WO2022118903A1 - Multilayer body - Google Patents

Multilayer body Download PDF

Info

Publication number
WO2022118903A1
WO2022118903A1 PCT/JP2021/044170 JP2021044170W WO2022118903A1 WO 2022118903 A1 WO2022118903 A1 WO 2022118903A1 JP 2021044170 W JP2021044170 W JP 2021044170W WO 2022118903 A1 WO2022118903 A1 WO 2022118903A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
water
intermediate sheet
sheet
liquid
Prior art date
Application number
PCT/JP2021/044170
Other languages
French (fr)
Japanese (ja)
Inventor
海紗生 谷口
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2022566966A priority Critical patent/JPWO2022118903A1/ja
Priority to CN202180081341.4A priority patent/CN116583251A/en
Publication of WO2022118903A1 publication Critical patent/WO2022118903A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • A61F13/535Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad inhomogeneous in the plane of the pad, e.g. core absorbent layers being of different sizes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • A61F13/535Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad inhomogeneous in the plane of the pad, e.g. core absorbent layers being of different sizes
    • A61F13/536Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad inhomogeneous in the plane of the pad, e.g. core absorbent layers being of different sizes having discontinuous areas of compression

Definitions

  • One of the essential properties representing the performance of a body fluid-absorbing article is the rate of liquid absorption. So far, various improvements have been made to body fluid-absorbing articles so that liquids can be absorbed more quickly.
  • the present inventors have provided a liquid-absorbent sheet in the material constituting the laminate, and the liquid-absorbent sheet has a relatively coarser density than other regions.
  • the convex region on the water-absorbent resin side it is possible to exhibit an excellent absorption rate and lateral leakage prevention property even when exposed to a plurality of liquids. rice field.
  • the present invention has been completed by further studies based on this finding.
  • the region A is a convex portion that is convex toward the water-absorbent resin layer, and the region B is a concave portion. It is characterized in that the height is 0.25 mm or more, and (3) the region B is located inside the longitudinal end of the intermediate sheet.
  • the intermediate sheet 30 has a low density region A as a region A having a shape having the longitudinal LD-A (hereinafter, the low density region A is used as a region A). It also has a “low density region Al”) and a high density region (hereinafter, the high density region B is also referred to as a “high density region Bh”) as the region B, and has a high density region Bh. Is located inside the longitudinal end LE of the intermediate sheet 30.
  • the larger expanded portion 51A corresponds to the shape having the longitudinal LD-A of the low density region Al, and forms a shape having the same longitudinal LD-A, that is, a convex portion (hereinafter, the larger expanded portion 51A).
  • the portion 51A is also referred to as a “convex portion 51A”, and the portion 51B that is not expanded to the size of the convex portion 51A and is lowered is also referred to as a “concave portion 51B”).
  • FIG. 5 shows an intermediate sheet used in the second embodiment of the laminated body of the present invention in the same format as in FIG.
  • FIG. 6 shows an exploded view of the laminated body of the second embodiment in the same format as that of FIG.
  • the laminated body 10a shown in FIG. 6 is the same as the laminated body 10 of the first embodiment described above, except that the intermediate sheet 30 is changed to the intermediate sheet 30a.
  • the liquid absorbed by the laminated body 10' is laminated along the longitudinal direction LD-A of the convex portion 51A, as in FIG. 4 of the first embodiment.
  • the body 10'so as to spread in the in-plane direction it is considered possible to maximize the area of contact between the water-absorbent resin layer 51'and the liquid and improve the absorption rate.
  • the property of not concentrating the absorbed liquid in a specific place may contribute to reducing the amount of reversion of the liquid in the place, as in the first embodiment.
  • the convex portion 51A closest to the longitudinal end LE serves as a physical barrier, the risk of leakage (that is, lateral leakage) from the longitudinal end LE is reduced, as in the first embodiment.
  • the method of providing the intermediate sheet 30c with a low-density and convex region and a high-density and concave region on both sides thereof is not particularly limited.
  • an embossing method is used in which the fabric of the intermediate sheet 30c is compressed in the thickness direction from both sides at a place where a region forming a high density and a recess is to be provided.
  • resin fibers are preferable from the viewpoint of further improving the absorption rate for multiple liquid exposures and / or improving the side leakage prevention property, or in addition to reducing the amount of reversion.
  • a combination with natural fibers more preferably a combination of polyolefin fibers and pulp.
  • the thickness of the first sheet is not particularly limited, but is preferably 0.1 to 0.8 mm from the viewpoint of further improving the absorption rate for multiple liquid exposures or, in addition, reducing the amount of reversion. It is more preferably 0.2 to 0.6 mm, further preferably 0.3 to 0.5 mm, and even more preferably 0.35 to 0.45 mm.
  • the amount of the water-absorbent resin retained in the physiological saline solution is not particularly limited, but is preferably 20 to 60 g / g, more preferably 25, from the viewpoint of further enhancing the absorption rate and / or the side leakage prevention property against several liquid exposures. Examples thereof include ⁇ 58 g / g, more preferably 30 to 56 g / g, still more preferably 40 to 54 g / g, and even more preferably 48 to 52 g / g.
  • the material of the intermediate sheet is not particularly limited as long as it is liquid-absorbent.
  • the form of the intermediate sheet is not particularly limited as long as it has at least a space, a hole, and / or a hole communicating with the water-absorbent resin layer side.
  • Examples of intermediate sheets include non-woven fabrics, woven fabrics and porous sheets. Among these forms, a non-woven fabric is preferable from the viewpoint of further enhancing the absorption rate and / or the side leakage prevention property against several liquid exposures.
  • the material of the other water-absorbent resin layer is not particularly limited, but can be selected from the water-absorbent resins listed as the material of the above-mentioned water-absorbent resin layer.
  • the water-absorbent resin used for the other water-absorbent resin layer may be the same as or different from the water-absorbent resin used for the above-mentioned water-absorbent resin layer.
  • the adhesive resin composition used for the adhesive layer is not limited as long as the water-absorbent resin and the intermediate sheet and / or the second sheet can be adhered to each other, and can be appropriately selected by those skilled in the art. Since the laminate of the present invention is used for absorbing an aqueous liquid, a preferred adhesive composition includes a hot melt adhesive composition that is stable against an aqueous solvent.
  • the first-stage monomer aqueous solution prepared above was added to a separable flask, and after stirring for 10 minutes, 6.62 g of n-heptane was added to HLB3 sucrose stearate as a surfactant (steal acid ester of HLB3).
  • Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370 Add 0.736 g of a surfactant solution by heating and dissolve it, and set the rotation speed of the stirrer to 550 rpm to sufficiently stir the inside of the system with nitrogen. After the substitution, the flask was immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry solution.
  • ⁇ Second stage polymerization reaction> In a beaker with an internal volume of 500 mL, take 128.8 g (1.44 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer, and while cooling from the outside, 27 mass% sodium hydroxide. After 159.0 g of an aqueous solution was added dropwise to neutralize 75 mol%, 0.103 g (0.381 mmol) of potassium persulfate was used as a water-soluble radical polymerization initiator, and ethylene glycol diglycidyl ether was used as an internal cross-linking agent. 0116 g (0.067 mmol) was added and dissolved to prepare a second-stage monomer aqueous solution.
  • the entire amount of the monomer aqueous solution in the second stage is added to the polymerized slurry liquid in the first stage.
  • the inside of the system was replaced with nitrogen for 30 minutes, the flask was again immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes to obtain a hydrogel-like polymer.
  • the first-stage monomer aqueous solution prepared above was added to a separable flask, and after stirring for 10 minutes, 6.62 g of n-heptane was added to HLB3 sucrose stearate as a surfactant (steal acid ester of HLB3).
  • Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370 Add a surfactant solution obtained by heating and dissolving 0.736 g, and stir the system with nitrogen at a stirring speed of 500 rpm. After the substitution, the flask was immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry solution.
  • the entire amount of the monomer aqueous solution in the second stage is added to the polymerized slurry liquid in the first stage.
  • the inside of the system was replaced with nitrogen for 30 minutes, the flask was again immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes to obtain a hydrogel-like polymer.
  • n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dried to obtain a dried product of polymer particles.
  • the polymer particles are passed through a sieve having an opening of 850 ⁇ m, and 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) with respect to the mass of the polymer particles is mixed with the polymer particles. , 231.2 g of SAP f containing amorphous silica was obtained.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

The purpose of the present invention is to provide a multilayer body which is useful for an absorbent article that exhibits excellent absorption rate and side leakage prevention performance with respect to multiple exposures to a liquid. A multilayer body which comprises: a liquid-permeable first sheet, a liquid-absorbing intermediate sheet, and a second sheet, said sheets having a shape that has a longitudinal direction; and a water-absorbing resin layer that is interposed at least between the first sheet and the intermediate sheet. With respect to this multilayer body, the intermediate sheet comprises a region A and a region B, which have a shape that has a longitudinal direction; and the region A and the region B satisfy at least one of the relations (1) and (2) described below, while satisfying the relation (3) described below. (1) The region A has a low density, and the region B has a high density; and if the density of the region B is taken as 1, the ratio of the density of the region A is 0.45 or less. (2) The region A is a projected part that protrudes toward the water-absorbing resin layer, and the region B is a recessed part; and the height of the projected part is 0.25 mm or more. (B) The region B is positioned inside the longitudinal ends of the intermediate sheet.

Description

積層体Laminate
 本発明は、積層体に関する。より詳しくは、本発明は、液体の浸透速度及び横漏れ防止性が向上した積層体に関する。 The present invention relates to a laminated body. More specifically, the present invention relates to a laminate having improved liquid permeation rate and lateral leakage prevention.
 紙おむつ、尿パッド、及び生理用ナプキン等の体液吸収性物品は、液体を吸収する吸収体層と、体に接する側に配された液体透過性の表面シートと、体と接する側とは反対側に配された液体不透過性の背面シートとを含む積層体で構成される。 For body fluid-absorbing articles such as paper diapers, urine pads, and sanitary napkins, the absorbent layer that absorbs the liquid, the liquid-permeable surface sheet arranged on the side in contact with the body, and the side opposite to the side in contact with the body. Consists of a laminate containing a liquid impermeable back sheet arranged in.
 体液吸収性物品の性能を表す
本質的な特性の1つとして、液体の吸収速度が挙げられる。これまで、液体をより速やかに吸収できるよう、体液吸収性物品に様々な改良がなされてきている。
One of the essential properties representing the performance of a body fluid-absorbing article is the rate of liquid absorption. So far, various improvements have been made to body fluid-absorbing articles so that liquids can be absorbed more quickly.
 例えば、特許文献1には、身体側に面する透水性の表面側シートと、衣服側に面する裏面側シートと、前記表面側シート及び前記裏面側シートに内包され体液を吸収する機能を有する吸液性コアとを備える吸収性物品において、前記表面側シートと前記吸液性コアとの間に、当該吸液性コアに向く側の繊維密度が当該表面側シートに向く側の繊維密度より大きい体液透過性シート(セカンドシート)が設けられている吸収性物品が提案されており、この吸収性物品によると、表面側シートを通過し体液透過性シートの上面に達した体液が繊維密度の勾配の高い方(吸液性コア側)に導かれるように移動するため、速やかに吸収されるようになることが示されている。 For example, Patent Document 1 has a water-permeable front surface sheet facing the body side, a back surface side sheet facing the clothes side, and a function of being encapsulated in the front surface side sheet and the back surface side sheet to absorb body fluids. In an absorbent article provided with a liquid-absorbent core, the fiber density on the side facing the liquid-absorbent core is higher than the fiber density on the side facing the surface-side sheet between the surface-side sheet and the liquid-absorbent core. An absorbent article provided with a large body fluid permeable sheet (second sheet) has been proposed, and according to this absorbent article, the body fluid that has passed through the surface side sheet and reached the upper surface of the body fluid permeable sheet has a fiber density. It has been shown that it moves so as to be guided to the higher gradient side (liquid absorbing core side), so that it is absorbed quickly.
特開2003-210523号公報Japanese Patent Application Laid-Open No. 2003-210523
 特許文献1に記載の吸収性物品では、吸収速度についての検討はなされているものの、1個の吸収性物品に対して複数回の液体が暴露され得る実使用条件に鑑みると、2回目以降に暴露される液体に対してはゲルブロッキングにより吸収速度が遅くなり、吸収性が低下するとともに横漏れを発生しやすくなる。 In the absorbent article described in Patent Document 1, although the absorption rate has been studied, in view of the actual use conditions in which the liquid can be exposed to one absorbent article multiple times, the second and subsequent times are performed. For exposed liquids, gel blocking slows the absorption rate, reduces absorbability and tends to cause lateral leakage.
 そこで本発明は、複数回の液体暴露に対しても優れた吸収速度を示し且つ横漏れリスクを低減する特性にも優れた(以下において、横漏れリスクを低減する特性を「横漏れ防止性」とも記載する。)吸収性物品に有用な積層体を提供することを目的とする。 Therefore, the present invention exhibits an excellent absorption rate even when exposed to a plurality of liquids and is also excellent in the property of reducing the risk of lateral leakage (hereinafter, the characteristic of reducing the risk of lateral leakage is "lateral leakage prevention property". Also described.) It is an object of the present invention to provide a laminate useful for an absorbent article.
 本発明者らは鋭意検討を行ったところ、積層体を構成する材料において、吸液性のシートを設けるととともに、当該吸液性のシートを、他の領域より相対的に密度が粗い及び/又は吸水性樹脂側に凸となる領域が所定の位置に細長く設けられるように構成することで、複数回の液体暴露に対しても優れた吸収速度及び横漏れ防止性を示すことができることを見出した。本発明は、この知見に基づいてさらに検討を重ねることにより完成したものである。 As a result of diligent studies, the present inventors have provided a liquid-absorbent sheet in the material constituting the laminate, and the liquid-absorbent sheet has a relatively coarser density than other regions. Alternatively, it has been found that by configuring the convex region on the water-absorbent resin side to be elongated at a predetermined position, it is possible to exhibit an excellent absorption rate and lateral leakage prevention property even when exposed to a plurality of liquids. rice field. The present invention has been completed by further studies based on this finding.
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 長手方向を有する形状の、透液性の第1シート、吸液性の中間シート、及び第2シートと、少なくとも前記第1シート及び前記中間シートの間に介在する吸水性樹脂層と、を含む積層体であって、
 前記中間シートが、長手方向を有する形状の領域Aと、領域Bとを含み、
 前記領域A及び前記領域Bが、下記(1)及び(2)のうち少なくとも一方の関係を満たし、且つ、下記(3)の関係を満たす、積層体:
(1)前記領域Aが低密度且つ前記領域Bが高密度であり、前記領域Bの密度を1とした場合の前記領域Aの密度の比率が0.45以下である、
(2)前記領域Aが前記吸水性樹脂層の側に凸となる凸部であり且つ前記領域Bが凹部であり、前記凸部の高さが0.25mm以上である、
(3)前記領域Bが、前記中間シートの長手端よりも内側に位置している。
項2. 前記領域A及び前記領域Bが、前記(1)及び前記(2)の関係を満たす、項1に記載の積層体。
項3. 前記領域Aが、前記中間シートの長手方向を含む方向に延在する線条部を含む、項1又は2に記載の積層体。
項4. 前記領域Aが、前記中間シートの長手方向と略平行に延在する線条部を含む、項1~3のいずれかに記載の積層体。
項5. 前記領域Bが、前記中間シートの短手中心線上に配された線条部を含む、項4に記載の積層体。
項6. 前記領域Aと前記領域Bとが、それらの領域の短手方向に複数交互に配置されている、項1~5のいずれかに記載の積層体。
項7. 前記領域Aと前記領域Bとが複数並列して配置された線条部を含む、項6に記載の積層体。
項8. 前記領域Bが、前記中間シートの短手端よりも内側に位置している、項1~7のいずれかに記載の積層体。
項9. 項1~8のいずれかに記載の積層体を含む、吸収性物品。
That is, the present invention provides the inventions of the following aspects.
Item 1. Includes a liquid-permeable first sheet, a liquid-absorbent intermediate sheet, and a second sheet having a shape having a longitudinal direction, and at least a water-absorbent resin layer interposed between the first sheet and the intermediate sheet. It ’s a laminated body,
The intermediate sheet includes a region A having a shape having a longitudinal direction and a region B.
A laminated body in which the region A and the region B satisfy at least one of the following relationships (1) and (2) and satisfy the following relationship (3).
(1) When the region A has a low density and the region B has a high density, and the density of the region B is 1, the ratio of the density of the region A is 0.45 or less.
(2) The region A is a convex portion that is convex toward the water-absorbent resin layer, and the region B is a concave portion, and the height of the convex portion is 0.25 mm or more.
(3) The region B is located inside the longitudinal end of the intermediate sheet.
Item 2. Item 2. The laminate according to Item 1, wherein the region A and the region B satisfy the relationship of the above (1) and the above (2).
Item 3. Item 2. The laminate according to Item 1 or 2, wherein the region A includes a linear portion extending in a direction including a longitudinal direction of the intermediate sheet.
Item 4. Item 2. The laminate according to any one of Items 1 to 3, wherein the region A includes a linear portion extending substantially parallel to the longitudinal direction of the intermediate sheet.
Item 5. Item 4. The laminate according to Item 4, wherein the region B includes a streak portion arranged on the short center line of the intermediate sheet.
Item 6. Item 2. The laminate according to any one of Items 1 to 5, wherein a plurality of the regions A and the regions B are alternately arranged in the lateral direction of the regions.
Item 7. Item 6. The laminated body according to Item 6, which includes a plurality of linear portions in which the region A and the region B are arranged in parallel.
Item 8. Item 2. The laminate according to any one of Items 1 to 7, wherein the region B is located inside the short end of the intermediate sheet.
Item 9. An absorbent article comprising the laminate according to any one of Items 1 to 8.
 本発明によれば、複数回の液体暴露に対しても優れた吸収速度及び横漏れ防止性を示す吸収性物品に有用な積層体が提供される。 According to the present invention, there is provided a laminate useful for an absorbent article that exhibits an excellent absorption rate and lateral leakage prevention property even when exposed to a plurality of liquids.
本発明の積層体の第1実施形態の断面図を模式的に示す。The cross-sectional view of the 1st Embodiment of the laminated body of this invention is shown schematically. 図1の積層体の中間シートの一部分(長手端を含む一部分)の外観図を模式的に示す。The external view of a part (a part including a longitudinal end) of the intermediate sheet of the laminated body of FIG. 1 is schematically shown. 図1の積層体の当該一部分の分解図を模式的に示す。An exploded view of the part of the laminated body of FIG. 1 is schematically shown. 図1の積層体が使用時に最初に液体暴露を受けた状態を、図3と同様に分解図で模式的に示す。The state in which the laminate of FIG. 1 was first exposed to liquid during use is schematically shown in an exploded view as in FIG. 本発明の積層体の第2実施形態で用いられる中間シートの外観図を模式的に示す。The external view of the intermediate sheet used in the 2nd Embodiment of the laminated body of this invention is schematically shown. 第2実施形態の積層体の分解図を、図3と同じ形式で示す。An exploded view of the laminated body of the second embodiment is shown in the same format as FIG. 図6の積層体10aが使用時に最初に液体暴露を受けた状態を、図6と同様に分解図で模式的に示す。The state in which the laminated body 10a of FIG. 6 was first exposed to liquid during use is schematically shown in an exploded view as in FIG. 本発明の積層体の第3実施形態で用いられる中間シートの外観図を模式的に示す。The external view of the intermediate sheet used in the 3rd Embodiment of the laminated body of this invention is schematically shown. 本発明の積層体の第4実施形態で用いられる中間シートの外観図を模式的に示す。The external view of the intermediate sheet used in the 4th Embodiment of the laminated body of this invention is schematically shown. 本発明の積層体の第5実施形態で用いられる中間シートの一部分(短手端を含む一部分)の外観図を模式的に示す。The external view of the part (the part including the short end) of the intermediate sheet used in the 5th Embodiment of the laminated body of this invention is schematically shown. 領域A及び領域Bの形状のいくつかの例を挙げて模式的に示す。Some examples of the shapes of regions A and B are shown schematically. 領域A及び領域Bの形状の具体例(実施例)を示す。Specific examples (examples) of the shapes of the regions A and B are shown. 領域A及び領域Bの形状の具体例(実施例)を示す。Specific examples (examples) of the shapes of the regions A and B are shown. 領域A及び領域Bの形状の具体例(比較例)を示す。Specific examples (comparative examples) of the shapes of the regions A and B are shown. 領域A及び領域Bの形状の具体例(比較例)を示す。Specific examples (comparative examples) of the shapes of the regions A and B are shown. 領域A及び領域Bの形状の具体例(比較例)を示す。Specific examples (comparative examples) of the shapes of the regions A and B are shown.
[1.積層体の構造]
 本発明の積層体は、長手方向を有する形状の、透液性の第1シート、吸液性の中間シート、及び第2シートと、少なくとも前記第1シート及び前記中間シートの間に介在する吸水性樹脂層と、を含む積層体であって;前記中間シートが、長手方向を有する形状の領域Aと、領域Bとを含み;前記領域A及び領域Bが、下記(1)及び(2)のうち少なくとも一方の関係を満たし、且つ、下記(3)の関係を満たす:(1)前記領域Aが低密度且つ前記領域Bが高密度であり、前記領域Bの密度を1とした場合の前記領域Aの密度の比率が0.45以下である、(2)前記領域Aが前記吸水性樹脂層の側に凸となる凸部であり且つ前記領域Bが凹部であり、前記凸部の高さが0.25mm以上である、(3)前記領域Bが、前記中間シートの長手端よりも内側に位置している、ことを特徴とする。このような構造によって、本発明の積層体は、複数回の液体暴露に対しても優れた吸収速度を示すことが可能となる。以下、本発明の積層体について詳述する。
[1. Structure of laminated body]
The laminate of the present invention has a shape having a longitudinal direction, and has a liquid-permeable first sheet, a water-absorbing intermediate sheet, and a second sheet, and water absorption interposed between at least the first sheet and the intermediate sheet. A laminate comprising a sex resin layer; the intermediate sheet comprises a longitudinally shaped region A and a region B; the regions A and B are described in (1) and (2) below. Of the above, at least one of the relationships is satisfied, and the relationship of the following (3) is satisfied: (1) When the region A has a low density and the region B has a high density, and the density of the region B is 1. The density ratio of the region A is 0.45 or less. (2) The region A is a convex portion that is convex toward the water-absorbent resin layer, and the region B is a concave portion. It is characterized in that the height is 0.25 mm or more, and (3) the region B is located inside the longitudinal end of the intermediate sheet. With such a structure, the laminate of the present invention can exhibit an excellent absorption rate even with a plurality of liquid exposures. Hereinafter, the laminated body of the present invention will be described in detail.
[1-1.第1実施形態]
 図1に、本発明の積層体の第1実施形態の断面図を模式的に示す。図1は、積層体をその長手方向に垂直な面で切断した場合の断面図を示している。図2に、図1の積層体の中間シートの一部分(長手端を含む一部分)の外観図を模式的に示す。図3に、図1の積層体の当該一部分の分解図を模式的に示す。図1及び図3に示す積層体10は、長手方向LDを有する形状の、透液性の第1シート20、図2に示す吸液性の中間シート30、及び第2シート40と、少なくとも第1シート20及び中間シート30の間に介在する吸水性樹脂層51と、を含む。以下において、積層体10の積層方向を「積層方向LMD10」とも記載する。なお、積層体10は、中間シート30と第2シート40との間に他の吸水性樹脂層52も含む。図示していないが、吸水性樹脂層51と中間シート30との間、及び/又は吸水性樹脂層52と第2シート40との間には、接着剤層が介在していてもよい。
[1-1. First Embodiment]
FIG. 1 schematically shows a cross-sectional view of a first embodiment of the laminated body of the present invention. FIG. 1 shows a cross-sectional view of a laminated body cut along a plane perpendicular to the longitudinal direction thereof. FIG. 2 schematically shows an external view of a part (a part including a longitudinal end) of the intermediate sheet of the laminated body of FIG. FIG. 3 schematically shows an exploded view of the part of the laminated body of FIG. The laminate 10 shown in FIGS. 1 and 3 has a liquid-permeable first sheet 20, a liquid-absorbing intermediate sheet 30 and a second sheet 40, which have a shape having a longitudinal LD, and at least a second sheet. 1 Includes a water-absorbent resin layer 51 interposed between the sheet 20 and the intermediate sheet 30. In the following, the stacking direction of the laminated body 10 is also referred to as “stacking direction LMD10”. The laminated body 10 also includes another water-absorbent resin layer 52 between the intermediate sheet 30 and the second sheet 40. Although not shown, an adhesive layer may be interposed between the water-absorbent resin layer 51 and the intermediate sheet 30 and / or between the water-absorbent resin layer 52 and the second sheet 40.
 本実施形態の積層体10では、図1~図3に示すように、中間シート30が、長手方向LD-Aを有する形状の領域Aとして低密度の領域(以下において、低密度の領域Aを「低密度領域Al」とも記載する。)と、領域Bとして高密度の領域(以下において、高密度の領域Bを「高密度領域Bh」とも記載する。)とを有し、高密度領域Bhは、中間シート30の長手端LEよりも内側に位置している。 In the laminated body 10 of the present embodiment, as shown in FIGS. 1 to 3, the intermediate sheet 30 has a low density region A as a region A having a shape having the longitudinal LD-A (hereinafter, the low density region A is used as a region A). It also has a “low density region Al”) and a high density region (hereinafter, the high density region B is also referred to as a “high density region Bh”) as the region B, and has a high density region Bh. Is located inside the longitudinal end LE of the intermediate sheet 30.
 低密度領域Alは、高密度領域Bhの密度を1とした場合の低密度領域Alの密度の比率が0.45以下となるように構成されている。数回の液体暴露に対する吸収速度及び/又は横漏れ防止性をより一層高める観点から、当該比率としては、好ましくは0.42以下、より好ましくは0.41以下、さらに好ましくは0.4以下、一層好ましくは0.3以下、より一層好ましくは0.2以下、特に好ましくは0.12以下が挙げられる。当該比率範囲の下限としては特に限定されず、中間シート30の材料及び/又は密度を異ならせる処理等により異なりうるが、数回の液体暴露に対する吸収速度及び/又は横漏れ防止性をより一層高める観点から、例えば0.05以上、好ましくは0.08以上が挙げられる。 The low density region Al is configured such that the ratio of the density of the low density region Al is 0.45 or less when the density of the high density region Bh is 1. From the viewpoint of further enhancing the absorption rate and / or the side leakage prevention property for several liquid exposures, the ratio is preferably 0.42 or less, more preferably 0.41 or less, still more preferably 0.4 or less. It is more preferably 0.3 or less, still more preferably 0.2 or less, and particularly preferably 0.12 or less. The lower limit of the ratio range is not particularly limited and may differ depending on the material and / or treatment of different densities of the intermediate sheet 30, but the absorption rate and / or lateral leakage prevention property to several liquid exposures are further enhanced. From the viewpoint, for example, 0.05 or more, preferably 0.08 or more can be mentioned.
 低密度領域Alの具体的な密度としては、例えば100kg/m3以下が挙げられる。数回の液体暴露に対する吸収速度及び/又は横漏れ防止性をより一層高める観点から、低密度領域Alの具体的な密度としては、好ましくは60kg/m3以下、より好ましくは50kg/m3以下、より好ましくは45kg/m3以下、さらに好ましくは40kg/m3以下、一層好ましくは35kg/m3以下、より一層好ましくは28kg/m3以下、特に好ましくは20kg/m3以下が挙げられる。低密度領域Alの具体的な密度範囲の下限としては、保水性を担保できる限りにおいて特に限定されないが、例えば16.5kg/m3以上、好ましくは18kg/m3以上が挙げられる。 Specific examples of the density of the low density region Al include 100 kg / m 3 or less. From the viewpoint of further enhancing the absorption rate and / or the lateral leakage prevention property for several liquid exposures, the specific density of the low density region Al is preferably 60 kg / m 3 or less, more preferably 50 kg / m 3 or less. , More preferably 45 kg / m 3 or less, still more preferably 40 kg / m 3 or less, still more preferably 35 kg / m 3 or less, still more preferably 28 kg / m 3 or less, and particularly preferably 20 kg / m 3 or less. The lower limit of the specific density range of the low density region Al is not particularly limited as long as water retention can be guaranteed, and examples thereof include 16.5 kg / m 3 or more, preferably 18 kg / m 3 or more.
 中間シート30において密度を異ならせる方法としては特に限定されない。中間シート30は透液性であることから厚み方向へ連通する空間又は孔を有しているため、密度を異ならせる方法は、これら空間又は孔が占める体積を物理的に低減できる方法であればよい。具体的な方法としては、中間シート30の生地を、高密度領域Bhを設けるべき場所で圧縮する方法、高密度領域Bhを設けるべき場所で目が細かく、低密度領域Alを設けるべき場所で目が粗くなるように中間シート30の生地を作製する方法等が挙げられる。 The method of making the density different in the intermediate sheet 30 is not particularly limited. Since the intermediate sheet 30 is liquid permeable, it has spaces or holes that communicate with each other in the thickness direction. Therefore, the method of making the densities different is as long as the volume occupied by these spaces or holes can be physically reduced. good. Specific methods include a method of compressing the dough of the intermediate sheet 30 at a place where the high-density region Bh should be provided, a method of fine-graining at the place where the high-density region Bh should be provided, and a method where the low-density region Al should be provided. Examples thereof include a method of producing a dough for the intermediate sheet 30 so that the thickness becomes coarse.
 高密度領域Bhが中間シート30の長手端LEよりも内側に位置しているとは、高密度領域Bhが中間シート30の長手端LEまで達している部分がなく、高密度領域Bhの全体が中間シート30の両方の長手端LEよりも面内方向の内側に配されていることをいう。つまり、中間シート30の両方の長手端LEの部分は、低密度領域Alによって構成される。 The fact that the high-density region Bh is located inside the longitudinal end LE of the intermediate sheet 30 means that there is no portion where the high-density region Bh reaches the longitudinal end LE of the intermediate sheet 30, and the entire high-density region Bh is It means that the intermediate sheet 30 is arranged inward in the in-plane direction from both longitudinal ends LE. That is, both longitudinal end LE portions of the intermediate sheet 30 are composed of the low density region Al.
 中間シート30に、上記のように低密度領域Alを所定の位置に所定形状で設けることで、複数回の液体暴露に対しても優れた吸収速度を示す。このように優れた吸収速度が得られる理由として考えられるメカニズムを、図4を参照して説明する。図4は、使用時に最初に液体暴露を受けた状態の積層体10(以下において、この状態の積層体10を、特に「積層体10’」とも記載する)を、図3と同様に分解図で模式的に示す。 By providing the intermediate sheet 30 with the low density region Al at a predetermined position in a predetermined shape as described above, an excellent absorption rate is exhibited even with a plurality of liquid exposures. The mechanism considered as the reason why such an excellent absorption rate can be obtained will be described with reference to FIG. FIG. 4 is an exploded view of the laminate 10 in a state of being first exposed to liquid during use (hereinafter, the laminate 10 in this state is also referred to as “laminate 10 ′”) in the same manner as in FIG. Shown schematically in.
 まず、積層体10において、中間シート30は厚み方向へ連通する空間又は孔を有し、且つ吸水性樹脂層51と直接的に接しているため、中間シート30の低密度領域Alでは、上記空間又は孔に、吸水性樹脂層51を構成する吸水性樹脂粒子の一部が陥入していると考えられる。中間シート30の高密度領域Bhでも吸水性樹脂層51を構成する吸水性樹脂粒子の一部が陥入しうるが、両領域の密度差に起因して、低密度領域Alの方がより多くの吸水性樹脂粒子を陥入させていると考えられる。 First, in the laminated body 10, the intermediate sheet 30 has a space or a hole communicating with each other in the thickness direction and is in direct contact with the water-absorbent resin layer 51. Therefore, in the low density region Al of the intermediate sheet 30, the space is described above. Alternatively, it is considered that a part of the water-absorbent resin particles constituting the water-absorbent resin layer 51 is embedded in the pores. Even in the high-density region Bh of the intermediate sheet 30, some of the water-absorbent resin particles constituting the water-absorbent resin layer 51 may be invaded, but due to the density difference between the two regions, the low-density region Al is larger. It is considered that the water-absorbent resin particles of the above are invaginated.
 積層体10が第1シート20側から液体暴露を受けると、液体は、積層方向LMD10に移動することで、中間シート30に到達する。中間シート30は、上記の通り低密度領域Alと高密度領域Bhとを設けているため、低密度領域Alの方でより多くの水が拡散される。従って、低密度領域Al内に陥入していたより多くの吸水性樹脂粒子が、より多くの水をより優先的に(つまり、積層体10が液体暴露を受けた後のより早い時点で)吸収することで膨張する。つまり、低密度領域Alの方で、先に水を吸収して膨張する吸水性樹脂粒子が局在する状態となる。その結果、吸水性樹脂層51全体で、中間シート30の低密度領域Alと高密度領域Bhとの位置に対応して吸水性樹脂粒子の膨張率に差ができる。具体的には、図4に模式的に示すように、吸水性樹脂層51において、中間シート30の低密度領域Alに対応する部分51Aが、高密度領域Bhに対応する部分51Bよりも大きく膨張する(最初に暴露された液体を吸収した吸水性樹脂層51を、特に「吸水性樹脂層51’」とも記載する)。より大きく膨張した部分51Aは、低密度領域Alの長手方向LD-Aを有する形状に対応し、同様の長手方向LD-Aを有する形状、つまり凸部をなす(以下において、より大きく膨張した当該部分51Aを「凸部51A」とも記載し、凸部51Aほどの大きさには膨張せずにより低くなった部分51Bを「凹部51B」とも記載する)。 When the laminated body 10 is exposed to the liquid from the first sheet 20 side, the liquid moves in the laminating direction LMD 10 and reaches the intermediate sheet 30. Since the intermediate sheet 30 is provided with the low density region Al and the high density region Bh as described above, more water is diffused in the low density region Al. Therefore, more water-absorbent resin particles trapped in the low-density region Al absorb more water more preferentially (ie, earlier after the laminate 10 is exposed to liquid). It expands by doing. That is, in the low-density region Al, the water-absorbent resin particles that first absorb water and expand are localized. As a result, there is a difference in the expansion rate of the water-absorbent resin particles corresponding to the positions of the low-density region Al and the high-density region Bh of the intermediate sheet 30 in the entire water-absorbent resin layer 51. Specifically, as schematically shown in FIG. 4, in the water-absorbent resin layer 51, the portion 51A corresponding to the low-density region Al of the intermediate sheet 30 expands more than the portion 51B corresponding to the high-density region Bh. (The water-absorbent resin layer 51 that has absorbed the initially exposed liquid is also particularly referred to as "water-absorbent resin layer 51'"). The larger expanded portion 51A corresponds to the shape having the longitudinal LD-A of the low density region Al, and forms a shape having the same longitudinal LD-A, that is, a convex portion (hereinafter, the larger expanded portion 51A). The portion 51A is also referred to as a “convex portion 51A”, and the portion 51B that is not expanded to the size of the convex portion 51A and is lowered is also referred to as a “concave portion 51B”).
 積層体10’がさらに次の液体暴露を受けると、吸水性樹脂層51’に到達した液体の一部は、凸部51Aの長手方向に沿って、凹部51Bを流れる。つまり、積層体10’が吸収した液体は、積層方向LMD10に移動した後は、吸水性樹脂層51’に吸収される時に、凸部51Aの長手方向LD-Aに沿って積層体10’の面内方向に広がるように移動する。このように、最初の液体暴露で形成された凸部51Aが、次に吸収した液体を吸水性樹脂層51’に到達した箇所に集中させずに積層体10’内に広げることで吸水性樹脂層51’と液体とが接触する面積を最大化する。これによって、吸収速度を向上させることが可能になると考えられる。さらに、このように吸収した液体を特定の箇所に集中させない特性は、当該箇所における液体の逆戻り量を低減することにも資する場合がある。加えて、高密度領域Bhが中間シート30の長手端LEよりも内側に位置するように配されているため、吸水性樹脂層51’における凹部51Bは長手端LEの内側にも形成される。従って、長手端LE近傍に到達した液体に対しても、長手端LEの凸部51Aが物理的障壁となってせき止めるように作用する。このようにして、長手端LEからの漏れ(つまり横漏れ)リスクも低減される。 When the laminate 10'is further exposed to the next liquid, a part of the liquid that has reached the water-absorbent resin layer 51'flows through the concave portion 51B along the longitudinal direction of the convex portion 51A. That is, when the liquid absorbed by the laminated body 10'is absorbed by the water-absorbent resin layer 51'after moving in the laminating direction LMD10, the liquid is absorbed by the laminated body 10'along the longitudinal direction LD-A of the convex portion 51A. Move so that it spreads in the in-plane direction. In this way, the convex portion 51A formed by the first liquid exposure spreads the absorbed liquid in the laminated body 10'without concentrating it on the portion reaching the water-absorbent resin layer 51', thereby expanding the water-absorbent resin. Maximize the area of contact between layer 51'and the liquid. It is considered that this makes it possible to improve the absorption rate. Further, the property of not concentrating the absorbed liquid in a specific place may contribute to reducing the amount of reversion of the liquid in the place. In addition, since the high-density region Bh is arranged so as to be located inside the longitudinal end LE of the intermediate sheet 30, the recess 51B in the water-absorbent resin layer 51'is also formed inside the longitudinal end LE. Therefore, even for the liquid that has reached the vicinity of the longitudinal end LE, the convex portion 51A of the longitudinal end LE acts as a physical barrier to dam the liquid. In this way, the risk of leakage (that is, lateral leakage) from the longitudinal end LE is also reduced.
 なお、上記の説明において、「最初の液体暴露」と「次の液体暴露」とは、連続的であってもよいし、間欠的であってもよい。 In the above description, the "first liquid exposure" and the "next liquid exposure" may be continuous or intermittent.
[1-2.第2実施形態]
 図5に、本発明の積層体の第2実施形態で用いられる中間シートを、図2と同じ形式で示す。また、図6に、第2実施形態の積層体の分解図を、図3と同じ形式で示す。図6に示す積層体10aは、中間シート30が中間シート30aに変更されたことを除いて、上記の第1実施形態の積層体10と同様である。
[1-2. Second Embodiment]
FIG. 5 shows an intermediate sheet used in the second embodiment of the laminated body of the present invention in the same format as in FIG. Further, FIG. 6 shows an exploded view of the laminated body of the second embodiment in the same format as that of FIG. The laminated body 10a shown in FIG. 6 is the same as the laminated body 10 of the first embodiment described above, except that the intermediate sheet 30 is changed to the intermediate sheet 30a.
 本実施形態で用いられる中間シート30aは、長手方向LD-Aを有する形状の領域Aとして吸水性樹脂層側に凸となる凸部を成す領域(以下において、凸部を成す領域Aを「凸部領域A+」とも記載する。)と、領域Bとして凹部(つまり、凸部領域A+に対する凹部)を成す領域(以下において、凹部の領域Bを「凹部領域B-」とも記載する。)とを有し、凹部領域B-は、中間シート30aの長手端LEよりも内側に位置している。 The intermediate sheet 30a used in the present embodiment has a region A having a shape having LD-A in the longitudinal direction, which forms a convex portion that is convex toward the water-absorbent resin layer (hereinafter, the region A that forms the convex portion is "convex". (Also referred to as "part region A +") and a region forming a concave portion (that is, a concave portion with respect to the convex portion region A +) as the region B (hereinafter, the concave region B is also referred to as "recessed region B-"). The recessed region B-is located inside the longitudinal end LE of the intermediate sheet 30a.
 凸部領域A+は、その高さh(凸部領域A+と同一面側にある凹部領域B-の最も低い部分からの凸部の最も高い部分までの高さ)が0.25mm以上となるように構成されている。数回の液体暴露に対する吸収速度及び/又は横漏れ防止性をより一層高める観点から、当該高さhとしては、好ましくは0.35mm以上、より好ましくは0.45mm以上、さらに好ましくは0.6mm以上、一層好ましくは0.7mm以上が挙げられる。当該高さh範囲の上限としては特に限定されないが、例えば1mm以下、好ましくは0.9mm以下が挙げられる。 The height h of the convex portion region A + (height from the lowest portion of the concave portion region B- on the same surface side as the convex portion region A + to the highest portion of the convex portion) is 0.25 mm or more. It is configured in. From the viewpoint of further enhancing the absorption rate and / or the lateral leakage prevention property for several liquid exposures, the height h is preferably 0.35 mm or more, more preferably 0.45 mm or more, still more preferably 0.6 mm. As mentioned above, 0.7 mm or more is more preferable. The upper limit of the height h range is not particularly limited, and examples thereof include 1 mm or less, preferably 0.9 mm or less.
 本実施形態における中間シート30aは、凸部領域A+と凹部領域B-とにおいて、密度は実質的に同じである。 The density of the intermediate sheet 30a in the present embodiment is substantially the same in the convex region A + and the concave region B−.
 中間シート30aにおいて凸部領域A+と凹部領域B-とを設ける方法としては特に限定されない。例えば、凸部領域A+及び凹部領域B-にそれぞれ対応する凹部及び凸部を有する基板を用いた透かしの技法で中間シート30aを作製する方法、中間シート30a材料をブロック状で用意し、凹凸形状が表出するようにスライスして中間シート30aに切り分ける方法等が挙げられる。 The method of providing the convex region A + and the concave region B- in the intermediate sheet 30a is not particularly limited. For example, a method of producing an intermediate sheet 30a by a watermarking technique using a substrate having concave portions and convex portions corresponding to the convex portion region A + and the concave portion region B-, respectively, a method of preparing the intermediate sheet 30a material in a block shape and forming an uneven shape. Examples thereof include a method of slicing so as to be exposed and cutting into an intermediate sheet 30a.
 中間シート30aに、上記のように凸部領域A+を所定の位置に所定形状で設けることでも、複数回の液体暴露に対して優れた吸収速度を示す。このように優れた吸収速度が得られる理由として考えられるメカニズムを、図7を参照して説明する。図7は、使用時に最初に液体暴露を受けた状態の積層体10a(以下において、この状態の積層体10aを、特に「積層体10a’」とも記載する)を、図6と同様に分解図で模式的に示す。 Even if the intermediate sheet 30a is provided with the convex region A + at a predetermined position in a predetermined shape as described above, an excellent absorption rate is exhibited against a plurality of liquid exposures. The mechanism considered as the reason why such an excellent absorption rate can be obtained will be described with reference to FIG. 7. FIG. 7 is an exploded view of the laminated body 10a in a state of being first exposed to liquid at the time of use (hereinafter, the laminated body 10a in this state is also referred to as “laminated body 10a'”) in the same manner as in FIG. Shown schematically in.
 まず、積層体10aにおいて、中間シート30aは厚み方向へ連通する空間又は孔を有し、且つ吸水性樹脂層51と直接的に接しているため、中間シート30aの凸部領域A+は吸水性樹脂層51に食い込み、上記空間又は孔に、吸水性樹脂層51を構成する吸水性樹脂粒子の一部が陥入していると考えられる。中間シート30aの凹部領域B-でも吸水性樹脂層51を構成する吸水性樹脂粒子の一部が陥入しうるが、両領域の高低差に起因して、凸部領域A+の方がより多くの吸水性樹脂粒子を陥入させていると考えられる。 First, in the laminated body 10a, since the intermediate sheet 30a has a space or a hole communicating with each other in the thickness direction and is in direct contact with the water-absorbent resin layer 51, the convex region A + of the intermediate sheet 30a is a water-absorbent resin. It is considered that a part of the water-absorbent resin particles constituting the water-absorbent resin layer 51 has invaded the space or the hole by biting into the layer 51. A part of the water-absorbent resin particles constituting the water-absorbent resin layer 51 may be invaded even in the concave region B- of the intermediate sheet 30a, but the convex region A + is larger due to the height difference between the two regions. It is considered that the water-absorbent resin particles of the above are invaginated.
 積層体10aが第1シート20側から液体暴露を受けると、液体は、積層方向LMD10に移動することで、中間シート30aに到達する。中間シート30aは、上記の通り凸部領域A+と凹部領域B-とを設けているため、液体は、凸部領域A+の方により早く接触し凸部領域A+の方でより早く拡散する。従って、凸部領域A+内に陥入していたより多くの吸水性樹脂粒子が、より多くの水をより優先的に(つまり、積層体10aが液体暴露を受けた後のより早い時点で)吸収することで膨張する。つまり、凸部領域A+の方で、先に水を吸収して膨張する吸水性樹脂粒子が局在する状態となる。その結果、吸水性樹脂層51全体で、中間シート30aの凸部領域A+と凹部領域B-との位置に対応して吸水性樹脂粒子の膨張率に差ができる。具体的には、図7に模式的に示すように、吸水性樹脂層51’において、中間シート30aの凸部領域A+に対応する部分51Aで、凹部領域B-に対応する部分51Bよりも大きく膨張する。これによって、第1実施形態の図4と同様に、長手方向LD-Aを有する形状の凸部51Aと、凸部51Aほどの大きさには膨張せずにより低くなった凹部51Bとが生じる。 When the laminated body 10a is exposed to the liquid from the first sheet 20 side, the liquid moves in the laminating direction LMD 10 and reaches the intermediate sheet 30a. Since the intermediate sheet 30a is provided with the convex region A + and the concave region B− as described above, the liquid contacts the convex region A + earlier and diffuses faster in the convex region A +. Therefore, more water-absorbent resin particles trapped in the convex region A + absorb more water more preferentially (ie, earlier after the laminate 10a is exposed to liquid). It expands by doing. That is, in the convex region A +, the water-absorbent resin particles that first absorb water and expand are localized. As a result, there is a difference in the expansion coefficient of the water-absorbent resin particles corresponding to the positions of the convex portion region A + and the concave portion region B- of the intermediate sheet 30a in the entire water-absorbent resin layer 51. Specifically, as schematically shown in FIG. 7, in the water-absorbent resin layer 51', the portion 51A corresponding to the convex portion region A + of the intermediate sheet 30a is larger than the portion 51B corresponding to the concave portion region B-. Inflate. As a result, as in FIG. 4 of the first embodiment, a convex portion 51A having a shape having the LD-A in the longitudinal direction and a concave portion 51B which is not expanded to the size of the convex portion 51A and is lowered are generated.
 従って、積層体10a’がさらに次の液体暴露を受けると、第1実施形態の図4と同様に、積層体10’が吸収した液体は、凸部51Aの長手方向LD-Aに沿って積層体10’の面内方向に広がるように移動することで、吸水性樹脂層51’と液体とが接触する面積を最大化し、吸収速度を向上させることが可能になると考えられる。さらに、このように吸収した液体を特定の箇所に集中させない特性が、当該箇所における液体の逆戻り量を低減することにも資する場合がある点も、第1実施形態と同様である。加えて、長手端LEに最も近い凸部51Aが物理的障壁となるため、長手端LEからの漏れ(つまり横漏れ)リスクが低減される点も、第1実施形態と同様である。 Therefore, when the laminated body 10a'is further exposed to the next liquid, the liquid absorbed by the laminated body 10' is laminated along the longitudinal direction LD-A of the convex portion 51A, as in FIG. 4 of the first embodiment. By moving the body 10'so as to spread in the in-plane direction, it is considered possible to maximize the area of contact between the water-absorbent resin layer 51'and the liquid and improve the absorption rate. Further, the property of not concentrating the absorbed liquid in a specific place may contribute to reducing the amount of reversion of the liquid in the place, as in the first embodiment. In addition, since the convex portion 51A closest to the longitudinal end LE serves as a physical barrier, the risk of leakage (that is, lateral leakage) from the longitudinal end LE is reduced, as in the first embodiment.
 なお、上記の説明においても、「最初の液体暴露」と「次の液体暴露」とは、連続的であってもよいし、間欠的であってもよい。 In the above description, the "first liquid exposure" and the "next liquid exposure" may be continuous or intermittent.
[1-3.第3実施形態]
 図8に、本発明の積層体の第3実施形態で用いられる中間シート30bを、図2と同じ形式で示す。第3実施形態の積層体は、中間シート30が中間シート30bに変更されたことを除いて、上記の第1実施形態の積層体10と同様である。
[1-3. Third Embodiment]
FIG. 8 shows the intermediate sheet 30b used in the third embodiment of the laminated body of the present invention in the same format as in FIG. The laminated body of the third embodiment is the same as the laminated body 10 of the first embodiment described above, except that the intermediate sheet 30 is changed to the intermediate sheet 30b.
 本実施形態で用いられる中間シート30bは、第1実施形態で用いられる中間シート30の特徴と、第2実施形態で用いられる中間シート30aの特徴との両方を備える(上記(1)~(3)の関係を満たす)。つまり、中間シート30bは、長手方向LD-Aを有する形状の領域Aとして、低密度且つ吸水性樹脂層側に凸となる凸部を成す領域(以下において、低密度且つ凸部を成す領域Aを「低密度/凸部領域Al+」とも記載する。)と、領域Bとして、高密度且つ凹部状(つまり、凸部に対する凹部)の領域(以下において、高密度且つ非凸部の領域Bを「高密度/凹部領域Bh-」とも記載する。)とを有し、高密度/凹部領域Bh-は、中間シート30bの長手端LEよりも内側に位置している。 The intermediate sheet 30b used in the present embodiment has both the characteristics of the intermediate sheet 30 used in the first embodiment and the characteristics of the intermediate sheet 30a used in the second embodiment ((1) to (3) above. ) Satisfies the relationship). That is, the intermediate sheet 30b is a region A having a shape having LD-A in the longitudinal direction, which has a low density and a convex portion that is convex toward the water-absorbent resin layer (hereinafter, a region A that has a low density and a convex portion). Is also referred to as "low density / convex region Al +"), and as the region B, a high-density and concave region (that is, a concave portion with respect to the convex portion) (hereinafter, a high-density and non-convex region B). Also referred to as "high density / recessed region Bh-"), the high density / recessed region Bh-is located inside the longitudinal end LE of the intermediate sheet 30b.
 中間シート30bにおける高密度/凹部領域Bh-の密度を1とした場合の低密度/凸部領域Al+の密度の比率については、第1実施形態で用いられる中間シート30における高密度領域Bhの密度を1とした場合の低密度領域Alの密度の比率と同じである。また、中間シート30bにおける低密度/凸部領域Al+の高さhについては、第2実施形態で用いられる中間シート30aにおける凸部領域A+の高さhと同じである。 Regarding the ratio of the density of the low density / convex region Al + when the density of the high density / concave region Bh− in the intermediate sheet 30b is 1, the density of the high density region Bh in the intermediate sheet 30 used in the first embodiment. Is the same as the ratio of the density of the low density region Al when. Further, the height h of the low density / convex region Al + in the intermediate sheet 30b is the same as the height h of the convex region A + in the intermediate sheet 30a used in the second embodiment.
 さらに、中間シート30bにおける低密度/凸部領域Al+の密度については、第1実施形態で用いられる中間シート30における低密度領域Alの密度と同じである。 Further, the density of the low density / convex region Al + in the intermediate sheet 30b is the same as the density of the low density region Al in the intermediate sheet 30 used in the first embodiment.
 中間シート30bにおいて低密度且つ凸部を成す領域と高密度且つ凹部を成す領域とを設ける方法としては特に限定されない。好ましくは、中間シート30bの生地を、高密度且つ凹部を成す領域を設けるべき場所で片面から厚み方向に圧縮するエンボス法が挙げられる。 The method of providing the intermediate sheet 30b with a low-density and convex region and a high-density and concave region is not particularly limited. Preferably, an embossing method is used in which the fabric of the intermediate sheet 30b is compressed in the thickness direction from one side at a place where a region forming a high density and a recess is to be provided.
 第3実施形態の積層体は上記の特徴を兼ね備える中間シート30bを用いているため、液体を吸収する際、吸水性樹脂層が、第1実施形態における図4及び第2実施形態における図7で説明した特徴的な膨張形態をとることで、吸収速度を向上させ横漏れリスクを低減する。中間シート30の特徴及び中間シート30aの特徴はそれぞれ単独でも吸収速度を向上させ横漏れリスクを低減する効果を奏するため、これらの特徴を兼ね備える中間シート30bを用いることによって、吸収速度及び横漏れ防止性を各段に高めることができる。 Since the laminated body of the third embodiment uses the intermediate sheet 30b having the above-mentioned characteristics, when the liquid is absorbed, the water-absorbent resin layer is shown in FIGS. 4 in the first embodiment and 7 in the second embodiment. By taking the characteristic expansion form described, the absorption rate is improved and the risk of lateral leakage is reduced. Since the characteristics of the intermediate sheet 30 and the characteristics of the intermediate sheet 30a have the effect of improving the absorption rate and reducing the risk of lateral leakage by themselves, the absorption rate and the prevention of lateral leakage are prevented by using the intermediate sheet 30b having these characteristics. The sex can be enhanced to each step.
[1-4.第4実施形態]
 図9に、本発明の積層体の第4実施形態で用いられる中間シート30cを、図2と同じ形式で示す。第3実施形態の積層体は、中間シート30が中間シート30cに変更されたことを除いて、上記の第1実施形態の積層体10と同様である。
[1-4. Fourth Embodiment]
FIG. 9 shows the intermediate sheet 30c used in the fourth embodiment of the laminated body of the present invention in the same format as in FIG. The laminated body of the third embodiment is the same as the laminated body 10 of the first embodiment described above, except that the intermediate sheet 30 is changed to the intermediate sheet 30c.
 また、中間シート30cは、第3実施形態において用いられる中間シート30bと同様の低密度/凸部領域Al+及び高密度/凹部領域Bh-を、その両面に有するリバーシブル仕様であり、高密度/凹部領域Bh-は、中間シート30cの長手端LEよりも内側に位置している。 Further, the intermediate sheet 30c is a reversible specification having the same low density / convex region Al + and high density / concave region Bh- on both sides as the intermediate sheet 30b used in the third embodiment, and has a high density / concave region. The region Bh-is located inside the longitudinal end LE of the intermediate sheet 30c.
 中間シート30cにおいて低密度且つ凸部を成す領域と高密度且つ凹部を成す領域とをその両面に設ける方法としては特に限定されない。好ましくは、中間シート30cの生地を、高密度且つ凹部を成す領域を設けるべき場所で両面から厚み方向に圧縮するエンボス法が挙げられる。 The method of providing the intermediate sheet 30c with a low-density and convex region and a high-density and concave region on both sides thereof is not particularly limited. Preferably, an embossing method is used in which the fabric of the intermediate sheet 30c is compressed in the thickness direction from both sides at a place where a region forming a high density and a recess is to be provided.
 第4実施形態の積層体は、第3実施形態で用いられる中間シート30bと同様に、第1実施形態で用いられる中間シート30の特徴と、第2実施形態で用いられる中間シート30aの特徴との両方を兼ね備える中間シート30bを用いているため、第3実施形態と同様に、吸収速度及び横漏れ防止性を各段に高めることができる。 The laminated body of the fourth embodiment has the characteristics of the intermediate sheet 30 used in the first embodiment and the characteristics of the intermediate sheet 30a used in the second embodiment, similarly to the intermediate sheet 30b used in the third embodiment. Since the intermediate sheet 30b having both of the above is used, the absorption rate and the lateral leakage prevention property can be further improved as in the third embodiment.
[1-5.第5実施形態]
 本発明の積層体においては、領域Bが中間シートの長手端よりも内側に位置している限り、領域Bが中間シートの短手端に達しているか否かは問わない。一方、本発明の積層体は、吸収した液体を面内方向への拡散することを促すことで吸収速度を向上させる構成をとっていることから、さらに短手端からの漏れリスクを低減する観点で、領域Bが中間シートの短手端SEよりも内側に位置していてもよい。
[1-5. Fifth Embodiment]
In the laminated body of the present invention, as long as the region B is located inside the longitudinal end of the intermediate sheet, it does not matter whether the region B reaches the short end of the intermediate sheet. On the other hand, since the laminated body of the present invention has a configuration in which the absorption rate is improved by promoting the diffusion of the absorbed liquid in the in-plane direction, the risk of leakage from the short end is further reduced. Therefore, the region B may be located inside the short end SE of the intermediate sheet.
 図10に、本発明の積層体の第5実施形態で用いられる中間シートの一部分(短手端を含む一部分)の外観図を模式的に示す。第5実施形態の積層体は、中間シート30が中間シート30dに変更されたことを除いて、上記の第1実施形態の積層体10と同様である。 FIG. 10 schematically shows an external view of a part (a part including the short end) of the intermediate sheet used in the fifth embodiment of the laminated body of the present invention. The laminate of the fifth embodiment is the same as the laminate 10 of the first embodiment, except that the intermediate sheet 30 is changed to the intermediate sheet 30d.
 本実施形態で用いられる中間シート30dは、高密度領域Bhが、短手端SEよりも内側に位置している。高密度領域Bhが短手端SEよりも内側に位置しているとは、高密度領域Bhが中間シート30の短手端SEまで達している部分がなく、高密度領域Bhの全体が中間シート30の両方の短手端SEよりも面内方向の内側に配されていることをいう。つまり、中間シート30の両方の短手端SEの部分は、低密度領域Alによって構成される。 In the intermediate sheet 30d used in the present embodiment, the high-density region Bh is located inside the short end SE. The fact that the high-density region Bh is located inside the short end SE means that there is no portion where the high-density region Bh reaches the short end SE of the intermediate sheet 30, and the entire high-density region Bh is the intermediate sheet. It means that it is arranged inward in the in-plane direction from both short end SEs of 30. That is, both short end SE portions of the intermediate sheet 30 are composed of the low density region Al.
 これによって、液体を吸収した際、吸水性樹脂層が、吸水性樹脂層の短手端SEの部分についても、長手端LEの部分と同様に凸部を成すように膨張することで物理的障壁を形成するため、短手端SEからの漏れ(例えば後漏れ等)リスクも低減される。 As a result, when the liquid is absorbed, the water-absorbent resin layer expands so as to form a convex portion on the short end SE portion of the water-absorbent resin layer as well as the longitudinal end LE portion, thereby forming a physical barrier. Therefore, the risk of leakage from the short end SE (for example, rear leakage) is also reduced.
 なお、第5実施形態は、領域Aが第1実施形態と同様の低密度領域Alであり領域Bが第1実施形態と同様の高密度領域Bhである場合を挙げて説明したが、この第5実施形態は、低密度領域Alが第2実施形態における凸部領域A+又は第3実施形態における低密度/凸部領域Al+に変更され、高密度領域Bhが第2実施形態における凹部領域B-又は第3実施形態における高密度/凹部領域Bh-に変更された中間シートを用いる場合にも適用される。さらに、この第5実施形態は、第4実施形態で説明した断面形状の中間シートを用いる場合にも適用される。 The fifth embodiment has been described with reference to the case where the region A is the same low-density region Al as the first embodiment and the region B is the same high-density region Bh as the first embodiment. In the fifth embodiment, the low density region Al is changed to the convex region A + in the second embodiment or the low density / convex region Al + in the third embodiment, and the high density region Bh is changed to the concave region B- in the second embodiment. Alternatively, it is also applied when the intermediate sheet changed to the high density / recessed region Bh- in the third embodiment is used. Further, the fifth embodiment is also applied to the case where the intermediate sheet having the cross-sectional shape described in the fourth embodiment is used.
[1-6.領域A及び領域Bの変形例]
 領域A及び領域Bの形状は上記第1実施形態に示したものに限定されず、長手方向を有する形状でありさえすれば、図4を参照して説明したように、最初に暴露された液体の吸収によって形成される凸部51Aが次回以降に吸収する液体を積層体10’の面内方向に広げるように案内し、吸収速度を向上できると考えられる。さらに、領域Bが長手端LEの内側に存在してさえいれば、図4を参照して説明したように、最初に暴露された液体の吸収によって形成される凸部51Aが長手端LEで横漏れリスクを低減すると考えられる。
[1-6. Modification example of area A and area B]
The shapes of the regions A and B are not limited to those shown in the first embodiment, and as long as they have a shape having a longitudinal direction, the liquid initially exposed as described with reference to FIG. It is considered that the convex portion 51A formed by the absorption of the above guides the liquid to be absorbed from the next time onward so as to spread in the in-plane direction of the laminated body 10', and the absorption rate can be improved. Further, as long as the region B is present inside the longitudinal end LE, the convex portion 51A formed by the absorption of the initially exposed liquid is lateral at the longitudinal end LE, as described with reference to FIG. It is thought to reduce the risk of leakage.
 図11に、領域A及び領域Bの形状のいくつかの例を挙げて模式的に示す。図11におでは、中間シートを第1シート側から見た平面図を示しており、実線は領域Bを表し、実線以外の空白部分は領域Aを表す。上記の通り、領域Aが長手方向を有する形状であり領域Bが長手端LEの内側に存在してさえいれば、吸収速度を向上でき横漏れリスクを低減できるため、図11(a)に示すように領域Aが長手端LEに2本存在するのみであっても、本発明の積層体は、複数回の液体暴露に対しても優れた吸収速度及び横漏れ防止性を示すことができる。なお、図11に示す例は全て領域Bが短手端SEよりも内側に配されているが、領域Bが短手端SEに達していることも許容される。 FIG. 11 schematically shows some examples of the shapes of regions A and B. In FIG. 11, a plan view of the intermediate sheet as viewed from the first sheet side is shown, the solid line represents the area B, and the blank portion other than the solid line represents the area A. As described above, as long as the region A has a shape having a longitudinal direction and the region B exists inside the longitudinal end LE, the absorption rate can be improved and the risk of lateral leakage can be reduced, which is shown in FIG. 11 (a). As described above, even if only two regions A are present at the longitudinal end LE, the laminate of the present invention can exhibit excellent absorption rate and lateral leakage prevention even when exposed to a plurality of liquids. In all the examples shown in FIG. 11, the region B is arranged inside the short end SE, but it is permissible that the region B reaches the short end SE.
 領域A及び領域Bは、吸収した液体を面内方向に広げるように案内する効率を向上させる観点から、そのいずれか又は両方が線条部を成す部分を含んでいることが好ましい。領域Aが線条部を成す部分を有している例としては、図11(a)、図11(d)、図11(e)及び図11(f)が挙げられる。また、領域Bが線条部を成す部分を含んでいる例としては、図11(a)~図11(f)が挙げられる。 It is preferable that the region A and the region B include a portion in which either or both of them form a streak portion from the viewpoint of improving the efficiency of guiding the absorbed liquid so as to spread in the in-plane direction. Examples of the region A having a portion forming a streak portion include FIGS. 11 (a), 11 (d), 11 (e), and 11 (f). Further, as an example in which the region B includes a portion forming a linear portion, FIGS. 11 (a) to 11 (f) can be mentioned.
 領域Aが線条部を含む場合、当該線条部は、中間シートの長手方向LDを含む方向に延在することが好ましい。線条部が「長手方向LDを含む方向」に延在しているとは、線条部の延在方向が、長手方向LDと平行か否かに関わらず、長手方向LD成分を含んでいることをいい、換言すれば、「長手方向LDを含む方向」は、長手方向LDに垂直な方向以外の任意の方向であることをいう。つまり、図11(a)、図11(d)、図11(e)及び図11(f)の例は全て、当該線条部が中間シートの長手方向LDを含む方向に延在している。このような態様の場合、2回目以降に暴露される液体が積層体の面内方向へ移動する時に、特に長手方向LDへの移動がより一層効率的となるため、積層体の形状を有効利用できる点で好ましい。 When the region A includes a linear portion, it is preferable that the linear portion extends in the direction including the longitudinal LD of the intermediate sheet. The fact that the streak portion extends in the "direction including the longitudinal direction LD" means that the streak portion contains the longitudinal direction LD component regardless of whether or not the extending direction of the streak portion is parallel to the longitudinal direction LD. In other words, the "direction including the longitudinal LD" means an arbitrary direction other than the direction perpendicular to the longitudinal LD. That is, in all the examples of FIGS. 11 (a), 11 (d), 11 (e), and 11 (f), the streaks extend in the direction including the longitudinal LD of the intermediate sheet. .. In such an embodiment, when the liquid exposed from the second time onward moves in the in-plane direction of the laminated body, the movement in the longitudinal direction LD becomes more efficient, so that the shape of the laminated body is effectively used. It is preferable in that it can be done.
 領域Aが線条部を含む場合、当該線条部は、中間シートの長手方向LDと略平行に延在していることがより好ましい。線条部が中間シートの長手方向LDと略平行に延在しているとは、線条部の延在方向が長手方向LDに対して±5°ずれていてもよいことを意味する。このような態様の例としては、図11(a)及び図11(e)が挙げられる。このような態様の場合、吸収された液体が積層体の面内方向へ移動する時に、長手方向LDへの移動が特に効率的となるため、積層体の形状をより一層有効利用できる点で好ましい。 When the region A includes a linear portion, it is more preferable that the linear portion extends substantially parallel to the longitudinal LD of the intermediate sheet. The fact that the streaks extend substantially parallel to the longitudinal LD of the intermediate sheet means that the extending direction of the streaks may deviate by ± 5 ° with respect to the longitudinal LD. Examples of such an embodiment include FIGS. 11 (a) and 11 (e). In such an embodiment, when the absorbed liquid moves in the in-plane direction of the laminate, the movement in the longitudinal direction LD becomes particularly efficient, so that the shape of the laminate can be used more effectively, which is preferable. ..
 領域Bが線条部を含む場合、当該線条部は、中間シートの短手中心線M上に配されていることが好ましい。領域Bが複数本の線条部で構成される場合は、少なくともいずれかの線条部が中間シートの短手中心線M上に配されていればよい。このような態様の例としては、図11(a)及び図11(e)が挙げられる。このような態様の場合、吸収された液体が積層体の面内方向へ移動する時に、少なくとも、長手端LEから最も遠くなる場所を移動することができるため、横漏れ防止性をより好ましく得る点で好ましい。 When the area B includes a streak, it is preferable that the streak is arranged on the short center line M of the intermediate sheet. When the region B is composed of a plurality of streaks, at least one of the streaks may be arranged on the short center line M of the intermediate sheet. Examples of such an embodiment include FIGS. 11 (a) and 11 (e). In such an embodiment, when the absorbed liquid moves in the in-plane direction of the laminate, it can move at least to the place farthest from the longitudinal end LE, so that the lateral leakage prevention property can be more preferably obtained. Is preferable.
 領域A及び領域Bは、それらの形状に関わらず、それらの領域の短手方向SD-Aに複数交互に配置されていることが好ましい。このような態様の例としては、図11(c)、図11(d)、図11(e)及び図11(f)が挙げられる。このような態様では、液体を吸収する際に、図4で説明した溝状の凹部42が複数形成されるため、吸収した液体の長手方向LDへの移動がより効率的となり、積層体の形状を有効利用できる点で好ましい。 Regardless of their shapes, it is preferable that a plurality of regions A and B are alternately arranged in the lateral SD-A of those regions. Examples of such an embodiment include FIGS. 11 (c), 11 (d), 11 (e), and 11 (f). In such an embodiment, when the liquid is absorbed, a plurality of groove-shaped recesses 42 described in FIG. 4 are formed, so that the absorbed liquid is more efficiently transferred to the LD in the longitudinal direction, and the shape of the laminated body is formed. Is preferable in that it can be effectively used.
 さらに、領域Aと領域Bとはいずれも線条部を含み、且つ領域Aの線条部と領域Bの線条部とが複数並列して配置されていることがより好ましい。このような態様の例としては、図11(d)、図11(e)及び図11(f)が挙げられる。このような態様では、吸収した液体の長手方向LDへの移動がより一層効率的となり、積層体の形状をより一層有効利用できる点で好ましい。 Further, it is more preferable that both the area A and the area B include the streaks, and a plurality of the streaks of the area A and the streaks of the area B are arranged in parallel. Examples of such an embodiment include FIGS. 11 (d), 11 (e) and 11 (f). In such an embodiment, the movement of the absorbed liquid in the longitudinal direction LD becomes more efficient, and the shape of the laminated body can be used more effectively.
 なお、図11に示す領域A及び領域Bの形状は、それぞれの形状が単独で適用されてもよいし、2種以上の形状が組み合わされた状態で適用されてもよい。 The shapes of the region A and the region B shown in FIG. 11 may be applied individually, or may be applied in a state where two or more types of shapes are combined.
 領域Aの幅(つまり、領域Aが短手方向SD-Aに占める幅)は特に限定されないが、例えば0.3~5cmが挙げられる。数回の液体暴露に対する吸収速度及び/又は横漏れ防止性をより一層高める観点から、領域Aの幅としては、好ましくは0.4~3.5cm、より好ましくは0.6~3cm、さらに好ましくは0.8~2.8cm、一層好ましくは1~2.3cm、より一層好ましくは1.2~1.8cmが挙げられる。領域Aの幅は、その延在方向にかけて、全体的に一定であってもよく、上記範囲内で変化していてもよい。 The width of the region A (that is, the width occupied by the region A in the lateral direction SD-A) is not particularly limited, and examples thereof include 0.3 to 5 cm. The width of the region A is preferably 0.4 to 3.5 cm, more preferably 0.6 to 3 cm, still more preferably, from the viewpoint of further enhancing the absorption rate and / or the lateral leakage prevention property for several liquid exposures. Is 0.8 to 2.8 cm, more preferably 1 to 2.3 cm, and even more preferably 1.2 to 1.8 cm. The width of the region A may be generally constant or may vary within the above range in the extending direction.
 領域Bの幅は特に限定されないが、数回の液体暴露に対する吸収速度及び/又は横漏れ防止性をより一層高める観点から、好ましくは1~15mm、より好ましくは2~12mm、さらに好ましくは3~10mm、一層好ましくは3~8mmが挙げられる。領域Bの幅は、その延在方向にかけて、全体的に一定であってもよく、上記範囲内で変化していてもよい。 The width of the region B is not particularly limited, but is preferably 1 to 15 mm, more preferably 2 to 12 mm, still more preferably 3 to, from the viewpoint of further enhancing the absorption rate and / or the lateral leakage prevention property with respect to several liquid exposures. 10 mm, more preferably 3 to 8 mm is mentioned. The width of the region B may be generally constant or may vary within the above range in the extending direction.
 中間シートにおいて領域Bが占める面積比率としては特に限定されないが、数回の液体暴露に対する吸収速度及び/又は横漏れ防止性をより一層高める観点から、その下限値は、好ましくは3%以上、より好ましくは5%以上、さらに好ましくは10%以上、一層好ましくは15%以上、より一層好ましくは18%以上であり、その上限値は、好ましくは50%以下、より好ましくは40%以下、さらに好ましくは30%以下、一層好ましくは25%以下、より一層好ましくは22%以下が挙げられる。 The area ratio occupied by the region B in the intermediate sheet is not particularly limited, but the lower limit is preferably 3% or more, more preferably, from the viewpoint of further enhancing the absorption rate and / or the lateral leakage prevention property against several liquid exposures. It is preferably 5% or more, more preferably 10% or more, still more preferably 15% or more, still more preferably 18% or more, and the upper limit thereof is preferably 50% or less, more preferably 40% or less, still more preferably. Is 30% or less, more preferably 25% or less, still more preferably 22% or less.
 なお、図11に示した変形例は、上述の全ての実施形態に適用することができる。 Note that the modification shown in FIG. 11 can be applied to all the above-described embodiments.
[2.積層体の各構成要素の材料及び厚み]
 本発明の積層体を構成する各構成要素の材料及び厚みとしては特に限定されず、各構成要素が上述の特徴を備えることができる材料及び厚みが適宜選択される。なお、特に特定の実施形態に言及した場合を除き、以下の内容は、上記したすべての実施形態について共通して適用することができる。
[2. Material and thickness of each component of the laminate]
The material and thickness of each component constituting the laminate of the present invention are not particularly limited, and the material and thickness capable of each component having the above-mentioned characteristics are appropriately selected. The following contents can be applied in common to all the above-described embodiments, except when a specific embodiment is particularly mentioned.
[2-1.第1シート]
 第1シートとしては、透液性であれば特に限定されない。第1シートの形態としては、厚み方向へ連通する空間又は孔を有し且つ前記空間又は孔が吸水性樹脂層を構成する吸水性樹脂を通過させない大きさであるものであれば特に限定されない。第1シートの形態の例としては、不織布、織布及び多孔質シートが挙げられる。これらの形態の中でも、複数回の液体暴露にする吸収速度をより一層向上させる観点及び/又は横漏れ防止性を向上させる観点、又はそれらに加えて逆戻り量を低減する観点から、好ましくは不織布が挙げられる。
[2-1. 1st sheet]
The first sheet is not particularly limited as long as it is liquid permeable. The form of the first sheet is not particularly limited as long as it has a space or a hole communicating with each other in the thickness direction and the space or the hole has a size that does not allow the water-absorbent resin constituting the water-absorbent resin layer to pass through. Examples of the form of the first sheet include non-woven fabrics, woven fabrics and porous sheets. Among these forms, a non-woven fabric is preferable from the viewpoint of further improving the absorption rate for multiple liquid exposures and / or improving the side leakage prevention property, or in addition to reducing the amount of reversion. Can be mentioned.
 不織布の形態としても特に限定されず、例えば、エアスルー不織布、ポイントボンド不織布、スパンボンド不織布、スパンレース不織布、サーマルボンド不織布、メルトブロー不織布、エアレイド不織布等が挙げられる。これらの不織布の中でも、複数回の液体暴露にする吸収速度をより一層向上させる観点及び/又は横漏れ防止性を向上させる観点、又はそれらに加えて逆戻り量を低減する観点から、好ましくはエアレイド不織布が挙げられる。 The form of the non-woven fabric is not particularly limited, and examples thereof include air-through non-woven fabric, point-bonded non-woven fabric, spunbond non-woven fabric, spunlace non-woven fabric, thermal bond non-woven fabric, melt-blow non-woven fabric, and air-laid non-woven fabric. Among these non-woven fabrics, air-laid non-woven fabrics are preferable from the viewpoint of further improving the absorption rate for multiple liquid exposures and / or improving the side leakage prevention property, or in addition to reducing the amount of reversion. Can be mentioned.
 第1シートの材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)等のポリエステル、ナイロン等のポリアミド、レーヨン等の樹脂が挙げられる。これらの樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The material of the first sheet includes polyolefins such as polyethylene (PE) and polypropylene (PP), polyesters such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT) and polyethylene naphthalate (PEN), and polyamides such as nylon. Examples include resins such as rayon. These resins may be used alone or in combination of two or more.
 また、第1シートの形態が不織又は織布である場合の第1シートの材料としては、上記の樹脂からなる繊維(合成樹脂繊維)に加えて、綿、絹、麻、パルプ(セルロース)等の天然繊維も挙げられる。これらの繊維は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 When the form of the first sheet is non-woven or woven cloth, the material of the first sheet includes cotton, silk, linen, and pulp (cellulose) in addition to the above-mentioned resin fibers (synthetic resin fibers). Natural fibers such as are also mentioned. These fibers may be used alone or in combination of two or more.
 上記の材料の中でも、複数回の液体暴露にする吸収速度をより一層向上させる観点及び/又は横漏れ防止性を向上させる観点、又はそれらに加えて逆戻り量を低減する観点から、好ましくは樹脂繊維及び天然繊維との組み合わせが挙げられ、より好ましくはポリオレフィン繊維及びパルプの組み合わせが挙げられる。 Among the above-mentioned materials, resin fibers are preferable from the viewpoint of further improving the absorption rate for multiple liquid exposures and / or improving the side leakage prevention property, or in addition to reducing the amount of reversion. And a combination with natural fibers, more preferably a combination of polyolefin fibers and pulp.
 第1シートの目付としては特に限定されないが、複数回の液体暴露にする吸収速度をより一層向上させる観点、又はそれに加えて逆戻り量を低減する観点から、好ましくは20~60g/m2、より好ましくは30~50g/m2、さらに好ましくは35~45g/m2が挙げられる。 The basis weight of the first sheet is not particularly limited, but is preferably 20 to 60 g / m 2 from the viewpoint of further improving the absorption rate for multiple liquid exposures or, in addition, reducing the amount of reversion. It is preferably 30 to 50 g / m 2 , and more preferably 35 to 45 g / m 2 .
 第1シートの厚みとしては特に限定されないが、複数回の液体暴露にする吸収速度をより一層向上させる観点、又はそれに加えて逆戻り量を低減する観点から、好ましくは0.1~0.8mm、より好ましくは0.2~0.6mm、さらに好ましくは0.3~0.5mm、一層好ましくは0.35~0.45mmが挙げられる。 The thickness of the first sheet is not particularly limited, but is preferably 0.1 to 0.8 mm from the viewpoint of further improving the absorption rate for multiple liquid exposures or, in addition, reducing the amount of reversion. It is more preferably 0.2 to 0.6 mm, further preferably 0.3 to 0.5 mm, and even more preferably 0.35 to 0.45 mm.
[2-2.吸水性樹脂層]
 吸水性樹脂層の材料(つまり吸水性樹脂)としては、水を吸収可能であり、且つ水を吸収することで膨潤する特性を有している樹脂、つまり、一般的に高吸水性樹脂(SAP)と呼ばれるものであれば特に限定されない。
[2-2. Water-absorbent resin layer]
As the material of the water-absorbent resin layer (that is, the water-absorbent resin), a resin that can absorb water and has a property of swelling by absorbing water, that is, generally a highly water-absorbent resin (SAP). ) Is not particularly limited as long as it is called.
 吸水性樹脂の具体例としては、澱粉-アクリロニトリルグラフト共重合体の加水分解物、澱粉-アクリル酸グラフト重合体の中和物、酢酸ビニル-アクリル酸エステル共重合体のケン化物、アクリル酸部分中和物重合体の架橋物、ポリアクリル酸部分中和物等の吸水性樹脂等が挙げられる。これらの吸水性樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Specific examples of the water-absorbent resin include a hydrolyzate of a starch-acrylonitrile graft copolymer, a neutralized product of a starch-acrylic acid graft polymer, a saponified product of a vinyl acetate-acrylic acid ester copolymer, and an acrylic acid moiety. Examples thereof include crosslinked products of Japanese polymers and water-absorbent resins such as partially neutralized polyacrylic acid. These water-absorbent resins may be used alone or in combination of two or more.
 これらの吸水性樹脂の中でも、複数回の液体暴露にする吸収速度をより一層向上させる観点から、好ましくはアクリル酸部分中和物重合体の架橋物が挙げられる。アクリル酸部分中和物重合体の架橋物の中和度としては、例えば50モル%以上、好ましくは60~90モル%、より好ましくは70~80モル%が挙げられる。アクリル酸部分中和物重合体の架橋物を合成する方法としては公知であり、具体的には、逆相懸濁重合法、及び水溶液重合法等が挙げられる。 Among these water-absorbent resins, a crosslinked product of a partially neutralized acrylic acid polymer is preferable from the viewpoint of further improving the absorption rate for multiple liquid exposures. The degree of neutralization of the crosslinked product of the partially neutralized acrylic acid polymer is, for example, 50 mol% or more, preferably 60 to 90 mol%, and more preferably 70 to 80 mol%. A method for synthesizing a crosslinked product of a partially neutralized acrylic acid polymer is known, and specific examples thereof include a reverse phase suspension polymerization method and an aqueous solution polymerization method.
 吸水性樹脂層の厚みとしては特に限定されないが、例えば、積層体の積層面(つまり積層方向LMD10に垂直な面)1m2当たり、例えば25~600g、好ましくは50~450g/m2、より好ましくは100~400g/m2、さらに好ましくは150~200g/m2となる厚みが挙げられる。 The thickness of the water-absorbent resin layer is not particularly limited, but is, for example, 25 to 600 g, preferably 50 to 450 g / m 2 , more preferably 25 to 600 g per 1 m 2 of the laminated surface of the laminated body (that is, the surface perpendicular to the laminating direction LMD 10). Has a thickness of 100 to 400 g / m 2 , more preferably 150 to 200 g / m 2 .
 吸水性樹脂の生理食塩水吸水量としては特に限定されないが、液体をより多く吸収し、かつゲルブロッキング現象を防止する観点から、好ましくは30~75g/g、より好ましくは40~73g/g、さらに好ましくは50~70g/g、一層好ましくは60~70g/g、特に好ましくは65~70g/gが挙げられる。 The amount of physiological saline absorbed by the water-absorbent resin is not particularly limited, but is preferably 30 to 75 g / g, more preferably 40 to 73 g / g, from the viewpoint of absorbing a larger amount of liquid and preventing the gel blocking phenomenon. Further preferably, it is 50 to 70 g / g, more preferably 60 to 70 g / g, and particularly preferably 65 to 70 g / g.
 吸水性樹脂の生理食塩水保水量としては特に限定されないが、数回の液体暴露に対する吸収速度及び/又は横漏れ防止性をより一層高める観点から、好ましくは20~60g/g、より好ましくは25~58g/g、さらに好ましくは30~56g/g、一層好ましくは40~54g/g、より一層好ましくは48~52g/gが挙げられる。 The amount of the water-absorbent resin retained in the physiological saline solution is not particularly limited, but is preferably 20 to 60 g / g, more preferably 25, from the viewpoint of further enhancing the absorption rate and / or the side leakage prevention property against several liquid exposures. Examples thereof include ~ 58 g / g, more preferably 30 to 56 g / g, still more preferably 40 to 54 g / g, and even more preferably 48 to 52 g / g.
 吸水性樹脂の生理食塩水吸水速度としては特に限定されないが、数回の液体暴露に対する吸収速度及び/又は横漏れ防止性をより一層高める観点から、好ましくは25~80秒、より好ましくは30~80秒、さらに好ましくは40~80秒、一層好ましくは44~80秒、より一層好ましくは47~80秒が挙げられる。本発明の積層体は複数回の液体暴露に対する優れた吸水速度向上効果及び横漏れ防止性を奏するため、吸水性樹脂自体の吸水速度が比較的遅い場合であっても、効果的に優れた吸水速度向上効果及び横漏れ防止性を奏することができる。このような観点から、吸水性樹脂の生理食塩水吸水速度の好適な例としては、25~70秒、好ましくは25~60秒、より好ましくは25~50秒も挙げられる。 The physiological saline water absorption rate of the water-absorbent resin is not particularly limited, but is preferably 25 to 80 seconds, more preferably 30 to 30 seconds, from the viewpoint of further improving the absorption rate and / or the side leakage prevention property for several liquid exposures. 80 seconds, more preferably 40 to 80 seconds, still more preferably 44 to 80 seconds, still more preferably 47 to 80 seconds. Since the laminate of the present invention exhibits an excellent water absorption rate improving effect and lateral leakage prevention property against a plurality of liquid exposures, the water absorption resin itself is effectively excellent in water absorption even when the water absorption rate is relatively slow. It is possible to achieve a speed improving effect and a lateral leakage prevention property. From this point of view, preferable examples of the physiological saline water absorption rate of the water-absorbent resin include 25 to 70 seconds, preferably 25 to 60 seconds, and more preferably 25 to 50 seconds.
 吸水性樹脂の中位粒子径としては特に限定されないが、数回の液体暴露に対する吸収速度及び/又は横漏れ防止性をより一層高める観点から、好ましくは100~600μm、より好ましくは200~500μm、さらに好ましくは300~400μm、一層好ましくは350~370μmが挙げられる。 The medium particle size of the water-absorbent resin is not particularly limited, but is preferably 100 to 600 μm, more preferably 200 to 500 μm, from the viewpoint of further enhancing the absorption rate and / or the lateral leakage prevention property against several liquid exposures. More preferably, it is 300 to 400 μm, and further preferably 350 to 370 μm.
[2-3.中間シート]
 中間シートの材料としては、吸液性である限りにおいて特に限定されない。中間シートの形態としては、少なくとも吸水性樹脂層側に連通する空間、孔、及び/又は穴を有しているものであれば特に限定されない。中間シートの例としては、不織布、織布及び多孔質シートが挙げられる。これらの形態の中でも、数回の液体暴露に対する吸収速度及び/又は横漏れ防止性をより一層高める観点から、好ましくは不織布が挙げられる。
[2-3. Intermediate sheet]
The material of the intermediate sheet is not particularly limited as long as it is liquid-absorbent. The form of the intermediate sheet is not particularly limited as long as it has at least a space, a hole, and / or a hole communicating with the water-absorbent resin layer side. Examples of intermediate sheets include non-woven fabrics, woven fabrics and porous sheets. Among these forms, a non-woven fabric is preferable from the viewpoint of further enhancing the absorption rate and / or the side leakage prevention property against several liquid exposures.
 不織布の形態としても特に限定されず、例えば、エアスルー不織布、ポイントボンド不織布、スパンボンド不織布、スパンレース不織布、サーマルボンド不織布、メルトブロー不織布、エアレイド不織布等が挙げられる。これらの不織布の中でも、数回の液体暴露に対する吸収速度及び/又は横漏れ防止性をより一層高める観点から、好ましくはエアスルー不織布が挙げられる。 The form of the non-woven fabric is not particularly limited, and examples thereof include air-through non-woven fabric, point-bonded non-woven fabric, spunbond non-woven fabric, spunlace non-woven fabric, thermal bond non-woven fabric, melt-blow non-woven fabric, and air-laid non-woven fabric. Among these non-woven fabrics, an air-through non-woven fabric is preferable from the viewpoint of further enhancing the absorption rate and / or the lateral leakage prevention property against several liquid exposures.
 中間シートの目付としては特に限定されないが、数回の液体暴露に対する吸収速度及び/又は横漏れ防止性をより一層高める観点から、その下限値は、好ましくは20g/m2以上、より好ましくは30g/m2以上、さらに好ましくは40g/m2以上、一層好ましくは43g/m2以上であり、その上限値は、好ましくは60g/m2以下、より好ましくは55g/m2以下、さらに好ましくは50g/m2以下、一層好ましくは47g/m2以下が挙げられる。 The texture of the intermediate sheet is not particularly limited, but the lower limit is preferably 20 g / m 2 or more, more preferably 30 g, from the viewpoint of further enhancing the absorption rate and / or the lateral leakage prevention property against several liquid exposures. / M 2 or more, more preferably 40 g / m 2 or more, still more preferably 43 g / m 2 or more, and the upper limit thereof is preferably 60 g / m 2 or less, more preferably 55 g / m 2 or less, still more preferably. 50 g / m 2 or less, more preferably 47 g / m 2 or less.
 中間シートの厚みtとしては特に限定されず、例えば0.7mm以上が挙げられる。数回の液体暴露に対する吸収速度及び/又は横漏れ防止性をより一層高める観点から、当該厚みtとしては、好ましくは1.5mm以上、より好ましくは2mm以上、さらに好ましくは2.3mm以上が挙げられる。中間シートの厚みt範囲の上限としては特に限定されないが、例えば4mm以下、好ましくは3mm以下、より好ましくは2.8mm以下が挙げられる。なお、中間シートの厚みtは、第2実施形態~第4実施形態のようにA領域が凸部を成しB領域が凹部を成している場合にあっては、領域Aに相当する部分の厚みをいう。 The thickness t of the intermediate sheet is not particularly limited, and for example, 0.7 mm or more can be mentioned. From the viewpoint of further enhancing the absorption rate and / or the lateral leakage prevention property against several liquid exposures, the thickness t is preferably 1.5 mm or more, more preferably 2 mm or more, still more preferably 2.3 mm or more. Be done. The upper limit of the thickness t range of the intermediate sheet is not particularly limited, and examples thereof include 4 mm or less, preferably 3 mm or less, and more preferably 2.8 mm or less. The thickness t of the intermediate sheet is a portion corresponding to the region A when the region A has a convex portion and the region B has a concave portion as in the second to fourth embodiments. The thickness of.
[2-4.他の吸水性樹脂層]
 他の吸水性樹脂層の材料としては特に限定されないが、上記の吸水性樹脂層の材料として挙げた吸水性樹脂から選択することができる。他の吸水性樹脂層に用いられる吸水性樹脂は、上記の吸水性樹脂層に用いられる吸水性樹脂と同じであってもよいし、異なっていてもよい。
[2-4. Other water-absorbent resin layer]
The material of the other water-absorbent resin layer is not particularly limited, but can be selected from the water-absorbent resins listed as the material of the above-mentioned water-absorbent resin layer. The water-absorbent resin used for the other water-absorbent resin layer may be the same as or different from the water-absorbent resin used for the above-mentioned water-absorbent resin layer.
 他の吸水性樹脂層の厚みとしては特に限定されないが、上記の吸水性樹脂層の厚みとして挙げた値から選択することができる。他の吸水性樹脂層の厚みと上記の吸水性樹脂層の厚みとは、同じであってもよいし、異なっていてもよい。 The thickness of the other water-absorbent resin layer is not particularly limited, but can be selected from the values listed as the thickness of the water-absorbent resin layer described above. The thickness of the other water-absorbent resin layer and the thickness of the above-mentioned water-absorbent resin layer may be the same or different.
[2-3.第2シート]
 第2シートとしては、透液性シート及び不透液性シートが挙げられる。透液性シートである場合の第2シートとしては、第1シートとして用いられるものから選択されるシート、及び、第1シートにおける所定の高濡れ性領域及び低濡れ性領域を備えないことを除いて第1シートと同じ形態及び材料のシートが挙げられる。
[2-3. 2nd sheet]
Examples of the second sheet include a liquid-permeable sheet and an impermeable sheet. The second sheet in the case of a liquid-permeable sheet is a sheet selected from those used as the first sheet, and does not have a predetermined high-wetting area and low-wetting area in the first sheet. A sheet having the same form and material as the first sheet can be mentioned.
 第2シートが第1シートとして用いられるものから選択されるシートである場合、第1シートと第2シートとは、同じであってもよいし異なっていてもよい。 When the second sheet is a sheet selected from those used as the first sheet, the first sheet and the second sheet may be the same or different.
[2-4.接着剤層]
 接着剤層に用いる接着性樹脂組成物としては、吸水性樹脂と中間シート及び/又は第2シートを接着可能である限りにおいて限定されず、当業者が適宜選択することができる。本発明の積層体は水系の液体を吸収するために用いられるため、好ましい接着剤組成物としては水系溶剤に対して安定なホットメルト接着剤組成物が挙げられる。
[2-4. Adhesive layer]
The adhesive resin composition used for the adhesive layer is not limited as long as the water-absorbent resin and the intermediate sheet and / or the second sheet can be adhered to each other, and can be appropriately selected by those skilled in the art. Since the laminate of the present invention is used for absorbing an aqueous liquid, a preferred adhesive composition includes a hot melt adhesive composition that is stable against an aqueous solvent.
[3.積層体の作製]
 本発明の積層体の作製方法としては特に限定されないが、例えば以下の方法で製造することができる。
[3. Preparation of laminate]
The method for producing the laminate of the present invention is not particularly limited, but for example, it can be produced by the following method.
 例えば、中間シートの領域A及び領域Bが設けられている表面に吸水性樹脂層と第1シートとを積層した積層材料を作製し、さらに、当該積層材料の中間シート側に他の吸水性樹脂層と第2シートとを積層し、全層を一体化することで、積層体を作製することができる。 For example, a laminated material in which a water-absorbent resin layer and a first sheet are laminated on the surface of the intermediate sheet provided with regions A and B is produced, and another water-absorbent resin is further placed on the intermediate sheet side of the laminated material. A laminated body can be produced by laminating the layer and the second sheet and integrating all the layers.
 また、吸水性樹脂層と中間シートとの間及び吸水性樹脂層と第2シートとの間に接着剤層が介在している場合にあっては、中間シートの領域A及び領域Bが設けられている表面に接着剤層、吸水性樹脂層及び第1シートをこの順となるように積層した積層材料を作製し、さらに、当該積層材料の中間シート側に、他の吸水性樹脂層を積層し、さらに、表面に接着剤層を積層した第2シートを、接着層が他の吸水性樹脂層に対向するように積層し、全層を一体化することで、積層体を作製することができる。 Further, when the adhesive layer is interposed between the water-absorbent resin layer and the intermediate sheet and between the water-absorbent resin layer and the second sheet, the regions A and B of the intermediate sheet are provided. A laminated material in which an adhesive layer, a water-absorbent resin layer, and a first sheet are laminated in this order is produced on the surface of the laminated material, and another water-absorbent resin layer is laminated on the intermediate sheet side of the laminated material. Further, the second sheet in which the adhesive layer is laminated on the surface is laminated so that the adhesive layer faces the other water-absorbent resin layer, and all the layers are integrated to produce a laminated body. can.
 第1シート及び第2シートとしては同形同大のものを用い、中間シートとしては第1シート及び第2シートよりも一回り小さい大きさのものを用いることができ、この場合、すべての層を積層した後、第1シート及び第2シートの周縁を一括的に接合(例えば加熱圧着等)することによって全層を一体化することができる。 As the first sheet and the second sheet, those having the same shape and the same size can be used, and as the intermediate sheet, ones one size smaller than the first sheet and the second sheet can be used. In this case, all layers can be used. After laminating, all the layers can be integrated by collectively joining the peripheral edges of the first sheet and the second sheet (for example, heat crimping or the like).
[4.積層体の用途]
 上記の本発明の積層体は、複数回の液体暴露に対しても優れた吸収速度及び横漏れ防止性を示す吸収体として機能する。したがって、上記本発明の積層体は吸収性物品に有用であるため、本発明は当該積層体を含む吸収性物品も提供する。
[4. Use of laminated body]
The above-mentioned laminate of the present invention functions as an absorber showing excellent absorption rate and lateral leakage prevention property even when exposed to a plurality of liquids. Therefore, since the laminate of the present invention is useful for an absorbent article, the present invention also provides an absorbent article containing the laminate.
 吸収性物品としては特に限定されないが、好ましくは液体を複数回吸収する必要がある吸収性物品が挙げられる。液体としては、水を含む液体であればよい。吸収性物品のより具体的な例としては、紙おむつ、尿パッド、生理用ナプキン、ペットシート、食品用ドリップシート、電力ケーブルの止水材等が挙げられる。 The absorbent article is not particularly limited, but preferably includes an absorbent article that needs to absorb the liquid a plurality of times. The liquid may be any liquid containing water. More specific examples of absorbent articles include disposable diapers, urine pads, menstrual napkins, pet sheets, food drip sheets, water blocking materials for power cables, and the like.
 以下に実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明はこれら実施例に限定されるものではない。 The present invention will be described in detail below with reference to Examples and Comparative Examples. However, the present invention is not limited to these examples.
(1)吸水性樹脂粒子(高吸水性樹脂;SAP)の合成
(1-1)製造例1:SAPaの合成
<第1段目の重合反応>
 還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径5cmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン293gをとり、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加し、攪拌しつつ80℃まで昇温して分散剤を溶解した後、50℃まで冷却した。
(1) Synthesis of water-absorbent resin particles (highly water-absorbent resin; SAP) (1-1) Production Example 1: Synthesis of SAPa <polymerization reaction in the first stage>
A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and a capacity of 2 L, equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having four inclined paddle blades with a blade diameter of 5 cm in two stages as a stirrer. Got ready. To this flask, take 293 g of n-heptane as a hydrocarbon dispersion medium, add 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals Co., Ltd., High Wax 1105A) as a polymer-based dispersant, and stir. The temperature was raised to 80 ° C. to dissolve the dispersant, and then the temperature was cooled to 50 ° C.
 内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)をとり、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HECAW-15F)、水溶性ラジカル重合開始剤として過硫酸カリウム0.0736g(0.272ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)を加えて溶解し、第1段目の単量体水溶液を調製した。 In a beaker with an internal volume of 300 mL, take 92.0 g (1.03 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer and cool it from the outside to 20.9 mass%. After adding 147.7 g of an aqueous sodium hydroxide solution to neutralize 75 mol%, 0.092 g of hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HECAW-15F) as a thickener, as a water-soluble radical polymerization initiator. 0.0736 g (0.272 mmol) of potassium persulfate and 0.010 g (0.057 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added and dissolved to prepare a first-stage monomer aqueous solution.
 そして、上記にて調製した第1段目の単量体水溶液をセパラブルフラスコに添加して、10分間攪拌した後、n-ヘプタン6.62gに界面活性剤としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.736gを加熱溶解した界面活性剤溶液を、さらに添加して、撹拌機の回転数を500rpmとして攪拌しながら系内を窒素で十分に置換した後、フラスコを70℃の水浴に浸漬して昇温し、重合を60分間行うことにより、第1段目の重合スラリー液を得た。 Then, the first-stage monomer aqueous solution prepared above was added to a separable flask, and after stirring for 10 minutes, 6.62 g of n-heptane was added to HLB3 sucrose stearate as a surfactant (steal acid ester of HLB3). Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370) Add a surfactant solution obtained by heating and dissolving 0.736 g, and stir the system with nitrogen at a stirring speed of 500 rpm. After the substitution, the flask was immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry solution.
<第2段目の重合反応>
 内容積500mLのビーカーに水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液128.8g(1.44モル)をとり、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、水溶性ラジカル重合開始剤として過硫酸カリウム0.090g(0.333ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)を加えて溶解し、第2段目の単量体水溶液を調製した。
<Second stage polymerization reaction>
In a beaker with an internal volume of 500 mL, take 128.8 g (1.44 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer, and while cooling from the outside, 27 mass% sodium hydroxide. After 159.0 g of an aqueous solution was added dropwise to neutralize 75 mol%, 0.090 g (0.333 mmol) of potassium persulfate was used as a water-soluble radical polymerization initiator, and ethylene glycol diglycidyl ether was used as an internal cross-linking agent. 0116 g (0.067 mmol) was added and dissolved to prepare a second-stage monomer aqueous solution.
 撹拌機の回転数を1000rpmとして撹拌しながら、上記のセパラブルフラスコ系内を25℃に冷却した後、上記第2段目の単量体水溶液の全量を、第1段目の重合スラリー液に添加して、系内を窒素で30分間置換した後、再度、フラスコを70℃の水浴に浸漬して昇温し、重合反応を60分間行って、含水ゲル状重合体を得た。 After cooling the inside of the separable flask system to 25 ° C. while stirring at a stirring speed of 1000 rpm, the entire amount of the monomer aqueous solution in the second stage is added to the polymerized slurry liquid in the first stage. After the addition, the inside of the system was replaced with nitrogen for 30 minutes, the flask was again immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes to obtain a hydrogel-like polymer.
 重合後、得られた含水ゲル状重合体に、45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.589gを攪拌下で添加した。その後、125℃に設定した油浴にフラスコを浸漬し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら、257.2gの水を系外へ抜き出した。その後、フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加し、83℃で2時間保持した。 After the polymerization, 0.589 g of a 45% by mass diethylenetriamine-5 sodium acetate 5 sodium aqueous solution was added to the obtained hydrogel polymer under stirring. Then, the flask was immersed in an oil bath set at 125 ° C., and 257.2 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.42 g (0.507 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the mixture was kept at 83 ° C. for 2 hours.
 その後、n-ヘプタンと水を125℃の油浴で加熱して蒸発させて乾燥させることによって、重合体粒子の乾燥品を得た。この重合体粒子を目開き850μmの篩に通過させ、重合体粒子の質量に対して0.2質量%の非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)を重合体粒子と混合し、非晶質シリカを含むSAPaを231.2g得た。 Then, n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dried to obtain a dried product of polymer particles. The polymer particles are passed through a sieve having an opening of 850 μm, and 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) with respect to the mass of the polymer particles is mixed with the polymer particles. , 231.2 g of SAPa containing amorphous silica was obtained.
(1-2)製造例2:SAPbの合成
 製造例1の第2段目の重合後の含水ゲル状重合体において、共沸蒸留により257.2gの水を系外へ抜き出したこと以外は、製造例1と同様の操作を行い、SAPbを231.2g得た。
(1-2) Production Example 2: Synthesis of SAPb In the water-containing gel-like polymer after the second stage polymerization of Production Example 1, 257.2 g of water was extracted from the system by azeotropic distillation. The same operation as in Production Example 1 was carried out to obtain 231.2 g of SAPb.
(1-3)製造例3:SAPcの合成
<第1段目の重合反応>
 還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径5cmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン293gをとり、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加し、攪拌しつつ80℃まで昇温して分散剤を溶解した後、50℃まで冷却した。
(1-3) Production Example 3: Synthesis of SAPc <polymerization reaction in the first stage>
A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and a capacity of 2 L, equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having four inclined paddle blades with a blade diameter of 5 cm in two stages as a stirrer. Got ready. To this flask, take 293 g of n-heptane as a hydrocarbon dispersion medium, add 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals Co., Ltd., High Wax 1105A) as a polymer-based dispersant, and stir. The temperature was raised to 80 ° C. to dissolve the dispersant, and then the temperature was cooled to 50 ° C.
 内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)をとり、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HECAW-15F)、水溶性ラジカル重合開始剤として過硫酸カリウム0.0736g(0.272ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)を加えて溶解し、第1段目の単量体水溶液を調製した。 In a beaker with an internal volume of 300 mL, take 92.0 g (1.03 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer and cool it from the outside to 20.9 mass%. After adding 147.7 g of an aqueous sodium hydroxide solution to neutralize 75 mol%, 0.092 g of hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HECAW-15F) as a thickener, as a water-soluble radical polymerization initiator. 0.0736 g (0.272 mmol) of potassium persulfate and 0.010 g (0.057 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added and dissolved to prepare a first-stage monomer aqueous solution.
 そして、上記にて調製した第1段目の単量体水溶液をセパラブルフラスコに添加して、10分間攪拌した後、n-ヘプタン6.62gに界面活性剤としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.736gを加熱溶解した界面活性剤溶液を、さらに添加して、撹拌機の回転数を550rpmとして攪拌しながら系内を窒素で十分に置換した後、フラスコを70℃の水浴に浸漬して昇温し、重合を60分間行うことにより、第1段目の重合スラリー液を得た。 Then, the first-stage monomer aqueous solution prepared above was added to a separable flask, and after stirring for 10 minutes, 6.62 g of n-heptane was added to HLB3 sucrose stearate as a surfactant (steal acid ester of HLB3). Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370) Add 0.736 g of a surfactant solution by heating and dissolve it, and set the rotation speed of the stirrer to 550 rpm to sufficiently stir the inside of the system with nitrogen. After the substitution, the flask was immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry solution.
<第2段目の重合反応>
 内容積500mLのビーカーに水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液128.8g(1.44モル)をとり、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、水溶性ラジカル重合開始剤として過硫酸カリウム0.090g(0.333ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)を加えて溶解し、第2段目の単量体水溶液を調製した。
<Second stage polymerization reaction>
In a beaker with an internal volume of 500 mL, take 128.8 g (1.44 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer, and while cooling from the outside, 27 mass% sodium hydroxide. After 159.0 g of an aqueous solution was added dropwise to neutralize 75 mol%, 0.090 g (0.333 mmol) of potassium persulfate was used as a water-soluble radical polymerization initiator, and ethylene glycol diglycidyl ether was used as an internal cross-linking agent. 0116 g (0.067 mmol) was added and dissolved to prepare a second-stage monomer aqueous solution.
 撹拌機の回転数を1000rpmとして撹拌しながら、上記のセパラブルフラスコ系内を25℃に冷却した後、上記第2段目の単量体水溶液の全量を、第1段目の重合スラリー液に添加して、系内を窒素で30分間置換した後、再度、フラスコを70℃の水浴に浸漬して昇温し、重合反応を60分間行って、含水ゲル状重合体を得た。 After cooling the inside of the separable flask system to 25 ° C. while stirring at a stirring speed of 1000 rpm, the entire amount of the monomer aqueous solution in the second stage is added to the polymerized slurry liquid in the first stage. After the addition, the inside of the system was replaced with nitrogen for 30 minutes, the flask was again immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes to obtain a hydrogel-like polymer.
 重合後、得られた含水ゲル状重合体に、45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.265gを攪拌下で添加した。その後、125℃に設定した油浴にフラスコを浸漬し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら、271.4gの水を系外へ抜き出した。その後、フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液6.40g(0.735ミリモル)を添加し、83℃で2時間保持した。 After the polymerization, 0.265 g of a 45% by mass diethylenetriamine-5 sodium acetate 5 sodium aqueous solution was added to the obtained hydrogel polymer under stirring. Then, the flask was immersed in an oil bath set at 125 ° C., and 271.4 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 6.40 g (0.735 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the mixture was kept at 83 ° C. for 2 hours.
 その後、n-ヘプタンと水を125℃の油浴で加熱して蒸発させて乾燥させることによって、重合体粒子の乾燥品を得た。この重合体粒子を目開き850μmの篩に通過させ、重合体粒子の質量に対して0.5質量%の非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)を重合体粒子と混合し、非晶質シリカを含むSAPcを230.6g得た。 Then, n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dried to obtain a dried product of polymer particles. The polymer particles are passed through a sieve having an opening of 850 μm, and 0.5% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) with respect to the mass of the polymer particles is mixed with the polymer particles. , 230.6 g of SAPc containing amorphous silica was obtained.
(1-4)製造例4:SAPdの合成
<第1段目の重合反応>
 還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径5cmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン293gをとり、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加し、攪拌しつつ80℃まで昇温して分散剤を溶解した後、50℃まで冷却した。
(1-4) Production Example 4: Synthesis of SAPd <First-stage polymerization reaction>
A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and a capacity of 2 L, equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having four inclined paddle blades with a blade diameter of 5 cm in two stages as a stirrer. Got ready. To this flask, take 293 g of n-heptane as a hydrocarbon dispersion medium, add 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals Co., Ltd., High Wax 1105A) as a polymer-based dispersant, and stir. The temperature was raised to 80 ° C. to dissolve the dispersant, and then the temperature was cooled to 50 ° C.
 内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)をとり、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HECAW-15F)、水溶性ラジカル重合開始剤として過硫酸カリウム0.0736g(0.272ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)を加えて溶解し、第1段目の単量体水溶液を調製した。 In a beaker with an internal volume of 300 mL, take 92.0 g (1.03 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer and cool it from the outside to 20.9 mass%. After adding 147.7 g of an aqueous sodium hydroxide solution to neutralize 75 mol%, 0.092 g of hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HECAW-15F) as a thickener, as a water-soluble radical polymerization initiator. 0.0736 g (0.272 mmol) of potassium persulfate and 0.010 g (0.057 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added and dissolved to prepare a first-stage monomer aqueous solution.
 そして、上記にて調製した第1段目の単量体水溶液をセパラブルフラスコに添加して、10分間攪拌した後、n-ヘプタン6.62gに界面活性剤としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.736gを加熱溶解した界面活性剤溶液を、さらに添加して、撹拌機の回転数を550rpmとして攪拌しながら系内を窒素で十分に置換した後、フラスコを70℃の水浴に浸漬して昇温し、重合を60分間行うことにより、第1段目の重合スラリー液を得た。 Then, the first-stage monomer aqueous solution prepared above was added to a separable flask, and after stirring for 10 minutes, 6.62 g of n-heptane was added to HLB3 sucrose stearate as a surfactant (steal acid ester of HLB3). Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370) Add 0.736 g of a surfactant solution by heating and dissolve it, and set the rotation speed of the stirrer to 550 rpm to sufficiently stir the inside of the system with nitrogen. After the substitution, the flask was immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry solution.
<第2段目の重合反応>
 内容積500mLのビーカーに水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液128.8g(1.44モル)をとり、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、水溶性ラジカル重合開始剤として過硫酸カリウム0.103g(0.381ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)を加えて溶解し、第2段目の単量体水溶液を調製した。
<Second stage polymerization reaction>
In a beaker with an internal volume of 500 mL, take 128.8 g (1.44 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer, and while cooling from the outside, 27 mass% sodium hydroxide. After 159.0 g of an aqueous solution was added dropwise to neutralize 75 mol%, 0.103 g (0.381 mmol) of potassium persulfate was used as a water-soluble radical polymerization initiator, and ethylene glycol diglycidyl ether was used as an internal cross-linking agent. 0116 g (0.067 mmol) was added and dissolved to prepare a second-stage monomer aqueous solution.
 撹拌機の回転数を1000rpmとして撹拌しながら、上記のセパラブルフラスコ系内を25℃に冷却した後、上記第2段目の単量体水溶液の全量を、第1段目の重合スラリー液に添加して、系内を窒素で30分間置換した後、再度、フラスコを70℃の水浴に浸漬して昇温し、重合反応を60分間行って、含水ゲル状重合体を得た。 After cooling the inside of the separable flask system to 25 ° C. while stirring at a stirring speed of 1000 rpm, the entire amount of the monomer aqueous solution in the second stage is added to the polymerized slurry liquid in the first stage. After the addition, the inside of the system was replaced with nitrogen for 30 minutes, the flask was again immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes to obtain a hydrogel-like polymer.
 重合後、得られた含水ゲル状重合体に、45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.589gを攪拌下で添加した。その後、125℃に設定した油浴にフラスコを浸漬し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら、237.7gの水を系外へ抜き出した。その後、フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加し、83℃で2時間保持した。 After the polymerization, 0.589 g of a 45% by mass diethylenetriamine-5 sodium acetate 5 sodium aqueous solution was added to the obtained hydrogel polymer under stirring. Then, the flask was immersed in an oil bath set at 125 ° C., and 237.7 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.42 g (0.507 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the mixture was kept at 83 ° C. for 2 hours.
 その後、n-ヘプタンと水を125℃の油浴で加熱して蒸発させて乾燥させることによって、重合体粒子の乾燥品を得た。この重合体粒子を目開き850μmの篩に通過させ、重合体粒子の質量に対して0.5質量%の非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)を重合体粒子と混合し、非晶質シリカを含むSAPdを226.0g得た。 Then, n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dried to obtain a dried product of polymer particles. The polymer particles are passed through a sieve having an opening of 850 μm, and 0.5% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) with respect to the mass of the polymer particles is mixed with the polymer particles. , 226.0 g of SAPd containing amorphous silica was obtained.
(1-5)製造例5:SAPeの合成
<第1段目の重合反応>
 還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径5cmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン293gをとり、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加し、攪拌しつつ80℃まで昇温して分散剤を溶解した後、50℃まで冷却した。
(1-5) Production Example 5: Synthesis of SAP <First-stage polymerization reaction>
A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and a capacity of 2 L, equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having four inclined paddle blades with a blade diameter of 5 cm in two stages as a stirrer. Got ready. To this flask, take 293 g of n-heptane as a hydrocarbon dispersion medium, add 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals Co., Ltd., High Wax 1105A) as a polymer-based dispersant, and stir. The temperature was raised to 80 ° C. to dissolve the dispersant, and then the temperature was cooled to 50 ° C.
 内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)をとり、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HECAW-15F)、水溶性ラジカル重合開始剤として2,2’-アゾビス(2-アミジノプロパン)2塩酸塩を0.092g(0.339ミリモル)、過硫酸カリウムを0.018g(0.067ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0046g(0.026ミリモル)を加えて溶解し、第1段目の単量体水溶液を調製した。 In a beaker with an internal volume of 300 mL, take 92.0 g (1.03 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer and cool it from the outside to 20.9 mass%. After adding 147.7 g of an aqueous sodium hydroxide solution to neutralize 75 mol%, 0.092 g of hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HECAW-15F) as a thickener, as a water-soluble radical polymerization initiator. 0.092 g (0.339 mmol) of 2,2'-azobis (2-amidinopropane) dihydrochloride, 0.018 g (0.067 mmol) of potassium persulfate, ethylene glycol diglycidyl ether 0 as an internal cross-linking agent .0046 g (0.026 mmol) was added and dissolved to prepare a first-stage monomer aqueous solution.
 そして、上記にて調製した第1段目の単量体水溶液をセパラブルフラスコに添加して、10分間攪拌した後、n-ヘプタン6.62gに界面活性剤としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.736gを加熱溶解した界面活性剤溶液を、さらに添加して、撹拌機の回転数を500rpmとして攪拌しながら系内を窒素で十分に置換した後、フラスコを70℃の水浴に浸漬して昇温し、重合を60分間行うことにより、第1段目の重合スラリー液を得た。 Then, the first-stage monomer aqueous solution prepared above was added to a separable flask, and after stirring for 10 minutes, 6.62 g of n-heptane was added to HLB3 sucrose stearate as a surfactant (steal acid ester of HLB3). Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370) Add a surfactant solution obtained by heating and dissolving 0.736 g, and stir the system with nitrogen at a stirring speed of 500 rpm. After the substitution, the flask was immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry solution.
<第2段目の重合反応>
 内容積500mLのビーカーに水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液128.8g(1.44モル)をとり、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、水溶性ラジカル重合開始剤として2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.129g(0.476ミリモル)及び過硫酸カリウム0.026g(0.096ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)を加えて溶解し、第2段目の単量体水溶液を調製した。
<Second stage polymerization reaction>
In a beaker with an internal volume of 500 mL, take 128.8 g (1.44 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer, and while cooling from the outside, 27 mass% sodium hydroxide. After adding 159.0 g of the aqueous solution to neutralize 75 mol%, 0.129 g (0.476 mmol) of 2,2'-azobis (2-amidinopropane) dihydrochloride as a water-soluble radical polymerization initiator. And 0.026 g (0.096 mmol) of potassium persulfate and 0.0116 g (0.067 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added and dissolved to prepare a second-stage monomer aqueous solution. ..
 撹拌機の回転数を1000rpmとして撹拌しながら、上記のセパラブルフラスコ系内を25℃に冷却した後、上記第2段目の単量体水溶液の全量を、第1段目の重合スラリー液に添加して、系内を窒素で30分間置換した後、再度、フラスコを70℃の水浴に浸漬して昇温し、重合反応を60分間行って、含水ゲル状重合体を得た。 After cooling the inside of the separable flask system to 25 ° C. while stirring at a stirring speed of 1000 rpm, the entire amount of the monomer aqueous solution in the second stage is added to the polymerized slurry liquid in the first stage. After the addition, the inside of the system was replaced with nitrogen for 30 minutes, the flask was again immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes to obtain a hydrogel-like polymer.
 重合後、得られた含水ゲル状重合体に、45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.589gを攪拌下で添加した。その後、125℃に設定した油浴にフラスコを浸漬し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら、201.4gの水を系外へ抜き出した。その後、フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加し、83℃で2時間保持した。 After the polymerization, 0.589 g of a 45% by mass diethylenetriamine-5 sodium acetate 5 sodium aqueous solution was added to the obtained hydrogel polymer under stirring. Then, the flask was immersed in an oil bath set at 125 ° C., and 201.4 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.42 g (0.507 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the mixture was kept at 83 ° C. for 2 hours.
 その後、n-ヘプタンと水を125℃の油浴で加熱して蒸発させて乾燥させることによって、重合体粒子の乾燥品を得た。この重合体粒子を目開き850μmの篩に通過させ、重合体粒子の質量に対して0.2質量%の非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)を重合体粒子と混合し、非晶質シリカを含むSAPeを231.2g得た。 Then, n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dried to obtain a dried product of polymer particles. The polymer particles are passed through a sieve having an opening of 850 μm, and 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) with respect to the mass of the polymer particles is mixed with the polymer particles. , 231.2 g of SAPe containing amorphous silica was obtained.
(1-6)製造例6:SAPfの合成
<第1段目の重合反応>
 還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径5cmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン293gをとり、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加し、攪拌しつつ80℃まで昇温して分散剤を溶解した後、50℃まで冷却した。
(1-6) Production Example 6: Synthesis of SAPf <polymerization reaction in the first stage>
A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and a capacity of 2 L, equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction pipe, and a stirring blade having four inclined paddle blades with a blade diameter of 5 cm in two stages as a stirrer. Got ready. To this flask, take 293 g of n-heptane as a hydrocarbon dispersion medium, add 0.736 g of a maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals Co., Ltd., High Wax 1105A) as a polymer-based dispersant, and stir. The temperature was raised to 80 ° C. to dissolve the dispersant, and then the temperature was cooled to 50 ° C.
 内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)をとり、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HECAW-15F)、水溶性ラジカル重合開始剤として2,2’-アゾビス(2-アミジノプロパン)2塩酸塩を0.092g(0.339ミリモル)、過硫酸カリウムを0.018g(0.067ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0046g(0.026ミリモル)を加えて溶解し、第1段目の単量体水溶液を調製した。 In a beaker with an internal volume of 300 mL, take 92.0 g (1.03 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer and cool it from the outside to 20.9 mass%. After adding 147.7 g of an aqueous sodium hydroxide solution to neutralize 75 mol%, 0.092 g of hydroxylethyl cellulose (Sumitomo Seika Co., Ltd., HECAW-15F) as a thickener, as a water-soluble radical polymerization initiator. 0.092 g (0.339 mmol) of 2,2'-azobis (2-amidinopropane) dihydrochloride, 0.018 g (0.067 mmol) of potassium persulfate, ethylene glycol diglycidyl ether 0 as an internal cross-linking agent .0046 g (0.026 mmol) was added and dissolved to prepare a first-stage monomer aqueous solution.
 そして、上記にて調製した第1段目の単量体水溶液をセパラブルフラスコに添加して、10分間攪拌した後、n-ヘプタン6.62gに界面活性剤としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.736gを加熱溶解した界面活性剤溶液を、さらに添加して、撹拌機の回転数を500rpmとして攪拌しながら系内を窒素で十分に置換した後、フラスコを70℃の水浴に浸漬して昇温し、重合を60分間行うことにより、第1段目の重合スラリー液を得た。 Then, the first-stage monomer aqueous solution prepared above was added to a separable flask, and after stirring for 10 minutes, 6.62 g of n-heptane was added to HLB3 sucrose stearate as a surfactant (steal acid ester of HLB3). Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370) Add a surfactant solution obtained by heating and dissolving 0.736 g, and stir the system with nitrogen at a stirring speed of 500 rpm. After the substitution, the flask was immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry solution.
<第2段目の重合反応>
 内容積500mLのビーカーに水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液128.8g(1.44モル)をとり、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、水溶性ラジカル重合開始剤として2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.129g(0.476ミリモル)及び過硫酸カリウム0.026g(0.096ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0116g(0.067ミリモル)を加えて溶解し、第2段目の単量体水溶液を調製した。
<Second stage polymerization reaction>
In a beaker with an internal volume of 500 mL, take 128.8 g (1.44 mol) of an 80.5 mass% acrylic acid aqueous solution as a water-soluble ethylenically unsaturated monomer, and while cooling from the outside, 27 mass% sodium hydroxide. After adding 159.0 g of the aqueous solution to neutralize 75 mol%, 0.129 g (0.476 mmol) of 2,2'-azobis (2-amidinopropane) dihydrochloride as a water-soluble radical polymerization initiator. And 0.026 g (0.096 mmol) of potassium persulfate and 0.0116 g (0.067 mmol) of ethylene glycol diglycidyl ether as an internal cross-linking agent were added and dissolved to prepare a second-stage monomer aqueous solution. ..
 撹拌機の回転数を1000rpmとして撹拌しながら、上記のセパラブルフラスコ系内を25℃に冷却した後、上記第2段目の単量体水溶液の全量を、第1段目の重合スラリー液に添加して、系内を窒素で30分間置換した後、再度、フラスコを70℃の水浴に浸漬して昇温し、重合反応を60分間行って、含水ゲル状重合体を得た。 After cooling the inside of the separable flask system to 25 ° C. while stirring at a stirring speed of 1000 rpm, the entire amount of the monomer aqueous solution in the second stage is added to the polymerized slurry liquid in the first stage. After the addition, the inside of the system was replaced with nitrogen for 30 minutes, the flask was again immersed in a water bath at 70 ° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes to obtain a hydrogel-like polymer.
 重合後、得られた含水ゲル状重合体に、45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.589gを攪拌下で添加した。その後、125℃に設定した油浴にフラスコを浸漬し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら、234.2gの水を系外へ抜き出した。その後、フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加し、83℃で2時間保持した。 After the polymerization, 0.589 g of a 45% by mass diethylenetriamine-5 sodium acetate 5 sodium aqueous solution was added to the obtained hydrogel polymer under stirring. Then, the flask was immersed in an oil bath set at 125 ° C., and 234.2 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Then, 4.42 g (0.507 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added to the flask as a surface cross-linking agent, and the mixture was kept at 83 ° C. for 2 hours.
 その後、n-ヘプタンと水を125℃の油浴で加熱して蒸発させて乾燥させることによって、重合体粒子の乾燥品を得た。この重合体粒子を目開き850μmの篩に通過させ、重合体粒子の質量に対して0.2質量%の非晶質シリカ(オリエンタルシリカズコーポレーション、トクシールNP-S)を重合体粒子と混合し、非晶質シリカを含むSAPfを231.2g得た。 Then, n-heptane and water were heated in an oil bath at 125 ° C. to evaporate and dried to obtain a dried product of polymer particles. The polymer particles are passed through a sieve having an opening of 850 μm, and 0.2% by mass of amorphous silica (Oriental Silicas Corporation, Toxile NP-S) with respect to the mass of the polymer particles is mixed with the polymer particles. , 231.2 g of SAP f containing amorphous silica was obtained.
(2)吸水性樹脂粒子の測定
(2-1)吸水量
 吸水量の測定は、25℃±1℃に調節された室内で行った。500mL容のビーカーに、生理食塩水500gを量りとり、スターラーバー(8mmφ×30mmのリング無し)を投入した。マグネチックスターラー上にビーカーを置いて600r/minで撹拌しながら、吸水性樹脂粒子2.0gを、ママコが発生しないように分散させた。その状態で60分間放置し、吸水性樹脂粒子を十分に膨潤させた。続いてビーカー中の内容物を、目開き75μm標準篩(質量Ma[g])を用いてろ過した。篩を水平に対して約30度の傾斜角となるように傾けた状態で30分間放置することにより、篩上の膨潤ゲルから余剰の水分をろ別した。その後、篩と篩上の膨潤ゲルとの合計質量Mb[g]を測定し、下記式から吸水性樹脂粒子の生理食塩水の吸水量を算出した。結果を表1及び表2に示す。
       吸水量[g/g]=(Mb-Ma)/2.0
(2) Measurement of water-absorbent resin particles (2-1) Water absorption amount The water absorption amount was measured in a room adjusted to 25 ° C. ± 1 ° C. 500 g of physiological saline was weighed in a 500 mL beaker, and a stirrer bar (8 mmφ × 30 mm without ring) was put into the beaker. A beaker was placed on a magnetic stirrer and stirred at 600 r / min to disperse 2.0 g of water-absorbent resin particles so as not to generate mamaco. It was left in that state for 60 minutes to sufficiently swell the water-absorbent resin particles. Subsequently, the contents in the beaker were filtered using a standard sieve having a mesh size of 75 μm (mass Ma [g]). Excess water was filtered off from the swollen gel on the sieve by allowing the sieve to be tilted at an inclination angle of about 30 degrees with respect to the horizontal for 30 minutes. Then, the total mass Mb [g] of the sieve and the swollen gel on the sieve was measured, and the water absorption amount of the physiological saline of the water-absorbent resin particles was calculated from the following formula. The results are shown in Tables 1 and 2.
Water absorption [g / g] = (Mb-Ma) /2.0
(2-2)保水量
 保水量の測定は、25℃±1℃に調節された室内で行った。吸水性樹脂粒子2.0gを量り取った綿袋(メンブロード60番、横100mm×縦200mm)を内容積500mLのビーカー内に設置した。吸水性樹脂粒子の入った綿袋内に0.9質量%塩化ナトリウム水溶液(生理食塩水)500gを、ママコができないように一度に注ぎ込んだ後、綿袋の上部を輪ゴムで縛り、30分静置させることで吸水性樹脂粒子を膨潤させた。30分経過後の綿袋を、遠心力が167Gとなるように設定した脱水機(株式会社コクサン製、品番:H-122)を用いて1分間脱水した後、脱水後の膨潤ゲルを含んだ綿袋の質量Wa[g]を測定した。吸水性樹脂粒子を添加せずに同様の操作を行い、綿袋の湿潤時の空質量Wb[g]を測定し、下記式から吸水性樹脂粒子の生理食塩水の保水量を算出した。結果を表1及び表2に示す。
       保水量[g/g]=(Wa-Wb)/2.0
(2-2) Water retention amount The water retention amount was measured in a room adjusted to 25 ° C ± 1 ° C. A cotton bag (Membrod No. 60, width 100 mm × length 200 mm) weighing 2.0 g of water-absorbent resin particles was placed in a beaker having an internal volume of 500 mL. After pouring 500 g of 0.9 mass% sodium chloride aqueous solution (physiological saline) into a cotton bag containing water-absorbent resin particles at once so that mamaco cannot be formed, tie the upper part of the cotton bag with a rubber ring and let it sit for 30 minutes. The water-absorbent resin particles were swollen by placing them. After 30 minutes, the cotton bag was dehydrated for 1 minute using a dehydrator (manufactured by Kokusan Co., Ltd., product number: H-122) set to have a centrifugal force of 167 G, and then contained the swollen gel after dehydration. The mass Wa [g] of the cotton bag was measured. The same operation was performed without adding the water-absorbent resin particles, the empty mass Wb [g] of the cotton bag when wet was measured, and the water retention amount of the physiological saline of the water-absorbent resin particles was calculated from the following formula. The results are shown in Tables 1 and 2.
Water retention [g / g] = (Wa-Wb) /2.0
(2-3)吸水速度
 吸水速度の測定は、25℃±1℃に調節された室内で行った。100mL容のビーカーに、生理食塩水50±0.1gを量りとり、マグネチックスターラーバー(8mmφ×30mmのリング無し)を投入し、ビーカーを恒温水槽に浸漬して、液温を25±0.2℃に調節した。次に、マグネチックスターラー上にビーカーを置いて、回転数600r/minとして、生理食塩水に渦を発生させた後、吸水性樹脂粒子2.0±0.002gを、前記ビーカーに素早く添加し、ストップウォッチを用いて、吸水性樹脂の添加後から液面の渦が収束する時点までの時間(秒)を測定し、吸水性樹脂粒子の吸水速度とした。結果を表1及び表2に示す。
(2-3) Water absorption rate The water absorption rate was measured in a room adjusted to 25 ° C ± 1 ° C. Weigh 50 ± 0.1 g of physiological saline into a 100 mL beaker, add a magnetic stirrer bar (8 mm φ × 30 mm without ring), immerse the beaker in a constant temperature water tank, and set the liquid temperature to 25 ± 0. The temperature was adjusted to 2 ° C. Next, a beaker is placed on a magnetic stirrer, a vortex is generated in a physiological saline solution at a rotation speed of 600 r / min, and then 2.0 ± 0.002 g of water-absorbent resin particles are quickly added to the beaker. Using a stopwatch, the time (seconds) from the addition of the water-absorbent resin to the time when the vortex on the liquid surface converges was measured and used as the water absorption rate of the water-absorbent resin particles. The results are shown in Tables 1 and 2.
(2-4)中位粒子径
 JIS標準篩を、上から、目開き600μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、及び、受け皿の順に組み合わせた。組み合わせた最上の篩に、吸水性樹脂粒子50gを入れ、ロータップ式振とう器を用いて10分間振とうさせて分級した。分級後、各篩上に残った粒子の質量を全量に対する質量百分率として算出し粒度分布を求めた。この粒度分布に関して粒子径の大きい方から順に篩上を積算することにより、篩の目開きと篩上に残った粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径として得た。結果を表1及び表2に示す。
(2-4) Medium particle size From the top, a JIS standard sieve with a mesh size of 600 μm, a mesh size of 500 μm, a mesh size of 425 μm, a mesh size of 300 μm, a mesh size of 250 μm, and a mesh size of 180 μm. Sieve, a sieve with an opening of 150 μm, and a saucer were combined in this order. 50 g of water-absorbent resin particles were placed in the combined top sieve and shaken for 10 minutes using a low-tap type shaker for classification. After classification, the mass of the particles remaining on each sieve was calculated as a mass percentage with respect to the total amount, and the particle size distribution was obtained. The relationship between the mesh size of the sieve and the integrated value of the mass percentage of the particles remaining on the sieve was plotted on a logarithmic probability paper by integrating the particles on the sieve in order from the one having the largest particle size with respect to this particle size distribution. By connecting the plots on the probability paper with a straight line, the particle size corresponding to the integrated mass percentage of 50% by mass was obtained as the medium particle size. The results are shown in Tables 1 and 2.
(3)中間シートの作製
 以下の不織布を用意し、長手方向を有する形状(10cm×40cmの長方形)に切り出した。
・エアスルー不織布a(広州市錦漢不織布有限公司、D45―200、目付量45g/m2
・エアスルー不織布b(江蘇華龍無紡布有限公司、目付量32g/m2
・エアスルー不織布c(江蘇華龍無紡布有限公司、目付量45g/m2
・エアスルー不織布d(KNH Enterprise Co.,Ltd.、AT025―CP49―0、目付量25g/m2
・エアレイド不織布(KNH Enterprise Co.,Ltd.、6190516-1A01、目付量40g/m2
・スパンレース不織布(株式会社クラレ、70%レーヨン;20%PET;10%PP/PE、目付量35g/m2
(3) Preparation of intermediate sheet The following non-woven fabric was prepared and cut into a shape having a longitudinal direction (rectangle of 10 cm × 40 cm).
・ Air-through non-woven fabric a (Guangzhou Jinhan Non-woven Fabric Co., Ltd., D45-200, basis weight 45 g / m 2 )
・ Air-through non-woven fabric b (Jiangsu Hualong Non-woven Fabric Co., Ltd., basis weight 32 g / m 2 )
・ Air-through non-woven fabric c (Jiangsu Hualong Non-woven Fabric Co., Ltd., basis weight 45 g / m 2 )
・ Air-through non-woven fabric d (KNH Enterprise Co., Ltd., AT025-CP49-0, basis weight 25 g / m 2 )
Air-laid non-woven fabric (KNH Enterprise Co., Ltd., 6190516-1A01, basis weight 40 g / m 2 )
・ Spunlace non-woven fabric (Kuraray Co., Ltd., 70% rayon; 20% PET; 10% PP / PE, basis weight 35 g / m 2 )
(3-1)エアスルー不織布aの加工
 エアスルー不織布aに以下の加工を行い、領域A及び領域Bの形状が異なる6種の不織布を得た。
(3-1) Processing of Air-Through Nonwoven Fabric a The following processing was performed on the air-through nonwoven fabric a to obtain six types of nonwoven fabrics having different shapes of regions A and B.
(3-1-1)
 エアスルー不織布aに、ヒートシーラー(富士インパルス株式会社、FI-450-5、時間設定3~5)を用い、ヒートシールエンボスの手法により、エンボス部(加工領域)として領域Bh-を形成し、残余の領域(非加工領域)を領域Al+とした。具体的には、図12に示すように、不織布の長手方向と平行な方向に約5mm幅の線条の領域Bh-(エンボス部)を約2cm間隔で4本形成することで、不織布の長手方向と平行な方向に線条の領域Al+を得た。得られた加工済みエアスルー不織布aは、図9に示す中間シート30cの形態を有していた。
(3-1-1)
A heat sealer (Fuji Impulse Co., Ltd., FI-450-5, time setting 3 to 5) is used for the air-through nonwoven fabric a, and the region Bh- is formed as an embossed portion (processed region) by the heat seal embossing method, and the residue is formed. Region (non-processed region) was defined as region Al +. Specifically, as shown in FIG. 12, the length of the nonwoven fabric is formed by forming four regions Bh- (embossed portions) having a width of about 5 mm in a direction parallel to the longitudinal direction of the nonwoven fabric at intervals of about 2 cm. A linear region Al + was obtained in a direction parallel to the direction. The obtained processed air-through nonwoven fabric a had the form of the intermediate sheet 30c shown in FIG.
(3-1-2)
 約5mm幅の線条の領域Bh-(エンボス部)を約3cm間隔で3本形成することで、不織布の長手方向と平行な方向に線条の領域Al+を得たことを除いて、(3-1-1)と同様の操作を行った。得られた加工済みエアスルー不織布aは、図9に示す中間シート30cの形態を有していた。
(3-1-2)
By forming three strip regions Bh- (embossed portions) having a width of about 5 mm at intervals of about 3 cm, the strip region Al + was obtained in a direction parallel to the longitudinal direction of the nonwoven fabric, but (3). The same operation as in 1-1) was performed. The obtained processed air-through nonwoven fabric a had the form of the intermediate sheet 30c shown in FIG.
(3-1-3)
 図13に示すように、中間シートの短手中心線上に約5mm幅の線条の領域Bh-(エンボス部)を1本形成することで、不織布の長手方向と平行な方向に領域Al+を得たことを除いて、(3-1-1)と同様の操作を行った。得られた加工済みエアスルー不織布aは、図9に示す中間シート30cの形態を有していた。
(3-1-3)
As shown in FIG. 13, by forming one region Bh- (embossed portion) of a streak having a width of about 5 mm on the short center line of the intermediate sheet, a region Al + is obtained in a direction parallel to the longitudinal direction of the nonwoven fabric. Except for the above, the same operation as in (3-1-1) was performed. The obtained processed air-through nonwoven fabric a had the form of the intermediate sheet 30c shown in FIG.
(3-1-4)
 図14に示すように、不織布の短手方向と平行な方向に約5mm幅の線条の領域Bh-(エンボス部)を約3cm間隔で12本形成することで、不織布の短手方向と平行な方向に線条の領域Al+を得た。得られた加工済みエアスルー不織布aは、図9に示す中間シート30cの形態を有していた。
(3-1-4)
As shown in FIG. 14, by forming 12 streak regions Bh- (embossed portions) having a width of about 5 mm in a direction parallel to the lateral direction of the non-woven fabric at intervals of about 3 cm, the regions are parallel to the lateral direction of the non-woven fabric. A linear region Al + was obtained in the above direction. The obtained processed air-through nonwoven fabric a had the form of the intermediate sheet 30c shown in FIG.
(3-1-5)
 図15に示すように、不織布の長手方向に対して45°の角度で約5mm幅の線条の領域Bh-(エンボス部)を約3cm間隔で15本形成することで、不織布の長手方向に対して45°の線条の領域Al+を得た。得られた加工済みエアスルー不織布aは、図9に示す中間シート30cの形態を有していた。
(3-1-5)
As shown in FIG. 15, by forming 15 strip regions Bh- (embossed portions) having a width of about 5 mm at an angle of 45 ° with respect to the longitudinal direction of the nonwoven fabric at intervals of about 3 cm, in the longitudinal direction of the nonwoven fabric. On the other hand, a region of 45 ° striations Al + was obtained. The obtained processed air-through nonwoven fabric a had the form of the intermediate sheet 30c shown in FIG.
(3-1-6)
 図16に示すように、不織布の長手方向と平行な方向に3本及び短手方向と平行な方向に12本、約5mm幅の線条の領域Bh-(エンボス部)を約3cm間隔で配することで格子状の領域Bh-を形成した。得られた加工済みエアスルー不織布aは、図9に示す中間シート30cの形態を有していた。
(3-1-6)
As shown in FIG. 16, three strips in the direction parallel to the longitudinal direction of the non-woven fabric and twelve in the direction parallel to the lateral direction, and a striation region Bh- (embossed portion) having a width of about 5 mm are arranged at intervals of about 3 cm. By doing so, a grid-like region Bh- was formed. The obtained processed air-through nonwoven fabric a had the form of the intermediate sheet 30c shown in FIG.
(3-2)エアスルー不織布bの加工
 上記(3-1-1)と同様の加工を行った。得られた加工済みエアスルー不織布bは、図9に示す中間シート30cの形態を有していた。
(3-2) Processing of air-through nonwoven fabric b The same processing as in (3-1-1) above was performed. The obtained processed air-through nonwoven fabric b had the form of the intermediate sheet 30c shown in FIG.
(3-3)エアスルー不織布cの加工
 上記(3-1-1)と同様の加工を行った。得られた加工済みエアスルー不織布cは、図9に示す中間シート30cの形態を有していた。
(3-3) Processing of air-through nonwoven fabric c The same processing as in (3-1-1) above was performed. The obtained processed air-through nonwoven fabric c had the form of the intermediate sheet 30c shown in FIG.
(3-4)エアスルー不織布dの加工
 上記(3-1-2)と同様の加工を行った。得られた加工済みエアスルー不織布dは、図9に示す中間シート30cの形態を有していた。
(3-4) Processing of air-through nonwoven fabric d The same processing as in (3-1-2) above was performed. The obtained processed air-through nonwoven fabric d had the form of the intermediate sheet 30c shown in FIG.
(3-5)エアレイド不織布の加工
 上記(3-1-2)と同様の加工を行った。得られた加工済みエアレイド不織布は、図9に示す中間シート30cの形態を有していた。
(3-5) Processing of air-laid nonwoven fabric The same processing as in (3-1-2) above was performed. The obtained processed air-laid nonwoven fabric had the form of the intermediate sheet 30c shown in FIG.
(3-6)スパンレース不織布の加工
 上記(3-1-2)と同様の加工を行った。得られた加工済みスパンレース不織布は、図9に示す中間シート30cの形態を有していた。
(3-6) Processing of spunlace non-woven fabric The same processing as in (3-1-2) above was performed. The obtained processed spunlace non-woven fabric had the form of the intermediate sheet 30c shown in FIG.
(4)中間シートの測定
 領域Aの厚み(mm)、領域Aの高さ(mm)、領域Aの密度(kg/m3)、領域Bの密度を1とした場合の領域Aの密度の比率、および領域Bの面積率(%)を測定した。結果を表1及び表2に示す。
(4) Measurement of intermediate sheet The thickness of the area A (mm), the height of the area A (mm), the density of the area A (kg / m 3 ), and the density of the area A when the density of the area B is 1. The ratio and the area ratio (%) of the area B were measured. The results are shown in Tables 1 and 2.
(4-1)領域Aの厚み
 厚み測定器(株式会社尾崎製作所製、ダイヤルシックネスゲージJ-B)に、領域Aを軽く1回挟んで厚みを測定した。
(4-1) Thickness of region A The thickness of region A was measured by lightly sandwiching region A once in a thickness measuring instrument (Dial Thickness Gauge JB manufactured by Ozaki Seisakusho Co., Ltd.).
(4-2)領域Aの高さ
 領域Bについて(4-1)と同様にして厚みを測定し、領域Aの厚みとの差分を導出し、その差分の半分(1/2)の値を領域Aの高さとした。
(4-2) Height of region A The thickness of region B is measured in the same manner as in (4-1), the difference from the thickness of region A is derived, and the value of half (1/2) of the difference is set. The height of the area A was set.
(4-3)領域Aの密度(kg/m3
 中間シート材料の不織布の目付を領域Aの厚みで除して算出した。
(4-3) Density of region A (kg / m 3 )
It was calculated by dividing the basis weight of the non-woven fabric of the intermediate sheet material by the thickness of the region A.
(5)積層体の作製
(5-1)積層体の構造
 第1シート、吸水性樹脂層、接着剤層、中間シート、他の吸水性樹脂層、接着剤層、及び第2シートがこの順で積層された積層体を作製した。
(5) Preparation of laminated body (5-1) Structure of laminated body First sheet, water-absorbent resin layer, adhesive layer, intermediate sheet, other water-absorbent resin layer, adhesive layer, and second sheet are in this order. A laminated body laminated with the above was produced.
(5-2)材料
・吸水性樹脂層用及び他の吸水性樹脂層用の吸水性樹脂粒子(実施例1~13及び比較例1~16)
  ・・製造例1で合成したSAPa
  ・・製造例2で合成したSAPb
  ・・製造例3で合成したSAPc
  ・・製造例4で合成したSAPd
  ・・製造例5で合成したSAPe
  ・・製造例6で合成したSAPf
(5-2) Material-Water-absorbent resin particles for the water-absorbent resin layer and other water-absorbent resin layers (Examples 1 to 13 and Comparative Examples 1 to 16)
・ ・ SAPa synthesized in Production Example 1
.. SAPb synthesized in Production Example 2
.. SAPc synthesized in Production Example 3
.. SAPd synthesized in Production Example 4
・ ・ SAPe synthesized in Production Example 5
.. SAPf synthesized in Production Example 6
・中間シート(実施例1~13及び比較例7~9、15)
  ・・加工済みエアスルーa不織布(2cm間隔長手方向)
  ・・加工済みエアスルーa不織布(3cm間隔長手方向)
  ・・加工済みエアスルーa不織布(1本長手方向)
  ・・加工済みエアスルーa不織布(短手方向)
  ・・加工済みエアスルーa不織布(斜め45°)
  ・・加工済みエアスルーa不織布(格子状)
  ・・加工済みエアスルーb不織布(長手方向)
  ・・加工済みエアスルーc不織布(長手方向)
  ・・加工済みエアスルーd不織布(長手方向)
  ・・加工済みエアレイド不織布(長手方向)
  ・・加工済みスパンレース不織布(長手方向)
・中間シート(比較例1~6、10~14、16)
  ・・加工なしエアスルーa不織布
  ・・加工なしエアスルーb不織布
  ・・加工なしエアスルーc不織布
  ・・加工なしエアスルーd不織布
  ・・加工なしエアレイド不織布
  ・・加工なしスパンレース不織布
Intermediate sheet (Examples 1 to 13 and comparative examples 7 to 9, 15)
・ ・ Processed air-through a non-woven fabric (longitudinal direction at 2 cm intervals)
・ ・ Processed air-through a non-woven fabric (longitudinal direction at 3 cm intervals)
・ ・ Processed air-through a non-woven fabric (1 piece in the longitudinal direction)
・ ・ Processed air-through a non-woven fabric (in the short direction)
・ ・ Processed air-through a non-woven fabric (diagonal 45 °)
・ ・ Processed air-through a non-woven fabric (lattice)
・ ・ Processed air-through b non-woven fabric (longitudinal direction)
・ ・ Processed air-through c non-woven fabric (longitudinal direction)
・ ・ Processed air-through d non-woven fabric (longitudinal direction)
・ ・ Processed air-laid non-woven fabric (longitudinal direction)
・ ・ Processed spunlace non-woven fabric (longitudinal direction)
-Intermediate sheet (Comparative Examples 1 to 6, 10 to 14, 16)
・ ・ Unprocessed air-through a non-woven fabric ・ ・ Unprocessed air-through b non-woven fabric ・ ・ Unprocessed air-through c non-woven fabric ・ ・ Unprocessed air-through d non-woven fabric ・ ・ Unprocessed air-laid non-woven fabric ・ ・ Unprocessed spunlace non-woven fabric
・第1シート及び第2シート(実施例1~13及び比較例1~16)
 ・・エアレイド不織布(KNH Enterprise Co.,Ltd.、6190516-1A01、目付量40g/m2
1st sheet and 2nd sheet (Examples 1 to 13 and Comparative Examples 1 to 16)
・ ・ Air-laid non-woven fabric (KNH Enterprise Co., Ltd., 6190516-1A01, basis weight 40 g / m 2 )
・接着剤層
  ・・ホットメルト接着剤(ヘンケルジャパン株式会社 軟化点96℃ TECHNOMELT DM5912)
・ Adhesive layer ・ ・ Hot melt adhesive (Henkel Japan Ltd. Softening point 96 ℃ TECHNOMELT DM5912)
(5-3)作製方法
 14cm×42cmに裁断した第1シート及び第2シート(いずれも同じ材料)を用意した。中間シートにホットメルト塗工機(株式会社ハリーズ、ポンプ:Marshal150、テーブル:XA-DT、タンク設定温度:150℃、ホース内設定温度:165℃、ガンヘッド設定温度:170℃)で、全量0.2gのホットメルト接着剤を表1及び表2に示す中間シートの長手方向にそって、10mm間隔で10本塗布した。接着剤の塗布パターンはスパイラルストライプであった。その後、中間シートを、接着剤を塗布していない面が第2シートと接するようにして、前後(短手端から)各2cm、左右(長手端から)各1cmの第2シート用基材が露出するように載置した。さらに、気流型混合装置(有限会社オーテック製、パッドフォーマー)を用いて、表1及び表2に示す吸水性樹脂層用のSAP合計7.2gを中間シート上に均一に散布し、吸水性樹脂層を積層した。続いて、第1シートを中間シートの吸水性樹脂層側から載置し、剥離紙で上下から挟み、ラミネート機(株式会社ハシマ、Straight Linear Fussing Press、型式HP-600LFS、110℃、0.1MPa)を用いてプレスして張り合わせ、剥離紙を取り除き、第1シート、吸水性樹脂層及び中間シートが接着された積層材料を得た。
(5-3) Fabrication method A first sheet and a second sheet (both of the same material) cut into 14 cm × 42 cm were prepared. Hot melt coating machine (Harry's Co., Ltd., pump: Marshal150, table: XA-DT, tank set temperature: 150 ° C, hose set temperature: 165 ° C, gun head set temperature: 170 ° C) on the intermediate sheet, the total amount is 0. Ten 2 g of hot melt adhesive was applied at intervals of 10 mm along the longitudinal direction of the intermediate sheets shown in Tables 1 and 2. The adhesive application pattern was a spiral stripe. After that, the intermediate sheet is placed so that the surface to which the adhesive is not applied is in contact with the second sheet, so that the base material for the second sheet is 2 cm each in the front and back (from the short end) and 1 cm each in the left and right (from the long end). It was placed so that it would be exposed. Further, using an air flow type mixing device (Padformer manufactured by Otec Co., Ltd.), a total of 7.2 g of SAP for the water-absorbent resin layer shown in Tables 1 and 2 is uniformly sprayed on the intermediate sheet to absorb water. The resin layer was laminated. Subsequently, the first sheet is placed from the water-absorbent resin layer side of the intermediate sheet, sandwiched from above and below with a release paper, and a laminating machine (Hashima Co., Ltd., Straight Liner Fasting Press, model HP-600LFS, 110 ° C., 0.1 MPa). ) Was pressed and laminated to remove the release paper, and a laminated material to which the first sheet, the water-absorbent resin layer and the intermediate sheet were adhered was obtained.
 得られた積層材料を天地方向に反転させた後、第2シートを静かに中間シートから剥離させ、再度気流型混合装置を用いて、積層材料の中間シート上に、表1及び表2に示す他の吸水性樹脂層用のSAP合計7.2gを均一に散布し、他の吸水性樹脂層を積層した。上記の剥離させた第2シートの中間シートと接していた面に、上記と同様にホットメルト用接着剤を10mm間隔で10本(全量0.2g)塗布した。その後、第2シートを接着剤層が他の吸水性樹脂層と対向するように積層し、剥離紙で全層を挟み、ラミネート機を用いてプレスして張り合わせ、剥離紙を取り除き、目的の積層体を得た。 After the obtained laminated material is inverted in the vertical direction, the second sheet is gently peeled off from the intermediate sheet, and again using the air flow type mixing device, the intermediate sheet of the laminated material is shown in Tables 1 and 2. A total of 7.2 g of SAP for the other water-absorbent resin layer was uniformly sprayed, and the other water-absorbent resin layer was laminated. In the same manner as above, 10 hot melt adhesives (total amount 0.2 g) were applied to the surface of the peeled second sheet that was in contact with the intermediate sheet. After that, the second sheet is laminated so that the adhesive layer faces the other water-absorbent resin layer, the entire layer is sandwiched between the release papers, pressed by a laminating machine and laminated, the release paper is removed, and the desired lamination is performed. I got a body.
(6)積層体の評価
(6-1)試験液
 以下の組成を有する試験液を調製した。
・イオン交換水:9865.75g
・NaCl:100.0g
・CaCl2・2H2O:3.0g
・MgCl2・6H2O:6.0g
・トリトン X-100(1%):25.0g
・食用青色1号(着色用):0.25g
(6) Evaluation of laminated body (6-1) Test solution A test solution having the following composition was prepared.
-Ion-exchanged water: 9865.75 g
NaCl: 100.0 g
・ CaCl 2.2H 2 O : 3.0g
・ MgCl 2.6H 2 O : 6.0g
-Triton X-100 (1%): 25.0 g
-Edible blue No. 1 (for coloring): 0.25 g
(6-2)浸透速度
 温度25±2℃の室内において、水平の台の上に積層体を配置し、その第1シート上にトップシートとしてエアスルー不織布(レンゴー・ノンウーブン・プロダクツ株式会社、材料組成:50%PP及び50%PE、目付量:21g/m2)を載置した。次に、内径3cmの投入口を有する容量100mLの液投入用シリンダー(両端が開口した円筒)をトップシートの中心部に置いた。続いて、あらかじめ25±1℃に調整した試験液80mLを鉛直方向上部からシリンダー内へ一度に投入した。ストップウォッチを用いて、投入開始から、試験液がシリンダー内から完全に消失するまでの吸収時間を測定した。この操作を30分間隔で更に2回(合計3回)行い、各回の吸収時間の合計値を浸透速度合計[秒]として得た。浸透速度合計の値が小さいほど、1~3回の暴露された液体の吸収にかかった総時間が少ないことを示すため、複数回の液体暴露に対する吸収速度に優れていると評価できる。結果を表1及び表2に示す。
(6-2) Penetration rate In a room with a temperature of 25 ± 2 ° C, the laminate is placed on a horizontal table, and an air-through non-woven fabric (Rengo Nonwoven Products Co., Ltd., material composition) is placed on the first sheet as a top sheet. : 50% PP and 50% PE, grain amount: 21 g / m 2 ) was placed. Next, a liquid injection cylinder (cylinder with both ends open) having a capacity of 100 mL and having an inner diameter of 3 cm was placed in the center of the top sheet. Subsequently, 80 mL of the test solution adjusted to 25 ± 1 ° C. in advance was poured into the cylinder from the upper part in the vertical direction at once. Using a stopwatch, the absorption time from the start of charging until the test solution completely disappeared from the cylinder was measured. This operation was further performed twice (three times in total) at intervals of 30 minutes, and the total value of the absorption time of each time was obtained as the total permeation rate [seconds]. The smaller the total value of the permeation rate, the shorter the total time required for the absorption of the liquid exposed 1 to 3 times, so that it can be evaluated that the absorption rate is excellent for a plurality of liquid exposures. The results are shown in Tables 1 and 2.
 複数回の液体暴露に対する吸収速度の向上効果を評価するスコア(浸透総時間短縮スコア)として、実施例1~6による当該合計値それぞれと、対応する比較例1~6による当該合計値それぞれとの差分;実施例7~9及び比較例7~9それぞれと、対応する比較例10による当該合計値との差分;実施例10~13による当該合計値それぞれと、対応する比較例11~14による当該合計値それぞれとの差分;並びに、比較例15による当該合計値それぞれと、対応する比較例16による当該合計値それぞれとの差分を求め、得られた差分それぞれを、対応する比較例による当該合計値を100%とする相対量に変換した値を求めた。浸透総時間短縮スコア[%]は、1~3回の暴露された液体の吸収にかかった総時間を、対応する比較例に対してどれだけの割合短縮できたかを示す評価値であり、このスコアが正の数であれば、複数回の液体暴露に対する吸収速度を向上できており、このスコアが大きいほど、複数回の液体暴露に対する吸収速度の向上効果が高いと評価できる。結果を表1及び表2に示す。 As a score (total permeation time shortening score) for evaluating the effect of improving the absorption rate for a plurality of liquid exposures, the total value according to Examples 1 to 6 and the total value according to the corresponding Comparative Examples 1 to 6 are used. Difference; difference between Examples 7 to 9 and Comparative Examples 7 to 9 and the total value according to the corresponding Comparative Example 10; Difference between the total value according to Examples 10 to 13 and the corresponding total value according to the corresponding Comparative Examples 11 to 14. Difference from each total value; and the difference between each of the total values according to Comparative Example 15 and the total value according to the corresponding Comparative Example 16 is obtained, and each of the obtained differences is the total value according to the corresponding Comparative Example. Was converted into a relative quantity with 100%. The total penetration time reduction score [%] is an evaluation value indicating how much the total time required for absorption of the exposed liquid 1 to 3 times could be reduced with respect to the corresponding comparative example. If the score is a positive number, the absorption rate for a plurality of liquid exposures can be improved, and it can be evaluated that the larger the score, the higher the effect of improving the absorption rate for a plurality of liquid exposures. The results are shown in Tables 1 and 2.
(6-3)逆戻り量
 浸透速度の測定に使用した積層体(トップシート付)を使用し、以下の手順で逆戻り量の測定を行った。3回目の試験液の投入から60分経過後、トップシート上の試験液投入位置付近に、あらかじめ質量(Wd(g))を測定しておいた10cm四方の濾紙を置き、その上に底面が10cm×10cmの質量5kgの重りを載せた。5分間の荷重後、濾紙の質量(We(g))を測定し、増加した質量を逆戻り量(g)とした。結果を表1及び表2に示す。
     逆戻り量(g)=We-Wd
(6-3) Reversion amount Using the laminate (with top sheet) used for measuring the permeation rate, the reversion amount was measured by the following procedure. After 60 minutes have passed since the third test solution was added, a 10 cm square filter paper whose mass (Wd (g)) had been measured in advance was placed near the test solution injection position on the top sheet, and the bottom surface was placed on it. A 10 cm × 10 cm weight with a mass of 5 kg was placed. After loading for 5 minutes, the mass of the filter paper (We (g)) was measured, and the increased mass was defined as the reversion amount (g). The results are shown in Tables 1 and 2.
Reversion amount (g) = We-Wd
(6-4)拡散距離
 逆戻り量の測定を終えた積層体(トップシート付)を天地方向に反転させ、試験液を投入した方向とは反対の方向から、試験液が浸透した積層体の長手方向(吸収性物品における吸収体の平面方向)の拡がり寸法(試験液の拡散領域のうち、積層体の短手中心線が通る領域の長さ。単位:cm[換言すると、試験液の拡散領域上における積層体の短手中心線の長さ])を測定した。拡散距離が長いほど、吸収された液体が面内方向へ移動する時に、長手方向への移動が効率的となるため、積層体の形状を有効利用できたことを示す。結果を表1及び表2に示す。
(6-4) Diffusion distance The length of the laminate (with the top sheet) for which the measurement of the amount of reversion has been completed is inverted in the vertical direction, and the laminate infiltrated with the test solution from the direction opposite to the direction in which the test solution is poured. Spreading dimension in the direction (planar direction of the absorber in the absorbent article) (length of the region of the diffusion region of the test solution through which the short center line of the laminate passes. Unit: cm [In other words, the diffusion region of the test solution. The length of the short center line of the laminate above]) was measured. The longer the diffusion distance, the more efficient the movement of the absorbed liquid in the longitudinal direction when it moves in the in-plane direction, indicating that the shape of the laminated body can be effectively used. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
10,10a…積層体
10’,10’a…液体を吸収した状態の積層体
20…第1シート
30,30a,30b,30c,30d…中間シート
40…第2シート
51…吸水性樹脂層
51’…水を吸収した状態の吸水性樹脂層
52…他の吸水性樹脂層
A…領域A
  Al…低密度領域
  A+…凸部領域
  Al+…低密度/凸部領域
LD-A…領域Aの長手方向
B…領域B
  Bh…高密度領域
  B-…凹部領域
  Bh-…高密度/凹部領域
LMD10…積層体の積層方向
LD…(積層体、第1シート、吸水性樹脂層、中間シート、第2シートの)長手方向
LE…長手端
SE…短手端
M…短手中心線
10, 10a ... Laminated body 10', 10'a ... Laminated body in a state of absorbing liquid 20 ... First sheet 30, 30a, 30b, 30c, 30d ... Intermediate sheet 40 ... Second sheet 51 ... Water-absorbent resin layer 51 '... Water-absorbent resin layer 52 in a state of absorbing water ... Another water-absorbent resin layer A ... Region A
Al ... Low density region A + ... Convex region Al + ... Low density / convex region LD-A ... Longitudinal direction B of region A ... Region B
Bh ... High-density region B -... Recessed region Bh- ... High-density / recessed region LMD10 ... Laminating direction of laminated body LD ... Longitudinal direction (of laminated body, first sheet, water-absorbent resin layer, intermediate sheet, second sheet) LE ... Longitudinal end SE ... Short end M ... Short center line

Claims (9)

  1.  長手方向を有する形状の、透液性の第1シート、吸液性の中間シート、及び第2シートと、少なくとも前記第1シート及び前記中間シートの間に介在する吸水性樹脂層と、を含む積層体であって、
     前記中間シートが、長手方向を有する形状の領域A及び領域Bを含み、
     前記領域A及び前記領域Bが、下記(1)及び(2)のうち少なくとも一方の関係を満たし、且つ、下記(3)の関係を満たす、積層体:
    (1)前記領域Aが低密度且つ前記領域Bが高密度であり、前記領域Bの密度を1とした場合の前記領域Aの密度の比率が0.45以下である、
    (2)前記領域Aが前記吸水性樹脂層の側に凸となる凸部であり且つ前記領域Bが凹部であり、前記凸部の高さが0.25mm以上である、
    (3)前記領域Bが、前記中間シートの長手端よりも内側に位置している。
    Includes a liquid-permeable first sheet, a liquid-absorbent intermediate sheet, and a second sheet having a shape having a longitudinal direction, and at least a water-absorbent resin layer interposed between the first sheet and the intermediate sheet. It ’s a laminated body,
    The intermediate sheet includes a region A and a region B having a shape having a longitudinal direction.
    A laminated body in which the region A and the region B satisfy at least one of the following relationships (1) and (2) and satisfy the following relationship (3).
    (1) When the region A has a low density and the region B has a high density, and the density of the region B is 1, the ratio of the density of the region A is 0.45 or less.
    (2) The region A is a convex portion that is convex toward the water-absorbent resin layer, and the region B is a concave portion, and the height of the convex portion is 0.25 mm or more.
    (3) The region B is located inside the longitudinal end of the intermediate sheet.
  2.  前記領域A及び前記領域Bが、前記(1)及び前記(2)の関係を満たす、請求項1に記載の積層体。 The laminate according to claim 1, wherein the region A and the region B satisfy the relationship of the above (1) and the above (2).
  3.  前記領域Aが、前記中間シートの長手方向を含む方向に延在する線条部を含む、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the region A includes a linear portion extending in a direction including the longitudinal direction of the intermediate sheet.
  4.  前記領域Aが、前記中間シートの長手方向と略平行に延在する線条部を含む、請求項1~3のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the region A includes a linear portion extending substantially parallel to the longitudinal direction of the intermediate sheet.
  5.  前記領域Bが、前記中間シートの短手中心線上に配された線条部を含む、請求項4に記載の積層体。 The laminated body according to claim 4, wherein the region B includes a streak portion arranged on the short center line of the intermediate sheet.
  6.  前記領域Aと前記領域Bとが、それらの領域の短手方向に交互に複数配置されている、請求項1~5のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 5, wherein a plurality of the regions A and the regions B are alternately arranged in the lateral direction of those regions.
  7.  前記領域Aと前記領域Bとが複数並列して配置された線条部を含む、請求項6に記載の積層体。 The laminated body according to claim 6, which includes a plurality of linear portions in which the region A and the region B are arranged in parallel.
  8.  前記領域Bが、前記中間シートの短手端よりも内側に位置している、請求項1~7のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the region B is located inside the short end of the intermediate sheet.
  9.  請求項1~8のいずれかに記載の積層体を含む、吸収性物品。 An absorbent article containing the laminate according to any one of claims 1 to 8.
PCT/JP2021/044170 2020-12-04 2021-12-01 Multilayer body WO2022118903A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022566966A JPWO2022118903A1 (en) 2020-12-04 2021-12-01
CN202180081341.4A CN116583251A (en) 2020-12-04 2021-12-01 Laminate body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020201699 2020-12-04
JP2020-201699 2020-12-04

Publications (1)

Publication Number Publication Date
WO2022118903A1 true WO2022118903A1 (en) 2022-06-09

Family

ID=81853952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044170 WO2022118903A1 (en) 2020-12-04 2021-12-01 Multilayer body

Country Status (3)

Country Link
JP (1) JPWO2022118903A1 (en)
CN (1) CN116583251A (en)
WO (1) WO2022118903A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064000A (en) * 2014-09-25 2016-04-28 大王製紙株式会社 Absorbent article
JP2017063918A (en) * 2015-09-29 2017-04-06 大王製紙株式会社 Absorbent article
JP2018057601A (en) * 2016-10-05 2018-04-12 花王株式会社 Absorbent article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064000A (en) * 2014-09-25 2016-04-28 大王製紙株式会社 Absorbent article
JP2017063918A (en) * 2015-09-29 2017-04-06 大王製紙株式会社 Absorbent article
JP2018057601A (en) * 2016-10-05 2018-04-12 花王株式会社 Absorbent article

Also Published As

Publication number Publication date
CN116583251A (en) 2023-08-11
JPWO2022118903A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
JP5981720B2 (en) Absorbent sheet structure
JP5755151B2 (en) Absorbent sheet structure
JP4841654B2 (en) Absorbent articles
JP5571215B2 (en) Method for producing absorbent composite
WO2011086844A1 (en) Water-absorbable sheet structure
JP4261853B2 (en) Water absorbent resin, water absorbent resin particles, and production method thereof
WO2020184389A1 (en) Water absorbing resin particles
WO2020184394A1 (en) Water absorbent resin particle, absorber, absorbent article, method for measuring permeation retention rate of water absorbent resin particle, and method for producing water absorbent resin particle
KR20210101251A (en) Absorbent resin particles, absorbent body and absorbent article
WO2022118903A1 (en) Multilayer body
KR20210101254A (en) Absorbent resin particles, absorbent body and absorbent article
JPWO2020122219A1 (en) Water-absorbent resin particles, absorber, absorbent article, and liquid suction force measuring method
WO2022118904A1 (en) Laminate
JPWO2020122202A1 (en) Absorbent article
CN117098520A (en) Absorbent body
WO2022118902A1 (en) Laminate and absorbent article
JP2011000231A (en) Absorber and absorbent article
WO2021132266A1 (en) Absorbent resin particles, absorber, absorbent sheet, absorbent article, and method for producing absorbent resin particles
US20220219140A1 (en) Water-absorbent resin particles
KR20210139288A (en) Water-absorbing resin particles and manufacturing method thereof
KR20210137070A (en) Absorbent Body, Absorbent Article, and Method of Adjusting Penetration Rate
JP7448553B2 (en) Method for producing crosslinked polymer particles, method for producing water-absorbing resin particles, and method for improving water absorption under load
JP6775050B2 (en) Absorbent article
JP6752320B2 (en) Absorbent article and its manufacturing method
WO2021006148A1 (en) Crosslinked polymer gel, method for producing same, monomer composition, and method for producing crosslinked polymer particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566966

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180081341.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900654

Country of ref document: EP

Kind code of ref document: A1