WO2022118779A1 - Inactivation device and inactivation method - Google Patents

Inactivation device and inactivation method Download PDF

Info

Publication number
WO2022118779A1
WO2022118779A1 PCT/JP2021/043561 JP2021043561W WO2022118779A1 WO 2022118779 A1 WO2022118779 A1 WO 2022118779A1 JP 2021043561 W JP2021043561 W JP 2021043561W WO 2022118779 A1 WO2022118779 A1 WO 2022118779A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
human
ultraviolet rays
source unit
time
Prior art date
Application number
PCT/JP2021/043561
Other languages
French (fr)
Japanese (ja)
Inventor
敬祐 内藤
庄一 寺田
健一 佐畠
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2022118779A1 publication Critical patent/WO2022118779A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/24Apparatus using programmed or automatic operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/14Means for controlling sterilisation processes, data processing, presentation and storage means, e.g. sensors, controllers, programs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/25Rooms in buildings, passenger compartments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to an inactivating device and an inactivating method for inactivating harmful microorganisms and viruses.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2018-130131 discloses an indoor sterilizer that is attached to an upper part of a room and irradiates ultraviolet rays horizontally, diagonally downward, and downward in the room.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2018-130131
  • the indoor sterilizer described in Patent Document 1 includes a horizontal irradiation unit and a downward irradiation unit, and can irradiate ultraviolet rays in the horizontal direction, diagonally downward and downward.
  • the 254 nm ultraviolet rays exemplified in Patent Document 1 Japanese Unexamined Patent Publication No. 2018-130131
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2018-130131
  • the irradiation was limited to a range where the person was not exposed to ultraviolet rays, such as irradiating horizontally near the ceiling.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 10-248759 discloses a technique for sterilizing a room by irradiating the room with ultraviolet rays from a germicidal lamp that irradiates ultraviolet rays. It is stated that when it is detected, the irradiation of ultraviolet rays is stopped. That is, in the prior art, it is premised that the irradiation of ultraviolet rays is stopped when a person enters the area requiring sterilization.
  • Patent Document 3 Japanese Patent Laid-Open No. 2018-517488 discloses a technique for inactivating bacteria while substantially avoiding harm to cells of the human or animal body.
  • Patent Document 3 Japanese Patent Laid-Open No. 2018-517488
  • microorganisms in food, air and purified water can be decomposed by using ultraviolet sterilization irradiation, and UVB or UVC ultraviolet rays are typically used. It is noted that these UV rays are dangerous to humans and other organisms.
  • ultraviolet rays with a wavelength of more than 240 nm cause damage to DNA in human cell nuclei, and ultraviolet rays have different cell penetrating power depending on the wavelength, and the shorter the wavelength, the smaller the radiation penetrating power, which eliminates the harmful effects on human cells.
  • the point is described. Further, as a specific example, it has been shown that ultraviolet rays having a wavelength of 200 nm to 230 nm are used to selectively inactivate microorganisms and viruses without damaging human or animal cells.
  • Patent Document 3 Japanese Patent Laid-Open No. 2018-517488
  • ultraviolet rays having a wavelength band shorter than 240 nm and having a wavelength band of 190 nm to 235 nm are used more efficiently for microorganisms and animals.
  • the purpose was to inactivate the virus.
  • one aspect of the inactivating device is a light source unit that emits ultraviolet rays having a central wavelength in the wavelength band of 190 nm to 235 nm, and whether or not a human exists in the target space.
  • a detection unit for detecting and a control unit for controlling the lighting state of the light source unit are provided. After a lapse of time, the light source unit is stopped from irradiating ultraviolet rays, and then the light source unit is continuously stopped from irradiating ultraviolet rays until at least the detection unit detects the presence of a human.
  • the "fixed time” here is set to a time that allows microorganisms and viruses existing in the target space to be sufficiently inactivated, and specifically, the inactivation rate is 90 in the selected lighting operation mode. % Or more, more preferably 99% or more, and more preferably 99.9% or more, and the time is set so that the ultraviolet rays can be irradiated.
  • the amount of ultraviolet rays required for inactivation differs depending on the target microorganism or virus, and is appropriately changed depending on the type of target microorganism or virus. As a result, unnecessary ultraviolet irradiation can be reduced by turning off the light after achieving the required amount of ultraviolet irradiation during the unmanned period in which the detection unit does not detect the presence of a human. In particular, during the unmanned period, bacteria and viruses are not newly introduced into the target space through humans, so that the inactivated state in the target space is not aggravated.
  • ultraviolet light in the wavelength band shorter than 240 nm is absorbed by the human skin surface (for example, the stratum corneum), is difficult to penetrate into the skin, and is highly safe for the skin, but bacteria and viruses are human. It is physically much smaller than cells, and ultraviolet light can easily reach the inside even in the wavelength band shorter than 240 nm. Therefore, it is considered that it effectively acts on cells constituting bacteria and viruses, particularly cell membranes and enzymes containing protein components, and enhances the effect of suppressing functions such as photorecovery of bacteria.
  • the bacteria are inactivated by ultraviolet rays having a wavelength of 190 nm to 235 nm within the unmanned period, even if the irradiation of the ultraviolet rays is stopped thereafter, the survival amount of the bacteria will not be restored by the irradiation with visible light. Therefore, after the inactivation in the target space is executed by the irradiation of ultraviolet rays for a certain period of time, it becomes easy to maintain the inactivated state even if the irradiation of ultraviolet rays is stopped, and the power consumption of the inactivating device can be suppressed. can.
  • the members for example, wallpaper, furniture, etc.
  • the detection unit detects the presence of a human after the detection unit stops irradiating the light source unit with ultraviolet rays after a certain period of time has passed during which the detection unit does not detect the presence of a human.
  • the ultraviolet irradiation may be started. Even after the required amount of ultraviolet rays have been irradiated into the target space during the period when the presence of humans is not detected, if a new human enters the target space, new microorganisms or viruses will be introduced through the human. May be brought in. Since this inhibits the inactivated state, UV irradiation is performed when the presence of a human is detected. As a result, the inactivation level in the target space can be kept high.
  • the detection unit detects the presence of a human after the detection unit stops irradiating the light source unit with ultraviolet rays after a certain period of time has passed during which the detection unit does not detect the presence of a human.
  • the ultraviolet irradiation may be controlled to continue to be stopped, and the ultraviolet irradiation may be started when the detection unit no longer detects the presence of a human being.
  • the amount of ultraviolet rays to humans is close to the upper limit, the microorganisms left in the target space at the timing when humans are absent again without directly irradiating humans with ultraviolet rays. It is possible to irradiate humans with ultraviolet rays, and it is possible to realize safer starting control assuming the allowable limit value of the amount of ultraviolet rays to humans.
  • control unit irradiates ultraviolet rays during a period in which the detection unit detects the presence of a human and a period in which the detection unit does not detect the presence of a human, and measures the amount of ultraviolet rays emitted from the light source unit. Controlled to change, the average illuminance of ultraviolet rays during the period when the detection unit detects the presence of humans is controlled to be lower than the average illuminance of ultraviolet rays during the period when the detection unit does not detect the presence of humans. May be done.
  • the "average illuminance" here may be a value obtained by dividing the integrated value of the illuminance within a predetermined period by a predetermined period when the ultraviolet rays are continuously emitted. Further, in the case of periodic lighting, the integrated value of the ultraviolet illuminance per cycle may be divided by the time of one cycle. Further, in the case of performing random lighting that is not periodic, the integrated value of the illuminance within the predetermined period may be divided by the predetermined period.
  • control of the average illuminance of the ultraviolet rays may be performed by changing the ratio of the lighting time and the extinguishing time of the light source unit. Further, the control unit performs an intermittent operation in which the lighting time when the light source unit is turned on and the lighting time when the light source unit is turned off are alternately repeated during the period when the detection unit detects the presence of a human being.
  • the extinguishing time may be started first, and then the lighting time may be started.
  • the control of the average illuminance of the ultraviolet rays may be performed by adjusting the voltage applied to the light emitting body provided in the light source unit. Further, the control of the average illuminance of the ultraviolet rays may be performed by adjusting the frequency of the voltage applied to the light emitting body provided in the light source unit. As described above, the average illuminance of ultraviolet rays can be realized by various control methods.
  • one aspect of the inactivating device is a light source unit that radiates ultraviolet rays having a central wavelength in the wavelength band of 190 nm to 235 nm, a detection unit that detects whether or not a human is present in the target space, and a detection unit.
  • a first unit comprising a control unit for controlling the lighting state of the light source unit, the control unit causes the light source unit to start ultraviolet irradiation when a detection signal for detecting the presence of a human is input from the detection unit. It has a mode and a second mode in which the light source unit is stopped or reduced in ultraviolet irradiation when the detection signal is input.
  • the predetermined ultraviolet rays are irradiated and microorganisms are emitted. And can inactivate viruses.
  • one aspect of the inactivation method according to the present invention is an inactivation method for controlling the lighting state of a light source unit that emits ultraviolet rays having a central wavelength in the wavelength band of 190 nm to 235 nm, and a human being in the target space.
  • the light source unit After irradiating with ultraviolet rays for a certain period of time during the step of detecting the presence or absence and the period during which the presence of the human is not detected, the light source unit is stopped from irradiating the ultraviolet rays, and then at least until the presence of the human is detected.
  • the light source unit includes a step of continuing to stop the irradiation of ultraviolet rays.
  • the survival amount of the bacteria will not be restored by the visible light irradiation even if the irradiation of the ultraviolet rays is stopped thereafter. Therefore, after the inactivation in the target space is executed by the irradiation of ultraviolet rays for a certain period of time, it becomes easy to maintain the inactivated state even if the irradiation of ultraviolet rays is stopped, and the power consumption of the inactivating device can be suppressed. can.
  • the members for example, wallpaper, furniture, etc.
  • one aspect of the inactivation method according to the present invention is an inactivation method for controlling the lighting state of a light source unit that emits ultraviolet rays having a central wavelength in the wavelength band of 190 nm to 235 nm, and a human being in the target space.
  • the step of detecting the presence or absence, the first mode of starting the ultraviolet irradiation to the light source unit when the presence of the human is detected, and the stop or reduction of the ultraviolet irradiation of the light source unit when the presence of the human is detected. Includes a step of performing any of the second modes to cause.
  • the predetermined ultraviolet rays are irradiated and microorganisms are emitted. And can inactivate viruses.
  • inactivation of microorganisms and / or viruses using ultraviolet rays in a wavelength range in which adverse effects on the human body are suppressed can be effectively and more appropriately performed.
  • FIG. 1 is an external image diagram of the inactivating device of the present embodiment.
  • FIG. 2 is an explanatory diagram regarding an operation example of the present embodiment.
  • FIG. 3 shows the results of a light recovery experiment of bacteria by irradiation with ultraviolet rays having a wavelength of 254 nm.
  • FIG. 4 shows the results of a light recovery experiment of bacteria by irradiation with ultraviolet rays having a wavelength of 222 nm.
  • FIG. 5 is an explanatory diagram regarding an operation example of the present embodiment.
  • FIG. 6 is an explanatory diagram regarding an operation example of the present embodiment.
  • FIG. 7 is an explanatory diagram regarding an operation example of the present embodiment.
  • FIG. 1 is an external image diagram of the inactivating device 100 in the present embodiment.
  • the inactivating device 100 is a device that irradiates ultraviolet rays in a space where humans and animals exist to inactivate microorganisms and viruses existing in the space and the surface of an object in the space.
  • the above space is, for example, a space in a facility such as an office, a commercial facility, a medical facility, a station facility, a school, a government office, a theater, a hotel, a restaurant, a car, a train, a bus, a taxi, an airplane, a ship, etc.
  • the space may be a closed space such as a hospital room, a conference room, a toilet, or an elevator, or may be an unclosed space.
  • the inactivating device 100 irradiates the target space with ultraviolet rays having a wavelength of 190 to 235 nm (more preferably, ultraviolet rays having a wavelength range of 200 nm to 230 nm), which have little adverse effect on human or animal cells, in the target space. It inactivates harmful microorganisms and viruses that exist on the surface and space of objects.
  • the above-mentioned object includes a human body, an animal, and an object.
  • the target space to be irradiated with ultraviolet rays is not limited to the space where people and animals actually exist, but includes the space where people and animals enter and exit and where there are no people or animals.
  • the term "inactivation" as used herein refers to killing microorganisms and viruses (or losing infectivity and toxicity).
  • the inactivating device 100 includes a light source unit that generates ultraviolet rays, a control unit 16 that controls lighting of the light source unit, and a housing 11 that houses the light source unit and the control unit 16.
  • the housing 11 is formed with a light emitting surface 12 that emits ultraviolet rays.
  • an opening 11a that serves as a light emitting window that radiates ultraviolet rays is formed.
  • a window member made of, for example, quartz glass is provided in the opening 11a, and ultraviolet rays are radiated from the window member. Further, the opening 11a may be provided with an optical filter or the like that blocks light in an unnecessary wavelength band.
  • An excimer lamp 20 is housed inside the housing 11 as an ultraviolet light source.
  • the excimer lamp 20 can be, for example, a KrCl excimer lamp that emits ultraviolet rays having a center wavelength of 222 nm.
  • the ultraviolet light source is not limited to the KrCl excimer lamp, and may be any light source that radiates ultraviolet rays in the wavelength range of 190 nm to 235 nm.
  • the housing 11 and the ultraviolet light source (excimer lamp 20) form a light source unit.
  • UV radiation the penetrating power of cells differs depending on the wavelength, and the shorter the wavelength, the smaller the penetrating power.
  • UV radiation with a short wavelength of about 200 nm passes through water very efficiently, but is highly absorbed by the outer part (cytoplasm) of human cells and is sufficient to reach the cell nucleus containing DNA sensitive to UV radiation. May not have enough energy. Therefore, the above-mentioned short wavelength UV radiation has little adverse effect on human cells.
  • ultraviolet rays having a wavelength of more than 240 nm can damage DNA in human cell nuclei. Further, it is known that ultraviolet rays having a wavelength of less than 190 nm generate ozone.
  • an ultraviolet light source that radiates ultraviolet rays in the wavelength range of 190 nm to 235 nm, which has little adverse effect on the human body and can obtain an inactivating effect, and does not substantially radiate other UVCs is used. Further, as a wavelength band with higher safety, an ultraviolet light source having a peak wavelength in the wavelength range of 200 nm to 230 nm may be used.
  • the excimer lamp 20 includes a straight tubular discharge container 21 in which both ends are hermetically sealed.
  • the discharge container 21 can be made of, for example, quartz glass. Further, the inside of the discharge container 21 is filled with a rare gas and a halogen as light emitting gas.
  • krypton chloride (KrCl) gas is used as the luminescent gas.
  • the peak wavelength of the obtained synchrotron radiation is 222 nm.
  • the luminescent gas is not limited to the above.
  • krypton bromide (KrBr) gas or the like can be used as the luminescent gas.
  • the peak wavelength of the obtained synchrotron radiation is 207 nm.
  • the inactivating device 100 includes a plurality of (three) discharge containers 21, but the number of discharge containers 21 is not particularly limited.
  • a pair of electrodes (first electrode 22 and second electrode 23) are arranged so as to abut on the outer surface of the discharge container 21.
  • the first electrode 22 and the second electrode 23 are arranged on the side surface (the surface in the ⁇ Z direction) opposite to the light extraction surface of the discharge container 21 so as to be separated from each other in the tube axis direction (Y direction) of the discharge container 21.
  • the discharge container 21 is arranged so as to straddle the two electrodes 22 and 22 while in contact with each other. Specifically, a concave groove is formed in the two electrodes 22 and 23, and the discharge container 21 is fitted in the concave groove of the electrodes 22 and 23.
  • one electrode for example, the first electrode 22
  • the other electrode for example, the second electrode 23
  • the low voltage side electrode ground electrode
  • the light extraction surface of the excimer lamp 20 is arranged so as to face the light emission window. Therefore, the light emitted from the excimer lamp 20 is emitted from the light emitting surface 12 of the inactivating device 100 through the light emitting window.
  • the electrodes 22 and 23 may be made of a metal member having reflectivity to the light emitted from the excimer lamp 21. In this case, the light radiated from the discharge container 21 in the ⁇ Z direction can be reflected and traveled in the + Z direction.
  • an optical filter can be provided in the opening 11a serving as the light emitting window.
  • the optical filter is, for example, a wavelength selection filter that transmits light having a wavelength range of 190 nm to 235 nm (more preferably light having a wavelength range of 200 nm to 230 nm) and cuts a UVC wavelength band having a wavelength range of 236 nm to 280 nm.
  • each ultraviolet illuminance having a wavelength of 236 nm to 280 nm is reduced to 1% or less with respect to the ultraviolet illuminance of the peak wavelength in the wavelength band of 190 nm to 235 nm.
  • the wavelength selection filter for example, an optical filter having a dielectric multilayer film composed of two layers of HfO and two layers of SiO can be used.
  • an optical filter having a dielectric multilayer film composed of two layers of SiO and three layers of Al2O can also be used.
  • the inactivating device 100 is provided with a detection unit 31 for detecting the presence of a human being in the target space.
  • the detection unit 31 may be integrally formed with the inactivating device 100, or may be one that detects by receiving a signal from the outside.
  • a motion sensor can be used.
  • the motion sensor can be, for example, a pyroelectric infrared sensor that detects a change in heat (infrared ray) generated from a human body or the like.
  • the occupied time and the non-occupied time in the target space that is supposed to be used by a person may be detected.
  • the inactivating device 100 includes a power supply unit 15 and a control unit 16.
  • the power supply unit 15 includes a power supply member such as an inverter to which electric power is supplied from the power source, and a cooling member such as a heat sink for cooling the power supply member.
  • the control unit 16 controls the lighting of the excimer lamp 20 constituting the light source unit.
  • FIG. 2 is an explanatory diagram showing one aspect of the lighting operation according to the present invention.
  • the control unit 16 detects the presence of a human in the target space based on the signal from the detection unit 31 (here, also referred to as a manned period) and a period in which the presence of a human is not detected in the target space (here, also referred to as a manned period).
  • the first lighting operation is executed in the manned period and the second lighting operation is executed in the unmanned period so that the average illuminance of the ultraviolet rays radiated from the light source unit is different.
  • the average illuminance is a value obtained by dividing the integrated value of the illuminance within a predetermined period by the predetermined period.
  • the lighting state may be controlled so that the average illuminance in the first lighting operation is set to 1 ⁇ W / cm 2 or less and the average illuminance in the second lighting operation exceeds 1 ⁇ W / cm 2 .
  • ACGIH American Conference of Governmental Industrial Hygienists
  • JIS Z 8812 measurement method of harmful ultraviolet radiation
  • the permissible limit value (TLV: Threshold Limit Value) is set in the above, and it is required to determine the illuminance and the irradiation amount of ultraviolet rays to be irradiated per predetermined time to the extent that the permissible limit value is not exceeded.
  • This permissible limit value may be revised in the future, but for example, the average illuminance in the first lighting operation performed during the manned period is the above permissible limit value even if the ultraviolet irradiation amount is continuously irradiated for 8 hours. It may be set to a value that does not exceed.
  • the first lighting operation is switched to the second lighting operation, and the average illuminance is switched from low illuminance to high illuminance.
  • the second lighting operation is switched to the first lighting operation, and the average illuminance is switched from high illuminance to low illuminance. Therefore, during the period when no one is present in the target space, the second lighting operation with a higher average illuminance of ultraviolet rays is executed, so that the microorganisms and viruses in the target space can be inactivated more effectively. can. Further, even during the period in which the presence of a human being is detected in the target space, by executing the first lighting operation, it is possible to irradiate a predetermined ultraviolet ray and inactivate microorganisms and viruses.
  • the second lighting operation may be controlled to stop (turn off) the operation after the end of the operation for a predetermined fixed time. That is, as shown in FIG. 2, after switching from the manned period to the unmanned period at time t3, the irradiation of ultraviolet rays may be stopped at time t4 when a certain time has elapsed.
  • the unmanned period inactivation in the space is achieved if necessary and sufficient ultraviolet irradiation is performed in the target space. Therefore, when it is difficult to assume that a new microorganism or virus will enter through humans, it is possible to suppress excessive ultraviolet irradiation into the target space by stopping (turning off) the lighting operation. As a result, power consumption can be suppressed. Further, the light emitting operation time of the light source unit can be reduced, and the service life of the inactivating device 100 can be extended.
  • the inactivation in the target space is executed by the irradiation of ultraviolet rays for a certain period of time, it becomes easy to maintain the inactivated state even if the irradiation of ultraviolet rays is stopped, and the power consumption of the inactivating device 100 can be suppressed. Can be done.
  • the members (for example, wallpaper, furniture, etc.) existing in the target space are not excessively irradiated with ultraviolet rays. This is an effect that cannot be realized with a low-pressure mercury lamp (main wavelength of 254 nm) known as a germicidal lamp.
  • FIGS. 3 and 4 show the verification results of verifying the inactivating effect of bacteria with a KrCl excimer lamp having a wavelength of 200 nm to 230 nm (main wavelength is 222 nm) and a low-pressure mercury lamp having a main wavelength of 254 nm.
  • FIG. 3 shows the results of a light recovery experiment of bacteria by ultraviolet irradiation using a low-pressure mercury lamp having a main wavelength of 254 nm
  • FIG. 4 shows the results of a light recovery experiment of bacteria by ultraviolet irradiation having a wavelength of 200 nm to 230 nm (main wavelength 222 nm).
  • the bacterium to be inactivated was Staphylococcus aureus
  • UV irradiation was performed in an environment where visible light including light having a wavelength of 300 nm to 500 nm was irradiated, and the change in the survival rate of the bacterium after UV irradiation was confirmed.
  • Staphylococcus aureus has a photolyase and is a bacterium that causes photolyase of the bacterium when irradiated with visible light.
  • the horizontal axis is the elapsed time (h), and the vertical axis is the log survival rate of the bacterium.
  • the experimental results a to d show changes in the survival rate of the bacteria when the ultraviolet irradiation dose is 0 mJ / cm 2 , 5 mJ / cm 2 , 10 mJ / cm 2 , and 15 mJ / cm 2 . ..
  • the irradiation time of ultraviolet rays was set to 30 minutes, and then the irradiation of ultraviolet rays was stopped, and the change in the survival rate of the bacteria was confirmed.
  • the survival rate of the fungus increases with the passage of time. That is, in an environment where visible light is irradiated, the bacteria are light-recovered after being irradiated with ultraviolet rays having a wavelength of 254 nm. Specifically, the survival number of the bacterium is significantly recovered in about 1 to 2 hours by irradiation with visible light. On the other hand, as shown in FIG. 4, when ultraviolet irradiation having a wavelength of 222 nm is performed, recovery of the bacteria is not observed even if visible light is irradiated. That is, the photorecovery of the fungus is inhibited.
  • UV rays having a wavelength of 222 nm can effectively reduce the recovery and growth of bacteria. Therefore, the inactivation system that irradiates ultraviolet rays having a wavelength of 222 nm works particularly effectively in an environment in which light recovery of bacteria is easy, specifically, in an environment in which visible light including light having a wavelength of 300 nm to 500 nm is irradiated. ..
  • the inactivating device 100 changes and controls the lighting operation between the manned period and the unmanned period, and the lighting operation during the unmanned period is a fixed time for achieving sufficient ultraviolet irradiation in the target space. By turning off the lights after the lapse of time, more efficient inactivation can be realized. Further, the time (constant time) in which the second lighting operation time is continued can be calculated as follows, for example.
  • E be the amount of ultraviolet rays (mJ / cm 2 ) that can inactivate 90% or more, more preferably 99% or more of the microorganisms and viruses to be inactivated, and the illuminance in the region with a distance of 50 cm from the light radiation surface 12.
  • Is I 50 and the distance from the light irradiation surface 12 to the object to be inactivated (the object to be inactivated) is h, and the irradiation required for sufficient inactivation is based on the following calculation formula (1).
  • Time H may be calculated.
  • Required irradiation time H E / (0.6 x I 50 x (50 / h) 2 ) ...
  • I 50 ⁇ (50 / h) 2 is the illuminance I h of ultraviolet rays on a surface separated from the light emitting surface 12 by a distance h. That is, the irradiation time H can inactivate the inactivated target in a region (60% illuminance area) where the ultraviolet illuminance is 60% of the maximum illuminance of ultraviolet rays on a surface separated from the light emitting surface 12 by a distance h. Time is set.
  • the illuminance in a region where the distance from the light emitting surface 12 is 50 cm is 53.6 ⁇ W / cm 2
  • the amount of ultraviolet rays required for 99% inactivation of a predetermined virus is 2 mJ / cm 2 .
  • the required irradiation time H is 995 seconds (about 17 minutes).
  • the second lighting operation is an intermittent operation in which the lighting time and the extinguishing time are alternately repeated, when the lighting time is 15 seconds and the extinguishing time is 30 seconds, the required driving of the second lighting operation is performed.
  • the time can be estimated to be 0.8 hours.
  • the time (constant time) in which the second lighting operation time is continued may be determined so that the driving time is 0.8 hours or more.
  • a fixed time can be set as one hour. If the inactivation rate is set to a higher value (for example, 99.9%), it is necessary to set a longer width for a certain period of time.
  • the first lighting operation may be executed. That is, as shown in FIG. 2, if the presence of a human being is detected at time t5 after the second lighting operation is stopped at time t4, the first lighting operation may be executed at this time t5. If the detection unit 31 detects the presence of a human after the second lighting operation is stopped, the detection unit 31 waits until the presence of the human is no longer detected, and the detection unit 31 waits until the presence of a human is detected. When it is no longer detected, the second lighting operation may be executed. That is, as shown in FIG.
  • the first lighting operation is not executed at this time t5 and thereafter.
  • the second lighting operation may be executed.
  • either or both of the first lighting operation and the second lighting operation may be performed periodically, and as shown in FIG. 6, the lighting operation and the extinguishing operation are alternately performed. It may perform an intermittent operation that is repeated (a lighting time in which the light source unit is turned on and an extinguishing time in which the light source unit is turned off are repeated alternately).
  • FIG. 6 is an explanatory diagram showing one aspect of the lighting operation according to the present invention, and shows one aspect in which the first lighting operation and the second lighting operation each perform an intermittent operation.
  • a period in which the presence of a human being in the target space is detected based on the signal from the detection unit 31 also referred to as a manned period here
  • a period in which the presence of a human being is not detected in the target space here, also referred to as an unmanned period.
  • the average illuminance here may be determined as the average illuminance per cycle. That is, when the periodic intermittent operation is performed as shown in FIG. 6, the average illuminance is the illuminance ⁇ duty ratio.
  • the duty ratio is the ratio of the lighting time to the total of the lighting time and the extinguishing time, and is a value expressed by the lighting time / (lighting time + extinguishing time).
  • the lighting state may be controlled so that the average illuminance in the first lighting operation is set to 1 ⁇ W / cm 2 or less and the average illuminance in the second lighting operation exceeds 1 ⁇ W / cm 2 .
  • the first lighting operation is switched to the second lighting operation, and the average illuminance is switched from low illuminance to high illuminance.
  • the average illuminance is switched from low illuminance to high illuminance by shortening the turn-off time in the periodic on / off cycle.
  • the second lighting operation is switched to the first lighting operation, and the average illuminance is switched from high illuminance to low illuminance. That is, the extinguishing time becomes long. Therefore, as in the embodiment shown in FIG.
  • the second lighting operation having a higher average illuminance of the ultraviolet rays is executed, so that the second lighting operation is more effectively performed in the target space. It can inactivate microorganisms and viruses. Further, even during the period in which the presence of a human being is detected in the target space, by executing the first lighting operation, it is possible to irradiate a predetermined ultraviolet ray and inactivate microorganisms and viruses.
  • the second lighting operation may be controlled so as to stop (turn off) the operation after the end of the operation for a predetermined fixed time. That is, as shown in FIG. 6, after switching from the manned period to the unmanned period at time t13, the irradiation of ultraviolet rays may be stopped at time t14 when a certain time has elapsed.
  • the fixed time is the time during which the irradiation time H (sec) calculated by the above equation (1) is executed. In the unmanned period, inactivation in the space is achieved if necessary and sufficient ultraviolet irradiation is performed in the target space.
  • the first lighting operation may be executed. That is, as shown in FIG. 6, if the presence of a human being is detected at time t15 after the second lighting operation is stopped at time t14, the first lighting operation may be executed at this time t15.
  • the extinguishing time may be started first, and then the lighting time may be started. That is, as shown in FIG. 7, when the presence of a human being is detected at time t15 after the second lighting operation is stopped at time t14, the time after waiting for the extinguishing time in the periodic lighting / extinguishing cycle. At t16, the lighting time may be started. If the lighting operation is started, the lighting time may be relatively long when the presence / absence of a human fluctuates drastically. By starting from the extinguishing time, it is easy to maintain the lighting time at an appropriate value.
  • control of the average illuminance of ultraviolet rays in the first lighting operation and the second lighting operation changes the ratio of the lighting time and the extinguishing time of the light source unit, adjusts the voltage applied to the light emitter provided in the light source unit, and controls the light source unit. It can be realized by various control methods such as adjustment of the frequency of the voltage applied to the light source provided in the above.
  • the lighting time and the extinguishing time of the light source unit are adjusted by adjusting the extinguishing time.
  • the lighting time may be adjusted, or both the lighting time and the extinguishing time may be adjusted.
  • a light source unit that radiates ultraviolet rays having a central wavelength in the wavelength band of 190 nm to 235 nm
  • a detection unit that detects whether or not a human is present in the target space
  • a control unit that controls the lighting state of the light source unit.
  • the control unit includes a second lighting operation that is executed during a period in which the detection unit does not detect the presence of a human, and the second lighting operation has a period in which the detection unit does not detect the presence of a human.
  • the inactivating device may be characterized in that it is controlled to stop after a certain period of time has elapsed.
  • the distance from the light emitting surface of the light source unit to the inactivating target is h
  • the illuminance of ultraviolet rays on the surface separated by the distance h from the light emitting surface is I h (mW / cm 2 ).
  • it is an inactivation method for controlling the lighting state of a light source unit that emits ultraviolet rays having a central wavelength in the wavelength band of 190 nm to 235 nm, and is a step of detecting whether or not a human is present in the target space, and the detection.
  • the second lighting operation includes a step of executing a second lighting operation during a period in which the detection unit does not detect the presence of a human, and the second lighting operation is stopped after a certain period of time in which the detection unit does not detect the presence of a human has elapsed. It may be an inactivation method, characterized in that it is controlled to do so.
  • the distance from the light emitting surface of the light source unit to the inactivating target is h
  • the illuminance of ultraviolet rays on the surface separated by the distance h from the light emitting surface is I h (mW / cm2).
  • the second lighting operation during the period in which the presence of a human is not detected is controlled so that the detection unit stops after a certain period of time in which the presence of a human is not detected has elapsed.
  • the "fixed time” here is set to a time that allows microorganisms and viruses existing in the target space to be sufficiently inactivated, and specifically, the inactivation rate is 90 in the selected lighting operation mode. % Or more, more preferably 99% or more, and more preferably 99.9% or more, and the time is set so that the ultraviolet rays can be irradiated.
  • the amount of ultraviolet rays required for inactivation differs depending on the target microorganism or virus, and is appropriately changed depending on the type of target microorganism or virus.
  • ultraviolet rays having a central wavelength in the wavelength range of 190 to 235 nm have an effect of suppressing the function of "light recovery of bacteria", and therefore, after inactivation in the target space is executed by irradiation with ultraviolet rays for a certain period of time. Makes it easier to maintain the inactivated state even when the irradiation of ultraviolet rays is stopped. That is, inactivation can be promoted more effectively, and excessive irradiation of ultraviolet rays to members (for example, wallpaper, furniture, etc.) existing in the target space can be suppressed. As a result, the power consumption and the service life of the inactivated device can be suppressed.
  • the detection unit detects the presence of a human after the second lighting operation is stopped, it may be controlled to continue the stopped state.
  • the second lighting operation is executed during the period when the presence of a human is not detected again. Further, the second lighting operation may be controlled to stop after a certain period of time has elapsed.
  • the second lighting operation By continuing the second lighting operation for a certain period of time, even after the required amount of ultraviolet rays has been irradiated into the target space, if a new human enters the target space, a new human will enter the target space. Microorganisms and viruses may be introduced. Since this hinders the inactivated state, if the detection unit detects the presence of a human after the second lighting operation is stopped, the first lighting operation is executed again during the manned period. UV irradiation may be performed. As a result, the inactivation level in the target space can be kept high.
  • the detection unit detects the presence of a human after the second lighting operation is stopped, a lighting operation different from the first lighting operation and the second lighting operation is executed. You may do so.
  • the second lighting operation is executed when the existence of a human is not detected again. Further, the second lighting operation may be controlled to stop after a certain period of time has elapsed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

An inactivation device and an inactivation method that effectively and more appropriately inactivate microorganisms and/or viruses using ultraviolet rays in a wavelength range in which adverse effects on the human body are suppressed. This inactivation device comprises a light source unit that emits ultraviolet rays having a central wavelength within a wavelength band of 190-235 nm, a detection unit that detects the presence or absence of a human being in a target space, and a control unit that controls the lighting state of the light source unit. The control unit commands to perform ultraviolet radiation for a predetermined period of time during which the detection unit does not detect the presence of a human being. After the lapse of the predetermined period of time, the control unit makes the light source unit stop the ultraviolet radiation. Then, the control unit makes the light source continue to suspend the ultraviolet radiation at least until the detection unit detects the presence of a human being.

Description

不活化装置および不活化方法Inactivating device and inactivating method
 本発明は、有害な微生物やウイルスを不活化する不活化装置および不活化方法に関する。 The present invention relates to an inactivating device and an inactivating method for inactivating harmful microorganisms and viruses.
 従来、有害な微生物(細菌やカビ等)やウイルスによる感染症の拡大を防ぐため、空間を浮遊する微生物やウイルス、および床面、壁面、物体の表面等の様々な場所に付着している微生物やウイルスを、紫外線を照射して不活化させることが行われている。
 例えば特許文献1(特開2018-130131号公報)には、室内上部に取り付けられ、室内の水平方向、斜め下方、および下方に紫外線を照射する室内殺菌装置が開示されている。
Conventionally, in order to prevent the spread of infectious diseases caused by harmful microorganisms (bacteria, molds, etc.) and viruses, microorganisms and viruses floating in space, and microorganisms attached to various places such as floors, walls, and surfaces of objects. And viruses are inactivated by irradiating them with ultraviolet rays.
For example, Patent Document 1 (Japanese Unexamined Patent Publication No. 2018-130131) discloses an indoor sterilizer that is attached to an upper part of a room and irradiates ultraviolet rays horizontally, diagonally downward, and downward in the room.
 特許文献1(特開2018-130131号公報)に記載の室内殺菌装置は、水平照射ユニット、及び、下方照射ユニットを備え、水平方向、斜め下方および下方に紫外線を照射することができる。そして、特許文献1(特開2018-130131号公報)に例示されている254nmの紫外線は、一般的には人体に有害であるとされる。そのため、室内に人が存在する場合は、斜め下方および下方に紫外線を照射することはできない。人が在室時に照射するときは、天井付近に水平に照射するなど、人に紫外線があたらない範囲に限られていた。 The indoor sterilizer described in Patent Document 1 (Japanese Unexamined Patent Publication No. 2018-130131) includes a horizontal irradiation unit and a downward irradiation unit, and can irradiate ultraviolet rays in the horizontal direction, diagonally downward and downward. The 254 nm ultraviolet rays exemplified in Patent Document 1 (Japanese Unexamined Patent Publication No. 2018-130131) are generally considered to be harmful to the human body. Therefore, when there is a person in the room, it is not possible to irradiate the ultraviolet rays diagonally downward and downward. When irradiating a person while in the room, the irradiation was limited to a range where the person was not exposed to ultraviolet rays, such as irradiating horizontally near the ceiling.
 特許文献2(特開平10-248759号公報)には、紫外線を照射する殺菌灯から便室の室内に向けて紫外線を照射し、室内を殺菌する技術が開示されているが、人の存在を検知すると紫外線の照射を停止することが記載されている。すなわち従来技術において、殺菌を要する領域内に人が進入した場合には、紫外線の照射を停止することが前提となっている。 Patent Document 2 (Japanese Unexamined Patent Publication No. 10-248759) discloses a technique for sterilizing a room by irradiating the room with ultraviolet rays from a germicidal lamp that irradiates ultraviolet rays. It is stated that when it is detected, the irradiation of ultraviolet rays is stopped. That is, in the prior art, it is premised that the irradiation of ultraviolet rays is stopped when a person enters the area requiring sterilization.
 また特許文献3(特表2018-517488号公報)には、人や動物の身体の細胞への危害を実質的に回避しつつ、バクテリアを不活化する技術について開示されている。この特許文献3(特表2018-517488号公報)には、紫外線殺菌照射を用いて食品、空気及び浄水中の微生物を分解でき、典型的にはUVB、又はUVCの紫外線が用いられる点、またこれら紫外線が人間及び他の生物にとって危険である点が記載されている。さらに、波長240nmを超える紫外線はヒトの細胞核中のDNAにダメージを引き起こす点、紫外線は波長によって細胞の貫通力が異なり、短波長ほど放射線の貫通力が小さくなることでヒト細胞に対する有害性がなくなる点、が記載されている。また具体例として、波長200nm~230nmの紫外線を用いて、人や動物の細胞を害することなく微生物やウイルスを選択的に不活化することが示されている。 Further, Patent Document 3 (Japanese Patent Laid-Open No. 2018-517488) discloses a technique for inactivating bacteria while substantially avoiding harm to cells of the human or animal body. In Patent Document 3 (Japanese Patent Laid-Open No. 2018-517488), microorganisms in food, air and purified water can be decomposed by using ultraviolet sterilization irradiation, and UVB or UVC ultraviolet rays are typically used. It is noted that these UV rays are dangerous to humans and other organisms. Furthermore, ultraviolet rays with a wavelength of more than 240 nm cause damage to DNA in human cell nuclei, and ultraviolet rays have different cell penetrating power depending on the wavelength, and the shorter the wavelength, the smaller the radiation penetrating power, which eliminates the harmful effects on human cells. The point, is described. Further, as a specific example, it has been shown that ultraviolet rays having a wavelength of 200 nm to 230 nm are used to selectively inactivate microorganisms and viruses without damaging human or animal cells.
特開2018-130131号公報Japanese Unexamined Patent Publication No. 2018-130131 特開平10-248759号公報Japanese Unexamined Patent Publication No. 10-248759 特表2018-517488号公報Special Table 2018-517488 Gazette
 特許文献3(特表2018-517488号公報)に基づき、人や動物に対する有害性を抑制される紫外線として、240nmよりも短い波長帯域として190nm~235nmの紫外線を用いて、より効率的に微生物およびウイルスを不活化することを目的とした。 Based on Patent Document 3 (Japanese Patent Laid-Open No. 2018-517488), as ultraviolet rays whose harmfulness to humans and animals is suppressed, ultraviolet rays having a wavelength band shorter than 240 nm and having a wavelength band of 190 nm to 235 nm are used more efficiently for microorganisms and animals. The purpose was to inactivate the virus.
 上記課題を解決するために、本発明に係る不活化装置の一態様は、190nm~235nmの波長帯域に中心波長を有する紫外線を放射する光源部と、対象空間内に人間が存在するかどうかを検知する検知部と、前記光源部の点灯状態を制御する制御部と、を備え、制御部は、前記検知部が人間の存在を検知しない期間に一定時間、紫外線照射を行い、前記一定時間を経過した後に、前記光源部に紫外線照射を停止させ、その後、少なくとも前記検知部が人間の存在を検知するまでの間、前記光源部に紫外線照射の停止を継続させる。 In order to solve the above problems, one aspect of the inactivating device according to the present invention is a light source unit that emits ultraviolet rays having a central wavelength in the wavelength band of 190 nm to 235 nm, and whether or not a human exists in the target space. A detection unit for detecting and a control unit for controlling the lighting state of the light source unit are provided. After a lapse of time, the light source unit is stopped from irradiating ultraviolet rays, and then the light source unit is continuously stopped from irradiating ultraviolet rays until at least the detection unit detects the presence of a human.
 ここでの「一定時間」とは、対象空間内に存在する微生物やウイルスが十分に不活化できる程度の時間で設定され、具体的には、選択された点灯動作モードにおいて、不活化率が90%以上、より望ましくは99%以上、更に望ましくは99.9%以上となる程度に紫外線が照射可能な時間で設定される。不活化に必要な紫外線量は、対象とする微生物やウイルスによって異なり、対象とする微生物やウイルスの種類によって適宜変更される。
 これにより、検知部が人間の存在を検知しない無人期間において、必要量の紫外線照射を達成した後に消灯することで、不必要な紫外線照射を減らすことができる。特に無人期間においては、人間を介して対象空間内に細菌やウイルスが新たに持ち込まれることがないため、対象空間内における不活化された状態を悪化させることが無い。
The "fixed time" here is set to a time that allows microorganisms and viruses existing in the target space to be sufficiently inactivated, and specifically, the inactivation rate is 90 in the selected lighting operation mode. % Or more, more preferably 99% or more, and more preferably 99.9% or more, and the time is set so that the ultraviolet rays can be irradiated. The amount of ultraviolet rays required for inactivation differs depending on the target microorganism or virus, and is appropriately changed depending on the type of target microorganism or virus.
As a result, unnecessary ultraviolet irradiation can be reduced by turning off the light after achieving the required amount of ultraviolet irradiation during the unmanned period in which the detection unit does not detect the presence of a human. In particular, during the unmanned period, bacteria and viruses are not newly introduced into the target space through humans, so that the inactivated state in the target space is not aggravated.
 また紫外線を用いた細菌の不活化を行う場合は、「菌の光回復」を考慮する必要がある。細菌には、紫外線照射によってDNAが損傷された後であっても、波長300nm~500nmの光(可視光域を含む)が照射されることで、DNAの損傷を修復させる作用を起こすものがある。これは、細菌が保有する光回復酵素(例えば、FAD(フラビンアデニンジヌクレオチド))の働きによるもので、この現象は、「菌の光回復」といわれる。
 しかし、波長190nm~235nmに中心波長を有する紫外線、例えば波長222nmの紫外線照射によって菌を不活化した場合には、紫外線照射後に可視光が照射されても菌の光回復は行われないことが確認された。この作用は、波長240nmより短い波長帯域の紫外線が、細菌やウイルスが持つ細胞膜や酵素の成分であるタンパク質に効果的に吸収されるためと考えられる。詳述すると、240nmよりも短い波長帯域の紫外光は、人の皮膚表面(例えば角質層)で吸収され、皮膚内部まで浸透し難く、皮膚に対して安全性が高いが、細菌やウイルスはヒト細胞よりも物理的にはるかに小さく、240nmよりも短い波長帯域であっても紫外光が内部まで到達しやすい。そのため、菌やウイルスを構成する細胞、特に、タンパク質成分を含む細胞膜や酵素等に対して効果的に作用し、菌の光回復等の機能を抑制する効果が高められると考えられる。
In addition, when inactivating bacteria using ultraviolet rays, it is necessary to consider "light recovery of bacteria". Some bacteria have the effect of repairing DNA damage by being irradiated with light (including the visible light range) with a wavelength of 300 nm to 500 nm, even after the DNA has been damaged by ultraviolet irradiation. .. This is due to the action of a photolyase (for example, FAD (flavin adenine dinucleotide)) possessed by bacteria, and this phenomenon is called "photolyase of bacteria".
However, it was confirmed that when the bacteria were inactivated by irradiation with ultraviolet rays having a central wavelength in the wavelength range of 190 nm to 235 nm, for example, ultraviolet rays having a wavelength of 222 nm, the bacteria were not recovered even if visible light was irradiated after the ultraviolet irradiation. Was done. It is considered that this action is due to the fact that ultraviolet rays having a wavelength band shorter than 240 nm are effectively absorbed by proteins, which are components of cell membranes and enzymes possessed by bacteria and viruses. More specifically, ultraviolet light in the wavelength band shorter than 240 nm is absorbed by the human skin surface (for example, the stratum corneum), is difficult to penetrate into the skin, and is highly safe for the skin, but bacteria and viruses are human. It is physically much smaller than cells, and ultraviolet light can easily reach the inside even in the wavelength band shorter than 240 nm. Therefore, it is considered that it effectively acts on cells constituting bacteria and viruses, particularly cell membranes and enzymes containing protein components, and enhances the effect of suppressing functions such as photorecovery of bacteria.
 つまり、無人期間内において波長190nm~235nmの紫外線で細菌を不活化させておけば、その後、紫外線の照射を停止したとしても、可視光照射によって細菌の生存量が回復してゆくことが無い。
 そのため、一定時間の紫外線照射によって対象空間内の不活化が実行された後は、紫外線の照射を停止させても不活化された状態を維持しやすくなり、不活化装置の消費電力を抑えることができる。また対象空間内に存在する部材(例えば、壁紙、什器等)に対して過剰に紫外線を照射させることが無い。
That is, if the bacteria are inactivated by ultraviolet rays having a wavelength of 190 nm to 235 nm within the unmanned period, even if the irradiation of the ultraviolet rays is stopped thereafter, the survival amount of the bacteria will not be restored by the irradiation with visible light.
Therefore, after the inactivation in the target space is executed by the irradiation of ultraviolet rays for a certain period of time, it becomes easy to maintain the inactivated state even if the irradiation of ultraviolet rays is stopped, and the power consumption of the inactivating device can be suppressed. can. In addition, the members (for example, wallpaper, furniture, etc.) existing in the target space are not excessively irradiated with ultraviolet rays.
 また、前記制御部は、前記検知部が人間の存在を検知しない期間が前記一定時間を経過して前記光源部に紫外線照射を停止させた後に、前記検知部が人間の存在を検知した場合は、前記紫外線照射を開始させてもよい。
 人間の存在を検知しない期間に、対象空間内に必要量の紫外線が照射された後であっても、この対象空間内に新たに人間が入り込む場合は、人間を介して新たに微生物やウイルスが持ち込まれる可能性がある。これは不活化された状態を阻害するため、人間の存在を検知したら紫外線照射を行う。これにより、対象空間内の不活化レベルを高く保つことができる。
Further, when the detection unit detects the presence of a human after the detection unit stops irradiating the light source unit with ultraviolet rays after a certain period of time has passed during which the detection unit does not detect the presence of a human. , The ultraviolet irradiation may be started.
Even after the required amount of ultraviolet rays have been irradiated into the target space during the period when the presence of humans is not detected, if a new human enters the target space, new microorganisms or viruses will be introduced through the human. May be brought in. Since this inhibits the inactivated state, UV irradiation is performed when the presence of a human is detected. As a result, the inactivation level in the target space can be kept high.
 また、前記制御部は、前記検知部が人間の存在を検知しない期間が前記一定時間を経過して前記光源部に紫外線照射を停止させた後に、前記検知部が人間の存在を検知した場合は、前記紫外線照射の停止を継続するように制御し、前記検知部が人間の存在を検知しなくなると前記紫外線照射を開始させてもよい。
 この場合も、人間の存在を検知しない期間に紫外線照射が一定時間行われた後に、対象空間内に新たに人間が入り込む際に、人間を介して新たに微生物やウイルスが持ち込まれる可能性を想定したものであるが、人間への紫外線量が上限値に近い場合においては、人間への直接的な紫外線照射を行わず、再び人間が不在となったタイミングで、対象空間内に残された微生物やウイルスに紫外線を照射することができ、人間への紫外線量の許容限界値を想定したより安全な始動制御が実現できる。
Further, when the detection unit detects the presence of a human after the detection unit stops irradiating the light source unit with ultraviolet rays after a certain period of time has passed during which the detection unit does not detect the presence of a human. , The ultraviolet irradiation may be controlled to continue to be stopped, and the ultraviolet irradiation may be started when the detection unit no longer detects the presence of a human being.
In this case as well, it is assumed that there is a possibility that new microorganisms and viruses will be introduced through humans when a new human enters the target space after being irradiated with ultraviolet rays for a certain period of time during the period when the presence of humans is not detected. However, when the amount of ultraviolet rays to humans is close to the upper limit, the microorganisms left in the target space at the timing when humans are absent again without directly irradiating humans with ultraviolet rays. It is possible to irradiate humans with ultraviolet rays, and it is possible to realize safer starting control assuming the allowable limit value of the amount of ultraviolet rays to humans.
 また、前記制御部は、前記検知部が人間の存在を検知している期間および前記検知部が人間の存在を検知していない期間に紫外線照射を行い、前記光源部から放射される紫外線量を変更するよう制御し、前記検知部が人間の存在を検知している期間の紫外線の平均照度は、前記検知部が人間の存在を検知していない期間の紫外線の平均照度よりも低くなるよう制御されてもよい。 Further, the control unit irradiates ultraviolet rays during a period in which the detection unit detects the presence of a human and a period in which the detection unit does not detect the presence of a human, and measures the amount of ultraviolet rays emitted from the light source unit. Controlled to change, the average illuminance of ultraviolet rays during the period when the detection unit detects the presence of humans is controlled to be lower than the average illuminance of ultraviolet rays during the period when the detection unit does not detect the presence of humans. May be done.
 このように、人や動物の細胞に悪影響の少ない190nm~235nmの波長範囲にある紫外線を放射することで、対象空間内に人間の存在を検知する期間においても、所定の紫外線を照射し、微生物やウイルスの不活化を行うことができる。また対象空間内に人間の存在を検知しない期間においては、紫外線の平均照度がより高い紫外線照射を行うことで、より効果的に対象空間内の微生物やウイルスの不活化を行うことができる。つまり、有人期間と無人期間とで点灯状態を変更し、より場面に適した紫外線照射を行う。
 なお、ここでの「平均照度」とは、連続的に紫外線を放射するときは、所定期間内の照度の積算値を、所定期間で割った値としてもよい。また周期的な点灯を行う場合は、1周期あたりの紫外線照度の積算値を、1周期の時間で割った値としてもよい。また周期的でないランダムな点灯を行う場合は、所定期間内の照度の積算値を、所定期間で割った値としてもよい。
In this way, by radiating ultraviolet rays in the wavelength range of 190 nm to 235 nm, which have little adverse effect on human and animal cells, predetermined ultraviolet rays are irradiated even during the period when the presence of humans is detected in the target space, and microorganisms are irradiated. And can inactivate viruses. In addition, during the period when the presence of humans is not detected in the target space, it is possible to more effectively inactivate microorganisms and viruses in the target space by irradiating with ultraviolet rays having a higher average illuminance of ultraviolet rays. That is, the lighting state is changed between the manned period and the unmanned period, and the ultraviolet irradiation more suitable for the scene is performed.
The "average illuminance" here may be a value obtained by dividing the integrated value of the illuminance within a predetermined period by a predetermined period when the ultraviolet rays are continuously emitted. Further, in the case of periodic lighting, the integrated value of the ultraviolet illuminance per cycle may be divided by the time of one cycle. Further, in the case of performing random lighting that is not periodic, the integrated value of the illuminance within the predetermined period may be divided by the predetermined period.
 また前記紫外線の平均照度の制御は、前記光源部の点灯時間と消灯時間の比を変更することにより行われるものであってもよい。
 また、前記制御部は、前記検知部が人間の存在を検知している期間に、前記光源部が点灯する点灯時間と前記光源部が消灯する消灯時間とが交互に繰り返される間欠動作を行うよう制御し、前記検知部が人間の存在を検知した場合は、先に消灯時間が開始され、その後に点灯時間が開始されるよう制御してもよい。
 これにより、前記検知部で人間の存在を検知する期間と、検知しない期間とが短時間で頻繁に切り替わる場合、例えば、人の往来が激しいタイミングにおいても、適切な消灯時間が確保されやすくなり、点灯動作の誤動作を抑制することができる。
 そのため、人の往来が頻繁な場合であっても、光源部が頻繁に点滅動作してしまうことがない。
 また前記紫外線の平均照度の制御は、前記光源部に設けられた発光体への印加電圧を調整することにより行われるものであってもよい。また前記紫外線の平均照度の制御は、前記光源部に設けられた発光体への印加電圧の周波数を調整することにより行われるものであってもよい。
 このように、紫外線の平均照度は、種々の制御方法により実現することができる。
Further, the control of the average illuminance of the ultraviolet rays may be performed by changing the ratio of the lighting time and the extinguishing time of the light source unit.
Further, the control unit performs an intermittent operation in which the lighting time when the light source unit is turned on and the lighting time when the light source unit is turned off are alternately repeated during the period when the detection unit detects the presence of a human being. When the detection unit detects the presence of a human being, the extinguishing time may be started first, and then the lighting time may be started.
As a result, when the period in which the presence of a human is detected by the detection unit and the period in which the presence of a human is not detected are frequently switched in a short time, for example, even at the timing when people come and go, it becomes easy to secure an appropriate turn-off time. It is possible to suppress the malfunction of the lighting operation.
Therefore, even when people come and go frequently, the light source unit does not blink frequently.
Further, the control of the average illuminance of the ultraviolet rays may be performed by adjusting the voltage applied to the light emitting body provided in the light source unit. Further, the control of the average illuminance of the ultraviolet rays may be performed by adjusting the frequency of the voltage applied to the light emitting body provided in the light source unit.
As described above, the average illuminance of ultraviolet rays can be realized by various control methods.
 また、本発明に係る不活化装置の一態様は、190nm~235nmの波長帯域に中心波長を有する紫外線を放射する光源部と、対象空間内に人間が存在するかどうかを検知する検知部と、前記光源部の点灯状態を制御する制御部と、を備え、前記制御部は、前記検知部から人間の存在を検知する検知信号が入力されると前記光源部に紫外線照射を開始させる第1のモードと、前記検知信号が入力されると前記光源部に紫外線照射を停止または低減させる第2のモードと、を有する。
 このように、人や動物の細胞に悪影響の少ない190nm~235nmの波長範囲にある紫外線を放射することで、対象空間内に人間の存在を検知していても、所定の紫外線を照射し、微生物やウイルスの不活化を行うことができる。
Further, one aspect of the inactivating device according to the present invention is a light source unit that radiates ultraviolet rays having a central wavelength in the wavelength band of 190 nm to 235 nm, a detection unit that detects whether or not a human is present in the target space, and a detection unit. A first unit comprising a control unit for controlling the lighting state of the light source unit, the control unit causes the light source unit to start ultraviolet irradiation when a detection signal for detecting the presence of a human is input from the detection unit. It has a mode and a second mode in which the light source unit is stopped or reduced in ultraviolet irradiation when the detection signal is input.
In this way, by radiating ultraviolet rays in the wavelength range of 190 nm to 235 nm, which have little adverse effect on human and animal cells, even if the presence of humans is detected in the target space, the predetermined ultraviolet rays are irradiated and microorganisms are emitted. And can inactivate viruses.
 また、本発明に係る不活化方法の一態様は、190nm~235nmの波長帯域に中心波長を有する紫外線を放射する光源部の点灯状態を制御する不活化方法であって、対象空間内に人間が存在するかどうかを検知するステップと、前記人間の存在を検知しない期間に一定時間、紫外線照射を行った後に、前記光源部に紫外線照射を停止させ、その後、少なくとも前記人間の存在を検知するまでの間、前記光源部に紫外線照射の停止を継続させるステップと、を含む。 Further, one aspect of the inactivation method according to the present invention is an inactivation method for controlling the lighting state of a light source unit that emits ultraviolet rays having a central wavelength in the wavelength band of 190 nm to 235 nm, and a human being in the target space. After irradiating with ultraviolet rays for a certain period of time during the step of detecting the presence or absence and the period during which the presence of the human is not detected, the light source unit is stopped from irradiating the ultraviolet rays, and then at least until the presence of the human is detected. In the meantime, the light source unit includes a step of continuing to stop the irradiation of ultraviolet rays.
 無人期間内において波長190nm~235nmの紫外線で細菌を不活化させておけば、その後、紫外線の照射を停止したとしても、可視光照射によって細菌の生存量が回復してゆくことが無い。
 そのため、一定時間の紫外線照射によって対象空間内の不活化が実行された後は、紫外線の照射を停止させても不活化された状態を維持しやすくなり、不活化装置の消費電力を抑えることができる。また対象空間内に存在する部材(例えば、壁紙、什器等)に対して過剰に紫外線を照射させることが無い。
If the bacteria are inactivated by ultraviolet rays having a wavelength of 190 nm to 235 nm within the unmanned period, the survival amount of the bacteria will not be restored by the visible light irradiation even if the irradiation of the ultraviolet rays is stopped thereafter.
Therefore, after the inactivation in the target space is executed by the irradiation of ultraviolet rays for a certain period of time, it becomes easy to maintain the inactivated state even if the irradiation of ultraviolet rays is stopped, and the power consumption of the inactivating device can be suppressed. can. In addition, the members (for example, wallpaper, furniture, etc.) existing in the target space are not excessively irradiated with ultraviolet rays.
 また、本発明に係る不活化方法の一態様は、190nm~235nmの波長帯域に中心波長を有する紫外線を放射する光源部の点灯状態を制御する不活化方法であって、対象空間内に人間が存在するかどうかを検知するステップと、前記人間の存在を検知すると前記光源部に紫外線照射を開始させる第1のモード、および、前記人間の存在を検知すると前記光源部に紫外線照射を停止または低減させる第2のモードのいずれかを実行するステップと、を含む。
 このように、人や動物の細胞に悪影響の少ない190nm~235nmの波長範囲にある紫外線を放射することで、対象空間内に人間の存在を検知していても、所定の紫外線を照射し、微生物やウイルスの不活化を行うことができる。
Further, one aspect of the inactivation method according to the present invention is an inactivation method for controlling the lighting state of a light source unit that emits ultraviolet rays having a central wavelength in the wavelength band of 190 nm to 235 nm, and a human being in the target space. The step of detecting the presence or absence, the first mode of starting the ultraviolet irradiation to the light source unit when the presence of the human is detected, and the stop or reduction of the ultraviolet irradiation of the light source unit when the presence of the human is detected. Includes a step of performing any of the second modes to cause.
In this way, by radiating ultraviolet rays in the wavelength range of 190 nm to 235 nm, which have little adverse effect on human and animal cells, even if the presence of humans is detected in the target space, the predetermined ultraviolet rays are irradiated and microorganisms are emitted. And can inactivate viruses.
 本発明の一つの態様によれば、人体への悪影響が抑制された波長範囲の紫外線を用いた微生物および/またはウイルスの不活化を、効果的に、且つ、より適切に行うことができる。
 上記した本発明の目的、態様及び効果並びに上記されなかった本発明の目的、態様及び効果は、当業者であれば添付図面及び請求の範囲の記載を参照することにより下記の発明を実施するための形態(発明の詳細な説明)から理解できるであろう。
According to one aspect of the present invention, inactivation of microorganisms and / or viruses using ultraviolet rays in a wavelength range in which adverse effects on the human body are suppressed can be effectively and more appropriately performed.
The above-mentioned object, aspect and effect of the present invention and the above-mentioned object, aspect and effect of the present invention not described above are to be used by those skilled in the art to carry out the following invention by referring to the accompanying drawings and the description of the scope of claims. Can be understood from the form of (detailed description of the invention).
図1は、本実施形態の不活化装置の外観イメージ図である。FIG. 1 is an external image diagram of the inactivating device of the present embodiment. 図2は、本実施形態の動作例に関する説明図である。FIG. 2 is an explanatory diagram regarding an operation example of the present embodiment. 図3は、波長254nmの紫外線照射による菌の光回復実験の結果である。FIG. 3 shows the results of a light recovery experiment of bacteria by irradiation with ultraviolet rays having a wavelength of 254 nm. 図4は、波長222nmの紫外線照射による菌の光回復実験の結果である。FIG. 4 shows the results of a light recovery experiment of bacteria by irradiation with ultraviolet rays having a wavelength of 222 nm. 図5は、本実施形態の動作例に関する説明図である。FIG. 5 is an explanatory diagram regarding an operation example of the present embodiment. 図6は、本実施形態の動作例に関する説明図である。FIG. 6 is an explanatory diagram regarding an operation example of the present embodiment. 図7は、本実施形態の動作例に関する説明図である。FIG. 7 is an explanatory diagram regarding an operation example of the present embodiment.
 以下、本発明の実施形態を図面に基づいて説明する。
 図1は、本実施形態における不活化装置100の外観イメージ図である。
 不活化装置100は、人や動物が存在する空間内において紫外線照射を行い、当該空間や当該空間内の物体表面に存在する微生物やウイルスを不活化する装置である。
 ここで、上記空間は、例えば、オフィス、商業施設、医療施設、駅施設、学校、役所、劇場、ホテル、飲食店等の施設内の空間や、自動車、電車、バス、タクシー、飛行機、船等の乗物内の空間を含む。なお、上記空間は、病室、会議室、トイレ、エレベータ内などの閉鎖された空間であってもよいし、閉鎖されていない空間であってもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an external image diagram of the inactivating device 100 in the present embodiment.
The inactivating device 100 is a device that irradiates ultraviolet rays in a space where humans and animals exist to inactivate microorganisms and viruses existing in the space and the surface of an object in the space.
Here, the above space is, for example, a space in a facility such as an office, a commercial facility, a medical facility, a station facility, a school, a government office, a theater, a hotel, a restaurant, a car, a train, a bus, a taxi, an airplane, a ship, etc. Includes space within the vehicle. The space may be a closed space such as a hospital room, a conference room, a toilet, or an elevator, or may be an unclosed space.
 不活化装置100は、人や動物の細胞への悪影響が少ない波長190~235nmの紫外線(より好ましくは、波長域200nm~230nmの紫外線)を、対象空間に対して照射して、当該対象空間内の物体表面や空間に存在する有害な微生物やウイルスを不活化するものである。ここで、上記物体は、人体、動物、物を含む。また、紫外線を照射する対象空間は、実際に人や動物がいる空間に限定されず、人や動物が出入りする空間であって人や動物がいない空間を含む。
 なお、ここでいう「不活化」とは、微生物やウイルスを死滅させる(又は感染力や毒性を失わせる)ことを指すものである。
The inactivating device 100 irradiates the target space with ultraviolet rays having a wavelength of 190 to 235 nm (more preferably, ultraviolet rays having a wavelength range of 200 nm to 230 nm), which have little adverse effect on human or animal cells, in the target space. It inactivates harmful microorganisms and viruses that exist on the surface and space of objects. Here, the above-mentioned object includes a human body, an animal, and an object. Further, the target space to be irradiated with ultraviolet rays is not limited to the space where people and animals actually exist, but includes the space where people and animals enter and exit and where there are no people or animals.
The term "inactivation" as used herein refers to killing microorganisms and viruses (or losing infectivity and toxicity).
 図1に示すように、不活化装置100は、紫外線を生成する光源部と、光源部の点灯を制御する制御部16と、光源部と制御部16を収容する筐体11とを備える。筐体11には、紫外線を放射する光放射面12が形成されている。具体的には、紫外線を放射する光出射窓となる開口部11aが形成されている。この開口部11aには、例えば石英ガラスからなる窓部材が設けられており、窓部材から紫外線を放射する。また、この開口部11aには、不要な波長帯域の光を遮断する光学フィルタ等を設けることもできる。
 筐体11内部には、紫外線光源として、エキシマランプ20が収容されている。エキシマランプ20は、例えば中心波長222nmの紫外線を放出するKrClエキシマランプとすることができる。なお、紫外線光源は、KrClエキシマランプに限定されるものではなく、190nm~235nmの波長範囲にある紫外線を放射する光源であればよい。なお、筐体11と紫外線光源(エキシマランプ20)とで光源部を構成している。
As shown in FIG. 1, the inactivating device 100 includes a light source unit that generates ultraviolet rays, a control unit 16 that controls lighting of the light source unit, and a housing 11 that houses the light source unit and the control unit 16. The housing 11 is formed with a light emitting surface 12 that emits ultraviolet rays. Specifically, an opening 11a that serves as a light emitting window that radiates ultraviolet rays is formed. A window member made of, for example, quartz glass is provided in the opening 11a, and ultraviolet rays are radiated from the window member. Further, the opening 11a may be provided with an optical filter or the like that blocks light in an unnecessary wavelength band.
An excimer lamp 20 is housed inside the housing 11 as an ultraviolet light source. The excimer lamp 20 can be, for example, a KrCl excimer lamp that emits ultraviolet rays having a center wavelength of 222 nm. The ultraviolet light source is not limited to the KrCl excimer lamp, and may be any light source that radiates ultraviolet rays in the wavelength range of 190 nm to 235 nm. The housing 11 and the ultraviolet light source (excimer lamp 20) form a light source unit.
 UV放射線は、波長によって細胞の貫通力が異なり、短波長ほど当該貫通力が小さい。例えば、約200nmといった短波長のUV放射線は、非常に効率良く水を通過するものの、ヒト細胞の外側部分(細胞質)による吸収が大きく、UV放射線に敏感なDNAを含む細胞核に到達するのに十分なエネルギーを有さない場合がある。そのため、上記の短波長のUV放射は、ヒト細胞に対する悪影響が少ない。一方で、波長240nmを超える紫外線は、ヒトの細胞核中のDNAにダメージを与えうる。また、波長190nm未満の紫外線は、オゾンを発生させることが知られている。
 そこで、本実施形態では、紫外線光源として、人体への悪影響が少なく、不活化効果が得られる波長域190nm~235nmの紫外線を放射し、それ以外のUVCを実質的に放射しない紫外線光源を用いる。また、さらに安全性の高い波長帯域として、波長域200nm~230nmにピーク波長を有する紫外線光源を用いてもよい。
In UV radiation, the penetrating power of cells differs depending on the wavelength, and the shorter the wavelength, the smaller the penetrating power. For example, UV radiation with a short wavelength of about 200 nm passes through water very efficiently, but is highly absorbed by the outer part (cytoplasm) of human cells and is sufficient to reach the cell nucleus containing DNA sensitive to UV radiation. May not have enough energy. Therefore, the above-mentioned short wavelength UV radiation has little adverse effect on human cells. On the other hand, ultraviolet rays having a wavelength of more than 240 nm can damage DNA in human cell nuclei. Further, it is known that ultraviolet rays having a wavelength of less than 190 nm generate ozone.
Therefore, in the present embodiment, as the ultraviolet light source, an ultraviolet light source that radiates ultraviolet rays in the wavelength range of 190 nm to 235 nm, which has little adverse effect on the human body and can obtain an inactivating effect, and does not substantially radiate other UVCs is used. Further, as a wavelength band with higher safety, an ultraviolet light source having a peak wavelength in the wavelength range of 200 nm to 230 nm may be used.
 エキシマランプ20は、両端が気密に封止された直管状の放電容器21を備える。放電容器21は、例えば石英ガラスにより構成することができる。また、放電容器21の内部には、発光ガスとして希ガスとハロゲンとが封入されている。本実施形態では、発光ガスとして、塩化クリプトン(KrCl)ガスを用いる。この場合、得られる放射光のピーク波長は222nmである。
 なお、発光ガスは上記に限定されない。例えば、発光ガスとして臭化クリプトン(KrBr)ガス等を用いることもできる。KrBrエキシマランプの場合、得られる放射光のピーク波長は207nmである。
 また、図1では、不活化装置100が複数(3本)の放電容器21を備えているが、放電容器21の数は特に限定されない。
The excimer lamp 20 includes a straight tubular discharge container 21 in which both ends are hermetically sealed. The discharge container 21 can be made of, for example, quartz glass. Further, the inside of the discharge container 21 is filled with a rare gas and a halogen as light emitting gas. In this embodiment, krypton chloride (KrCl) gas is used as the luminescent gas. In this case, the peak wavelength of the obtained synchrotron radiation is 222 nm.
The luminescent gas is not limited to the above. For example, krypton bromide (KrBr) gas or the like can be used as the luminescent gas. In the case of a KrBr excimer lamp, the peak wavelength of the obtained synchrotron radiation is 207 nm.
Further, in FIG. 1, the inactivating device 100 includes a plurality of (three) discharge containers 21, but the number of discharge containers 21 is not particularly limited.
 放電容器21の外表面には、一対の電極(第一電極22、第二電極23)が当接するように配置されている。第一電極22および第二電極23は、放電容器21における光取出し面とは反対側の側面(-Z方向の面)に、放電容器21の管軸方向(Y方向)に互いに離間して配置されている。
 そして、放電容器21は、これら2つの電極22、22に接触しながら跨るように配置されている。具体的には、2つの電極22、23には凹溝が形成されており、放電容器21は、電極22、23の凹溝に嵌め込まれている。
A pair of electrodes (first electrode 22 and second electrode 23) are arranged so as to abut on the outer surface of the discharge container 21. The first electrode 22 and the second electrode 23 are arranged on the side surface (the surface in the −Z direction) opposite to the light extraction surface of the discharge container 21 so as to be separated from each other in the tube axis direction (Y direction) of the discharge container 21. Has been done.
The discharge container 21 is arranged so as to straddle the two electrodes 22 and 22 while in contact with each other. Specifically, a concave groove is formed in the two electrodes 22 and 23, and the discharge container 21 is fitted in the concave groove of the electrodes 22 and 23.
 この一対の電極のうち、一方の電極(例えば第一電極22)が高圧側電極であり、他方の電極(例えば第二電極23)が低圧側電極(接地電極)である。第一電極22および第二電極23の間に高周波電圧を印加することで、ランプが点灯される。 Of this pair of electrodes, one electrode (for example, the first electrode 22) is the high voltage side electrode, and the other electrode (for example, the second electrode 23) is the low voltage side electrode (ground electrode). By applying a high frequency voltage between the first electrode 22 and the second electrode 23, the lamp is turned on.
 エキシマランプ20の光取出し面は、光出射窓に対向して配置される。そのため、エキシマランプ20から放射された光は、光出射窓を介して不活化装置100の光放射面12から出射される。
 ここで、電極22、23は、エキシマランプ21から放射される光に対して反射性を有する金属部材により構成されていてもよい。この場合、放電容器21から-Z方向に放射された光を反射して+Z方向に進行させることができる。
The light extraction surface of the excimer lamp 20 is arranged so as to face the light emission window. Therefore, the light emitted from the excimer lamp 20 is emitted from the light emitting surface 12 of the inactivating device 100 through the light emitting window.
Here, the electrodes 22 and 23 may be made of a metal member having reflectivity to the light emitted from the excimer lamp 21. In this case, the light radiated from the discharge container 21 in the −Z direction can be reflected and traveled in the + Z direction.
 光出射窓となる開口部11aには、上述したように光学フィルタを設けることができる。光学フィルタは、例えば、人体への悪影響の少ない波長域190nm~235nmの光(より好ましくは、波長域200nm~230nmの光)を透過し、波長236nm~280nmのUVC波長帯域をカットする波長選択フィルタとすることができる。具体的には、波長190nm~235nmの波長帯域におけるピーク波長の紫外線照度に対して、波長236nm~280nmの各紫外線照度を1%以下に低減する。波長選択フィルタとしては、例えば、HfO層およびSiO層による誘電体多層膜を有する光学フィルタを用いることができる。 As described above, an optical filter can be provided in the opening 11a serving as the light emitting window. The optical filter is, for example, a wavelength selection filter that transmits light having a wavelength range of 190 nm to 235 nm (more preferably light having a wavelength range of 200 nm to 230 nm) and cuts a UVC wavelength band having a wavelength range of 236 nm to 280 nm. Can be. Specifically, each ultraviolet illuminance having a wavelength of 236 nm to 280 nm is reduced to 1% or less with respect to the ultraviolet illuminance of the peak wavelength in the wavelength band of 190 nm to 235 nm. As the wavelength selection filter, for example, an optical filter having a dielectric multilayer film composed of two layers of HfO and two layers of SiO can be used.
 なお、波長選択フィルタとしては、SiO層およびAl層による誘電体多層膜を有する光学フィルタを用いることもできる。このように、光出射窓に光学フィルタを設けることで、エキシマランプ20から人に有害な光が放射されている場合であっても、当該光が筐体11の外に漏洩することをより確実に抑えることができる。 As the wavelength selection filter, an optical filter having a dielectric multilayer film composed of two layers of SiO and three layers of Al2O can also be used. By providing the optical filter in the light emitting window in this way, even if the excimer lamp 20 emits light harmful to humans, it is more reliable that the light leaks to the outside of the housing 11. Can be suppressed to.
 また不活化装置100には、対象空間内に人間の存在を検知するための検知部31が設けられている。検知部31は、不活化装置100と一体的に形成されるものであってもよく、外部からの信号を受信することで検知するものであってもよい。一つの実施形態として、人感センサを用いることができる。人感センサは、例えば、人体などから発する熱(赤外線)の変化を検知する焦電型赤外線センサとすることができる。また別の実施形態として、人の利用が想定された対象空間内の占有時間と非占有時間を検知するものであってもよい。 Further, the inactivating device 100 is provided with a detection unit 31 for detecting the presence of a human being in the target space. The detection unit 31 may be integrally formed with the inactivating device 100, or may be one that detects by receiving a signal from the outside. As one embodiment, a motion sensor can be used. The motion sensor can be, for example, a pyroelectric infrared sensor that detects a change in heat (infrared ray) generated from a human body or the like. As another embodiment, the occupied time and the non-occupied time in the target space that is supposed to be used by a person may be detected.
 また、不活化装置100は、図1に示すように、電源部15と、制御部16と、を備える。
 電源部15は、電源からの電力が供給されるインバータ等の電源部材や、電源部材を冷却するためのヒートシンク等の冷却部材を含む。また、制御部16は、光源部を構成するエキシマランプ20の点灯を制御する。
Further, as shown in FIG. 1, the inactivating device 100 includes a power supply unit 15 and a control unit 16.
The power supply unit 15 includes a power supply member such as an inverter to which electric power is supplied from the power source, and a cooling member such as a heat sink for cooling the power supply member. Further, the control unit 16 controls the lighting of the excimer lamp 20 constituting the light source unit.
 図2は、本発明に係る点灯動作の一態様を示した説明図である。
 制御部16は、検知部31からの信号に基づき、対象空間内に人間の存在を検知する期間(ここでは、有人期間とも称す)と、対象空間内に人間の存在を検知しない期間(ここでは、無人期間とも称す)とにおいて、光源部から放射される紫外線の平均照度が異なるよう、有人期間においては第一点灯動作を実行し、無人期間においては第二点灯動作を実行するよう制御する。図2に示すように連続的に紫外線を放射する場合、平均照度とは、所定期間内の照度の積算値を、上記所定期間で割った値である。
FIG. 2 is an explanatory diagram showing one aspect of the lighting operation according to the present invention.
The control unit 16 detects the presence of a human in the target space based on the signal from the detection unit 31 (here, also referred to as a manned period) and a period in which the presence of a human is not detected in the target space (here, also referred to as a manned period). In the unmanned period), the first lighting operation is executed in the manned period and the second lighting operation is executed in the unmanned period so that the average illuminance of the ultraviolet rays radiated from the light source unit is different. As shown in FIG. 2, when ultraviolet rays are continuously emitted, the average illuminance is a value obtained by dividing the integrated value of the illuminance within a predetermined period by the predetermined period.
 第一点灯動作は、紫外線の平均照度が相対的に低い点灯が実行され、第二点灯動作は、紫外線の平均照度が相対的に高い点灯が実行されるよう、点灯制御される。例えば、第一点灯動作における平均照度は1μW/cm以下に設定され、第二点灯動作における平均照度は、1μW/cmを超える値となるよう、点灯状態が制御されるものとしてもよい。
 ACGIH(American Conference of Governmental Industrial Hygienists:米国産業衛生専門家会議)やJIS Z 8812(有害紫外放射の測定方法)によれば、人体への1日(8時間)あたりの紫外線照射量は、波長ごとに許容限界値(TLV:Threshold Limit Value)が定められており、許容限界値を超えない程度に所定時間当たりに照射される紫外線の照度と照射量を決定することが求められている。この許容限界値は、今後は改定されてゆく可能性もあるが、例えば、有人期間に実行される第一点灯動作における平均照度は、8時間連続照射しても紫外線照射量が上記許容限界値を超えない値に設定してもよい。
In the first lighting operation, lighting with a relatively low average illuminance of ultraviolet rays is executed, and in the second lighting operation, lighting is controlled so that lighting with a relatively high average illuminance of ultraviolet rays is executed. For example, the lighting state may be controlled so that the average illuminance in the first lighting operation is set to 1 μW / cm 2 or less and the average illuminance in the second lighting operation exceeds 1 μW / cm 2 .
According to ACGIH (American Conference of Governmental Industrial Hygienists) and JIS Z 8812 (measurement method of harmful ultraviolet radiation), the amount of ultraviolet rays per day (8 hours) on the human body is per wavelength. The permissible limit value (TLV: Threshold Limit Value) is set in the above, and it is required to determine the illuminance and the irradiation amount of ultraviolet rays to be irradiated per predetermined time to the extent that the permissible limit value is not exceeded. This permissible limit value may be revised in the future, but for example, the average illuminance in the first lighting operation performed during the manned period is the above permissible limit value even if the ultraviolet irradiation amount is continuously irradiated for 8 hours. It may be set to a value that does not exceed.
 本実施形態では、図2に示すように、時刻t1において有人期間から無人期間に切り替わると、第一点灯動作から第二点灯動作へ切り替わり、平均照度が低照度から高照度へ切り替わる。また、その後、時刻t2において無人期間から有人期間に切り替わると、第二点灯動作から第一点灯動作へ切り替わり、平均照度が高照度から低照度へ切り替わる。
 したがって、対象空間内に人が存在しない期間においては、紫外線の平均照度がより高い第二点灯動作が実行されることで、より効果的に対象空間内の微生物やウイルスの不活化を行うことができる。また、対象空間内に人間の存在を検知する期間においても、第一点灯動作を実行することで、所定の紫外線を照射し、微生物やウイルスの不活化を行うことができる。
In the present embodiment, as shown in FIG. 2, when the manned period is switched to the unmanned period at time t1, the first lighting operation is switched to the second lighting operation, and the average illuminance is switched from low illuminance to high illuminance. After that, when the unmanned period is switched to the manned period at time t2, the second lighting operation is switched to the first lighting operation, and the average illuminance is switched from high illuminance to low illuminance.
Therefore, during the period when no one is present in the target space, the second lighting operation with a higher average illuminance of ultraviolet rays is executed, so that the microorganisms and viruses in the target space can be inactivated more effectively. can. Further, even during the period in which the presence of a human being is detected in the target space, by executing the first lighting operation, it is possible to irradiate a predetermined ultraviolet ray and inactivate microorganisms and viruses.
 また図2に示すとおり、第二点灯動作は、予め設定された一定時間の動作終了後に、動作を停止(消灯)するよう制御されるものであってもよい。つまり、図2に示すように、時刻t3において有人期間から無人期間に切り替わった後、一定時間が経過した時刻t4において紫外線の照射を停止してもよい。
 無人期間においては、対象空間内に必要十分な紫外線照射が実行されれば、空間内の不活化が達成される。そのため、人間を介して、新たに微生物やウイルスが入り込むことが想定され難い場合は、点灯動作を停止(消灯)させることで、対象空間内への過剰な紫外線照射を抑えることができる。これにより消費電力を抑えることができる。また光源部の発光動作時間を低減させることができ、不活化装置100の使用寿命を延ばすことができる。
Further, as shown in FIG. 2, the second lighting operation may be controlled to stop (turn off) the operation after the end of the operation for a predetermined fixed time. That is, as shown in FIG. 2, after switching from the manned period to the unmanned period at time t3, the irradiation of ultraviolet rays may be stopped at time t4 when a certain time has elapsed.
In the unmanned period, inactivation in the space is achieved if necessary and sufficient ultraviolet irradiation is performed in the target space. Therefore, when it is difficult to assume that a new microorganism or virus will enter through humans, it is possible to suppress excessive ultraviolet irradiation into the target space by stopping (turning off) the lighting operation. As a result, power consumption can be suppressed. Further, the light emitting operation time of the light source unit can be reduced, and the service life of the inactivating device 100 can be extended.
 また第二点灯動作の停止について、細菌の不活化を想定した場合で詳述する。紫外線を用いた細菌の不活化を行う場合は、「菌の光回復」を考慮する必要がある。細菌には、紫外線照射によってDNAが損傷された後であっても、波長300nm~500nmの光(可視光域を含む)が照射されることで、DNAの損傷を修復させる作用を起こすものがある。これは、細菌が保有する光回復酵素(例えば、FAD(フラビンアデニンジヌクレオチド))の働きによるもので、この現象は、「菌の光回復」といわれる。 In addition, the stoppage of the second lighting operation will be described in detail in the case of assuming inactivation of bacteria. When inactivating bacteria using ultraviolet rays, it is necessary to consider "light recovery of bacteria". Some bacteria have the effect of repairing DNA damage by being irradiated with light with a wavelength of 300 nm to 500 nm (including the visible light range) even after the DNA has been damaged by ultraviolet irradiation. .. This is due to the action of a photolyase (for example, FAD (flavin adenine dinucleotide)) possessed by bacteria, and this phenomenon is called "photolyase of bacteria".
 しかし、波長190nm~235nmに中心波長を有する紫外線、例えば波長222nmの紫外線照射によって菌を不活化した場合には、紫外線照射後に可視光が照射されても菌の光回復は行われないことが確認された。つまり、無人期間内において波長190nm~235nmの紫外線で細菌を不活化させておけば、その後、紫外線の照射を停止したとしても、可視光照射によって細菌の生存量が回復してゆくことが無い。
 そのため、一定時間の紫外線照射によって対象空間内の不活化が実行された後は、紫外線の照射を停止させても不活化された状態を維持しやすくなり、不活化装置100の消費電力を抑えることができる。また対象空間内に存在する部材(例えば、壁紙、什器等)に対して過剰に紫外線を照射させることが無い。これは、これまでの殺菌灯として知られている低圧水銀灯(主波長が254nm)では実現し得ない効果である。
However, it was confirmed that when the bacteria were inactivated by irradiation with ultraviolet rays having a central wavelength in the wavelength range of 190 nm to 235 nm, for example, ultraviolet rays having a wavelength of 222 nm, the bacteria were not recovered even if visible light was irradiated after the ultraviolet irradiation. Was done. That is, if the bacteria are inactivated by ultraviolet rays having a wavelength of 190 nm to 235 nm within the unmanned period, even if the irradiation of the ultraviolet rays is stopped thereafter, the survival amount of the bacteria will not be restored by the irradiation with visible light.
Therefore, after the inactivation in the target space is executed by the irradiation of ultraviolet rays for a certain period of time, it becomes easy to maintain the inactivated state even if the irradiation of ultraviolet rays is stopped, and the power consumption of the inactivating device 100 can be suppressed. Can be done. In addition, the members (for example, wallpaper, furniture, etc.) existing in the target space are not excessively irradiated with ultraviolet rays. This is an effect that cannot be realized with a low-pressure mercury lamp (main wavelength of 254 nm) known as a germicidal lamp.
 図3、図4には、波長200nm~230nm(主波長が222nm)のKrClエキシマランプと、主波長が254nmの低圧水銀灯とで、細菌の不活化効果を検証した検証結果を示す。 FIGS. 3 and 4 show the verification results of verifying the inactivating effect of bacteria with a KrCl excimer lamp having a wavelength of 200 nm to 230 nm (main wavelength is 222 nm) and a low-pressure mercury lamp having a main wavelength of 254 nm.
 図3は、主波長254nmの低圧水銀灯を用いた紫外線照射による菌の光回復実験の結果であり、図4は、波長200nm~230nm(主波長222nm)の紫外線照射による菌の光回復実験の結果である。ここで、不活化対象の細菌は黄色ブドウ球菌とし、波長300nm~500nmの光を含む可視光が照射される環境下において紫外線照射を行い、紫外線照射後の菌の生残率の変化を確認した。なお、黄色ブドウ球菌は光回復酵素を持ち、可視光が照射されることで菌の光回復を生じさせる細菌である。 FIG. 3 shows the results of a light recovery experiment of bacteria by ultraviolet irradiation using a low-pressure mercury lamp having a main wavelength of 254 nm, and FIG. 4 shows the results of a light recovery experiment of bacteria by ultraviolet irradiation having a wavelength of 200 nm to 230 nm (main wavelength 222 nm). Is. Here, the bacterium to be inactivated was Staphylococcus aureus, and UV irradiation was performed in an environment where visible light including light having a wavelength of 300 nm to 500 nm was irradiated, and the change in the survival rate of the bacterium after UV irradiation was confirmed. .. Staphylococcus aureus has a photolyase and is a bacterium that causes photolyase of the bacterium when irradiated with visible light.
 図3および図4において、横軸は経過時間(h)、縦軸は菌のlog生残率である。図3および図4において、実験結果a~dは、紫外線照射量を0mJ/cm、5mJ/cm、10mJ/cm、15mJ/cmとした場合の菌の生残率の変化を示す。なお、ここでは紫外線の照射時間を30分とし、その後は紫外線照射を停止して、菌の生存率の変化を確認したものである。 In FIGS. 3 and 4, the horizontal axis is the elapsed time (h), and the vertical axis is the log survival rate of the bacterium. In FIGS. 3 and 4, the experimental results a to d show changes in the survival rate of the bacteria when the ultraviolet irradiation dose is 0 mJ / cm 2 , 5 mJ / cm 2 , 10 mJ / cm 2 , and 15 mJ / cm 2 . .. Here, the irradiation time of ultraviolet rays was set to 30 minutes, and then the irradiation of ultraviolet rays was stopped, and the change in the survival rate of the bacteria was confirmed.
 図3に示すように、時間経過とともに菌の生残率は増加している。つまり、可視光が照射される環境下において、波長254nmの紫外線照射を行った後に菌の光回復が行われている。具体的には、可視光の照射によって1~2時間程度で菌の生存数が大幅に回復している。
 一方、図4に示すように、波長222nmの紫外線照射を行った場合には、可視光が照射されていても菌の回復が認められない。つまり、菌の光回復が阻害されている。
As shown in FIG. 3, the survival rate of the fungus increases with the passage of time. That is, in an environment where visible light is irradiated, the bacteria are light-recovered after being irradiated with ultraviolet rays having a wavelength of 254 nm. Specifically, the survival number of the bacterium is significantly recovered in about 1 to 2 hours by irradiation with visible light.
On the other hand, as shown in FIG. 4, when ultraviolet irradiation having a wavelength of 222 nm is performed, recovery of the bacteria is not observed even if visible light is irradiated. That is, the photorecovery of the fungus is inhibited.
 光回復が阻害された菌は、DNAの損傷が残ったままとなるため、増殖することもなく不活化される。波長222nmの紫外線照射は、菌の回復および増殖を有効に低減することができる。したがって、波長222nmの紫外線照射を行う不活化システムは、特に、菌の光回復がしやすい環境、具体的には波長300nm~500nmの光を含む可視光が照射される環境において効果的に作用する。 Bacteria in which light recovery was inhibited remain inactivated without proliferation because DNA damage remains. Irradiation with ultraviolet rays having a wavelength of 222 nm can effectively reduce the recovery and growth of bacteria. Therefore, the inactivation system that irradiates ultraviolet rays having a wavelength of 222 nm works particularly effectively in an environment in which light recovery of bacteria is easy, specifically, in an environment in which visible light including light having a wavelength of 300 nm to 500 nm is irradiated. ..
 上記のとおり、本発明に係る不活化装置100は、有人期間と無人期間とで点灯動作を変更制御するとともに、無人期間における点灯動作は、対象空間内に十分な紫外線照射が達成させる一定時間が経過した後は消灯させることで、より効率的な不活化を実現することができる。
 また、第二点灯動作の時間が継続される時間(一定時間)は、例えば下記のように算定することができる。
As described above, the inactivating device 100 according to the present invention changes and controls the lighting operation between the manned period and the unmanned period, and the lighting operation during the unmanned period is a fixed time for achieving sufficient ultraviolet irradiation in the target space. By turning off the lights after the lapse of time, more efficient inactivation can be realized.
Further, the time (constant time) in which the second lighting operation time is continued can be calculated as follows, for example.
 不活化対象となる微生物やウイルスが、90%以上、より望ましくは、99%以上に不活化できる紫外線量(mJ/cm)をEとし、光放射面12からの離間距離50cmの領域の照度をI50とし、光照射面12から不活化させる対象物(不活化対象)までの距離をhとした場合、下記の算出式(1)に基づいて、十分な不活化に必要とされる照射時間Hを算出してもよい。
   必要な照射時間H=E/(0.6×I50×(50/h))・・・(1)
 なお、上記(1)式において、I50×(50/h)は、光放射面12から距離hだけ離れた面における紫外線の照度Iである。つまり、照射時間Hは、紫外線照度が、光放射面12から距離hだけ離れた面における紫外線の最大照度に対して60%となる領域(60%照度エリア)において上記不活化対象を不活化可能な時間に設定される。
Let E be the amount of ultraviolet rays (mJ / cm 2 ) that can inactivate 90% or more, more preferably 99% or more of the microorganisms and viruses to be inactivated, and the illuminance in the region with a distance of 50 cm from the light radiation surface 12. Is I 50 , and the distance from the light irradiation surface 12 to the object to be inactivated (the object to be inactivated) is h, and the irradiation required for sufficient inactivation is based on the following calculation formula (1). Time H may be calculated.
Required irradiation time H = E / (0.6 x I 50 x (50 / h) 2 ) ... (1)
In the above equation (1), I 50 × (50 / h) 2 is the illuminance I h of ultraviolet rays on a surface separated from the light emitting surface 12 by a distance h. That is, the irradiation time H can inactivate the inactivated target in a region (60% illuminance area) where the ultraviolet illuminance is 60% of the maximum illuminance of ultraviolet rays on a surface separated from the light emitting surface 12 by a distance h. Time is set.
 例えば、光放射面12からの離間距離が50cmの領域における照度が53.6μW/cmであり、所定のウイルスが99%不活化するのに必要な紫外線量が2mJ/cmであり、光照射面12から対象物までの距離hが200cmの場合、必要な照射時間Hは、995秒(約17分)となる。また第二点灯動作が、点灯時間と消灯時間を交互に繰り返す間欠動作を行う場合を想定し、点灯時間を15秒、消灯時間を30秒としたとき、必要とされる第二点灯動作の駆動時間が0.8時間と見積もることができる。このような算出により、駆動時間が0.8時間以上となるよう、第二点灯動作の時間が継続される時間(一定時間)を決定してもよい。ここでは、例えば一定時間を1時間と設定することができる。なお、不活化率がより高い値(例えば99.9%)とする場合は、一定時間の幅をより長く設定する必要がある。 For example, the illuminance in a region where the distance from the light emitting surface 12 is 50 cm is 53.6 μW / cm 2 , and the amount of ultraviolet rays required for 99% inactivation of a predetermined virus is 2 mJ / cm 2 . When the distance h from the irradiation surface 12 to the object is 200 cm, the required irradiation time H is 995 seconds (about 17 minutes). Further, assuming that the second lighting operation is an intermittent operation in which the lighting time and the extinguishing time are alternately repeated, when the lighting time is 15 seconds and the extinguishing time is 30 seconds, the required driving of the second lighting operation is performed. The time can be estimated to be 0.8 hours. By such calculation, the time (constant time) in which the second lighting operation time is continued may be determined so that the driving time is 0.8 hours or more. Here, for example, a fixed time can be set as one hour. If the inactivation rate is set to a higher value (for example, 99.9%), it is necessary to set a longer width for a certain period of time.
 また、図2に示すように、第二点灯動作が停止された後に、検知部31により人間の存在が検知された場合は、第一点灯動作を実行するようにしてもよい。つまり、図2に示すように、時刻t4において第二点灯動作が停止された後、時刻t5において人間の存在が検知された場合は、この時刻t5において第一点灯動作を実行してもよい。
 なお、第二点灯動作が停止された後に、検知部31により人間の存在が検知された場合は、再び、検知部31により人間の存在が検知されなくなるまで待機し、検知部31が人間の存在を検知しなくなった場合に、第二点灯動作を実行するようにしてもよい。つまり、図5に示すように、時刻t4において第二点灯動作が停止された後、時刻t5において人間の存在が検知された場合、この時刻t5では第一点灯動作を実行せずに、その後の時刻t6において人間の存在が検知されなくなった場合に、第二点灯動作を実行するようにしてもよい。
Further, as shown in FIG. 2, if the presence of a human being is detected by the detection unit 31 after the second lighting operation is stopped, the first lighting operation may be executed. That is, as shown in FIG. 2, if the presence of a human being is detected at time t5 after the second lighting operation is stopped at time t4, the first lighting operation may be executed at this time t5.
If the detection unit 31 detects the presence of a human after the second lighting operation is stopped, the detection unit 31 waits until the presence of the human is no longer detected, and the detection unit 31 waits until the presence of a human is detected. When it is no longer detected, the second lighting operation may be executed. That is, as shown in FIG. 5, when the presence of a human being is detected at time t5 after the second lighting operation is stopped at time t4, the first lighting operation is not executed at this time t5 and thereafter. When the presence of a human is no longer detected at time t6, the second lighting operation may be executed.
 ここで、第一点灯動作および第二点灯動作の何れか、又は、両方は、周期的な点灯動作を行うものであってもよく、図6に示すように、点灯動作と消灯動作を交互に繰り返す(光源部が点灯する点灯時間と光源部が消灯する消灯時間とが交互に繰り返される)間欠動作を行うものであってもよい。
 図6は、本発明に係る点灯動作の一態様を示した説明図であり、第一点灯動作および第二点灯動作が、それぞれ間欠動作を行う場合の一態様を示したものである。検知部31からの信号に基づき、対象空間内に人間の存在を検知する期間(ここでは、有人期間とも称す)と、対象空間内に人間の存在を検知しない期間(ここでは、無人期間とも称す)とにおいて、光源部から放射される紫外線の平均照度が異なるよう、有人期間においては第一点灯動作を実行し、無人期間においては第二点灯動作を実行するよう制御する。
Here, either or both of the first lighting operation and the second lighting operation may be performed periodically, and as shown in FIG. 6, the lighting operation and the extinguishing operation are alternately performed. It may perform an intermittent operation that is repeated (a lighting time in which the light source unit is turned on and an extinguishing time in which the light source unit is turned off are repeated alternately).
FIG. 6 is an explanatory diagram showing one aspect of the lighting operation according to the present invention, and shows one aspect in which the first lighting operation and the second lighting operation each perform an intermittent operation. A period in which the presence of a human being in the target space is detected based on the signal from the detection unit 31 (also referred to as a manned period here) and a period in which the presence of a human being is not detected in the target space (here, also referred to as an unmanned period). ), The first lighting operation is executed in the manned period and the second lighting operation is executed in the unmanned period so that the average illuminance of the ultraviolet rays radiated from the light source unit is different.
 ここでの平均照度とは、1周期あたりの平均照度として判断すればよい。
 つまり、図6に示すように周期的な間欠動作を行う場合、平均照度は、照度×デューティ比となる。ここで、デューティ比は、点灯時間と消灯時間との総和に対する点灯時間の割合であり、点灯時間/(点灯時間+消灯時間)で表される値である。
The average illuminance here may be determined as the average illuminance per cycle.
That is, when the periodic intermittent operation is performed as shown in FIG. 6, the average illuminance is the illuminance × duty ratio. Here, the duty ratio is the ratio of the lighting time to the total of the lighting time and the extinguishing time, and is a value expressed by the lighting time / (lighting time + extinguishing time).
 第一点灯動作は、紫外線の平均照度が相対的に低い点灯動作が実行され、第二点灯動作は、紫外線の平均照度が相対的に高い点灯動作が実行される。例えば、第一点灯動作における平均照度は1μW/cm以下に設定され、第二点灯動作における平均照度は、1μW/cmを超える値となるよう、点灯状態が制御されるものとしてもよい。 In the first lighting operation, a lighting operation in which the average illuminance of ultraviolet rays is relatively low is executed, and in the second lighting operation, a lighting operation in which the average illuminance of ultraviolet rays is relatively high is executed. For example, the lighting state may be controlled so that the average illuminance in the first lighting operation is set to 1 μW / cm 2 or less and the average illuminance in the second lighting operation exceeds 1 μW / cm 2 .
 この図6に示すように、時刻t11において有人期間から無人期間に切り替わると、第一点灯動作から第二点灯動作へ切り替わり、平均照度が低照度から高照度へ切り替わる。ここでは、周期的な点灯/消灯サイクルにおける消灯時間を短くすることで、平均照度を低照度から高照度へ切り替える。また、その後、時刻t12において無人期間から有人期間に切り替わると、第二点灯動作から第一点灯動作へ切り替わり、平均照度が高照度から低照度へ切り替わる。つまり、消灯時間が長くなる。
 したがって、図2に示す実施態様と同様に、対象空間内に人が存在しない期間においては、紫外線の平均照度がより高い第二点灯動作が実行されることで、より効果的に対象空間内の微生物やウイルスの不活化を行うことができる。また、対象空間内に人間の存在を検知する期間においても、第一点灯動作を実行することで、所定の紫外線を照射し、微生物やウイルスの不活化を行うことができる。
As shown in FIG. 6, when the manned period is switched to the unmanned period at time t11, the first lighting operation is switched to the second lighting operation, and the average illuminance is switched from low illuminance to high illuminance. Here, the average illuminance is switched from low illuminance to high illuminance by shortening the turn-off time in the periodic on / off cycle. After that, when the unmanned period is switched to the manned period at time t12, the second lighting operation is switched to the first lighting operation, and the average illuminance is switched from high illuminance to low illuminance. That is, the extinguishing time becomes long.
Therefore, as in the embodiment shown in FIG. 2, during the period when no person is present in the target space, the second lighting operation having a higher average illuminance of the ultraviolet rays is executed, so that the second lighting operation is more effectively performed in the target space. It can inactivate microorganisms and viruses. Further, even during the period in which the presence of a human being is detected in the target space, by executing the first lighting operation, it is possible to irradiate a predetermined ultraviolet ray and inactivate microorganisms and viruses.
 また図2に示す実施態様と同様に、第二点灯動作は、予め設定された一定時間の動作終了後に、動作を停止(消灯)するよう制御されるものであってもよい。つまり、図6に示すように、時刻t13において有人期間から無人期間に切り替わった後、一定時間が経過した時刻t14において紫外線の照射を停止してもよい。ここで、上記一定時間は、上述した(1)式により算出される照射時間H(sec)が実行される時間である。
 無人期間においては、対象空間内に必要十分な紫外線照射が実行されれば、空間内の不活化が達成される。そのため、人間を介して、新たに微生物やウイルスが入り込むことが想定され難い場合は、点灯動作を停止(消灯)させることで、対象空間内への過剰な紫外線照射を抑えることができる。これにより消費電力を抑えることができる。また光源部の発光動作時間を低減させることができ、不活化装置100の使用寿命を延ばすことができる。
Further, as in the embodiment shown in FIG. 2, the second lighting operation may be controlled so as to stop (turn off) the operation after the end of the operation for a predetermined fixed time. That is, as shown in FIG. 6, after switching from the manned period to the unmanned period at time t13, the irradiation of ultraviolet rays may be stopped at time t14 when a certain time has elapsed. Here, the fixed time is the time during which the irradiation time H (sec) calculated by the above equation (1) is executed.
In the unmanned period, inactivation in the space is achieved if necessary and sufficient ultraviolet irradiation is performed in the target space. Therefore, when it is difficult to assume that a new microorganism or virus will enter through humans, it is possible to suppress excessive ultraviolet irradiation into the target space by stopping (turning off) the lighting operation. As a result, power consumption can be suppressed. Further, the light emitting operation time of the light source unit can be reduced, and the service life of the inactivating device 100 can be extended.
 また、図6に示すように、第二点灯動作が停止された後に、検知部31により人間の存在が検知された場合は、第一点灯動作を実行するようにしてもよい。つまり、図6に示すように、時刻t14において第二点灯動作が停止された後、時刻t15において人間の存在が検知された場合は、この時刻t15において第一点灯動作を実行してもよい。 Further, as shown in FIG. 6, if the presence of a human being is detected by the detection unit 31 after the second lighting operation is stopped, the first lighting operation may be executed. That is, as shown in FIG. 6, if the presence of a human being is detected at time t15 after the second lighting operation is stopped at time t14, the first lighting operation may be executed at this time t15.
 さらに、検知部31が人間の存在を検知し、第一点灯動作に切り替わった場合は、先に消灯時間が開始され、その後に点灯時間が開始されてもよい。つまり、図7に示すように、時刻t14において第二点灯動作が停止された後、時刻t15において人間の存在が検知された場合、周期的な点灯/消灯サイクルにおける消灯時間だけ待機した後の時刻t16において、点灯時間を開始してもよい。
 点灯動作から開始するようにすると、人間の存在/不在が激しく変動する場合に、点灯時間が比較的長くなる可能性がある。消灯時間から開始するようにすることで、点灯時間を適切な値に維持しやすい。
Further, when the detection unit 31 detects the presence of a human and switches to the first lighting operation, the extinguishing time may be started first, and then the lighting time may be started. That is, as shown in FIG. 7, when the presence of a human being is detected at time t15 after the second lighting operation is stopped at time t14, the time after waiting for the extinguishing time in the periodic lighting / extinguishing cycle. At t16, the lighting time may be started.
If the lighting operation is started, the lighting time may be relatively long when the presence / absence of a human fluctuates drastically. By starting from the extinguishing time, it is easy to maintain the lighting time at an appropriate value.
 また、第一点灯動作および第二点灯動作における紫外線の平均照度の制御は、光源部の点灯時間と消灯時間の比を変更、光源部に設けられた発光体への印加電圧の調整、光源部に設けられた発光体への印加電圧の周波数の調整など、種々の制御方法により実現することができる。
 なお、第一点灯動作や第二点灯動作において、点灯時間と消灯時間とが交互に繰り返される間欠動作を行う場合、上記実施形態では、消灯時間を調整することで光源部の点灯時間と消灯時間の比を変更する場合について説明したが、点灯時間を調整するようにしてもよいし、点灯時間と消灯時間の両方を調整するようにしてもよい。
In addition, the control of the average illuminance of ultraviolet rays in the first lighting operation and the second lighting operation changes the ratio of the lighting time and the extinguishing time of the light source unit, adjusts the voltage applied to the light emitter provided in the light source unit, and controls the light source unit. It can be realized by various control methods such as adjustment of the frequency of the voltage applied to the light source provided in the above.
In the first lighting operation and the second lighting operation, when an intermittent operation in which the lighting time and the extinguishing time are alternately repeated is performed, in the above embodiment, the lighting time and the extinguishing time of the light source unit are adjusted by adjusting the extinguishing time. Although the case of changing the ratio of the lighting time has been described, the lighting time may be adjusted, or both the lighting time and the extinguishing time may be adjusted.
 なお、本実施形態では、検知部31が人間の存在を検知しない期間が一定時間経過した後に、第二点灯動作を停止するよう制御することが提案されている。これは菌の光回復を抑制できる波長帯域の紫外線を用いることで、不活化状態を維持しやすいためである。しかしながら、第二点灯動作を停止するよう制御した後、人が不在のままであったとしても、所定時間経過後に再点灯を実施するようにしてもよい。
 対象空間内には、人間を介して新たな細菌やウイルスが持ち込まれる可能性が高いが、人間を介さずとも、空間中に細菌やウイルスが外部から流入される可能性も考えられる。このような場合を想定して、消灯時間が長く続く場合は、再度点灯動作を実行することで、対象空間内の不活化レベルを維持するよう付加的な制御を実行してもよい。
In this embodiment, it is proposed to control the detection unit 31 to stop the second lighting operation after a certain period of time during which the presence of a human is not detected has elapsed. This is because it is easy to maintain an inactivated state by using ultraviolet rays in a wavelength band that can suppress the light recovery of bacteria. However, even if a person remains absent after controlling to stop the second lighting operation, the relighting may be performed after a lapse of a predetermined time.
There is a high possibility that new bacteria and viruses will be brought into the target space via humans, but it is also possible that bacteria and viruses may flow into the space from the outside without human intervention. Assuming such a case, if the extinguishing time continues for a long time, additional control may be executed so as to maintain the inactivation level in the target space by executing the lighting operation again.
 また、上記の知見に基づき、下記の装置構成および不活化方法を採用することも考えられる。
 例えば、190nm~235nmの波長帯域に中心波長を有する紫外線を放射する光源部と、対象空間内に人間が存在するかどうかを検知する検知部と、前記光源部の点灯状態を制御する制御部と、を備え、前記制御部は、前記検知部が人間の存在を検知しない期間に実行される第二点灯動作を備え、前記第二点灯動作は、前記検知部が人間の存在を検知しない期間が一定時間を経過した後に、停止するよう制御されることを特徴とする不活化装置、としてもよい。
Further, based on the above findings, it is conceivable to adopt the following device configuration and inactivation method.
For example, a light source unit that radiates ultraviolet rays having a central wavelength in the wavelength band of 190 nm to 235 nm, a detection unit that detects whether or not a human is present in the target space, and a control unit that controls the lighting state of the light source unit. The control unit includes a second lighting operation that is executed during a period in which the detection unit does not detect the presence of a human, and the second lighting operation has a period in which the detection unit does not detect the presence of a human. The inactivating device may be characterized in that it is controlled to stop after a certain period of time has elapsed.
 さらに、上記の不活化装置において、前記光源部が備える光放射面から不活化対象までの距離をh、前記光放射面から距離hだけ離れた面における紫外線の照度をI(mW/cm)、前記不活化対象の不活化に必要な紫外線量をE(mJ/cm)とするとき、前記一定時間は、下式により算出される照射時間H(sec)が実行される時間であってよい。
 H=E/(0.6×I
Further, in the above-mentioned inactivating device, the distance from the light emitting surface of the light source unit to the inactivating target is h, and the illuminance of ultraviolet rays on the surface separated by the distance h from the light emitting surface is I h (mW / cm 2 ). ), When the amount of ultraviolet rays required for inactivating the inactivated object is E (mJ / cm 2 ), the fixed time is the time during which the irradiation time H (sec) calculated by the following formula is executed. It's okay.
H = E / (0.6 × I h )
 または、190nm~235nmの波長帯域に中心波長を有する紫外線を放射する光源部の点灯状態を制御する不活化方法であって、対象空間内に人間が存在するかどうかを検知するステップと、前記検知部が人間の存在を検知しない期間に第二点灯動作を実行するステップと、を含み、前記第二点灯動作は、前記検知部が人間の存在を検知しない期間が一定時間を経過した後に、停止するよう制御されることを特徴とする不活化方法、としてもよい。 Alternatively, it is an inactivation method for controlling the lighting state of a light source unit that emits ultraviolet rays having a central wavelength in the wavelength band of 190 nm to 235 nm, and is a step of detecting whether or not a human is present in the target space, and the detection. The second lighting operation includes a step of executing a second lighting operation during a period in which the detection unit does not detect the presence of a human, and the second lighting operation is stopped after a certain period of time in which the detection unit does not detect the presence of a human has elapsed. It may be an inactivation method, characterized in that it is controlled to do so.
 さらに、上記の不活化方法において、前記光源部が備える光放射面から不活化対象までの距離をh、前記光放射面から距離hだけ離れた面における紫外線の照度をI(mW/cm2)、前記不活化対象の不活化に必要な紫外線量をE(mJ/cm2)とするとき、前記一定時間は、下式により算出される照射時間H(sec)が実行される時間であってよい。
 H=E/(0.6×I
Further, in the above-mentioned inactivation method, the distance from the light emitting surface of the light source unit to the inactivating target is h, and the illuminance of ultraviolet rays on the surface separated by the distance h from the light emitting surface is I h (mW / cm2). When the amount of ultraviolet rays required for inactivating the inactivated object is E (mJ / cm2), the fixed time may be the time during which the irradiation time H (sec) calculated by the following formula is executed. ..
H = E / (0.6 × I h )
 上記構成は、人間の存在を検知しない期間の第二点灯動作は、前記検知部が人間の存在を検知しない期間が一定時間を経過した後に、停止するよう制御するものである。
 ここでの「一定時間」とは、対象空間内に存在する微生物やウイルスが十分に不活化できる程度の時間で設定され、具体的には、選択された点灯動作モードにおいて、不活化率が90%以上、より望ましくは99%以上、更に望ましくは99.9%以上となる程度に紫外線が照射可能な時間で設定される。不活化に必要な紫外線量は、対象とする微生物やウイルスによって異なり、対象とする微生物やウイルスの種類によって適宜変更される。
 これにより、検知部が人間の存在を検知しない無人期間において、必要量の紫外線照射を達成した後に消灯することで、不必要な紫外線照射を減らすことができる。特に無人期間においては、人間を介して対象空間内に細菌やウイルスが新たに持ち込まれることがないため、対象空間内における不活化された状態を悪化させることが無い。
In the above configuration, the second lighting operation during the period in which the presence of a human is not detected is controlled so that the detection unit stops after a certain period of time in which the presence of a human is not detected has elapsed.
The "fixed time" here is set to a time that allows microorganisms and viruses existing in the target space to be sufficiently inactivated, and specifically, the inactivation rate is 90 in the selected lighting operation mode. % Or more, more preferably 99% or more, and more preferably 99.9% or more, and the time is set so that the ultraviolet rays can be irradiated. The amount of ultraviolet rays required for inactivation differs depending on the target microorganism or virus, and is appropriately changed depending on the type of target microorganism or virus.
As a result, unnecessary ultraviolet irradiation can be reduced by turning off the light after achieving the required amount of ultraviolet irradiation during the unmanned period in which the detection unit does not detect the presence of a human. In particular, during the unmanned period, bacteria and viruses are not newly introduced into the target space through humans, so that the inactivated state in the target space is not aggravated.
 さらに、上述のとおり波長190~235nmに中心波長を有する紫外線は、「菌の光回復」の機能を抑制する効果があるため、一定時間の紫外線照射によって対象空間内の不活化が実行された後は、紫外線の照射を停止させても不活化された状態を維持しやすくなる。つまり、より効果的に不活化を進めることができ、対象空間内に存在する部材(例えば、壁紙、什器等)に対して過剰に紫外線を照射させることが抑制できる。これによって、不活化装置の消費電力や使用寿命を抑えることができる。 Further, as described above, ultraviolet rays having a central wavelength in the wavelength range of 190 to 235 nm have an effect of suppressing the function of "light recovery of bacteria", and therefore, after inactivation in the target space is executed by irradiation with ultraviolet rays for a certain period of time. Makes it easier to maintain the inactivated state even when the irradiation of ultraviolet rays is stopped. That is, inactivation can be promoted more effectively, and excessive irradiation of ultraviolet rays to members (for example, wallpaper, furniture, etc.) existing in the target space can be suppressed. As a result, the power consumption and the service life of the inactivated device can be suppressed.
 上記の点灯動作において、前記第二点灯動作が停止された後に、前記検知部が人間の存在を検知した場合は、停止状態を継続するように制御してもよい。この場合、再び人間の存在を検知しない期間において、第二点灯動作を実行する。また、その第二点灯動作は、一定時間が経過した後に、停止するよう制御するものとしてもよい。 In the above lighting operation, if the detection unit detects the presence of a human after the second lighting operation is stopped, it may be controlled to continue the stopped state. In this case, the second lighting operation is executed during the period when the presence of a human is not detected again. Further, the second lighting operation may be controlled to stop after a certain period of time has elapsed.
 第二点灯動作が一定時間継続されることで、対象空間内に必要量の紫外線が照射された後であっても、この対象空間内に新たに人間が入り込む場合は、人間を介して新たに微生物やウイルスが持ち込まれる可能性がある。これは不活化された状態を阻害するため、前記第二点灯動作が停止された後に、前記検知部が人間の存在を検知した場合は、再度、第一点灯動作を実行することで有人期間における紫外線照射を行ってもよい。これにより、対象空間内の不活化レベルを高く保つことができる。 By continuing the second lighting operation for a certain period of time, even after the required amount of ultraviolet rays has been irradiated into the target space, if a new human enters the target space, a new human will enter the target space. Microorganisms and viruses may be introduced. Since this hinders the inactivated state, if the detection unit detects the presence of a human after the second lighting operation is stopped, the first lighting operation is executed again during the manned period. UV irradiation may be performed. As a result, the inactivation level in the target space can be kept high.
 または、上記の点灯動作において、前記第二点灯動作が停止された後に、前記検知部が人間の存在を検知した場合は、第一点灯動作および第二点灯動作とは別の点灯動作を実行するようにしてもよい。この場合、再び人間の存在を検知しない期間となった場合において、第二点灯動作を実行する。また、その第二点灯動作は、一定時間が経過した後に、停止するよう制御するものとしてもよい。 Alternatively, in the above lighting operation, when the detection unit detects the presence of a human after the second lighting operation is stopped, a lighting operation different from the first lighting operation and the second lighting operation is executed. You may do so. In this case, the second lighting operation is executed when the existence of a human is not detected again. Further, the second lighting operation may be controlled to stop after a certain period of time has elapsed.
 上記の態様によれば、人体への悪影響が抑制された波長範囲の紫外線を用いた微生物および/またはウイルスの不活化を、効果的に、且つ、より適切に行うことができる。 According to the above aspect, it is possible to effectively and more appropriately inactivate microorganisms and / or viruses using ultraviolet rays in a wavelength range in which adverse effects on the human body are suppressed.
 なお、上記において特定の実施形態が説明されているが、当該実施形態は単なる例示であり、本発明の範囲を限定する意図はない。本明細書に記載された装置及び方法は上記した以外の形態において具現化することができる。また、本発明の範囲から離れることなく、上記した実施形態に対して適宜、省略、置換及び変更をなすこともできる。かかる省略、置換及び変更をなした形態は、請求の範囲に記載されたもの及びこれらの均等物の範疇に含まれ、本発明の技術的範囲に属する。 Although a specific embodiment is described above, the embodiment is merely an example, and there is no intention of limiting the scope of the present invention. The devices and methods described herein can be embodied in forms other than those described above. Further, without departing from the scope of the present invention, omissions, substitutions and modifications can be made to the above-described embodiments as appropriate. Such abbreviations, substitutions and modifications are included in the claims and equivalents thereof and fall within the technical scope of the invention.
 11…筐体、12…光放射面、15…電源部、16…制御部、20…紫外線光源、21…放電容器、22…第一電極、23…第二電極、31…検知部、100…紫外線照射装置

 
11 ... Housing, 12 ... Light radiation surface, 15 ... Power supply unit, 16 ... Control unit, 20 ... Ultraviolet light source, 21 ... Discharge container, 22 ... First electrode, 23 ... Second electrode, 31 ... Detection unit, 100 ... Ultraviolet irradiation device

Claims (11)

  1.  190nm~235nmの波長帯域に中心波長を有する紫外線を放射する光源部と、
     対象空間内に人間が存在するかどうかを検知する検知部と、
     前記光源部の点灯状態を制御する制御部と、を備え、
     前記制御部は、
     前記検知部が人間の存在を検知しない期間に一定時間、紫外線照射を行い、前記一定時間を経過した後に、前記光源部に紫外線照射を停止させ、その後、少なくとも前記検知部が人間の存在を検知するまでの間、前記光源部に紫外線照射の停止を継続させる
     ことを特徴とする不活化装置。
    A light source unit that radiates ultraviolet rays having a central wavelength in the wavelength band of 190 nm to 235 nm, and
    A detector that detects whether a human is present in the target space,
    A control unit that controls the lighting state of the light source unit is provided.
    The control unit
    The detection unit irradiates ultraviolet rays for a certain period of time during a period when the presence of a human is not detected, and after the certain time elapses, the light source unit is stopped from irradiating with ultraviolet rays, and then at least the detection unit detects the presence of a human. An inactivating device characterized in that the light source unit is continuously stopped from irradiating ultraviolet rays until the light source unit is used.
  2.  前記制御部は、
     前記検知部が人間の存在を検知しない期間が前記一定時間を経過して前記光源部に紫外線照射を停止させた後に、前記検知部が人間の存在を検知した場合は、前記紫外線照射を開始させることを特徴とする請求項1に記載の不活化装置。
    The control unit
    When the detection unit detects the presence of a human after the light source unit has stopped irradiating the light source after a certain period of time during which the detection unit does not detect the presence of a human, the ultraviolet irradiation is started. The inactivating device according to claim 1, wherein the inactivating device is characterized by the above.
  3.  前記制御部は、
     前記検知部が人間の存在を検知しない期間が前記一定時間を経過して前記光源部に紫外線照射を停止させた後に、前記検知部が人間の存在を検知した場合は、前記紫外線照射の停止を継続するように制御し、前記検知部が人間の存在を検知しなくなると前記紫外線照射を開始させることを特徴とする請求項1に記載の不活化装置。
    The control unit
    If the detection unit detects the presence of a human after the light source unit has stopped irradiating the light source after a certain period of time during which the detection unit does not detect the presence of a human, the ultraviolet irradiation is stopped. The inactivating device according to claim 1, wherein the inactivating device is controlled so as to continue, and when the detection unit stops detecting the presence of a human, the ultraviolet irradiation is started.
  4.  前記制御部は、
     前記検知部が人間の存在を検知している期間および前記検知部が人間の存在を検知していない期間に紫外線照射を行い、前記光源部から放射される紫外線量を変更するよう制御し、
     前記検知部が人間の存在を検知している期間の紫外線の平均照度は、前記検知部が人間の存在を検知していない期間の紫外線の平均照度よりも低くなるよう制御されることを特徴とする請求項1に記載の不活化装置。
    The control unit
    Ultraviolet irradiation is performed during the period when the detection unit detects the presence of a human and the period when the detection unit does not detect the presence of a human, and control is performed to change the amount of ultraviolet rays emitted from the light source unit.
    The feature is that the average illuminance of ultraviolet rays during the period when the detection unit detects the presence of a human is controlled to be lower than the average illuminance of ultraviolet rays during the period when the detection unit does not detect the presence of a human. The inactivating device according to claim 1.
  5.  前記紫外線の平均照度の制御は、
     前記光源部の点灯時間と消灯時間の比を変更することにより行われることを特徴とする請求項4に記載の不活化装置。
    The control of the average illuminance of the ultraviolet rays is
    The inactivating device according to claim 4, wherein the inactivation device is performed by changing the ratio of the lighting time and the extinguishing time of the light source unit.
  6.  前記制御部は、
     前記検知部が人間の存在を検知している期間に、前記光源部が点灯する点灯時間と前記光源部が消灯する消灯時間とが交互に繰り返される間欠動作を行うよう制御し、
     前記検知部が人間の存在を検知した場合は、先に前記消灯時間が開始され、その後に前記点灯時間が開始されることを特徴とする請求項4に記載の不活化装置。
    The control unit
    During the period when the detection unit detects the presence of a human being, it is controlled to perform an intermittent operation in which the lighting time when the light source unit is turned on and the lighting time when the light source unit is turned off are alternately repeated.
    The inactivating device according to claim 4, wherein when the detection unit detects the presence of a human, the extinguishing time is started first, and then the lighting time is started.
  7.  前記紫外線の平均照度の制御は、
     前記光源部に設けられた発光体への印加電圧を調整することにより行われることを特徴とする請求項4に記載の不活化装置。
    The control of the average illuminance of the ultraviolet rays is
    The inactivating device according to claim 4, wherein the inactivation device is performed by adjusting the voltage applied to the light emitting body provided in the light source unit.
  8.  前記紫外線の平均照度の制御は、
     前記光源部に設けられた発光体への印加電圧の周波数を調整することにより行われることを特徴とする請求項4に記載の不活化装置。
    The control of the average illuminance of the ultraviolet rays is
    The inactivating device according to claim 4, wherein the inactivation device is performed by adjusting the frequency of the voltage applied to the light emitting body provided in the light source unit.
  9.  190nm~235nmの波長帯域に中心波長を有する紫外線を放射する光源部と、
     対象空間内に人間が存在するかどうかを検知する検知部と、
     前記光源部の点灯状態を制御する制御部と、を備え、
     前記制御部は、
     前記検知部から人間の存在を検知する検知信号が入力されると前記光源部に紫外線照射を開始させる第1のモードと、前記検知信号が入力されると前記光源部に紫外線照射を停止または低減させる第2のモードと、を有する
     ことを特徴とする不活化装置。
    A light source unit that radiates ultraviolet rays having a central wavelength in the wavelength band of 190 nm to 235 nm, and
    A detector that detects whether a human is present in the target space,
    A control unit that controls the lighting state of the light source unit is provided.
    The control unit
    The first mode in which the light source unit is started to irradiate ultraviolet rays when a detection signal for detecting the presence of a human is input from the detection unit, and the ultraviolet irradiation is stopped or reduced in the light source unit when the detection signal is input. A second mode of activation, characterized in that it has.
  10.  190nm~235nmの波長帯域に中心波長を有する紫外線を放射する光源部の点灯状態を制御する不活化方法であって、
     対象空間内に人間が存在するかどうかを検知するステップと、
     前記人間の存在を検知しない期間に一定時間、紫外線照射を行った後に、前記光源部に紫外線照射を停止させ、その後、少なくとも前記人間の存在を検知するまでの間、前記光源部に紫外線照射の停止を継続させるステップと、を含むことを特徴とする不活化方法。
    It is an inactivating method for controlling the lighting state of a light source unit that radiates ultraviolet rays having a central wavelength in the wavelength band of 190 nm to 235 nm.
    Steps to detect if there is a human in the target space,
    After irradiating the light source with ultraviolet rays for a certain period of time during the period when the presence of humans is not detected, the light source portion is stopped from irradiating with ultraviolet rays, and then the light source portion is irradiated with ultraviolet rays at least until the presence of humans is detected. An inactivation method characterized by including, and a step to continue the outage.
  11.  190nm~235nmの波長帯域に中心波長を有する紫外線を放射する光源部の点灯状態を制御する不活化方法であって、
     対象空間内に人間が存在するかどうかを検知するステップと、
     前記人間の存在を検知すると前記光源部に紫外線照射を開始させる第1のモード、および、前記人間の存在を検知すると前記光源部に紫外線照射を停止または低減させる第2のモードのいずれかを実行するステップと、を含むことを特徴とする不活化方法。
     

     
     
     
     
    It is an inactivating method for controlling the lighting state of a light source unit that radiates ultraviolet rays having a central wavelength in the wavelength band of 190 nm to 235 nm.
    Steps to detect if there is a human in the target space,
    When the presence of a human is detected, either the first mode of starting the ultraviolet irradiation to the light source unit or the second mode of stopping or reducing the ultraviolet irradiation of the light source unit when the presence of the human is detected is executed. A method of inactivation characterized by including steps to be performed.





PCT/JP2021/043561 2020-12-01 2021-11-29 Inactivation device and inactivation method WO2022118779A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-199936 2020-12-01
JP2020199936 2020-12-01
JP2021064535A JP6977903B1 (en) 2020-12-01 2021-04-06 Inactivating device and inactivating method
JP2021-064535 2021-04-06

Publications (1)

Publication Number Publication Date
WO2022118779A1 true WO2022118779A1 (en) 2022-06-09

Family

ID=78815532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043561 WO2022118779A1 (en) 2020-12-01 2021-11-29 Inactivation device and inactivation method

Country Status (3)

Country Link
JP (3) JP6977903B1 (en)
CN (2) CN215840651U (en)
WO (1) WO2022118779A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024376A1 (en) * 2022-07-26 2024-02-01 ウシオ電機株式会社 Inactivation apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347070A (en) * 2002-05-28 2003-12-05 Matsushita Electric Works Ltd Lighting system
WO2016061303A1 (en) * 2014-10-15 2016-04-21 Sensor Electronic Technology, Inc. Ultraviolet-based detection and sterilization
JP2018517488A (en) * 2015-06-03 2018-07-05 ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク Apparatus, method and system for selectively affecting and / or killing a virus
WO2018131582A1 (en) * 2017-01-10 2018-07-19 ウシオ電機株式会社 Ultraviolet sterilization device
JP2018130131A (en) * 2017-02-13 2018-08-23 エネフォレスト株式会社 Inner sterilizing apparatus
WO2019164810A1 (en) * 2018-02-20 2019-08-29 Freestyle Partners, LLC Portable and disposable far-uvc device
WO2019186880A1 (en) * 2018-03-29 2019-10-03 サンエナジー株式会社 Ultraviolet irradiation device, ultraviolet irradiation method, illumination device, and ultraviolet irradiation system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5197550B2 (en) * 2009-11-09 2013-05-15 株式会社ミウラ UV sterilizer
JP2020124281A (en) * 2019-02-01 2020-08-20 厚生 田中 Disinfection apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347070A (en) * 2002-05-28 2003-12-05 Matsushita Electric Works Ltd Lighting system
WO2016061303A1 (en) * 2014-10-15 2016-04-21 Sensor Electronic Technology, Inc. Ultraviolet-based detection and sterilization
JP2018517488A (en) * 2015-06-03 2018-07-05 ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク Apparatus, method and system for selectively affecting and / or killing a virus
WO2018131582A1 (en) * 2017-01-10 2018-07-19 ウシオ電機株式会社 Ultraviolet sterilization device
JP2018130131A (en) * 2017-02-13 2018-08-23 エネフォレスト株式会社 Inner sterilizing apparatus
WO2019164810A1 (en) * 2018-02-20 2019-08-29 Freestyle Partners, LLC Portable and disposable far-uvc device
WO2019186880A1 (en) * 2018-03-29 2019-10-03 サンエナジー株式会社 Ultraviolet irradiation device, ultraviolet irradiation method, illumination device, and ultraviolet irradiation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024376A1 (en) * 2022-07-26 2024-02-01 ウシオ電機株式会社 Inactivation apparatus

Also Published As

Publication number Publication date
CN215840651U (en) 2022-02-18
JP7302644B2 (en) 2023-07-04
JP2022087812A (en) 2022-06-13
JP2022087811A (en) 2022-06-13
JP7226509B2 (en) 2023-02-21
CN114569771A (en) 2022-06-03
JP2022087785A (en) 2022-06-13
JP6977903B1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
EP4035691B1 (en) Inactivation apparatus and inactivation method
WO2022070590A1 (en) Inactivating device
JP6977898B1 (en) UV irradiation device and UV irradiation method
WO2022118779A1 (en) Inactivation device and inactivation method
CN216148649U (en) Inactivation device for bacteria or viruses
WO2022118780A1 (en) Uv irradiation device and uv irradiation method
US20230248860A1 (en) Inactivation device for bacteria and/or viruses and method of inactivation treatment for bacteria and/or viruses
WO2022092261A1 (en) Ultraviolet irradiation device and ultraviolet irradiation method
JP6977853B1 (en) Bacterial or virus inactivating device
CN113975437B (en) Inactivation device and inactivation method
JP7099595B2 (en) Inactivating device
JP7095786B2 (en) Inactivating device
WO2022044918A1 (en) Inactivation device and inactivation method
JP2022170895A (en) UV irradiation device and UV irradiation method
JP2022134282A (en) Inactivation device and inactivation method
JP2022170974A (en) Bacteria or virus inactivation device and bacteria or virus inactivation method
JP2022170896A (en) Inactivation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900532

Country of ref document: EP

Kind code of ref document: A1