WO2022118791A1 - Virus inactivation system and virus inactivation method - Google Patents

Virus inactivation system and virus inactivation method Download PDF

Info

Publication number
WO2022118791A1
WO2022118791A1 PCT/JP2021/043615 JP2021043615W WO2022118791A1 WO 2022118791 A1 WO2022118791 A1 WO 2022118791A1 JP 2021043615 W JP2021043615 W JP 2021043615W WO 2022118791 A1 WO2022118791 A1 WO 2022118791A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
value
unit
virus
corrected
Prior art date
Application number
PCT/JP2021/043615
Other languages
French (fr)
Japanese (ja)
Inventor
一隆 富松
利知 北
雅也 加藤
啓吾 織田
泰稔 上田
Original Assignee
三菱重工パワー環境ソリューション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工パワー環境ソリューション株式会社 filed Critical 三菱重工パワー環境ソリューション株式会社
Publication of WO2022118791A1 publication Critical patent/WO2022118791A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles

Definitions

  • This disclosure relates to a virus inactivating system and a virus inactivating method.
  • Virus removal measures are being taken to prevent the transmission and epidemic of infectious diseases caused by viruses such as influenza virus and coronavirus.
  • virus removal measures different methods are adopted depending on the infection mechanism such as aerosol infection and contact infection.
  • Aerosol infection is caused by human inhalation of fine aerosols floating in the air, and as a countermeasure, ventilation and removal of viruses by a high-efficiency air filter (for example, HEPA filter) compatible with the submicron class. And so on.
  • a high-efficiency air filter for example, HEPA filter
  • Contact infection is caused by a person touching something touched by an infected person while the infectivity of the virus remains. As a countermeasure against contact infection, each person's hand is washed and the part touched by the person is wiped off with alcohol or the like.
  • Patent Document 1 discloses a technique relating to an ozone sterilizer that sterilizes clothes and the like using ozone.
  • the present disclosure has been made in view of such circumstances, and is a virus inactivation capable of reliably inactivating ozone at a required part of an indoor space in response to measured environmental conditions. It is intended to provide a system and a method of virus inactivation.
  • the virus inactivation system includes an ozone generating unit that generates ozone, a first supply unit that sends air containing ozone generated in the ozone generating unit to an indoor space, and a plurality of measurement points in the indoor space.
  • a measurement unit that measures ozone concentration, temperature, and humidity
  • a CT value calculation unit that calculates a CT value that is the product of the ozone concentration measured by the measurement unit and the elapsed time from the start of measurement of the ozone concentration.
  • a storage unit in which the reference CT value required for inactivating the bacteria or virus to be inactivated under predetermined environmental conditions is recorded, the ozone concentration measured by the measuring unit, the temperature, and the above.
  • a CT value determining unit that corrects the reference CT value based on humidity and determines the corrected value as a corrected CT value, and a determination that determines whether or not the calculated CT value satisfies the corrected CT value. It has a part.
  • the virus inactivating method measures ozone concentration, temperature, and humidity at a step of generating ozone, a step of sending air containing the generated ozone to an indoor space, and a plurality of measurement points in the indoor space. Based on the step, the step of calculating the CT value which is the product of the measured ozone concentration and the elapsed time from the start of the measurement of the ozone concentration, and the measured ozone concentration, the temperature and the humidity.
  • a step of correcting the reference CT value required for inactivating the bacteria or virus to be inactivated under predetermined environmental conditions and determining the corrected value as the corrected CT value, and the calculated CT value. Includes a step of determining whether or not the corrected CT value is satisfied.
  • the virus inactivating system 10 measures the ozone concentration in the space and distributes ozone to the measurement points in the indoor space 20 to a necessary degree to measure the environmental conditions.
  • the virus inactivating system 10 measures the ozone concentration in the space and distributes ozone to the measurement points in the indoor space 20 to a necessary degree to measure the environmental conditions.
  • the virus inactivation system 10 adopts a CT value as an index for measuring the effectiveness of inactivating a virus or a bacterium by ozone.
  • the CT value is a value (ppm ⁇ min) expressed by the product of the ozone concentration (ppm) and the contact time (min) with the object to be treated at the ozone concentration.
  • the CT value of 60 indicates a condition of being exposed to ozone at an ozone concentration of 1 ppm for 60 minutes.
  • the effect of inactivation survival rate of virus or survival rate of bacteria
  • FIG. 2 shows an example of a graph showing the relationship between the virus survival rate and the CT value.
  • the calculated CT value exceeds a predetermined threshold value at the measurement point which is the minimum calculated CT value among the plurality of measurement points, and when the determination condition is satisfied, ozone causes inactivation. End the activation process. That is, when the calculated CT value exceeds a predetermined threshold value, a predetermined amount or more of ozone is exposed around the measurement point, so that the residual rate of viruses and bacteria around the measurement point is a predetermined value (for example, 1%). It is presumed that it is as follows.
  • the predetermined threshold value is, for example, a corrected CT value.
  • a CT value known to exert an inactivating effect of a virus or a bacterium under certain environmental conditions is recorded as a reference CT value in the storage unit 41 (see FIG. 9).
  • the reference CT value is recorded for each type of virus or bacterium to be inactivated.
  • the pre-recorded reference CT value is corrected to the CT value at which the inactivating effect is exhibited under the environmental conditions actually measured.
  • the corrected CT value which is the corrected CT value, is used as a determination criterion, and in this case, it is determined whether or not the calculated CT value exceeds the corrected CT value.
  • the reference CT value before correction recorded in the storage unit 41 may be used as a judgment standard without correction, but the inactivation process is completed when the CT value required under the actual environmental conditions is not satisfied. There is a possibility that it will be done.
  • the virus inactivating system 10 includes an ozone generator 1, a humidifying device 2, an ozone decomposition device 3, a measuring device 4, a control device 5, and the like.
  • the ozone generator 1, the humidifying device 2, the ozone decomposition device 3, and the measuring device 4 are configured as separate devices that can be handled individually.
  • the ozone generator 1 generates ozone and supplies ozone to the interior space 20 of the building. As shown in FIG. 3, the ozone generator 1 includes an ozone generator 11, a fan 12, a casing 13, a vehicle body portion 14, and the like. The operation of the ozone generator 1 such as starting or stopping is controlled by the control device 5.
  • the ozone generating unit 11 can generate ozone electrically, a commonly used technique can be applied to the ozone generating unit 11.
  • An example of the ozone generating unit 11 according to the present embodiment will be described later, but the present disclosure is not limited to this example.
  • the fan 12 supplies the ozone generated by the ozone generating unit 11 to the indoor space 20.
  • the fan 12 is an example of the first supply unit.
  • the casing 13 is installed so as to cover the ozone generating portion 11 and the fan 12.
  • the casing 13 is provided with openings on the air suction side, which is the upstream side of the fan 12, and on the blowout side of the ozone-containing air, which is the downstream side of the ozone generation unit 11.
  • the vehicle body portion 14 has a pedestal portion 15 on which the ozone generating portion 11, the fan 12 and the casing 13 are placed, and the wheels 16 installed on the lower surface side of the pedestal portion 15.
  • the ozone generator 1 is configured to be easily movable.
  • the ozone generating unit 11 has, for example, an electrode that generates plasma discharge or corona discharge.
  • the example of the ozone generating unit 11 shown in FIGS. 4 to 6 has a creeping discharge electrode structure 30.
  • the ozone generation unit 11 includes a main power supply unit 17, an insulator 18, an internal electrode 19, a surface electrode 21, and the like.
  • the insulator 18, the internal electrode 19, and the surface electrode 21 constitute a creeping discharge electrode structure 30.
  • the ozone generating unit 11 includes one or a plurality of creeping discharge electrode structures 30.
  • the main power supply unit 17 is connected to the internal electrode 19, and the surface electrode 21 is grounded.
  • the main power supply unit 17 applies a high frequency high voltage to the internal electrode 19.
  • creeping discharge occurs on the boundary surface between the surface electrode 21 and the insulator 18.
  • ozone and radicals are generated by the generation of plasma.
  • the main power supply unit 17 may be connected to the surface electrode 21, and the internal electrode 19 may be grounded.
  • the insulator 18 is made of, for example, ceramics, has electrical insulating properties, and has a hollow cylindrical shape.
  • the insulator 18 is installed so that the axial direction is orthogonal to the gas flow. The manufacturing cost of the insulator 18 can be suppressed by using a commercially available ceramic tube.
  • the internal electrode 19 is installed in close contact with the insulator 18 in parallel with the axis.
  • the internal electrode 19 is a solid or hollow rod-shaped member made of metal, metal fiber, iron powder, or the like.
  • the surface electrode 21 is installed without being constrained to the insulator 18 and in close contact with the insulator 18.
  • the surface electrode 21 is installed in the axial direction of one insulator 18.
  • the surface electrode 21 is formed in a linear shape parallel to or diagonally to the gas flow.
  • the surface electrode 21 is formed in close contact with the surface of the insulator 18, for example, by winding a coil spring around the surface of the insulator 18, as shown in FIG.
  • the internal electrode 19 is provided in close contact with the insulator 18 inside the insulator 18, and the surface electrode 21 is provided in close contact with the surface of the insulator 18, so that the internal electrode 19 and the surface electrode are provided.
  • 21 can generate creeping discharge at the boundary surface between the surface electrode 21 and the insulator 18 while being reliably insulated by the tubular insulator 18.
  • the ozone generation unit 11 generates ozone by generating creeping discharge.
  • the ozone generating unit 11 causes a pressure loss by being installed in the flow path in the ozone generator 1, but according to the creeping discharge electrode structure 30 having the above-mentioned configuration, the flow path while efficiently generating ozone.
  • the proportion of the area occupied by the electrodes in the opening can be reduced. It is desirable that the aperture ratio (porosity) of the ozone generating unit 11 is, for example, 60% or more.
  • the axial direction of the insulator 18 in the creeping discharge electrode structure 30 is arranged orthogonally to the gas flow, but the present invention is not limited to this example, and the insulator 18 is not limited to this example. It may be installed in parallel or diagonally.
  • the humidifying device 2 evaporates, for example, fine water mist to humidify the passing air.
  • the humidifying device 2 includes a humidifying portion 22, a fan 23, a vehicle body portion 24, and the like.
  • the operation of the humidifying device 2 such as starting or stopping is controlled by the control device 5.
  • the humidifying unit 22 can increase the water content in the air, a commonly used technique can be applied.
  • a method of humidifying air for example, in addition to a method of evaporating fine water mist, there are a method of using ultrasonic waves, a method of blowing steam, and the like.
  • the humidifying unit 22 has, for example, a water tank 25, a pump 26, a nozzle 27, and the like.
  • the water stored in the water tank 25 is pressurized by the pump 26.
  • the water pressurized by the pump 26 is sprayed by the nozzle 27, for example, in the form of a mist.
  • the temperature of the surrounding air is lowered by, for example, several degrees Celsius due to the latent heat of vaporization. It is desirable to arrange the humidifying device 2 in the same direction as the ozone generator 1 and to install the outlet of the humidifying device 2 so that the air blown from the humidifying device 2 is ejected to the upper side of the ozone generator 1. ..
  • the humidifying device 2 By supplying the air cooled by the latent heat of evaporation to the indoor space 20 by the humidifying unit 22, the air containing ozone supplied from the ozone generator 1 to the indoor space 20 does not diffuse to the upper part of the space. , Stays at the bottom of the space.
  • By allowing air with a high ozone concentration to stand in the lower part of the space it is possible to inactivate viruses and bacteria mainly from the area where humans touch objects, that is, the place near the floor surface.
  • the fan 23 supplies the air that has been humidified by the humidifying unit 22 and has increased moisture to the indoor space 20.
  • the fan 23 is an example of the second supply unit.
  • the vehicle body portion 24 has a base portion 28 on which the humidifying portion 22 and the fan 23 are placed, and wheels 29 installed on the lower surface side of the base portion 28.
  • the humidifying device 2 is configured to be easily movable.
  • a casing (not shown) may be installed so as to cover the humidifying portion 22 and the fan 23.
  • the casing is provided with openings on the air suction side, which is the upstream side of the fan 23, and on the outlet side of the humidified air, which is the downstream side of the humidifying portion 22.
  • the ozone decomposition device 3 takes in the air in the indoor space 20 and decomposes the ozone contained in the taken in air. As shown in FIG. 8, the ozone decomposition device 3 includes an ozone decomposition unit 31, a fan 32, a casing 33, a vehicle body unit 34, and the like. The operation of the ozone decomposition device 3 such as starting or stopping is controlled by the control device 5.
  • the ozone decomposition unit 31 decomposes ozone. If the ozone decomposition unit 31 can decompose ozone contained in the circulating air, a commonly used technique can be applied. An example of the ozone decomposition unit 31 according to the present embodiment will be described later, but the present disclosure is not limited to this example.
  • the fan 32 supplies the air that has passed through the ozone decomposition unit 31 to the indoor space 20.
  • the fan 32 is an example of the third supply unit.
  • the casing 33 is installed so as to cover the ozone decomposition unit 31 and the fan 32.
  • the casing 33 is provided with openings on the air suction side, which is the upstream side of the ozone decomposition unit 31, and on the air blow side, which is the downstream side of the fan 32. Further, the casing 33 is formed with an air intake port separately from the opening in which the ozone decomposition unit 31 is installed.
  • a door portion 35 that can be opened and closed by a drive portion (not shown) such as a motor is installed at the air intake port.
  • the drive unit is driven by, for example, a control unit to open and close the door unit 35.
  • the fan 32 can suck the air in the indoor space 20 through the air intake port without passing through the ozone decomposition portion 31. Therefore, when the indoor air is circulated without decomposing ozone, the door portion 35 is opened. On the other hand, when the door portion 35 is closed, the fan 32 sucks the air in the indoor space 20 through the ozone decomposition portion 31. Therefore, when decomposing ozone contained in the indoor air, the door portion 35 is closed.
  • the vehicle body portion 34 has a pedestal portion 36 on which the ozone decomposition portion 31, a fan 32 and a casing 33 are placed, and wheels 37 installed on the lower surface side of the pedestal portion 36.
  • the ozone decomposition device 3 is configured to be easily movable.
  • the ozone decomposition unit 31 has, for example, a filter on which an ozone decomposition catalyst is supported. When air passes through the filter, ozone contained in the air is decomposed.
  • the ozone decomposition unit 31 may be an ultraviolet lamp that irradiates ultraviolet rays. Ozone is decomposed by the ultraviolet rays emitted by the ultraviolet lamp, and ozone is removed from the air passing near the ultraviolet lamp.
  • an ultraviolet lamp is used, the operation of ozone decomposition can be switched by turning the power on / off, so that it is not necessary to provide an air intake port or a door portion 35 in the casing 33.
  • the measuring device 4 is equipped with sensors capable of measuring at least ozone concentration, temperature, and humidity.
  • the ozone concentration, temperature or humidity may be measured by a single device or by different devices.
  • the measurement points by the measuring device 4 are set at a plurality of points in the indoor space 20 where the ozone concentration needs to be measured.
  • the measuring device 4 measures changes in ozone concentration, temperature, and humidity at a plurality of measurement points.
  • Individual sensors may be installed at each measurement point, or multiple measurement points may be connected to one sensor, and multiple measurement points may be switched periodically, and one sensor may release air from multiple measurement points. It may be measured.
  • the control device 5 includes an ozone concentration control unit 38, a humidification control unit 39, a CT value calculation unit 40, a storage unit 41, a CT value determination unit 42, a determination unit 43, and the like. ..
  • the ozone concentration control unit 38 controls the ozone generator 1 and the ozone decomposition device 3.
  • the ozone concentration control unit 38 switches between the operating state and the stopped state of the ozone generating unit 11 and / or the fan 12 of the ozone generator 1 and the ozone decomposing unit 31 and / or the fan 32 of the ozone decomposition device 3.
  • the ozone concentration control unit 38 transmits to each of the ozone generator 1 and the ozone decomposition device 3 a control signal for controlling the start or stop of the operation of each of the ozone generator 1 and the ozone decomposition device 3. Further, the ozone concentration control unit 38 receives measurement results regarding the ozone concentration, temperature and humidity from the measuring device 4.
  • the humidification control unit 39 controls the humidification device 2.
  • the humidification control unit 39 switches between the operating state and the stopped state of the humidifying unit 22 and / or the fan 23 of the humidifying device 2.
  • the humidification control unit 39 transmits a control signal for controlling the start or stop of the operation of the humidification device 2 to the humidification device 2. Further, the humidification control unit 39 receives the measurement result regarding humidity from the measuring device 4.
  • the CT value calculation unit 40 calculates a CT value which is the product of the ozone concentration measured by the measuring device 4 and the elapsed time from the start of measurement of the ozone concentration.
  • the storage unit 41 is, for example, a memory, and the storage unit 41 records a CT value required for inactivating a bacterium or a virus to be inactivated under certain environmental conditions as a reference CT value.
  • the reference CT value is associated with information about environmental conditions such as temperature or humidity when the reference CT value is met.
  • the CT value determining unit 42 corrects the reference CT value based on the ozone concentration, temperature and humidity measured by the measuring device 4, and determines the corrected value as the corrected CT value.
  • the determination unit 43 determines whether or not the calculated CT value satisfies the corrected CT value.
  • the control device 5 calculates the CT value at each measurement point based on the measured ozone concentration, temperature and humidity. The control device 5 determines whether or not the inactivation process by ozone is completed based on the calculated CT value and the corrected CT value.
  • a CT value as a determination criterion is set based on the data in which a certain virus is inactivated. For example, when data on the relationship between the virus survival rate and the CT value is obtained under certain environmental conditions, the CT value when the virus survival rate is 1% is used as the reference CT value.
  • the data obtained is that, for example, when the ozone concentration is constant at 0.25 ppm and the relative humidity is 80%, when the CT value becomes 60, the residual rate of the virus becomes 1% or less. .. It is known that the survival rate of viruses and bacteria is affected by humidity, and the survival rate of viruses and bacteria tends to increase as the relative humidity decreases.
  • Ozone destroys virus envelopes and bacterial cell membranes composed of proteins, etc., and the presence of water causes oxygen atoms generated by the decomposition power of ozone to react to form hydroxyl radicals and OH. , This powerful oxidizing power inactivates viruses or bacteria. Therefore, in an environment where ozone is contained in the air, the higher the humidity, the easier it is for viruses and bacteria to be inactivated.
  • the CT value at which the virus survival rate is 1% or less is 80. It is higher than the case of%. Therefore, it is desirable to make a correction to change the reference CT value as a judgment standard according to the measured relative humidity.
  • the correction coefficient for correcting the reference CT value is set based on the experimental result, the simulation result, and the like.
  • the CT value from the start of measurement to a certain point in time satisfies the corrected CT value corrected based on the relative humidity at the time of measurement. If the relative humidity is low at the start of the measurement and the relative humidity rises during the measurement, the corrected CT value will decrease during the measurement. Since the CT value is an integrated value that is the product of the ozone concentration and time, whether the measured CT value satisfies the corrected CT value based on the corrected corrected CT value at a certain measurement point point, which decreases with the increase in relative humidity. You just have to judge.
  • the survival rate of the virus or bacterium becomes 1% or less due to the exposure of the virus or bacterium to a predetermined amount of ozone when the corrected CT value is satisfied, as in the case of the data acquired in advance. ..
  • the control device 5 is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like.
  • a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing / arithmetic processing.
  • the program is installed in a ROM or other storage medium in advance, is provided in a state of being stored in a computer-readable storage medium, or is distributed via a wired or wireless communication means. Etc. may be applied.
  • the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • a virus inactivating system 10 is installed in the indoor space 20.
  • the operation of the ozone generator 1, the humidifying device 2, the ozone decomposition device 3, and the measuring device 4 is started.
  • the ozone generator 1 and the humidifying device 2 may be started at the same timing, or the humidifying device 2 may be started in advance in order to raise the humidity of the indoor space 20 in advance.
  • Measurement points by the measuring device 4 are installed at a plurality of locations in the indoor space 20.
  • the measuring device 4 starts measuring the ozone concentration, temperature and humidity. Further, the CT value of each measurement point is calculated and compared with a threshold value, for example, a corrected CT value, and it is determined whether or not the measured and calculated calculated CT value satisfies the corrected CT value.
  • a threshold value for example, a corrected CT value
  • the ozone generator 11 and the fan 12 are automatically or manually activated, and the ozone generator 1 generates ozone while supplying ozone to the interior space 20.
  • the humidifying section 22 and the fan 23 are manually or automatically activated, and the humidifying device 2 supplies the humidified air to the indoor space 20 while humidifying the air.
  • the ozone decomposition device 3 In the ozone decomposition device 3, only the fan 32 is automatically or manually started in a state where ozone decomposition is stopped or does not function.
  • the ozone decomposition device 3 drives a fan 32 to supply air containing ozone to the interior space 20 when the ozone concentration rises.
  • the operation of the humidifying device 2 is stopped to stop the humidification. That is, the humidifying device 2 is stopped when the air in the indoor space 20 reaches a predetermined humidity. The humidifier 2 is restarted or stopped based on the measured humidity so that the predetermined humidity is maintained.
  • the upper and lower thresholds of humidity are set to a humidity suitable for inactivating viruses or bacteria and to the extent that excessive humidity does not adversely affect building materials and the like.
  • the operation of the ozone generator 1 is stopped to stop the generation of ozone. That is, the ozone generator 1 is stopped when the air in the indoor space 20 has reached a predetermined ozone concentration.
  • the upper threshold of ozone concentration is set to a low concentration (for example, 0.25 ppm) that does not adversely affect the human body.
  • the ozone concentration decreases after the ozone concentration reaches a predetermined value and the ozone generator 1 is stopped, ozone is generated based on the measured ozone concentration so that the predetermined ozone concentration is maintained.
  • the device 1 is restarted or stopped. As a result, the ozone concentration of the indoor air remains at a predetermined value.
  • the ozone generating unit 11 and the fan 12 of the ozone generator 1 are stopped, the humidifying unit 22 and the fan 23 of the humidifying device 2 are stopped, and the fan 32 of the ozone decomposition device 3 is stopped. Stop. Then, the interior space 20 is filled with ozone until the calculated CT value satisfies the corrected CT value.
  • the corrected CT value is satisfied, for example, based on the CT value of the measurement point where the CT value is the smallest among the plurality of measurement values. As a result, it is presumed that the inactivating effect was exerted in all of the indoor space 20 by satisfying the conditions around the measurement point where the conditions are the strictest.
  • the corrected CT value is calculated by correcting the CT value recorded in advance to the reference CT value based on the actually measured relative humidity. If the relative humidity rises during measurement, the corrected CT value at each measurement point is sequentially changed, and whether the calculated CT value satisfies the corrected CT value based on the changed corrected CT value. Whether or not it is judged.
  • the inactivation treatment by ozone is completed.
  • ozone in the indoor space 20 is used. The process of removing is started.
  • it is determined that the corrected CT value is not satisfied it is determined that the inactivation treatment with ozone needs to be continued.
  • the operation of the virus inactivating system 10 is restarted, and the operation of the ozone generator 1, the humidifying device 2, and the ozone decomposition device 3 is started.
  • the fans 12 and 23 are automatically or manually started.
  • the ozone generator 1 and the humidifying device 2 drive the fan 32 so that the air containing ozone efficiently passes through the ozone decomposition device 3 without generating or humidifying ozone when the ozone concentration drops. ..
  • the ozone decomposition unit 31 and the fan 32 are manually or automatically activated, and the ozone decomposition device 3 decomposes the ozone contained in the air and supplies the ozone-removed air to the indoor space 20. .. As a result, the ozone concentration in the indoor space 20 can be reduced.
  • the operation of the ozone decomposition device 3 is stopped to stop the decomposition of ozone. That is, the ozone decomposition device 3 is stopped when the air in the indoor space 20 reaches a predetermined ozone concentration.
  • the fan 12 of the ozone generator 1 is stopped, the fan 23 of the humidifying device 2 is stopped, and the ozone decomposition unit 31 and the fan 32 of the ozone decomposition device 3 are stopped.
  • the ozone concentration is measured at a plurality of measurement points, it is determined whether or not the threshold is satisfied based on, for example, the ozone concentration of the measurement point where the ozone concentration is the maximum among the plurality of measured values. As a result, it is presumed that the ozone concentration has reached less than the predetermined value in all of the indoor spaces 20 due to the decrease in the ozone concentration around the measurement point where the ozone concentration is the highest.
  • the ozone inactivation method using the virus inactivation system 10 is completed.
  • ozone is generated in the indoor space 20, and the CT value is managed based on the measurement results at a plurality of measurement points.
  • the ozone concentration is low enough not to affect the human body. Even if the ozone concentration is low, the target virus or bacterium can be appropriately inactivated by controlling the CT value.
  • the measurement is performed at a plurality of measurement points, even if there is a difference in the measured values between the measurement points, if the measurement point at which the measured CT value is the minimum is used as a reference, the entire indoor space 20 is used. The necessary CT value can be secured in. Therefore, inactivation by ozone becomes possible even in a large space.
  • the relationship between the CT value and the residual rate of viruses and bacteria is affected by humidity, it is possible to efficiently inactivate viruses and bacteria by humidifying the space. Further, under low humidity conditions, the required CT value becomes high, but correction is performed to change the reference CT value according to the measured relative humidity. As a result, it is determined whether or not the calculated CT value measured and calculated at the measurement point satisfies the corrected reference CT value, so that inactivation by ozone becomes possible even under low humidity conditions.
  • the ozone generator 1, the humidifying device 2, and the ozone decomposition device 3 are separate devices in the virus inactivating system, but the present disclosure is not limited to this example.
  • the ozone-based virus inactivating system may include an integrated virus inactivating device in which an ozone generating unit, a humidifying unit, and an ozone decomposing unit are housed in one casing.
  • a fan is housed in the virus inactivating device, and the air that has passed through the virus inactivating device is supplied to the indoor space 20.
  • a flow path is formed inside the casing of the virus inactivating device, and the flow path is configured so that the air flowing through the flow path can pass through the ozone generating part, the humidifying part, and the ozone decomposition part.
  • ozone By activating the ozone generating part, the humidifying part and the fan, ozone can be generated to humidify the air.
  • the ozone decomposition unit When generating ozone, supply air to the bypass flow path that bypasses the ozone decomposition part or move the ozone decomposition part to a position off the flow path so that the air containing ozone does not pass through the ozone decomposition part. It has a structure to make it.
  • the ozone decomposition unit may be installed so as to be located upstream of the ozone generation unit, and may have a configuration in which air flows in the order of the ozone decomposition unit and the ozone generation unit.
  • the ozone contained in the air can be decomposed by stopping the operation of the ozone generating part and the humidifying part and allowing air to flow through the ozone decomposing part while starting the fan.
  • the ozone decomposition unit cuts off the supply of air to the bypass flow path and supplies air so that it passes through the ozone decomposition unit so that the air containing ozone passes through the ozone decomposition unit.
  • the ozone decomposition part located outside the flow path is moved into the flow path.
  • the virus inactivating device Even when the virus inactivating device is used, it is sufficient to control the start and stop of the ozone generating section, the humidifying section and the ozone decomposing section, as in the case of the virus inactivating system of the first embodiment. Thereby, the ozone concentration and the humidity in the indoor space 20 can be increased, and the ozone concentration in the indoor space 20 can be decreased.
  • the case where the ozone generating part, the humidifying part and the ozone decomposition part are housed in one casing has been described, but two of the three may be housed in one casing.
  • the ozone decomposition part is not included, and the ozone generation part and the humidifying part may be housed in one casing.
  • the virus inactivating system and the virus inactivating method described in each of the above-described embodiments are grasped as follows, for example.
  • the virus inactivation system (10) includes an ozone generating unit (11) that generates ozone and a first supply unit (20) that sends air containing ozone generated by the ozone generating unit to an indoor space (20). 12), a measuring unit (4) that measures the ozone concentration, temperature, and humidity at a plurality of measuring points in the indoor space, the ozone concentration measured by the measuring unit, and the progress from the start of measuring the ozone concentration.
  • a CT value calculation unit (40) that calculates the CT value, which is the product of time, and a memory in which the reference CT value necessary for inactivating the bacteria or virus to be inactivated under predetermined environmental conditions are recorded.
  • a CT value determination unit (41) that corrects the reference CT value based on the ozone concentration, the temperature, and the humidity measured by the measurement unit, and determines the corrected value as the corrected CT value. 42) and a determination unit (43) for determining whether or not the calculated CT value satisfies the corrected CT value.
  • ozone is generated by the ozone generation unit, and the air containing the generated ozone is sent to the indoor space by the first supply unit.
  • the measuring unit measures the ozone concentration, temperature, and humidity at a plurality of measuring points in the indoor space. Then, the CT value, which is the product of the measured ozone concentration and the elapsed time from the start of measurement of the ozone concentration, is calculated.
  • the reference CT value is a CT value necessary for inactivating a bacterium or virus to be inactivated under predetermined environmental conditions, and the reference CT value is recorded in the storage unit.
  • the corrected value is determined as the corrected CT value, and the calculated CT value satisfies the corrected CT value. Is judged.
  • it is determined that the corrected CT value is not satisfied it is determined that the inactivation treatment with ozone needs to be continued.
  • a humidifying section (22) that increases the moisture in the air and a second supply section (23) that sends the humidified air to the indoor space by increasing the moisture by the humidifying section.
  • a humidification control unit (39) that controls the humidification unit and / or the second supply unit so that the humidity at the measurement point satisfies a predetermined threshold based on the humidity measured by the measurement unit. You may prepare.
  • the moisture in the air is increased by the humidifying part, and the humidified air is sent to the indoor space. Further, the humidity is measured by the measuring unit, and the humidifying unit and / or the second supply unit is controlled so that the humidity at the measuring point satisfies a predetermined threshold value based on the measured humidity.
  • the ozone generation unit and / or the first supply unit so that the ozone concentration at the measurement point satisfies a predetermined threshold based on the ozone concentration measured by the measurement unit. It may be further provided with an ozone concentration control unit (38) for controlling the above.
  • the ozone concentration is measured by the measuring unit, and the ozone generating unit and / or the first supply unit is controlled so that the ozone concentration at the measurement point satisfies a predetermined threshold value based on the measured ozone concentration. ..
  • the virus inactivating system includes an ozone decomposition unit (31) that decomposes ozone and a third supply unit (32) that sends air that has passed through the ozone decomposition unit to an indoor space, and controls the ozone concentration.
  • the unit may control the ozone decomposition unit and / or the third supply unit so as to satisfy a predetermined threshold value based on the ozone concentration measured by the measuring unit.
  • ozone is decomposed by the ozone decomposition part, and the ozone-free air that has passed through the ozone decomposition part is sent to the indoor space. Further, the ozone concentration is measured by the measuring unit, and the ozone decomposition unit and / or the third supply unit is controlled so that the ozone concentration at the measurement point satisfies a predetermined threshold value based on the measured ozone concentration.
  • the ozone generating part, the humidifying part, and the ozone decomposing part may be housed in one casing.
  • the ozone generating part, the humidifying part, and the ozone decomposition part housed in one casing can be handled integrally.
  • the ozone generating unit, the humidifying unit, and the ozone decomposing unit may be configured as separate devices.
  • the ozone generation part, the humidifying part, and the ozone decomposition part can be handled as separate devices.
  • the humidifying section is arranged so that the ozone generating section and the humidifying section are arranged in the same direction, and the air blown from the humidifying section is ejected to the upper side of the ozone generating section.
  • the outlet may be installed.
  • the mist-like water sprayed from the humidifying section lowers the temperature of the surrounding air by, for example, several degrees Celsius due to the latent heat of vaporization. Then, the air cooled by the humidifying part is supplied to the indoor space, so that the air containing ozone supplied from the ozone generating part to the indoor space does not diffuse to the upper part of the space but to the lower part of the space. Stay.
  • the virus inactivating method measures ozone concentration, temperature, and humidity at a step of generating ozone, a step of sending air containing the generated ozone to an indoor space, and a plurality of measurement points in the indoor space. Based on the step, the step of calculating the CT value which is the product of the measured ozone concentration and the elapsed time from the start of the measurement of the ozone concentration, and the measured ozone concentration, the temperature and the humidity.
  • a step of correcting the reference CT value required for inactivating the bacteria or virus to be inactivated under predetermined environmental conditions and determining the corrected value as the corrected CT value, and the calculated CT value. Includes a step of determining whether or not the corrected CT value is satisfied.
  • ozone is generated and the air containing the generated ozone is sent to the indoor space. Further, the ozone concentration, temperature and humidity at a plurality of measurement points in the indoor space are measured, and the CT value, which is the product of the measured ozone concentration and the elapsed time from the start of measurement of the ozone concentration, is calculated.
  • the reference CT value is a CT value required for inactivating a bacterium or virus to be inactivated under predetermined environmental conditions. Based on the measured ozone concentration, temperature and humidity, the reference CT value is corrected, the corrected value is determined as the corrected CT value, and it is determined whether or not the calculated CT value satisfies the corrected CT value.
  • the corrected CT value When it is determined that the corrected CT value is satisfied, it can be determined that the inactivation process by ozone is completed. In this case, for example, the process of removing ozone in the indoor space is started. When it is determined that the corrected CT value is not satisfied, it is determined that the inactivation treatment with ozone needs to be continued.
  • Ozone generator 2 Humidifying device 3: Ozone decomposition device 4: Measuring device 5: Control device 10: Virus inactivation system 11: Ozone generator 12: Fan (first supply unit) 13: Casing 14: Body part 15: Base part 16: Wheel 17: Main power supply part 18: Insulator 19: Internal electrode 20: Interior space 21: Surface electrode 22: Humidifying part 23: Fan (second supply part) 24: Body part 25: Water tank 26: Pump 27: Nozzle 28: Base part 29: Wheel 30: Creature discharge electrode structure 31: Ozonolysis part 32: Fan (third supply part) 33: Casing 34: Body unit 35: Door unit 36: Base unit 37: Wheel 38: Ozone concentration control unit 39: Humidification control unit 40: CT value calculation unit 41: Storage unit 42: CT value determination unit 43: Judgment unit

Abstract

The purpose of the present invention is to reliably implement inactivation, via ozone, at a required location of an indoor space in response to measured environmental conditions. A virus inactivating system (10) comprises an ozone generating device (1), a measurement device (4), and a control device (5). The ozone generating device (1) generates ozone. The measurement device (4) measures the ozone concentration, temperature, and humidity at a plurality of measurement points in an indoor space (20). The control device (5) has: a CT value calculation unit that calculates a CT value, which is a product of the ozone concentration measured by the measurement device (4) and an elapsed time from the start of measurement of the ozone concentration; a storage unit that records a reference CT value necessary for inactivating a bacterium or virus to be inactivated under prescribed environmental conditions; a CT value determination unit that corrects the reference CT value on the basis of the ozone concentration, temperature, and humidity measured by the measurement device, and determines the corrected value to be a corrected CT value; and an assessment unit that assesses whether the calculated CT value satisfies the corrected CT value.

Description

ウイルス不活化システム及びウイルス不活化方法Virus inactivation system and virus inactivation method
 本開示は、ウイルス不活化システム及びウイルス不活化方法に関するものである。 This disclosure relates to a virus inactivating system and a virus inactivating method.
 インフルエンザウイルスやコロナウイルスなどのウイルスによって引き起こされる感染症の伝染や流行を防止するため、ウイルス除去対策が行われている。ウイルス除去対策では、エアロゾル感染、接触感染などの感染メカニズムに応じてそれぞれ異なる方法が採られている。 Virus removal measures are being taken to prevent the transmission and epidemic of infectious diseases caused by viruses such as influenza virus and coronavirus. As for virus removal measures, different methods are adopted depending on the infection mechanism such as aerosol infection and contact infection.
 エアロゾル感染は、空気中に漂う微細なエアロゾルを人が吸引することによって引き起こされることから、その対策方法として、換気や、サブミクロンクラスに対応した高効率エアフィルタ(例えばHEPAフィルタ)によるウイルスの除去などが行われている。 Aerosol infection is caused by human inhalation of fine aerosols floating in the air, and as a countermeasure, ventilation and removal of viruses by a high-efficiency air filter (for example, HEPA filter) compatible with the submicron class. And so on.
 接触感染は、感染者が触れた物をウイルスの感染力が残存している間に人が触れることによって引き起こされる。接触感染の対策方法として、各人の手洗いや、人が触れる部分のアルコール等による拭き取りなどが行われている。 Contact infection is caused by a person touching something touched by an infected person while the infectivity of the virus remains. As a countermeasure against contact infection, each person's hand is washed and the part touched by the person is wiped off with alcohol or the like.
 以下では、ウイルスを不活化することと細菌を殺菌することについて、総称して「不活化」という表現とする。なお、下記の特許文献1では、オゾンを使用して衣服等の滅菌を行うオゾン滅菌装置に関する技術が開示されている。 In the following, inactivating viruses and killing bacteria will be collectively referred to as "inactivation". The following Patent Document 1 discloses a technique relating to an ozone sterilizer that sterilizes clothes and the like using ozone.
特開2012-75711号公報Japanese Unexamined Patent Publication No. 2012-75711
 スポーツ施設や展示場などの建築物の大規模空間では、上述した対策の手間が大掛かりにならざるを得ず、拭き忘れなどの人為的なミスも想定される。そのため、十分な感染対策には大変な労力を要している。 In a large-scale space of a building such as a sports facility or an exhibition hall, the above-mentioned measures must be taken on a large scale, and human error such as forgetting to wipe it can be assumed. Therefore, it takes a lot of effort to take sufficient infection control measures.
 従来、ウイルスを不活化するため、紫外線又はオゾンを用いる方法が提案されている。しかし、紫外線を用いる場合、紫外線が遮蔽されてしまい照射されない部分の不活化が不可能である。また、オゾンを対象物に接触させて対象物に付着したウイルスを不活化する場合、空気と共にオゾンを空間に隈なく行き渡らせる必要があるが、特に大規模空間において、オゾンを所要箇所へ供給する方法が検討されていないのが現状である。 Conventionally, in order to inactivate the virus, a method using ultraviolet rays or ozone has been proposed. However, when ultraviolet rays are used, it is impossible to inactivate the portion that is not irradiated because the ultraviolet rays are shielded. In addition, when ozone is brought into contact with an object to inactivate the virus attached to the object, it is necessary to spread ozone throughout the space together with air, but ozone is supplied to the required points especially in a large-scale space. At present, the method has not been examined.
 本開示は、このような事情に鑑みてなされたものであって、測定された環境条件下に対応して、室内空間の所要箇所におけるオゾンによる不活化を確実に行うことが可能なウイルス不活化システム及びウイルス不活化方法を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and is a virus inactivation capable of reliably inactivating ozone at a required part of an indoor space in response to measured environmental conditions. It is intended to provide a system and a method of virus inactivation.
 本開示に係るウイルス不活化システムは、オゾンを発生させるオゾン発生部と、前記オゾン発生部で発生したオゾンが含まれる空気を室内空間へ送る第1供給部と、前記室内空間の複数の測定点においてオゾン濃度、温度及び湿度を測定する測定部と、前記測定部によって測定された前記オゾン濃度と、前記オゾン濃度の測定開始からの経過時間との積であるCT値を算出するCT値算出部と、所定の環境条件下で不活化対象とする細菌又はウイルスを不活化するために必要な基準CT値が記録された記憶部と、前記測定部によって測定された前記オゾン濃度、前記温度及び前記湿度に基づいて前記基準CT値を補正して、補正後の値を補正CT値として決定するCT値決定部と、算出された前記CT値が前記補正CT値を満たすか否かを判断する判断部とを備える。 The virus inactivation system according to the present disclosure includes an ozone generating unit that generates ozone, a first supply unit that sends air containing ozone generated in the ozone generating unit to an indoor space, and a plurality of measurement points in the indoor space. In, a measurement unit that measures ozone concentration, temperature, and humidity, and a CT value calculation unit that calculates a CT value that is the product of the ozone concentration measured by the measurement unit and the elapsed time from the start of measurement of the ozone concentration. A storage unit in which the reference CT value required for inactivating the bacteria or virus to be inactivated under predetermined environmental conditions is recorded, the ozone concentration measured by the measuring unit, the temperature, and the above. A CT value determining unit that corrects the reference CT value based on humidity and determines the corrected value as a corrected CT value, and a determination that determines whether or not the calculated CT value satisfies the corrected CT value. It has a part.
 本開示に係るウイルス不活化方法は、オゾンを発生させるステップと、発生したオゾンが含まれる空気を室内空間へ送るステップと、前記室内空間の複数の測定点においてオゾン濃度、温度及び湿度を測定するステップと、測定された前記オゾン濃度と、前記オゾン濃度の測定開始からの経過時間との積であるCT値を算出するステップと、測定された前記オゾン濃度、前記温度及び前記湿度に基づいて、所定の環境条件下で不活化対象とする細菌又はウイルスを不活化するために必要な基準CT値を補正して、補正後の値を補正CT値として決定するステップと、算出された前記CT値が前記補正CT値を満たすか否かを判断するステップとを備える。 The virus inactivating method according to the present disclosure measures ozone concentration, temperature, and humidity at a step of generating ozone, a step of sending air containing the generated ozone to an indoor space, and a plurality of measurement points in the indoor space. Based on the step, the step of calculating the CT value which is the product of the measured ozone concentration and the elapsed time from the start of the measurement of the ozone concentration, and the measured ozone concentration, the temperature and the humidity. A step of correcting the reference CT value required for inactivating the bacteria or virus to be inactivated under predetermined environmental conditions and determining the corrected value as the corrected CT value, and the calculated CT value. Includes a step of determining whether or not the corrected CT value is satisfied.
 本開示によれば、測定された環境条件下に対応して、室内空間の所要箇所におけるオゾンによる不活化を確実に行うことができる。 According to the present disclosure, it is possible to reliably perform inactivation by ozone at a required part of the indoor space in response to the measured environmental conditions.
本開示の一実施形態に係るウイルス不活化システムを示す概略図である。It is a schematic diagram which shows the virus inactivation system which concerns on one Embodiment of this disclosure. ウイルスの残存率とCT値の関係を示すグラフである。It is a graph which shows the relationship between the virus survival rate and the CT value. 本開示の一実施形態に係るオゾン発生装置を示す側面図である。It is a side view which shows the ozone generator which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係るオゾン発生装置のオゾン発生部を示す正面図である。It is a front view which shows the ozone generation part of the ozone generator which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係るオゾン発生装置の沿面放電電極構造を示す構成図である。It is a block diagram which shows the creeping discharge electrode structure of the ozone generator which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係るオゾン発生装置の沿面放電電極構造を示す斜視図である。It is a perspective view which shows the creeping discharge electrode structure of the ozone generator which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る加湿装置を示す側面図である。It is a side view which shows the humidifying apparatus which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係るオゾン分解装置を示す側面図である。It is a side view which shows the ozone decomposition apparatus which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る制御装置を示すブロック図である。It is a block diagram which shows the control apparatus which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係るウイルス不活化システムの動作の一例を示すタイミングチャートである。It is a timing chart which shows an example of the operation of the virus inactivation system which concerns on one Embodiment of this disclosure.
 以下、本開示の一実施形態に係るウイルス不活化システム10について説明する。
 図1に示すように、本実施形態に係るウイルス不活化システム10は、空間内のオゾン濃度を測定しつつ、室内空間20の測定点へオゾンを必要程度に行き渡らせて、測定された環境条件下に対応して、室内空間20の所要箇所におけるオゾンによるウイルス又は細菌の不活化を確実に行うことができる。
Hereinafter, the virus inactivating system 10 according to the embodiment of the present disclosure will be described.
As shown in FIG. 1, the virus inactivating system 10 according to the present embodiment measures the ozone concentration in the space and distributes ozone to the measurement points in the indoor space 20 to a necessary degree to measure the environmental conditions. Corresponding to the following, it is possible to reliably inactivate a virus or a bacterium by ozone at a required location in the indoor space 20.
 ウイルス不活化システム10は、オゾンによるウイルス又は細菌の不活化の有効性を図る指標としてCT値を採用する。CT値は、オゾン濃度(ppm)と、そのオゾン濃度での処理すべき対象物との接触時間(min)の積で表される値(ppm・min)である。CT値60とは、オゾン濃度1ppmで60分暴露された条件を示している。同一のCT値で比較した場合、ウイルスや細菌の種類によって、その不活化の効果(ウイルスの残存率又は細菌の残存率)に違いがあることが知られている。また、様々な研究や実験を通して、あるCT値におけるウイルス又は細菌の残存率に関するデータが、ウイルスや細菌の種類ごとに蓄積されたり公表されたりしている。図2には、ウイルスの残存率とCT値の関係を示すグラフの一例を示す。 The virus inactivation system 10 adopts a CT value as an index for measuring the effectiveness of inactivating a virus or a bacterium by ozone. The CT value is a value (ppm · min) expressed by the product of the ozone concentration (ppm) and the contact time (min) with the object to be treated at the ozone concentration. The CT value of 60 indicates a condition of being exposed to ozone at an ozone concentration of 1 ppm for 60 minutes. When compared with the same CT value, it is known that the effect of inactivation (survival rate of virus or survival rate of bacteria) differs depending on the type of virus or bacterium. In addition, through various studies and experiments, data on the survival rate of viruses or bacteria at a certain CT value is accumulated or published for each type of virus or bacterium. FIG. 2 shows an example of a graph showing the relationship between the virus survival rate and the CT value.
 本実施形態では、複数の測定点のうち最小の算出CT値となっている測定点で、算出CT値が所定の閾値を超えたか否かを判断し、判断条件を満たしたときにオゾンによる不活化処理を終了させる。すなわち、算出CT値が所定の閾値を超えることによって、測定点周辺で所定量以上のオゾンが暴露されていることから、測定点周辺でのウイルスや細菌の残存率が所定値(例えば1%)以下になっていると推測される。 In the present embodiment, it is determined whether or not the calculated CT value exceeds a predetermined threshold value at the measurement point which is the minimum calculated CT value among the plurality of measurement points, and when the determination condition is satisfied, ozone causes inactivation. End the activation process. That is, when the calculated CT value exceeds a predetermined threshold value, a predetermined amount or more of ozone is exposed around the measurement point, so that the residual rate of viruses and bacteria around the measurement point is a predetermined value (for example, 1%). It is presumed that it is as follows.
 所定の閾値とは、例えば、補正CT値である。本実施形態において、記憶部41(図9参照)には、ある環境条件下でウイルス又は細菌の不活化効果を発揮することが知られているCT値が基準CT値として記録される。基準CT値は、不活化対象とするウイルスや細菌の種類ごとに記録されている。本実施形態では、予め記録されている基準CT値を、実際に測定されている環境条件下で不活化効果が発揮されるCT値に補正する。補正後のCT値である補正CT値が判断基準とされ、この場合、算出CT値が、補正CT値を超えたか否かが判断される。なお、補正を行わずに、記憶部41に記録された補正前の基準CT値を判断基準としてもよいが、実際の環境条件において必要なCT値を満たしていない状態で、不活化処理が終了してしまう可能性がある。 The predetermined threshold value is, for example, a corrected CT value. In the present embodiment, a CT value known to exert an inactivating effect of a virus or a bacterium under certain environmental conditions is recorded as a reference CT value in the storage unit 41 (see FIG. 9). The reference CT value is recorded for each type of virus or bacterium to be inactivated. In the present embodiment, the pre-recorded reference CT value is corrected to the CT value at which the inactivating effect is exhibited under the environmental conditions actually measured. The corrected CT value, which is the corrected CT value, is used as a determination criterion, and in this case, it is determined whether or not the calculated CT value exceeds the corrected CT value. The reference CT value before correction recorded in the storage unit 41 may be used as a judgment standard without correction, but the inactivation process is completed when the CT value required under the actual environmental conditions is not satisfied. There is a possibility that it will be done.
 ウイルス不活化システム10は、図1に示すように、オゾン発生装置1と、加湿装置2と、オゾン分解装置3と、測定装置4と、制御装置5などを備える。本実施形態では、オゾン発生装置1、加湿装置2、オゾン分解装置3及び測定装置4は、それぞれ個別に取り扱うことが可能な別体の装置として構成されている。 As shown in FIG. 1, the virus inactivating system 10 includes an ozone generator 1, a humidifying device 2, an ozone decomposition device 3, a measuring device 4, a control device 5, and the like. In the present embodiment, the ozone generator 1, the humidifying device 2, the ozone decomposition device 3, and the measuring device 4 are configured as separate devices that can be handled individually.
 オゾン発生装置1は、オゾンを発生させ、建築物の室内空間20にオゾンを供給する。オゾン発生装置1は、図3に示すように、オゾン発生部11と、ファン12と、ケーシング13と、車体部14などを備える。オゾン発生装置1は、制御装置5によって、起動又は停止などの運転が制御される。 The ozone generator 1 generates ozone and supplies ozone to the interior space 20 of the building. As shown in FIG. 3, the ozone generator 1 includes an ozone generator 11, a fan 12, a casing 13, a vehicle body portion 14, and the like. The operation of the ozone generator 1 such as starting or stopping is controlled by the control device 5.
 オゾン発生部11は、電気的にオゾンを発生させることができれば、通常用いられている技術を適用できる。本実施形態に係るオゾン発生部11の一例を後述するが、本開示はこの例に限定されない。 If the ozone generating unit 11 can generate ozone electrically, a commonly used technique can be applied to the ozone generating unit 11. An example of the ozone generating unit 11 according to the present embodiment will be described later, but the present disclosure is not limited to this example.
 ファン12は、オゾン発生部11で発生したオゾンを室内空間20へ供給する。ファン12は、第1供給部の一例である。 The fan 12 supplies the ozone generated by the ozone generating unit 11 to the indoor space 20. The fan 12 is an example of the first supply unit.
 ケーシング13は、オゾン発生部11及びファン12を覆うように設置される。ケーシング13には、ファン12の上流側である空気吸込み側と、オゾン発生部11の下流側であるオゾンを含む空気の吹出し側のそれぞれに開口部が設けられる。 The casing 13 is installed so as to cover the ozone generating portion 11 and the fan 12. The casing 13 is provided with openings on the air suction side, which is the upstream side of the fan 12, and on the blowout side of the ozone-containing air, which is the downstream side of the ozone generation unit 11.
 車体部14は、オゾン発生部11、ファン12及びケーシング13が載置される台部15と、台部15の下面側に設置される車輪16を有する。これにより、オゾン発生装置1が容易に移動可能に構成される。 The vehicle body portion 14 has a pedestal portion 15 on which the ozone generating portion 11, the fan 12 and the casing 13 are placed, and the wheels 16 installed on the lower surface side of the pedestal portion 15. As a result, the ozone generator 1 is configured to be easily movable.
 オゾン発生部11は、例えば、プラズマ放電又はコロナ放電を生じさせる電極を有する。図4から図6に示すオゾン発生部11の例では、沿面放電電極構造30を有する。 The ozone generating unit 11 has, for example, an electrode that generates plasma discharge or corona discharge. The example of the ozone generating unit 11 shown in FIGS. 4 to 6 has a creeping discharge electrode structure 30.
 オゾン発生部11は、図5に示すように、主電源部17と、絶縁体18と、内部電極19と、表面電極21などを備える。絶縁体18、内部電極19及び表面電極21は、沿面放電電極構造30を構成する。オゾン発生部11は、1つ又は複数の沿面放電電極構造30を備える。 As shown in FIG. 5, the ozone generation unit 11 includes a main power supply unit 17, an insulator 18, an internal electrode 19, a surface electrode 21, and the like. The insulator 18, the internal electrode 19, and the surface electrode 21 constitute a creeping discharge electrode structure 30. The ozone generating unit 11 includes one or a plurality of creeping discharge electrode structures 30.
 主電源部17は内部電極19と接続され、表面電極21は接地されている。主電源部17は、高周波高電圧を内部電極19に印加する。内部電極19に電圧が印加されると、表面電極21と絶縁体18との境界表面に沿面放電が発生する。これにより、プラズマの発生によってオゾンやラジカルが生成される。なお、主電源部17は表面電極21と接続されてもよく、内部電極19は接地されていてもよい。 The main power supply unit 17 is connected to the internal electrode 19, and the surface electrode 21 is grounded. The main power supply unit 17 applies a high frequency high voltage to the internal electrode 19. When a voltage is applied to the internal electrode 19, creeping discharge occurs on the boundary surface between the surface electrode 21 and the insulator 18. As a result, ozone and radicals are generated by the generation of plasma. The main power supply unit 17 may be connected to the surface electrode 21, and the internal electrode 19 may be grounded.
 絶縁体18は、例えばセラミックス製であって電気的絶縁性を有し、中空の円筒形状である。絶縁体18は、軸線方向がガス流れに対して直交して設置される。絶縁体18は、市販のセラミックスチューブを用いることによって、製造コストを抑制できる。
 絶縁体18の軸線を通過する中空部分には、絶縁体18に密着して内部電極19が軸線に対して平行に設置される。内部電極19は、金属製の中実若しくは中空の棒状部材、金属繊維又は鉄粉などである。
 絶縁体18の表面には、絶縁体18に対して拘束させずに、かつ、絶縁体18に密着して表面電極21が設置される。表面電極21は、1本の絶縁体18の軸線方向に設置される。
The insulator 18 is made of, for example, ceramics, has electrical insulating properties, and has a hollow cylindrical shape. The insulator 18 is installed so that the axial direction is orthogonal to the gas flow. The manufacturing cost of the insulator 18 can be suppressed by using a commercially available ceramic tube.
In the hollow portion passing through the axis of the insulator 18, the internal electrode 19 is installed in close contact with the insulator 18 in parallel with the axis. The internal electrode 19 is a solid or hollow rod-shaped member made of metal, metal fiber, iron powder, or the like.
On the surface of the insulator 18, the surface electrode 21 is installed without being constrained to the insulator 18 and in close contact with the insulator 18. The surface electrode 21 is installed in the axial direction of one insulator 18.
 表面電極21は、ガス流れに対して平行又は斜めに線状に形成される。表面電極21は、例えば、図6に示すように、コイルスプリングを絶縁体18の表面に巻きつけることによって、絶縁体18の表面に密着して形成される。 The surface electrode 21 is formed in a linear shape parallel to or diagonally to the gas flow. The surface electrode 21 is formed in close contact with the surface of the insulator 18, for example, by winding a coil spring around the surface of the insulator 18, as shown in FIG.
 オゾン発生部11において、内部電極19は絶縁体18の内部に絶縁体18に密着して設けられ、表面電極21は絶縁体18の表面に密着して設けられることから、内部電極19と表面電極21は、筒状の絶縁体18によって確実に絶縁されながら、表面電極21と絶縁体18との境界表面で沿面放電を発生させることができる。オゾン発生部11は、沿面放電を発生させることによって、オゾンを生じさせる。 In the ozone generation unit 11, the internal electrode 19 is provided in close contact with the insulator 18 inside the insulator 18, and the surface electrode 21 is provided in close contact with the surface of the insulator 18, so that the internal electrode 19 and the surface electrode are provided. 21 can generate creeping discharge at the boundary surface between the surface electrode 21 and the insulator 18 while being reliably insulated by the tubular insulator 18. The ozone generation unit 11 generates ozone by generating creeping discharge.
 オゾン発生部11がオゾン発生装置1における流路に設置されることによって、圧力損失を生じさせるが、上述した構成を有する沿面放電電極構造30によれば、効率良くオゾンを発生させつつ、流路の開口部において電極が占める面積の割合を低減できる。オゾン発生部11において開口率(空隙率)は、例えば60%以上であることが望ましい。なお、図3及び図4に示す例では、沿面放電電極構造30における絶縁体18の軸方向がガス流れに対して直交に配置されているが、この例に限定されず、ガス流れに対して平行や斜めに設置されてもよい。 The ozone generating unit 11 causes a pressure loss by being installed in the flow path in the ozone generator 1, but according to the creeping discharge electrode structure 30 having the above-mentioned configuration, the flow path while efficiently generating ozone. The proportion of the area occupied by the electrodes in the opening can be reduced. It is desirable that the aperture ratio (porosity) of the ozone generating unit 11 is, for example, 60% or more. In the examples shown in FIGS. 3 and 4, the axial direction of the insulator 18 in the creeping discharge electrode structure 30 is arranged orthogonally to the gas flow, but the present invention is not limited to this example, and the insulator 18 is not limited to this example. It may be installed in parallel or diagonally.
 加湿装置2は、例えば、微細な水ミストを蒸発させて、通過する空気に対して加湿を行う。加湿装置2は、図7に示すように、加湿部22と、ファン23と、車体部24などを備える。加湿装置2は、制御装置5によって、起動又は停止などの運転が制御される。 The humidifying device 2 evaporates, for example, fine water mist to humidify the passing air. As shown in FIG. 7, the humidifying device 2 includes a humidifying portion 22, a fan 23, a vehicle body portion 24, and the like. The operation of the humidifying device 2 such as starting or stopping is controlled by the control device 5.
 加湿部22は、空気中に含まれる水分を増加させることができれば、通常用いられている技術を適用できる。空気に加湿する方法として、例えば、微細な水ミストを蒸発させる方法以外に、超音波を用いる方法、又は蒸気を吹き込む方法などがある。加湿部22は、例えば、水タンク25と、ポンプ26と、ノズル27などを有する。水タンク25において貯留された水がポンプ26によって加圧される。ポンプ26によって加圧された水は、ノズル27によって例えば霧状に噴射される。 If the humidifying unit 22 can increase the water content in the air, a commonly used technique can be applied. As a method of humidifying air, for example, in addition to a method of evaporating fine water mist, there are a method of using ultrasonic waves, a method of blowing steam, and the like. The humidifying unit 22 has, for example, a water tank 25, a pump 26, a nozzle 27, and the like. The water stored in the water tank 25 is pressurized by the pump 26. The water pressurized by the pump 26 is sprayed by the nozzle 27, for example, in the form of a mist.
 加湿部22から噴射された霧状の水によれば、蒸発潜熱によって周囲の空気の温度を例えば数℃低下させる。オゾン発生装置1と同一方向に加湿装置2を配置し、かつ、加湿装置2から吹き出された空気がオゾン発生装置1の上側に噴出するように、加湿装置2の吹出し口を設置することが望ましい。加湿部22によって蒸発潜熱で冷却された空気が室内空間20へ供給されることによって、オゾン発生装置1から室内空間20に供給されたオゾンが含まれた空気は、空間の上方へ拡散することなく、空間の下部に滞留する。空間の下部にオゾン濃度が高い空気を静置することで、人が物に手を触れる範囲、すなわち、床(フロア)面に近い場所から重点的にウイルスや細菌を不活化することができる。 According to the mist-like water sprayed from the humidifying unit 22, the temperature of the surrounding air is lowered by, for example, several degrees Celsius due to the latent heat of vaporization. It is desirable to arrange the humidifying device 2 in the same direction as the ozone generator 1 and to install the outlet of the humidifying device 2 so that the air blown from the humidifying device 2 is ejected to the upper side of the ozone generator 1. .. By supplying the air cooled by the latent heat of evaporation to the indoor space 20 by the humidifying unit 22, the air containing ozone supplied from the ozone generator 1 to the indoor space 20 does not diffuse to the upper part of the space. , Stays at the bottom of the space. By allowing air with a high ozone concentration to stand in the lower part of the space, it is possible to inactivate viruses and bacteria mainly from the area where humans touch objects, that is, the place near the floor surface.
 ファン23は、加湿部22によって加湿されて水分が増加した空気を室内空間20へ供給する。ファン23は、第2供給部の一例である。 The fan 23 supplies the air that has been humidified by the humidifying unit 22 and has increased moisture to the indoor space 20. The fan 23 is an example of the second supply unit.
 車体部24は、加湿部22及びファン23が載置される台部28と、台部28の下面側に設置される車輪29を有する。これにより、加湿装置2が容易に移動可能に構成される。 The vehicle body portion 24 has a base portion 28 on which the humidifying portion 22 and the fan 23 are placed, and wheels 29 installed on the lower surface side of the base portion 28. As a result, the humidifying device 2 is configured to be easily movable.
 なお、加湿部22及びファン23を覆うようにケーシング(図示せず。)が設置されてもよい。ケーシングには、ファン23の上流側である空気吸込み側と、加湿部22の下流側である加湿された空気の吹出し側のそれぞれに開口部が設けられる。 A casing (not shown) may be installed so as to cover the humidifying portion 22 and the fan 23. The casing is provided with openings on the air suction side, which is the upstream side of the fan 23, and on the outlet side of the humidified air, which is the downstream side of the humidifying portion 22.
 オゾン分解装置3は、室内空間20の空気を取り入れて、取り入れた空気に含まれるオゾンを分解する。オゾン分解装置3は、図8に示すように、オゾン分解部31と、ファン32と、ケーシング33と、車体部34などを有する。オゾン分解装置3は、制御装置5によって、起動又は停止などの運転が制御される。 The ozone decomposition device 3 takes in the air in the indoor space 20 and decomposes the ozone contained in the taken in air. As shown in FIG. 8, the ozone decomposition device 3 includes an ozone decomposition unit 31, a fan 32, a casing 33, a vehicle body unit 34, and the like. The operation of the ozone decomposition device 3 such as starting or stopping is controlled by the control device 5.
 オゾン分解部31は、オゾンを分解する。オゾン分解部31は、流通する空気に含まれるオゾンを分解することができれば、通常用いられている技術を適用できる。本実施形態に係るオゾン分解部31の一例を後述するが、本開示はこの例に限定されない。 The ozone decomposition unit 31 decomposes ozone. If the ozone decomposition unit 31 can decompose ozone contained in the circulating air, a commonly used technique can be applied. An example of the ozone decomposition unit 31 according to the present embodiment will be described later, but the present disclosure is not limited to this example.
 ファン32は、オゾン分解部31を通過した空気を室内空間20へ供給する。ファン32は、第3供給部の一例である。 The fan 32 supplies the air that has passed through the ozone decomposition unit 31 to the indoor space 20. The fan 32 is an example of the third supply unit.
 ケーシング33は、オゾン分解部31及びファン32を覆うように設置される。ケーシング33には、オゾン分解部31の上流側である空気吸込み側と、ファン32の下流側である空気吹出し側のそれぞれに開口部が設けられる。また、ケーシング33には、オゾン分解部31が設置される開口部とは別に空気取入れ口が形成される。空気取入れ口には、モータなどの駆動部(図示せず。)によって開閉可能なドア部35が設置される。駆動部は、例えば制御部によって駆動が制御されて、ドア部35を開閉させる。ドア部35が開放しているときは、オゾン分解部31を通過させずに空気取入れ口を介してファン32が室内空間20の空気を吸い込むことが可能である。したがって、オゾンを分解させずに室内空気を循環させるときは、ドア部35を開放させる。他方、ドア部35が閉鎖しているときは、オゾン分解部31を通過させてファン32が室内空間20の空気を吸い込む。したがって、室内空気に含まれるオゾンを分解させるときは、ドア部35を閉鎖させる。 The casing 33 is installed so as to cover the ozone decomposition unit 31 and the fan 32. The casing 33 is provided with openings on the air suction side, which is the upstream side of the ozone decomposition unit 31, and on the air blow side, which is the downstream side of the fan 32. Further, the casing 33 is formed with an air intake port separately from the opening in which the ozone decomposition unit 31 is installed. A door portion 35 that can be opened and closed by a drive portion (not shown) such as a motor is installed at the air intake port. The drive unit is driven by, for example, a control unit to open and close the door unit 35. When the door portion 35 is open, the fan 32 can suck the air in the indoor space 20 through the air intake port without passing through the ozone decomposition portion 31. Therefore, when the indoor air is circulated without decomposing ozone, the door portion 35 is opened. On the other hand, when the door portion 35 is closed, the fan 32 sucks the air in the indoor space 20 through the ozone decomposition portion 31. Therefore, when decomposing ozone contained in the indoor air, the door portion 35 is closed.
 車体部34は、オゾン分解部31、ファン32及びケーシング33が載置される台部36と、台部36の下面側に設置される車輪37を有する。これにより、オゾン分解装置3が容易に移動可能に構成される。 The vehicle body portion 34 has a pedestal portion 36 on which the ozone decomposition portion 31, a fan 32 and a casing 33 are placed, and wheels 37 installed on the lower surface side of the pedestal portion 36. As a result, the ozone decomposition device 3 is configured to be easily movable.
 オゾン分解部31は、例えば、オゾン分解触媒が担持されたフィルタを有する。フィルタを空気が通過することによって、空気に含まれるオゾンが分解される。または、オゾン分解部31は、紫外線を照射する紫外線ランプでもよい。紫外線ランプが照射する紫外線によってオゾンが分解され、紫外線ランプの近傍を通過した空気からオゾンが除去される。なお、紫外線ランプを用いる場合は、オゾン分解は電源on/offで運転切り替えが可能であるため、ケーシング33に空気取入れ口やドア部35を設ける必要がない。 The ozone decomposition unit 31 has, for example, a filter on which an ozone decomposition catalyst is supported. When air passes through the filter, ozone contained in the air is decomposed. Alternatively, the ozone decomposition unit 31 may be an ultraviolet lamp that irradiates ultraviolet rays. Ozone is decomposed by the ultraviolet rays emitted by the ultraviolet lamp, and ozone is removed from the air passing near the ultraviolet lamp. When an ultraviolet lamp is used, the operation of ozone decomposition can be switched by turning the power on / off, so that it is not necessary to provide an air intake port or a door portion 35 in the casing 33.
 測定装置4は、少なくともオゾン濃度、温度、湿度をそれぞれ測定可能なセンサーを備える。オゾン濃度、温度又は湿度の測定は、単一の装置で行うものでもよいし、それぞれ別の装置で行うものでもよい。 The measuring device 4 is equipped with sensors capable of measuring at least ozone concentration, temperature, and humidity. The ozone concentration, temperature or humidity may be measured by a single device or by different devices.
 測定装置4による測定点は、オゾン濃度の測定が必要な室内空間20の複数の地点に設定される。測定装置4によって、複数の測定点のオゾン濃度、温度及び湿度の推移が測定される。各測定点において個別のセンサーが設置されてもよいし、複数の測定点と一つのセンサーとを結んで、複数の測定点を定期的に切り換えて、一つのセンサーによって複数の測定点の空気が測定されるようにしてもよい。 The measurement points by the measuring device 4 are set at a plurality of points in the indoor space 20 where the ozone concentration needs to be measured. The measuring device 4 measures changes in ozone concentration, temperature, and humidity at a plurality of measurement points. Individual sensors may be installed at each measurement point, or multiple measurement points may be connected to one sensor, and multiple measurement points may be switched periodically, and one sensor may release air from multiple measurement points. It may be measured.
 制御装置5は、図9に示すように、オゾン濃度制御部38と、加湿制御部39と、CT値算出部40と、記憶部41と、CT値決定部42と、判断部43などを備える。 As shown in FIG. 9, the control device 5 includes an ozone concentration control unit 38, a humidification control unit 39, a CT value calculation unit 40, a storage unit 41, a CT value determination unit 42, a determination unit 43, and the like. ..
 オゾン濃度制御部38は、オゾン発生装置1及びオゾン分解装置3を制御する。オゾン濃度制御部38は、オゾン発生装置1のオゾン発生部11及び/又はファン12、オゾン分解装置3のオゾン分解部31及び/又はファン32それぞれの運転状態と停止状態を切り換える。オゾン濃度制御部38は、オゾン発生装置1及びオゾン分解装置3それぞれに対して、オゾン発生装置1及びオゾン分解装置3それぞれの運転の開始又は停止を制御するための制御信号を送信する。また、オゾン濃度制御部38は、測定装置4からオゾン濃度、温度及び湿度に関する測定結果を受信する。 The ozone concentration control unit 38 controls the ozone generator 1 and the ozone decomposition device 3. The ozone concentration control unit 38 switches between the operating state and the stopped state of the ozone generating unit 11 and / or the fan 12 of the ozone generator 1 and the ozone decomposing unit 31 and / or the fan 32 of the ozone decomposition device 3. The ozone concentration control unit 38 transmits to each of the ozone generator 1 and the ozone decomposition device 3 a control signal for controlling the start or stop of the operation of each of the ozone generator 1 and the ozone decomposition device 3. Further, the ozone concentration control unit 38 receives measurement results regarding the ozone concentration, temperature and humidity from the measuring device 4.
 加湿制御部39は、加湿装置2を制御する。加湿制御部39は、加湿装置2の加湿部22及び/又はファン23の運転状態と停止状態を切り換える。加湿制御部39は、加湿装置2に対して、加湿装置2の運転の開始又は停止を制御するための制御信号を送信する。また、加湿制御部39は、測定装置4から湿度に関する測定結果を受信する。 The humidification control unit 39 controls the humidification device 2. The humidification control unit 39 switches between the operating state and the stopped state of the humidifying unit 22 and / or the fan 23 of the humidifying device 2. The humidification control unit 39 transmits a control signal for controlling the start or stop of the operation of the humidification device 2 to the humidification device 2. Further, the humidification control unit 39 receives the measurement result regarding humidity from the measuring device 4.
 CT値算出部40は、測定装置4によって測定されたオゾン濃度と、オゾン濃度の測定開始からの経過時間との積であるCT値を算出する。 The CT value calculation unit 40 calculates a CT value which is the product of the ozone concentration measured by the measuring device 4 and the elapsed time from the start of measurement of the ozone concentration.
 記憶部41は、例えばメモリであり、記憶部41には、ある環境条件下で不活化対象とする細菌又はウイルスを不活化するために必要なCT値が基準CT値として記録されている。基準CT値は、基準CT値を満たすときの温度又は湿度などの環境条件に関する情報と関連づけられている。 The storage unit 41 is, for example, a memory, and the storage unit 41 records a CT value required for inactivating a bacterium or a virus to be inactivated under certain environmental conditions as a reference CT value. The reference CT value is associated with information about environmental conditions such as temperature or humidity when the reference CT value is met.
 CT値決定部42は、測定装置4によって測定されたオゾン濃度、温度及び湿度に基づいて基準CT値を補正して、補正後の値を補正CT値として決定する。 The CT value determining unit 42 corrects the reference CT value based on the ozone concentration, temperature and humidity measured by the measuring device 4, and determines the corrected value as the corrected CT value.
 判断部43は、算出されたCT値が補正CT値を満たすか否かを判断する。 The determination unit 43 determines whether or not the calculated CT value satisfies the corrected CT value.
 制御装置5は、測定されたオゾン濃度、温度及び湿度に基づいて、各測定点におけるCT値を算出する。制御装置5は、算出されたCT値と補正CT値に基づいて、オゾンによる不活化処理が完了したか否かを判断する。 The control device 5 calculates the CT value at each measurement point based on the measured ozone concentration, temperature and humidity. The control device 5 determines whether or not the inactivation process by ozone is completed based on the calculated CT value and the corrected CT value.
 以下、図2を参照して、湿度を考慮した補正CT値について説明する。
 例えば、あるウイルスが不活化されるデータを基準にして、判定基準とされるCT値が設定される。例えば、ウイルスの残存率とCT値の関係に関するデータがある環境条件下で得られているとき、ウイルスの残存率が1%となるときのCT値を基準CT値とする。得られているデータは、例えばオゾン濃度が0.25ppmで一定で、相対湿度80%である場合において、CT値が60となるとき、そのウイルスの残存率が1%以下になるというものである。ウイルスや細菌の残存率は、湿度の影響を受けることが知られており、相対湿度が低くなるとウイルスや細菌の残存率が増加する傾向にある。オゾンによって、タンパク質などによって構成されたウイルスのエンベロープや細菌の細胞膜などが破壊され、また、水分があることによって、オゾンの分解力によって生じた酸素原子が反応してヒドロキシルラジカル・OHが作られて、この強力な酸化力によって、ウイルス又は細菌を不活化する。したがって、空気にオゾンが含まれた環境下では、高湿度であるほど、ウイルスや細菌が不活化されやすい。
Hereinafter, the corrected CT value in consideration of humidity will be described with reference to FIG.
For example, a CT value as a determination criterion is set based on the data in which a certain virus is inactivated. For example, when data on the relationship between the virus survival rate and the CT value is obtained under certain environmental conditions, the CT value when the virus survival rate is 1% is used as the reference CT value. The data obtained is that, for example, when the ozone concentration is constant at 0.25 ppm and the relative humidity is 80%, when the CT value becomes 60, the residual rate of the virus becomes 1% or less. .. It is known that the survival rate of viruses and bacteria is affected by humidity, and the survival rate of viruses and bacteria tends to increase as the relative humidity decreases. Ozone destroys virus envelopes and bacterial cell membranes composed of proteins, etc., and the presence of water causes oxygen atoms generated by the decomposition power of ozone to react to form hydroxyl radicals and OH. , This powerful oxidizing power inactivates viruses or bacteria. Therefore, in an environment where ozone is contained in the air, the higher the humidity, the easier it is for viruses and bacteria to be inactivated.
 例えば、測定装置4によって測定された相対湿度が、取得されているデータの環境条件と異なり、例えば60%、30%などと低い場合、ウイルスの残存率が1%以下になるCT値は、80%の場合よりも高くなる。したがって、測定された相対湿度に応じて、判断基準とする基準CT値を変更する補正を行うことが望ましい。基準CT値を補正するための補正係数の設定は、実験結果やシミュレーション結果などに基づいて設定される。 For example, if the relative humidity measured by the measuring device 4 is different from the environmental conditions of the acquired data and is as low as 60%, 30%, etc., the CT value at which the virus survival rate is 1% or less is 80. It is higher than the case of%. Therefore, it is desirable to make a correction to change the reference CT value as a judgment standard according to the measured relative humidity. The correction coefficient for correcting the reference CT value is set based on the experimental result, the simulation result, and the like.
 そして、測定開始からある時点までのCT値が測定時の相対湿度に基づいて補正された補正後の補正CT値を満たすか否かが判断される。測定開始時に相対湿度が低く、測定中に相対湿度が上昇する場合、補正CT値は、測定中に低下していくことになる。CT値はオゾン濃度と時間の積である積算値であるから、相対湿度の上昇と共に低下した、ある測定時点の補正後の補正CT値に基づいて、測定CT値が補正CT値を満たすかどうかを判断すればよい。これにより、予め取得されているデータと同様に、補正CT値を満たすとき、ウイルス又は細菌が所定量のオゾンに暴露されたことによって、ウイルス又は細菌の残存率が1%以下になると推測される。 Then, it is determined whether or not the CT value from the start of measurement to a certain point in time satisfies the corrected CT value corrected based on the relative humidity at the time of measurement. If the relative humidity is low at the start of the measurement and the relative humidity rises during the measurement, the corrected CT value will decrease during the measurement. Since the CT value is an integrated value that is the product of the ozone concentration and time, whether the measured CT value satisfies the corrected CT value based on the corrected corrected CT value at a certain measurement point point, which decreases with the increase in relative humidity. You just have to judge. As a result, it is estimated that the survival rate of the virus or bacterium becomes 1% or less due to the exposure of the virus or bacterium to a predetermined amount of ozone when the corrected CT value is satisfied, as in the case of the data acquired in advance. ..
 制御装置5は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。 The control device 5 is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like. As an example, a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized. The program is installed in a ROM or other storage medium in advance, is provided in a state of being stored in a computer-readable storage medium, or is distributed via a wired or wireless communication means. Etc. may be applied. The computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
 次に、図10を参照して、本実施形態に係るウイルス不活化システム10を用いたオゾンによる不活化方法について説明する。 Next, with reference to FIG. 10, a method of inactivating with ozone using the virus inactivating system 10 according to the present embodiment will be described.
 通常の室内空間20に対してオゾンによってウイルス又は細菌の不活化を行う場合、ウイルス不活化システム10を室内空間20に設置する。 When inactivating a virus or a bacterium with ozone in a normal indoor space 20, a virus inactivating system 10 is installed in the indoor space 20.
 まず、ウイルス不活化システム10の運転開始によって、オゾン発生装置1と、加湿装置2と、オゾン分解装置3と、測定装置4のそれぞれの運転を開始させる。なお、オゾン発生装置1と加湿装置2は、同タイミングで運転を開始してもよいし、予め室内空間20の湿度を上昇させるため、加湿装置2を先行させて運転開始させてもよい。 First, by starting the operation of the virus inactivating system 10, the operation of the ozone generator 1, the humidifying device 2, the ozone decomposition device 3, and the measuring device 4 is started. The ozone generator 1 and the humidifying device 2 may be started at the same timing, or the humidifying device 2 may be started in advance in order to raise the humidity of the indoor space 20 in advance.
 測定装置4による測定点が室内空間20の複数箇所に設置される。測定装置4によって、オゾン濃度、温度及び湿度の測定が開始される。また、各測定点のCT値が算出され、閾値、例えば補正CT値と比較されて、測定され算出された算出CT値が補正CT値を満たすか否かが判断される。 Measurement points by the measuring device 4 are installed at a plurality of locations in the indoor space 20. The measuring device 4 starts measuring the ozone concentration, temperature and humidity. Further, the CT value of each measurement point is calculated and compared with a threshold value, for example, a corrected CT value, and it is determined whether or not the measured and calculated calculated CT value satisfies the corrected CT value.
 オゾン発生装置1では、オゾン発生部11とファン12が自動又は手動で起動して、オゾン発生装置1がオゾンを発生させつつ、室内空間20へオゾンを供給する。 In the ozone generator 1, the ozone generator 11 and the fan 12 are automatically or manually activated, and the ozone generator 1 generates ozone while supplying ozone to the interior space 20.
 加湿装置2では、加湿部22とファン23が手動又は自動で起動して、加湿装置2が空気を加湿させつつ、加湿された空気を室内空間20へ供給する。 In the humidifying device 2, the humidifying section 22 and the fan 23 are manually or automatically activated, and the humidifying device 2 supplies the humidified air to the indoor space 20 while humidifying the air.
 オゾン分解装置3では、オゾンの分解が停止した状態又は機能しない状態で、ファン32のみが自動又は手動で起動する。オゾン分解装置3は、オゾン濃度上昇時において、室内空間20に隈なくオゾンが含まれた空気を供給するためにファン32を駆動させる。 In the ozone decomposition device 3, only the fan 32 is automatically or manually started in a state where ozone decomposition is stopped or does not function. The ozone decomposition device 3 drives a fan 32 to supply air containing ozone to the interior space 20 when the ozone concentration rises.
 測定された空気の湿度が上昇し、所定の閾値を満たすとき、すなわち基準湿度を超えるとき、加湿装置2の運転を停止して、加湿を停止させる。すなわち、室内空間20の空気が所定の湿度に到達した状態で、加湿装置2を停止する。所定の湿度が維持されるように、測定された湿度に基づいて、加湿装置2を再起動させたり停止させたりする。 When the measured humidity of the air rises and meets a predetermined threshold value, that is, when the reference humidity is exceeded, the operation of the humidifying device 2 is stopped to stop the humidification. That is, the humidifying device 2 is stopped when the air in the indoor space 20 reaches a predetermined humidity. The humidifier 2 is restarted or stopped based on the measured humidity so that the predetermined humidity is maintained.
 複数の測定点で湿度が測定されることから、例えば複数の測定値の平均値に基づいて、平均値が上限閾値(設定値)を超えたとき、加湿装置2を停止させ、平均値が下限閾値(設定値)未満となったとき、加湿装置2を再起動させる。湿度の上限閾値及び下限閾値は、ウイルス又は細菌の不活化に適切な湿度であって、過度な湿度によって建築物の建材などに悪影響を与えない程度に設定される。 Since humidity is measured at a plurality of measurement points, for example, based on the average value of a plurality of measured values, when the average value exceeds the upper limit threshold value (set value), the humidifying device 2 is stopped and the average value is the lower limit. When the value becomes less than the threshold value (set value), the humidifying device 2 is restarted. The upper and lower thresholds of humidity are set to a humidity suitable for inactivating viruses or bacteria and to the extent that excessive humidity does not adversely affect building materials and the like.
 オゾン発生装置1によるオゾンの供給によってオゾン濃度が上昇し、所定の閾値を満たすとき、すなわち基準オゾン濃度を超えるとき、オゾン発生装置1の運転を停止して、オゾンの発生を停止させる。すなわち、室内空間20の空気が所定のオゾン濃度に到達した状態で、オゾン発生装置1を停止する。 When the ozone concentration rises due to the supply of ozone by the ozone generator 1 and meets a predetermined threshold, that is, when the reference ozone concentration is exceeded, the operation of the ozone generator 1 is stopped to stop the generation of ozone. That is, the ozone generator 1 is stopped when the air in the indoor space 20 has reached a predetermined ozone concentration.
 オゾン濃度の上限閾値は、人体に悪影響を与えないような低濃度(例えば0.25ppm)に設定される。これにより、ウイルス不活化システム10の運転時において、室内空間20に人が存在しない条件を想定しつつも、万が一その時間帯に人が入った場合に短時間であれば人体に悪影響を及ぼすことがない。なお、オゾン濃度の上限閾値を高く設定することによって、人体への影響が懸念されるが、不活化処理にかかる時間を短縮できる。 The upper threshold of ozone concentration is set to a low concentration (for example, 0.25 ppm) that does not adversely affect the human body. As a result, when the virus inactivating system 10 is operated, even if it is assumed that there is no person in the indoor space 20, if a person enters during that time, it will have an adverse effect on the human body if it is a short time. There is no. By setting the upper limit threshold value of the ozone concentration high, there is a concern about the influence on the human body, but the time required for the inactivation treatment can be shortened.
 オゾン濃度が所定の値に到達してオゾン発生装置1を停止させた後、オゾン濃度が減衰する場合は、所定のオゾン濃度が維持されるように、測定されたオゾン濃度に基づいて、オゾン発生装置1を再起動させたり停止させたりする。これにより、室内空気のオゾン濃度が所定の値に保たれた状態で推移する。 When the ozone concentration decreases after the ozone concentration reaches a predetermined value and the ozone generator 1 is stopped, ozone is generated based on the measured ozone concentration so that the predetermined ozone concentration is maintained. The device 1 is restarted or stopped. As a result, the ozone concentration of the indoor air remains at a predetermined value.
 オゾン濃度が補正CT値に到達した後は、オゾン発生装置1のオゾン発生部11及びファン12を停止し、加湿装置2の加湿部22及びファン23を停止し、オゾン分解装置3のファン32を停止する。そして、算出されたCT値が補正CT値を満たすまでの期間、室内空間20にオゾンが満たされた状態とする。 After the ozone concentration reaches the corrected CT value, the ozone generating unit 11 and the fan 12 of the ozone generator 1 are stopped, the humidifying unit 22 and the fan 23 of the humidifying device 2 are stopped, and the fan 32 of the ozone decomposition device 3 is stopped. Stop. Then, the interior space 20 is filled with ozone until the calculated CT value satisfies the corrected CT value.
 複数の測定点でオゾン濃度が測定されることから、例えば複数の測定値のうちCT値が最小となる測定点のCT値に基づいて、補正CT値が満たされたか否かが判断される。これにより、最も条件が厳しくなっている測定点の周辺で条件が満たされることによって、室内空間20のすべてにおいて不活化効果が発揮されたと推測される。 Since the ozone concentration is measured at a plurality of measurement points, it is determined whether or not the corrected CT value is satisfied, for example, based on the CT value of the measurement point where the CT value is the smallest among the plurality of measurement values. As a result, it is presumed that the inactivating effect was exerted in all of the indoor space 20 by satisfying the conditions around the measurement point where the conditions are the strictest.
 なお、補正CT値の算出は、予め記録されているCT値に対して、実際に測定されている相対湿度に基づいて、基準CT値に補正を行うことによって算出される。また、測定中に相対湿度が上昇する場合、各測定点における補正CT値を逐次変更して、変更された補正後の補正CT値に基づいて、算出されたCT値が補正CT値を満たすか否かが判断される。 The corrected CT value is calculated by correcting the CT value recorded in advance to the reference CT value based on the actually measured relative humidity. If the relative humidity rises during measurement, the corrected CT value at each measurement point is sequentially changed, and whether the calculated CT value satisfies the corrected CT value based on the changed corrected CT value. Whether or not it is judged.
 複数の測定値のうちCT値が最小となる測定点において、CT値が補正CT値を満たしたとき、オゾンによる不活化処理が完了したと判断でき、この場合、例えば、室内空間20のオゾンを除去する処理を開始する。補正CT値を満たさないと判断されたとき、オゾンによる不活化処理の継続が必要と判断される。 When the CT value satisfies the corrected CT value at the measurement point where the CT value is the minimum among the plurality of measured values, it can be determined that the inactivation treatment by ozone is completed. In this case, for example, ozone in the indoor space 20 is used. The process of removing is started. When it is determined that the corrected CT value is not satisfied, it is determined that the inactivation treatment with ozone needs to be continued.
 室内空間20のオゾンを除去する処理を開始する場合、ウイルス不活化システム10の運転を再開して、オゾン発生装置1と、加湿装置2と、オゾン分解装置3のそれぞれの運転を開始させる。 When starting the process of removing ozone in the indoor space 20, the operation of the virus inactivating system 10 is restarted, and the operation of the ozone generator 1, the humidifying device 2, and the ozone decomposition device 3 is started.
 オゾン発生装置1及び加湿装置2では、ファン12,23のみが自動又は手動で起動する。オゾン発生装置1及び加湿装置2は、オゾン濃度下降時において、オゾンを発生させたり加湿させたりすることなく、オゾンが含まれる空気が効率良くオゾン分解装置3を通過するようにファン32を駆動させる。 In the ozone generator 1 and the humidifier 2, only the fans 12 and 23 are automatically or manually started. The ozone generator 1 and the humidifying device 2 drive the fan 32 so that the air containing ozone efficiently passes through the ozone decomposition device 3 without generating or humidifying ozone when the ozone concentration drops. ..
 オゾン分解装置3では、オゾン分解部31とファン32が手動又は自動で起動して、オゾン分解装置3が空気に含まれるオゾンを分解しつつ、オゾンが除去された空気を室内空間20へ供給する。これにより、室内空間20のオゾン濃度を低減させることができる。 In the ozone decomposition device 3, the ozone decomposition unit 31 and the fan 32 are manually or automatically activated, and the ozone decomposition device 3 decomposes the ozone contained in the air and supplies the ozone-removed air to the indoor space 20. .. As a result, the ozone concentration in the indoor space 20 can be reduced.
 オゾン分解装置3によるオゾンの分解によってオゾン濃度が減少し、所定の閾値を満たすとき、すなわち基準オゾン濃度未満となるとき、オゾン分解装置3の運転を停止して、オゾンの分解を停止させる。すなわち、室内空間20の空気が所定のオゾン濃度に到達した状態で、オゾン分解装置3を停止する。 When the ozone concentration is reduced by the decomposition of ozone by the ozone decomposition device 3 and the predetermined threshold value is satisfied, that is, when the concentration is lower than the reference ozone concentration, the operation of the ozone decomposition device 3 is stopped to stop the decomposition of ozone. That is, the ozone decomposition device 3 is stopped when the air in the indoor space 20 reaches a predetermined ozone concentration.
 オゾン濃度が所定の値に到達した後は、オゾン発生装置1のファン12を停止し、加湿装置2のファン23を停止し、オゾン分解装置3のオゾン分解部31及びファン32を停止する。 After the ozone concentration reaches a predetermined value, the fan 12 of the ozone generator 1 is stopped, the fan 23 of the humidifying device 2 is stopped, and the ozone decomposition unit 31 and the fan 32 of the ozone decomposition device 3 are stopped.
 複数の測定点でオゾン濃度が測定されることから、例えば複数の測定値のうちオゾン濃度が最大となる測定点のオゾン濃度に基づいて、閾値を満たしたか否かが判断される。これにより、最もオゾン濃度が高くなっている測定点の周辺でオゾン濃度が低下していることによって、室内空間20のすべてにおいてオゾン濃度が所定値未満に到達していると推測される。 Since the ozone concentration is measured at a plurality of measurement points, it is determined whether or not the threshold is satisfied based on, for example, the ozone concentration of the measurement point where the ozone concentration is the maximum among the plurality of measured values. As a result, it is presumed that the ozone concentration has reached less than the predetermined value in all of the indoor spaces 20 due to the decrease in the ozone concentration around the measurement point where the ozone concentration is the highest.
 以上より、ウイルス不活化システム10を用いたオゾンによる不活化方法を完了する。
 本実施形態によれば、室内空間20にオゾンを発生させ、複数の測定点での測定結果に基づいて、CT値を管理する。室内空間20への人の出入りを考慮すると、オゾン濃度は、人体に影響を与えない程度に低濃度であることが望ましい。オゾン濃度が低濃度であったとしても、CT値で管理することによって、対象とするウイルスや細菌を適切に不活化することができる。
From the above, the ozone inactivation method using the virus inactivation system 10 is completed.
According to this embodiment, ozone is generated in the indoor space 20, and the CT value is managed based on the measurement results at a plurality of measurement points. Considering the entry and exit of people into the indoor space 20, it is desirable that the ozone concentration is low enough not to affect the human body. Even if the ozone concentration is low, the target virus or bacterium can be appropriately inactivated by controlling the CT value.
 また、複数の測定点で測定を行うことから、測定点間において測定値に差がある場合であっても、測定されたCT値が最小である測定点を基準にすれば、室内空間20全体において必要なCT値を確保できる。したがって、大規模な空間においてもオゾンによる不活化が可能になる。 Further, since the measurement is performed at a plurality of measurement points, even if there is a difference in the measured values between the measurement points, if the measurement point at which the measured CT value is the minimum is used as a reference, the entire indoor space 20 is used. The necessary CT value can be secured in. Therefore, inactivation by ozone becomes possible even in a large space.
 さらに、CT値とウイルスや細菌の残存率の関係は、湿度の影響を受けることから、空間を加湿することによって効率良くウイルスや細菌を不活化することができる。また、低湿度条件下では、必要CT値が高くなるが、測定された相対湿度に応じて、基準CT値を変更する補正を行う。これにより、測定点において測定され算出された算出CT値が、補正後の基準CT値を満たしているか否かが判断されることから、低湿度条件下においてもオゾンによる不活化が可能になる。 Furthermore, since the relationship between the CT value and the residual rate of viruses and bacteria is affected by humidity, it is possible to efficiently inactivate viruses and bacteria by humidifying the space. Further, under low humidity conditions, the required CT value becomes high, but correction is performed to change the reference CT value according to the measured relative humidity. As a result, it is determined whether or not the calculated CT value measured and calculated at the measurement point satisfies the corrected reference CT value, so that inactivation by ozone becomes possible even under low humidity conditions.
 なお、上述した実施形態では、ウイルス不活化システムにおいて、オゾン発生装置1、加湿装置2及びオゾン分解装置3がそれぞれ別体の装置である場合について説明したが、本開示はこの例に限定されない。 In the above-described embodiment, the case where the ozone generator 1, the humidifying device 2, and the ozone decomposition device 3 are separate devices in the virus inactivating system has been described, but the present disclosure is not limited to this example.
 本開示に係るオゾンによるウイルス不活化システムは、オゾン発生部、加湿部及びオゾン分解部が一つのケーシングに収容された一体型のウイルス不活化装置を備えてもよい。 The ozone-based virus inactivating system according to the present disclosure may include an integrated virus inactivating device in which an ozone generating unit, a humidifying unit, and an ozone decomposing unit are housed in one casing.
 ウイルス不活化装置には、ファンが収容され、ウイルス不活化装置を通過した空気が室内空間20へ供給される。 A fan is housed in the virus inactivating device, and the air that has passed through the virus inactivating device is supplied to the indoor space 20.
 ウイルス不活化装置のケーシングの内部には、流路が形成され、流路を流れる空気がオゾン発生部、加湿部及びオゾン分解部を通過可能に流路が構成されている。オゾン発生部、加湿部及びファンを起動することによってオゾンを発生させて空気を加湿できる。 A flow path is formed inside the casing of the virus inactivating device, and the flow path is configured so that the air flowing through the flow path can pass through the ozone generating part, the humidifying part, and the ozone decomposition part. By activating the ozone generating part, the humidifying part and the fan, ozone can be generated to humidify the air.
 オゾンを発生させる場合は、オゾンが含まれる空気がオゾン分解部を通過しないように、オゾン分解部をバイパスするバイパス流路へ空気を供給したり、オゾン分解部を流路から外れた位置へ移動させたりする構成を有する。または、オゾン分解部がオゾン発生部よりも上流側に位置するように設置されて、オゾン分解部、オゾン発生部の順に空気が流通する構成を有するものでもよい。 When generating ozone, supply air to the bypass flow path that bypasses the ozone decomposition part or move the ozone decomposition part to a position off the flow path so that the air containing ozone does not pass through the ozone decomposition part. It has a structure to make it. Alternatively, the ozone decomposition unit may be installed so as to be located upstream of the ozone generation unit, and may have a configuration in which air flows in the order of the ozone decomposition unit and the ozone generation unit.
 オゾンを分解させる場合は、オゾン発生部及び加湿部の運転を停止し、ファンを起動しながらオゾン分解部に空気を流通させることによって、空気に含まれるオゾンを分解できる。オゾンを分解させる場合は、オゾンが含まれる空気がオゾン分解部を通過するように、オゾン分解部をバイパス流路への空気の供給を遮断してオゾン分解部を通過するように空気を供給したり、流路から外れた位置にあるオゾン分解部を流路内へ移動させたりする。 When decomposing ozone, the ozone contained in the air can be decomposed by stopping the operation of the ozone generating part and the humidifying part and allowing air to flow through the ozone decomposing part while starting the fan. When decomposing ozone, the ozone decomposition unit cuts off the supply of air to the bypass flow path and supplies air so that it passes through the ozone decomposition unit so that the air containing ozone passes through the ozone decomposition unit. Or, the ozone decomposition part located outside the flow path is moved into the flow path.
 ウイルス不活化装置を用いる場合についても、第1実施形態のウイルス不活化システムと同様に、オゾン発生部、加湿部及びオゾン分解部の起動と停止を制御すればよい。これにより、室内空間20におけるオゾン濃度や湿度を上昇させることができ、また、室内空間20におけるオゾン濃度を下降させることができる。 Even when the virus inactivating device is used, it is sufficient to control the start and stop of the ozone generating section, the humidifying section and the ozone decomposing section, as in the case of the virus inactivating system of the first embodiment. Thereby, the ozone concentration and the humidity in the indoor space 20 can be increased, and the ozone concentration in the indoor space 20 can be decreased.
 また、上述した実施形態では、オゾン発生部、加湿部及びオゾン分解部が一つのケーシングに収容される場合について説明したが、三つのうち二つが一つのケーシングに収容されてもよい。例えば、オゾン分解部は含まず、オゾン発生部と加湿部が一つのケーシングに収容されるようにしてもよい。 Further, in the above-described embodiment, the case where the ozone generating part, the humidifying part and the ozone decomposition part are housed in one casing has been described, but two of the three may be housed in one casing. For example, the ozone decomposition part is not included, and the ozone generation part and the humidifying part may be housed in one casing.
 以上説明した各実施形態に記載のウイルス不活化システム及びウイルス不活化方法は例えば以下のように把握される。 The virus inactivating system and the virus inactivating method described in each of the above-described embodiments are grasped as follows, for example.
 本開示に係るウイルス不活化システム(10)は、オゾンを発生させるオゾン発生部(11)と、前記オゾン発生部で発生したオゾンが含まれる空気を室内空間(20)へ送る第1供給部(12)と、前記室内空間の複数の測定点においてオゾン濃度、温度及び湿度を測定する測定部(4)と、前記測定部によって測定された前記オゾン濃度と、前記オゾン濃度の測定開始からの経過時間との積であるCT値を算出するCT値算出部(40)と、所定の環境条件下で不活化対象とする細菌又はウイルスを不活化するために必要な基準CT値が記録された記憶部(41)と、前記測定部によって測定された前記オゾン濃度、前記温度及び前記湿度に基づいて前記基準CT値を補正して、補正後の値を補正CT値として決定するCT値決定部(42)と、算出された前記CT値が前記補正CT値を満たすか否かを判断する判断部(43)とを備える。 The virus inactivation system (10) according to the present disclosure includes an ozone generating unit (11) that generates ozone and a first supply unit (20) that sends air containing ozone generated by the ozone generating unit to an indoor space (20). 12), a measuring unit (4) that measures the ozone concentration, temperature, and humidity at a plurality of measuring points in the indoor space, the ozone concentration measured by the measuring unit, and the progress from the start of measuring the ozone concentration. A CT value calculation unit (40) that calculates the CT value, which is the product of time, and a memory in which the reference CT value necessary for inactivating the bacteria or virus to be inactivated under predetermined environmental conditions are recorded. A CT value determination unit (41) that corrects the reference CT value based on the ozone concentration, the temperature, and the humidity measured by the measurement unit, and determines the corrected value as the corrected CT value. 42) and a determination unit (43) for determining whether or not the calculated CT value satisfies the corrected CT value.
 この構成によれば、オゾン発生部によってオゾンが発生し、発生したオゾンが含まれる空気が第1供給部によって室内空間へ送られる。また、測定部によって、室内空間の複数の測定点におけるオゾン濃度、温度及び湿度が測定される。そして、測定されたオゾン濃度と、オゾン濃度の測定開始からの経過時間との積であるCT値が算出される。基準CT値は、所定の環境条件下で不活化対象とする細菌又はウイルスを不活化するために必要なCT値であり、記憶部には、基準CT値が記録されている。測定部によって測定されたオゾン濃度、温度及び湿度に基づいて、基準CT値が補正されて、補正後の値が補正CT値として決定され、算出されたCT値が補正CT値を満たすか否かが判断される。補正CT値を満たすと判断されたとき、オゾンによる不活化処理が完了したと判断でき、この場合、例えば、室内空間のオゾンを除去する処理を開始する。補正CT値を満たさないと判断されたとき、オゾンによる不活化処理の継続が必要と判断される。 According to this configuration, ozone is generated by the ozone generation unit, and the air containing the generated ozone is sent to the indoor space by the first supply unit. In addition, the measuring unit measures the ozone concentration, temperature, and humidity at a plurality of measuring points in the indoor space. Then, the CT value, which is the product of the measured ozone concentration and the elapsed time from the start of measurement of the ozone concentration, is calculated. The reference CT value is a CT value necessary for inactivating a bacterium or virus to be inactivated under predetermined environmental conditions, and the reference CT value is recorded in the storage unit. Whether or not the reference CT value is corrected based on the ozone concentration, temperature and humidity measured by the measuring unit, the corrected value is determined as the corrected CT value, and the calculated CT value satisfies the corrected CT value. Is judged. When it is determined that the corrected CT value is satisfied, it can be determined that the inactivation process by ozone is completed. In this case, for example, the process of removing ozone in the indoor space is started. When it is determined that the corrected CT value is not satisfied, it is determined that the inactivation treatment with ozone needs to be continued.
 本開示に係るウイルス不活化システムにおいて、空気中の水分を増加させる加湿部(22)と、前記加湿部によって水分が増加されて加湿された空気を室内空間に送る第2供給部(23)と、前記測定部によって測定された前記湿度に基づいて、前記測定点の湿度が所定の閾値を満たすように前記加湿部及び/又は前記第2供給部を制御する加湿制御部(39)とを更に備えてもよい。 In the virus inactivating system according to the present disclosure, a humidifying section (22) that increases the moisture in the air and a second supply section (23) that sends the humidified air to the indoor space by increasing the moisture by the humidifying section. Further, a humidification control unit (39) that controls the humidification unit and / or the second supply unit so that the humidity at the measurement point satisfies a predetermined threshold based on the humidity measured by the measurement unit. You may prepare.
 この構成によれば、加湿部によって空気中の水分が増加されて加湿された空気が室内空間へ送られる。また、測定部によって湿度が測定され、測定された湿度に基づいて測定点の湿度が所定の閾値を満たすように加湿部及び/又は第2供給部が制御される。 According to this configuration, the moisture in the air is increased by the humidifying part, and the humidified air is sent to the indoor space. Further, the humidity is measured by the measuring unit, and the humidifying unit and / or the second supply unit is controlled so that the humidity at the measuring point satisfies a predetermined threshold value based on the measured humidity.
 本開示に係るウイルス不活化システムにおいて、前記測定部によって測定された前記オゾン濃度に基づいて、前記測定点のオゾン濃度が所定の閾値を満たすように前記オゾン発生部及び/又は前記第1供給部を制御するオゾン濃度制御部(38)を更に備えてもよい。 In the virus inactivation system according to the present disclosure, the ozone generation unit and / or the first supply unit so that the ozone concentration at the measurement point satisfies a predetermined threshold based on the ozone concentration measured by the measurement unit. It may be further provided with an ozone concentration control unit (38) for controlling the above.
 この構成によれば、測定部によってオゾン濃度が測定され、測定されたオゾン濃度に基づいて測定点のオゾン濃度が所定の閾値を満たすようにオゾン発生部及び/又は第1供給部が制御される。 According to this configuration, the ozone concentration is measured by the measuring unit, and the ozone generating unit and / or the first supply unit is controlled so that the ozone concentration at the measurement point satisfies a predetermined threshold value based on the measured ozone concentration. ..
 本開示に係るウイルス不活化システムにおいて、オゾンを分解するオゾン分解部(31)と、前記オゾン分解部を通過した空気を室内空間へ送る第3供給部(32)とを備え、前記オゾン濃度制御部は、前記測定部によって測定された前記オゾン濃度に基づいて、所定の閾値を満たすように前記オゾン分解部及び/又は前記第3供給部を制御してもよい。 The virus inactivating system according to the present disclosure includes an ozone decomposition unit (31) that decomposes ozone and a third supply unit (32) that sends air that has passed through the ozone decomposition unit to an indoor space, and controls the ozone concentration. The unit may control the ozone decomposition unit and / or the third supply unit so as to satisfy a predetermined threshold value based on the ozone concentration measured by the measuring unit.
 この構成によれば、オゾン分解部によってオゾンが分解され、オゾン分解部を通過した、オゾンを含まない空気が室内空間へ送られる。また、測定部によってオゾン濃度が測定され、測定されたオゾン濃度に基づいて測定点のオゾン濃度が所定の閾値を満たすようにオゾン分解部及び/又は第3供給部が制御される。 According to this configuration, ozone is decomposed by the ozone decomposition part, and the ozone-free air that has passed through the ozone decomposition part is sent to the indoor space. Further, the ozone concentration is measured by the measuring unit, and the ozone decomposition unit and / or the third supply unit is controlled so that the ozone concentration at the measurement point satisfies a predetermined threshold value based on the measured ozone concentration.
 本開示に係るウイルス不活化システムにおいて、前記オゾン発生部、前記加湿部及び前記オゾン分解部が一つのケーシングに収容されてもよい。 In the virus inactivating system according to the present disclosure, the ozone generating part, the humidifying part, and the ozone decomposing part may be housed in one casing.
 この構成によれば、一つのケーシングに収容されたオゾン発生部、加湿部及びオゾン分解部を一体的に取り扱うことができる。 According to this configuration, the ozone generating part, the humidifying part, and the ozone decomposition part housed in one casing can be handled integrally.
 本開示に係るウイルス不活化システムにおいて、前記オゾン発生部、前記加湿部及び前記オゾン分解部がそれぞれ別の装置として構成されてもよい。 In the virus inactivating system according to the present disclosure, the ozone generating unit, the humidifying unit, and the ozone decomposing unit may be configured as separate devices.
 この構成によれば、オゾン発生部、加湿部及びオゾン分解部をそれぞれ別の装置として取り扱うことができる。 According to this configuration, the ozone generation part, the humidifying part, and the ozone decomposition part can be handled as separate devices.
 本開示に係るウイルス不活化システムにおいて、前記オゾン発生部と前記加湿部が同一方向に配置され、前記加湿部から吹き出された空気が、前記オゾン発生部の上側に噴出するように、前記加湿部の吹き出し口が設置されてもよい。 In the virus inactivating system according to the present disclosure, the humidifying section is arranged so that the ozone generating section and the humidifying section are arranged in the same direction, and the air blown from the humidifying section is ejected to the upper side of the ozone generating section. The outlet may be installed.
 この構成によれば、加湿部から噴射された霧状の水は、蒸発潜熱によって周囲の空気の温度を例えば数℃低下させる。そして、加湿部によって冷却された空気が室内空間へ供給されることによって、オゾン発生部から室内空間に供給されたオゾンが含まれた空気は、空間の上方へ拡散することなく、空間の下部に滞留する。 According to this configuration, the mist-like water sprayed from the humidifying section lowers the temperature of the surrounding air by, for example, several degrees Celsius due to the latent heat of vaporization. Then, the air cooled by the humidifying part is supplied to the indoor space, so that the air containing ozone supplied from the ozone generating part to the indoor space does not diffuse to the upper part of the space but to the lower part of the space. Stay.
 本開示に係るウイルス不活化方法は、オゾンを発生させるステップと、発生したオゾンが含まれる空気を室内空間へ送るステップと、前記室内空間の複数の測定点においてオゾン濃度、温度及び湿度を測定するステップと、測定された前記オゾン濃度と、前記オゾン濃度の測定開始からの経過時間との積であるCT値を算出するステップと、測定された前記オゾン濃度、前記温度及び前記湿度に基づいて、所定の環境条件下で不活化対象とする細菌又はウイルスを不活化するために必要な基準CT値を補正して、補正後の値を補正CT値として決定するステップと、算出された前記CT値が前記補正CT値を満たすか否かを判断するステップとを備える。 The virus inactivating method according to the present disclosure measures ozone concentration, temperature, and humidity at a step of generating ozone, a step of sending air containing the generated ozone to an indoor space, and a plurality of measurement points in the indoor space. Based on the step, the step of calculating the CT value which is the product of the measured ozone concentration and the elapsed time from the start of the measurement of the ozone concentration, and the measured ozone concentration, the temperature and the humidity. A step of correcting the reference CT value required for inactivating the bacteria or virus to be inactivated under predetermined environmental conditions and determining the corrected value as the corrected CT value, and the calculated CT value. Includes a step of determining whether or not the corrected CT value is satisfied.
 この構成によれば、オゾンを発生させて、発生したオゾンが含まれる空気が室内空間へ送られる。また、室内空間の複数の測定点におけるオゾン濃度、温度及び湿度が測定され、測定されたオゾン濃度と、オゾン濃度の測定開始からの経過時間との積であるCT値が算出される。基準CT値は、所定の環境条件下で不活化対象とする細菌又はウイルスを不活化するために必要なCT値である。測定されたオゾン濃度、温度及び湿度に基づいて、基準CT値が補正されて、補正後の値が補正CT値として決定され、算出されたCT値が補正CT値を満たすか否かが判断される。補正CT値を満たすと判断されたとき、オゾンによる不活化処理が完了したと判断でき、この場合、例えば、室内空間のオゾンを除去する処理を開始する。補正CT値を満たさないと判断されたとき、オゾンによる不活化処理の継続が必要と判断される。 According to this configuration, ozone is generated and the air containing the generated ozone is sent to the indoor space. Further, the ozone concentration, temperature and humidity at a plurality of measurement points in the indoor space are measured, and the CT value, which is the product of the measured ozone concentration and the elapsed time from the start of measurement of the ozone concentration, is calculated. The reference CT value is a CT value required for inactivating a bacterium or virus to be inactivated under predetermined environmental conditions. Based on the measured ozone concentration, temperature and humidity, the reference CT value is corrected, the corrected value is determined as the corrected CT value, and it is determined whether or not the calculated CT value satisfies the corrected CT value. To. When it is determined that the corrected CT value is satisfied, it can be determined that the inactivation process by ozone is completed. In this case, for example, the process of removing ozone in the indoor space is started. When it is determined that the corrected CT value is not satisfied, it is determined that the inactivation treatment with ozone needs to be continued.
1  :オゾン発生装置
2  :加湿装置
3  :オゾン分解装置
4  :測定装置
5  :制御装置
10 :ウイルス不活化システム
11 :オゾン発生部
12 :ファン(第1供給部)
13 :ケーシング
14 :車体部
15 :台部
16 :車輪
17 :主電源部
18 :絶縁体
19 :内部電極
20 :室内空間
21 :表面電極
22 :加湿部
23 :ファン(第2供給部)
24 :車体部
25 :水タンク
26 :ポンプ
27 :ノズル
28 :台部
29 :車輪
30 :沿面放電電極構造
31 :オゾン分解部
32 :ファン(第3供給部)
33 :ケーシング
34 :車体部
35 :ドア部
36 :台部
37 :車輪
38 :オゾン濃度制御部
39 :加湿制御部
40 :CT値算出部
41 :記憶部
42 :CT値決定部
43 :判断部
1: Ozone generator 2: Humidifying device 3: Ozone decomposition device 4: Measuring device 5: Control device 10: Virus inactivation system 11: Ozone generator 12: Fan (first supply unit)
13: Casing 14: Body part 15: Base part 16: Wheel 17: Main power supply part 18: Insulator 19: Internal electrode 20: Interior space 21: Surface electrode 22: Humidifying part 23: Fan (second supply part)
24: Body part 25: Water tank 26: Pump 27: Nozzle 28: Base part 29: Wheel 30: Creature discharge electrode structure 31: Ozonolysis part 32: Fan (third supply part)
33: Casing 34: Body unit 35: Door unit 36: Base unit 37: Wheel 38: Ozone concentration control unit 39: Humidification control unit 40: CT value calculation unit 41: Storage unit 42: CT value determination unit 43: Judgment unit

Claims (8)

  1.  オゾンを発生させるオゾン発生部と、
     前記オゾン発生部で発生したオゾンが含まれる空気を室内空間へ送る第1供給部と、
     前記室内空間の複数の測定点においてオゾン濃度、温度及び湿度を測定する測定部と、
     前記測定部によって測定された前記オゾン濃度と、前記オゾン濃度の測定開始からの経過時間との積であるCT値を算出するCT値算出部と、
     所定の環境条件下で不活化対象とする細菌又はウイルスを不活化するために必要な基準CT値が記録された記憶部と、
     前記測定部によって測定された前記オゾン濃度、前記温度及び前記湿度に基づいて前記基準CT値を補正して、補正後の値を補正CT値として決定するCT値決定部と、
     算出された前記CT値が前記補正CT値を満たすか否かを判断する判断部と、
    を備えるウイルス不活化システム。
    The ozone generating part that generates ozone and
    The first supply unit that sends the air containing ozone generated in the ozone generation unit to the indoor space,
    A measuring unit that measures ozone concentration, temperature, and humidity at a plurality of measuring points in the interior space.
    A CT value calculation unit that calculates a CT value that is the product of the ozone concentration measured by the measurement unit and the elapsed time from the start of measurement of the ozone concentration.
    A storage unit in which the reference CT values necessary for inactivating the bacteria or virus to be inactivated under predetermined environmental conditions are recorded.
    A CT value determining unit that corrects the reference CT value based on the ozone concentration, the temperature, and the humidity measured by the measuring unit and determines the corrected value as the corrected CT value.
    A determination unit for determining whether or not the calculated CT value satisfies the corrected CT value,
    Virus inactivation system with.
  2.  空気中の水分を増加させる加湿部と、
     前記加湿部によって水分が増加されて加湿された空気を室内空間に送る第2供給部と、
     前記測定部によって測定された前記湿度に基づいて、前記測定点の湿度が所定の閾値を満たすように前記加湿部及び/又は前記第2供給部を制御する加湿制御部と、
    を更に備える請求項1に記載のウイルス不活化システム。
    A humidifying part that increases the moisture in the air,
    The second supply unit, whose moisture is increased by the humidifying unit and sends the humidified air to the indoor space,
    A humidification control unit that controls the humidification unit and / or the second supply unit so that the humidity at the measurement point satisfies a predetermined threshold value based on the humidity measured by the measurement unit.
    The virus inactivating system according to claim 1.
  3.  前記測定部によって測定された前記オゾン濃度に基づいて、前記測定点のオゾン濃度が所定の閾値を満たすように前記オゾン発生部及び/又は前記第1供給部を制御するオゾン濃度制御部を更に備える請求項1又は2に記載のウイルス不活化システム。 Further provided is an ozone concentration control unit that controls the ozone generation unit and / or the first supply unit so that the ozone concentration at the measurement point satisfies a predetermined threshold based on the ozone concentration measured by the measurement unit. The virus inactivating system according to claim 1 or 2.
  4.  オゾンを分解するオゾン分解部と、
     前記オゾン分解部を通過した空気を室内空間へ送る第3供給部と、
    を備え、
     前記オゾン濃度制御部は、前記測定部によって測定された前記オゾン濃度に基づいて、所定の閾値を満たすように前記オゾン分解部及び/又は前記第3供給部を制御する請求項3に記載のウイルス不活化システム。
    The ozone decomposition unit that decomposes ozone,
    A third supply unit that sends air that has passed through the ozone decomposition unit to the interior space,
    Equipped with
    The virus according to claim 3, wherein the ozone concentration control unit controls the ozone decomposition unit and / or the third supply unit so as to satisfy a predetermined threshold value based on the ozone concentration measured by the measurement unit. Inactivation system.
  5.  前記オゾン発生部、前記加湿部及び前記オゾン分解部が一つのケーシングに収容されている請求項4に記載のウイルス不活化システム。 The virus inactivating system according to claim 4, wherein the ozone generating unit, the humidifying unit, and the ozone decomposing unit are housed in one casing.
  6.  前記オゾン発生部、前記加湿部及び前記オゾン分解部がそれぞれ別の装置として構成されている請求項4に記載のウイルス不活化システム。 The virus inactivating system according to claim 4, wherein the ozone generating unit, the humidifying unit, and the ozone decomposing unit are configured as separate devices.
  7.  前記オゾン発生部と前記加湿部が同一方向に配置され、
     前記加湿部から吹き出された空気が、前記オゾン発生部の上側に噴出するように、前記加湿部の吹き出し口が設置される請求項5又は6に記載のウイルス不活化システム。
    The ozone generating part and the humidifying part are arranged in the same direction, and the ozone generating part and the humidifying part are arranged in the same direction.
    The virus inactivating system according to claim 5 or 6, wherein the outlet of the humidifying section is installed so that the air blown out from the humidifying section is ejected above the ozone generating section.
  8.  オゾンを発生させるステップと、
     発生したオゾンが含まれる空気を室内空間へ送るステップと、
     前記室内空間の複数の測定点においてオゾン濃度、温度及び湿度を測定するステップと、
     測定された前記オゾン濃度と、前記オゾン濃度の測定開始からの経過時間との積であるCT値を算出するステップと、
     測定された前記オゾン濃度、前記温度及び前記湿度に基づいて、所定の環境条件下で不活化対象とする細菌又はウイルスを不活化するために必要な基準CT値を補正して、補正後の値を補正CT値として決定するステップと、
     算出された前記CT値が前記補正CT値を満たすか否かを判断するステップと、
    を備えるウイルス不活化方法。
     
    Steps to generate ozone and
    The step of sending the generated ozone-containing air to the indoor space,
    Steps to measure ozone concentration, temperature and humidity at multiple measurement points in the interior space,
    A step of calculating a CT value, which is the product of the measured ozone concentration and the elapsed time from the start of measurement of the ozone concentration, and
    Based on the measured ozone concentration, temperature and humidity, the corrected reference CT value required to inactivate the bacteria or virus to be inactivated under predetermined environmental conditions is corrected. As a step to determine the corrected CT value, and
    A step of determining whether or not the calculated CT value satisfies the corrected CT value, and
    A virus inactivation method that comprises.
PCT/JP2021/043615 2020-12-03 2021-11-29 Virus inactivation system and virus inactivation method WO2022118791A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-200930 2020-12-03
JP2020200930A JP2022088848A (en) 2020-12-03 2020-12-03 Virus inactivation system and virus inactivation method

Publications (1)

Publication Number Publication Date
WO2022118791A1 true WO2022118791A1 (en) 2022-06-09

Family

ID=81853878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043615 WO2022118791A1 (en) 2020-12-03 2021-11-29 Virus inactivation system and virus inactivation method

Country Status (3)

Country Link
JP (1) JP2022088848A (en)
TW (1) TW202235110A (en)
WO (1) WO2022118791A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228344A1 (en) * 2022-05-26 2023-11-30 三菱電機株式会社 Ozone system and ozone supply method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046272A (en) * 2010-08-25 2012-03-08 Mitsubishi Electric Corp Handrail sterilizing apparatus for man conveyor, and the man conveyor
JP2017136191A (en) * 2016-02-03 2017-08-10 教文館管財株式会社 Ozone gas sterilizer
WO2019044254A1 (en) * 2017-08-28 2019-03-07 パナソニックIpマネジメント株式会社 Sterilization performance prediction system and sterilization performance prediction method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046272A (en) * 2010-08-25 2012-03-08 Mitsubishi Electric Corp Handrail sterilizing apparatus for man conveyor, and the man conveyor
JP2017136191A (en) * 2016-02-03 2017-08-10 教文館管財株式会社 Ozone gas sterilizer
WO2019044254A1 (en) * 2017-08-28 2019-03-07 パナソニックIpマネジメント株式会社 Sterilization performance prediction system and sterilization performance prediction method

Also Published As

Publication number Publication date
JP2022088848A (en) 2022-06-15
TW202235110A (en) 2022-09-16

Similar Documents

Publication Publication Date Title
JP6535141B2 (en) Low temperature plasma apparatus for treating a surface
KR102204837B1 (en) Air conditioning apparatus having space sterilizing function
JP3769595B2 (en) Air conditioner with sterilization / deodorization means
KR102186476B1 (en) Air sterilization deodorizer using high efficiency plasma, uv and catalyst
JP5714955B2 (en) Air conditioner
WO2022118791A1 (en) Virus inactivation system and virus inactivation method
WO2019194116A1 (en) Photodeodorization method and photodeodorization device
JP2006250447A (en) Electric equipment with ion generator
JP2019187653A (en) Sterilization disinfection apparatus and method
JP2011244844A (en) Indoor decontamination method and indoor decontamination system
GB2468520A (en) Sterilisation of a environment with ozone and increased humidity
JP2003147828A (en) Deodorizing and sterilizing device for toilet
KR20120036214A (en) Air sterilization device and air cleaning method using the same
JP2004211959A (en) Bathroom air conditioner
JP2009066073A (en) Odor neutralization, deodorization method and air cleaner
JP4073824B2 (en) Blower
KR102104285B1 (en) Humidifier
JP2004028433A (en) Air cleaner
JP2007305436A (en) Ion emitting device and air conditioner equipped with it
KR20110127373A (en) Apparatus using wetted ozone and vortex for sterilizing air and method thereof
JP2006153316A (en) Vaporizing type humidifier
JP2010249510A (en) Electric appliance with ion generator
JPH10328279A (en) Sterilizing device with humidifying mechanism
JP2004286384A (en) Air supply opening structure, ventilation system, and building using it
JP2004000606A (en) Sterilization method, ion generator and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900544

Country of ref document: EP

Kind code of ref document: A1