WO2022118385A1 - Compressor and refrigeration cycle device - Google Patents

Compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2022118385A1
WO2022118385A1 PCT/JP2020/044807 JP2020044807W WO2022118385A1 WO 2022118385 A1 WO2022118385 A1 WO 2022118385A1 JP 2020044807 W JP2020044807 W JP 2020044807W WO 2022118385 A1 WO2022118385 A1 WO 2022118385A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
refrigerant
compressor
guide hole
discharge port
Prior art date
Application number
PCT/JP2020/044807
Other languages
French (fr)
Japanese (ja)
Inventor
亮 濱田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CZ2023-185A priority Critical patent/CZ2023185A3/en
Priority to JP2022566535A priority patent/JP7466693B2/en
Priority to PCT/JP2020/044807 priority patent/WO2022118385A1/en
Priority to CN202080107479.2A priority patent/CN116457575A/en
Publication of WO2022118385A1 publication Critical patent/WO2022118385A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings

Definitions

  • the present disclosure relates to a compressor and a refrigeration cycle device having a refrigerant discharge mechanism.
  • the opening delay and the closing delay of the discharge port due to the valve body may occur depending on the weight of the valve body.
  • a delay in opening and closing the discharge port due to the valve body occurs, there is a problem that refrigerant leakage and overcompression of the high-pressure refrigerant occur, resulting in a decrease in the efficiency of the compressor.
  • the present disclosure has been made in view of the above circumstances, and provides a compressor and a refrigerating cycle apparatus capable of preventing the opening delay and closing delay of the discharge port due to the valve body and improving the compression efficiency.
  • the purpose is to prevent the opening delay and closing delay of the discharge port due to the valve body and improving the compression efficiency.
  • the compressor according to the present disclosure includes a closed container, a cylinder provided in the closed container and having a compression chamber for compressing a refrigerant inside, and a cylinder provided in the closed container and compressed in the compression chamber.
  • a bearing having a discharge port for discharging the discharged refrigerant
  • a guide lid having a cylindrical portion provided in the bearing and having a guide hole inside
  • a valve body provided in the guide hole, and the inside of the guide hole.
  • the valve is provided with a connecting member for connecting the guide lid and the valve body, and is provided with a discharge mechanism for opening and closing the discharge port by moving the valve body in the guide hole.
  • the inner diameter of the cylindrical portion in the direction orthogonal to the moving direction in which the body moves along the guide hole is ar, and the outermost part of the valve body in the direction orthogonal to the moving direction in which the valve body moves along the guide hole.
  • ⁇ c ar-br 1/1000 ⁇ ⁇ c / br ⁇ 1/100 Is.
  • the space on the connecting member side of the valve body and the space on the discharge port side of the valve body are sealed. It can enhance the sex.
  • the moving speed of the valve body can be increased by effectively utilizing the differential pressure between the pressure in the space on the connecting member side of the valve body and the pressure in the space on the discharge port side of the valve body. Therefore, it is possible to prevent the opening delay and the closing delay of the discharge port of the compressor, and it is possible to improve the compression efficiency.
  • FIG. 1 It is a schematic block diagram which shows schematic structure of the compressor which concerns on Embodiment 1.
  • FIG. It is a figure which shows the state which the valve body of the discharge mechanism of the compressor which concerns on Embodiment 1 closes a discharge port. It is a figure which shows the state which the valve body of the discharge mechanism of the compressor which concerns on Embodiment 1 opens a discharge port. It is a figure for demonstrating the clearance between the valve body of the compressor and the guide hole which concerns on Embodiment 1.
  • FIG. It is a side view of the T-shaped valve body of the compressor which concerns on Embodiment 1.
  • FIG. It is a top view of the T-shaped valve body of the compressor which concerns on Embodiment 1.
  • FIG. 1 shows the discharge mechanism which removed the T-shaped valve body of the compressor which concerns on Embodiment 1. It is a figure which shows the case where the 1st discharge mechanism and the 2nd discharge mechanism are provided in the compressor which concerns on Embodiment 1.
  • FIG. It is a refrigerant circuit diagram which shows schematic the refrigerant circuit composition of the refrigerating cycle apparatus which concerns on Embodiment 2.
  • FIG. It is a figure which shows the gas density of the refrigerant sucked by a compressor and the gas density of the refrigerant discharged from a compressor for each refrigerant under the compressor rated operation conditions of a typical refrigeration cycle specified in ASHRAE. It is a figure which shows an example of the reed valve of a compressor. It is a figure for demonstrating the lifting distance of the valve body of the compressor used in the refrigerating cycle apparatus of Embodiment 3.
  • the compressor according to the embodiment will be described with reference to the drawings.
  • the same components will be described with the same reference numerals, and duplicate explanations will be given only when necessary.
  • the present disclosure may include any combination of configurable configurations among the configurations described in each of the following embodiments. Further, in the drawings, the relationship between the sizes of the constituent members may differ from the actual one.
  • the form of the component represented in the entire specification is merely an example, and is not limited to the form described in the specification.
  • the combination of components is not limited to the combination in each embodiment, and the components described in other embodiments can be applied to another embodiment.
  • the height of pressure and temperature is not determined in relation to the absolute value, but is relatively determined in the state and operation of the device or the like.
  • the longitudinal direction of the closed container (vertical direction in the figure) will be described as the axial direction, and the direction passing through the central axis of the closed container and perpendicular to the central axis will be described as the radial direction.
  • FIG. 1 is a schematic configuration diagram schematically showing the configuration of the compressor 100 according to the first embodiment.
  • the compressor 100 will be described with reference to FIG.
  • the compressor 100 is a component of a refrigerant circuit of a refrigerating cycle device such as a refrigerator, a freezer, a vending machine, an air conditioner, a refrigerating device, or a water heater.
  • FIG. 1 illustrates a rotary compressor as an example of the compressor 100.
  • the compressor 100 can also be applied to a closed type compressor having a discharge valve, such as a scroll compressor and a reciprocating compressor. Further, here, it is assumed that the fluid compressed by the compressor 100 is a refrigerant used in a refrigeration cycle device or the like.
  • the compressor 100 compresses and discharges the sucked refrigerant.
  • the compressor 100 includes a closed container 3.
  • the closed container 3 is composed of a lower container 1 and an upper container 2.
  • the compression mechanism unit 10 and the motor unit 20 are housed in the closed container 3.
  • FIG. 1 shows a state in which the compression mechanism portion 10 is housed in the lower side of the closed container 3 and the motor unit 20 is housed in the upper side of the closed container 3.
  • the bottom of the closed container 3 functions as an oil reservoir in which the refrigerating machine oil is stored.
  • the refrigerating machine oil mainly lubricates the sliding portion of the compression mechanism portion 10.
  • a first suction pipe 31a and a second suction pipe 31b communicating with the accumulator 300 are connected to the lower container 1 of the closed container 3.
  • the inlets of the first suction pipe 31a and the second suction pipe 31b are inserted into the suction muffler 60.
  • the suction port 50 of the first suction pipe 31a is formed in the cylinder 13.
  • the second suction pipe 31b also has the same configuration as the first suction pipe 31a and is formed in another cylinder 13.
  • the suction muffler 60 is connected to the accumulator 300 by the low pressure side pipe 155b (see FIG. 9) of the refrigeration cycle circuit, and the refrigerant flows in from the accumulator 300.
  • the suction muffler 60 is fixed to the outer periphery of the closed container 3.
  • the compressor 100 takes in a refrigerant (gas refrigerant) from the accumulator 300 into the closed container 3 via the first suction pipe 31a and the second suction pipe 31b. Further, a discharge pipe 2a is connected to the upper part of the upper container 2 of the closed container 3.
  • the compressor 100 discharges the refrigerant compressed by the compression mechanism unit 10 to the outside via the discharge pipe 2a.
  • the accumulator 300 will be described later.
  • the compression mechanism unit 10 has a function of being driven by the motor unit 20 to compress the refrigerant.
  • the compression mechanism portion 10 includes a cylinder 13, a rolling piston 16, a bearing 14, a spindle 11, a vane (not shown), and the like.
  • the cylinder 13 is provided in the closed container 3, has a substantially circular outer circumference, and has a compression chamber 30 inside which is a substantially circular space in a plan view.
  • the cylinder 13 has a predetermined height in the axial direction when viewed from the side. Both ends of the compression chamber 30 in the axial direction are open. Further, the cylinder 13 is provided with a vane groove (not shown) that communicates with the compression chamber 30 and extends in the radial direction so as to penetrate in the axial direction.
  • the compression chamber 30 of the cylinder 13 is a space formed by attaching the bearing 14 and the partition plate 15 to the end portion of the cylindrical cylinder 13 in the spindle 11 direction. In the compression chamber 30, the refrigerant is compressed.
  • the cylinder 13 is provided with a suction port (not shown) through which the gas refrigerant sucked through the first suction pipe 31a passes.
  • the suction port is formed so as to penetrate the compression chamber 30 from the outer peripheral surface of the cylinder 13.
  • the cylinder 13 is provided with a discharge port (not shown) in which the refrigerant compressed in the compression chamber 30 is discharged from the compression chamber 30.
  • the discharge port is formed by cutting out a part of the edge portion of the upper end surface of the cylinder 13.
  • the rolling piston 16 is formed in a ring shape and is housed in the compression chamber 30 so as to be eccentrically rotatable. Further, the rolling piston 16 is slidably fitted to the eccentric shaft portion 12 of the main shaft 11 at the inner peripheral portion.
  • Vane is stored in the vane groove (not shown).
  • a vane housed in the vane groove is always pressed against the rolling piston 16 by a vane spring (not shown) provided in the back pressure chamber.
  • the compressor 100 has a high pressure inside the closed container 3, and when the operation is started, a force due to the difference pressure between the high pressure inside the closed container 3 and the pressure of the compression chamber 30 acts on the back pressure chamber side on the back side of the vane. .. Therefore, the vane spring is mainly used for the purpose of pressing the vane against the rolling piston 16 at the time of starting the compressor 100 in which there is no difference in pressure between the closed container 3 and the compression chamber 30.
  • the shape of the vane is a substantially rectangular parallelepiped. Specifically, the vane has a flat substantially rectangular parallelepiped shape in which the length (thickness) in the circumferential direction is smaller than the length in the radial direction and the axial direction.
  • the bearing 14 is provided in the closed container 3 and is configured in a substantially inverted T shape when viewed from the side surface.
  • the bearing 14 is slidably fitted to the spindle portion 11a, which is a portion above the eccentric shaft portion 12 of the spindle 11.
  • the bearing 14 closes one end face (the end face on the motor portion 20 side) of the compression chamber 30 including the vane groove of the cylinder 13.
  • a discharge mechanism 40 having a valve body 41 (see FIGS. 2 and 3) is provided inside and above the bearing 14. The configuration of the discharge mechanism 40 will be described later.
  • a suction muffler 60 is provided next to the closed container 3.
  • the suction muffler 60 sucks a low-pressure gas refrigerant from the refrigeration cycle.
  • the suction muffler 60 suppresses the liquid refrigerant from being directly sucked into the compression chamber 30 of the cylinder 13 when the liquid refrigerant returns from the refrigeration cycle.
  • the suction muffler 60 is connected to the suction port of the cylinder 13 via the first suction pipe 31a and the second suction pipe 31b.
  • the suction muffler 60 is fixed to the side surface of the closed container 3 by welding or the like.
  • the high-temperature and high-pressure gas refrigerant compressed by the compression mechanism unit 10 passes through the motor unit 20 from the discharge port 45 (see FIG. 2) of the discharge muffler 17 and is discharged from the discharge pipe 2a to the outside of the compressor 100.
  • the electric motor unit 20 has a function of driving the compression mechanism unit 10.
  • the motor unit 20 includes a rotor 21, a stator 22, and the like.
  • the stator 22 abuts on the inner peripheral surface of the closed container 3 and is fixed.
  • the rotor 21 is arranged inside the stator 22 via a gap.
  • the stator 22 includes at least a stator core in which a plurality of electromagnetic steel sheets are laminated, and a winding wound centrally wound around the teeth of the stator core via an insulating member. Further, a lead wire is connected to the winding of the stator 22. The lead wire is connected to a glass terminal provided in the upper container 2 for supplying electric power from the outside of the closed container 3.
  • the rotor 21 includes at least a rotor core in which a plurality of electromagnetic steel sheets are laminated and a permanent magnet inserted in the rotor core.
  • the spindle portion 11a of the spindle 11 is shrink-fitted or press-fitted into the center of the rotor core.
  • FIG. 2 is a diagram showing a state in which the valve body 41 of the discharge mechanism 40 of the compressor 100 according to the first embodiment closes the discharge port 45.
  • FIG. 3 is a diagram showing a state in which the valve body 41 of the discharge mechanism 40 of the compressor 100 according to the first embodiment opens the discharge port 45.
  • a discharge port 45 is formed in the bearing 14.
  • the discharge port 45 is provided at the flange of the bearing 14 so that the compression chamber 30 and the closed container 3 communicate with each other.
  • the discharge port 45 is a hole that forms a passage through which the refrigerant passes when the refrigerant is discharged from the compression chamber 30 into the closed container 3.
  • the opening of the discharge port 45 on the compression chamber 30 side is provided on the end face of the compression chamber 30. Specifically, the opening of the discharge port 45 on the compression chamber 30 side is formed so as to be substantially at the same position as the discharge port on the upper surface of the compression chamber 30 formed in the cylinder 13.
  • the discharge mechanism 40 has a valve body 41, a spring 43, and a guide lid 46.
  • the arrow indicates the high-pressure gas refrigerant applied to the valve body 41 from the compression chamber 30.
  • arrows a, b, and c indicate the paths of the high-pressure gas refrigerant.
  • the guide lid 46 has a cylindrical shape and has a closed portion 46a provided on the upper side of the bearing 14 and a cylindrical portion 46b provided inside the bearing 14.
  • the inside of the closed portion 46a and the inside of the cylindrical portion 46b form a guide hole 42.
  • the closing portion 46a is a portion of the guide lid 46 on the side where the communication hole 44 is provided.
  • the cylindrical portion 46b is a portion of the guide lid 46 on the side where the compression chamber 30 is provided, and is provided inside the bearing 14.
  • the inside of the cylindrical portion 46b and the discharge port 45 communicate with each other.
  • the lower end of the cylindrical portion 46b is formed according to the shape of the valve body 41, and the valve body seating portion 46c formed on the bearing 14 is arranged.
  • the valve body seating portion 46c is chamfered.
  • the surface to be chamfered is, for example, 2 [mm] in the height direction and 3 [mm] in the radial direction.
  • the valve body 41 receives the pressure in the compression chamber 30 and the pressure in the closed container 3 to open and close the discharge port 45.
  • the valve body 41 is pressed against the discharge port to close the discharge port 45.
  • the valve body 41 is provided so that when the valve body 41 closes the discharge port 45, the end face of the valve body 41 on the compression chamber 30 side hardly causes unevenness with respect to the end face of the discharge port 45 on the compression chamber 30 side. Be placed. Therefore, the end face of the compression chamber 30 and the end face of the valve body 41 on the compression chamber 30 side coincide with each other on the same plane. That is, the valve body 41 closes the opening surface of the discharge port 45 on the compression chamber 30 side from the inside of the discharge port 45.
  • matching includes the case where the end face of the valve body 41 on the compression chamber 30 side is separated from the end of the discharge port 45 by a slight distance in order to secure clearance or the like.
  • the distance between the end face of the valve body 41 on the compression chamber 30 side and the end face of the compression chamber 30 is about 1/10 of the total length of the discharge port 45.
  • a dent, a groove, or the like may be formed on the compression chamber 30 side of the valve body 41.
  • the valve body 41 is pushed upward by the pressure in the compression chamber 30 to open the discharge port 45.
  • the discharge port 45 is opened, the refrigerant compressed in the compression chamber 30 is guided to the outside of the compression chamber 30.
  • the closed portion 46a and the cylindrical portion 46b of the guide lid 46 are integrally formed, but the closed portion 46a and the cylindrical portion 46b may be formed as separate parts. Further, although the cylindrical portion 46b of the guide lid 46 is formed as a separate body from the bearing 14, it may be formed integrally.
  • the bearing 14, the closed portion 46a and the cylindrical portion 46b are formed of two or three parts.
  • One end of the spring 43 which is a connecting member, is attached to the closing portion 46a of the guide lid 46.
  • One end of the spring 43 is arranged in the guide hole 42 inside the guide lid 46.
  • the other end of the spring 43 is attached to the valve body 41.
  • the spring 43 applies a spring force (elastic force) in the direction in which the valve body 41 closes the discharge port 45.
  • the guide hole 42 is a cylindrical space, and is inside the closed portion 46a of the guide lid 46 and inside the cylindrical portion 46b of the guide lid 46. Further, the cylindrical portion 46b is provided in a hole provided in the flange portion of the bearing 14.
  • the end of the guide hole 42 on the compression chamber 30 side is formed so as to coincide with the end surface of the compression chamber 30 and the inner wall of the cylinder 13. Further, the lower portion of the bearing 14 coincides with the end surface of the compression chamber 30 and the end surface of the cylinder 13. Further, the space inside the guide lid 46 may be formed by processing from the side surface of the flange portion of the bearing 14.
  • the flat end portion of the guide hole 42 opposite to the compression chamber 30 may be formed by covering it with another part.
  • the end of the guide hole 42 on the compression chamber 30 side does not necessarily have to coincide with the end surface of the compression chamber 30 provided on the lower side of the guide hole 42 and the inner wall of the cylinder 13.
  • the position of the end of the guide hole 42 on the compression chamber 30 side may be a position outside the inner wall of the cylinder 13.
  • a part of the valve body 41 is in contact with the cylinder 13 and is in close contact with or in contact with an elastic body or the like arranged on the cylinder 13.
  • the end of the guide hole 42 on the compression chamber 30 side may be positioned slightly closer to the inside of the closed container 3 than the end surface of the compression chamber 30. As a result, the clearance between the valve body 41 and the rolling piston 16 can be secured.
  • the guide lid 46 when the guide lid 46 is a separate part from the bearing 14, the guide lid 46 may be provided inside the flange portion of the bearing 14. In this case, the length of the discharge port 45 is shortened, and the opening of the guide hole 42 on the compression chamber 30 side is made an opening connected to the inner side of the closed container 3.
  • the valve body seating portion 46c may be provided not on the bearing 14 but on the cylindrical portion 46b of the guide lid 46.
  • a cylindrical communication hole 44 is formed in the closed portion 46a of the guide lid 46.
  • the communication hole 44 communicates between the guide hole 42 inside the guide lid 46 and the inside of the closed container 3 in which the high-pressure refrigerant discharged from the discharge port 45 is discharged via the discharge muffler 17.
  • the horizontal outer diameter of the communication hole 44 is smaller than the horizontal outer diameter of the valve body 41.
  • the diameter of the communication hole 44 is smaller than the inner diameter of the guide lid 46, which is ⁇ 6 mm here.
  • the shape of the communication hole 44 is a circular shape, but an elliptical shape may be selected in consideration of interference with surrounding parts.
  • the valve body seating portion 46c of the guide lid 46 may be formed in a shape in which at least a part of the bottom surface portion of the valve body 41 is exposed.
  • the valve body 41 is arranged in the guide hole 42, and when the pressure in the guide hole 42 is larger than the pressure in the compression chamber 30, it slides along the guide hole 42 and moves downward. As a result, the discharge port 45 is closed (see FIG. 2).
  • the side surface of the valve body 41 comes into contact with the side surface of the corresponding discharge port 45 when the valve body 41 closes the discharge port 45. Therefore, the side surface of the discharge port 45 of the valve body 41 is formed so as to have no unevenness with respect to the side surface of the discharge port 45.
  • the valve body 41 moves upward in the guide hole 42. As a result, as shown in FIG. 3, the discharge port 45 is opened.
  • the density of the material of the valve body 41 is lower than the density of steel. Further, the material of the valve body 41 may be at least a part of a resin material.
  • the resin material is PEEK (polyetheretherketone). Further, the resin material may be PAI (polyamideimide) or aluminum.
  • the surface of the valve body 41 is coated with a metal.
  • nickel phosphorus coating is applied.
  • the film thickness of the coating is 10 [ ⁇ m] to 20 [ ⁇ m].
  • the spring 43 is shorter than the natural length.
  • the inside of the valve body 41 is provided with a fitting portion for fixing the spring 43.
  • the fitting portion fixes the outer diameter or the inner diameter of the end portion of the spring 43.
  • a rubber material may be provided between the valve body 41 and the valve body seating portion 46c. By providing the rubber material, it is possible to reduce the impact when the valve body 41 is seated on the valve body seating portion 46c and to assist the sealing property. Further, a groove for refueling may be provided in the vicinity of the valve body seating portion 46c. By providing the groove for refueling, it is possible to secure the sealing property by the oil film when the valve body 41 is seated on the valve body seating portion 46c.
  • the valve body 41 may be in a state in which the tip of the valve body 41 slightly protrudes into the inside of the discharge port 45 and partially covers the discharge port 45 when the discharge port 45 is greatly opened. This makes it possible to prevent the tip of the valve body 41 from entering the inside of the opening on the side surface of the discharge port 45.
  • FIG. 4 is a diagram for explaining the clearance ⁇ c between the valve body 41 of the compressor 100 and the guide hole 42 according to the first embodiment.
  • the inner diameter of the cylindrical portion 46b in the direction orthogonal to the moving direction in which the valve body 41 moves along the guide hole 42 is defined as ar.
  • the clearance between the inner diameter ar of the cylindrical portion 46b and the outermost diameter br of the valve body 41 is defined as ⁇ c.
  • the coefficient of linear expansion with respect to the temperature of the material of the valve body 41 is different from the coefficient of linear expansion with respect to the temperature of the material of the valve body seating portion 46c.
  • the range of the linear expansion coefficient of the valve body 41 is a range in which the end face of the valve body 41 at the time of sitting does not enter the compression chamber 30 at the maximum discharge temperature of the high-pressure refrigerant in the operating range of the compressor 100.
  • the height of the valve body 41 is 15 [mm].
  • the height of the guide hole 42 in which the valve body 41 operates is 30 [mm].
  • the clearance ⁇ c is 30 [ ⁇ m] to 300 [ ⁇ m].
  • the valve body seating portion 46c of the bearing 14 has a tapered shape.
  • the valve body 41 is seated on the valve body seating portion 46c.
  • the shape of the tip of the valve body 41 on the valve body seating portion 46c side is a chamfered shape and a tapered shape 41_t.
  • the taper angle of the tapered shape 41_t of the valve body 41 coincides with the taper angle of the tapered shape of the valve body seating portion 46c.
  • the valve body 41 has a hollow portion 41_b inside.
  • the shape of the valve body 41 may have a T-shaped cross section when viewed from a direction orthogonal to the moving direction of the valve body 41.
  • FIG. 5 is a side view of the T-shaped valve body 41_1 of the compressor 100 according to the first embodiment.
  • FIG. 6 is a top view of the T-shaped valve body 41_1 of the compressor 100 according to the first embodiment.
  • FIG. 7 is a diagram showing a discharge mechanism 40 from which the T-shaped valve body 41_1 of the compressor 100 according to the first embodiment is removed.
  • the valve body 41_1 has a T-shaped cross section when viewed from a direction orthogonal to the moving direction of the valve body 41. That is, the cross section of the first portion 41_1_1 orthogonal to the moving direction of the valve body 41_1 is smaller than the cross section orthogonal to the moving direction of the second portion 41_1_1 that opens and closes the discharge port 45.
  • the first portion 41_1_1 of the valve body 41_1 is attached to the inside of the spring 43. It does not matter how the first portion 41_1_1 of the valve body 41_1 and the spring 43 are attached.
  • the space between the cylinder 13 and the rolling piston 16 in the compression chamber 30 is divided into two by vanes (not shown). As the spindle 11 rotates, the volumes of those two spaces change. In one space, the volume gradually expands, and a low-pressure gas refrigerant is sucked from the accumulator 300. In the other space, the volume is gradually reduced, and the gas refrigerant inside is compressed in the compression chamber 30.
  • the gas refrigerant compressed in the compression chamber 30 and having a high pressure and high temperature pushes up the valve body 41 of the discharge mechanism 40 and is discharged from the discharge port 45.
  • the vane (not shown) is pressed against the rolling piston 16 by the high-pressure refrigerant discharged into the closed container 3, and slides radially in the vane groove in conjunction with the movement of the rolling piston 16 to form a compression chamber. It plays a role of partitioning the low pressure space and the high pressure space of 30.
  • the discharge mechanism 40 opens and closes the discharge port 45 according to the pressure difference between the discharge pressure in the closed container 3 and the internal pressure in the compression chamber 30, and discharges the compressed refrigerant.
  • the discharge pressure in the closed container 3 varies depending on the operating conditions of the refrigeration cycle.
  • the discharge mechanism 40 opens and closes at a relative height, such as opening the valve body 41 when the pressure exceeds a predetermined pressure with respect to the discharge pressure in the closed container 3.
  • the gas refrigerant discharged from the discharge port 45 is discharged into the space inside the closed container 3 through the discharge port 45 of the discharge muffler 17.
  • the discharged gas refrigerant passes through the gap of the motor unit 20 and is discharged to the outside of the closed container 3 from the discharge pipe 2a connected to the top of the closed container 3.
  • the refrigerant discharged to the outside of the closed container 3 circulates in the refrigeration cycle and returns to the accumulator 300 again.
  • the refrigerant is compressed in the compression chamber 30, and the end face on the compression chamber 30 side of the valve body 41 receives internal pressure.
  • the discharge port 45 is closed as shown in FIG.
  • the valve body 41 that has been there moves toward the spring 43 side along the guide hole 42. Then, the valve body 41 opens the discharge port 45.
  • the discharge port 45 opens, a discharge path for the refrigerant is formed.
  • the high-temperature and high-pressure gas refrigerant discharged from the discharge port 45 is discharged into the closed container 3.
  • the refrigerant passes through the inside of the guide hole 42 and the lower part of the valve body 41, passes through the flange portion of the bearing 14 (arrow a), and passes through the hole provided on the side surface of the guide hole 42 (arrow b). ), Outflow to the inside of the discharge muffler 17.
  • the high-pressure refrigerant inside the discharge muffler 17 passes through the gap formed between the bearing 14 and the discharge muffler 17 and the hole formed in the discharge muffler 17 itself (arrow c), and inside the closed container 3 of the compressor 100.
  • the valve body 41 moves toward the discharge port 45 side by the spring force of the spring 43, and starts closing the discharge port 45. Then, the internal pressure of the compression chamber 30 becomes smaller than the pressure inside the closed container 3. Next, as shown in FIG. 2, the tip of the valve body 41 on the compression chamber 30 side is provided at the end of the discharge port 45 by the pressure difference between the pressure in the guide hole 42 and the pressure in the compression chamber 30. It is pressed against the valve seating portion 46c, and the discharge port 45 is completely closed.
  • the threshold value of the internal pressure of the compression chamber 30 in which the refrigerant discharge operation is performed may be an absolute value.
  • the spring 43 does not need to operate in the guide hole 42, and in order to reduce the pressure loss of the refrigerant passing through the communication hole 44, the spring 43 is provided in a place other than the guide hole 42 to expand the volume of the guide hole 42. Is also good.
  • discharge mechanism 40 of the first embodiment does not have to provide the communication hole 44 in the guide lid 46.
  • discharge mechanism 40 of the cylinder 13 provided with the second suction pipe 31b may be provided on the bearing 14a on the lower side of the bearing 14.
  • FIG. 8 is a diagram showing a case where the first discharge mechanism 40_1 and the second discharge mechanism 40_1 are provided in the compressor 100 according to the first embodiment. As shown in FIG. 8, the first discharge mechanism 40_1 is attached to the bearing 14 on the upper side of the cylinder 13, and the second discharge mechanism 40_1 is attached to the bearing 14a on the lower side of the cylinder 13.
  • the configurations of the first discharge mechanism 40_1 and the second discharge mechanism 40_1 are substantially the same as the configurations of the discharge mechanism 40.
  • the difference between the first discharge mechanism 40_1 and the second discharge mechanism 40_1 is that the mass of the valve body 41 of the second discharge mechanism 40_1 is lighter than the mass of the valve body 41 of the first discharge mechanism 40_1.
  • the spring constant of the spring 43 of the second ejection mechanism 40_1 is larger than the spring constant of the spring 43 of the first ejection mechanism 40_1.
  • the natural length of the spring 43 of the second discharge mechanism 40_1 is shorter than the natural length of the spring 43 of the first discharge mechanism 40_1.
  • the reciprocating operation of the valve body 41 is affected by gravity. To be different. In this case, the mass of the valve body 41 whose operating direction is upward when the discharge port 45 is closed is lighter than the mass of the valve body 41 whose operating direction is downward.
  • This differential pressure is used not only when the discharge port 45 is closed by the valve body 41, but also when the discharge port 45 is opened when the valve body 41 rises. Therefore, the operation of the valve body 41 can be increased in speed. Further, as compared with the case of using the reed valve, in the compressor 100 of the first embodiment, a large flow path area for discharging the refrigerant is secured, the pressure loss at the time of discharging is reduced, and the compressor efficiency is improved.
  • valve body 41 since a light resin material is used for the valve body 41, it is possible to reduce the frictional force with the side surface of the cylindrical portion 46b of the valve body 41 when opening and closing the discharge port 45. Therefore, in the compressor 100 of the first embodiment, the opening delay and the closing delay of the valve body 41 can be suppressed, and the overcompression loss and the suction superheat loss can be reduced. Further, the impact load with the end of the guide hole 42 when the valve body 41 closes the discharge port 45 can be reduced. Therefore, the reliability of the compressor 100 can be improved.
  • valve body 41 Since the valve body 41 is coated with a metal, the reliability of the reciprocating operation of the valve body 41 is improved.
  • the valve body 41 closes the discharge port 45, the spring 43 is shorter than the natural length. Therefore, even when the valve body 41 is seated and the refrigerant differential pressure before and after discharge is small, the valve body 41 is seated on the bearing 14 with sufficient sealing property, and the compressor 100 can be operated.
  • the state where the refrigerant differential pressure before and after discharge is small is based on the operating range of a general compressor 100. For example, if the refrigerant is R410A, the discharge side is 2 MPa, the suction side is 1.5 MPa, and the differential pressure is 0. It is a small refrigerant differential pressure of about 5.5 MPa.
  • the valve body 41 moves inside the guide hole 42 and is discharged. 45 is closed.
  • the refrigerant discharged from the discharge port 45 is discharged into the closed container 3. Since the communication hole 44 communicates with the space inside the closed container 3, the space inside the guide hole 42 and above the valve body 41 is compressed by the discharged refrigerant having a higher pressure than the refrigerant staying in the guide hole 42. As a result, due to the damper effect, it is possible to suppress the opening delay and the closing delay of the discharge port 45 by the valve body 41.
  • the guide lid 46 is provided with a communication hole 44.
  • the diameter of the communication hole 44 is smaller than the inner diameter of the guide lid 46. Therefore, when the valve body 41 rises, the refrigerant in the space between the valve body 41 and the closing portion 46a does not completely escape from the communication hole 44, the refrigerant is compressed, and the valve body 41 is pushed back. At this time, the pressure of the refrigerant staying in the space between the valve body 41 and the closing portion 46a is higher than that of the high-pressure refrigerant discharged into the closed container 3 after the compression process is completed. Due to this damper effect, the valve body 41 starts descending immediately after the ascending is completed, and is seated on the valve body seating portion 46c provided in the bearing 14 without delaying closing from the desired seating timing.
  • the closing speed of the valve body 41 is further increased. It is possible to prevent the decrease.
  • the compressor 100 of the first embodiment since the end of the guide hole 42 on the compression chamber 30 side is formed so as to coincide with the end surface of the compression chamber 30 and the inner wall of the cylinder 13, the flow of the refrigerant is formed. The road area becomes large and the discharge pressure loss can be reduced.
  • the discharge path is configured to be in the order of the compression chamber 30, the valve body 41, and the discharge port 45. Immediately after the compression chamber 30, the discharge port 45 is closed by the valve body 41. As a result, the dead volume of the compressor 100 can be reduced. Therefore, it is possible to suppress a decrease in efficiency of the compressor 100 due to the re-expansion of the refrigerant.
  • the end face of the compression chamber 30 and the end face of the valve body 41 on the compression chamber 30 side coincide with each other on the same plane. Therefore, the dead volume of the compressor 100 can be minimized, and the valve body 41 can be prevented from protruding into the compression chamber 30 and colliding with the rolling piston 16.
  • the compressor 100 of the first embodiment since the cylindrical portion 46b of the guide lid 46 is formed of a separate part from the bearing 14, the structure of the bearing 14 can be simplified and the compression can be performed at low cost.
  • the machine 100 can be provided.
  • the compressor 100 of the first embodiment when the cylindrical portion 46b of the guide lid 46 is integrally formed with the bearing 14, it is possible to suppress the misalignment between the valve body 41 and the valve body seating portion 46c, so that the reliability is high.
  • the compressor 100 can be provided.
  • the horizontal outer diameter of the communication hole 44 is smaller than the horizontal outer diameter of the valve body 41.
  • the communication hole 44 behaves as a throttle portion, and has the effect of not suppressing the damper effect that the communication hole 44 was trying to suppress more than desired. Further, when the discharge port 45 is closed, there is an effect of helping the valve body 41 to close quickly.
  • FIG. 9 is a refrigerant circuit diagram schematically showing a refrigerant circuit configuration of the refrigerating cycle apparatus 200 according to the second embodiment.
  • the configuration and operation of the refrigeration cycle apparatus 200 will be described with reference to FIG.
  • the refrigerating cycle apparatus 200 according to the second embodiment includes any one of the compressors 100 according to the first embodiment as an element of the refrigerant circuit. Note that FIG. 9 shows a case where the compressor 100 according to the first embodiment is provided for convenience.
  • the refrigeration cycle device 200 includes a compressor 100, a flow path switching device 151, a first heat exchanger 152, an expansion device 153, and a second heat exchanger 154.
  • the compressor 100, the first heat exchanger 152, the expansion device 153, and the second heat exchanger 154 are connected by pipes by the high pressure side pipe 155a and the low pressure side pipe 155b to form a refrigerant circuit.
  • an accumulator 300 is arranged on the upstream side of the compressor 100.
  • the compressor 100 compresses the sucked refrigerant into a high temperature and high pressure state.
  • the refrigerant compressed by the compressor 100 is discharged from the compressor 100 and sent to the first heat exchanger 152 or the second heat exchanger 154.
  • the flow path switching device 151 switches the flow of the refrigerant between the heating operation and the cooling operation. That is, the flow path switching device 151 is switched so as to connect the compressor 100 and the second heat exchanger 154 during the heating operation, and to connect the compressor 100 and the first heat exchanger 152 during the cooling operation. Can be switched.
  • the flow path switching device 151 may be composed of, for example, a four-way valve. However, a combination of a two-way valve or a three-way valve may be adopted as the flow path switching device 151.
  • the first heat exchanger 152 functions as an evaporator during the heating operation and as a condenser during the cooling operation. That is, when functioning as an evaporator, the first heat exchanger 152 exchanges heat between the low-temperature low-pressure refrigerant flowing out of the expansion device 153 and, for example, the air supplied by a blower (not shown), and the low-temperature low-pressure liquid.
  • the refrigerant or gas-liquid two-phase refrigerant) evaporates.
  • the first heat exchanger 152 exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 100 and, for example, the air supplied by a blower (not shown), and the high-temperature and high-pressure gas. Refrigerant condenses.
  • the first heat exchanger 152 may be composed of a refrigerant-water heat exchanger. In this case, in the first heat exchanger 152, heat exchange is executed between the refrigerant and a heat medium such as water.
  • the expansion device 153 expands the refrigerant flowing out from the first heat exchanger 152 or the second heat exchanger 154 to reduce the pressure.
  • the expansion device 153 may be configured by, for example, an electric expansion valve or the like that can adjust the flow rate of the refrigerant.
  • an electric expansion valve not only an electric expansion valve but also a mechanical expansion valve having a diaphragm for a pressure receiving portion, a capillary tube, or the like can be applied.
  • the second heat exchanger 154 functions as a condenser during the heating operation and as an evaporator during the cooling operation. That is, when functioning as a condenser, the second heat exchanger 154 exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 100 and, for example, the air supplied by a blower (not shown), and the high-temperature and high-pressure gas. Refrigerant condenses. On the other hand, when functioning as an evaporator, the second heat exchanger 154 exchanges heat between the low-temperature low-pressure refrigerant flowing out of the expansion device 153 and, for example, the air supplied by a blower (not shown), and the low-temperature low-pressure liquid.
  • the refrigerant (or gas-liquid two-phase refrigerant) evaporates.
  • the second heat exchanger 154 may be composed of a refrigerant-water heat exchanger. In this case, in the second heat exchanger 154, heat exchange is executed between the refrigerant and a heat medium such as water.
  • the refrigerating cycle device 200 is provided with a control device 160 that controls the entire refrigerating cycle device 200. Specifically, the control device 160 controls the drive frequency of the compressor 100 according to the required cooling capacity or heating capacity. Further, the control device 160 controls the opening degree of the expansion device 153 according to the operating state and the mode. Further, the control device 160 controls the flow path switching device 151 according to each mode.
  • the control device 160 uses information sent from each temperature sensor (not shown) and each pressure sensor (not shown) based on an operation instruction from the user, and uses, for example, a compressor 100, an expansion device 153, and a flow path switching device 151. Etc. to control each actuator.
  • the control device 160 may be configured by hardware such as a circuit device that realizes the function, or may be configured by an arithmetic unit such as a microcomputer or a CPU and software executed on the arithmetic unit. can.
  • the control device 160 is composed of dedicated hardware or a CPU (also referred to as a Central Processing Unit, a central processing unit, a processing device, a computing device, a microprocessor, a microprocessor, or a processor) that executes a program stored in a memory. Will be done.
  • a CPU also referred to as a Central Processing Unit, a central processing unit, a processing device, a computing device, a microprocessor, a microprocessor, or a processor
  • the control device 160 corresponds to, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. do.
  • Each of the functional units realized by the control device 160 may be realized by individual hardware, or each functional unit may be realized by one hardware.
  • each function executed by the control device 160 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in memory.
  • the CPU reads and executes a program stored in the memory, and realizes each function of the control device 160.
  • the memory is a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM and the like. It should be noted that some of the functions of the control device 160 may be realized by dedicated hardware, and some may be realized by software or firmware.
  • a high-temperature and high-pressure gas-state refrigerant is discharged from the compressor 100.
  • the high-temperature and high-pressure gas refrigerant (single-phase) discharged from the compressor 100 flows into the first heat exchanger 152.
  • the first heat exchanger 152 heat exchange is performed between the high temperature and high pressure gas refrigerant that has flowed in and the air supplied by the blower (not shown), and the high temperature and high pressure gas refrigerant is condensed and high pressure liquid. It becomes a refrigerant (single phase).
  • the high-pressure liquid refrigerant sent out from the first heat exchanger 152 becomes a two-phase state refrigerant of a low-pressure gas refrigerant and a liquid refrigerant by the expansion device 153.
  • the two-phase refrigerant flows into the second heat exchanger 154.
  • heat exchange is performed between the flowing two-phase state refrigerant and the air supplied by the blower (not shown), and the liquid refrigerant of the two-phase state refrigerant evaporates. It becomes a low-pressure gas refrigerant (single phase).
  • the low-pressure gas refrigerant sent out from the second heat exchanger 154 flows into the compressor 100 via the accumulator 300, is compressed, becomes a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 100 again. Hereinafter, this cycle is repeated.
  • the refrigerating cycle device 200 according to the second embodiment it is possible to provide the refrigerating cycle device 200 using the compressor 100 having good compression efficiency.
  • the operation of the refrigerating cycle device 200 during the heating operation is executed by making the flow of the refrigerant the flow of the solid line arrow shown in FIG. 9 by the flow path switching device 151.
  • the flow path of the refrigerant may be set in a fixed direction without providing the flow path switching device 151 provided on the discharge side of the compressor 100.
  • the refrigerating cycle device 200 there are an air conditioner, a water heater, a refrigerator, an air-conditioned hot water supply compound machine, and the like.
  • Embodiment 3 In the third embodiment, the types of the refrigerant used in the refrigeration cycle apparatus 200 of the second embodiment will be described.
  • the refrigerant used in the refrigeration cycle apparatus 200 of the third embodiment is a refrigerant having a lower gas density than the R410A refrigerant.
  • FIG. 10 is a diagram showing the gas density of the refrigerant sucked by the compressor 100 and the gas density of the refrigerant discharged from the compressor 100 for each refrigerant under the compressor rated operating conditions of a typical refrigeration cycle specified in ASHRAE. Is.
  • ASHRAE is an abbreviation for American Society of Heating, Referraling and Air-Conditioning Engineers (American Society for Thermal Refrigeration and Air Conditioning).
  • the compressor rated operating conditions also commonly known as ASRAE-T conditions, are a condensation temperature of 54.4 ° C., an evaporation temperature of 7.2 ° C., a supercooling degree of 8.3 ° C., and a superheating degree of 27.8 ° C.
  • the refrigerants of R134a, R1234yf, R513A, R463A, R290, R454C, R454A, R404A, R448A, R449A, R454B, R452B and R466A are shown. As shown in FIG. 10, these refrigerants have a gas density lower than that of R410A, that is, the refrigerant sucked into the compressor 100 and the refrigerant discharged from the compressor 100.
  • the pressure loss of a fluid such as a refrigerant gas increases in proportion to the flow velocity of the fluid.
  • the flow velocity of the gas needs to be increased as the density decreases. That is, the low-density refrigerant gas has a larger pressure loss than the high-density refrigerant gas.
  • This pressure loss occurs in various parts of the refrigeration cycle, but its effect is particularly remarkable in places such as compression discharge valves where the flow path is narrow and the fluid flow rate is high.
  • FIG. 11 is a diagram showing an example of the reed valve 401 of the compressor 100.
  • one end of the lead valve 401 and the regulation plate 402 is fixed by a fixed rivet 403 in the vicinity of the discharge hole 405 provided on the end face of the bearing 14.
  • the regulating plate 402 regulates the movement of the reed valve 401.
  • the lead valve 401 sits on the seating portion 404 and closes the discharge hole 405.
  • the reed valve 401 is lifted by the pressure increase in the compression chamber 30. Since the lead valve 401 has a cantilever structure as described above, the lifting distance R on the fixed portion side of the lead valve 401 from the end face of the bearing 14 is reduced, and the overall flow path area is reduced.
  • FIG. 12 is a diagram for explaining the lifting distance R of the valve body 41 of the compressor 100 used in the refrigeration cycle device 200 of the third embodiment.
  • the valve body 41 of the discharge mechanism 40 of the compressor 100 moves in the guide hole 42 in the vertical direction by the spring 43. Therefore, the lifting distance R becomes uniform in the entire valve body 41, and the flow path area of the entire refrigerant is larger than that of the lead valve 401.
  • the refrigerating cycle device 200 of the third embodiment applies a refrigerant having a lower gas density than R410A, which is currently widely used in the world, to the refrigerating cycle device 200 of the second embodiment. Therefore, the refrigeration cycle apparatus 200 of the third embodiment can reduce the pressure loss and obtain a highly efficient refrigeration cycle.
  • R290 when used as a refrigerant, the intake gas density and the discharge gas density are significantly higher than those of other refrigerants, so that the refrigeration cycle apparatus 200 can reduce the pressure loss and obtain a highly efficient refrigeration cycle. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This compressor comprises: a closed container; a cylinder which is provided in the closed container and has a compression chamber in which a refrigerant is compressed provided on the interior thereof; a bearing which is provided in the closed container and comprises a discharge port for discharging the refrigerant compressed in the compression chamber; and a discharge mechanism which comprises a guide cover that is provided to the bearing had has a cylindrical section with a guide hole configured on the interior thereof, a valve body that is provided in the guide hole, and a connection member that is provided in the guide hole and connects the guide cover and the valve body, and which opens and closes the discharge port via the movement of the valve body in the guide hole, wherein if ar is the inner diameter of the cylindrical section in the direction orthogonal to the movement direction in which the valve body moves along the guide hole, br is the outermost diameter of the valve body in the direction orthogonal to the movement direction in which the valve body moves along the guide hole, and Δc is the clearabce between the inner diameter ar of the cylindrical section and the outermost diameter br of the valve body, then Δc=ar-br and 1/1000≤Δc/br≤1/100.

Description

圧縮機及び冷凍サイクル装置Compressor and refrigeration cycle equipment
 本開示は、冷媒の吐出機構を有する圧縮機及び冷凍サイクル装置に関する。 The present disclosure relates to a compressor and a refrigeration cycle device having a refrigerant discharge mechanism.
 従来、弁体を吐出口の閉口時に吐出口内に配置し、弁体をスプリングで往復動作させることで、死容積を縮小させるようにした圧縮機がある(例えば、特許文献1参照)。 Conventionally, there is a compressor in which the valve body is arranged in the discharge port when the discharge port is closed and the valve body is reciprocated by a spring to reduce the dead volume (see, for example, Patent Document 1).
特開平8-319973号公報Japanese Unexamined Patent Publication No. 8-39773
 しかしながら、特許文献1の圧縮機では、弁体の重量によっては、弁体による吐出口の開き遅れ及び閉じ遅れが発生する。このような弁体による吐出口の開き遅れ及び閉じ遅れが発生すると、冷媒漏れ及び高圧冷媒の過圧縮が発生し、圧縮機の効率の低下が発生する問題があった。 However, in the compressor of Patent Document 1, the opening delay and the closing delay of the discharge port due to the valve body may occur depending on the weight of the valve body. When such a delay in opening and closing the discharge port due to the valve body occurs, there is a problem that refrigerant leakage and overcompression of the high-pressure refrigerant occur, resulting in a decrease in the efficiency of the compressor.
 本開示は、上記実情に鑑みてなされたものであり、弁体による吐出口の開き遅れ及び閉じ遅れを防止し、圧縮効率の向上を図ることができる圧縮機及び冷凍サイクル装置を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and provides a compressor and a refrigerating cycle apparatus capable of preventing the opening delay and closing delay of the discharge port due to the valve body and improving the compression efficiency. The purpose.
 本開示に係る圧縮機は、密閉容器と、前記密閉容器内に設けられ、冷媒が圧縮される圧縮室が内部に設けられたシリンダと、前記密閉容器内に設けられ、前記圧縮室にて圧縮された冷媒を吐出する吐出口を備えた軸受と、前記軸受に設けられ、内部にガイド穴が構成された円筒部を有するガイド蓋と、前記ガイド穴内に設けられた弁体と、前記ガイド穴内に設けられ、前記ガイド蓋と前記弁体とを接続する接続部材とを具備し、前記弁体が前記ガイド穴内を移動することにより前記吐出口の開閉を行なう吐出機構とを具備し、前記弁体が前記ガイド穴に沿って移動する移動方向と直交する方向の前記円筒部の内径をar、前記弁体が前記ガイド穴に沿って移動する移動方向と直交する方向の前記弁体の最外径をbr、前記円筒部の内径arと前記弁体の最外径brとのクリアランスをΔcとすると、
 Δc=ar-br
 1/1000≦Δc/br≦1/100
である。
The compressor according to the present disclosure includes a closed container, a cylinder provided in the closed container and having a compression chamber for compressing a refrigerant inside, and a cylinder provided in the closed container and compressed in the compression chamber. A bearing having a discharge port for discharging the discharged refrigerant, a guide lid having a cylindrical portion provided in the bearing and having a guide hole inside, a valve body provided in the guide hole, and the inside of the guide hole. The valve is provided with a connecting member for connecting the guide lid and the valve body, and is provided with a discharge mechanism for opening and closing the discharge port by moving the valve body in the guide hole. The inner diameter of the cylindrical portion in the direction orthogonal to the moving direction in which the body moves along the guide hole is ar, and the outermost part of the valve body in the direction orthogonal to the moving direction in which the valve body moves along the guide hole. Assuming that the diameter is br and the clearance between the inner diameter ar of the cylindrical portion and the outermost diameter br of the valve body is Δc,
Δc = ar-br
1/1000 ≤ Δc / br ≤ 1/100
Is.
 本開示によれば、Δc=ar-br及び1/1000≦Δc/br≦1/100の関係があるので、弁体の接続部材側の空間と、弁体の吐出口側の空間とのシール性を高めることができる。その結果、弁体の接続部材側の空間の圧力と、弁体の吐出口側の空間の圧力との差圧を有効に活用して、弁体の移動速度を高めることができる。従って、圧縮機の吐出口の開き遅れ及び閉じ遅れを防止することができ、圧縮効率の向上を図ることができる。 According to the present disclosure, since there is a relationship of Δc = ar-br and 1/1000 ≤ Δc / br ≤ 1/100, the space on the connecting member side of the valve body and the space on the discharge port side of the valve body are sealed. It can enhance the sex. As a result, the moving speed of the valve body can be increased by effectively utilizing the differential pressure between the pressure in the space on the connecting member side of the valve body and the pressure in the space on the discharge port side of the valve body. Therefore, it is possible to prevent the opening delay and the closing delay of the discharge port of the compressor, and it is possible to improve the compression efficiency.
実施の形態1に係る圧縮機の構成を概略的に示す概略構成図である。It is a schematic block diagram which shows schematic structure of the compressor which concerns on Embodiment 1. FIG. 実施の形態1に係る圧縮機の吐出機構の弁体が吐出口を閉口している状態を示す図である。It is a figure which shows the state which the valve body of the discharge mechanism of the compressor which concerns on Embodiment 1 closes a discharge port. 実施の形態1に係る圧縮機の吐出機構の弁体が吐出口を開口している状態を示す図である。It is a figure which shows the state which the valve body of the discharge mechanism of the compressor which concerns on Embodiment 1 opens a discharge port. 実施の形態1に係る圧縮機の弁体とガイド穴とのクリアランスを説明するための図である。It is a figure for demonstrating the clearance between the valve body of the compressor and the guide hole which concerns on Embodiment 1. FIG. 実施の形態1に係る圧縮機のT字形状の弁体の側面図である。It is a side view of the T-shaped valve body of the compressor which concerns on Embodiment 1. FIG. 実施の形態1に係る圧縮機のT字形状の弁体の上面図である。It is a top view of the T-shaped valve body of the compressor which concerns on Embodiment 1. FIG. 実施の形態1に係る圧縮機のT字形状の弁体が取りけられた吐出機構を示す図である。It is a figure which shows the discharge mechanism which removed the T-shaped valve body of the compressor which concerns on Embodiment 1. 実施の形態1に係る圧縮機に第1吐出機構及び第2吐出機構を設けた場合を示す図である。It is a figure which shows the case where the 1st discharge mechanism and the 2nd discharge mechanism are provided in the compressor which concerns on Embodiment 1. FIG. 実施の形態2に係る冷凍サイクル装置の冷媒回路構成を概略的に示す冷媒回路図である。It is a refrigerant circuit diagram which shows schematic the refrigerant circuit composition of the refrigerating cycle apparatus which concerns on Embodiment 2. FIG. ASHRAEに規定されている代表的な冷凍サイクルの圧縮機定格運転条件における圧縮機が吸入する冷媒の気体密度及び圧縮機から吐出される冷媒の気体密度を冷媒毎に示す図である。It is a figure which shows the gas density of the refrigerant sucked by a compressor and the gas density of the refrigerant discharged from a compressor for each refrigerant under the compressor rated operation conditions of a typical refrigeration cycle specified in ASHRAE. 圧縮機のリード弁の一例を示す図である。It is a figure which shows an example of the reed valve of a compressor. 実施の形態3の冷凍サイクル装置に使用される圧縮機の弁体の持ち上がり距離を説明するための図である。It is a figure for demonstrating the lifting distance of the valve body of the compressor used in the refrigerating cycle apparatus of Embodiment 3. FIG.
 以下、図面を参照して、実施の形態に係る圧縮機について説明する。なお、図面において、同一の構成要素には同一符号を付して説明し、重複説明は必要な場合にのみ行なう。本開示は、以下の各実施の形態で説明する構成のうち、組合せ可能な構成のあらゆる組合せを含み得る。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、圧力及び温度の高低については、特に絶対的な値との関係で高低が定まっているものではなく、装置などにおける状態及び動作などにおいて相対的に定まるものとする。そして、以下の説明では、密閉容器の長手方向(図における上下方向)を、軸方向とし、密閉容器の中心軸を通りかつ中心軸に垂直な方向を、径方向として説明する。 Hereinafter, the compressor according to the embodiment will be described with reference to the drawings. In the drawings, the same components will be described with the same reference numerals, and duplicate explanations will be given only when necessary. The present disclosure may include any combination of configurable configurations among the configurations described in each of the following embodiments. Further, in the drawings, the relationship between the sizes of the constituent members may differ from the actual one. The form of the component represented in the entire specification is merely an example, and is not limited to the form described in the specification. In particular, the combination of components is not limited to the combination in each embodiment, and the components described in other embodiments can be applied to another embodiment. In addition, the height of pressure and temperature is not determined in relation to the absolute value, but is relatively determined in the state and operation of the device or the like. In the following description, the longitudinal direction of the closed container (vertical direction in the figure) will be described as the axial direction, and the direction passing through the central axis of the closed container and perpendicular to the central axis will be described as the radial direction.
実施の形態1.
 図1は、実施の形態1に係る圧縮機100の構成を概略的に示す概略構成図である。
Embodiment 1.
FIG. 1 is a schematic configuration diagram schematically showing the configuration of the compressor 100 according to the first embodiment.
 図1に基づいて、圧縮機100について説明する。この圧縮機100は、たとえば冷蔵庫、冷凍庫、自動販売機、空気調和機、冷凍装置、又は、給湯器等の冷凍サイクル装置の冷媒回路の構成要素となるものである。なお、図1には、圧縮機100の一例としてロータリ圧縮機を図示している。圧縮機100は、例えば、スクロール圧縮機、レシプロ圧縮機など、吐出弁を有する密閉型圧縮機にも適用可能である。また、ここでは、圧縮機100が圧縮する流体が、冷凍サイクル装置などにおいて用いる冷媒であるものとして説明する。 The compressor 100 will be described with reference to FIG. The compressor 100 is a component of a refrigerant circuit of a refrigerating cycle device such as a refrigerator, a freezer, a vending machine, an air conditioner, a refrigerating device, or a water heater. Note that FIG. 1 illustrates a rotary compressor as an example of the compressor 100. The compressor 100 can also be applied to a closed type compressor having a discharge valve, such as a scroll compressor and a reciprocating compressor. Further, here, it is assumed that the fluid compressed by the compressor 100 is a refrigerant used in a refrigeration cycle device or the like.
[圧縮機100の構成]
 圧縮機100は、吸入した冷媒を圧縮して吐出するものである。圧縮機100は、密閉容器3を備える。密閉容器3は、下側容器1と、上側容器2と、で構成されている。密閉容器3には、圧縮機構部10及び電動機部20が収納されている。例えば、図1では、圧縮機構部10が密閉容器3の下側に収納され、電動機部20が密閉容器3の上側に収納された状態を例に示している。また、密閉容器3の底部は、冷凍機油が貯留される油溜めとして機能する。冷凍機油は、主に圧縮機構部10の摺動部を潤滑する。
[Compression 100]
The compressor 100 compresses and discharges the sucked refrigerant. The compressor 100 includes a closed container 3. The closed container 3 is composed of a lower container 1 and an upper container 2. The compression mechanism unit 10 and the motor unit 20 are housed in the closed container 3. For example, FIG. 1 shows a state in which the compression mechanism portion 10 is housed in the lower side of the closed container 3 and the motor unit 20 is housed in the upper side of the closed container 3. Further, the bottom of the closed container 3 functions as an oil reservoir in which the refrigerating machine oil is stored. The refrigerating machine oil mainly lubricates the sliding portion of the compression mechanism portion 10.
 密閉容器3の下側容器1には、アキュームレータ300(図9参照)と連通した第1吸入管31a及び第2吸入管31bが接続されている。第1吸入管31a及び第2吸入管31bの流入口は、吸入マフラ60内に差し込まれている。第1吸入管31aの吸入口50は、シリンダ13に形成されている。第2吸入管31bについても、第1吸入管31aと同様の構成が採用され、他のシリンダ13に形成されている。吸入マフラ60は、冷凍サイクル回路の低圧側配管155b(図9参照)によりアキュームレータ300に接続され、アキュームレータ300から冷媒が流入される。吸入マフラ60は、密閉容器3の外周に固定される。圧縮機100は、第1吸入管31a及び第2吸入管31bを介してアキュームレータ300から冷媒(ガス冷媒)を密閉容器3に取り込む。また、密閉容器3の上側容器2の上部には吐出管2aが接続されている。圧縮機100は、吐出管2aを介して圧縮機構部10で圧縮された冷媒を外部に吐出する。なお、アキュームレータ300については、後段で説明する。
<圧縮機構部10>
 圧縮機構部10は、電動機部20により駆動されて冷媒を圧縮する機能を有している。
A first suction pipe 31a and a second suction pipe 31b communicating with the accumulator 300 (see FIG. 9) are connected to the lower container 1 of the closed container 3. The inlets of the first suction pipe 31a and the second suction pipe 31b are inserted into the suction muffler 60. The suction port 50 of the first suction pipe 31a is formed in the cylinder 13. The second suction pipe 31b also has the same configuration as the first suction pipe 31a and is formed in another cylinder 13. The suction muffler 60 is connected to the accumulator 300 by the low pressure side pipe 155b (see FIG. 9) of the refrigeration cycle circuit, and the refrigerant flows in from the accumulator 300. The suction muffler 60 is fixed to the outer periphery of the closed container 3. The compressor 100 takes in a refrigerant (gas refrigerant) from the accumulator 300 into the closed container 3 via the first suction pipe 31a and the second suction pipe 31b. Further, a discharge pipe 2a is connected to the upper part of the upper container 2 of the closed container 3. The compressor 100 discharges the refrigerant compressed by the compression mechanism unit 10 to the outside via the discharge pipe 2a. The accumulator 300 will be described later.
<Compression mechanism 10>
The compression mechanism unit 10 has a function of being driven by the motor unit 20 to compress the refrigerant.
 圧縮機構部10は、シリンダ13、ローリングピストン16、軸受14、主軸11、ベーン(図示省略)などを含んで構成される。 The compression mechanism portion 10 includes a cylinder 13, a rolling piston 16, a bearing 14, a spindle 11, a vane (not shown), and the like.
 シリンダ13は、密閉容器3内に設けられ、外周が平面視略円形に構成されており、内部に平面視略円形の空間である圧縮室30を有している。シリンダ13は、側面視した状態において軸方向に所定の高さを有している。圧縮室30は、軸方向両端が開口している。また、シリンダ13には、圧縮室30に連通し、半径方向に延びるベーン溝(図示省略)が軸方向に貫通して設けられる。シリンダ13の圧縮室30は、円筒形状のシリンダ13の主軸11方向の端部に軸受14と仕切り板15とを取り付けて形成される空間である。圧縮室30では、冷媒が圧縮される。 The cylinder 13 is provided in the closed container 3, has a substantially circular outer circumference, and has a compression chamber 30 inside which is a substantially circular space in a plan view. The cylinder 13 has a predetermined height in the axial direction when viewed from the side. Both ends of the compression chamber 30 in the axial direction are open. Further, the cylinder 13 is provided with a vane groove (not shown) that communicates with the compression chamber 30 and extends in the radial direction so as to penetrate in the axial direction. The compression chamber 30 of the cylinder 13 is a space formed by attaching the bearing 14 and the partition plate 15 to the end portion of the cylindrical cylinder 13 in the spindle 11 direction. In the compression chamber 30, the refrigerant is compressed.
 また、シリンダ13には、第1吸入管31aを介して吸入されたガス冷媒が通過する吸入ポート(図示省略)が設けられる。吸入ポートは、シリンダ13の外周面から圧縮室30に貫通するように形成されている。 Further, the cylinder 13 is provided with a suction port (not shown) through which the gas refrigerant sucked through the first suction pipe 31a passes. The suction port is formed so as to penetrate the compression chamber 30 from the outer peripheral surface of the cylinder 13.
 また、シリンダ13には、圧縮室30で圧縮された冷媒が圧縮室30から吐出される吐出ポート(図示省略)が設けられる。吐出ポートは、シリンダ13の上端面の縁部の一部を切り欠いて形成されている。 Further, the cylinder 13 is provided with a discharge port (not shown) in which the refrigerant compressed in the compression chamber 30 is discharged from the compression chamber 30. The discharge port is formed by cutting out a part of the edge portion of the upper end surface of the cylinder 13.
 ローリングピストン16は、リング状に形成され、圧縮室30に偏心回転可能に収納される。また、ローリングピストン16は、内周部分で主軸11の偏心軸部12に摺動自在に嵌合する。 The rolling piston 16 is formed in a ring shape and is housed in the compression chamber 30 so as to be eccentrically rotatable. Further, the rolling piston 16 is slidably fitted to the eccentric shaft portion 12 of the main shaft 11 at the inner peripheral portion.
 図示しないベーン溝には、ベーンが収納される。背圧室に設けられるベーンスプリング(図示省略)によって、ベーン溝に収納されているベーンが常にローリングピストン16に押し付けられている。圧縮機100は、密閉容器3内が高圧であり、運転を開始するとベーンの背面側にある背圧室側に密閉容器3内の高圧と圧縮室30の圧力との差圧による力が作用する。そのため、ベーンスプリングは、主に密閉容器3内と圧縮室30内の圧力に差がない圧縮機100の起動時に、ベーンをローリングピストン16に押し付ける目的で使用される。 Vane is stored in the vane groove (not shown). A vane housed in the vane groove is always pressed against the rolling piston 16 by a vane spring (not shown) provided in the back pressure chamber. The compressor 100 has a high pressure inside the closed container 3, and when the operation is started, a force due to the difference pressure between the high pressure inside the closed container 3 and the pressure of the compression chamber 30 acts on the back pressure chamber side on the back side of the vane. .. Therefore, the vane spring is mainly used for the purpose of pressing the vane against the rolling piston 16 at the time of starting the compressor 100 in which there is no difference in pressure between the closed container 3 and the compression chamber 30.
 なお、ベーンの形状は、略直方体である。具体的には、ベーンは、周方向の長さ(厚み)が径方向及び軸方向の長さよりも小さい平坦な略直方体形状となっている。 The shape of the vane is a substantially rectangular parallelepiped. Specifically, the vane has a flat substantially rectangular parallelepiped shape in which the length (thickness) in the circumferential direction is smaller than the length in the radial direction and the axial direction.
 軸受14は、密閉容器3内に設けられ、側面視略逆T字状に構成されている。軸受14は、主軸11の偏心軸部12よりも上の部分である主軸部11aに摺動自在に嵌合する。軸受14は、シリンダ13のベーン溝も含んだ圧縮室30の一方の端面(電動機部20側の端面)を閉塞する。軸受14の内部及び上部には、弁体41(図2及び図3参照)を有する吐出機構40が設けられる。この吐出機構40の構成については、後述する。 The bearing 14 is provided in the closed container 3 and is configured in a substantially inverted T shape when viewed from the side surface. The bearing 14 is slidably fitted to the spindle portion 11a, which is a portion above the eccentric shaft portion 12 of the spindle 11. The bearing 14 closes one end face (the end face on the motor portion 20 side) of the compression chamber 30 including the vane groove of the cylinder 13. A discharge mechanism 40 having a valve body 41 (see FIGS. 2 and 3) is provided inside and above the bearing 14. The configuration of the discharge mechanism 40 will be described later.
 密閉容器3の横には、吸入マフラ60が設けられる。吸入マフラ60は、冷凍サイクルからの低圧のガス冷媒を吸入する。吸入マフラ60は、液冷媒が冷凍サイクルから戻ってきた場合に液冷媒が直接シリンダ13の圧縮室30に吸入されることを抑制する。吸入マフラ60は、シリンダ13の吸入ポートに第1吸入管31a及び第2吸入管31bを介して接続される。吸入マフラ60は、溶接等により密閉容器3の側面に固定される。 A suction muffler 60 is provided next to the closed container 3. The suction muffler 60 sucks a low-pressure gas refrigerant from the refrigeration cycle. The suction muffler 60 suppresses the liquid refrigerant from being directly sucked into the compression chamber 30 of the cylinder 13 when the liquid refrigerant returns from the refrigeration cycle. The suction muffler 60 is connected to the suction port of the cylinder 13 via the first suction pipe 31a and the second suction pipe 31b. The suction muffler 60 is fixed to the side surface of the closed container 3 by welding or the like.
 圧縮機構部10で圧縮された高温高圧のガス冷媒は、吐出マフラ17の吐出口45(図2参照)から電動機部20を通過して吐出管2aから圧縮機100の外部へ吐出される。 The high-temperature and high-pressure gas refrigerant compressed by the compression mechanism unit 10 passes through the motor unit 20 from the discharge port 45 (see FIG. 2) of the discharge muffler 17 and is discharged from the discharge pipe 2a to the outside of the compressor 100.
<電動機部20>
 電動機部20は、圧縮機構部10を駆動する機能を有している。
<Motor unit 20>
The electric motor unit 20 has a function of driving the compression mechanism unit 10.
 電動機部20は、回転子21及び固定子22等を含んで構成される。固定子22は、密閉容器3の内周面に当接して固定される。回転子21は、固定子22の内側に空隙を介して配置される。 The motor unit 20 includes a rotor 21, a stator 22, and the like. The stator 22 abuts on the inner peripheral surface of the closed container 3 and is fixed. The rotor 21 is arranged inside the stator 22 via a gap.
 固定子22は、複数枚の電磁鋼板を積層した固定子鉄心と、固定子鉄心のティースに絶縁部材を介して集中巻きされた巻線と、を少なくとも備えている。また、固定子22の巻線には、リード線が接続されている。リード線は、密閉容器3の外部から電力を供給するために上側容器2に設けられたガラス端子に接続される。 The stator 22 includes at least a stator core in which a plurality of electromagnetic steel sheets are laminated, and a winding wound centrally wound around the teeth of the stator core via an insulating member. Further, a lead wire is connected to the winding of the stator 22. The lead wire is connected to a glass terminal provided in the upper container 2 for supplying electric power from the outside of the closed container 3.
 回転子21は、複数枚の電磁鋼板を積層した回転子鉄心と、回転子鉄心に挿入された永久磁石と、を少なくとも備えている。回転子鉄心の中心には、主軸11の主軸部11aが焼き嵌め又は圧入されている。 The rotor 21 includes at least a rotor core in which a plurality of electromagnetic steel sheets are laminated and a permanent magnet inserted in the rotor core. The spindle portion 11a of the spindle 11 is shrink-fitted or press-fitted into the center of the rotor core.
<吐出機構40の構成>
 図2は、実施の形態1に係る圧縮機100の吐出機構40の弁体41が吐出口45を閉口している状態を示す図である。図3は、実施の形態1に係る圧縮機100の吐出機構40の弁体41が吐出口45を開口している状態を示す図である。
<Structure of discharge mechanism 40>
FIG. 2 is a diagram showing a state in which the valve body 41 of the discharge mechanism 40 of the compressor 100 according to the first embodiment closes the discharge port 45. FIG. 3 is a diagram showing a state in which the valve body 41 of the discharge mechanism 40 of the compressor 100 according to the first embodiment opens the discharge port 45.
 軸受14には、吐出口45が形成されている。吐出口45は、軸受14の鍔部に、圧縮室30と密閉容器3とが連通するように設けられている。吐出口45は、圧縮室30から密閉容器3の内部に冷媒が吐出される際に、冷媒が通過する通路を形成する穴である。吐出口45の圧縮室30側の開口部は、圧縮室30の端面に設けられている。具体的には、吐出口45の圧縮室30側の開口部は、シリンダ13に形成されている圧縮室30の上面の吐出ポートと平面視概略同位置となるように形成されている。 A discharge port 45 is formed in the bearing 14. The discharge port 45 is provided at the flange of the bearing 14 so that the compression chamber 30 and the closed container 3 communicate with each other. The discharge port 45 is a hole that forms a passage through which the refrigerant passes when the refrigerant is discharged from the compression chamber 30 into the closed container 3. The opening of the discharge port 45 on the compression chamber 30 side is provided on the end face of the compression chamber 30. Specifically, the opening of the discharge port 45 on the compression chamber 30 side is formed so as to be substantially at the same position as the discharge port on the upper surface of the compression chamber 30 formed in the cylinder 13.
 図2及び図3に示すように、吐出機構40は、弁体41、バネ43及びガイド蓋46を有する。図2において、矢印は圧縮室30からの弁体41へかかる高圧ガス冷媒を示す。また、図3において、矢印a、矢印b及び矢印cは高圧ガス冷媒の経路を示す。 As shown in FIGS. 2 and 3, the discharge mechanism 40 has a valve body 41, a spring 43, and a guide lid 46. In FIG. 2, the arrow indicates the high-pressure gas refrigerant applied to the valve body 41 from the compression chamber 30. Further, in FIG. 3, arrows a, b, and c indicate the paths of the high-pressure gas refrigerant.
 ガイド蓋46は、円筒形状であり、軸受14の上部側に設けられた閉塞部46aと、軸受14の内部に設けられた円筒部46bとを有する。閉塞部46aの内部と、円筒部46bの内部とはガイド穴42を構成する。閉塞部46aは、連通穴44が設けられている側のガイド蓋46の部分である。円筒部46bは、圧縮室30が設けられている側のガイド蓋46の部分であり、軸受14の内部に設けられている。円筒部46bの内部と吐出口45とは連通している。円筒部46bの下端は、弁体41の形状に合わせて形成され、軸受14に形成された弁体着座部46cが配置される。弁体着座部46cには、面取りが施されている。面取りが施される面は、例えば、高さ方向に2[mm]、径方向に3[mm]である。 The guide lid 46 has a cylindrical shape and has a closed portion 46a provided on the upper side of the bearing 14 and a cylindrical portion 46b provided inside the bearing 14. The inside of the closed portion 46a and the inside of the cylindrical portion 46b form a guide hole 42. The closing portion 46a is a portion of the guide lid 46 on the side where the communication hole 44 is provided. The cylindrical portion 46b is a portion of the guide lid 46 on the side where the compression chamber 30 is provided, and is provided inside the bearing 14. The inside of the cylindrical portion 46b and the discharge port 45 communicate with each other. The lower end of the cylindrical portion 46b is formed according to the shape of the valve body 41, and the valve body seating portion 46c formed on the bearing 14 is arranged. The valve body seating portion 46c is chamfered. The surface to be chamfered is, for example, 2 [mm] in the height direction and 3 [mm] in the radial direction.
 弁体41は、圧縮室30内の圧力及び密閉容器3内の圧力を受け、吐出口45を開閉するようになっている。圧縮室30内の圧力が密閉容器3内の圧力より低い時は、弁体41が吐出ポートに押し付けられることで吐出口45が閉口される。弁体41は、弁体41が吐出口45を閉じたときに、弁体41の圧縮室30側の端面が、吐出口45の圧縮室30側の端面に対して凹凸をほぼ生じないように配置される。このため、圧縮室30の端面と弁体41の圧縮室30側の端面とが、同一の平面で一致する。つまり、弁体41は、吐出口45の圧縮室30側の開口面を吐出口45の内側から閉じる。ここで、「一致」とは、クリアランス確保などのために弁体41の圧縮室30側の端面が吐出口45の端とわずかな距離だけ離れている場合も含む。例えば、弁体41の圧縮室30側の端面と圧縮室30の端面との距離が、吐出口45の全長の10分の1程度の距離だけ離れている場合である。また、圧縮室30からの圧力を受ける面積を増やすために、弁体41において、弁体41の圧縮室30側に、窪み、溝などが形成されていてもよい。 The valve body 41 receives the pressure in the compression chamber 30 and the pressure in the closed container 3 to open and close the discharge port 45. When the pressure in the compression chamber 30 is lower than the pressure in the closed container 3, the valve body 41 is pressed against the discharge port to close the discharge port 45. The valve body 41 is provided so that when the valve body 41 closes the discharge port 45, the end face of the valve body 41 on the compression chamber 30 side hardly causes unevenness with respect to the end face of the discharge port 45 on the compression chamber 30 side. Be placed. Therefore, the end face of the compression chamber 30 and the end face of the valve body 41 on the compression chamber 30 side coincide with each other on the same plane. That is, the valve body 41 closes the opening surface of the discharge port 45 on the compression chamber 30 side from the inside of the discharge port 45. Here, "matching" includes the case where the end face of the valve body 41 on the compression chamber 30 side is separated from the end of the discharge port 45 by a slight distance in order to secure clearance or the like. For example, the distance between the end face of the valve body 41 on the compression chamber 30 side and the end face of the compression chamber 30 is about 1/10 of the total length of the discharge port 45. Further, in order to increase the area that receives the pressure from the compression chamber 30, in the valve body 41, a dent, a groove, or the like may be formed on the compression chamber 30 side of the valve body 41.
 一方、圧縮室30内の圧力が密閉容器3内の圧力より高くなった時は、弁体41は圧縮室30内の圧力により上方向へ押し上げられ、吐出口45を開放する。吐出口45が開放されると、圧縮室30で圧縮された冷媒が圧縮室30の外部に導かれることになる。 On the other hand, when the pressure in the compression chamber 30 becomes higher than the pressure in the closed container 3, the valve body 41 is pushed upward by the pressure in the compression chamber 30 to open the discharge port 45. When the discharge port 45 is opened, the refrigerant compressed in the compression chamber 30 is guided to the outside of the compression chamber 30.
 吐出口45が開くと、吐出口45から吐出される高温高圧のガス冷媒は、密閉容器3内に放出される。 When the discharge port 45 is opened, the high-temperature and high-pressure gas refrigerant discharged from the discharge port 45 is discharged into the closed container 3.
 ガイド蓋46の閉塞部46aと円筒部46bとは、一体で形成されるが、閉塞部46aと円筒部46bとは別部品として形成されても良い。また、ガイド蓋46の円筒部46bは、軸受14とは別体として形成されるが、一体として形成されても良い。軸受14、閉塞部46a及び円筒部46bは、2部品又は3部品で形成される。ガイド蓋46の閉塞部46aには、接続部材であるバネ43の一端が取り付けられる。バネ43の一端は、ガイド蓋46内部のガイド穴42に配置される。バネ43の他端は、弁体41に取り付けられる。バネ43は、弁体41が吐出口45を閉口する方向にバネ力(弾性力)を与える。 The closed portion 46a and the cylindrical portion 46b of the guide lid 46 are integrally formed, but the closed portion 46a and the cylindrical portion 46b may be formed as separate parts. Further, although the cylindrical portion 46b of the guide lid 46 is formed as a separate body from the bearing 14, it may be formed integrally. The bearing 14, the closed portion 46a and the cylindrical portion 46b are formed of two or three parts. One end of the spring 43, which is a connecting member, is attached to the closing portion 46a of the guide lid 46. One end of the spring 43 is arranged in the guide hole 42 inside the guide lid 46. The other end of the spring 43 is attached to the valve body 41. The spring 43 applies a spring force (elastic force) in the direction in which the valve body 41 closes the discharge port 45.
 ガイド穴42は、円柱状の空間であり、ガイド蓋46の閉塞部46aの内部及びガイド蓋46の円筒部46bの内部である。また、円筒部46bは、軸受14の鍔部に設けられた穴に設けられる。ガイド穴42の圧縮室30側の端は、圧縮室30の端面とシリンダ13の内壁に一致するように形成されている。また、軸受14の下部は、圧縮室30の端面及びシリンダ13の端面と一致する。また、ガイド蓋46の内部の空間は、軸受14の鍔部側面から加工し、形成しても良い。ガイド穴42の圧縮室30と反対側の端部平面部は、別部品で覆うことで形成しても良い。 The guide hole 42 is a cylindrical space, and is inside the closed portion 46a of the guide lid 46 and inside the cylindrical portion 46b of the guide lid 46. Further, the cylindrical portion 46b is provided in a hole provided in the flange portion of the bearing 14. The end of the guide hole 42 on the compression chamber 30 side is formed so as to coincide with the end surface of the compression chamber 30 and the inner wall of the cylinder 13. Further, the lower portion of the bearing 14 coincides with the end surface of the compression chamber 30 and the end surface of the cylinder 13. Further, the space inside the guide lid 46 may be formed by processing from the side surface of the flange portion of the bearing 14. The flat end portion of the guide hole 42 opposite to the compression chamber 30 may be formed by covering it with another part.
 なお、ガイド穴42の圧縮室30側の端は、ガイド穴42の下側に設けられた圧縮室30の端面とシリンダ13の内壁に必ずしも一致する必要はない。例えば、ガイド穴42の圧縮室30側の端の位置が、シリンダ13の内壁よりも外側となる位置であってもよい。この場合、弁体41の一部がシリンダ13に接し、近接し、又はシリンダ13の上に配置した弾性体などに接する。また、ガイド穴42の圧縮室30側の端を圧縮室30の端面よりもわずかに密閉容器3内部側となる位置にしてもよい。これにより、弁体41とローリングピストン16とのクリアランスを確保することができる。 The end of the guide hole 42 on the compression chamber 30 side does not necessarily have to coincide with the end surface of the compression chamber 30 provided on the lower side of the guide hole 42 and the inner wall of the cylinder 13. For example, the position of the end of the guide hole 42 on the compression chamber 30 side may be a position outside the inner wall of the cylinder 13. In this case, a part of the valve body 41 is in contact with the cylinder 13 and is in close contact with or in contact with an elastic body or the like arranged on the cylinder 13. Further, the end of the guide hole 42 on the compression chamber 30 side may be positioned slightly closer to the inside of the closed container 3 than the end surface of the compression chamber 30. As a result, the clearance between the valve body 41 and the rolling piston 16 can be secured.
 また、ガイド蓋46が軸受14と別部品である場合、ガイド蓋46は、軸受14の鍔部内部に設けられても良い。この場合、吐出口45の長さを短くし、ガイド穴42の圧縮室30側の開口部を密閉容器3の内部側とつながる開口部とする。弁体着座部46cは、軸受14ではなく、ガイド蓋46の円筒部46bに設けられても良い。 Further, when the guide lid 46 is a separate part from the bearing 14, the guide lid 46 may be provided inside the flange portion of the bearing 14. In this case, the length of the discharge port 45 is shortened, and the opening of the guide hole 42 on the compression chamber 30 side is made an opening connected to the inner side of the closed container 3. The valve body seating portion 46c may be provided not on the bearing 14 but on the cylindrical portion 46b of the guide lid 46.
 ガイド蓋46の閉塞部46aには、円柱形状の連通穴44が形成されている。連通穴44は、ガイド蓋46の内部のガイド穴42と吐出口45から吐出された高圧冷媒が吐出マフラ17を介して吐出される密閉容器3内とを連通する。連通穴44の水平方向の外径は、弁体41の水平方向の外径よりも小さい。連通穴44の径はガイド蓋46の内径に対して小さく、ここではΦ6mmである。連通穴44の形状は円形状であるが、周囲の部品との干渉を考慮して楕円形状を選択しても良い。ガイド蓋46の弁体着座部46cは、弁体41の底面部分の少なくとも一部の部分が露出する形状に形成されても良い。 A cylindrical communication hole 44 is formed in the closed portion 46a of the guide lid 46. The communication hole 44 communicates between the guide hole 42 inside the guide lid 46 and the inside of the closed container 3 in which the high-pressure refrigerant discharged from the discharge port 45 is discharged via the discharge muffler 17. The horizontal outer diameter of the communication hole 44 is smaller than the horizontal outer diameter of the valve body 41. The diameter of the communication hole 44 is smaller than the inner diameter of the guide lid 46, which is Φ6 mm here. The shape of the communication hole 44 is a circular shape, but an elliptical shape may be selected in consideration of interference with surrounding parts. The valve body seating portion 46c of the guide lid 46 may be formed in a shape in which at least a part of the bottom surface portion of the valve body 41 is exposed.
 弁体41は、ガイド穴42内に配置され、ガイド穴42内の圧力が圧縮室30内の圧力よりも大きい場合、ガイド穴42に沿って、摺動して下方に移動する。これにより、吐出口45が閉じられる(図2参照)。弁体41の側面は、弁体41が吐出口45を閉じたときに、対応する吐出口45の側面と接触する。従って、弁体41の吐出口45の側面は、吐出口45の側面に対して凹凸がなくなるように形成される。また、弁体41は、ガイド穴42内の圧力が圧縮室30内の圧力よりも小さい場合、ガイド穴42内を上方に移動する。これにより、図3に示すように、吐出口45が開口される。 The valve body 41 is arranged in the guide hole 42, and when the pressure in the guide hole 42 is larger than the pressure in the compression chamber 30, it slides along the guide hole 42 and moves downward. As a result, the discharge port 45 is closed (see FIG. 2). The side surface of the valve body 41 comes into contact with the side surface of the corresponding discharge port 45 when the valve body 41 closes the discharge port 45. Therefore, the side surface of the discharge port 45 of the valve body 41 is formed so as to have no unevenness with respect to the side surface of the discharge port 45. Further, when the pressure in the guide hole 42 is smaller than the pressure in the compression chamber 30, the valve body 41 moves upward in the guide hole 42. As a result, as shown in FIG. 3, the discharge port 45 is opened.
 弁体41の材料の密度は鋼の密度よりも低い。また、弁体41の材料は少なくとも一部が樹脂材料であっても良い。実施の形態1においては、樹脂材料はPEEK(ポリエーテルエーテルケトン)である。また、樹脂材料はPAI(ポリアミドイミド)又はアルミであっても良い。 The density of the material of the valve body 41 is lower than the density of steel. Further, the material of the valve body 41 may be at least a part of a resin material. In the first embodiment, the resin material is PEEK (polyetheretherketone). Further, the resin material may be PAI (polyamideimide) or aluminum.
 さらに、弁体41の表面は、金属コーティングが施されている。実施の形態1においては、ニッケルリンコーティングが施されている。コーティングの膜厚は、10[μm]~20[μm]である。 Furthermore, the surface of the valve body 41 is coated with a metal. In the first embodiment, nickel phosphorus coating is applied. The film thickness of the coating is 10 [μm] to 20 [μm].
 弁体41が吐出口45を閉じている場合、バネ43は自然長よりも短い。 When the valve body 41 closes the discharge port 45, the spring 43 is shorter than the natural length.
 弁体41の内部には、バネ43を固定する嵌合部を備える。嵌合部は、バネ43端部の外径又は内径を固定する。 The inside of the valve body 41 is provided with a fitting portion for fixing the spring 43. The fitting portion fixes the outer diameter or the inner diameter of the end portion of the spring 43.
 弁体41と弁体着座部46cとの間にはゴム材を備えても良い。ゴム材を備えることにより、弁体41の弁体着座部46cへの着座時の衝撃緩和及びシール性の補助をすることができる。また、弁体着座部46c近傍に給油用の溝を備えても良い。給油用の溝を備えることにより、弁体41の弁体着座部46cへの着座時の油膜によるシール性を確保することができる。 A rubber material may be provided between the valve body 41 and the valve body seating portion 46c. By providing the rubber material, it is possible to reduce the impact when the valve body 41 is seated on the valve body seating portion 46c and to assist the sealing property. Further, a groove for refueling may be provided in the vicinity of the valve body seating portion 46c. By providing the groove for refueling, it is possible to secure the sealing property by the oil film when the valve body 41 is seated on the valve body seating portion 46c.
 弁体41は、吐出口45が大きく開口した際に、弁体41の先端が、吐出口45の内部に少し突出して部分的に吐出口45を覆った状態としても良い。これにより、弁体41の先端が吐出口45の側面の開口の内部に入ることを防止できる。 The valve body 41 may be in a state in which the tip of the valve body 41 slightly protrudes into the inside of the discharge port 45 and partially covers the discharge port 45 when the discharge port 45 is greatly opened. This makes it possible to prevent the tip of the valve body 41 from entering the inside of the opening on the side surface of the discharge port 45.
 図4は、実施の形態1に係る圧縮機100の弁体41とガイド穴42とのクリアランスΔcを説明するための図である。 FIG. 4 is a diagram for explaining the clearance Δc between the valve body 41 of the compressor 100 and the guide hole 42 according to the first embodiment.
 図4において、弁体41がガイド穴42に沿って移動する移動方向と直交する方向の円筒部46bの内径をarとする。弁体41がガイド穴42に沿って移動する移動方向と直交する方向の弁体41の最外径をbrとする。円筒部46bの内径arと弁体41の最外径brとのクリアランスをΔcとする。 In FIG. 4, the inner diameter of the cylindrical portion 46b in the direction orthogonal to the moving direction in which the valve body 41 moves along the guide hole 42 is defined as ar. Let br be the outermost diameter of the valve body 41 in the direction orthogonal to the moving direction in which the valve body 41 moves along the guide hole 42. The clearance between the inner diameter ar of the cylindrical portion 46b and the outermost diameter br of the valve body 41 is defined as Δc.
 この場合、実施の形態1に係る圧縮機100は、
 Δc=ar-br (1)
 1/1000≦Δc/br≦1/100 (2)
が成立する。
In this case, the compressor 100 according to the first embodiment is
Δc = ar-br (1)
1/1000 ≤ Δc / br ≤ 1/100 (2)
Is established.
 弁体41の材料の温度に対する線膨張係数は、弁体着座部46cの材料の温度に対する線膨張係数と異なる。弁体41の線膨張係数の範囲は、圧縮機100の運転範囲における高圧冷媒の最大吐出時温度にて、着座時の弁体41の端面が圧縮室30に入らない範囲である。 The coefficient of linear expansion with respect to the temperature of the material of the valve body 41 is different from the coefficient of linear expansion with respect to the temperature of the material of the valve body seating portion 46c. The range of the linear expansion coefficient of the valve body 41 is a range in which the end face of the valve body 41 at the time of sitting does not enter the compression chamber 30 at the maximum discharge temperature of the high-pressure refrigerant in the operating range of the compressor 100.
 例えば、弁体41の高さは、15[mm]である。弁体41が動作するガイド穴42の高さは、30[mm]である。例えば、弁体41の最外径brを30[mm]とした場合、クリアランスΔcは、30[μm]~300[μm]である。 For example, the height of the valve body 41 is 15 [mm]. The height of the guide hole 42 in which the valve body 41 operates is 30 [mm]. For example, when the outermost diameter br of the valve body 41 is 30 [mm], the clearance Δc is 30 [μm] to 300 [μm].
 図4に示すように、軸受14の弁体着座部46cは、テーパ形状を有する。弁体着座部46cには弁体41が着座する。弁体41の弁体着座部46c側の先端の形状は、面取り形状であり、テーパ形状41_tである。弁体41のテーパ形状41_tのテーパ角度は、弁体着座部46cのテーパ形状のテーパ角度と一致する。 As shown in FIG. 4, the valve body seating portion 46c of the bearing 14 has a tapered shape. The valve body 41 is seated on the valve body seating portion 46c. The shape of the tip of the valve body 41 on the valve body seating portion 46c side is a chamfered shape and a tapered shape 41_t. The taper angle of the tapered shape 41_t of the valve body 41 coincides with the taper angle of the tapered shape of the valve body seating portion 46c.
 弁体41は、内部に中空部41_bを有する。弁体41の形状は、弁体41の移動方向と直交する方向から見た断面が、T字形状であっても良い。 The valve body 41 has a hollow portion 41_b inside. The shape of the valve body 41 may have a T-shaped cross section when viewed from a direction orthogonal to the moving direction of the valve body 41.
 図5は、実施の形態1に係る圧縮機100のT字形状の弁体41_1の側面図である。図6は、実施の形態1に係る圧縮機100のT字形状の弁体41_1の上面図である。図7は、実施の形態1に係る圧縮機100のT字形状の弁体41_1が取りけられた吐出機構40を示す図である。 FIG. 5 is a side view of the T-shaped valve body 41_1 of the compressor 100 according to the first embodiment. FIG. 6 is a top view of the T-shaped valve body 41_1 of the compressor 100 according to the first embodiment. FIG. 7 is a diagram showing a discharge mechanism 40 from which the T-shaped valve body 41_1 of the compressor 100 according to the first embodiment is removed.
 図5~図7に示すように、弁体41_1は、弁体41の移動方向と直交する方向から見た断面が、T字形状である。すなわち、弁体41_1の移動方向に直交する第1部分41_1_1の断面は、吐出口45を開閉する第2部分41_1_2の移動方向に直交する断面よりも小さい。 As shown in FIGS. 5 to 7, the valve body 41_1 has a T-shaped cross section when viewed from a direction orthogonal to the moving direction of the valve body 41. That is, the cross section of the first portion 41_1_1 orthogonal to the moving direction of the valve body 41_1 is smaller than the cross section orthogonal to the moving direction of the second portion 41_1_1 that opens and closes the discharge port 45.
 弁体41_1の第1部分41_1_1は、バネ43の内部に取り付けられる。弁体41_1の第1部分41_1_1とバネ43の取り付けの仕方は問わない。 The first portion 41_1_1 of the valve body 41_1 is attached to the inside of the spring 43. It does not matter how the first portion 41_1_1 of the valve body 41_1 and the spring 43 are attached.
[圧縮機100の動作]
 リード線を介して電動機部20の固定子22に電力が供給される。これにより、固定子22の巻線に電流が流れ、巻線から磁束が発生する。電動機部20の回転子21は、巻線から発生する磁束と、回転子21の永久磁石から発生する磁束との作用によって回転する。回転子21の回転によって、回転子21に固定された主軸11が回転する。主軸11の回転に伴い、圧縮機構部10のローリングピストン16がシリンダ13の圧縮室30内で偏心回転する。
[Operation of compressor 100]
Electric power is supplied to the stator 22 of the motor unit 20 via the lead wire. As a result, a current flows through the winding of the stator 22, and a magnetic flux is generated from the winding. The rotor 21 of the motor unit 20 rotates due to the action of the magnetic flux generated from the winding and the magnetic flux generated from the permanent magnet of the rotor 21. The rotation of the rotor 21 causes the spindle 11 fixed to the rotor 21 to rotate. As the spindle 11 rotates, the rolling piston 16 of the compression mechanism portion 10 eccentrically rotates in the compression chamber 30 of the cylinder 13.
 圧縮室30におけるシリンダ13とローリングピストン16との間の空間は、図示省略のベーンによって2つに分割されている。主軸11の回転に伴い、それらの2つの空間の容積が変化する。一方の空間では、徐々に容積が拡大し、アキュームレータ300から低圧のガス冷媒が吸入される。他方の空間では、徐々に容積が縮小し、中のガス冷媒が圧縮室30で圧縮される。 The space between the cylinder 13 and the rolling piston 16 in the compression chamber 30 is divided into two by vanes (not shown). As the spindle 11 rotates, the volumes of those two spaces change. In one space, the volume gradually expands, and a low-pressure gas refrigerant is sucked from the accumulator 300. In the other space, the volume is gradually reduced, and the gas refrigerant inside is compressed in the compression chamber 30.
 圧縮室30で圧縮され、高圧高温となったガス冷媒は、吐出機構40の弁体41を押し上げ、吐出口45から吐出される。ベーン(図示せず)は密閉容器3内に放出された高圧の冷媒によって、ローリングピストン16に押し付けられ、ローリングピストン16の動きと連動して、ベーン溝内を径方向に摺動し、圧縮室30の低圧空間と高圧空間とを仕切る役割を果たす。このとき、吐出機構40は、密閉容器3内の吐出圧と圧縮室30の内圧の圧力差によって、吐出口45を開閉し、圧縮した冷媒を吐出する。密閉容器3内の吐出圧は、冷凍サイクルの運転条件によって変わる。このため、吐出機構40は、密閉容器3内の吐出圧に対して所定圧力以上になると弁体41が開となるなど、相対的な高低で開閉動作が行われる。吐出口45から吐出されたガス冷媒は、吐出マフラ17の吐出口45を介して密閉容器3内の空間に吐出される。吐出されたガス冷媒は、電動機部20の隙間を通過して密閉容器3の頂部に連結されている吐出管2aから密閉容器3の外へ吐出される。密閉容器3の外へ吐出された冷媒は、冷凍サイクルを循環し、再びアキュームレータ300に戻ってくる。 The gas refrigerant compressed in the compression chamber 30 and having a high pressure and high temperature pushes up the valve body 41 of the discharge mechanism 40 and is discharged from the discharge port 45. The vane (not shown) is pressed against the rolling piston 16 by the high-pressure refrigerant discharged into the closed container 3, and slides radially in the vane groove in conjunction with the movement of the rolling piston 16 to form a compression chamber. It plays a role of partitioning the low pressure space and the high pressure space of 30. At this time, the discharge mechanism 40 opens and closes the discharge port 45 according to the pressure difference between the discharge pressure in the closed container 3 and the internal pressure in the compression chamber 30, and discharges the compressed refrigerant. The discharge pressure in the closed container 3 varies depending on the operating conditions of the refrigeration cycle. Therefore, the discharge mechanism 40 opens and closes at a relative height, such as opening the valve body 41 when the pressure exceeds a predetermined pressure with respect to the discharge pressure in the closed container 3. The gas refrigerant discharged from the discharge port 45 is discharged into the space inside the closed container 3 through the discharge port 45 of the discharge muffler 17. The discharged gas refrigerant passes through the gap of the motor unit 20 and is discharged to the outside of the closed container 3 from the discharge pipe 2a connected to the top of the closed container 3. The refrigerant discharged to the outside of the closed container 3 circulates in the refrigeration cycle and returns to the accumulator 300 again.
[吐出機構40の動作]
 次に、吐出機構40の動作について説明する。まず、圧縮室30の内圧が吐出機構40のガイド穴42の内圧よりも小さいときは、弁体41は、バネ43のバネ力とガイド穴42内の圧力とにより、吐出口45を閉じる方向に荷重を受ける。弁体41の圧縮室30側の端面は、圧縮室30の端面から突出することなく吐出口45を閉口するとともに、圧縮室30の内圧を受けることになる。
[Operation of discharge mechanism 40]
Next, the operation of the discharge mechanism 40 will be described. First, when the internal pressure of the compression chamber 30 is smaller than the internal pressure of the guide hole 42 of the discharge mechanism 40, the valve body 41 tends to close the discharge port 45 by the spring force of the spring 43 and the pressure in the guide hole 42. Receive a load. The end face of the valve body 41 on the compression chamber 30 side closes the discharge port 45 without protruding from the end face of the compression chamber 30, and receives the internal pressure of the compression chamber 30.
 次に、圧縮室30内で冷媒が圧縮され、弁体41の圧縮室30側端面が内圧を受ける。弁体41の圧縮室30側端面の内圧による荷重が、吐出機構40のガイド穴42の内圧及びバネ43のバネ力の合力よりも大きい場合、図3に示すように、吐出口45を塞いでいた弁体41は、ガイド穴42に沿って、バネ43側へ移動する。そして、弁体41は吐出口45を開口する。 Next, the refrigerant is compressed in the compression chamber 30, and the end face on the compression chamber 30 side of the valve body 41 receives internal pressure. When the load due to the internal pressure of the end surface of the valve body 41 on the compression chamber 30 side is larger than the resultant force of the internal pressure of the guide hole 42 of the discharge mechanism 40 and the spring force of the spring 43, the discharge port 45 is closed as shown in FIG. The valve body 41 that has been there moves toward the spring 43 side along the guide hole 42. Then, the valve body 41 opens the discharge port 45.
 吐出口45が開口すると、冷媒の吐出経路が形成される。吐出口45から吐出される高温高圧のガス冷媒は、密閉容器3内に放出される。具体的には、冷媒は、ガイド穴42の内部かつ弁体41の下部を通り、軸受14の鍔部を通過し(矢印a)、ガイド穴42の側面に設けられた穴を通り(矢印b)、吐出マフラ17内部に流出する。その後、吐出マフラ17内部の高圧冷媒は、軸受14と吐出マフラ17の間に形成された隙間及び吐出マフラ17そのものに形成された穴を通過し(矢印c)、圧縮機100の密閉容器3内部へと吐出される。冷媒の吐出が完了すると、弁体41は、バネ43のバネ力によって、吐出口45側へ移動し、吐出口45を閉口し始める。そして、圧縮室30の内圧が密閉容器3内の圧力よりも小さくなる。次に、図2に示すように、圧縮室30側の弁体41の先端が、ガイド穴42内の圧力と圧縮室30内の圧力との圧力差によって、吐出口45の端部に設けられた弁体着座部46cに押し付けられ、吐出口45は完全に閉口する。 When the discharge port 45 opens, a discharge path for the refrigerant is formed. The high-temperature and high-pressure gas refrigerant discharged from the discharge port 45 is discharged into the closed container 3. Specifically, the refrigerant passes through the inside of the guide hole 42 and the lower part of the valve body 41, passes through the flange portion of the bearing 14 (arrow a), and passes through the hole provided on the side surface of the guide hole 42 (arrow b). ), Outflow to the inside of the discharge muffler 17. After that, the high-pressure refrigerant inside the discharge muffler 17 passes through the gap formed between the bearing 14 and the discharge muffler 17 and the hole formed in the discharge muffler 17 itself (arrow c), and inside the closed container 3 of the compressor 100. Is discharged to. When the discharge of the refrigerant is completed, the valve body 41 moves toward the discharge port 45 side by the spring force of the spring 43, and starts closing the discharge port 45. Then, the internal pressure of the compression chamber 30 becomes smaller than the pressure inside the closed container 3. Next, as shown in FIG. 2, the tip of the valve body 41 on the compression chamber 30 side is provided at the end of the discharge port 45 by the pressure difference between the pressure in the guide hole 42 and the pressure in the compression chamber 30. It is pressed against the valve seating portion 46c, and the discharge port 45 is completely closed.
 なお、冷媒の吐出動作が行われる圧縮室30の内圧の閾値は、絶対的な値であって良い。また、バネ43は、ガイド穴42内で動作する必要はなく、連通穴44を通る冷媒の圧損を低減するために、バネ43をガイド穴42以外に設け、ガイド穴42の容積を拡大しても良い。 The threshold value of the internal pressure of the compression chamber 30 in which the refrigerant discharge operation is performed may be an absolute value. Further, the spring 43 does not need to operate in the guide hole 42, and in order to reduce the pressure loss of the refrigerant passing through the communication hole 44, the spring 43 is provided in a place other than the guide hole 42 to expand the volume of the guide hole 42. Is also good.
 また、実施の形態1の吐出機構40は、ガイド蓋46に連通穴44を設けなくても良い。 Further, the discharge mechanism 40 of the first embodiment does not have to provide the communication hole 44 in the guide lid 46.
 さらに、第2吸入管31bが設けられたシリンダ13の吐出機構40が、軸受14の下側の軸受14aに設けられても良い。 Further, the discharge mechanism 40 of the cylinder 13 provided with the second suction pipe 31b may be provided on the bearing 14a on the lower side of the bearing 14.
 図8は、実施の形態1に係る圧縮機100に第1吐出機構40_1及び第2吐出機構40_2を設けた場合を示す図である。図8に示すように、第1吐出機構40_1はシリンダ13の上側の軸受14に取り付けられ、第2吐出機構40_2はシリンダ13の下側の軸受14aに取り付けられる。第1吐出機構40_1及び第2吐出機構40_2の構成は、吐出機構40の構成と略同様である。 FIG. 8 is a diagram showing a case where the first discharge mechanism 40_1 and the second discharge mechanism 40_1 are provided in the compressor 100 according to the first embodiment. As shown in FIG. 8, the first discharge mechanism 40_1 is attached to the bearing 14 on the upper side of the cylinder 13, and the second discharge mechanism 40_1 is attached to the bearing 14a on the lower side of the cylinder 13. The configurations of the first discharge mechanism 40_1 and the second discharge mechanism 40_1 are substantially the same as the configurations of the discharge mechanism 40.
 第1吐出機構40_1と第2吐出機構40_2との相違は、第2吐出機構40_2の弁体41の質量が第1吐出機構40_1の弁体41の質量よりも軽い。第2吐出機構40_2のバネ43のバネ定数が第1吐出機構40_1のバネ43のバネ定数よりも大きい。第2吐出機構40_2のバネ43の自然長は、第1吐出機構40_1のバネ43の自然長よりも短い。 The difference between the first discharge mechanism 40_1 and the second discharge mechanism 40_1 is that the mass of the valve body 41 of the second discharge mechanism 40_1 is lighter than the mass of the valve body 41 of the first discharge mechanism 40_1. The spring constant of the spring 43 of the second ejection mechanism 40_1 is larger than the spring constant of the spring 43 of the first ejection mechanism 40_1. The natural length of the spring 43 of the second discharge mechanism 40_1 is shorter than the natural length of the spring 43 of the first discharge mechanism 40_1.
 複数の圧縮室30及び複数の吐出機構40を備える場合は、弁体41の往復動作は重力の影響を受けるため、吐出口45の開口から閉塞までの時間を揃えるために各弁体41の質量を異なるものにする。この場合、吐出口45を閉じる時の弁体41の動作方向が上向きの弁体41の質量が、動作方向が下向きの弁体41の質量よりも軽量である。 When a plurality of compression chambers 30 and a plurality of discharge mechanisms 40 are provided, the reciprocating operation of the valve body 41 is affected by gravity. To be different. In this case, the mass of the valve body 41 whose operating direction is upward when the discharge port 45 is closed is lighter than the mass of the valve body 41 whose operating direction is downward.
[効果]
 実施の形態1の圧縮機100によれば、Δc=ar-br及び1/1000≦Δc/br≦1/100の関係があるので、弁体41のバネ43側の空間と、弁体41の吐出口45側の空間とのシール性を高めることができる。その結果、弁体41のバネ43側の空間の圧力と、弁体41の吐出口45側の空間の圧力との差圧を有効に活用して、弁体41の移動速度を高めることができる。従って、圧縮効率の向上を図ることができる圧縮機100を提供することができる。
[effect]
According to the compressor 100 of the first embodiment, since there is a relationship of Δc = ar−br and 1/1000 ≦ Δc / br ≦ 1/100, the space on the spring 43 side of the valve body 41 and the valve body 41 It is possible to improve the sealing property with the space on the discharge port 45 side. As a result, the moving speed of the valve body 41 can be increased by effectively utilizing the differential pressure between the pressure in the space on the spring 43 side of the valve body 41 and the pressure in the space on the discharge port 45 side of the valve body 41. .. Therefore, it is possible to provide the compressor 100 that can improve the compression efficiency.
 この差圧を用いるのは弁体41による吐出口45の閉塞時だけでなく、弁体41の上昇時による吐出口45の開放時も同様である。このため弁体41の動作を高速にすることができる。また、リード弁を使用する場合に比べ、実施の形態1の圧縮機100は、冷媒吐出の流路面積が大きく確保され、吐出時の圧力損失を低減され、圧縮機効率が向上される。 This differential pressure is used not only when the discharge port 45 is closed by the valve body 41, but also when the discharge port 45 is opened when the valve body 41 rises. Therefore, the operation of the valve body 41 can be increased in speed. Further, as compared with the case of using the reed valve, in the compressor 100 of the first embodiment, a large flow path area for discharging the refrigerant is secured, the pressure loss at the time of discharging is reduced, and the compressor efficiency is improved.
 また、弁体41に軽い樹脂材料を使用するので、吐出口45を開閉する際の弁体41の円筒部46bの側面との摩擦力を低減することができる。従って、実施の形態1の圧縮機100は、弁体41の開き遅れ及び閉じ遅れが抑えられ、過圧縮損失及び吸入過熱損失を低減することができる。さらに、弁体41が吐出口45を閉口するときのガイド穴42端部との衝撃荷重も低減することができる。このため、圧縮機100の信頼性を向上することができる。 Further, since a light resin material is used for the valve body 41, it is possible to reduce the frictional force with the side surface of the cylindrical portion 46b of the valve body 41 when opening and closing the discharge port 45. Therefore, in the compressor 100 of the first embodiment, the opening delay and the closing delay of the valve body 41 can be suppressed, and the overcompression loss and the suction superheat loss can be reduced. Further, the impact load with the end of the guide hole 42 when the valve body 41 closes the discharge port 45 can be reduced. Therefore, the reliability of the compressor 100 can be improved.
 弁体41には、金属コーティングが施されているので、弁体41の往復動作の信頼性が向上する。 Since the valve body 41 is coated with a metal, the reliability of the reciprocating operation of the valve body 41 is improved.
 弁体41が吐出口45を閉じている場合、バネ43は自然長よりも短い。従って、弁体41が着座状態かつ吐出前後の冷媒差圧が少ない状態においても、弁体41は軸受14に十分なシール性で着座し、圧縮機100は運転可能である。ここで、吐出前後の冷媒差圧が少ない状態とは一般的な圧縮機100の運転範囲に基づくものであり、例えば冷媒をR410Aとすれば吐出側が2MPa、吸入側が1.5MPa、差圧が0.5MPa程度の小さい冷媒差圧である。 When the valve body 41 closes the discharge port 45, the spring 43 is shorter than the natural length. Therefore, even when the valve body 41 is seated and the refrigerant differential pressure before and after discharge is small, the valve body 41 is seated on the bearing 14 with sufficient sealing property, and the compressor 100 can be operated. Here, the state where the refrigerant differential pressure before and after discharge is small is based on the operating range of a general compressor 100. For example, if the refrigerant is R410A, the discharge side is 2 MPa, the suction side is 1.5 MPa, and the differential pressure is 0. It is a small refrigerant differential pressure of about 5.5 MPa.
 実施の形態1の圧縮機100によれば、ガイド蓋46のガイド穴42内の圧力が圧縮室30内の圧力よりも大きい場合、弁体41が、ガイド穴42の内部を移動し、吐出口45が閉じられる。密閉容器3内には、吐出口45から吐出された冷媒が吐出される。連通穴44は、密閉容器3内の空間と連通しているので、ガイド穴42に滞留した冷媒よりも高圧な吐出冷媒によりガイド穴42内部かつ弁体41の上部の空間が圧縮される。これにより、ダンパ効果により、弁体41による吐出口45の開き遅れ及び閉じ遅れを抑制することができる。 According to the compressor 100 of the first embodiment, when the pressure in the guide hole 42 of the guide lid 46 is larger than the pressure in the compression chamber 30, the valve body 41 moves inside the guide hole 42 and is discharged. 45 is closed. The refrigerant discharged from the discharge port 45 is discharged into the closed container 3. Since the communication hole 44 communicates with the space inside the closed container 3, the space inside the guide hole 42 and above the valve body 41 is compressed by the discharged refrigerant having a higher pressure than the refrigerant staying in the guide hole 42. As a result, due to the damper effect, it is possible to suppress the opening delay and the closing delay of the discharge port 45 by the valve body 41.
 また、実施の形態1の圧縮機100によれば、ガイド蓋46に連通穴44が設けられる。連通穴44の径は、ガイド蓋46の内径に対して小さい。従って、弁体41の上昇時に、弁体41と閉塞部46aとの間の空間の冷媒が連通穴44から逃げ切らず、冷媒が圧縮されて弁体41が押し戻される。このとき、弁体41と閉塞部46aとの間の空間に滞留する冷媒の圧力は、圧縮過程が完了して密閉容器3内部に吐出された高圧冷媒よりもさらに高圧である。このダンパ効果によって、弁体41は上昇完了後、速やかに下降を開始し、所望の着座タイミングから閉じ遅れることなく軸受14内に設けられた弁体着座部46cに着座する。 Further, according to the compressor 100 of the first embodiment, the guide lid 46 is provided with a communication hole 44. The diameter of the communication hole 44 is smaller than the inner diameter of the guide lid 46. Therefore, when the valve body 41 rises, the refrigerant in the space between the valve body 41 and the closing portion 46a does not completely escape from the communication hole 44, the refrigerant is compressed, and the valve body 41 is pushed back. At this time, the pressure of the refrigerant staying in the space between the valve body 41 and the closing portion 46a is higher than that of the high-pressure refrigerant discharged into the closed container 3 after the compression process is completed. Due to this damper effect, the valve body 41 starts descending immediately after the ascending is completed, and is seated on the valve body seating portion 46c provided in the bearing 14 without delaying closing from the desired seating timing.
 さらに、実施の形態1の圧縮機100によれば、連通穴44の水平方向の外径を弁体41の水平方向の外径よりも小さくしているので、さらに、弁体41の閉口速度が低下することを防止することができる。 Further, according to the compressor 100 of the first embodiment, since the horizontal outer diameter of the communication hole 44 is smaller than the horizontal outer diameter of the valve body 41, the closing speed of the valve body 41 is further increased. It is possible to prevent the decrease.
 さらに、実施の形態1の圧縮機100によれば、ガイド穴42の圧縮室30側の端は、圧縮室30の端面とシリンダ13の内壁に一致するように形成されているので、冷媒の流路面積が大きくなり、吐出圧力損失を低減できる。 Further, according to the compressor 100 of the first embodiment, since the end of the guide hole 42 on the compression chamber 30 side is formed so as to coincide with the end surface of the compression chamber 30 and the inner wall of the cylinder 13, the flow of the refrigerant is formed. The road area becomes large and the discharge pressure loss can be reduced.
 さらに、実施の形態1の圧縮機100によれば、吐出経路が圧縮室30、弁体41、吐出口45の順となるように構成されている。そして、圧縮室30の直後で、弁体41により吐出口45を閉塞する。これにより、圧縮機100の死容積を縮小することができる。このため、冷媒の再膨張による圧縮機100の効率低下を抑えることができる。 Further, according to the compressor 100 of the first embodiment, the discharge path is configured to be in the order of the compression chamber 30, the valve body 41, and the discharge port 45. Immediately after the compression chamber 30, the discharge port 45 is closed by the valve body 41. As a result, the dead volume of the compressor 100 can be reduced. Therefore, it is possible to suppress a decrease in efficiency of the compressor 100 due to the re-expansion of the refrigerant.
 さらに、実施の形態1の圧縮機100によれば、圧縮室30の端面と弁体41の圧縮室30側の端面とが、同一の平面で一致する。従って、圧縮機100の死容積を最小にすることができ、かつ、弁体41が圧縮室30の内部に突出して、弁体41がローリングピストン16と衝突することを防止することができる。 Further, according to the compressor 100 of the first embodiment, the end face of the compression chamber 30 and the end face of the valve body 41 on the compression chamber 30 side coincide with each other on the same plane. Therefore, the dead volume of the compressor 100 can be minimized, and the valve body 41 can be prevented from protruding into the compression chamber 30 and colliding with the rolling piston 16.
 さらに、実施の形態1の圧縮機100によれば、ガイド蓋46の円筒部46bを軸受14と別部品で形成しているので、軸受14の構造を簡素にすることができ、低コストな圧縮機100を提供することができる。 Further, according to the compressor 100 of the first embodiment, since the cylindrical portion 46b of the guide lid 46 is formed of a separate part from the bearing 14, the structure of the bearing 14 can be simplified and the compression can be performed at low cost. The machine 100 can be provided.
 さらに、実施の形態1の圧縮機100によれば、ガイド蓋46の円筒部46bを軸受14と一体形成した場合、弁体41と弁体着座部46cの芯ズレを抑制できるため信頼性の高い圧縮機100を提供することができる。 Further, according to the compressor 100 of the first embodiment, when the cylindrical portion 46b of the guide lid 46 is integrally formed with the bearing 14, it is possible to suppress the misalignment between the valve body 41 and the valve body seating portion 46c, so that the reliability is high. The compressor 100 can be provided.
 さらに、実施の形態1の圧縮機100によれば、連通穴44の水平方向の外径は、弁体41の水平方向の外径よりも小さい。これにより、連通穴44は、絞り部として振る舞い、連通穴44で抑制しようとしていたダンパ効果を設計所望以上には抑制させない効果がある。また、吐出口45の閉口時には弁体41が速やかに閉じることを助ける効果がある。 Further, according to the compressor 100 of the first embodiment, the horizontal outer diameter of the communication hole 44 is smaller than the horizontal outer diameter of the valve body 41. As a result, the communication hole 44 behaves as a throttle portion, and has the effect of not suppressing the damper effect that the communication hole 44 was trying to suppress more than desired. Further, when the discharge port 45 is closed, there is an effect of helping the valve body 41 to close quickly.
実施の形態2.
 図9は、実施の形態2に係る冷凍サイクル装置200の冷媒回路構成を概略的に示す冷媒回路図である。図9に基づいて、冷凍サイクル装置200の構成及び動作について説明する。実施の形態2に係る冷凍サイクル装置200は、実施の形態1に係る圧縮機100のいずれかを冷媒回路の一要素として備えたものである。なお、図9では、便宜的に、実施の形態1に係る圧縮機100を備えた場合を図示している。
Embodiment 2.
FIG. 9 is a refrigerant circuit diagram schematically showing a refrigerant circuit configuration of the refrigerating cycle apparatus 200 according to the second embodiment. The configuration and operation of the refrigeration cycle apparatus 200 will be described with reference to FIG. The refrigerating cycle apparatus 200 according to the second embodiment includes any one of the compressors 100 according to the first embodiment as an element of the refrigerant circuit. Note that FIG. 9 shows a case where the compressor 100 according to the first embodiment is provided for convenience.
<冷凍サイクル装置200の構成>
 冷凍サイクル装置200は、圧縮機100、流路切替装置151、第1熱交換器152、膨張装置153、及び、第2熱交換器154を有している。圧縮機100、第1熱交換器152、膨張装置153、及び、第2熱交換器154が、高圧側配管155a及び低圧側配管155bにより配管接続されて冷媒回路を形成している。また、圧縮機100の上流側にはアキュームレータ300が配置されている。
<Structure of refrigeration cycle device 200>
The refrigeration cycle device 200 includes a compressor 100, a flow path switching device 151, a first heat exchanger 152, an expansion device 153, and a second heat exchanger 154. The compressor 100, the first heat exchanger 152, the expansion device 153, and the second heat exchanger 154 are connected by pipes by the high pressure side pipe 155a and the low pressure side pipe 155b to form a refrigerant circuit. Further, an accumulator 300 is arranged on the upstream side of the compressor 100.
 圧縮機100は、吸入された冷媒を圧縮して高温高圧の状態とするものである。圧縮機100で圧縮された冷媒は、圧縮機100から吐出されて第1熱交換器152又は第2熱交換器154へ送られる。 The compressor 100 compresses the sucked refrigerant into a high temperature and high pressure state. The refrigerant compressed by the compressor 100 is discharged from the compressor 100 and sent to the first heat exchanger 152 or the second heat exchanger 154.
 流路切替装置151は、暖房運転と冷房運転とにおいて冷媒の流れを切り替えるものである。つまり、流路切替装置151は、暖房運転時には圧縮機100と第2熱交換器154とを接続するように切り替えられ、冷房運転時には圧縮機100と第1熱交換器152とを接続するように切り替えられる。なお、流路切替装置151は、たとえば四方弁で構成するとよい。ただし、二方弁又は三方弁の組み合わせを流路切替装置151として採用してもよい。 The flow path switching device 151 switches the flow of the refrigerant between the heating operation and the cooling operation. That is, the flow path switching device 151 is switched so as to connect the compressor 100 and the second heat exchanger 154 during the heating operation, and to connect the compressor 100 and the first heat exchanger 152 during the cooling operation. Can be switched. The flow path switching device 151 may be composed of, for example, a four-way valve. However, a combination of a two-way valve or a three-way valve may be adopted as the flow path switching device 151.
 第1熱交換器152は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能するものである。つまり、蒸発器として機能する場合、第1熱交換器152は、膨張装置153から流出された低温低圧の冷媒と、例えば図示省略の送風機により供給される空気とが熱交換し、低温低圧の液冷媒(又は気液二相冷媒)が蒸発する。一方、凝縮器として機能する場合、第1熱交換器152は、圧縮機100から吐出された高温高圧の冷媒と、例えば図示省略の送風機により供給される空気とが熱交換し、高温高圧のガス冷媒が凝縮する。なお、第1熱交換器152を、冷媒-水熱交換器で構成してもよい。この場合、第1熱交換器152では、冷媒と、水などの熱媒体とで熱交換が実行される。 The first heat exchanger 152 functions as an evaporator during the heating operation and as a condenser during the cooling operation. That is, when functioning as an evaporator, the first heat exchanger 152 exchanges heat between the low-temperature low-pressure refrigerant flowing out of the expansion device 153 and, for example, the air supplied by a blower (not shown), and the low-temperature low-pressure liquid. The refrigerant (or gas-liquid two-phase refrigerant) evaporates. On the other hand, when functioning as a condenser, the first heat exchanger 152 exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 100 and, for example, the air supplied by a blower (not shown), and the high-temperature and high-pressure gas. Refrigerant condenses. The first heat exchanger 152 may be composed of a refrigerant-water heat exchanger. In this case, in the first heat exchanger 152, heat exchange is executed between the refrigerant and a heat medium such as water.
 膨張装置153は、第1熱交換器152又は第2熱交換器154から流出した冷媒を膨張させて減圧するものである。膨張装置153は、例えば冷媒の流量を調整可能な電動膨張弁等で構成するとよい。なお、膨張装置153としては、電動膨張弁だけでなく、受圧部にダイアフラムを採用した機械式膨張弁、又は、キャピラリーチューブ等を適用することも可能である。 The expansion device 153 expands the refrigerant flowing out from the first heat exchanger 152 or the second heat exchanger 154 to reduce the pressure. The expansion device 153 may be configured by, for example, an electric expansion valve or the like that can adjust the flow rate of the refrigerant. As the expansion device 153, not only an electric expansion valve but also a mechanical expansion valve having a diaphragm for a pressure receiving portion, a capillary tube, or the like can be applied.
 第2熱交換器154は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能するものである。つまり、凝縮器として機能する場合、第2熱交換器154は、圧縮機100から吐出された高温高圧の冷媒と、例えば図示省略の送風機により供給される空気とが熱交換し、高温高圧のガス冷媒が凝縮する。一方、蒸発器として機能する場合、第2熱交換器154は、膨張装置153から流出された低温低圧の冷媒と、例えば図示省略の送風機により供給される空気とが熱交換し、低温低圧の液冷媒(又は気液二相冷媒)が蒸発する。なお、第2熱交換器154を、冷媒-水熱交換器で構成してもよい。この場合、第2熱交換器154では、冷媒と、水などの熱媒体とで熱交換が実行される。 The second heat exchanger 154 functions as a condenser during the heating operation and as an evaporator during the cooling operation. That is, when functioning as a condenser, the second heat exchanger 154 exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 100 and, for example, the air supplied by a blower (not shown), and the high-temperature and high-pressure gas. Refrigerant condenses. On the other hand, when functioning as an evaporator, the second heat exchanger 154 exchanges heat between the low-temperature low-pressure refrigerant flowing out of the expansion device 153 and, for example, the air supplied by a blower (not shown), and the low-temperature low-pressure liquid. The refrigerant (or gas-liquid two-phase refrigerant) evaporates. The second heat exchanger 154 may be composed of a refrigerant-water heat exchanger. In this case, in the second heat exchanger 154, heat exchange is executed between the refrigerant and a heat medium such as water.
 また、冷凍サイクル装置200には、冷凍サイクル装置200の全体を統括制御する制御装置160が設けられている。具体的には、制御装置160は、必要とする冷却能力又は加熱能力に応じて圧縮機100の駆動周波数を制御する。また、制御装置160は、運転状態及びモード毎に応じて膨張装置153の開度を制御する。さらに、制御装置160は、モード毎に応じて流路切替装置151を制御する。 Further, the refrigerating cycle device 200 is provided with a control device 160 that controls the entire refrigerating cycle device 200. Specifically, the control device 160 controls the drive frequency of the compressor 100 according to the required cooling capacity or heating capacity. Further, the control device 160 controls the opening degree of the expansion device 153 according to the operating state and the mode. Further, the control device 160 controls the flow path switching device 151 according to each mode.
 制御装置160は、ユーザーからの運転指示に基づいて、図示省略の各温度センサー及び図示省略の各圧力センサーから送られる情報を利用し、例えば、圧縮機100、膨張装置153、流路切替装置151等の各アクチュエーターを制御する。 The control device 160 uses information sent from each temperature sensor (not shown) and each pressure sensor (not shown) based on an operation instruction from the user, and uses, for example, a compressor 100, an expansion device 153, and a flow path switching device 151. Etc. to control each actuator.
 なお、制御装置160は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイコン又はCPUのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。 The control device 160 may be configured by hardware such as a circuit device that realizes the function, or may be configured by an arithmetic unit such as a microcomputer or a CPU and software executed on the arithmetic unit. can.
 なお、制御装置160は、専用のハードウェア、又はメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。制御装置160が専用のハードウェアである場合、制御装置160は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。制御装置160が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。制御装置160がCPUの場合、制御装置160が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリに格納される。CPUは、メモリに格納されたプログラムを読み出して実行し、制御装置160の各機能を実現する。ここで、メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性又は揮発性の半導体メモリである。なお、制御装置160の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。 The control device 160 is composed of dedicated hardware or a CPU (also referred to as a Central Processing Unit, a central processing unit, a processing device, a computing device, a microprocessor, a microprocessor, or a processor) that executes a program stored in a memory. Will be done. When the control device 160 is dedicated hardware, the control device 160 corresponds to, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. do. Each of the functional units realized by the control device 160 may be realized by individual hardware, or each functional unit may be realized by one hardware. When the control device 160 is a CPU, each function executed by the control device 160 is realized by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in memory. The CPU reads and executes a program stored in the memory, and realizes each function of the control device 160. Here, the memory is a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM and the like. It should be noted that some of the functions of the control device 160 may be realized by dedicated hardware, and some may be realized by software or firmware.
<冷凍サイクル装置200の動作>
 次に、冷凍サイクル装置200の動作について、冷媒の流れとともに説明する。ここでは、第1熱交換器152及び第2熱交換器154での熱交換流体が空気である場合を例に、冷凍サイクル装置200の冷房運転時の動作について説明する。なお、図9では、冷房運転時の冷媒の流れを破線矢印で示し、暖房運転時の冷媒の流れを実線矢印で示している。
<Operation of refrigeration cycle device 200>
Next, the operation of the refrigeration cycle device 200 will be described together with the flow of the refrigerant. Here, the operation of the refrigeration cycle device 200 during the cooling operation will be described by taking as an example the case where the heat exchange fluids in the first heat exchanger 152 and the second heat exchanger 154 are air. In FIG. 9, the flow of the refrigerant during the cooling operation is indicated by a broken line arrow, and the flow of the refrigerant during the heating operation is indicated by a solid line arrow.
 圧縮機100を駆動させることによって、圧縮機100から高温高圧のガス状態の冷媒が吐出される。圧縮機100から吐出された高温高圧のガス冷媒(単相)は、第1熱交換器152に流れ込む。第1熱交換器152では、流れ込んだ高温高圧のガス冷媒と、図示省略の送風機によって供給される空気との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮して高圧の液冷媒(単相)になる。 By driving the compressor 100, a high-temperature and high-pressure gas-state refrigerant is discharged from the compressor 100. The high-temperature and high-pressure gas refrigerant (single-phase) discharged from the compressor 100 flows into the first heat exchanger 152. In the first heat exchanger 152, heat exchange is performed between the high temperature and high pressure gas refrigerant that has flowed in and the air supplied by the blower (not shown), and the high temperature and high pressure gas refrigerant is condensed and high pressure liquid. It becomes a refrigerant (single phase).
 第1熱交換器152から送り出された高圧の液冷媒は、膨張装置153によって、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。二相状態の冷媒は、第2熱交換器154に流れ込む。第2熱交換器154では、流れ込んだ二相状態の冷媒と、図示省略の送風機によって供給される空気との間で熱交換が行われて、二相状態の冷媒のうち液冷媒が蒸発して低圧のガス冷媒(単相)になる。第2熱交換器154から送り出された低圧のガス冷媒は、アキュームレータ300を介して圧縮機100に流れ込み、圧縮されて高温高圧のガス冷媒となって、再び圧縮機100から吐出される。以下、このサイクルが繰り返される。 The high-pressure liquid refrigerant sent out from the first heat exchanger 152 becomes a two-phase state refrigerant of a low-pressure gas refrigerant and a liquid refrigerant by the expansion device 153. The two-phase refrigerant flows into the second heat exchanger 154. In the second heat exchanger 154, heat exchange is performed between the flowing two-phase state refrigerant and the air supplied by the blower (not shown), and the liquid refrigerant of the two-phase state refrigerant evaporates. It becomes a low-pressure gas refrigerant (single phase). The low-pressure gas refrigerant sent out from the second heat exchanger 154 flows into the compressor 100 via the accumulator 300, is compressed, becomes a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 100 again. Hereinafter, this cycle is repeated.
 従って、実施の形態2に係る冷凍サイクル装置200によれば、圧縮効率の良い圧縮機100を使用した冷凍サイクル装置200を提供することができる。 Therefore, according to the refrigerating cycle device 200 according to the second embodiment, it is possible to provide the refrigerating cycle device 200 using the compressor 100 having good compression efficiency.
 なお、冷凍サイクル装置200の暖房運転時の動作は、流路切替装置151により冷媒の流れを図9に示す実線矢印の流れにすることで実行される。 The operation of the refrigerating cycle device 200 during the heating operation is executed by making the flow of the refrigerant the flow of the solid line arrow shown in FIG. 9 by the flow path switching device 151.
 なお、圧縮機100の吐出側に設けた流路切替装置151を設けずに、冷媒の流れを一定方向にしてもよい。 Note that the flow path of the refrigerant may be set in a fixed direction without providing the flow path switching device 151 provided on the discharge side of the compressor 100.
 さらに、冷凍サイクル装置200の適用例としては、空気調和装置、給湯器、冷凍機、又は空調給湯複合機などがある。 Further, as an application example of the refrigerating cycle device 200, there are an air conditioner, a water heater, a refrigerator, an air-conditioned hot water supply compound machine, and the like.
実施の形態3.
 実施の形態3では、実施の形態2の冷凍サイクル装置200に使用される冷媒の種類について説明する。
Embodiment 3.
In the third embodiment, the types of the refrigerant used in the refrigeration cycle apparatus 200 of the second embodiment will be described.
 実施の形態3の冷凍サイクル装置200に使用される冷媒は、R410A冷媒よりも冷媒の気体密度が低い冷媒である。例えばR134a、R1234yf、R513A、R463A、R290、R454C、R454A、R404A、R448A、R449A、R454B、R452B、R466A等である。 The refrigerant used in the refrigeration cycle apparatus 200 of the third embodiment is a refrigerant having a lower gas density than the R410A refrigerant. For example, R134a, R1234yf, R513A, R463A, R290, R454C, R454A, R404A, R448A, R449A, R454B, R452B, R466A and the like.
 図10は、ASHRAEに規定されている代表的な冷凍サイクルの圧縮機定格運転条件における圧縮機100が吸入する冷媒の気体密度及び圧縮機100から吐出される冷媒の気体密度を冷媒毎に示す図である。 FIG. 10 is a diagram showing the gas density of the refrigerant sucked by the compressor 100 and the gas density of the refrigerant discharged from the compressor 100 for each refrigerant under the compressor rated operating conditions of a typical refrigeration cycle specified in ASHRAE. Is.
 ここで、ASHRAEは、American Society of Heating、Refrigerating and Air-Conditioning Engineers(米国熱冷凍空調工業会)の略称である。圧縮機定格運転条件は、通称ASRAE-T条件とも呼ばれ、凝縮温度54.4℃、蒸発温度7.2℃、過冷却度8.3℃及び過熱度27.8℃である。 Here, ASHRAE is an abbreviation for American Society of Heating, Referraling and Air-Conditioning Engineers (American Society for Thermal Refrigeration and Air Conditioning). The compressor rated operating conditions, also commonly known as ASRAE-T conditions, are a condensation temperature of 54.4 ° C., an evaporation temperature of 7.2 ° C., a supercooling degree of 8.3 ° C., and a superheating degree of 27.8 ° C.
 図10において、R134a、R1234yf、R513A、R463A、R290、R454C、R454A、R404A、R448A、R449A、R454B、R452B及びR466Aの冷媒が示されている。これら冷媒は、図10に示すように、圧縮機100に吸入される冷媒及び圧縮機100から吐出される冷媒の気体密度が、R410Aよりも低い。 In FIG. 10, the refrigerants of R134a, R1234yf, R513A, R463A, R290, R454C, R454A, R404A, R448A, R449A, R454B, R452B and R466A are shown. As shown in FIG. 10, these refrigerants have a gas density lower than that of R410A, that is, the refrigerant sucked into the compressor 100 and the refrigerant discharged from the compressor 100.
 一般的に、冷媒ガスなどの流体の圧力損失は、その流体の流速に比例して増大する。同一冷媒重量を循環させる場合には、気体の流速は密度が低くなると速くする必要がある。すなわち、密度の低い冷媒ガスの方が密度の高い冷媒ガスよりも圧力損失が大きくなる。この圧力損失は冷凍サイクルの各所にて発生しているが、特に圧縮の吐出弁などの流路が狭く流体の流速が速い個所にてその影響が顕著となる。 Generally, the pressure loss of a fluid such as a refrigerant gas increases in proportion to the flow velocity of the fluid. When the same refrigerant weight is circulated, the flow velocity of the gas needs to be increased as the density decreases. That is, the low-density refrigerant gas has a larger pressure loss than the high-density refrigerant gas. This pressure loss occurs in various parts of the refrigeration cycle, but its effect is particularly remarkable in places such as compression discharge valves where the flow path is narrow and the fluid flow rate is high.
 流路内の圧力損失はエネルギーの損失となり、冷凍サイクル全体の効率低下を招く。ロータリ圧縮機100の吐出弁には、リード弁が一般的に使用されている。図11は、圧縮機100のリード弁401の一例を示す図である。図11に示すように、リード弁401及び規制板402の一端が、軸受14の端面に設けられた吐出穴405近傍に固定リベット403により固定される。規制板402は、リード弁401の動きを規制する。リード弁401は、着座部404に着座し、吐出穴405を塞ぐ。圧縮室30内の圧力上昇により、リード弁401が持ち上げられる。上記のようにリード弁401は片持ち構造であることから、その軸受14の端面からのリード弁401の固定部側の持ち上がり距離Rが少なくなり全体の流路面積が小さくなる。 The pressure loss in the flow path becomes an energy loss, which causes a decrease in the efficiency of the entire refrigeration cycle. A reed valve is generally used for the discharge valve of the rotary compressor 100. FIG. 11 is a diagram showing an example of the reed valve 401 of the compressor 100. As shown in FIG. 11, one end of the lead valve 401 and the regulation plate 402 is fixed by a fixed rivet 403 in the vicinity of the discharge hole 405 provided on the end face of the bearing 14. The regulating plate 402 regulates the movement of the reed valve 401. The lead valve 401 sits on the seating portion 404 and closes the discharge hole 405. The reed valve 401 is lifted by the pressure increase in the compression chamber 30. Since the lead valve 401 has a cantilever structure as described above, the lifting distance R on the fixed portion side of the lead valve 401 from the end face of the bearing 14 is reduced, and the overall flow path area is reduced.
 図12は、実施の形態3の冷凍サイクル装置200に使用される圧縮機100の弁体41の持ち上がり距離Rを説明するための図である。図12に示すように、圧縮機100の吐出機構40の弁体41は、バネ43によりガイド穴42内を鉛直方向に移動する。従って、持ち上がり距離Rは、弁体41全体で均一となり、リード弁401に比べて全体の冷媒の流路面積が大きくなる。 FIG. 12 is a diagram for explaining the lifting distance R of the valve body 41 of the compressor 100 used in the refrigeration cycle device 200 of the third embodiment. As shown in FIG. 12, the valve body 41 of the discharge mechanism 40 of the compressor 100 moves in the guide hole 42 in the vertical direction by the spring 43. Therefore, the lifting distance R becomes uniform in the entire valve body 41, and the flow path area of the entire refrigerant is larger than that of the lead valve 401.
 冷媒の流路面積が大きくなることで、吐出口45における流速が小さくなり、吐出口45の部分における圧力損失が小さくなる。この効果は冷媒の気体密度が小さい冷媒で顕著となる。 As the flow path area of the refrigerant increases, the flow velocity at the discharge port 45 becomes smaller, and the pressure loss at the discharge port 45 becomes smaller. This effect is remarkable in a refrigerant having a low gas density.
 実施の形態3の冷凍サイクル装置200は、現在世界で広く使用されているR410Aに比較して気体密度の低い冷媒を実施の形態2の冷凍サイクル装置200に適用する。従って、実施の形態3の冷凍サイクル装置200は、圧力損失を低減し高効率の冷凍サイクルを得ることができる。特に、R290を冷媒として使用した場合、他の冷媒に対して際立って吸入ガス密度及び吐出ガス密度が大きいため、冷凍サイクル装置200は、圧力損失を低減し高効率の冷凍サイクルを得ることができる。 The refrigerating cycle device 200 of the third embodiment applies a refrigerant having a lower gas density than R410A, which is currently widely used in the world, to the refrigerating cycle device 200 of the second embodiment. Therefore, the refrigeration cycle apparatus 200 of the third embodiment can reduce the pressure loss and obtain a highly efficient refrigeration cycle. In particular, when R290 is used as a refrigerant, the intake gas density and the discharge gas density are significantly higher than those of other refrigerants, so that the refrigeration cycle apparatus 200 can reduce the pressure loss and obtain a highly efficient refrigeration cycle. ..
 実施の形態は、例として提示したものであり、請求の範囲を限定することは意図しることが可能であり、実施の形態の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施の形態及びその変形は、実施の形態の範囲及び要旨に含まれる。ていない。実施の形態は、その他の様々な形態で実施され The embodiment is presented as an example, and it is possible to intend to limit the scope of claims, and various omissions, replacements, and changes are made without departing from the gist of the embodiment. be able to. These embodiments and variations thereof are included in the scope and gist of the embodiments. Not. The embodiment is carried out in various other forms.
 1 下側容器、2 上側容器、2a 吐出管、3 密閉容器、10 圧縮機構部、11 主軸、11a 主軸部、12 偏心軸部、13 シリンダ、14、14a 軸受、15 仕切り板、16 ローリングピストン、17 吐出マフラ、20 電動機部、21 回転子、22 固定子、30 圧縮室、31a 第1吸入管、31b 第2吸入管、40 吐出機構、40_1 第1吐出機構、40_2 第2吐出機構、41、41_1 弁体、41_1_1 第1部分、41_1_2 第2部分、41_t テーパ形状、41_b 中空部、42 ガイド穴、43 バネ、44、44a、44b、44c 連通穴、45 吐出口、46 ガイド蓋、46a 閉塞部、46b 円筒部、46c 弁体着座部、50 吸入口、60 吸入マフラ、100 圧縮機、141 ねじ穴、151 流路切替装置、152 第1熱交換器、153 膨張装置、154 第2熱交換器、155a 高圧側配管、155b 低圧側配管、160 制御装置、200 冷凍サイクル装置、300 アキュームレータ、401 リード弁、402 規制板、403 固定リベット、404 着座部、405 吐出穴、R 持ち上がり距離、ar 円筒部の内径、br 弁体の最外径、Δc クリアランス。 1 lower container, 2 upper container, 2a discharge pipe, 3 closed container, 10 compression mechanism, 11 spindle, 11a spindle, 12 eccentric shaft, 13 cylinder, 14, 14a bearing, 15 partition plate, 16 rolling piston, 17 Discharge muffler, 20 Motor unit, 21 Rotor, 22 Stuff, 30 Compressor chamber, 31a 1st suction pipe, 31b 2nd suction pipe, 40 Discharge mechanism, 40_1 1st discharge mechanism, 40_1 2nd discharge mechanism, 41, 41_1 valve body, 41_1_1 1st part, 41_1_2 2nd part, 41_t tapered shape, 41_b hollow part, 42 guide hole, 43 spring, 44, 44a, 44b, 44c communication hole, 45 discharge port, 46 guide lid, 46a closure part , 46b Cylindrical part, 46c Valve body seating part, 50 suction port, 60 suction muffler, 100 compressor, 141 screw holes, 151 flow path switching device, 152 first heat exchanger, 153 expansion device, 154 second heat exchanger , 155a high pressure side piping, 155b low pressure side piping, 160 control device, 200 refrigeration cycle device, 300 accumulator, 401 lead valve, 402 regulation plate, 403 fixed rivet, 404 seating part, 405 discharge hole, R lifting distance, ar cylindrical part Inner diameter, outermost diameter of br valve body, Δc clearance.

Claims (15)

  1.  密閉容器と、
     前記密閉容器内に設けられ、冷媒が圧縮される圧縮室が内部に設けられたシリンダと、
     前記密閉容器内に設けられ、前記圧縮室にて圧縮された冷媒を吐出する吐出口を備えた軸受と、
     前記軸受に設けられ、内部にガイド穴が構成された円筒部を有するガイド蓋と、前記ガイド穴内に設けられた弁体と、前記ガイド穴内に設けられ、前記ガイド蓋と前記弁体とを接続する接続部材とを具備し、前記弁体が前記ガイド穴内を移動することにより前記吐出口の開閉を行なう吐出機構と
    を具備し、
     前記弁体が前記ガイド穴に沿って移動する移動方向と直交する方向の前記円筒部の内径をar、
     前記弁体が前記ガイド穴に沿って移動する移動方向と直交する方向の前記弁体の最外径をbr、
     前記円筒部の内径arと前記弁体の最外径brとのクリアランスをΔc
    とすると、
     Δc=ar-br
     1/1000≦Δc/br≦1/100
    である圧縮機。
    With a closed container
    A cylinder provided in the closed container and having a compression chamber inside for compressing the refrigerant, and a cylinder.
    A bearing provided in the closed container and provided with a discharge port for discharging the refrigerant compressed in the compression chamber, and a bearing.
    A guide lid provided on the bearing and having a cylindrical portion having a guide hole inside, a valve body provided in the guide hole, and a valve body provided in the guide hole to connect the guide lid and the valve body. A discharge mechanism for opening and closing the discharge port by moving the valve body in the guide hole is provided.
    The inner diameter of the cylindrical portion in the direction orthogonal to the moving direction in which the valve body moves along the guide hole is ar.
    Br, the outermost diameter of the valve body in the direction orthogonal to the moving direction in which the valve body moves along the guide hole.
    The clearance between the inner diameter ar of the cylindrical portion and the outermost diameter br of the valve body is Δc.
    Then
    Δc = ar-br
    1/1000 ≤ Δc / br ≤ 1/100
    The compressor that is.
  2.  前記弁体の材料の密度は鋼の密度よりも低い請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the density of the material of the valve body is lower than the density of steel.
  3.  前記弁体の材料は少なくとも一部が樹脂材料である請求項1又は2に記載の圧縮機。 The compressor according to claim 1 or 2, wherein the material of the valve body is at least a part of a resin material.
  4.  前記弁体の表面は、金属コーティングが施されている請求項1~3のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 3, wherein the surface of the valve body is coated with a metal.
  5.  前記弁体は、前記弁体の移動方と直交する方から見た断面がT字形状である請求項1~4のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 4, wherein the valve body has a T-shaped cross section when viewed from a side orthogonal to the moving direction of the valve body.
  6.  前記弁体は、内部に中空部を有する請求項1~5のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 5, wherein the valve body has a hollow portion inside.
  7.  前記弁体が前記吐出口を閉じている場合、前記接続部材は自然長よりも短い請求項1~6のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 6, wherein when the valve body closes the discharge port, the connecting member is shorter than the natural length.
  8.  前記軸受は、前記弁体が着座し、テーパ形状の弁体着座部を有し、
     前記弁体の前記弁体着座部側の先端の形状は、テーパ形状を有し、
     前記弁体の前記テーパ形状のテーパ角度は、前記弁体着座部の前記テーパ形状のテーパ角度と一致する請求項1~7のいずれか1項に記載の圧縮機。
    The bearing has a tapered valve body seating portion on which the valve body is seated.
    The shape of the tip of the valve body on the seating portion side of the valve body has a tapered shape.
    The compressor according to any one of claims 1 to 7, wherein the taper angle of the tapered shape of the valve body matches the taper angle of the tapered shape of the valve body seating portion.
  9.  前記弁体の材料の温度に対する線膨張係数は、前記弁体着座部の材料の温度に対する線膨張係数と異なる請求項8に記載の圧縮機。 The compressor according to claim 8, wherein the coefficient of linear expansion with respect to the temperature of the material of the valve body is different from the coefficient of linear expansion with respect to the temperature of the material of the seating portion of the valve body.
  10.  前記軸受は、上側の軸受と、下側の軸受とを有し、
     前記吐出機構は、前記上側の軸受に設けられた第1吐出機構と、前記下側の軸受に設けられた第2吐出機構とを有し、
     前記第2吐出機構の弁体が前記第1吐出機構の弁体よりも軽い請求項1~9のいずれか1項に記載の圧縮機。
    The bearing has an upper bearing and a lower bearing.
    The discharge mechanism has a first discharge mechanism provided on the upper bearing and a second discharge mechanism provided on the lower bearing.
    The compressor according to any one of claims 1 to 9, wherein the valve body of the second discharge mechanism is lighter than the valve body of the first discharge mechanism.
  11.  前記接続部材はバネであり、
     前記第2吐出機構のバネのバネ定数が前記第1吐出機構のバネのバネ定数よりも大きい請求項10に記載の圧縮機。
    The connecting member is a spring and
    The compressor according to claim 10, wherein the spring constant of the spring of the second ejection mechanism is larger than the spring constant of the spring of the first ejection mechanism.
  12.  前記第2吐出機構のバネの自然長は、前記第1吐出機構のバネの自然長よりも短い請求項10又は11に記載の圧縮機。 The compressor according to claim 10 or 11, wherein the natural length of the spring of the second ejection mechanism is shorter than the natural length of the spring of the first ejection mechanism.
  13.  請求項1~12のいずれか1項に記載の圧縮機と、第1熱交換器と、膨張装置と、第2熱交換器とを備え、
     前記圧縮機、前記第1熱交換器、前記膨張装置及び前記第2熱交換器を冷媒が循環する冷凍サイクル装置。
    A compressor according to any one of claims 1 to 12, a first heat exchanger, an expansion device, and a second heat exchanger are provided.
    A refrigeration cycle device in which a refrigerant circulates in the compressor, the first heat exchanger, the expansion device, and the second heat exchanger.
  14.  前記冷媒は、R410Aよりも気体密度の低い冷媒である請求項13記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to claim 13, wherein the refrigerant is a refrigerant having a gas density lower than that of R410A.
  15.  前記冷媒は、R290である請求項14記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to claim 14, wherein the refrigerant is R290.
PCT/JP2020/044807 2020-12-02 2020-12-02 Compressor and refrigeration cycle device WO2022118385A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CZ2023-185A CZ2023185A3 (en) 2020-12-02 2020-12-02 Compressor and refrigeration cycle equipment
JP2022566535A JP7466693B2 (en) 2020-12-02 2020-12-02 Compressor and refrigeration cycle device
PCT/JP2020/044807 WO2022118385A1 (en) 2020-12-02 2020-12-02 Compressor and refrigeration cycle device
CN202080107479.2A CN116457575A (en) 2020-12-02 2020-12-02 Compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/044807 WO2022118385A1 (en) 2020-12-02 2020-12-02 Compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2022118385A1 true WO2022118385A1 (en) 2022-06-09

Family

ID=81853027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044807 WO2022118385A1 (en) 2020-12-02 2020-12-02 Compressor and refrigeration cycle device

Country Status (4)

Country Link
JP (1) JP7466693B2 (en)
CN (1) CN116457575A (en)
CZ (1) CZ2023185A3 (en)
WO (1) WO2022118385A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105683U (en) * 1980-01-17 1981-08-18
JPS5785661U (en) * 1980-11-17 1982-05-27
JPS58178489U (en) * 1982-05-26 1983-11-29 株式会社日立製作所 Hermetic electric compressor
JPH08133307A (en) * 1994-11-11 1996-05-28 Kikkoman Corp Check valve for preventing liquid leakage, and container for pouring employing the check valve
JPH08144974A (en) * 1994-11-28 1996-06-04 Hitachi Ltd Rotary compressor
JP2006299941A (en) * 2005-04-21 2006-11-02 Fujitsu General Ltd Compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105683U (en) * 1980-01-17 1981-08-18
JPS5785661U (en) * 1980-11-17 1982-05-27
JPS58178489U (en) * 1982-05-26 1983-11-29 株式会社日立製作所 Hermetic electric compressor
JPH08133307A (en) * 1994-11-11 1996-05-28 Kikkoman Corp Check valve for preventing liquid leakage, and container for pouring employing the check valve
JPH08144974A (en) * 1994-11-28 1996-06-04 Hitachi Ltd Rotary compressor
JP2006299941A (en) * 2005-04-21 2006-11-02 Fujitsu General Ltd Compressor

Also Published As

Publication number Publication date
CZ2023185A3 (en) 2023-06-07
CN116457575A (en) 2023-07-18
JPWO2022118385A1 (en) 2022-06-09
JP7466693B2 (en) 2024-04-12

Similar Documents

Publication Publication Date Title
JP5306478B2 (en) Heat pump device, two-stage compressor, and operation method of heat pump device
US20130084202A1 (en) Vane rotary compressor
US20090007590A1 (en) Refrigeration System
EP2592278A1 (en) Rotary compressor and refrigeration cycle device
US8353693B2 (en) Fluid machine
KR101738458B1 (en) High pressure compressor and refrigerating machine having the same
US20100275634A1 (en) Refrigeration apparatus
US11906060B2 (en) Rotary compressor with backflow suppresion mechanism for an introduction path
JP6568841B2 (en) Hermetic rotary compressor and refrigeration air conditioner
JPH02230995A (en) Compressor for heat pump and operating method thereof
WO2022118385A1 (en) Compressor and refrigeration cycle device
WO2022118383A1 (en) Compressor and refrigeration cycle device
WO2022118384A1 (en) Compressor and refrigeration cycle device
US11821664B2 (en) Rotary compressor and refrigeration cycle apparatus
JP2013053579A (en) Rotary compressor
CZ2023186A3 (en) Compressor and refrigeration cycle equipment
JP5738030B2 (en) Rotary compressor and refrigeration cycle apparatus
CN112412791B (en) Rotary compressor and refrigeration cycle device
JP6556372B1 (en) Hermetic compressor and refrigeration cycle apparatus
WO2021106198A1 (en) Compressor and refrigeration cycle device
JP7470567B2 (en) Compressor and refrigeration cycle device
JP2024070439A (en) Compressor and refrigeration cycle device
JP5836890B2 (en) Rotary compressor and vapor compression refrigeration cycle apparatus
JP2021017852A (en) Compressor, outdoor unit and air conditioning device
JP5109985B2 (en) Expansion machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566535

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202080107479.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964239

Country of ref document: EP

Kind code of ref document: A1