACTERIZED in that the profiles are metallic and their shape is of type "C", type "I" or type "H".
23. El método de acuerdo a la reivindicación 21 , CARACTERIZADO porque los perfiles son de madera y su forma es cuadrilátera. 23. The method according to claim 21, CHARACTERIZED because the profiles are made of wood and their shape is quadrilateral.
24. El método de acuerdo a la reivindicación 21 , CARACTERIZADO porque el material capaz de disipar energía de la caja disipadora corresponde a láminas metálicas, material elastomérico, o un cemento espumado. 24. The method according to claim 21, CHARACTERIZED in that the material capable of dissipating energy from the dissipating box corresponds to metal sheets, elastomeric material, or foamed cement.
26 26
PCT/CL2020/050176 2020-12-13 2020-12-13 System and method for structural protection of low-rise buildings WO2022120508A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2020/050176 WO2022120508A1 (en) 2020-12-13 2020-12-13 System and method for structural protection of low-rise buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2020/050176 WO2022120508A1 (en) 2020-12-13 2020-12-13 System and method for structural protection of low-rise buildings

Publications (1)

Publication Number Publication Date
WO2022120508A1 true WO2022120508A1 (en) 2022-06-16

Family

ID=81972815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2020/050176 WO2022120508A1 (en) 2020-12-13 2020-12-13 System and method for structural protection of low-rise buildings

Country Status (1)

Country Link
WO (1) WO2022120508A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106006A (en) * 2001-09-28 2003-04-09 Ohbayashi Corp Vibration control structure
WO2007032300A1 (en) * 2005-09-13 2007-03-22 Misawa Homes Co., Ltd. Vibration damping wall panel
US20140000185A1 (en) * 2012-06-29 2014-01-02 National Cheng Kung University Composite damper
CN111119364A (en) * 2020-01-12 2020-05-08 大连理工大学 Controllable-performance corrugated type replaceable energy dissipation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106006A (en) * 2001-09-28 2003-04-09 Ohbayashi Corp Vibration control structure
WO2007032300A1 (en) * 2005-09-13 2007-03-22 Misawa Homes Co., Ltd. Vibration damping wall panel
US20140000185A1 (en) * 2012-06-29 2014-01-02 National Cheng Kung University Composite damper
CN111119364A (en) * 2020-01-12 2020-05-08 大连理工大学 Controllable-performance corrugated type replaceable energy dissipation device

Similar Documents

Publication Publication Date Title
Christopoulos et al. Viscoelastic coupling dampers (VCDs) for enhanced wind and seismic performance of high‐rise buildings
Elsanadedy et al. Progressive collapse potential of a typical steel building due to blast attacks
Symans et al. Base isolation and supplemental damping systems for seismic protection of wood structures: Literature review
KR101000206B1 (en) Windows system having earthquake-proof performance
Shu et al. Experimental and numerical investigations of replaceable moment-resisting viscoelastic damper for steel frames
Lee et al. Seismic retrofit of structures using steel honeycomb dampers
Zahrai et al. Study of an innovative two-stage control system: Chevron knee bracing & shear panel in series connection
Tsai et al. Experimental and analytical investigations of steel panel dampers for seismic applications in steel moment frames
Kim et al. Progressive collapse‐resisting capacity of modular mega‐frame buildings
Ahmed et al. Response of metallic sandwich panels to blast loads
ES2350217B2 (en) SYSTEM TO DISSIP SISMIC ENERGY IN CONSTRUCTIONS.
WO2022120508A1 (en) System and method for structural protection of low-rise buildings
Li et al. Structural shear wall systems with metal energy dissipation mechanism
Javanmardi et al. Seismic pounding mitigation of an existing cable-stayed bridge using metallic dampers
Hashemi et al. On the Evaluation of the use of EKBs to improve seismic performance of steel frames
Selemah et al. Seismic response of 2-D plane framed buildings eccentrically braced with vertical shear links
Hussain et al. The strategies of architectural design resisting earthquake in tall buildings
Atimtay et al. Learning seismic design from the earthquake itself
Sapkota et al. Comparative study on seismic performance of high-rise building with energy dissipation and outrigger belt truss system
KR101161785B1 (en) Unified Windows system having earthquake-proof performance
Shakiba et al. Analytical and numerical investigation of knee brace equipped with a shape memory alloy damper
Mosalam et al. Behavior and modeling of reinforced concrete frames with unreinforced masonry infill walls
JP2001182361A (en) Damper for building and vibration control construction for building using the same
KR101431495B1 (en) Energy dissipation device in structure of diagrid using side support damper
Das et al. Retrofitting of Flat Slab Building Members Undergone Damage by Earthquake Forces–

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964457

Country of ref document: EP

Kind code of ref document: A1