WO2022118412A1 - Analysis device, analysis system, and analysis method - Google Patents

Analysis device, analysis system, and analysis method Download PDF

Info

Publication number
WO2022118412A1
WO2022118412A1 PCT/JP2020/044917 JP2020044917W WO2022118412A1 WO 2022118412 A1 WO2022118412 A1 WO 2022118412A1 JP 2020044917 W JP2020044917 W JP 2020044917W WO 2022118412 A1 WO2022118412 A1 WO 2022118412A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
unit
compressed air
fine particles
bag
Prior art date
Application number
PCT/JP2020/044917
Other languages
French (fr)
Japanese (ja)
Inventor
安章 高田
昌和 菅谷
秀夫 鹿島
峻 熊野
司 師子鹿
信二 吉岡
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2022566561A priority Critical patent/JPWO2022118412A1/ja
Priority to PCT/JP2020/044917 priority patent/WO2022118412A1/en
Publication of WO2022118412A1 publication Critical patent/WO2022118412A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials

Definitions

  • the present invention relates to an analyzer, an analysis system, and an analysis method for recovering and analyzing fine particles from an inspection object.
  • explosives are increasingly used in recent terrorism because the method of manufacturing powerful explosives made from daily necessities has spread via the Internet.
  • One of the effective means to prevent explosive terrorism is to find explosives hidden by explosives detectors.
  • Bulk detection as typified by an X-ray inspection device, acquires an image of the inside of a bag or the like and discriminates a suspicious object from its shape or size.
  • trace detection analyzes a chemical substance adhering to an inspection target by a chemical analysis means and identifies the component thereof. As a result, for example, if the explosive is detected from the surface of the bag, it is determined that the explosive may be concealed inside the bag. Since the information obtained by bulk detection and trace detection is different, it is known that security can be improved by using both detection methods together.
  • Patent Document 1 provides an inspection device including "a gas sampling device and a sensor for detecting a chemical substance contained in a gas sampled by the gas sampling device.
  • the gas sampling device forms an air curtain and forms an air curtain.
  • An air supply unit that covers the area containing the object to be inspected and forms a space isolated from the outside world, a sampling unit that collects gas in the isolated space, and a sampling unit that collects the gas in the isolated space. It has a diffusing gas supply unit that supplies at least an equal amount of gas for diffusion, and the sampling unit includes multiple sampling nozzles located at three different locations within an isolated space.
  • Gas sampling. Equipment and inspection equipment are disclosed (see summary).
  • Patent Document 2 states, "In order to realize space saving and cost reduction in a device for inspecting a substance, the fine particle inspection device includes a plurality of collection ports for collecting the substance to be inspected. A pair of fine particles connected to each collection port to concentrate the fine particles collected at this collection port, and a fine particle connected to each centrifugal separation device and concentrated from each of the centrifugal separation devices.
  • the substance inspection device, the substance inspection system, and the substance inspection method are disclosed (see summary).
  • trace detection fine particles adhering to inspection targets such as bags are peeled off and collected by airflow, and the presence or absence of traces of explosives is clarified by analyzing the fine particles.
  • trace detection when the size of the inspection target is large, improvement for recovering fine particles from the target location is desired.
  • FIG. 11 is a diagram showing a conventional nozzle 111 for injecting compressed air W and an intake port 131 for collecting fine particles.
  • the intake port 131 is arranged at a position facing the nozzle 111 so that the fine particles blown off by the compressed air W ejected from the nozzle 111 can be collected.
  • FIG. 10 of Patent Document 2 Such a configuration is also shown in FIG. 10 of Patent Document 2.
  • the inspection target is bag B
  • traces of explosives are likely to remain in a part that is easily touched by hand, specifically, in the vicinity of handle B1. Therefore, in general, as shown in FIG. 11, the bag B is set so that the portion of the handle B1 comes between the nozzle 111 and the intake port 131.
  • a conveying portion such as a belt conveyor
  • compressed air W is injected from the nozzle 111 at the timing when the handle B1 passes between the nozzle 111 and the intake port 131.
  • a cyclone type fine particle dust collector (cyclone type dust collector) is often provided.
  • the flow rate that can be sucked from the intake port 131 is limited. This is because if the flow rate of the cyclone type dust collector is excessively increased, problems such as re-scattering of the collected fine particles occur.
  • As a method of increasing the flow rate that can be sucked by the cyclone type dust collector there is a method such as increasing the size of the cyclone type dust collector.
  • the increase in size of the cyclone type dust collector leads to the increase in size of the trace inspection device itself.
  • the size of the cyclone type dust collector also affects the particle size of the fine particles that can be collected. Therefore, it is difficult to increase the size of the cyclone type dust collector.
  • the flow rate that can be sucked from the intake port 131 is limited. Therefore, at the moment when the compressed air W is injected from the nozzle 111, the flow rate of the compressed air W exceeds the flow rate that can be sucked from the intake port 131. It may end up. In such a case, only a part of the fine particles blown off from the handle B1 can be recovered from the intake port 131. Therefore, there is also a problem that the recovery efficiency of fine particles is deteriorated.
  • the present invention was made in view of such a background, and an object of the present invention is to efficiently recover fine particles from an inspection target.
  • the present invention has a transport unit for transporting an inspection object, a nozzle for injecting compressed air for peeling off a substance adhering to the inspection object, and a nozzle ejected from the nozzle. It has a recovery unit that collects fine particles separated from the inspection target by the compressed air, and an analysis unit that analyzes the fine particles collected by the recovery unit, and the inspection target arrives at the nozzle.
  • the compressed air is continuously or intermittently injected from the nozzle before the nozzle, and the state of the compressed air injection by the nozzle is continued at least until the inspection object passes in front of the nozzle. It is a feature.
  • Other solutions will be described as appropriate in the embodiments.
  • the present invention is an object to efficiently recover fine particles from an inspection object.
  • FIG. 1 is a diagram showing a configuration of a dangerous goods detection system Z according to the first embodiment.
  • the dangerous goods detection system (analysis system) Z has a dangerous goods detection device (analysis device) 1 and a control device 3.
  • the dangerous goods detection device 1 has a fine particle analysis unit 100, a bulk inspection unit 201, and a transport unit 202.
  • the control device 3 controls the fine particle analysis unit 100 and the bulk inspection unit 201, and acquires the inspection results by the fine particle analysis unit 100 and the bulk inspection unit 201.
  • the particle analysis unit 100 performs trace detection, and the bulk inspection unit 201 performs bulk detection.
  • a particle analysis unit 100 is provided inside the dangerous substance detection device 1.
  • the fine particle analysis unit 100 analyzes the components of the fine particles P adhering to the surface of the bag B.
  • a bulk such as an X-ray inspection device is connected in series with the fine particle analysis unit 100 along the direction (white arrow) in which the bag B placed on the transport unit 202 is transported.
  • the inspection unit 201 is provided. Incidentally, the bulk inspection unit 201 can be omitted. By doing so, it is possible to simultaneously analyze the fine particles P adhering to the bag B and confirm the inside by bulk inspection in one inspection. In addition, which of the order of fine particle analysis and bulk inspection may be carried out first.
  • FIG. 2 is a diagram showing a specific configuration of the fine particle analysis unit 100.
  • the fine particle analysis unit 100 includes sensors 101a to 101d, a peeling unit 110, a compressed air supply unit 120, a recovery unit 130, a concentration unit 140, and an analysis unit 150. Further, the control device 3 is electrically connected to the sensors 101a to 101d, the compressed air supply unit 120, the concentration unit 140, and the analysis unit 150.
  • the control device 3 is electrically connected to the sensors 101a to 101d, the compressed air supply unit 120, the concentration unit 140, and the analysis unit 150.
  • the bag B transported to the inside of the dangerous substance detection device 1 is subjected to component analysis of the fine particles P adhering to the surface of the bag B in the fine particle analysis unit 100.
  • sensors 101a and 101b for detecting that the bag B is close to the peeling unit 110 and the collecting unit 130 are provided.
  • the sensors 101a and 101b detect the passage (arrival) of the bag B, the compressed air W is continuously ejected from the nozzle 111 (see FIG. 3) provided in the peeling portion 110.
  • the recovery of the fine particles P by the recovery unit 130 is also turned on. That is, when the sensors 101a and 101b detect the passage (arrival) of the bag B, the intake of the cyclone type dust collector (cyclone type dust collector) 141 (see FIG. 4) provided in the concentration unit 140 is turned on.
  • the sensors 101a and 101b are, for example, photoelectric sensors in which the light emitting unit (sensor 101a) and the light receiving unit (sensor 101b) are arranged so as to face each other.
  • the light emitted from the light emitting unit (sensor 101a) is blocked or reflected by the bag B, so that the amount of light reaching the light receiving unit (sensor 101b) changes, so that the object passes through. (The arrival of the object between the sensors 101a and 101b) is detected.
  • the injection of compressed air W from the nozzle 111 is performed in synchronization with the detection of the bag B by the sensors 101a and 101b. That is, the compressed air W may be injected at the same time as the detection of the bag B. Further, the compressed air W may be injected with a predetermined time lag from the detection of the bag B based on the distance from the positions of the sensors 101a and 101b to the peeling portion 110 (nozzle 111).
  • the bag B continues to be transported even after it reaches between the sensors 101a and 101b. That is, the bag B is conveyed without stopping between the peeling section 110 and the collecting section 130 in order to sample the fine particles P adhering to the surface of the bag B.
  • the peeling portion 110 is connected to a compressed air supply portion 120 such as a compressor or a gas pipe via a pipe 161.
  • the peeling portion 110 peels the attached fine particles P by injecting compressed air W onto the surface of the bag B.
  • the peeled fine particles P are collected from the collection unit 130 and sent to the concentration unit 140 via the pipe 162.
  • the fine particles P concentrated in the concentrating unit 140 are sent to the analysis unit 150 via the pipe 163 and detected.
  • sensors 101c and 101d are also provided near the outlet of the fine particle analysis unit 100.
  • the control device 3 stops the injection of the compressed air W from the nozzle 111. At this time, it is desirable that the recovery of the fine particles P by the recovery unit 130 is also turned off. By doing so, the consumption of compressed air W can be reduced.
  • the sensors 101c and 101d have a role of detecting that the bag B has passed (finished) between the peeling portion 110 and the collecting portion 130 or in front of the peeling portion 110. ..
  • the sensors 101c and 101d detect that the bag B has reached between the sensors 101c and 101d.
  • the sensors 101c and 101d detect that the bag B has passed between the sensors 101c and 101d. (Arranged to detect that the rear end of the bag B has passed).
  • the sensors 101a and 101b it can be appropriately determined whether to detect the arrival of the bag B or the end of the passage of the bag B.
  • the control device 3 receives the signals sent from the sensors 101a and 101b and the sensors 101c and 101d. Further, the control device 3 controls the operation of the compressed air supply unit 120 and the concentration unit 140. Further, it receives a signal sent from the analysis unit 150.
  • FIG. 3 is a top view of the vicinity of the peeling portion 110 and the collecting portion 130.
  • the peeling portion 110 is provided with a nozzle 111.
  • the height of the nozzle 111 is adjusted to the position of the upper surface of the bag B.
  • the compressed air W is continuously ejected from the nozzle 111 in advance. Whether or not the bag B has approached the nozzle 111 is detected by the sensors 101a and 101b as described above.
  • the compressed air W may be injected for 0.1 seconds, and the injection may be stopped for the next 0.1 seconds, which may be repeated at short intervals.
  • the bag B transported by the transport unit 202 passes in front of the peeling unit 110 (nozzle 111), so that the fine particles P adhering to the upper surface of the bag B are compressed air. Peel off with W.
  • the location where the compressed air W hits the upper surface of the bag B changes.
  • the fine particles P can be peeled off and recovered by the recovery unit 130.
  • the compressed air W injected from the nozzle 111 is strongest in the central portion and weakens toward the outside.
  • the strength of the compressed air W is indicated by the thickness of the broken line arrow. The thicker the dashed arrow, the stronger the compressed air W.
  • the front side means the entrance side of the fine particle analysis unit 100, and is shown on the right side of the paper in FIG.
  • the compressed air W injected in the installation direction of the nozzle 111 (the axial direction of the nozzle 111) is the strongest, most of the fine particles P are in the installation direction of the nozzle 111 (nozzle 111). This is because it peels off before reaching (directly in front of 111).
  • the intake port 131 of the collection unit 130 for collecting the fine particles P on the front side with respect to the transport direction of the bag B, rather than arranging the intake port 131 at a position facing the nozzle 111. Fine particles P can be recovered more efficiently. That is, it is desirable that the intake port 131 is installed on the front side (inlet side) of the position facing the nozzle 111.
  • the center of the intake port 131a may be installed at a position facing the nozzle 111 (directly in front of the nozzle 111).
  • the recovery efficiency can be improved if the centers of the intake ports 131b and 131c are not installed at positions facing the nozzle 111 or the intake ports 131a to 131c are not installed on the inner side.
  • the cyclone type dust collector 141 when the cyclone type dust collector 141 is adopted in the concentrating unit 140, it is difficult to increase the flow rate of the intake air. That is, while the compressed air W is being injected from the nozzle 111, the injection flow rate is larger than the intake flow rate. Therefore, it is difficult to efficiently recover the fine particles P separated by the compressed air W.
  • the flow rate of the compressed air W is smaller on the outside than in the center of the compressed air W. Therefore, as described above, when the intake port 131 is provided at a position deviated from the direction in which the nozzle 111 faces to the front side (right side of the paper surface (rear side in the transport direction or movement direction of the bag B)), the fine particles P are on the front side. Fly to (on the right side of the page). Therefore, by providing the intake port 131 at a position shifted to the front side (right side of the paper surface) from the direction in which the nozzle 111 faces, it becomes possible to efficiently collect the fine particles P flying in the direction of the intake port
  • a plurality of intake ports 131a to 131c may be provided, and a cyclone type dust collector 41 may be connected to each of the intake ports 131a, 131b, 131c. ..
  • three intake ports 131a to 131c are shown, but the number is not limited to three.
  • a configuration in which a plurality of intake ports 131 and a plurality of concentration units 140 are provided will be described later.
  • FIG. 4 is a diagram showing a detailed configuration of the fine particle analysis unit 100.
  • FIG. 4 shows a configuration in which the particle analysis unit 100 of the dangerous goods detection device 1 according to the first embodiment is viewed from the insertion direction of the bag B. Further, in FIG. 4, the same components as those in FIGS. 2 and 3 are designated by the same reference numerals and the description thereof will be omitted.
  • the peeling portion 110 has a nozzle 111.
  • the collection unit 130 has an intake port 131.
  • the concentrator 140 has a cyclone type dust collector 141 and an exhaust fan 142.
  • the analysis unit 150 has a filter 151, a heater 152, a heater 153 in which the pipe 163 is penetrated, and a mass spectrometer 154.
  • FIG. 4 only one intake port 131 is shown in order to avoid complicating the figure.
  • the bag B passes in front of the nozzle 111 by the transport unit 202.
  • the compressed air W peels off the fine particles P adhering to the upper surface of the bag B, and the peeled fine particles P are blown toward the recovery unit 130.
  • a dome-shaped covering portion 171 is provided between the peeling portion 110 and the collecting portion 130 so that the air flow is not disturbed.
  • the nozzle 111 is fixed to the dome-shaped covering portion 171 by the nozzle support portion 172. It is preferable that the lining portion 171 and the nozzle support portion 172 are provided separately from the housing of the dangerous goods detection device 1.
  • the blown fine particles P are sucked into the intake port 131 provided in the collection unit 130 and introduced into the concentration unit 140 via the pipe 162.
  • the fine particles P and the gas are separated by the cyclone type dust collector 141. That is, in the cyclone type dust collector 141, the fine particles P are collected by the cyclone to increase the ratio of the fine particles P in the air toward the analysis unit 150. In this way, the concentration of the fine particles P in the air is increased (concentrated).
  • the concentration unit 140 By providing such a concentration unit 140, it is possible to improve the detection efficiency of the component of the fine particles P in the analysis unit 150. Then, the fine particles P are collected by the filter 151 provided in the analysis unit 150.
  • the gas introduced into the cyclone type dust collector 141 is exhausted by the exhaust fan 142.
  • the filter 151 is heated to about 180 ° C. to 200 ° C. by the heater 152. With such a configuration, the fine particles P are vaporized by the heat of the heater 152 and become steam.
  • the vapor of the vaporized fine particles P is introduced into the mass spectrometer 154 via the pipe 163 heated to about 180 ° C. by the heater 153.
  • the mass spectrometer 154 analyzes the vapor of the vaporized fine particles P.
  • the control device 3 performs a process such as issuing an alarm.
  • FIG. 5 is a diagram showing an example in which a plurality of intake ports 131 are provided for the purpose of increasing the suction flow rate in order to collect the fine particles P more efficiently.
  • the intake ports 131a, 131b, and 131c are arranged along the transport direction of the bag B (arrows in FIG. 3).
  • the intake ports 131a, 131b, 131c are connected to independent cyclone type dust collectors 141a to 141c via the pipes 162a to 162a, respectively. That is, cyclone type dust collectors 141a to 141c are connected to each of the three intake ports 131.
  • Each of the cyclone type dust collectors 141a to 141c is provided with heaters 152a to 152c.
  • the fine particles P taken in from the respective intake ports 131a, 131b, 131c are separated from the air flow in the cyclone type dust collectors 141a to 141c.
  • the fine particles P are collected by a filter 151 (see FIG. 4) provided in the heaters 152a to 152c provided in the cyclone type dust collectors 141a to 141c.
  • the airflow separated from the fine particles P is discharged to the outside of the cyclone type dust collectors 141a to 141c from the exhaust fans 142 (see FIG. 4) attached to the cyclone type dust collectors 141a to 141c.
  • the steam of the fine particles P generated by the heat vaporization is collected in the pipe 163 and introduced into the mass spectrometer 154.
  • FIG. 5 describes a configuration in which three intake ports 131 are provided in parallel as an example, but the number of intake ports 131 is not limited to this and may be further increased or may be two.
  • the flow rate that can be sucked into one cyclone type dust collector 141 is limited.
  • the suction flow rate in the collection unit 130 can be increased by the number of the cyclone type dust collectors 141a to 141c. ..
  • the number of the intake port 131 and the number of the cyclone type dust collector 141 do not have to be the same.
  • FIG. 6 is a diagram showing the effect of shifting the intake port 131.
  • the test was conducted after the fine particles P to which the explosive molecules were adsorbed were attached to the upper surface of the bag B.
  • compressed air W was sprayed from the nozzle 111 in advance, and when the bag B passed between the nozzle 111 and the intake port 131, a signal derived from the explosive was clearly obtained.
  • the broken line 401 shows a signal when the center of the nozzle 111 and the center of the intake port 131 are installed so as to face each other.
  • the intake port 131 is installed so that the center of the nozzle 111 and the center of the intake port 131 deviate from each other, and the intake port 131 is arranged on the entrance side of the particle analysis unit 100 of the bag B. Shows the signal when there is. As shown by the broken line 401, the signal is detected even when the center of the nozzle 111 and the intake port 131 are arranged so as to face each other. However, as shown by the solid line 402, the intake port 131 is installed so that the center of the nozzle 111 and the center of the intake port 131 are deviated from each other, and the intake port 131 is arranged on the inlet side of the fine particle analysis unit 100. (That is, by arranging as shown in FIG. 3), a stronger signal could be detected.
  • the compressed air W is continuously injected in advance before the bag B passes in front of the nozzle 111.
  • This makes it possible to detect the fine particles P regardless of the position on the upper surface of the bag B where the fine particles P are attached. Therefore, the convenience of the dangerous goods detection device 1 is improved, and the dangerous goods detection device 1 with higher sensitivity becomes possible. Further, even when the bag B is moved by the transport unit 202, the fine particles P can be collected without stopping the movement of the transport unit 202. As a result, the recovery efficiency of the fine particles P can be improved without reducing the throughput of the dangerous substance detection device 1.
  • the fine particles P adhering to the surface of the inspection object are efficiently recovered regardless of the place where the fine particles P are attached. You will be able to analyze. As a result, the convenience of the dangerous goods detection device 1 is improved, and high-sensitivity inspection can be realized.
  • the intake port 131 is installed on the front side with respect to the central axis (axis direction) of the nozzle 111, the recovery efficiency of the fine particles P can be improved. Further, a plurality of intake ports 131 are provided, and cyclone type dust collectors 141a to 141c are provided in each of the intake ports 131a to 131b. As a result, the suction flow rate and the recovery area can be increased, and the fine particles P can be reliably recovered.
  • FIG. 7 is a diagram showing the configuration of the peeling unit 110 and the collecting unit 130 in the second embodiment.
  • the same components as those of the drawings so far are designated by the same reference numerals, and the description thereof will be omitted.
  • the method of recovering the fine particles P adhering to the upper surface of the bag B with high efficiency has been described, but in the second embodiment, the case of recovering the fine particles P from the side surface of the bag B will be described.
  • the nozzle 111 and the intake port 131 are arranged side by side with respect to the bag B on one side of the bag B.
  • An airflow control unit 181 is installed on the movement source side of the bag B with respect to the intake port 131.
  • the compressed air W is continuously injected from the nozzle 111. ..
  • the compressed air W may be injected in advance.
  • the bag B is conveyed by the conveying unit 202 in the direction of the white arrow, and when the bag B arrives in front of the nozzle 111, an air flow W1 along the side surface of the bag B is generated.
  • An airflow control unit 181 that acts as a resistance to the airflow W1 is provided in the direction in which the airflow W1 is directed along the bag B.
  • the compressed air W is continuously or intermittently while the bag B is passing between the peeling portion 110 and the collecting portion 130 (while passing in front of the collecting portion 130). It is sprayed. The same applies to the third embodiment described later.
  • the airflow W1 is concentrated in the narrow gap between the airflow control unit 181 and the bag B. Therefore, a high pressure portion H (a portion where the flow velocity of the airflow W1 is slow) having a high pressure is generated in the gap between the airflow control unit 181 and the bag B. Due to the influence of the high pressure portion H, a part of the airflow W1 flowing along the side surface of the bag B also heads toward the intake port 131 (solid arrow). Therefore, a part of the fine particles P separated from the side surface of the bag B by the compressed air W is sucked from the intake port 131, concentrated by the cyclone type dust collector 141 via the pipe 162, and analyzed.
  • a high pressure portion H a portion where the flow velocity of the airflow W1 is slow
  • the fine particles P adhering to the side surface of the bag B can be recovered. Further, by injecting the compressed air W while transporting the bag B and collecting the fine particles P peeled off by the compressed air W, the fine particles P can be recovered regardless of the position on the side surface of the bag. can do. Further, even when the bag B is moved by the transport unit 202, the fine particles P can be collected without stopping the movement of the transport unit 202. As a result, the recovery efficiency of the fine particles P can be improved without reducing the throughput of the dangerous substance detection device 1.
  • the nozzle 111, the intake port 131, and the airflow control unit 181 arranged as shown in FIG. 7 may be provided on both sides of the bag B. By doing so, the fine particles P can be recovered from both side surfaces of the bag B. Further, the arrangement relationship between the nozzle 111 and the airflow control unit 181 may be reversed from that in FIG. 7. That is, the nozzle 111 may be installed on the moving source side of the bag B, and the airflow control unit 181 may be installed on the moving destination side of the bag B. It should be noted that the relative velocity difference between the airflow W1 and the bag B can be increased when the direction of the airflow from the nozzle 111 and the transport direction of the bag B are opposite to each other rather than the same direction. Is preferable.
  • FIG. 8 is a diagram showing the configuration of the peeling unit 110 and the collecting unit 130 in the third embodiment.
  • the same reference numerals are given to the same configurations as in FIG. 7, and the description thereof will be omitted.
  • the third embodiment also describes the case where the fine particles P are collected from the side surface of the bag B.
  • the nozzle 111 is arranged inside the intake port 131.
  • the airflow control unit 181a is provided on the movement source side and the movement destination side of the bag B with respect to the intake port 131.
  • the compressed air W is injected from the nozzle 111.
  • Compressed air W may be injected in advance.
  • Airflow control units 181a and 181b are provided in the direction in which the airflow is directed along the bag B so as to resist the airflow.
  • the sucked fine particles P are concentrated by the cyclone type dust collector 141 via the pipe 162 and analyzed by the analysis unit 150. Since the peeling section 110 and the recovery section 130 can be made more compact than the second embodiment, such a configuration of the third embodiment is advantageous when the dangerous substance detection device 1 is downsized.
  • nozzles 111, intake ports 131, and airflow control units 181a and 181b arranged as shown in FIG. 8 may be provided on both sides of the bag B. By doing so, the fine particles P can be recovered from both side surfaces of the bag B.
  • FIG. 9 is a diagram showing a hardware configuration of the control device 3.
  • the control device 3 includes a memory 310, a CPU (Central Processing Unit) 321 and a communication device 322, a storage device 330 such as an HD (Hard Disk) and an SSD (Solid State Drive).
  • the program stored in the storage device 330 is loaded into the memory 310, and the loaded program is executed by the CPU 321.
  • the detection processing unit 311, the intake air control unit 312, the nozzle control unit 313, and the bulk inspection control unit 314 are embodied.
  • the detection processing unit 311 determines whether or not the bag B is close to the fine particle analysis unit 100 based on the signals sent from the sensors 101a and 101b. Further, the detection processing unit 311 determines whether or not the bag B has passed through the fine particle analysis unit 100 based on the signals sent from the sensors 101c and 101d.
  • the intake control unit 312 controls the drive of the exhaust fan 142 provided in the cyclone type dust collector 141 based on the determination of the approach and passage of the bag B by the detection processing unit 311.
  • the nozzle control unit 313 controls a valve (not shown) based on the determination of the approach and passage of the bag B by the detection processing unit 311 and controls the ejection of the compressed air W by the nozzle 111.
  • the bulk inspection control unit 314 controls the bulk inspection by the bulk inspection unit 201.
  • the communication device 322 receives signals from the sensors 101a to 101d. Further, the communication device 322 sends a control command to the valve (not shown) of the compressed air supply unit 120 and the exhaust fan 142 of the concentration unit 140. Further, the communication device 322 receives a signal sent from the mass spectrometer 154 of the analysis unit 150.
  • FIG. 10 is a flowchart showing a procedure of processing performed by the control device 3. Refer to FIGS. 2 and 9 as appropriate. The process performed in this flowchart is a process common to the first embodiment, the second embodiment, and the third embodiment.
  • the bag B is transported by the transport unit 202 (S101).
  • the transport unit 202 may be constantly operating, or may be operated when the placement of the bag B is detected.
  • the intake control unit 312 starts the intake of the recovery unit 130 (S103), and the nozzle control unit 313 starts the injection of the compressed air W by the nozzle 111 (S104).
  • step S103 or step S104 may be performed first, or may be performed at the same time.
  • the intake control unit 312 starts the intake of the collection unit 130 by turning on the exhaust fan 142 of the cyclone type dust collector 141. Then, the nozzle control unit 313 controls the injection of the compressed air W by controlling the valve.
  • the detection processing unit 311 determines whether or not the bag B has passed between the peeling unit 110 and the collecting unit 130 by the sensors 101c and 101d (S111). As described above, when the distance between the sensors 101c and 101d and the peeling unit 110 and the collecting unit 130 is short, and when the sensors 101c and 101d are completely passed, the detection processing unit 311 determines “Yes” in step S111. do. In this case, when the detection signal of the bag B by the sensor 101c and the sensor 101c is received once and then the detection signal of the bag B is no longer received, the detection processing unit 311 determines that the bag B has passed through the sensors 101c and 101d. do.
  • the detection processing unit 311 may perform step S111. Judges as "Yes”. In this case, when the detection signal of the bag B by the sensor 101c and the sensor 101c is received, it is determined that the bag B has reached the sensors 101c and 101d. If the bag B has not passed (S111 ⁇ No), the control device 3 returns the process to step S103.
  • the intake control unit 312 stops the intake of the recovery unit 130 (S112), and the nozzle control unit 313 stops the injection of the compressed air W by the nozzle 111 (S113).
  • step S112 or step S113 may be performed first, or may be performed at the same time.
  • the intake control unit 312 stops the intake of the collection unit 130 by turning off the exhaust fan 142 of the cyclone type dust collector 141. Then, the nozzle control unit 313 stops the injection of the compressed air W by controlling the valve.
  • the bulk inspection control unit 314 performs a bulk inspection by the bulk inspection unit 201 (S121), and the inspector takes out the bag B from the dangerous goods detection device 1 (S122).
  • the storage device 330 shown in FIG. 9 may be installed on the cloud.
  • the airflow control unit 181 is installed on the movement source side and the movement destination side of the bag B with respect to the intake port 131, but the present invention is not limited to this.
  • it may be provided on the upper side and the lower side of the intake port 131.
  • the top indicates the direction opposite to the direction of gravity
  • the bottom indicates the direction in the direction of gravity.
  • the airflow control unit 181 is installed so as to form a substantially sealed space between the airflow control unit 181 and the intake port 131 and the side surface of the bag B. May be good. By doing so, the recovery efficiency of the fine particles P can be further improved.
  • a plurality of intake ports 131 may be arranged, and a cyclone type dust collector 141 or a heater 152 may be connected to each of the plurality of intake ports 131.
  • the control device 3 may be an integral device with the dangerous goods detection device 1.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • each of the above-mentioned configurations, functions, parts 311 to 314, the storage device 330, and the like may be realized by hardware, for example, by designing a part or all of them by an integrated circuit or the like.
  • each configuration, function, etc. described above may be realized by software by interpreting and executing a program in which a processor such as a CPU 321 realizes each function.
  • a processor such as a CPU 321 realizes each function.
  • a memory 310 In addition to storing information such as programs, tables, and files that realize each function in HD (Hard Disk), a memory 310, a recording device such as SSD, an IC (Integrated Circuit) card, or SD (Secure). It can be stored in a recording medium such as a Digital) card or DVD (Digital Versatile Disc).
  • the control lines and information lines are shown as necessary for explanation, and not all the control lines and information lines are shown in the product. In practice, you can think of almost all configurations as interconnected.
  • 1 Dangerous goods detection device (analyzer) 3 Control device 100 Particle analyzer 101a, 101b Sensor (first sensor) 101c, 101d sensor (second sensor) 110 Peeling part 111 Nozzle 120 Compressed air supply part 130 Recovery part 131, 131a, 131b, 131c Intake port 140 Concentrating part 141, 141a, 141b, 141c Cyclone type dust collector (Cyclone type dust collector) 142 Exhaust fan 150 Analytical unit 154 Mass spectrometer 181,181a, 181b Airflow control unit 202 Transport unit B Bag (inspection target) H, Ha, Hb High pressure part P Fine particles W Compressed air W1 Airflow (flow of compressed air) Z Dangerous goods detection system (analysis system)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

The present invention is characterized by comprising: a transport unit (202) that transports a bag (B) that is an inspection target that efficiently collects fine particles from the inspection target; a nozzle that injects compressed air for separating the fine particles attached to the bag (B); a collection unit (130) that collects the fine particles separated from the bag (B) by the compressed air injected from the nozzle; and an analysis unit (150) that analyzes the fine particles collected by the collection unit (130), wherein the compressed air is continuously or intermittently injected from the nozzle before the bag (B) reaches the nozzle, and a state in which the compressed air is injected by the nozzle continues until at least the bag (B) passes through the front side of the nozzle.

Description

分析装置、分析システム及び分析方法Analytical equipment, analytical system and analytical method
 本発明は、検査対象物から微粒子を回収し、分析する分析装置、分析システム及び分析方法の技術に関する。 The present invention relates to an analyzer, an analysis system, and an analysis method for recovering and analyzing fine particles from an inspection object.
 世界的にテロの脅威が増している。特に爆発物は、日用品を原料とした強力な爆薬の製造方法がインターネットを介して拡散したことから、近年のテロにおいて使用されるケースが増えている。爆発物テロを防止する有効な手段の一つは、爆発物探知機により隠蔽されている爆発物を発見することである。爆発物の探知方法として、爆発物の塊を見つけるバルク探知と、微量の爆薬の痕跡を見つけるトレース探知の2つが知られている。 The threat of terrorism is increasing worldwide. In particular, explosives are increasingly used in recent terrorism because the method of manufacturing powerful explosives made from daily necessities has spread via the Internet. One of the effective means to prevent explosive terrorism is to find explosives hidden by explosives detectors. There are two known methods for detecting explosives: bulk detection, which finds a mass of explosives, and trace detection, which finds traces of a small amount of explosives.
 バルク探知は、X線検査装置に代表されるように、カバン等の荷物内部の像を取得し、その形状や大きさ等から不審物を判別するものである。一方、トレース探知は、検査対象に付着している化学物質を化学的な分析手段により分析し、その成分を特定するものである。これにより、例えばカバンの表面から爆薬が検出された場合、カバンの内部に爆薬が隠蔽されている可能性があると判断される。バルク探知とトレース探知は得られる情報が異なるため、その両方の探知方法を併用することによりセキュリティを向上できることが知られている。 Bulk detection, as typified by an X-ray inspection device, acquires an image of the inside of a bag or the like and discriminates a suspicious object from its shape or size. On the other hand, trace detection analyzes a chemical substance adhering to an inspection target by a chemical analysis means and identifies the component thereof. As a result, for example, if the explosive is detected from the surface of the bag, it is determined that the explosive may be concealed inside the bag. Since the information obtained by bulk detection and trace detection is different, it is known that security can be improved by using both detection methods together.
 特許文献1には、「ガス採取装置と、ガス採取装置により採取されたガスに含まれる化学物質を検出するセンサーとを含む検査装置を提供する。ガス採取装置は、エアーカーテンを形成して、検査の対象物が含まれる領域を覆い、外界から隔離された空間を形成するエアー供給ユニットと、隔離された空間内のガスを採取するサンプリングユニットと、隔離された空間内に、サンプリングユニットの採取量と少なくとも等しい量の拡散用のガスを供給する拡散ガス供給ユニットとを有し、サンプリングユニットは、隔離された空間内の立体的に異なる位置に配置された複数のサンプリングノズルを含む」ガス採取装置および検査装置が開示されている(要約参照)。 Patent Document 1 provides an inspection device including "a gas sampling device and a sensor for detecting a chemical substance contained in a gas sampled by the gas sampling device. The gas sampling device forms an air curtain and forms an air curtain. An air supply unit that covers the area containing the object to be inspected and forms a space isolated from the outside world, a sampling unit that collects gas in the isolated space, and a sampling unit that collects the gas in the isolated space. It has a diffusing gas supply unit that supplies at least an equal amount of gas for diffusion, and the sampling unit includes multiple sampling nozzles located at three different locations within an isolated space. "Gas sampling. Equipment and inspection equipment are disclosed (see summary).
 特許文献2には、「物質を検査するための装置において、省スペース化、低コスト化を実現するために、微粒子検査装置は、検査対象となる物質を捕集する複数の捕集口と、それぞれの捕集口に対で接続され、この捕集口で捕集された微粒子を濃縮する遠心分離装置と、それぞれの遠心分離装置に接続しており、遠心分離装置の各々から濃縮された微粒子を取得し、該微粒子の分析を行う共通の分析装置を備えることを特徴とする」物質検査装置、物質検査システム及び物質検査方法が開示されている(要約参照)。 Patent Document 2 states, "In order to realize space saving and cost reduction in a device for inspecting a substance, the fine particle inspection device includes a plurality of collection ports for collecting the substance to be inspected. A pair of fine particles connected to each collection port to concentrate the fine particles collected at this collection port, and a fine particle connected to each centrifugal separation device and concentrated from each of the centrifugal separation devices. The substance inspection device, the substance inspection system, and the substance inspection method are disclosed (see summary).
国際公開番第2013/035306号International Publication No. 2013/035306 国際公開番第2015/145546号International Publication No. 2015/145546
 トレース探知では、カバン等の検査対象に付着している微粒子を気流により剥離・回収し、その微粒子を分析することで爆薬の痕跡の有無を明らかにすることが行われている。このようなトレース探知において、検査対象の寸法が大きい場合、狙った場所から微粒子を回収するための改良が望まれている。 In trace detection, fine particles adhering to inspection targets such as bags are peeled off and collected by airflow, and the presence or absence of traces of explosives is clarified by analyzing the fine particles. In such trace detection, when the size of the inspection target is large, improvement for recovering fine particles from the target location is desired.
 まず、図11を参照して従来における技術を説明する。
 図11は、従来における圧縮空気Wを噴射するノズル111と微粒子を回収するための吸気口131を示す図である。
 図11に示すように、ノズル111から噴射された圧縮空気Wにより吹き飛ばされる微粒子を回収できるよう、吸気口131はノズル111に対向する位置に配置される。このような構成は、特許文献2の図10にも示されている。検査対象がカバンBである場合、手で触れやすい部分、具体的には取っ手B1の付近に爆薬の痕跡が残りやすい。従って、一般に、図11に示すように、取っ手B1の部分がノズル111と吸気口131の間に来るようカバンBがセットされる。あるいは、ベルトコンベアのような搬送部によってカバンBが搬送される場合、取っ手B1がノズル111と吸気口131との間を通過するタイミングでノズル111から圧縮空気Wが噴射される。
First, the conventional technique will be described with reference to FIG.
FIG. 11 is a diagram showing a conventional nozzle 111 for injecting compressed air W and an intake port 131 for collecting fine particles.
As shown in FIG. 11, the intake port 131 is arranged at a position facing the nozzle 111 so that the fine particles blown off by the compressed air W ejected from the nozzle 111 can be collected. Such a configuration is also shown in FIG. 10 of Patent Document 2. When the inspection target is bag B, traces of explosives are likely to remain in a part that is easily touched by hand, specifically, in the vicinity of handle B1. Therefore, in general, as shown in FIG. 11, the bag B is set so that the portion of the handle B1 comes between the nozzle 111 and the intake port 131. Alternatively, when the bag B is conveyed by a conveying portion such as a belt conveyor, compressed air W is injected from the nozzle 111 at the timing when the handle B1 passes between the nozzle 111 and the intake port 131.
 しかし、カバンBには様々なタイプがあり、取っ手B1が必ずしもカバンBの中央に配置されているとは限らない。また、検査のスループットを高めるため、ベルトコンベアの搬送速度は高く設定することが、しばしば行われる。このような場合、高速で移動するカバンBの取っ手B1の位置を正確に狙って圧縮空気Wを当てるのは困難である。 However, there are various types of bag B, and the handle B1 is not always placed in the center of bag B. Also, in order to increase the inspection throughput, it is often the case that the transport speed of the belt conveyor is set high. In such a case, it is difficult to accurately aim at the position of the handle B1 of the bag B moving at high speed and apply the compressed air W.
 また、吸気口131から取り込まれた微粒子を回収するため、サイクロン方式の微粒子集塵装置(サイクロン式集塵機)が設けられることが多い。この場合、吸気口131から吸引できる流量が限られる。これは、サイクロン式集塵機の流量を過剰に高くすると、捕集した微粒子が再飛散する等の不具合が起きるためである。サイクロン式集塵機が吸引できる流量を増やす方法として、サイクロン式集塵機を大型化する等の方法がある。しかし、サイクロン式集塵機の大型化はトレース検査装置自体の大型化を招く。サイクロン式集塵機のサイズは捕集できる微粒子の粒径等にも影響を与える。そのため、サイクロン式集塵機の大型化は困難である。 Further, in order to collect the fine particles taken in from the intake port 131, a cyclone type fine particle dust collector (cyclone type dust collector) is often provided. In this case, the flow rate that can be sucked from the intake port 131 is limited. This is because if the flow rate of the cyclone type dust collector is excessively increased, problems such as re-scattering of the collected fine particles occur. As a method of increasing the flow rate that can be sucked by the cyclone type dust collector, there is a method such as increasing the size of the cyclone type dust collector. However, the increase in size of the cyclone type dust collector leads to the increase in size of the trace inspection device itself. The size of the cyclone type dust collector also affects the particle size of the fine particles that can be collected. Therefore, it is difficult to increase the size of the cyclone type dust collector.
 サイクロン式集塵機の大型化が困難なことから吸気口131から吸引できる流量が限られるため、ノズル111から圧縮空気Wを噴射した瞬間において、圧縮空気Wの流量が吸気口131から吸引できる流量を超えてしまう場合がある。このような場合、取っ手B1から吹き飛ばされた微粒子の一部しか吸気口131から回収できないことになる。このため、微粒子の回収効率が悪くなるという課題もあった。 Since it is difficult to increase the size of the cyclone type dust collector, the flow rate that can be sucked from the intake port 131 is limited. Therefore, at the moment when the compressed air W is injected from the nozzle 111, the flow rate of the compressed air W exceeds the flow rate that can be sucked from the intake port 131. It may end up. In such a case, only a part of the fine particles blown off from the handle B1 can be recovered from the intake port 131. Therefore, there is also a problem that the recovery efficiency of fine particles is deteriorated.
 このような背景に鑑みて本発明がなされたのであり、本発明は、検査対象物から効率的に微粒子を回収することを目的とする。 The present invention was made in view of such a background, and an object of the present invention is to efficiently recover fine particles from an inspection target.
 前記した課題を解決するため、本発明は、検査対象物を搬送する搬送部と、前記検査対象物に付着している物質を剥離するための圧縮空気を噴射するノズルと、前記ノズルから噴射された前記圧縮空気によって前記検査対象物から剥離された微粒子を回収する回収部と、前記回収部で回収された前記微粒子を分析する分析部と、を有し、前記検査対象物が前記ノズルに到着する前に前記ノズルから前記圧縮空気が連続的又は断続的に噴射され、少なくとも前記検査対象物が前記ノズルの前を通過するまで、前記ノズルによる前記圧縮空気の噴射の状態が継続されることを特徴とする。
 その他の解決手段は実施形態中において適宜記載する。
In order to solve the above-mentioned problems, the present invention has a transport unit for transporting an inspection object, a nozzle for injecting compressed air for peeling off a substance adhering to the inspection object, and a nozzle ejected from the nozzle. It has a recovery unit that collects fine particles separated from the inspection target by the compressed air, and an analysis unit that analyzes the fine particles collected by the recovery unit, and the inspection target arrives at the nozzle. The compressed air is continuously or intermittently injected from the nozzle before the nozzle, and the state of the compressed air injection by the nozzle is continued at least until the inspection object passes in front of the nozzle. It is a feature.
Other solutions will be described as appropriate in the embodiments.
 本発明によれば、検査対象物から効率的に微粒子を回収することを目的とする。 According to the present invention, it is an object to efficiently recover fine particles from an inspection object.
第1実施形態に係る危険物探知システムの構成を示す図である。It is a figure which shows the structure of the dangerous goods detection system which concerns on 1st Embodiment. 微粒子分析部の具体的な構成を示す図である。It is a figure which shows the specific structure of the particle | particle analysis part. 剥離部、回収部の付近を上からみた図である。It is the figure which looked at the vicinity of the peeling part and the recovery part from the top. 微粒子分析部の詳細な構成を示す図である。It is a figure which shows the detailed structure of the particle | particle analysis part. 複数の吸気口が設けられている例を示す図である。It is a figure which shows the example which a plurality of intake ports are provided. 吸気口をずらすことによる効果を表す図である。It is a figure which shows the effect by shifting the intake port. 第2実施形態における剥離部と、回収部の構成を示す図である。It is a figure which shows the structure of the peeling part and the recovery part in 2nd Embodiment. 第3実施形態における剥離部と、回収部の構成を示す図である。It is a figure which shows the structure of the peeling part and the recovery part in 3rd Embodiment. 制御装置のハードウェア構成を示す図である。It is a figure which shows the hardware configuration of a control device. 制御装置によって行われる処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process performed by a control device. 従来におけるノズルと吸気口を示す図である。It is a figure which shows the nozzle and the intake port in the conventional manner.
 次に、本発明を実施するための形態(「実施形態」という)について、適宜図面を参照しながら詳細に説明する。また、各図面において同様の構成については同一の符号を付して説明を省略する。 Next, an embodiment for carrying out the present invention (referred to as "embodiment") will be described in detail with reference to the drawings as appropriate. Further, in each drawing, the same reference numerals are given to the same configurations, and the description thereof will be omitted.
[第1実施形態]
 (危険物探知装置1)
 図1は、第1実施形態に係る危険物探知システムZの構成を示す図である。
 危険物探知システム(分析システム)Zは、危険物探知装置(分析装置)1と、制御装置3とを有する。
 危険物探知装置1は、微粒子分析部100、バルク検査部201、及び、搬送部202を有する。制御装置3は、微粒子分析部100及びバルク検査部201の制御を行うとともに、微粒子分析部100及びバルク検査部201による検査結果を取得する。
 微粒子分析部100はトレース探知を行い、バルク検査部201はバルク探知を行う。
[First Embodiment]
(Dangerous goods detection device 1)
FIG. 1 is a diagram showing a configuration of a dangerous goods detection system Z according to the first embodiment.
The dangerous goods detection system (analysis system) Z has a dangerous goods detection device (analysis device) 1 and a control device 3.
The dangerous goods detection device 1 has a fine particle analysis unit 100, a bulk inspection unit 201, and a transport unit 202. The control device 3 controls the fine particle analysis unit 100 and the bulk inspection unit 201, and acquires the inspection results by the fine particle analysis unit 100 and the bulk inspection unit 201.
The particle analysis unit 100 performs trace detection, and the bulk inspection unit 201 performs bulk detection.
 検査対象物であるカバンBが、ベルトコンベアに代表される搬送部202の上に載置されると、カバンBが危険物探知装置1の内部へと搬送される。危険物探知装置1の内部には微粒子分析部100が設けられている。微粒子分析部100では、カバンBの表面に付着した微粒子Pの成分が分析される。また、図1の例に示すように、搬送部202に載置されたカバンBが搬送される方向(白抜矢印)に沿って、微粒子分析部100と直列にX線検査装置のようなバルク検査部201が設けられている。ちなみに、バルク検査部201は省略可能である。このようにすることで一度の検査でカバンBに付着した微粒子Pの分析とバルク検査による内部の確認とを同時に行うことができる。なお、微粒子分析とバルク検査の順番は、どちらが先に実施されてもよい When the bag B, which is the object to be inspected, is placed on the transport unit 202 represented by the belt conveyor, the bag B is transported to the inside of the dangerous goods detection device 1. A particle analysis unit 100 is provided inside the dangerous substance detection device 1. The fine particle analysis unit 100 analyzes the components of the fine particles P adhering to the surface of the bag B. Further, as shown in the example of FIG. 1, a bulk such as an X-ray inspection device is connected in series with the fine particle analysis unit 100 along the direction (white arrow) in which the bag B placed on the transport unit 202 is transported. The inspection unit 201 is provided. Incidentally, the bulk inspection unit 201 can be omitted. By doing so, it is possible to simultaneously analyze the fine particles P adhering to the bag B and confirm the inside by bulk inspection in one inspection. In addition, which of the order of fine particle analysis and bulk inspection may be carried out first.
 (微粒子分析部100)
 図2は、微粒子分析部100の具体的な構成を示す図である。
 微粒子分析部100は、センサ101a~101d、剥離部110、圧縮空気供給部120、回収部130、濃縮部140、分析部150を有する。また、センサ101a~101d、圧縮空気供給部120、濃縮部140、分析部150には制御装置3が電気的に接続されている。
 まず、図1で示すように、カバンBが搬送部202に載置されるとカバンBが危険物探知装置1の内部に搬送される。そして、図1に示すように、危険物探知装置1の内部に搬送されたカバンBは、微粒子分析部100において、カバンBの表面に付着した微粒子Pの成分分析が行われる。
 微粒子分析部100の入り口付近には、カバンBが剥離部110及び回収部130に接近していることを検出するセンサ101a,101bが設けられている。センサ101a,101bがカバンBの通過(到達)を検知すると、剥離部110に設けられているノズル111(図3参照)から圧縮空気Wが連続的に噴射される。このとき、回収部130による微粒子Pの回収もオンとなることが望ましい。つまり、センサ101a,101bがカバンBの通過(到達)を検知すると、濃縮部140に設けられているサイクロン式集塵機(サイクロン式集塵部)141(図4参照)の吸気がオンとなる。
(Particle analysis unit 100)
FIG. 2 is a diagram showing a specific configuration of the fine particle analysis unit 100.
The fine particle analysis unit 100 includes sensors 101a to 101d, a peeling unit 110, a compressed air supply unit 120, a recovery unit 130, a concentration unit 140, and an analysis unit 150. Further, the control device 3 is electrically connected to the sensors 101a to 101d, the compressed air supply unit 120, the concentration unit 140, and the analysis unit 150.
First, as shown in FIG. 1, when the bag B is placed on the transport unit 202, the bag B is transported inside the dangerous goods detection device 1. Then, as shown in FIG. 1, the bag B transported to the inside of the dangerous substance detection device 1 is subjected to component analysis of the fine particles P adhering to the surface of the bag B in the fine particle analysis unit 100.
Near the entrance of the fine particle analysis unit 100, sensors 101a and 101b for detecting that the bag B is close to the peeling unit 110 and the collecting unit 130 are provided. When the sensors 101a and 101b detect the passage (arrival) of the bag B, the compressed air W is continuously ejected from the nozzle 111 (see FIG. 3) provided in the peeling portion 110. At this time, it is desirable that the recovery of the fine particles P by the recovery unit 130 is also turned on. That is, when the sensors 101a and 101b detect the passage (arrival) of the bag B, the intake of the cyclone type dust collector (cyclone type dust collector) 141 (see FIG. 4) provided in the concentration unit 140 is turned on.
 ちなみに、センサ101a,101bは、例えば、投光部(センサ101a)と受光部(センサ101b)とが対向して配置された光電センサである。この光電センサは、投光部(センサ101a)から投光された光がカバンBによって遮られることや反射されることで受光部(センサ101b)に到達する光量が変化することによって、物体の通過(センサ101a,101b間への物体の到達)を検知する。 Incidentally, the sensors 101a and 101b are, for example, photoelectric sensors in which the light emitting unit (sensor 101a) and the light receiving unit (sensor 101b) are arranged so as to face each other. In this photoelectric sensor, the light emitted from the light emitting unit (sensor 101a) is blocked or reflected by the bag B, so that the amount of light reaching the light receiving unit (sensor 101b) changes, so that the object passes through. (The arrival of the object between the sensors 101a and 101b) is detected.
 なお、ノズル111からの圧縮空気Wの噴射は、センサ101a,101bによるカバンBの検知に同期して行われる。すなわち、カバンBの検知と同時に圧縮空気Wを噴射するようにしてもよい。また、センサ101a,101bの位置から剥離部110(ノズル111)までの距離を踏まえて、カバンBの検知から所定のタイムラグを持って圧縮空気Wを噴射するようにしてもよい。 The injection of compressed air W from the nozzle 111 is performed in synchronization with the detection of the bag B by the sensors 101a and 101b. That is, the compressed air W may be injected at the same time as the detection of the bag B. Further, the compressed air W may be injected with a predetermined time lag from the detection of the bag B based on the distance from the positions of the sensors 101a and 101b to the peeling portion 110 (nozzle 111).
 カバンBは、センサ101a,101bの間に到達した後も搬送が継続される。すなわち、カバンBは、カバンBの表面に付着した微粒子Pをサンプリングするため剥離部110と回収部130との間へと停止することなく搬送される。剥離部110は、配管161を介して、コンプレッサやガス配管等の圧縮空気供給部120に接続されている。剥離部110は、カバンBの表面に圧縮空気Wを噴射することにより付着している微粒子Pを剥離する。剥離された微粒子Pは、回収部130から回収され、配管162を介して濃縮部140に送られる。濃縮部140で濃縮された微粒子Pは配管163を介して分析部150に送られ検出される。 The bag B continues to be transported even after it reaches between the sensors 101a and 101b. That is, the bag B is conveyed without stopping between the peeling section 110 and the collecting section 130 in order to sample the fine particles P adhering to the surface of the bag B. The peeling portion 110 is connected to a compressed air supply portion 120 such as a compressor or a gas pipe via a pipe 161. The peeling portion 110 peels the attached fine particles P by injecting compressed air W onto the surface of the bag B. The peeled fine particles P are collected from the collection unit 130 and sent to the concentration unit 140 via the pipe 162. The fine particles P concentrated in the concentrating unit 140 are sent to the analysis unit 150 via the pipe 163 and detected.
 また、微粒子分析部100の出口付近にもセンサ101c,101d(光電センサ)が設けられている。センサ101c,101dによって、カバンBが剥離部110と回収部130との間を通過したことが検出されると、制御装置3はノズル111からの圧縮空気Wの噴射を停止する。このとき、回収部130による微粒子Pの回収もオフとなることが望ましい。このようにすることで圧縮空気Wの消費量を低減することができる。 Further, sensors 101c and 101d (photoelectric sensors) are also provided near the outlet of the fine particle analysis unit 100. When the sensors 101c and 101d detect that the bag B has passed between the peeling portion 110 and the collecting portion 130, the control device 3 stops the injection of the compressed air W from the nozzle 111. At this time, it is desirable that the recovery of the fine particles P by the recovery unit 130 is also turned off. By doing so, the consumption of compressed air W can be reduced.
 ちなみに、センサ101c,101dは、剥離部110と回収部130との間を、あるいは、剥離部110の前を、カバンBが通過した(通過し終わった)ことを検知する役割を有するものである。例えば、剥離部110の位置からセンサ101c,101dまでの距離がカバンBの長さよりも長い場合は、センサ101c,101dは、カバンBがセンサ101c,101dの間に到達したことを検知するように配置される(カバンBの先端を検知するように配置される)。一方、剥離部110の位置からセンサ101c,101dまでの距離がカバンBの長さよりも短い場合は、センサ101c,101dは、カバンBがセンサ101c,101dの間を通過し終わったことを検知するように配置される(カバンBの後端が通過し終わったことを検知するように配置される)。
 なお、センサ101a,101bについても、カバンBの到達を検知するかカバンBの通過し終わりを検知するかなどは、適宜定めることができる。
Incidentally, the sensors 101c and 101d have a role of detecting that the bag B has passed (finished) between the peeling portion 110 and the collecting portion 130 or in front of the peeling portion 110. .. For example, when the distance from the position of the peeling portion 110 to the sensors 101c and 101d is longer than the length of the bag B, the sensors 101c and 101d detect that the bag B has reached between the sensors 101c and 101d. Arranged (arranged to detect the tip of the bag B). On the other hand, when the distance from the position of the peeling portion 110 to the sensors 101c and 101d is shorter than the length of the bag B, the sensors 101c and 101d detect that the bag B has passed between the sensors 101c and 101d. (Arranged to detect that the rear end of the bag B has passed).
As for the sensors 101a and 101b, it can be appropriately determined whether to detect the arrival of the bag B or the end of the passage of the bag B.
 制御装置3は、センサ101a,101bとセンサ101c,101dから送られる信号を受信する。また、制御装置3は、圧縮空気供給部120及び濃縮部140の動作を制御する。さらに、分析部150から送られる信号を受信する。 The control device 3 receives the signals sent from the sensors 101a and 101b and the sensors 101c and 101d. Further, the control device 3 controls the operation of the compressed air supply unit 120 and the concentration unit 140. Further, it receives a signal sent from the analysis unit 150.
 (剥離部110、及び、回収部130)
 図3は、剥離部110、回収部130の付近を上からみた図である。
 図3に示すように、剥離部110にはノズル111が設けられている。ノズル111の高さはカバンBの上面の位置に合わせられている。搬送部202に載せられたカバンBがノズル111に接近すると、ノズル111からは、予め圧縮空気Wが連続的に噴射される。ノズル111にカバンBが接近したか否かは、前記したようにセンサ101a,101bによって検知される。
(Peeling part 110 and collecting part 130)
FIG. 3 is a top view of the vicinity of the peeling portion 110 and the collecting portion 130.
As shown in FIG. 3, the peeling portion 110 is provided with a nozzle 111. The height of the nozzle 111 is adjusted to the position of the upper surface of the bag B. When the bag B mounted on the transport unit 202 approaches the nozzle 111, the compressed air W is continuously ejected from the nozzle 111 in advance. Whether or not the bag B has approached the nozzle 111 is detected by the sensors 101a and 101b as described above.
 ただし、圧縮空気Wの消費量を低減するため、ごく短い間隔で圧縮空気Wの噴射と停止とを繰り返し、実質的に連続した噴射(断続的な噴射)とすることもできる。例えば、0.1秒間は圧縮空気Wが噴射され、次の0.1秒間は噴射が停止されることが短い間隔で繰り返されてもよい。圧縮空気Wが噴射されている最中に搬送部202で搬送されたカバンBが剥離部110(ノズル111)の前を通過することにより、カバンBの上面に付着している微粒子Pが圧縮空気Wにより剥離する。図3に示すように、カバンBが搬送されるに従い、カバンBの上表面に対して圧縮空気Wが当たる箇所が変化していく。これにより、取っ手B1を含むカバンBの上面の、どのような位置に微粒子Pが付着していたとしても、その微粒子Pを剥離し、回収部130で回収することができる。 However, in order to reduce the consumption of the compressed air W, it is possible to repeat the injection and the stop of the compressed air W at very short intervals to make a substantially continuous injection (intermittent injection). For example, the compressed air W may be injected for 0.1 seconds, and the injection may be stopped for the next 0.1 seconds, which may be repeated at short intervals. While the compressed air W is being injected, the bag B transported by the transport unit 202 passes in front of the peeling unit 110 (nozzle 111), so that the fine particles P adhering to the upper surface of the bag B are compressed air. Peel off with W. As shown in FIG. 3, as the bag B is conveyed, the location where the compressed air W hits the upper surface of the bag B changes. As a result, no matter where the fine particles P are attached to the upper surface of the bag B including the handle B1, the fine particles P can be peeled off and recovered by the recovery unit 130.
 図3において、ノズル111から噴射される圧縮空気Wは、中心部分が最も強く、外側に行くに従い弱くなる。図3において、圧縮空気Wの強さを破線矢印の太さで示している。破線矢印の太さが太くなるほど、圧縮空気Wの強さが強い。カバンBの表面に付着している微粒子Pから見ると、カバンBが搬送されてノズル111の方向に近付くにつれて、徐々に強い風に曝されることになる。そして、圧縮空気Wにより生じる剥離力が、微粒子Pの表面への付着力を上回った時点で微粒子Pは剥離する。このため、微粒子Pは、カバンBの搬送方向を基準にすると、ノズル111の中心の向く方向よりも手前側に飛ぶことになる。ここで、手前側とは微粒子分析部100の入口側という意味であり、図3の紙面右側を示す。これを、図3を参照して説明すると、ノズル111の設置方向(ノズル111の軸心方向)に噴射される圧縮空気Wが一番強いため、ほとんどの微粒子Pはノズル111の設置方向(ノズル111の真正面)に到達する前に剥離するためである。 In FIG. 3, the compressed air W injected from the nozzle 111 is strongest in the central portion and weakens toward the outside. In FIG. 3, the strength of the compressed air W is indicated by the thickness of the broken line arrow. The thicker the dashed arrow, the stronger the compressed air W. Seen from the fine particles P adhering to the surface of the bag B, as the bag B is transported and approaches the direction of the nozzle 111, it is gradually exposed to a strong wind. Then, when the peeling force generated by the compressed air W exceeds the adhesive force of the fine particles P on the surface, the fine particles P are peeled off. Therefore, the fine particles P fly toward the front side of the direction toward which the center of the nozzle 111 faces, with reference to the transport direction of the bag B. Here, the front side means the entrance side of the fine particle analysis unit 100, and is shown on the right side of the paper in FIG. Explaining this with reference to FIG. 3, since the compressed air W injected in the installation direction of the nozzle 111 (the axial direction of the nozzle 111) is the strongest, most of the fine particles P are in the installation direction of the nozzle 111 (nozzle 111). This is because it peels off before reaching (directly in front of 111).
 ここで、微粒子Pを回収する回収部130の吸気口131は、ノズル111に対向する位置に配置するより、図3に示すように、カバンBの搬送方向に対して手前側に設ける方が、より効率良く微粒子Pを回収できる。つまり、吸気口131は、ノズル111に対して対向する位置より、手前側(入口側)に設置されることが望ましい。 Here, as shown in FIG. 3, it is better to provide the intake port 131 of the collection unit 130 for collecting the fine particles P on the front side with respect to the transport direction of the bag B, rather than arranging the intake port 131 at a position facing the nozzle 111. Fine particles P can be recovered more efficiently. That is, it is desirable that the intake port 131 is installed on the front side (inlet side) of the position facing the nozzle 111.
 ただし、吸気口131aの中心がノズル111に対し対向する位置(ノズル111の真正面)に設置されてもよい。しかし、吸気口131b,131cの中心がノズル111に対し対向する位置に設置されたり、吸気口131a~131cが奥側に設置されたりしない方が、回収効率を高めることができる。 However, the center of the intake port 131a may be installed at a position facing the nozzle 111 (directly in front of the nozzle 111). However, the recovery efficiency can be improved if the centers of the intake ports 131b and 131c are not installed at positions facing the nozzle 111 or the intake ports 131a to 131c are not installed on the inner side.
 また、前記したように、濃縮部140にサイクロン式集塵機141が採用されている場合、吸気の流量を高くすることが困難である。つまり、ノズル111から圧縮空気Wが噴射されている間は、吸気流量よりも噴射流量の方が多い。そのため、圧縮空気Wにより剥離した微粒子Pを効率よく回収することが困難である。圧縮空気Wの中心よりも外側の方が圧縮空気Wの流量が少ない。そのため、前記したように、ノズル111が向く方向から手前側(紙面右側(カバンBの搬送方向や移動方向の後ろ側))にずれた場所に吸気口131が設けられると、微粒子Pは手前側(紙面右側)に飛ぶ。従って、ノズル111が向く方向から手前側(紙面右側)にずれた場所に吸気口131が設けられることにより、吸気口131の方向に飛んだ微粒子Pを効率良く回収することが可能になる。 Further, as described above, when the cyclone type dust collector 141 is adopted in the concentrating unit 140, it is difficult to increase the flow rate of the intake air. That is, while the compressed air W is being injected from the nozzle 111, the injection flow rate is larger than the intake flow rate. Therefore, it is difficult to efficiently recover the fine particles P separated by the compressed air W. The flow rate of the compressed air W is smaller on the outside than in the center of the compressed air W. Therefore, as described above, when the intake port 131 is provided at a position deviated from the direction in which the nozzle 111 faces to the front side (right side of the paper surface (rear side in the transport direction or movement direction of the bag B)), the fine particles P are on the front side. Fly to (on the right side of the page). Therefore, by providing the intake port 131 at a position shifted to the front side (right side of the paper surface) from the direction in which the nozzle 111 faces, it becomes possible to efficiently collect the fine particles P flying in the direction of the intake port 131.
 さらに、回収部130の吸引流量を増やすため、図3に示すように、複数の吸気口131a~131cを設け、各々の吸気口131a,131b,131cにそれぞれサイクロン式集塵機41が接続されてもよい。図3に示す例では、3つの吸気口131a~131cが示されているが、3つに限らない。吸気口131及び濃縮部140が複数設けられる構成については後述する。
 前記したように、カバンBが剥離部110と回収部130との間(あるいはノズル111の前)を通過した後は、ノズル111から噴射される圧縮空気Wが停止される。
Further, in order to increase the suction flow rate of the collection unit 130, as shown in FIG. 3, a plurality of intake ports 131a to 131c may be provided, and a cyclone type dust collector 41 may be connected to each of the intake ports 131a, 131b, 131c. .. In the example shown in FIG. 3, three intake ports 131a to 131c are shown, but the number is not limited to three. A configuration in which a plurality of intake ports 131 and a plurality of concentration units 140 are provided will be described later.
As described above, after the bag B has passed between the peeling portion 110 and the collecting portion 130 (or in front of the nozzle 111), the compressed air W injected from the nozzle 111 is stopped.
 (微粒子分析部100の詳細)
 図4は、微粒子分析部100の詳細な構成を示す図である。
 図4において、第1実施形態に係る危険物探知装置1の微粒子分析部100をカバンBの挿入方向から見た構成を示している。
 また、図4において図2及び図3と同様の構成については、同一の符号を付して説明を省略する。
 剥離部110はノズル111を有している。回収部130は吸気口131を有している。濃縮部140はサイクロン式集塵機141、排気ファン142を有している。分析部150は、フィルタ151、加熱器152、配管163が貫装されているヒータ153、質量分析計154を有している。
(Details of Particle Analysis Unit 100)
FIG. 4 is a diagram showing a detailed configuration of the fine particle analysis unit 100.
FIG. 4 shows a configuration in which the particle analysis unit 100 of the dangerous goods detection device 1 according to the first embodiment is viewed from the insertion direction of the bag B.
Further, in FIG. 4, the same components as those in FIGS. 2 and 3 are designated by the same reference numerals and the description thereof will be omitted.
The peeling portion 110 has a nozzle 111. The collection unit 130 has an intake port 131. The concentrator 140 has a cyclone type dust collector 141 and an exhaust fan 142. The analysis unit 150 has a filter 151, a heater 152, a heater 153 in which the pipe 163 is penetrated, and a mass spectrometer 154.
 なお、図4において、図が煩雑になるのを避けるため、吸気口131は1つのみを示している。予めノズル111から圧縮空気Wが噴射されている状態で、搬送部202によりカバンBがノズル111の前を通過する。圧縮空気Wにより、カバンBの上面に付着している微粒子Pが剥離し、剥離された微粒子Pは回収部130の方向に飛ばされる。剥離部110と回収部130との間は気流が乱れないようドーム状の覆設部171が設けられることが望ましい。ノズル111はノズル支持部172によりドーム状の覆設部171に固定されている。覆設部171とノズル支持部172は、危険物探知装置1の筐体とは別に設けられるのが好ましい。 Note that, in FIG. 4, only one intake port 131 is shown in order to avoid complicating the figure. With the compressed air W being sprayed from the nozzle 111 in advance, the bag B passes in front of the nozzle 111 by the transport unit 202. The compressed air W peels off the fine particles P adhering to the upper surface of the bag B, and the peeled fine particles P are blown toward the recovery unit 130. It is desirable that a dome-shaped covering portion 171 is provided between the peeling portion 110 and the collecting portion 130 so that the air flow is not disturbed. The nozzle 111 is fixed to the dome-shaped covering portion 171 by the nozzle support portion 172. It is preferable that the lining portion 171 and the nozzle support portion 172 are provided separately from the housing of the dangerous goods detection device 1.
 吹き飛ばされた微粒子Pは、回収部130に設けられた吸気口131に吸引され、配管162を介して濃縮部140に導入される。濃縮部140ではサイクロン式集塵機141により微粒子Pと気体が分離される。すなわち、サイクロン式集塵機141では、サイクロンによって微粒子Pを集塵することで、分析部150に向かう空気中における微粒子Pの割合を多くする。このようにして、空気中における微粒子Pの濃度が高くなる(濃縮される)。 The blown fine particles P are sucked into the intake port 131 provided in the collection unit 130 and introduced into the concentration unit 140 via the pipe 162. In the concentrating unit 140, the fine particles P and the gas are separated by the cyclone type dust collector 141. That is, in the cyclone type dust collector 141, the fine particles P are collected by the cyclone to increase the ratio of the fine particles P in the air toward the analysis unit 150. In this way, the concentration of the fine particles P in the air is increased (concentrated).
 このような濃縮部140が設けられることにより、分析部150における微粒子Pの成分の検出効率を向上させることができる。そして、微粒子Pは分析部150に設けられたフィルタ151に集められる。なお、サイクロン式集塵機141に導入された気体は排気ファン142により排気される。フィルタ151は加熱器152により180℃~200℃程度に加熱されている。このような構成により、微粒子Pは加熱器152の熱により気化し、蒸気となる。気化された微粒子Pの蒸気はヒータ153により180℃程度に加熱されている配管163を介して質量分析計154に導入される。質量分析計154では、気化した微粒子Pの蒸気が分析される。分析の結果、爆薬が検出された場合、制御装置3はアラームを発報する等の処理を行う。 By providing such a concentration unit 140, it is possible to improve the detection efficiency of the component of the fine particles P in the analysis unit 150. Then, the fine particles P are collected by the filter 151 provided in the analysis unit 150. The gas introduced into the cyclone type dust collector 141 is exhausted by the exhaust fan 142. The filter 151 is heated to about 180 ° C. to 200 ° C. by the heater 152. With such a configuration, the fine particles P are vaporized by the heat of the heater 152 and become steam. The vapor of the vaporized fine particles P is introduced into the mass spectrometer 154 via the pipe 163 heated to about 180 ° C. by the heater 153. The mass spectrometer 154 analyzes the vapor of the vaporized fine particles P. When the explosive is detected as a result of the analysis, the control device 3 performs a process such as issuing an alarm.
 (複数の吸気口131が設けられている例)
 図5は、微粒子Pをより効率良く回収するため、吸引流量を増やす目的で複数の吸気口131が設けられている例を示す図である。
 吸気口131a,131b,131cはカバンBの搬送方向(図3の矢印)に沿って配置されている。各々の吸気口131a,131b,131cは配管162a~162aのそれぞれを介して、それぞれ独立したサイクロン式集塵機141a~141cに接続されている。つまり、3つの吸気口131のそれぞれにサイクロン式集塵機141a~141cが接続されている。サイクロン式集塵機141a~141cのそれぞれには加熱器152a~152cが備えられている。それぞれの吸気口131a,131b,131cから取り込まれた微粒子Pはサイクロン式集塵機141a~141cにおいて気流と分離される。その後、微粒子Pは、それぞれのサイクロン式集塵機141a~141cに備えられている加熱器152a~152c内に設けられたフィルタ151(図4参照)に捕集される。また、微粒子Pと分離された気流は、各々のサイクロン式集塵機141a~141cに取り付けられた排気ファン142(図4参照)からサイクロン式集塵機141a~141cの外に排出される。加熱気化により生成した微粒子Pの蒸気は、配管163で集約され、質量分析計154に導入される。
(Example in which a plurality of intake ports 131 are provided)
FIG. 5 is a diagram showing an example in which a plurality of intake ports 131 are provided for the purpose of increasing the suction flow rate in order to collect the fine particles P more efficiently.
The intake ports 131a, 131b, and 131c are arranged along the transport direction of the bag B (arrows in FIG. 3). The intake ports 131a, 131b, 131c are connected to independent cyclone type dust collectors 141a to 141c via the pipes 162a to 162a, respectively. That is, cyclone type dust collectors 141a to 141c are connected to each of the three intake ports 131. Each of the cyclone type dust collectors 141a to 141c is provided with heaters 152a to 152c. The fine particles P taken in from the respective intake ports 131a, 131b, 131c are separated from the air flow in the cyclone type dust collectors 141a to 141c. After that, the fine particles P are collected by a filter 151 (see FIG. 4) provided in the heaters 152a to 152c provided in the cyclone type dust collectors 141a to 141c. Further, the airflow separated from the fine particles P is discharged to the outside of the cyclone type dust collectors 141a to 141c from the exhaust fans 142 (see FIG. 4) attached to the cyclone type dust collectors 141a to 141c. The steam of the fine particles P generated by the heat vaporization is collected in the pipe 163 and introduced into the mass spectrometer 154.
 図5では一例として3つの吸気口131を並列に設ける構成について記載したが、吸気口131の数はこれに限らずさらに増やしてもよいし、2つとしてもよい。1つのサイクロン式集塵機141に吸引できる流量には限りがある。吸気口131を複数設け、複数のサイクロン式集塵機141a~141cで気流と微粒子Pとを分離する構成にすることにより、サイクロン式集塵機141a~141cの数だけ回収部130における吸引流量を増やすことができる。なお、吸気口131と、サイクロン式集塵機141の数は同じでなくてもよい。 FIG. 5 describes a configuration in which three intake ports 131 are provided in parallel as an example, but the number of intake ports 131 is not limited to this and may be further increased or may be two. The flow rate that can be sucked into one cyclone type dust collector 141 is limited. By providing a plurality of intake ports 131 and using a plurality of cyclone type dust collectors 141a to 141c to separate the airflow and the fine particles P, the suction flow rate in the collection unit 130 can be increased by the number of the cyclone type dust collectors 141a to 141c. .. The number of the intake port 131 and the number of the cyclone type dust collector 141 do not have to be the same.
 (吸気口131をずらすことによる効果)
 図6は、吸気口131をずらすことによる効果を表す図である。
 ここでは、カバンBの上面に爆薬分子が吸着した微粒子Pを付着させた上で試験が行われた。試験では、予めノズル111から圧縮空気Wが噴射されており、ノズル111と吸気口131との間をカバンBが通過すると、爆薬に由来する信号が明確に得られた。破線401はノズル111の中心と吸気口131との中心とが対向するように設置された場合の信号を示している。これに対して、実線402はノズル111の中心と吸気口131との中心がずれるように吸気口131が設置され、かつ、吸気口131はカバンBの微粒子分析部100の入り口側に配置されている場合の信号を示している。破線401に示すように、ノズル111の中心と吸気口131とを対向して配置した場合でも信号が検出されている。しかし、実線402に示すように、ノズル111の中心と吸気口131との中心がずれるように吸気口131が設置され、かつ、吸気口131は微粒子分析部100の入り口側に配置されることにより(つまり図3のように配置されることにより)、より強い信号を検知することができた。
(Effect of shifting the intake port 131)
FIG. 6 is a diagram showing the effect of shifting the intake port 131.
Here, the test was conducted after the fine particles P to which the explosive molecules were adsorbed were attached to the upper surface of the bag B. In the test, compressed air W was sprayed from the nozzle 111 in advance, and when the bag B passed between the nozzle 111 and the intake port 131, a signal derived from the explosive was clearly obtained. The broken line 401 shows a signal when the center of the nozzle 111 and the center of the intake port 131 are installed so as to face each other. On the other hand, in the solid line 402, the intake port 131 is installed so that the center of the nozzle 111 and the center of the intake port 131 deviate from each other, and the intake port 131 is arranged on the entrance side of the particle analysis unit 100 of the bag B. Shows the signal when there is. As shown by the broken line 401, the signal is detected even when the center of the nozzle 111 and the intake port 131 are arranged so as to face each other. However, as shown by the solid line 402, the intake port 131 is installed so that the center of the nozzle 111 and the center of the intake port 131 are deviated from each other, and the intake port 131 is arranged on the inlet side of the fine particle analysis unit 100. (That is, by arranging as shown in FIG. 3), a stronger signal could be detected.
 第1実施形態ではカバンBがノズル111の前を通過するより前に予め圧縮空気Wが連続噴射されている。これにより、カバンBの上面のどの位置に微粒子Pが付着していても、微粒子Pの検出が可能になる。従って、危険物探知装置1の利便性が向上するとともに、より高感度の危険物探知装置1が可能となる。また、カバンBが搬送部202によって移動している状態でも、搬送部202の移動を停止することなく微粒子Pの回収が可能となる。これにより、危険物探知装置1のスループットを低下させることなく、微粒子Pの回収効率を向上させることができる。
 このように、第1実施形態によれば、カバンB等の検査対象物の検査において、検査対象物の表面に付着する微粒子Pを、微粒子Pの付着している場所によらず効率よく回収し分析できるようになる。これにより危険物探知装置1の利便性が向上するとともに、高感度の検査が実現できる。
In the first embodiment, the compressed air W is continuously injected in advance before the bag B passes in front of the nozzle 111. This makes it possible to detect the fine particles P regardless of the position on the upper surface of the bag B where the fine particles P are attached. Therefore, the convenience of the dangerous goods detection device 1 is improved, and the dangerous goods detection device 1 with higher sensitivity becomes possible. Further, even when the bag B is moved by the transport unit 202, the fine particles P can be collected without stopping the movement of the transport unit 202. As a result, the recovery efficiency of the fine particles P can be improved without reducing the throughput of the dangerous substance detection device 1.
As described above, according to the first embodiment, in the inspection of the inspection object such as the bag B, the fine particles P adhering to the surface of the inspection object are efficiently recovered regardless of the place where the fine particles P are attached. You will be able to analyze. As a result, the convenience of the dangerous goods detection device 1 is improved, and high-sensitivity inspection can be realized.
 また、吸気口131がノズル111の中心軸(軸心方向)に対して、手前側に設置されていることにより、微粒子Pの回収効率を向上させることができる。
 さらに、吸気口131が複数設けられ、吸気口131a~131bのそれぞれにサイクロン式集塵機141a~141cが設けられる。これにより、吸引流量と、回収面積を増加させることができ、微粒子Pの回収を確実に行うことができる。
Further, since the intake port 131 is installed on the front side with respect to the central axis (axis direction) of the nozzle 111, the recovery efficiency of the fine particles P can be improved.
Further, a plurality of intake ports 131 are provided, and cyclone type dust collectors 141a to 141c are provided in each of the intake ports 131a to 131b. As a result, the suction flow rate and the recovery area can be increased, and the fine particles P can be reliably recovered.
 [第2実施形態]
 次に、図7を参照して、本発明の第2実施形態を説明する。
 これまでの技術に対し、カバンBの側面から微粒子Pを効率よく回収することが望まれている。これに対し、第2実施形態及び第3実施形態では、カバンBの側面から微粒子Pを回収することを目的とする。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. 7.
With respect to the conventional techniques, it is desired to efficiently recover the fine particles P from the side surface of the bag B. On the other hand, in the second embodiment and the third embodiment, it is an object to collect the fine particles P from the side surface of the bag B.
 図7は、第2実施形態における剥離部110と、回収部130の構成を示す図である。図7において、これまでの図面に対して同一の構成については同一の符号を付して説明を省略する。
 第1実施形態では、カバンBの上面に付着した微粒子Pを高効率で回収する方法について述べたが、第2実施形態ではカバンBの側面から微粒子Pを回収する場合について記載する。
 図7に示すように、第2実施形態では、ノズル111と吸気口131とがカバンBに対して、カバンBの片側に並んで配置されている。そして、吸気口131に対して、カバンBの移動元側に気流制御部181が設置されている。第1実施形態と同様、剥離部110及び回収部130よりも手前側に配置されているセンサ101a,101bがカバンBの通過(到達)を検知すると、ノズル111から圧縮空気Wが連続噴射される。あるいは、予め圧縮空気Wが噴射されていてもよい。そして、搬送部202によりカバンBが白抜矢印の方向に搬送され、ノズル111の前までカバンBが到着すると、カバンBの側面に沿った気流W1が生じる。カバンBに沿った気流W1が向かう方向には、気流W1に対して抵抗になるような気流制御部181が設けられている。圧縮空気Wは第1実施形態と同様、カバンBが剥離部110と回収部130との間を通過している間(回収部130の前を通過している間)、連続的又は断続的に噴射される。後記する第3実施形態も同様である。
FIG. 7 is a diagram showing the configuration of the peeling unit 110 and the collecting unit 130 in the second embodiment. In FIG. 7, the same components as those of the drawings so far are designated by the same reference numerals, and the description thereof will be omitted.
In the first embodiment, the method of recovering the fine particles P adhering to the upper surface of the bag B with high efficiency has been described, but in the second embodiment, the case of recovering the fine particles P from the side surface of the bag B will be described.
As shown in FIG. 7, in the second embodiment, the nozzle 111 and the intake port 131 are arranged side by side with respect to the bag B on one side of the bag B. An airflow control unit 181 is installed on the movement source side of the bag B with respect to the intake port 131. Similar to the first embodiment, when the sensors 101a and 101b arranged on the front side of the peeling portion 110 and the collecting portion 130 detect the passage (arrival) of the bag B, the compressed air W is continuously injected from the nozzle 111. .. Alternatively, the compressed air W may be injected in advance. Then, the bag B is conveyed by the conveying unit 202 in the direction of the white arrow, and when the bag B arrives in front of the nozzle 111, an air flow W1 along the side surface of the bag B is generated. An airflow control unit 181 that acts as a resistance to the airflow W1 is provided in the direction in which the airflow W1 is directed along the bag B. Similar to the first embodiment, the compressed air W is continuously or intermittently while the bag B is passing between the peeling portion 110 and the collecting portion 130 (while passing in front of the collecting portion 130). It is sprayed. The same applies to the third embodiment described later.
 気流制御部181とカバンBとの隙間が狭くなることにより、気流制御部181とカバンBとの間の狭い隙間に気流W1が集中する。このため気流制御部181とカバンBとの間の隙間に圧力の高い高圧部H(気流W1の流速が遅い部分)が生じる。この高圧部Hの影響により、カバンBの側面に沿って流れていた気流W1の一部が吸気口131の方向にも向かうようになる(実線矢印)。従って、圧縮空気WによりカバンBの側面から剥離した微粒子Pの一部は、吸気口131から吸引され、配管162を介してサイクロン式集塵機141にて濃縮され分析される。 By narrowing the gap between the airflow control unit 181 and the bag B, the airflow W1 is concentrated in the narrow gap between the airflow control unit 181 and the bag B. Therefore, a high pressure portion H (a portion where the flow velocity of the airflow W1 is slow) having a high pressure is generated in the gap between the airflow control unit 181 and the bag B. Due to the influence of the high pressure portion H, a part of the airflow W1 flowing along the side surface of the bag B also heads toward the intake port 131 (solid arrow). Therefore, a part of the fine particles P separated from the side surface of the bag B by the compressed air W is sucked from the intake port 131, concentrated by the cyclone type dust collector 141 via the pipe 162, and analyzed.
 第2実施形態によれば、カバンBの側面に付着した微粒子Pを回収することができる。また、カバンBを搬送させながら、圧縮空気Wを噴射し、圧縮空気Wによって剥離された微粒子Pを回収することにより、微粒子Pがカバン側面のどの位置に付着していても、微粒子Pを回収することができる。また、カバンBが搬送部202によって移動している状態でも、搬送部202の移動を停止することなく微粒子Pの回収が可能となる。これにより、危険物探知装置1のスループットを低下させることなく、微粒子Pの回収効率を向上させることができる。 According to the second embodiment, the fine particles P adhering to the side surface of the bag B can be recovered. Further, by injecting the compressed air W while transporting the bag B and collecting the fine particles P peeled off by the compressed air W, the fine particles P can be recovered regardless of the position on the side surface of the bag. can do. Further, even when the bag B is moved by the transport unit 202, the fine particles P can be collected without stopping the movement of the transport unit 202. As a result, the recovery efficiency of the fine particles P can be improved without reducing the throughput of the dangerous substance detection device 1.
 なお、図7に示すような配置のノズル111、吸気口131、気流制御部181がカバンBに対して両側に設けられてもよい。このようにすることで、カバンBの両側側面から微粒子Pを回収することができる。
 また、ノズル111と、気流制御部181の配置関係を図7とは逆としてもよい。すなわち、ノズル111がカバンBの移動元側に設置され、気流制御部181がカバンBの移動先側に設置されてもよい。なお、ノズル111からの気流の方向とカバンBの搬送方向が同方向となるよりも逆方向となる方が、気流W1とカバンBの相対速度差を大きくできるので、微粒子Pの剥離の観点からは好ましい。
The nozzle 111, the intake port 131, and the airflow control unit 181 arranged as shown in FIG. 7 may be provided on both sides of the bag B. By doing so, the fine particles P can be recovered from both side surfaces of the bag B.
Further, the arrangement relationship between the nozzle 111 and the airflow control unit 181 may be reversed from that in FIG. 7. That is, the nozzle 111 may be installed on the moving source side of the bag B, and the airflow control unit 181 may be installed on the moving destination side of the bag B. It should be noted that the relative velocity difference between the airflow W1 and the bag B can be increased when the direction of the airflow from the nozzle 111 and the transport direction of the bag B are opposite to each other rather than the same direction. Is preferable.
 [第3実施形態]
 図8は、第3実施形態における剥離部110と、回収部130の構成を示す図である。図8において、図7と同様の構成に対して同一の符号を付して説明を省略する。
 第3実施形態も、第2実施形態と同様、カバンBの側面から微粒子Pを回収する場合について記載する。
 第3実施形態では、ノズル111が吸気口131の内部に配置されている。また、気流制御部181aが、吸気口131に対してカバンBの移動元側及び移動先側に設けられている。そして、前記したように、剥離部110と回収部130との手前に設置されているセンサ101a,101bによってカバンBの通過が検知されると、ノズル111から圧縮空気Wが噴射される。予め圧縮空気Wが噴射されていてもよい。そして、搬送部202によりカバンBが白抜矢印の方向に搬送され、ノズル111の前まで到着すると、カバンBの側面に沿った気流(圧縮空気Wの流れ)が生じる。カバンBに沿った気流が向かう方向には、気流に対して抵抗となるような気流制御部181a,181bが設けられている。気流制御部181a,181bとカバンBとの隙間が狭くなると、気流制御部181a,181bとカバンBとの隙間に気流が集中する。そのため、第2実施形態と同様、圧力の高い高圧部Ha,Hb(気流の流速が遅い部分)が生じる。この高圧部Ha,Hbの影響により、カバンBの側面に沿って流れていた気流の一部が吸気口131の方向にも向かうようになる(実線矢印)。従って、圧縮空気WによりカバンBの側面から剥離した微粒子Pの一部は、吸気口131から吸引される。吸引された微粒子Pは、配管162を介してサイクロン式集塵機141で濃縮され、分析部150によって分析される。このような第3実施形態の構成は、第2実施形態に比べて剥離部110及び回収部130をコンパクトにできるので、危険物探知装置1を小型化する場合に有利である。
[Third Embodiment]
FIG. 8 is a diagram showing the configuration of the peeling unit 110 and the collecting unit 130 in the third embodiment. In FIG. 8, the same reference numerals are given to the same configurations as in FIG. 7, and the description thereof will be omitted.
Similar to the second embodiment, the third embodiment also describes the case where the fine particles P are collected from the side surface of the bag B.
In the third embodiment, the nozzle 111 is arranged inside the intake port 131. Further, the airflow control unit 181a is provided on the movement source side and the movement destination side of the bag B with respect to the intake port 131. Then, as described above, when the passage of the bag B is detected by the sensors 101a and 101b installed in front of the peeling portion 110 and the collecting portion 130, the compressed air W is injected from the nozzle 111. Compressed air W may be injected in advance. Then, when the bag B is transported in the direction of the white arrow by the transport unit 202 and arrives in front of the nozzle 111, an air flow (flow of compressed air W) along the side surface of the bag B is generated. Airflow control units 181a and 181b are provided in the direction in which the airflow is directed along the bag B so as to resist the airflow. When the gap between the airflow control units 181a and 181b and the bag B becomes narrow, the airflow concentrates in the gap between the airflow control units 181a and 181b and the bag B. Therefore, as in the second embodiment, high-pressure portions Ha and Hb (portions where the flow velocity of the air flow is slow) are generated. Due to the influence of the high-pressure portions Ha and Hb, a part of the airflow flowing along the side surface of the bag B also goes toward the intake port 131 (solid arrow). Therefore, a part of the fine particles P separated from the side surface of the bag B by the compressed air W is sucked from the intake port 131. The sucked fine particles P are concentrated by the cyclone type dust collector 141 via the pipe 162 and analyzed by the analysis unit 150. Since the peeling section 110 and the recovery section 130 can be made more compact than the second embodiment, such a configuration of the third embodiment is advantageous when the dangerous substance detection device 1 is downsized.
 なお、図8に示すような配置のノズル111、吸気口131、気流制御部181a,181bが、カバンBに対して両側に設けられてもよい。このようにすることで、カバンBの両側側面から微粒子Pを回収することができる。 Note that nozzles 111, intake ports 131, and airflow control units 181a and 181b arranged as shown in FIG. 8 may be provided on both sides of the bag B. By doing so, the fine particles P can be recovered from both side surfaces of the bag B.
 [制御装置3]
 図9は、制御装置3のハードウェア構成を示す図である。適宜、図2及び図4を参照する。
 制御装置3は、メモリ310、CPU(Central Processing Unit)321、通信装置322、HD(Hard Disk)や、SSD(Solid State Drive)等の記憶装置330を有する。
 記憶装置330に格納されているプログラムがメモリ310にロードされ、ロードされたプログラムがCPU321によって実行される。
 これにより、検出処理部311、吸気制御部312、ノズル制御部313、バルク検査制御部314が具現化する。
 検出処理部311は、センサ101a,101bから送られる信号に基づいて、カバンBが微粒子分析部100に接近しているか否かを判定する。また、検出処理部311は、センサ101c,101dから送られる信号に基づいて、カバンBが微粒子分析部100を通過したか否かを判定する。
[Control device 3]
FIG. 9 is a diagram showing a hardware configuration of the control device 3. Refer to FIGS. 2 and 4 as appropriate.
The control device 3 includes a memory 310, a CPU (Central Processing Unit) 321 and a communication device 322, a storage device 330 such as an HD (Hard Disk) and an SSD (Solid State Drive).
The program stored in the storage device 330 is loaded into the memory 310, and the loaded program is executed by the CPU 321.
As a result, the detection processing unit 311, the intake air control unit 312, the nozzle control unit 313, and the bulk inspection control unit 314 are embodied.
The detection processing unit 311 determines whether or not the bag B is close to the fine particle analysis unit 100 based on the signals sent from the sensors 101a and 101b. Further, the detection processing unit 311 determines whether or not the bag B has passed through the fine particle analysis unit 100 based on the signals sent from the sensors 101c and 101d.
 吸気制御部312は、検出処理部311によるカバンBの接近、及び、通過の判定に基づいて、サイクロン式集塵機141に備えられている排気ファン142の駆動を制御する。
 ノズル制御部313は、検出処理部311によるカバンBの接近、及び、通過の判定に基づいて、図示しないバルブを制御し、ノズル111による圧縮空気Wの噴出を制御する。
 バルク検査制御部314は、バルク検査部201によるバルク検査を制御する。
The intake control unit 312 controls the drive of the exhaust fan 142 provided in the cyclone type dust collector 141 based on the determination of the approach and passage of the bag B by the detection processing unit 311.
The nozzle control unit 313 controls a valve (not shown) based on the determination of the approach and passage of the bag B by the detection processing unit 311 and controls the ejection of the compressed air W by the nozzle 111.
The bulk inspection control unit 314 controls the bulk inspection by the bulk inspection unit 201.
 通信装置322は、センサ101a~101dから信号を受信する。また、通信装置322は、圧縮空気供給部120のバルブ(不図示)や、濃縮部140の排気ファン142に対し制御指令を送る。さらに、通信装置322は分析部150の質量分析計154から送られる信号を受信する。 The communication device 322 receives signals from the sensors 101a to 101d. Further, the communication device 322 sends a control command to the valve (not shown) of the compressed air supply unit 120 and the exhaust fan 142 of the concentration unit 140. Further, the communication device 322 receives a signal sent from the mass spectrometer 154 of the analysis unit 150.
 [フローチャート]
 図10は、制御装置3によって行われる処理の手順を示すフローチャートである。適宜、図2及び図9を参照する。本フローチャートで行われる処理は、第1実施形態、第2実施形態、第3実施形態に共通の処理である。
 まず、搬送部202によってカバンBが搬送される(S101)。なお、搬送部202は常時動作していてもよいし、カバンBの載置が検出されると動作するようにしてもよい。
 続いて、検出処理部311がセンサ101a,101bによってカバンBを検出したか否かを判定する(S102)。
 カバンBを検出していない場合(S102→No)、制御装置3はステップS101へ処理を戻す。
 カバンBを検出すると(S102→Yes)、吸気制御部312は回収部130の吸気を開始する(S103)とともに、ノズル制御部313はノズル111による圧縮空気Wの噴射を開始する(S104)。ここで、ステップS103と、ステップS104とはどちらが先に行われてもよいし、同時に行われてもよい。また、吸気制御部312は、サイクロン式集塵機141の排気ファン142をオンにすることで回収部130の吸気を開始する。そして、ノズル制御部313は、バルブを制御することで圧縮空気Wの噴射を制御する。
[flowchart]
FIG. 10 is a flowchart showing a procedure of processing performed by the control device 3. Refer to FIGS. 2 and 9 as appropriate. The process performed in this flowchart is a process common to the first embodiment, the second embodiment, and the third embodiment.
First, the bag B is transported by the transport unit 202 (S101). The transport unit 202 may be constantly operating, or may be operated when the placement of the bag B is detected.
Subsequently, it is determined whether or not the detection processing unit 311 has detected the bag B by the sensors 101a and 101b (S102).
If the bag B is not detected (S102 → No), the control device 3 returns the process to step S101.
When the bag B is detected (S102 → Yes), the intake control unit 312 starts the intake of the recovery unit 130 (S103), and the nozzle control unit 313 starts the injection of the compressed air W by the nozzle 111 (S104). Here, either step S103 or step S104 may be performed first, or may be performed at the same time. Further, the intake control unit 312 starts the intake of the collection unit 130 by turning on the exhaust fan 142 of the cyclone type dust collector 141. Then, the nozzle control unit 313 controls the injection of the compressed air W by controlling the valve.
 続いて、検出処理部311はセンサ101c,101dによってカバンBが剥離部110と回収部130との間を通過したか否かを判定する(S111)。前記したように、センサ101c,101dと、剥離部110及び回収部130との距離が短い場合、センサ101c,101dを通過しきった場合に、検出処理部311は、ステップS111で「Yes」と判定する。この場合、センサ101c,センサ101cによるカバンBの検知信号が一回受信され、その後、カバンBの検知信号の受信がなくなると、検出処理部311はカバンBがセンサ101c,101dを通過しきったと判定する。しかし、前記したように、センサ101c,101dと、剥離部110及び回収部130との距離が長い場合、カバンBの先端がセンサ101c,101dに到達した場合に、検出処理部311は、ステップS111で「Yes」と判定する。この場合、センサ101c,センサ101cによるカバンBの検知信号を受信すると、カバンBがセンサ101c,101dに到達したと判定する。
 カバンBが通過していない場合(S111→No)、制御装置3はステップS103へ処理を戻す。
 カバンBが通過している場合(S111→Yes)、吸気制御部312は回収部130の吸気を停止する(S112)とともに、ノズル制御部313はノズル111による圧縮空気Wの噴射を停止する(S113)。ここで、ステップS112と、ステップS113とはどちらが先に行われてもよいし、同時に行われてもよい。また、吸気制御部312は、サイクロン式集塵機141の排気ファン142をオフにすることで回収部130の吸気を停止する。そして、ノズル制御部313は、バルブを制御することで圧縮空気Wの噴射を停止する。
Subsequently, the detection processing unit 311 determines whether or not the bag B has passed between the peeling unit 110 and the collecting unit 130 by the sensors 101c and 101d (S111). As described above, when the distance between the sensors 101c and 101d and the peeling unit 110 and the collecting unit 130 is short, and when the sensors 101c and 101d are completely passed, the detection processing unit 311 determines “Yes” in step S111. do. In this case, when the detection signal of the bag B by the sensor 101c and the sensor 101c is received once and then the detection signal of the bag B is no longer received, the detection processing unit 311 determines that the bag B has passed through the sensors 101c and 101d. do. However, as described above, when the distance between the sensors 101c and 101d and the peeling unit 110 and the collecting unit 130 is long, and when the tip of the bag B reaches the sensors 101c and 101d, the detection processing unit 311 may perform step S111. Judges as "Yes". In this case, when the detection signal of the bag B by the sensor 101c and the sensor 101c is received, it is determined that the bag B has reached the sensors 101c and 101d.
If the bag B has not passed (S111 → No), the control device 3 returns the process to step S103.
When the bag B is passing (S111 → Yes), the intake control unit 312 stops the intake of the recovery unit 130 (S112), and the nozzle control unit 313 stops the injection of the compressed air W by the nozzle 111 (S113). ). Here, either step S112 or step S113 may be performed first, or may be performed at the same time. Further, the intake control unit 312 stops the intake of the collection unit 130 by turning off the exhaust fan 142 of the cyclone type dust collector 141. Then, the nozzle control unit 313 stops the injection of the compressed air W by controlling the valve.
 その後、必要に応じてバルク検査制御部314がバルク検査部201によるバルク検査を行い(S121)、検査員がカバンBを危険物探知装置1からカバンBを取り出す(S122)。 After that, the bulk inspection control unit 314 performs a bulk inspection by the bulk inspection unit 201 (S121), and the inspector takes out the bag B from the dangerous goods detection device 1 (S122).
 なお、図9に示す記憶装置330はクラウド上に設置されてもよい。
 また、第2実施形態、第3実施形態において、気流制御部181が吸気口131に対して、カバンBの移動元側、移動先側に設置されているが、これに限らない。例えば、吸気口131の上側、及び、下側に設けられてもよい。ここで、上とは重力方向とは逆の向きを示し、下とは重力方向の向きを示す。あるいは、第2実施形態、第3実施形態において、気流制御部181と、吸気口131と、カバンBの側面とで、略密閉となる空間が形成されるよう、気流制御部181が設置されてもよい。このようにすることで、微粒子Pの回収効率を、さらに向上させることができる。
The storage device 330 shown in FIG. 9 may be installed on the cloud.
Further, in the second embodiment and the third embodiment, the airflow control unit 181 is installed on the movement source side and the movement destination side of the bag B with respect to the intake port 131, but the present invention is not limited to this. For example, it may be provided on the upper side and the lower side of the intake port 131. Here, the top indicates the direction opposite to the direction of gravity, and the bottom indicates the direction in the direction of gravity. Alternatively, in the second embodiment and the third embodiment, the airflow control unit 181 is installed so as to form a substantially sealed space between the airflow control unit 181 and the intake port 131 and the side surface of the bag B. May be good. By doing so, the recovery efficiency of the fine particles P can be further improved.
 さらに、第2実施形態、第3実施形態において、吸気口131が複数配置され、複数の吸気口131のそれぞれにサイクロン式集塵機141や、加熱器152が接続されてもよい。
 そして、制御装置3は、危険物探知装置1と一体の装置であってもよい。
Further, in the second embodiment and the third embodiment, a plurality of intake ports 131 may be arranged, and a cyclone type dust collector 141 or a heater 152 may be connected to each of the plurality of intake ports 131.
The control device 3 may be an integral device with the dangerous goods detection device 1.
 本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 また、前記した各構成、機能、各部311~314、記憶装置330等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現してもよい。また、図9に示すように、前記した各構成、機能等は、CPU321等のプロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、HD(Hard Disk)に格納すること以外に、メモリ310や、SSD等の記録装置、又は、IC(Integrated Circuit)カードや、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することができる。
 また、各実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。
Further, each of the above-mentioned configurations, functions, parts 311 to 314, the storage device 330, and the like may be realized by hardware, for example, by designing a part or all of them by an integrated circuit or the like. Further, as shown in FIG. 9, each configuration, function, etc. described above may be realized by software by interpreting and executing a program in which a processor such as a CPU 321 realizes each function. In addition to storing information such as programs, tables, and files that realize each function in HD (Hard Disk), a memory 310, a recording device such as SSD, an IC (Integrated Circuit) card, or SD (Secure). It can be stored in a recording medium such as a Digital) card or DVD (Digital Versatile Disc).
Further, in each embodiment, the control lines and information lines are shown as necessary for explanation, and not all the control lines and information lines are shown in the product. In practice, you can think of almost all configurations as interconnected.
 1   危険物探知装置(分析装置)
 3   制御装置
 100 微粒子分析部
 101a,101b センサ(第1のセンサ)
 101c,101d センサ(第2のセンサ)
 110 剥離部
 111 ノズル
 120 圧縮空気供給部
 130 回収部
 131,131a,131b,131c 吸気口
 140 濃縮部
 141,141a,141b,141c サイクロン式集塵機(サイクロン式集塵部)
 142 排気ファン
 150 分析部
 154 質量分析計
 181,181a,181b 気流制御部
 202 搬送部
 B   カバン(検査対象物)
 H,Ha,Hb 高圧部
 P   微粒子
 W   圧縮空気
 W1  気流(圧縮空気の流れ)
 Z   危険物探知システム(分析システム)
1 Dangerous goods detection device (analyzer)
3 Control device 100 Particle analyzer 101a, 101b Sensor (first sensor)
101c, 101d sensor (second sensor)
110 Peeling part 111 Nozzle 120 Compressed air supply part 130 Recovery part 131, 131a, 131b, 131c Intake port 140 Concentrating part 141, 141a, 141b, 141c Cyclone type dust collector (Cyclone type dust collector)
142 Exhaust fan 150 Analytical unit 154 Mass spectrometer 181,181a, 181b Airflow control unit 202 Transport unit B Bag (inspection target)
H, Ha, Hb High pressure part P Fine particles W Compressed air W1 Airflow (flow of compressed air)
Z Dangerous goods detection system (analysis system)

Claims (11)

  1.  検査対象物を搬送する搬送部と、
     前記検査対象物に付着している物質を剥離するための圧縮空気を噴射するノズルと、
     前記ノズルから噴射された前記圧縮空気によって前記検査対象物から剥離された微粒子を回収する回収部と、
     前記回収部で回収された前記微粒子を分析する分析部と、
     を有し、
     前記検査対象物が前記ノズルに到着する前に前記ノズルから前記圧縮空気が連続的又は断続的に噴射され、
     少なくとも前記検査対象物が前記ノズルの前を通過するまで、前記ノズルによる前記圧縮空気の噴射の状態が継続される
     ことを特徴とする分析装置。
    A transport unit that transports the object to be inspected,
    A nozzle that injects compressed air to separate substances adhering to the inspection object, and
    A recovery unit that collects fine particles separated from the inspection object by the compressed air ejected from the nozzle, and a recovery unit.
    An analysis unit that analyzes the fine particles collected by the collection unit, and an analysis unit.
    Have,
    The compressed air is continuously or intermittently ejected from the nozzle before the inspection object arrives at the nozzle.
    An analyzer characterized in that the state of injection of the compressed air by the nozzle is continued at least until the object to be inspected passes in front of the nozzle.
  2.  前記回収部は、吸気によって、剥離された前記微粒子を回収する吸気口を有し、
     前記ノズルと、前記吸気口とは、前記搬送部を挟むように配置され、
     前記吸気口は、前記ノズルの中心軸に対して、前記検査対象物の移動元側へずれた位置に配置される
     ことを特徴とする請求項1に記載の分析装置。
    The collection unit has an intake port for collecting the fine particles peeled off by intake air.
    The nozzle and the intake port are arranged so as to sandwich the transport portion.
    The analyzer according to claim 1, wherein the intake port is arranged at a position displaced from the central axis of the nozzle toward the moving source side of the inspection object.
  3.  複数の前記吸気口が、前記検査対象物の搬送方向に沿うように、並べて配置され、
     複数の前記吸気口に対し、前記吸気口で回収された物質を濃縮し、濃縮した物質を前記分析部へ送る濃縮部が複数備えられている
     ことを特徴とする請求項2に記載の分析装置。
    A plurality of the intake ports are arranged side by side so as to be along the transport direction of the inspection object.
    The analyzer according to claim 2, wherein the plurality of intake ports are provided with a plurality of concentration units for concentrating the substance recovered at the intake port and sending the concentrated substance to the analysis unit. ..
  4.  前記ノズルと、前記回収部とは、前記搬送部に対して、同じ側に配置され、
     前記ノズルから前記検査対象物に向けて噴射された前記圧縮空気の流れを遮る気流制御部が設けられる
     ことを特徴とする請求項1に記載の分析装置。
    The nozzle and the collection unit are arranged on the same side with respect to the transport unit.
    The analyzer according to claim 1, further comprising an airflow control unit that blocks the flow of the compressed air ejected from the nozzle toward the inspection object.
  5.  前記回収部の内部に前記ノズルが設けられており、
     前記ノズルから前記検査対象物に向けて噴射された圧縮空気の流れを遮る気流制御部が設けられる
     ことを特徴とする請求項1に記載の分析装置。
    The nozzle is provided inside the collection unit, and the nozzle is provided.
    The analyzer according to claim 1, further comprising an airflow control unit that blocks the flow of compressed air ejected from the nozzle toward the inspection object.
  6.  前記回収部で回収した前記物質を濃縮し、濃縮した前記物質を前記分析部へ送る濃縮部
     を有することを特徴とする請求項1に記載の分析装置。
    The analyzer according to claim 1, further comprising a concentrating unit that concentrates the substance collected by the collecting unit and sends the concentrated substance to the analysis unit.
  7.  前記濃縮部は、サイクロンによって前記微粒子を集塵するサイクロン式集塵部である
     ことを特徴とする請求項6に記載の分析装置。
    The analyzer according to claim 6, wherein the concentrating unit is a cyclone-type dust collecting unit that collects the fine particles by a cyclone.
  8.  検査対象物を搬送する搬送部と、
     前記検査対象物に付着している物質を剥離するための圧縮空気を噴射するノズルと、
     前記ノズルから噴射された前記圧縮空気によって前記検査対象物から剥離された微粒子を回収する回収部と、
     前記回収部で回収された前記微粒子を分析する分析部と、
     を有し、
     前記検査対象物が前記ノズルに到着する前に前記ノズルから前記圧縮空気が連続的又は断続的に噴射され、
     少なくとも前記検査対象物が前記ノズルの前を通過するまで、前記ノズルによる前記圧縮空気の噴射の状態が継続される
     ことを特徴とする分析システム。
    A transport unit that transports the object to be inspected,
    A nozzle that injects compressed air to separate substances adhering to the inspection object, and
    A recovery unit that collects fine particles separated from the inspection object by the compressed air ejected from the nozzle, and a recovery unit.
    An analysis unit that analyzes the fine particles collected by the collection unit, and an analysis unit.
    Have,
    The compressed air is continuously or intermittently ejected from the nozzle before the inspection object arrives at the nozzle.
    An analytical system characterized in that the state of injection of the compressed air by the nozzle is continued at least until the object to be inspected passes in front of the nozzle.
  9.  前記ノズル及び前記回収部に対して、前記検査対象物の移動元側に備えられる第1のセンサと、
     前記ノズル及び前記回収部に対して、前記検査対象物の移動先側に備えられる第2のセンサと、
     前記第1のセンサ及び前記第2のセンサから送られる信号に基づいて、前記ノズルによる前記圧縮空気の噴射と、前記回収部の吸気を制御する制御部と、
     を有し、
     前記制御部は、
     前記第1のセンサによる前記信号に基づいて、前記ノズルによる前記圧縮空気の噴射を開始するとともに、前記回収部による吸気を開始し、
     前記第2のセンサによる前記信号に基づいて、前記ノズルによる前記圧縮空気の噴射を停止するとともに、前記回収部による吸気を停止する
     ことを特徴とする請求項8に記載の分析システム。
    A first sensor provided on the moving source side of the inspection object with respect to the nozzle and the recovery unit, and
    A second sensor provided on the destination side of the inspection target with respect to the nozzle and the recovery unit, and
    A control unit that controls the injection of the compressed air by the nozzle and the intake air of the recovery unit based on the signals sent from the first sensor and the second sensor.
    Have,
    The control unit
    Based on the signal from the first sensor, the injection of the compressed air by the nozzle is started, and the intake by the recovery unit is started.
    The analysis system according to claim 8, wherein the injection of the compressed air by the nozzle is stopped and the intake air by the recovery unit is stopped based on the signal by the second sensor.
  10.  検査対象物を搬送する搬送部と、
     前記検査対象物に付着している物質を剥離するための圧縮空気を噴射するノズルと、
     前記ノズルから噴射された前記圧縮空気によって前記検査対象物から剥離された微粒子を回収する回収部と、
     前記回収部で回収された前記微粒子を分析する分析部と、
     前記ノズルによる前記圧縮空気の噴射と、前記回収部の吸気を制御する制御部と、
     を有する分析システムの前記制御部が
     前記検査対象物が前記ノズルに到着する前に前記ノズルから前記圧縮空気が連続的又は断続的に噴射することを開始し、
     少なくとも前記検査対象物が前記ノズルの前を通過するまで、前記ノズルによる前記圧縮空気の噴射の状態を継続する
     ことを特徴とする分析方法。
    A transport unit that transports the object to be inspected,
    A nozzle that injects compressed air to separate substances adhering to the inspection object, and
    A recovery unit that collects fine particles separated from the inspection object by the compressed air ejected from the nozzle, and a recovery unit.
    An analysis unit that analyzes the fine particles collected by the collection unit, and an analysis unit.
    A control unit that controls the injection of the compressed air by the nozzle and the intake air of the recovery unit.
    The control unit of the analytical system having the
    An analytical method characterized in that the state of injection of the compressed air by the nozzle is continued at least until the object to be inspected passes in front of the nozzle.
  11.  前記ノズル及び前記回収部に対して、前記検査対象物の移動元側に備えられる第1のセンサと、
     前記ノズル及び前記回収部に対して、前記検査対象物の移動先側に備えられる第2のセンサと、
     を有し、
     前記制御部は、
     前記第1のセンサによる信号に基づいて、前記ノズルによる前記圧縮空気の噴射を開始するとともに、前記回収部による吸気を開始し、
     前記第2のセンサによる信号に基づいて、前記ノズルによる前記圧縮空気の噴射を停止するとともに、前記回収部による吸気を停止する
     ことを特徴とする請求項10に記載の分析方法。
    A first sensor provided on the moving source side of the inspection object with respect to the nozzle and the recovery unit, and
    A second sensor provided on the destination side of the inspection target with respect to the nozzle and the recovery unit, and
    Have,
    The control unit
    Based on the signal from the first sensor, the injection of the compressed air by the nozzle is started, and the intake by the recovery unit is started.
    The analysis method according to claim 10, wherein the injection of the compressed air by the nozzle is stopped and the intake air by the recovery unit is stopped based on the signal from the second sensor.
PCT/JP2020/044917 2020-12-02 2020-12-02 Analysis device, analysis system, and analysis method WO2022118412A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022566561A JPWO2022118412A1 (en) 2020-12-02 2020-12-02
PCT/JP2020/044917 WO2022118412A1 (en) 2020-12-02 2020-12-02 Analysis device, analysis system, and analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/044917 WO2022118412A1 (en) 2020-12-02 2020-12-02 Analysis device, analysis system, and analysis method

Publications (1)

Publication Number Publication Date
WO2022118412A1 true WO2022118412A1 (en) 2022-06-09

Family

ID=81853081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044917 WO2022118412A1 (en) 2020-12-02 2020-12-02 Analysis device, analysis system, and analysis method

Country Status (2)

Country Link
JP (1) JPWO2022118412A1 (en)
WO (1) WO2022118412A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024293A1 (en) * 2009-08-28 2011-03-03 株式会社日立製作所 Detection device, and pass control system
US20120278002A1 (en) * 2007-05-09 2012-11-01 Charles Call Mail Parcel Screening Using Multiple Detection Technologies
WO2014045649A1 (en) * 2012-09-19 2014-03-27 株式会社日立製作所 Attached matter inspection device
WO2017209065A1 (en) * 2016-05-30 2017-12-07 株式会社日立製作所 Accretion collecting device and inspection system
JP2020183913A (en) * 2019-05-09 2020-11-12 株式会社日立製作所 Hazardous material detection device, hazardous material detection system and hazardous material detection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120278002A1 (en) * 2007-05-09 2012-11-01 Charles Call Mail Parcel Screening Using Multiple Detection Technologies
WO2011024293A1 (en) * 2009-08-28 2011-03-03 株式会社日立製作所 Detection device, and pass control system
WO2014045649A1 (en) * 2012-09-19 2014-03-27 株式会社日立製作所 Attached matter inspection device
WO2017209065A1 (en) * 2016-05-30 2017-12-07 株式会社日立製作所 Accretion collecting device and inspection system
JP2020183913A (en) * 2019-05-09 2020-11-12 株式会社日立製作所 Hazardous material detection device, hazardous material detection system and hazardous material detection method

Also Published As

Publication number Publication date
JPWO2022118412A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
EP3150994B1 (en) Measurement device and measurement method
US20070158447A1 (en) Trace chemical sensing
JP4568327B2 (en) Attachment inspection apparatus and attachment inspection method
EP2450689B1 (en) Sample collecting method and sample collecting apparatus
US5162652A (en) Method and apparatus for rapid detection of contraband and toxic materials by trace vapor detection using ion mobility spectrometry
JP4085941B2 (en) Analysis equipment
US8561486B2 (en) Particle interrogation devices and methods
US20110203931A1 (en) Particle Interrogation Devices and Methods
US6940067B2 (en) Hazardous material detection system
CN101611304A (en) The gas pre-concentrator that is used for checkout equipment
EP3779395B1 (en) Fine particle analysis device, fine particle analysis system, and cleaning method
WO2022118412A1 (en) Analysis device, analysis system, and analysis method
US6604406B1 (en) Human portable preconcentrator system
US6830728B2 (en) Device and method for pneumatic gas sampling for gas sensors
JP2005338044A (en) Hazardous particulate collector
CA2708568C (en) Sampling method and sampling device
JP7296246B2 (en) Dangerous substance detection device, dangerous substance detection system, and dangerous substance detection method
JP5044530B2 (en) Attachment inspection apparatus and attachment inspection method
JP6200577B2 (en) Substance inspection system and substance inspection method
JP6691011B2 (en) Analysis system and cleaning method
JP2022166737A (en) Concentration system, inspection device, and concentration method
WO2012112040A1 (en) Detection apparatus
JP4714257B2 (en) Deposit inspection equipment
WO2007103793A2 (en) Filtering optimization methods for particle inspection device
JPWO2022118412A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566561

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963815

Country of ref document: EP

Kind code of ref document: A1