WO2022117397A1 - System and method for storing and recovering energy using compressed gas with reheating of liquid - Google Patents

System and method for storing and recovering energy using compressed gas with reheating of liquid Download PDF

Info

Publication number
WO2022117397A1
WO2022117397A1 PCT/EP2021/082601 EP2021082601W WO2022117397A1 WO 2022117397 A1 WO2022117397 A1 WO 2022117397A1 EP 2021082601 W EP2021082601 W EP 2021082601W WO 2022117397 A1 WO2022117397 A1 WO 2022117397A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
compression
expansion
heat
liquid
Prior art date
Application number
PCT/EP2021/082601
Other languages
French (fr)
Inventor
David Teixeira
Elsa MULLER-SHERNETSKY
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Publication of WO2022117397A1 publication Critical patent/WO2022117397A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to the field of storage and production of energy by compression and expansion of gas, in particular air.
  • CAES Compressed air energy storage
  • the principle of CAES is to use the electricity produced and not consumed to compress air. In order to avoid any damage to the compressors, the heat resulting from the compression is evacuated between each stage. Air compressed at medium or high pressure (40 bar to 300 bar) is sent to a natural type storage such as a salt cave, a mine (salt, limestone, coal) or even to an artificial storage while waiting for the phase energy discharge. During the electricity production phase, the stored air is extracted from the storage in order to be expanded in turboalternators.
  • compressed air was used to power gas turbines (also called combustion turbines). These turbines burn via a natural gas combustion chamber in the presence of compressed air to produce very hot combustion gases (500°C-800°C) that are expanded to produce electricity.
  • the CAES process has an energy yield of around 50%.
  • a variant of CAES is the adiabatic process or AACAES (for “advanced adiabatic compressed air energy storage”).
  • AACAES for “advanced adiabatic compressed air energy storage”.
  • the main difference with the original CAES is that the heat resulting from the compression is no longer evacuated between each stage, but stored in order to be able to heat the air upstream of the turbines during the electricity production phase. Thanks to this reuse of the thermal energy internal to the process, the efficiency of the ACAES reaches approximately 70%.
  • the cooling of the air in the compression phase can be done via an indirect contact exchange in a heat exchanger with a heat transfer fluid.
  • the hot heat transfer fluid is then stored and insulated as much as possible thermally in order to be able to transfer its heat to the air during the expansion phase.
  • a first solution to limit the damage to the compressors is to extract the water from the compression line, by means of a gas/liquid separator provided at each compression stage.
  • Figure 1 illustrates, schematically in block diagram form, such an ACAES system and method. This figure shows the storage phase of energy by compression of a gas, and the phase of energy production by expansion of a gas.
  • the system according to the prior art consists of a compression line (1), including one or more compression stages (3) depending on the air pressure to be achieved as well as the recommendations of the suppliers.
  • the compression line (1) comprises three stages (3) of compression.
  • Each compression stage (3) includes compression means (100, 101, 102), also called a compressor.
  • the compressor (100) is a low pressure compressor
  • the compressor (101) is a medium pressure compressor
  • the compressor (102) is a high pressure compressor.
  • the gas (10) used in the illustrated method is ambient air, containing a water saturation related to its temperature and its pressure.
  • the air is compressed in the compression line (1) then sent to a compressed air storage means (1000) suitable for high pressures.
  • Heat storage and recovery means (200, 201, 202) are arranged after each compressor (100, 101, 102) of each compression stage (3) in order to cool the hot compressed air at the compression outlet while by storing this thermal energy.
  • the heat storage and recovery means (200) is adapted to low pressure
  • the heat storage and recovery means (201) is adapted to medium pressure
  • the heat storage and recovery means (202) is suitable for high pressure.
  • Cooling means (300, 301, 302) can be arranged after the heat storage and recovery means (200, 201, 202) if necessary in order to finish cooling the compressed air before the next stage compression or before storage.
  • the condensed water resulting from the humidity of the air, is extracted from the air compression flow by gas-liquid separators (400, 401 , 402) in order to have air entering the compressor without any trace of liquid water. This water condensation can take place in the heat storage and recovery means (200, 201, 202) and/or in the cooling means (300, 301, 302).
  • the compressed air is expanded via one or more turbines (700, 701, 702) or expansion stage, according to the recommendations of the suppliers, in order to produce electricity via alternators, not shown in the diagram.
  • the turbine (702) is a low pressure turbine
  • the turbine (701) is a medium pressure turbine
  • the turbine (700) is a high pressure turbine.
  • the compressed gas is heated by the heat stored in the heat storage and recovery means (200, 201, 202). For this system and this process, the condensed water is just extracted, the associated energy is therefore lost.
  • Patent application WO16012764 discloses an ACAES process in which the humidity of the air is condensed upstream of the air storage in the compression phase, stored and reinjected into the air in the expansion phase at the outlet of the air storage .
  • this process does not make it possible to protect the compressors of the various compression stages by limiting the water which passes through them.
  • this configuration allows neither an optimization of the energy recovered from the condensed water nor an economic optimization: condensed water at low pressure is stored at high pressure.
  • this system is difficult to implement due to the circulation of a heat transfer fluid, which requires pipes, pumping means and additional storage means, which also poses space constraints. .
  • Patent application WO16079485 discloses an ACAES process in which the humidity of the air is condensed upstream of the air storage in the compression phase, stored and reinjected into the air in the expansion phase at the outlet of the storage means of the air.
  • this process does not make it possible to protect the compressors of the various compression stages by limiting the water which passes through them.
  • this configuration allows neither an optimization of the energy recovered from the condensed water nor an economic optimization: condensed water at low pressure is stored at high pressure.
  • this system is difficult to implement due to the circulation of a heat transfer fluid, which requires pipes, pumping means and additional storage means, which also poses space constraints.
  • the present invention relates to a system and a method for the storage and recovery of energy by compressed gas making it possible to optimize the efficiency of the system and of the method, by limiting the size of the system and by simplifying the operation.
  • the present invention relates to a system and a method for storing and recovering energy by compressed gas, comprising a compression line, an air storage means, and an expansion line.
  • a liquid is heated by means of the heat of the gas expanded at the outlet of the expansion line, and the heated liquid is introduced into the expansion line.
  • the introduction of liquid into the expansion line makes it possible to increase the flow rate of gas in the expansion line and therefore the yield of the system and of the method according to the invention.
  • the heating of the liquid by the heat of the expanded gas at the outlet of the expansion line makes it possible to recover the thermal energy contained in the expanded gas at the outlet of the expansion line, and thus to introduce a hot liquid into the expansion line, which makes it possible to limit heating requirements in the expansion line, and consequently to limit the size of the system.
  • the invention relates to a compressed gas energy storage and recovery system comprising:
  • a gas compression line comprising at least one compression stage, each compression stage comprising compression means and heat storage and recovery means arranged downstream of said compression means, in the direction of circulation of said gas,
  • At least one compressed gas storage means arranged at the outlet of said gas compression line to store said compressed gas
  • a gas expansion line for expanding said compressed gas stored in said compressed gas storage means comprising at least one expansion stage, each expansion stage including expansion means and conduits configured to circulating said compressed gas in said means for storing and recovering heat from said at least one compression stage so as to heat said compressed gas
  • said system comprises at least one means for exchanging heat between said expanded gas at the outlet of said expansion line and a liquid, and in that at least one expansion stage comprises means for introducing said heated liquid, said means for introducing said liquid being provided upstream, in the direction of circulation of said gas, of said means of heat storage and recovery.
  • said compression line comprises as many successive compression stages as the expansion line comprises successive expansion stages, each means of storing and recovering heat from a compression stage being used in the corresponding expansion stage.
  • said compression line and said expansion line respectively comprise three successive stages.
  • said heat storage and recovery means comprises heat storage particles.
  • At least one compression stage comprises a gas/liquid separation means
  • said system comprises at least one means for storing said separated liquid, said separated and stored liquid being said liquid reheated and introduced into said expansion line.
  • said system comprises a plurality of heat exchange means between said expanded gas at the outlet of said expansion line and said liquid.
  • said heat exchange means are arranged in series or in parallel for the circulation of said gas at the outlet of said expansion line.
  • At least one compression stage comprises cooling means downstream of the heat storage and recovery means, in the direction of circulation of said gas, preferably, said cooling means comprises an aero- refrigerant.
  • the invention relates to a method for storing and recovering energy by compressed gas comprising at least the following steps:
  • a gas is successively compressed at least once in a compression line comprising at least one compression stage, each compression stage comprising at least one compression means; b) after each compression step, the heat of said compressed gas is recovered in at least one heat storage and recovery means; c) said cooled compressed gas is stored in at least one compressed gas storage means;
  • the compressed gas leaving said at least one compressed gas storage means is circulated in an expansion line comprising at least one expansion stage, and in each expansion stage, it is heated the compressed gas by circulating it in one of said heat storage and recovery means thanks to the heat stored during the compression step, then the heated compressed gas is expanded in an expansion means, for this process, heat is exchanged between said expanded gas at the outlet of said expansion line and a liquid, and one introduces said heated liquid in said compressed gas before at least one step of heating said gas preceding an expansion step.
  • the heat storage and recovery means of each of the steps b) are used to heat the compressed gas from the corresponding relaxation step.
  • the compressed gas at the outlet of the heat storage and recovery means is cooled in a cooling means before the gas is sent to the step of next compression or in the compressed gas storage means.
  • heat is stored in heat storage particles.
  • said gas and a liquid present in said gas are separated, and said separated gas is stored, said separated and stored liquid being said liquid heated and introduced into said at least one expansion step.
  • a plurality of heat exchanges are implemented between said expanded gas at the outlet of said expansion line and said liquid.
  • said plurality of heat exchanges are implemented in series or in parallel for the circulation of said expanded gas at the outlet of said expansion line.
  • FIG. 1 already described, illustrates a system and a method for storing and recovering energy by compressed gas according to the prior art.
  • FIG. 2 illustrates a system and a method for storing and recovering energy by compressed gas according to a first embodiment of the invention.
  • FIG. 3 illustrates a system and a method for storing and recovering energy by compressed gas according to a second embodiment of the invention.
  • FIG. 4 illustrates a system and a method for storing and recovering energy by compressed gas according to a third embodiment of the invention.
  • FIG. 5 illustrates a system and a method for storing and recovering energy by compressed gas according to a fourth embodiment of the invention.
  • FIG. 6 illustrates a system and a method for storing and recovering energy by compressed gas according to a fifth embodiment of the invention.
  • FIG. 7 illustrates a system and a method for storing and recovering energy by compressed gas according to a sixth embodiment of the invention.
  • the present invention relates to a system and a method for the storage and recovery of energy by compressed gas.
  • upstream In the present invention the terms “upstream”, “downstream”, “input”, “output”, “before”, “after” are defined by the direction of circulation of the gas, respectively during the energy storage phase (compression phase), and during the energy recovery phase (relaxation phase).
  • the system according to the invention comprises:
  • each compression stage includes:
  • the means of compression can be axial compressors, centrifugal, or any other technology, • a heat storage and recovery means arranged downstream of the compression means, in order to store the heat generated by the compression, and to reduce the temperature of the gas before the next compression stage or before the storage means of compressed gas,
  • the compressed gas storage means can be a natural cavity such as a saline cavity, an old mine or an aquifer or artificial storage;
  • expansion line the gas line going from the compressed gas storage means to the gas outlet passing through at least one expansion means
  • expansion stage the expansion stage (when the expansion line comprises at least two expansion stages, these are successive: in series), each expansion stage comprises:
  • the system and the method comprise at least one heat exchange means between the expanded gas at the outlet of the expansion line and a liquid.
  • at least one expansion stage comprises a means for introducing and mixing the heated liquid in the expansion line.
  • the liquid introduction means allows mixing between the gas from the expansion line and the liquid from the liquid storage means.
  • the liquid introduction and mixing means are arranged in the expansion line upstream of the heat storage means, in this way the injected gas and liquid mixture is heated in the heat storage means, which allows to vaporize the liquid, and in this way only a gas is led into the expansion means.
  • the expanded and hot gas at the outlet of the expansion line is cooled, while the liquid to be injected into the expansion line can be heated.
  • the gas can be air. It may be air taken from the ambient environment. Alternatively, it may include any other gas.
  • the liquid is water.
  • it may include any other liquid.
  • the compression line comprises at least two successive compression stages
  • the expansion line comprises at least two successive expansion stages
  • the compression line and the expansion line can comprise as many stages.
  • the number of compression stages and the number of expansion stages can be identical.
  • This embodiment allows a "symmetrical" design of the compression and expansion lines, in particular with similar operating pressures and temperatures, which promotes heat exchange in the heat storage and recovery means.
  • the system and method are simplified.
  • the number of compression and expansion stages can be between two and six, preferably between three and five.
  • the number of compression and expansion stages can be three, which allows good management of temperatures and pressures, while maintaining a simple design.
  • the number of compression stages and the number of expansion stages may be different.
  • provision may be made to pool at least part of the heat storage and recovery means.
  • the system may comprise a plurality of heat exchange means between the expanded gas at the outlet of the expansion line and the liquid.
  • the heat exchange means between the expanded gas at the outlet of the expansion line and the liquid can be passed through in series by the expanded gas at the outlet of the expansion line.
  • This variant limits the number of pipes.
  • the means for exchanging heat between the expanded gas at the outlet of the expansion line and the liquid can be traversed in parallel by the expanded gas at the outlet of the expansion line. This variant allows the heat exchange for each expansion stage to be carried out with the same temperature of the expanded gas.
  • the heat storage and recovery means may comprise heat storage particles.
  • the heat exchange is carried out by direct exchange between the gas and a material, the material remaining in the heat storage and recovery means.
  • the material can be stones, concrete, gravel, beads of phase change material (PCM), zeolites or any similar material.
  • At least one compression stage can comprise a gas/liquid separation means, which makes it possible to extract the liquid present in the gas, in particular due to the condensation of the water present in the gas, and making it possible to eliminate the traces of liquid which could be contained in the gas after it has cooled and which could damage the system, in particular the compression means.
  • the gas/liquid separation means can be arranged downstream of the heat storage and recovery means. In this way, it is possible to extract the liquid formed by condensation in the heat storage and recovery means.
  • the gas/liquid separation means can be arranged upstream of the compression means.
  • the system can comprise liquid storage means, in order to store the liquid extracted from the compression line.
  • a liquid storage means may be provided per compression stage (therefore per gas-liquid separation means).
  • the liquid can be stored at different pressures.
  • the liquid extracted (separated) from the compression line, then stored is the liquid which is reheated, then introduced into the expansion line.
  • this implementation makes it possible to recover the energy contained in the liquid in the compression line.
  • the liquid storage means and the heat exchange means between the expanded gas and the liquid can be different and non-integrated means, which allows better management of temperatures and pressures. .
  • the heat exchange means between the expanded gas and the liquid can be integrated within the liquid storage means, so as to limit the number of elements of the system.
  • At least one compression stage may include cooling means.
  • This cooling means can be arranged downstream of the heat storage and recovery means. This cooling means makes it possible to cool the gas more significantly, which makes it possible to reduce the dimensions of the means for storing and recovering the heat.
  • These gas cooling means can be air coolers or heat exchangers (tubes/calender, plate, spiral or other suitable technologies) exchanging with a heat transfer fluid which can be water, propane, butane or any other refrigerant. suitable for the necessary cooling.
  • the cooling means can be adapted to the pressure of the air entering and exchanging with each of them. The cooling means are not involved in the energy recovery phase.
  • the possible gas/liquid separation means can be arranged downstream of the cooling means. In this way, it is possible to extract the liquid formed by condensation in the heat storage and recovery means as well as in the cooling means.
  • the invention relates to a method for storing and recovering energy by compressed gas.
  • the method according to the invention implements the following steps:
  • compression phase In the energy storage phase (compression phase): a) a gas is compressed at least once in a compression line comprising at least one compression stage, each compression stage comprising at least one compression means; b) after each compression step, the heat of the compressed gas is recovered in at least one heat storage and recovery means; c) the cooled compressed gas is stored at the outlet of the compression line in a compressed gas storage means;
  • the compressed gas leaving the compressed gas storage means is circulated in an expansion line comprising at least one expansion stage, and in each expansion stage, the compressed gas is heated by causing it to circulate in one of the means for storing and recovering the heat thanks to the heat stored during the compression step and then the heated compressed gas is expanded in an expansion means.
  • heat is exchanged between the expanded gas at the outlet of the expansion line and a liquid.
  • the heated liquid is introduced into the compressed gas before at least one step of heating the gas preceding an expansion step.
  • the liquid introduction step allows mixing between the gas from the expansion line and the liquid from the liquid storage means.
  • the step of introducing and mixing the liquid can be implemented in the expansion line upstream of the heat storage step, in this way, the water and liquid mixture injected is heated in the storage means heat, which makes it possible to vaporize the liquid, and in this way only a gas is led into the expansion means.
  • the hot gas leaving the expansion line is cooled, while the liquid to be injected into the expansion line can be heated.
  • the compressed gas energy storage and recovery method can implement the compressed gas energy storage and recovery system according to any one of the variants or combinations of variants as described below. above.
  • the gas can be air. It may be air taken from the ambient environment. Alternatively, it may include other gas.
  • the liquid can be water. Alternatively, it may include other liquid.
  • the method can implement at least two successive compression steps, and at least two successive expansion steps, so as to optimize the storage and recovery of energy.
  • the compression line and the expansion line can comprise as many stages.
  • the number of compression stages and the number of expansion stages can be identical.
  • This embodiment allows a "symmetrical" design of the compression and expansion lines, in particular with similar operating pressures and temperatures, which promotes heat exchange in the heat storage and recovery means.
  • the system and method are simplified.
  • the number of compression and expansion stages can be between two and six, preferably between three and five.
  • the number of compression and expansion stages can be three, which allows good management of temperatures and pressures, while maintaining a simple design.
  • the number of compression stages and the number of expansion stages may be different.
  • provision may be made to pool at least part of the heat storage and recovery means.
  • the energy storage phase may include a cooling step.
  • This cooling step can be carried out after the heat storage step by a cooling means.
  • This cooling step makes it possible to cool the gas more significantly, which makes it possible to reduce the dimensions of the means for storing and recovering the heat.
  • These cooling means can be air coolers or heat exchangers (tubes/shell, plates, spirals or other suitable technologies) exchanging with a heat transfer fluid which can be water, propane, butane or any other refrigerant suitable for the necessary cooling.
  • the cooling means can be adapted to the pressure of the air entering and exchanging with each of them.
  • the optional gas/liquid separation step can be carried out after the cooling step. In this way, it is possible to extract the liquid formed by condensation in the heat storage and recovery means as well as in the cooling stage.
  • heat can be stored and recovered in heat storage particles.
  • the heat storage and heat recovery means include heat storage particles.
  • the heat exchange is carried out by direct exchange between the gas and a material, the material remaining in the heat storage and recovery means.
  • the material can be stones, concrete, gravel, beads of phase change material (PCM), zeolite, or any similar material.
  • the gas and a liquid present in the gas can be separated.
  • This step makes it possible to extract the liquid present in the gas, in particular due to the condensation of the water present in the gas, and making it possible to eliminate the traces of liquid which could be contained in the gas after it has cooled and which could damage the system, in particular the means of compression.
  • the gas/liquid separation step can be carried out after the heat storage step. In this way, it is possible to extract the liquid formed by condensation in the heat storage and recovery means.
  • the gas/liquid separation step can be carried out before the compression step.
  • the method may include a liquid storage step, to store the liquid extracted (separated) from the compression line.
  • a liquid storage step to store the liquid extracted (separated) from the compression line.
  • the liquid can be stored at different pressures.
  • the liquid extracted (separated) from the compression line and then stored is the liquid which is heated and then introduced into the expansion line.
  • this implementation makes it possible to recover the energy contained in the liquid in the compression line.
  • the liquid storage means and the heat exchange means between the expanded gas and the liquid can be different and non-integrated means, which allows better management of temperatures and pressures. .
  • the heat exchange means between the expanded gas and the liquid can be integrated (included) within the liquid storage means, so as to limit the number of elements of the system.
  • the heat exchange means between the expanded gas at the outlet of the expansion line and the liquid can be passed through in series by the expanded gas at the outlet of the expansion line.
  • This variant limits the number of pipes.
  • the heat exchange means between the expanded gas at the outlet of the expansion line and the liquid can be crossed in parallel by the expanded gas at the outlet of the expansion line. This variant allows the heat exchange for each expansion stage to be carried out with the same temperature of the expanded gas.
  • Figure 2 illustrates, schematically and in a non-limiting manner, a system and a method for storing and recovering energy by compressed gas (in this case air) according to a first embodiment of the invention.
  • the method and the system consist of a compression line (1), including three compression stages (3) depending on the air pressure to be reached.
  • Each compression stage (3) comprises compression means (100, 101, 102) also called a compressor.
  • These compressors (100, 101, 102) can be axial, centrifugal, or any other technology.
  • the compressor (100) is a low pressure compressor
  • the compressor (101) is a medium pressure compressor
  • the compressor (102) is a high pressure compressor.
  • the gas to be compressed (10) used in the system and the method is ambient air, for example dry air.
  • a low-pressure element for example turbine, compressor, etc.
  • an element adapted to the low pressure in which the gas or liquid circulates in the element is called an element adapted to the low pressure in which the gas or liquid circulates in the element, medium-pressure element an element adapted to the medium pressure in which the gas or the liquid circulates in the element, and high pressure element an element adapted to the high pressure in which the gas or the liquid circulates in the element.
  • This compressed air storage means (1000) can be a natural cavity such as a salt cavity, an old mine or an aquifer or even an artificial storage.
  • Heat storage and recovery means (200, 201, 202) are arranged after each compressor (100, 101, 102) in order to cool the hot compressed air at the compression outlet while storing this thermal energy.
  • the exchange/storage takes place by direct contact between the air and the material allowing the heat of the air to be stored.
  • This material can be stones, concrete, gravel or any other suitable solid material.
  • the heat storage and recovery means (200, 201, 202) are adapted to the pressure of the incoming air transferring its energy to each of them.
  • the heat storage and recovery means (200) is suitable for low pressure
  • the heat storage and recovery means (201) is suitable for medium pressure
  • the heat storage and recovery means heat (202) is suitable for high pressure.
  • the compressed air passes through the expansion line (2), which has three expansion stages (4).
  • the air is expanded via one or more expansion means, for example turbines (700, 701, 702), placed in each expansion stage (4), in order to produce electricity via alternators, not shown.
  • the turbine (702) is a low pressure turbine
  • the turbine (701) is a medium pressure turbine
  • the turbine (700) is a high pressure turbine.
  • water is injected into the compressed air via mixers (600, 601, 602), the water being preheated beforehand by the heat exchange means (800 , 801 , 802).
  • the heat exchange means (800, 801, 802) can be heat exchangers of the tube/shell, plate, spiral type or any other suitable technology and the exchange takes place between the water injected into the expansion and the waste heat of the air leaving the low pressure turbine (702).
  • the heat exchange means (800, 801, 802) are arranged in series by relative to the flow of low pressure air leaving the low pressure turbine (702), that is to say leaving the expansion line.
  • the order of passage of the gas at the outlet of the expansion line in the heat exchange means (800, 801, 802) can be the order represented in FIG. 2, or any other order, for example the order ( 802, 801, 800), or (801, 802, 800) or (801, 800, 802).
  • the compressed air/water mixture is heated, before entering the turbine, by the heat storage and recovery means (200, 201, 202), thermally loaded during the previous compression phase.
  • the water contained in the expansion line (2) is evaporated and the air heated. There is therefore no liquid water at the inlet of the turbines (700, 701, 702), which is preferable for the correct operation of these, and the greater flow rate due to the injection of water as well as the high temperature of the expansion line (2) at the inlet of the turbines (700, 701, 702) ensures better process efficiency.
  • Figure 3 illustrates, schematically and in a non-limiting way, a system and a method for storing and recovering energy by compressed gas (in this case air) according to a second embodiment of the invention.
  • the second embodiment differs from the first embodiment by the number of compression stages and the number of expansion stages.
  • the compression line (1) comprises two compression stages (3) and the expansion line (2) comprises two expansion stages (4).
  • the first embodiment can also be modified by adding compression stages and/or expansion stages.
  • FIG. 4 illustrates, schematically and in a non-limiting manner, a system and a method for storing and recovering energy by compressed gas (in this case air) according to a third embodiment of the invention.
  • the third embodiment differs from the first embodiment in that each compression stage comprises a gas/liquid separation means, and that the system comprises liquid storage means, and in the fact that the liquid heated and introduced in the expansion line is the liquid separated from the compression line and stored.
  • the method and the system consist of a compression line (1), including three compression stages (3) depending on the air pressure to be reached.
  • Each compression stage (3) comprises compression means (100, 101, 102) also called a compressor.
  • These compressors (100, 101, 102) can be axial, centrifugal, or any other technology.
  • the compressor (100) is a low pressure compressor
  • the compressor (101) is a medium pressure compressor
  • the compressor (102) is a high pressure compressor.
  • the gas to be compressed (10) in the system and the process is ambient air, containing a water saturation related to its temperature and its pressure.
  • This compressed air storage means (1000) can be a natural cavity such as a salt cavity, an old mine or an aquifer or even an artificial storage.
  • Heat storage and recovery means (200, 201, 202) are arranged after each compressor (100, 101, 102) in order to cool the hot compressed air at the compression outlet while storing this thermal energy.
  • the exchange/storage takes place by direct contact between the air and the material allowing the heat of the air to be stored.
  • This material can be stones, concrete, gravel or any other suitable solid material.
  • the heat storage and recovery means (200, 201, 202) are adapted to the pressure of the incoming air transferring its energy to each of them.
  • the heat storage and recovery means (200) is suitable for low pressure
  • the heat storage and recovery means (201) is suitable for medium pressure
  • the heat storage and recovery means heat (202) is suitable for high pressure.
  • the condensed water i.e. the liquid present in the air
  • the condensed water is extracted from the compression line by separators gas-liquid (400, 401, 402) in order to have air at the compressor inlet without any trace of liquid water.
  • This water condensation can take place in the heat storage and recovery means (200, 201, 202).
  • the water condensed at each compression stage is sent to liquid storage means (500, 501, 502), each of which resists the pressure at which the water is extracted from the air, in other words the liquid storage means (500) is suitable for low pressure, the liquid storage means (501) is suitable for medium pressure, and the liquid storage means (502) is suitable for high pressure.
  • the compressed air passes through the expansion line (2), which has three expansion stages (4).
  • the air is expanded via one or more expansion means, for example turbines (700, 701, 702), placed in each expansion stage (4), in order to produce electricity via alternators, not shown.
  • the turbine (702) is a low pressure turbine
  • the turbine (701) is a medium pressure turbine
  • the turbine (700) is a high pressure turbine.
  • water condensed and stored during the energy storage phase is reinjected with compressed air via mixers (600, 601, 602), the water being previously preheated by the heat exchange means (800, 801, 802).
  • the heat exchange means (800, 801, 802) can be tube/shell, plate, spiral type heat exchangers or any other suitable technology and the exchange takes place between the condensed water and the waste heat of the the air leaving the low pressure turbine (702).
  • the heat exchange means (800, 801, 802) are arranged in series with respect to the flow of low pressure air leaving the low pressure turbine (702), that is to say leaving the expansion line .
  • the compressed air/water mixture is heated, before entering the turbine, by the heat storage and recovery means (200, 201, 202), thermally loaded during the previous compression phase.
  • the water contained in the expansion line (2) is evaporated and the air heated. There is therefore no liquid water at the inlet of the turbines (700, 701, 702), which is preferable for the proper functioning of these, and the greater flow rate due to the reinjection of water as well as the high temperature of the expansion line (2) at the inlet of the turbines (700, 701, 702) ensures better process efficiency.
  • the third embodiment can also be modified by adapting the number of compression stages and/or expansion stages.
  • Figure 5 illustrates, schematically and in a non-limiting manner, a system and a method for storing and recovering energy by compressed gas (in this case air) according to a fourth embodiment of the invention.
  • the fourth embodiment corresponds to the third embodiment for which cooling means (300, 301, 302) have been added in the compression line (1). Therefore, only the compression line (1) is described for this embodiment.
  • the method and the system consist of a compression line (1), including three compression stages (3) depending on the air pressure to be reached.
  • Each compression stage (3) comprises compression means (100, 101, 102) also called a compressor.
  • These compressors (100, 101, 102) can be axial, centrifugal, or of any other technology.
  • the compressor (100) is a low pressure compressor
  • the compressor (101) is a medium pressure compressor
  • the compressor (102) is a high pressure compressor.
  • the gas to be compressed (10) in the system and the process is ambient air, containing a water saturation related to its temperature and its pressure.
  • the air is compressed in the compression line (1) then sent to a compressed air storage means (1000) suitable for high pressures.
  • This compressed air storage means (1000) can be a natural cavity such as a saline cavity, an old mine or an aquifer or even an artificial storage.
  • Heat storage and recovery means (200, 201, 202) are arranged after each compressor (100, 101, 102) in order to cool the hot compressed air at the compression outlet while storing this thermal energy.
  • the exchange/storage takes place by direct contact between the air and the material allowing the heat of the air to be stored.
  • This material can be stones, concrete, gravel or any other suitable solid material.
  • the heat storage and recovery means (200, 201, 202) are adapted to the pressure of the incoming air transferring its energy to each of them.
  • the heat storage and recovery means (200) is suitable for low pressure
  • the heat storage and recovery means (201) is suitable for medium pressure
  • the heat storage and recovery means heat (202) is suitable for high pressure.
  • Cooling means (300, 301, 302) can be arranged after the heat storage and recovery means (200, 201, 202) if necessary in order to finish cooling the compressed air before the next stage compression or before storage.
  • These cooling means (300, 301, 302) can be air coolers or heat exchangers (tubes/shell, plates, spirals or other suitable technologies) exchanging with a heat transfer fluid which can be water, propane , butane or any other refrigerant suitable for the necessary cooling.
  • the cooling means (300, 301, 302) are adapted to the pressure of the air entering and exchanging with each of them.
  • the cooling means (300) is suitable for low pressure
  • the cooling means (301) is suitable for medium pressure
  • the cooling means (302) is suitable for high pressure.
  • the condensed water ie the liquid present in the air
  • the condensed water is extracted from the compression line by separators gas-liquid (400, 401, 402) in order to have air at the compressor inlet without any trace of liquid water.
  • This water condensation can take place in the heat storage and recovery means (200, 201, 202) and/or in the cooling means (300, 301, 302).
  • the water condensed at each compression stage is sent to liquid storage means (500, 501, 502), each of which resists the pressure at which the water is extracted from the air, in other words the liquid storage means (500) is suitable for low pressure, the liquid storage means (501) is suitable for medium pressure, and the liquid storage means (502) is suitable for high pressure.
  • the fourth embodiment can also be modified by adapting the number of compression stages and/or expansion stages.
  • system and the method can be provided without means of gas/liquid separation, nor means of storage of the liquid.
  • Figure 6 illustrates, schematically and in a non-limiting manner, a system and a method for storing and recovering energy by compressed gas (in this case air) according to a fifth embodiment of the invention.
  • the fifth embodiment corresponds to the fourth embodiment for which the heat exchange means between the gas expanded at the outlet of the expansion line and the liquid are integrated into the liquid storage means.
  • the method and the system consist of a compression line (1), including three compression stages (3) depending on the air pressure to be reached.
  • Each compression stage (3) comprises compression means (100, 101, 102) also called a compressor.
  • These compressors (100, 101, 102) can be axial, centrifugal, or of any other technology.
  • the compressor (100) is a low pressure compressor
  • the compressor (101) is a medium pressure compressor
  • the compressor (102) is a high pressure compressor.
  • the gas to be compressed (10) in the system and the process is ambient air, containing water saturation related to its temperature and pressure.
  • This compressed air storage means (1000) can be a natural cavity such as a salt cavity, an old mine or an aquifer or even an artificial storage.
  • Heat storage and recovery means (200, 201, 202) are arranged after each compressor (100, 101, 102) in order to cool the hot compressed air at the compression outlet while storing this thermal energy.
  • the exchange/storage takes place by direct contact between the air and the material allowing the heat of the air to be stored.
  • This material can be stones, concrete, gravel or any other suitable solid material.
  • the heat storage and recovery means (200, 201, 202) are adapted to the pressure of the incoming air transferring its energy to each of them.
  • the heat storage and recovery means (200) is suitable for low pressure
  • the heat storage and recovery means (201) is suitable for medium pressure
  • the heat storage and recovery means heat (202) is suitable for high pressure.
  • Means cooling can be arranged after the heat storage and recovery means (200, 201, 202) if necessary in order to finish cooling the compressed air before the next compression stage or before storage.
  • These cooling means (300, 301, 302) can be air coolers or heat exchangers (tubes/shell, plates, spirals or other suitable technologies) exchanging with a heat transfer fluid which can be water, propane , butane or any other refrigerant suitable for the necessary cooling.
  • the cooling means (300, 301, 302) are adapted to the pressure of the air entering and exchanging with each of them.
  • the cooling means (300) is suitable for low pressure
  • the cooling means (301) is suitable for medium pressure
  • the cooling means (302) is suitable for high pressure.
  • the condensed water i.e. the liquid present in the air
  • the condensed water is extracted from the compression line by separators gas-liquid (400, 401, 402) in order to have air at the compressor inlet without any trace of liquid water.
  • This water condensation can take place in the heat storage and recovery means (200, 201, 202) and/or in the cooling means (300, 301, 302).
  • liquid storage means (500, 501, 502) each of which resists the pressure at which the water is extracted from the air, in other words the liquid storage means (500) is suitable for low pressure, the liquid storage means (501) is suitable for medium pressure, and the liquid storage means (502) is suitable for high pressure.
  • the compressed air passes through the expansion line (2), which has three expansion stages (4).
  • the air is expanded via one or more expansion means, for example turbines (700, 701, 702), placed in each expansion stage (4), in order to produce electricity via alternators, not shown.
  • the turbine (702) is a low pressure turbine
  • the turbine (701) is a medium pressure turbine
  • the turbine (700) is a high pressure turbine.
  • each expansion stage (4) condensed and stored water is reinjected into the pressurized air via mixers (600, 601, 602), the water being preheated beforehand by means of heat exchange integrated in the liquid storage means (500, 501, 502).
  • the heat exchange means can be of the tube/shell, plate, spiral type or any other suitable technology and the exchange takes place between the condensed water and the waste heat of the air leaving the low pressure turbine ( 702).
  • the heat exchange means are arranged in series with respect to the air flow low pressure leaving the low pressure turbine (702), that is to say leaving the expansion line.
  • the compressed air/water mixture is heated, before entering the turbine, by the heat storage and recovery means (200, 201, 202), thermally loaded during the previous compression phase.
  • the water contained in the expansion line (2) is evaporated and the air heated. There is therefore no liquid water at the inlet of the turbines (700, 701, 702), which is preferable for the proper functioning of these, and the greater flow rate due to the reinjection of water as well as the high temperature of the expansion line (2) at the inlet of the turbines (700, 701, 702) ensures better process efficiency.
  • the fifth embodiment can also be modified by adapting the number of compression stages and/or expansion stages.
  • the fifth embodiment can be provided without gas/liquid separation means, nor liquid storage means or without cooling means.
  • Figure 7 illustrates, schematically and in a non-limiting manner, a system and a method for storing and recovering energy by compressed gas (in this case air) according to a sixth embodiment of the invention.
  • the sixth embodiment corresponds to the fourth embodiment for which the heat exchange means between the expanded gas at the outlet of the compression line and the liquid are arranged in parallel for the circulation of the expanded gas. Therefore, only the trigger line is described.
  • the compressed air passes through the expansion line (2), which has three expansion stages (4).
  • the air is expanded via one or more expansion means, for example turbines (700, 701, 702), placed in each expansion stage (4), in order to produce electricity via alternators, not shown.
  • the turbine (702) is a low pressure turbine
  • the turbine (701) is a medium pressure turbine
  • the turbine (700) is a high pressure turbine.
  • each expansion stage (4) condensed and stored water is reinjected with compressed air via mixers (600, 601, 602), the water being preheated beforehand by the heat exchange means.
  • the heat exchange means (800, 801, 802) can be tube/shell, plate, spiral type heat exchangers or any other suitable technology and the exchange takes place between the condensed water and the waste heat of the the air leaving the low pressure turbine (702).
  • the heat exchange means (800, 801, 802) are arranged in parallel with respect to the flow low pressure air leaving the low pressure turbine (702), that is to say leaving the expansion line.
  • the expanded gas at the outlet of the expansion line (2) passes through a flow separator (or "splitter") (900) which divides the flow into three, each part of the flow of expanded gas passes through a means heat exchange (800, 801, 802).
  • the compressed air/water mixture is heated, before entering the turbine, by the heat storage and recovery means (200, 201, 202), thermally loaded during the previous compression phase.
  • the water contained in the expansion line (2) is evaporated and the air heated. There is therefore no liquid water at the inlet of the turbines (700, 701, 702), which is preferable for the proper functioning of these, and the greater flow rate due to the reinjection of water as well as the high temperature of the expansion line (2) at the inlet of the turbines (700, 701, 702) ensures better process efficiency.
  • the sixth embodiment can also be modified by adapting the number of compression stages and/or expansion stages.
  • the sixth separation mode can be provided without gas/liquid separation means, nor liquid storage means or without cooling means, or with integration of the heat exchange means in the liquid storage means.
  • an external air flow (10) at a pressure of 1.02 bar and a temperature of 27° C. and having a humidity of 14.6 g water/kg air (gram of water per kilogram of air), is compressed by a low pressure compressor (100) from which it emerges (11) at a temperature of 255° C. and a pressure of 6 bar (0.6 MPa) (0.6 MPa).
  • This flow (11) is sent to a low pressure heat storage and recovery means (200) which cools the air to a temperature of 90°C (12) and stores this thermal energy until the phase relaxation (2).
  • the stream (12) is cooled again by the cooling means (300) until it reaches a temperature of 50° C. at the outlet (13).
  • the flow (13) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (200) and/or (300).
  • This condensed water (14) is separated from the compression line (1) in a gas-liquid separator (400) operating at the pressure of the stream (13).
  • the flow (15), again completely gaseous, is compressed by a medium pressure compressor (101) from which it emerges (16) at a temperature of 275° C. and a pressure of 28 bar (2.8 MPa).
  • the flow (16) is sent to a medium pressure heat storage and recovery means (201) which cools the air to a temperature of 100°C (17) and stores this thermal energy until the phase relaxation (2).
  • the stream (17) is cooled again by a cooling means (301) until it reaches a temperature of 50° C. at the outlet (18).
  • the flow (18) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (201) and/or (301).
  • This condensed water (19) is separated from the compression line (1) in a gas-liquid separator (401) operating at the pressure of the stream (18).
  • the flow (20), again completely gaseous, is compressed by a high pressure compressor (102) from which it emerges (21) at a temperature of 250° C. and a pressure of 117 bar (11.7 MPa).
  • the flow (21) is sent to a high pressure heat storage and recovery means (202) which cools the air to a temperature of 45°C (22) and stores this thermal energy until the phase relaxation (2).
  • the stream (22) is cooled again by a cooling means (302) until it reaches a temperature of 30° C. at the outlet (23), 30° C. being the air storage temperature.
  • the flow (23) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (202) and/or (302). This condensed water (24) is separated from the compression line (1) in a gas-liquid separator (402) operating at the pressure of the stream (23).
  • the compressed air flow at a pressure of 117 bar (11.7 MPa) and a temperature of 30°C (25) is then sent to the compressed air storage means (1000) pending the recovery phase of the energy (2).
  • the flow of compressed air (26) at a pressure of 117 bar (11.7 MPa) and a temperature of 30° C., leaving the compressed air storage means (1000) is heated in the high pressure heat storage and recovery means (202) which releases the heat stored during the compression phase (1) until the stream (27) reaches a temperature of 240°C.
  • This flow of hot and compressed air (27) is expanded in the high pressure turbine (700) producing electricity via an alternator, until it reaches at the outlet (28) a pressure of 28 bar (2.8 MPa) and a temperature of 85°C.
  • the stream (28) is heated in the medium pressure heat storage and recovery means (201) which releases the heat stored during the compression phase (1) until the stream (29) reaches a temperature of 265°C.
  • This flow of hot and compressed air (29) is expanded in the medium pressure turbine (701) producing electricity via an alternator, until a pressure of 5 bar (0.5 MPa) and a temperature of 75°C are reached at the outlet (30).
  • the stream (30) is heated in the low pressure heat storage and recovery means (200) which releases the heat stored during the compression phase (1) until the stream (31) reaches a temperature of 245°C.
  • This flow of hot, compressed air (31) is expanded in the low pressure turbine (702) producing electricity via an alternator, until it reaches a pressure of 1.02 bar (0.1 MPa) at the outlet (32). and a temperature of 80°C.
  • the efficiency of the process and of the energy storage system of example 1 is 69.6% for a power consumption of 100 MW at the compressors.
  • the total flow of condensed water at the three compression stages is 7.5 t/h.
  • the thermal storage power is 87 MWth (thermal MW) and the cooling power required is 20.5 MWth.
  • This flow (11) is sent to a low-pressure heat storage and recovery means (200) which cools the air to a temperature of 80° C. (12) and stores this thermal energy until the phase relaxation (2).
  • the stream (12) is cooled again by the cooling means (300) until it reaches a temperature of 50° C. at the outlet (13).
  • the flow (13) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (200) and/or (300).
  • This condensed water (14) is separated from the air stream (15) in a gas-liquid separator (400), operating at the pressure of the stream (13), then sent to a liquid storage means (500) under a maintained pressure of 6 bar (0.6 MPa).
  • the flow (15), again completely gaseous, is compressed by a medium pressure compressor (101) from which it emerges (16) at a temperature of 275° C. and a pressure of 28 bar (2.8 MPa).
  • the flow (16) is sent to a medium pressure heat storage and recovery means (201) which cools the air to a temperature of 80° C. (17) and stores this thermal energy until the phase relaxation (2).
  • the stream (17) is cooled again by the cooling means (301) until it reaches a temperature of 50° C. at the outlet (18).
  • the flow (18) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (201) and/or (301).
  • This condensed water (19) is separated from the air stream (20) in a gas-liquid separator (401), operating at the pressure of the stream (18), then sent to a liquid storage means (501) under a maintained pressure of 28 bar (2.8 MPa).
  • the flow (20), again completely gaseous, is compressed by a high pressure compressor (102) from which it emerges (21) at a temperature of 250° C. and a pressure of 117 bar (11.7 MPa).
  • the flow (21) is sent to a high pressure heat storage and recovery means (202) which cools the air to a temperature of 40°C (22) and stores this thermal energy until the phase relaxation (2).
  • the stream (22) is cooled again by the cooling means (302) until it reaches a temperature of 30° C. at the outlet (23), 30° C. being the air storage temperature.
  • the flow (23) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (202) and/or (302).
  • This condensed water (24) is separated from the air stream (25) in a gas-liquid separator (402), operating at the pressure of the stream (23), then sent to a liquid storage means (502) under a maintained pressure of 117 bar (11.7 MPa).
  • the compressed air flow at a pressure of 117 bar (11.7 MPa) and a temperature of 30°C (25) is then sent to the compressed air storage means (1000) while waiting for the energy recovery phase (2).
  • a stream of condensed water (27) coming from the liquid storage means (502) at a pressure of 117 bar (11.7 MPa) and a temperature of 30° C. is heated in the heat exchanger (802) until a temperature of 75°C is reached at the flow (28) before being reinjected into the compressed air flow (26) leaving the compressed air storage means (1000) via the mixer (600) to form the stream (29).
  • the stream (29) is heated in the high pressure heat storage and recovery means (202) which releases the heat stored during the compression phase (1) until the stream (30) reaches a temperature of 240°C.
  • This flow of hot and compressed air (30) is expanded in the high pressure turbine (700) producing electricity via an alternator, until it reaches at the outlet (31) a pressure of 28 bar (2.8 MPa) and a temperature of 85°C.
  • a flow of condensed water (32) coming from the liquid storage means (501) at a pressure of 28 bar (2.8 MPa) and a temperature of 50° C. is heated in the heat exchanger (801) until reach a temperature of 77°C in the stream (33) before being reinjected into the compressed air stream (31) via the mixer (601) to form the stream (34).
  • the stream (34) is heated in the medium pressure heat storage and recovery means (201) which releases the heat stored during the compression phase (1) until the stream (35) reaches a temperature of 255°C.
  • This flow of hot and compressed air (35) is expanded in the medium pressure turbine (701) producing electricity via an alternator, up to reach at outlet (36) a pressure of 5 bar and a temperature of 70°C.
  • a stream of condensed water (37) coming from the liquid storage means (500) at a pressure of 6 bar (0.6 MPa) and a temperature of 50°C is heated in the heat exchanger (800) until reach a temperature of 75°C in the stream (38) before being reinjected into the compressed air stream (36) via the mixer (602) to form the stream (39).
  • the stream (39) is reheated in the low pressure heat storage and recovery means (200) which releases the heat stored during the compression phase (1) until the stream (40) reaches a temperature of 245°C.
  • This flow of hot, compressed air (40) is expanded in the low-pressure turbine (702) producing electricity via an alternator, until it reaches a pressure of 1.02 bar (0.1 MPa) at the outlet (41). and a temperature of 80°C.
  • This stream (41) is sent in series to the heat exchangers (800, 801, 802) to heat the condensed water streams reinjected into each expansion stage.
  • the efficiency of the energy storage process is 70.4% for a power consumption of 100 MW at the compressors.
  • the total flow of condensed water at the three compression stages is 7.5 t/h.
  • the thermal storage power is 92.5 MWth and the cooling power required is 14.9 MWth.
  • the reinjection of condensation water therefore makes it possible to improve the yield of the process by approximately 1% compared to Example 1, which is not in accordance with the invention, and to reduce the power required for cooling by approximately 27%.
  • This flow (11) is sent to low pressure heat storage and recovery means (200) which cools the air to a temperature of 80°C (12) and stores this thermal energy until the relaxation (2).
  • the stream (12) is cooled again by the cooling means (300) until it reaches a temperature of 50° C. at the outlet (13).
  • the flow (13) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (200) and/or (300).
  • This condensed water (14) is separated from the air stream (15) in a gas-liquid separator (400), operating at the pressure of the stream (13), then sent to a storage means for liquid (500) under a maintained pressure of 6 bar (0.6 MPa).
  • the flow (15), again completely gaseous, is compressed by a medium pressure compressor (101) from which it emerges (16) at a temperature of 275° C. and a pressure of 28 bar (2.8 MPa).
  • the flow (16) is sent to a medium pressure heat storage and recovery means (201) which cools the air to a temperature of 80° C.
  • the stream (17) is cooled again by the cooling means (301) until it reaches a temperature of 50° C. at the outlet (18).
  • the flow (18) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (201) and/or (301).
  • This condensed water (19) is separated from the air stream (20) in a gas-liquid separator (401), operating at the pressure of the stream (18), then sent to a liquid storage means (501) under a maintained pressure of 28 bar (2.8 MPa).
  • the flow (20), again completely gaseous, is compressed by a high pressure compressor (102) from which it emerges (21) at a temperature of 250° C. and a pressure of 117 bar (11.7 MPa).
  • the flow (21) is sent to a high pressure heat storage and recovery means (202) which cools the air to a temperature of 40°C (22) and stores this thermal energy until the phase relaxation (2).
  • the stream (22) is cooled again by the cooling means (302) until it reaches a temperature of 30° C. at the outlet (23), 30° C. being the air storage temperature.
  • the flow (23) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (202) and/or (302).
  • This condensed water (24) is separated from the air stream (25) in a gas-liquid separator (402), operating at the pressure of the stream (23), then sent to a liquid storage means (502) under a maintained pressure of 117 bar (11.7 MPa).
  • the compressed air flow at a pressure of 117 bar (11.7 MPa) and a temperature of 30°C (25) is then sent to the compressed air storage means (1000) while waiting for the energy recovery phase (2).
  • a stream of condensed water (27) coming from the storage (502) at a pressure of 117 bar (11.7 MPa) and a temperature of 30° C. is heated in the heat exchanger. heat (802) until a temperature of 77°C is reached in the stream (28) before being reinjected into the compressed air stream (26) leaving the compressed air storage means (1000) via the mixer ( 600) to form the stream (29).
  • the stream (29) is heated in the high pressure heat storage and recovery means (202) which releases the heat stored during the compression phase (1) until the stream (30) reaches a temperature of 240°C.
  • This flow of hot and compressed air (30) is expanded in the high pressure turbine (700) producing electricity via an alternator, until it reaches at the outlet (31) a pressure of 28 bar (2.8 MPa) and a temperature of 85°C.
  • a flow of condensed water (32) from the liquid storage means (501) at a pressure of 28 bar (2.8 MPa) and a temperature of 50°C is heated in the heat exchanger (801) until a temperature of 77°C is reached in the flow (33) before being reinjected into the compressed air flow ( 31) via mixer (601) to form stream (34).
  • the stream (34) is heated in the medium pressure heat storage and recovery means (201) which releases the heat stored during the compression phase (1) until the stream (35) reaches a temperature of 255°C.
  • This flow of hot and compressed air (35) is expanded in the medium pressure turbine (701) producing electricity via an alternator, until it reaches at the outlet (36) a pressure of 5 bar (0.5 MPa) and a temperature of 70°C.
  • a stream of condensed water (37) coming from the liquid storage means (500) at a pressure of 6 bar (0.6 MPa) and a temperature of 50°C is heated in the heat exchanger (800) until reach a temperature of 77°C at the stream (38) before being reinjected into the compressed air stream (36) via the mixer (602) to form the stream (39).
  • the stream (39) is reheated in the low pressure heat storage and recovery means (200) which releases the heat stored during the compression phase (1) until the stream (40) reaches a temperature of 245°C.
  • This flow of hot, compressed air (40) is expanded in the low pressure turbine (702) producing electricity via an alternator, until it reaches a pressure of 1.02 bar (0.1 MPa) at the outlet (41). and a temperature of 80°C.
  • This stream (41) is divided into three streams in the stream splitter/divider (900). These flows can be established in proportion to the liquid flows (27, 32, 37) to heat them in parallel in the heat exchangers (800, 801, 802) before their reinjection at each expansion stage.
  • the efficiency of the energy storage process is 70.4% for a power consumption of 100 MW in the compression phase.
  • the total flow of condensed water at the three compression stages is 7.5 t/h.
  • the thermal storage power is 92.5 MWth and the cooling power required is 14.9 MWth.
  • the reinjection of condensation water therefore makes it possible to improve the yield of the process by approximately 1% compared to Example 1, which is not in accordance with the invention, and to reduce the power required for cooling by approximately 27%.
  • examples 2 and 3 show that the system and the method according to the invention make it possible to increase the performance of the system and of the method, while limiting the power required for cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The invention relates to a system and method for storing and recovering energy by means of compressed gas, comprising a compression line (1), an air storage means (1000) and an expansion line (2), wherein a liquid is heated by means of the heat of the expanded gas at the outlet of the expansion line, and the heated liquid is fed into the expansion line.

Description

SYSTEME ET PROCEDE DE STOCKAGE ET DE RECUPERATION D’ENERGIE PAR GAZGAS ENERGY STORAGE AND RECOVERY SYSTEM AND METHOD
COMPRIME AVEC RECHAUFFAGE DE LIQUIDE TABLET WITH LIQUID HEATING
Domaine technique Technical area
La présente invention concerne le domaine du stockage et de la production d’énergie par compression et détente de gaz, notamment de l’air. The present invention relates to the field of storage and production of energy by compression and expansion of gas, in particular air.
Alors que les objectifs énergétiques mondiaux visent à favoriser les énergies renouvelables par rapport aux énergies fossiles et à en augmenter progressivement la proportion dans le mix énergétique, leur caractère variable demeure leur inconvénient majeur. Pour répondre à cette problématique, le stockage d’énergie apparaît comme la solution idéale. En stockant le surplus d’électricité produit au pic de production afin d’en disposer lorsque celle-ci devient inférieure à la demande, le stockage permet de s’affranchir de la contrainte de variabilité et apporte une continuité, ou tout du moins une flexibilité, à la base inexistante, aux énergies renouvelables. Ainsi, le besoin en procédé de stockage d’énergie existe et va aller grandissant avec la proportion de ce type d’énergies dans le mix énergétique mondial. While global energy goals aim to favor renewable energies over fossil fuels and to gradually increase their proportion in the energy mix, their variable nature remains their major drawback. To address this problem, energy storage appears to be the ideal solution. By storing the surplus electricity produced at the peak of production in order to have it available when it falls below demand, storage makes it possible to overcome the constraint of variability and provides continuity, or at least flexibility. , basically non-existent, to renewable energies. Thus, the need for an energy storage process exists and will grow with the proportion of this type of energy in the global energy mix.
De nombreuses technologies de stockage matures existent déjà à l’heure actuelle comme les stockages de type mécanique tels que les Stations de Transfert d’Energie par Pompage (STEP) utilisant l’hydroélectricité produite par deux réservoirs d’eau situés à différentes altitudes. En phase de stockage d’électricité, l’eau du réservoir inférieur est pompée vers le réservoir supérieur et stockée à cette altitude. Lorsque la demande en électricité augmente, l’eau du réservoir supérieur est renvoyée vers le réservoir inférieur en passant par une turbine hydraulique qui va alors générer, via un alternateur, de l’électricité. Les barrages hydroélectriques fonctionnent également sur le même concept : le barrage retient l’eau à une altitude plus importante en amont qu’en aval et lorsque la demande en électricité augmente, le barrage libère l’eau en la faisant passer par des turboalternateurs hydrauliques produisant l’électricité. La technologie de stockage d’énergie par air comprimé (CAES de l’anglais « compressed air energy storage ») fait partie des solutions de type mécanique. D’autres technologies de type électrochimique peuvent être également utilisées pour le stockage d’énergie telles que les batteries lithium-ion, plomb-acide ou encore nickel-cadmium, ou bien des batteries à circulation utilisant des électrolytes. Many mature storage technologies already exist today, such as mechanical storage such as Pumped Energy Transfer Stations (STEP) using hydroelectricity produced by two water reservoirs located at different altitudes. In the electricity storage phase, water from the lower reservoir is pumped to the upper reservoir and stored at this altitude. When the demand for electricity increases, the water from the upper reservoir is sent back to the lower reservoir via a hydraulic turbine which will then generate electricity via an alternator. Hydroelectric dams also work on the same concept: the dam retains water at a higher altitude upstream than downstream and when the demand for electricity increases, the dam releases the water by passing it through hydraulic turbine generators producing electricity. Compressed air energy storage (CAES) technology is one of the mechanical solutions. Other electrochemical type technologies can also be used for energy storage such as lithium-ion, lead-acid or even nickel-cadmium batteries, or circulation batteries using electrolytes.
Le stockage d’énergie par air comprimé (CAES) est une technologie mature dont la première installation a été construite en Allemagne fin des années 70, stockant 290 MW. Le principe du CAES est d’utiliser l’électricité produite et non consommée pour comprimer de l’air. Afin d’éviter tout dommage sur les compresseurs, la chaleur résultant de la compression est évacuée entre chaque étage. L’air comprimé à moyenne ou haute pression (40 bar à 300 bar) est envoyé dans un stockage de type naturel tel qu’une cavité saline, une mine (sel, calcaire, charbon) ou encore dans un stockage artificiel en attendant la phase de décharge de l’énergie. Lors de la phase de production d’électricité, l’air stocké est extrait du stockage afin d’être détendu dans des turboalternateurs. Pour le système CAES de base tel que celui établi à la fin des années 70, l’air comprimé était utilisé pour alimenter des turbines à gaz (appelées aussi turbines à combustion). Ces turbines brûlent via une chambre de combustion du gaz naturel en présence d’air comprimé pour produire des gaz de combustion très chauds (500°C-800°C) détendus pour produire l’électricité. Le procédé CAES possède un rendement énergétique de l’ordre de 50%. Compressed air energy storage (CAES) is a mature technology whose first installation was built in Germany at the end of the 1970s, storing 290 MW. The principle of CAES is to use the electricity produced and not consumed to compress air. In order to avoid any damage to the compressors, the heat resulting from the compression is evacuated between each stage. Air compressed at medium or high pressure (40 bar to 300 bar) is sent to a natural type storage such as a salt cave, a mine (salt, limestone, coal) or even to an artificial storage while waiting for the phase energy discharge. During the electricity production phase, the stored air is extracted from the storage in order to be expanded in turboalternators. For the basic CAES system such as that established in the late 1970s, compressed air was used to power gas turbines (also called combustion turbines). These turbines burn via a natural gas combustion chamber in the presence of compressed air to produce very hot combustion gases (500°C-800°C) that are expanded to produce electricity. The CAES process has an energy yield of around 50%.
Technique antérieure Prior technique
Une variante du CAES est le procédé adiabatique ou AACAES (de l’anglais « advanced adiabatic compressed air energy storage »). La différence principale avec le CAES d’origine est que la chaleur résultant de la compression n’est plus évacuée entre chaque étage, mais stockée afin de pouvoir réchauffer l’air en amont des turbines en phase de production d’électricité. Grâce à cette réutilisation de l’énergie thermique interne au procédé, le rendement de l’ACAES atteint environ 70%. Le refroidissement de l’air en phase de compression peut se faire via un échange à contact indirect dans un échangeur de chaleur avec un fluide caloporteur. Le fluide caloporteur chaud est alors stocké et isolé au maximum thermiquement afin de pouvoir céder sa chaleur à l’air lors de la phase de détente. Il peut également être effectué via un échange en contact direct entre l’air et une masse de stockage thermique fonctionnant par chaleur sensible ou grâce à des matériaux à changement de phase. Dans les deux cas, la chaleur issue de l’air va être stockée directement dans la masse, soit au sein du matériau, soit en effectuant un changement de phase du matériau. Lors de la phase de détente, l’air froid est réinjecté dans la masse de stockage thermique et par contact direct, l’air va se réchauffer en captant la chaleur du matériau ou bien en permettant le changement de phase inverse libérant cette chaleur. Ce refroidissement de l’air peut alors induire une condensation d’eau si l’air possède une certaine humidité. Cette eau condensée doit alors être extraite du circuit d’air afin de ne pas endommager les compresseurs en aval. A variant of CAES is the adiabatic process or AACAES (for “advanced adiabatic compressed air energy storage”). The main difference with the original CAES is that the heat resulting from the compression is no longer evacuated between each stage, but stored in order to be able to heat the air upstream of the turbines during the electricity production phase. Thanks to this reuse of the thermal energy internal to the process, the efficiency of the ACAES reaches approximately 70%. The cooling of the air in the compression phase can be done via an indirect contact exchange in a heat exchanger with a heat transfer fluid. The hot heat transfer fluid is then stored and insulated as much as possible thermally in order to be able to transfer its heat to the air during the expansion phase. It can also be carried out via an exchange in direct contact between the air and a thermal storage mass operating by sensible heat or thanks to phase change materials. In both cases, the heat from the air will be stored directly in the mass, either within the material, or by performing a phase change in the material. During the expansion phase, the cold air is reinjected into the thermal storage mass and by direct contact, the air will heat up by capturing the heat of the material or by allowing the reverse phase change releasing this heat. This cooling of the air can then induce water condensation if the air has a certain humidity. This condensed water must then be extracted from the air circuit in order not to damage the compressors downstream.
Une première solution pour limiter l’endommagement des compresseurs est d’extraire l’eau de la ligne de compression, au moyen d’un séparateur gaz/liquide prévu à chaque étage de compression. La figure 1 illustre, schématiquement sous la forme de schéma bloc, un tel système et procédé ACAES. Sur cette figure, sont représentées la phase de stockage d’énergie par compression d’un gaz, et la phase de production d’énergie par détente d’un gaz. Le système selon l’art antérieur se compose d’une ligne de compression (1 ), incluant un ou plusieurs étages de compression (3) en fonction de la pression de l’air à atteindre ainsi que des recommandations des fournisseurs. Dans le mode de réalisation illustré, la ligne de compression (1) comprend trois étages (3) de compression. Chaque étage de compression (3) comporte un moyen de compression (100, 101 , 102), appelé également compresseur. Le compresseur (100) est un compresseur basse pression, le compresseur (101) est un compresseur moyenne pression, et le compresseur (102) est un compresseur haute pression. Le gaz (10) utilisé dans le procédé illustré est de l’air ambiant, contenant une saturation en eau liée à sa température et sa pression. Durant la phase de stockage d’énergie, l’air est comprimé dans la ligne de compression (1 ) puis envoyé dans un moyen de stockage d’air comprimé (1000) adapté aux hautes pressions. Des moyens de stockage et de récupération de la chaleur (200, 201 , 202) sont disposés après chaque compresseur (100, 101 , 102) de chaque étage de compression (3) afin de refroidir l’air comprimé chaud en sortie de compression tout en stockant cette énergie thermique. Le moyen de stockage et de récupération de la chaleur (200) est adapté à la basse pression, le moyen de stockage et de récupération de la chaleur (201 ) est adapté à la moyenne pression et le moyen de stockage et de récupération de la chaleur (202) est adapté à la haute pression. Des moyens de refroidissement (300, 301 , 302) peuvent être disposés à la suite des moyens de stockage et de récupération de la chaleur (200, 201 , 202) si nécessaire afin de finir le refroidissement de l’air comprimé avant le prochain étage de compression ou avant son stockage. Une fois l’air refroidi et avant l’étage de compression suivant, l’eau condensée, issue de l’humidité de l’air, est extraite du flux de compression d’air par des séparateurs gaz-liquide (400, 401 , 402) afin d’avoir en entrée de compresseur un air sans aucune trace d’eau liquide. Cette condensation de l’eau peut avoir lieu dans les moyens de stockage et de récupération de la chaleur (200, 201 , 202) et/ou dans les moyens de refroidissement (300, 301 , 302). Durant la phase de production d’énergie, l’air comprimé est détendu via une ou plusieurs turbines (700, 701 , 702) ou étage de détente, selon les recommandations des fournisseurs, afin de produire de l’électricité via des alternateurs, non représentés sur le schéma. La turbine (702) est une turbine basse pression, la turbine (701) est une turbine moyenne pression et la turbine (700) est une turbine haute pression. De plus, avant chaque détente, le gaz comprimé est réchauffé par la chaleur stockée dans les moyens de stockage et de récupération de la chaleur (200, 201 , 202). Pour ce système et ce procédé, l’eau condensée est juste extraite, l’énergie associée est donc perdue. A first solution to limit the damage to the compressors is to extract the water from the compression line, by means of a gas/liquid separator provided at each compression stage. Figure 1 illustrates, schematically in block diagram form, such an ACAES system and method. This figure shows the storage phase of energy by compression of a gas, and the phase of energy production by expansion of a gas. The system according to the prior art consists of a compression line (1), including one or more compression stages (3) depending on the air pressure to be achieved as well as the recommendations of the suppliers. In the illustrated embodiment, the compression line (1) comprises three stages (3) of compression. Each compression stage (3) includes compression means (100, 101, 102), also called a compressor. The compressor (100) is a low pressure compressor, the compressor (101) is a medium pressure compressor, and the compressor (102) is a high pressure compressor. The gas (10) used in the illustrated method is ambient air, containing a water saturation related to its temperature and its pressure. During the energy storage phase, the air is compressed in the compression line (1) then sent to a compressed air storage means (1000) suitable for high pressures. Heat storage and recovery means (200, 201, 202) are arranged after each compressor (100, 101, 102) of each compression stage (3) in order to cool the hot compressed air at the compression outlet while by storing this thermal energy. The heat storage and recovery means (200) is adapted to low pressure, the heat storage and recovery means (201) is adapted to medium pressure and the heat storage and recovery means (202) is suitable for high pressure. Cooling means (300, 301, 302) can be arranged after the heat storage and recovery means (200, 201, 202) if necessary in order to finish cooling the compressed air before the next stage compression or before storage. Once the air has cooled and before the next compression stage, the condensed water, resulting from the humidity of the air, is extracted from the air compression flow by gas-liquid separators (400, 401 , 402) in order to have air entering the compressor without any trace of liquid water. This water condensation can take place in the heat storage and recovery means (200, 201, 202) and/or in the cooling means (300, 301, 302). During the energy production phase, the compressed air is expanded via one or more turbines (700, 701, 702) or expansion stage, according to the recommendations of the suppliers, in order to produce electricity via alternators, not shown in the diagram. The turbine (702) is a low pressure turbine, the turbine (701) is a medium pressure turbine and the turbine (700) is a high pressure turbine. In addition, before each expansion, the compressed gas is heated by the heat stored in the heat storage and recovery means (200, 201, 202). For this system and this process, the condensed water is just extracted, the associated energy is therefore lost.
D’autres systèmes et procédés de stockage et de récupération d’énergie par gaz comprimé envisagent la récupération de l’énergie contenue dans l’eau de condensation. Par exemple, la demande de brevet FR3074844 (WO2019/115121) divulgue un système et un procédé ACAES amélioré par réinjection des condensais, issus du refroidissement de l’air, dans l’eau servant de fluide caloporteur permettant le stockage de la chaleur extraite de l’air entre chaque étage de compression. Toutefois, ce système et ce procédé sont difficiles à mettre en oeuvre en raison des transferts de chaleur entre les différentes températures de l’eau. Cette technologie repose sur un échangeur à contact direct en contre-courant entre l’air humide que l’on souhaite refroidir et le fluide caloporteur qui se réchauffe. Lors du refroidissement de l’air, l’humidité apparaît et est transportée par le fluide caloporteur. Ce dernier circulant à contre-courant, l’humidité va rencontrer à nouveau l’air chaud et va donc s’évaporer de nouveau. Il y a accumulation de l’eau dans l’échangeur. En outre, ce système est difficile à mettre en oeuvre en raison de la circulation d’un fluide caloporteur, qui nécessite des conduites, des moyens de pompage et des moyens de stockage supplémentaires, ce qui pose également des contraintes d’encombrement. Other compressed gas energy storage and recovery systems and methods contemplate the recovery of the energy contained in the condensation water. For example, the patent application FR3074844 (WO2019/115121) discloses an improved ACAES system and process by reinjecting condensates, resulting from the cooling of the air, into the water serving as a heat transfer fluid allowing the storage of the heat extracted from the air between each compression stage. However, this system and this method are difficult to implement because of the heat transfers between the different temperatures of the water. This technology is based on a direct contact heat exchanger in counter-current between the moist air that is to be cooled and the heat transfer fluid that is heated. As the air cools, moisture appears and is transported by the heat transfer fluid. As the latter circulates against the current, the humidity will encounter the hot air again and will therefore evaporate again. There is an accumulation of water in the exchanger. In addition, this system is difficult to implement because of the circulation of a heat transfer fluid, which requires pipes, pumping means and additional storage means, which also poses space constraints.
La demande de brevet WO16012764 dévoile un procédé ACAES dans lequel l’humidité de l’air est condensée en amont du stockage d’air en phase de compression, stockée et réinjectée à l’air en phase de détente en sortie du stockage d’air. Toutefois, ce procédé ne permet pas de protéger les compresseurs des différents étages de compression en limitant l’eau qui les traverse. De plus, cette configuration ne permet ni une optimisation de l’énergie récupérée de l’eau condensée ni une optimisation économique : de l’eau condensée à basse pression est stockée à haute pression. En outre, ici aussi, ce système est difficile à mettre en oeuvre en raison de la circulation d’un fluide caloporteur, qui nécessite des conduites, des moyens de pompage et des moyens de stockage supplémentaires, ce qui pose également des contraintes d’encombrement. Patent application WO16012764 discloses an ACAES process in which the humidity of the air is condensed upstream of the air storage in the compression phase, stored and reinjected into the air in the expansion phase at the outlet of the air storage . However, this process does not make it possible to protect the compressors of the various compression stages by limiting the water which passes through them. Moreover, this configuration allows neither an optimization of the energy recovered from the condensed water nor an economic optimization: condensed water at low pressure is stored at high pressure. In addition, here too, this system is difficult to implement due to the circulation of a heat transfer fluid, which requires pipes, pumping means and additional storage means, which also poses space constraints. .
La demande de brevet WO16079485 dévoile un procédé ACAES dans lequel l’humidité de l’air est condensée en amont du stockage d’air en phase de compression, stockée et réinjecté à l’air en phase de détente en sortie du moyen de stockage de l’air. Toutefois, ce procédé ne permet pas de protéger les compresseurs des différents étages de compression en limitant l’eau qui les traverse. De plus, cette configuration ne permet ni une optimisation de l’énergie récupérée de l’eau condensée ni une optimisation économique : de l’eau condensée à basse pression est stockée à haute pression. En outre, ce système est difficile à mettre en oeuvre en raison de la circulation d’un fluide caloporteur, qui nécessite des conduites, des moyens de pompage et des moyens de stockage supplémentaires, ce qui pose également des contraintes d’encombrement. Patent application WO16079485 discloses an ACAES process in which the humidity of the air is condensed upstream of the air storage in the compression phase, stored and reinjected into the air in the expansion phase at the outlet of the storage means of the air. However, this process does not make it possible to protect the compressors of the various compression stages by limiting the water which passes through them. Moreover, this configuration allows neither an optimization of the energy recovered from the condensed water nor an economic optimization: condensed water at low pressure is stored at high pressure. In addition, this system is difficult to implement due to the circulation of a heat transfer fluid, which requires pipes, pumping means and additional storage means, which also poses space constraints.
Résumé de l’invention La présente invention concerne un système et un procédé de stockage et de récupération d’énergie par gaz comprimé permettant d’optimiser le rendement du système et du procédé, en limitant l’encombrement du système et en simplifiant le fonctionnement. Pour cela, la présente invention concerne un système et un procédé de stockage et de récupération d’énergie par gaz comprimé, comprenant une ligne de compression, un moyen de stockage d’air, et une ligne de détente. Selon l’invention, on réchauffe un liquide au moyen de la chaleur du gaz détendu en sortie de la ligne de détente, et on introduit le liquide réchauffé dans la ligne de détente. L’introduction de liquide dans la ligne de détente permet d’augmenter le débit de gaz dans la ligne de détente et donc le rendement du système et du procédé selon l’invention. De plus, le réchauffage du liquide par la chaleur du gaz détendu en sortie de la ligne de détente permet de récupérer l’énergie thermique contenue dans le gaz détendu en sortie de la ligne de détente, et ainsi d’introduire un liquide chaud dans la ligne de détente, ce qui permet de limiter les besoins de réchauffage dans la ligne de détente, et par conséquent, de limiter l’encombrement du système. Summary of the invention The present invention relates to a system and a method for the storage and recovery of energy by compressed gas making it possible to optimize the efficiency of the system and of the method, by limiting the size of the system and by simplifying the operation. For this, the present invention relates to a system and a method for storing and recovering energy by compressed gas, comprising a compression line, an air storage means, and an expansion line. According to the invention, a liquid is heated by means of the heat of the gas expanded at the outlet of the expansion line, and the heated liquid is introduced into the expansion line. The introduction of liquid into the expansion line makes it possible to increase the flow rate of gas in the expansion line and therefore the yield of the system and of the method according to the invention. In addition, the heating of the liquid by the heat of the expanded gas at the outlet of the expansion line makes it possible to recover the thermal energy contained in the expanded gas at the outlet of the expansion line, and thus to introduce a hot liquid into the expansion line, which makes it possible to limit heating requirements in the expansion line, and consequently to limit the size of the system.
L’invention concerne un système de stockage et de récupération d’énergie par gaz comprimé comprenant : The invention relates to a compressed gas energy storage and recovery system comprising:
Une ligne de compression de gaz comprenant au moins un étage de compression, chaque étage de compression comprenant un moyen de compression et un moyen de stockage et de récupération de la chaleur agencé en aval dudit moyen de compression, dans le sens de circulation dudit gaz, A gas compression line comprising at least one compression stage, each compression stage comprising compression means and heat storage and recovery means arranged downstream of said compression means, in the direction of circulation of said gas,
- Au moins un moyen de stockage de gaz comprimé agencé en sortie de ladite ligne de compression de gaz pour stocker ledit gaz comprimé, - At least one compressed gas storage means arranged at the outlet of said gas compression line to store said compressed gas,
Une ligne de détente de gaz pour détendre ledit gaz comprimé stocké dans ledit moyen de stockage de gaz comprimé, ladite ligne de détente de gaz comprenant au moins un étage de détente, chaque étage de détente comportant un moyen de détente et des conduites configurées pour faire circuler ledit gaz comprimé dans ledit moyen de stockage et de récupération de la chaleur dudit au moins un étage de compression de manière à réchauffer ledit gaz comprimé, ledit système comprend au moins un moyen d’échange de la chaleur entre ledit gaz détendu en sortie de ladite ligne de détente et un liquide, et en ce qu’au moins un étage de détente comporte un moyen d’introduction dudit liquide réchauffé, lesdits moyens d’introduction dudit liquide étant prévu en amont, dans le sens de circulation dudit gaz, dudit moyen de stockage et de récupération de la chaleur. A gas expansion line for expanding said compressed gas stored in said compressed gas storage means, said gas expansion line comprising at least one expansion stage, each expansion stage including expansion means and conduits configured to circulating said compressed gas in said means for storing and recovering heat from said at least one compression stage so as to heat said compressed gas, said system comprises at least one means for exchanging heat between said expanded gas at the outlet of said expansion line and a liquid, and in that at least one expansion stage comprises means for introducing said heated liquid, said means for introducing said liquid being provided upstream, in the direction of circulation of said gas, of said means of heat storage and recovery.
Selon un mode de réalisation, ladite ligne de compression comprend autant d’étages de compression successifs que la ligne de détente comprend d’étages de détente successifs, chaque moyen de stockage et de récupération de la chaleur d’un étage de compression étant utilisé dans l’étage de détente correspondant. According to one embodiment, said compression line comprises as many successive compression stages as the expansion line comprises successive expansion stages, each means of storing and recovering heat from a compression stage being used in the corresponding expansion stage.
Avantageusement, ladite ligne de compression et ladite ligne de détente comportent respectivement trois étages successifs. Advantageously, said compression line and said expansion line respectively comprise three successive stages.
Conformément à une mise en oeuvre, ledit moyen de stockage et de récupération de la chaleur comprend des particules de stockage de la chaleur. According to one embodiment, said heat storage and recovery means comprises heat storage particles.
Selon un aspect, au moins un étage de compression comprend un moyen de séparation gaz/liquide, et ledit système comporte au moins un moyen de stockage dudit liquide séparé, ledit liquide séparé et stocké étant ledit liquide réchauffé et introduit dans ladite ligne de détente. According to one aspect, at least one compression stage comprises a gas/liquid separation means, and said system comprises at least one means for storing said separated liquid, said separated and stored liquid being said liquid reheated and introduced into said expansion line.
Selon une caractéristique, ledit système comprend une pluralité de moyens d’échange de chaleur entre ledit gaz détendu en sortie de ladite ligne de détente et ledit liquide. According to one characteristic, said system comprises a plurality of heat exchange means between said expanded gas at the outlet of said expansion line and said liquid.
Selon une option, lesdits moyens d’échange de chaleur sont agencés en série ou en parallèle pour la circulation dudit gaz en sortie de ladite ligne de détente. According to one option, said heat exchange means are arranged in series or in parallel for the circulation of said gas at the outlet of said expansion line.
Conformément à un mode de réalisation, au moins un étage de compression comprend un moyen de refroidissement en aval du moyen de stockage et de récupération de la chaleur, dans le sens de circulation dudit gaz, de préférence, ledit moyen de refroidissement comprend un aéro-réfrigérant. According to one embodiment, at least one compression stage comprises cooling means downstream of the heat storage and recovery means, in the direction of circulation of said gas, preferably, said cooling means comprises an aero- refrigerant.
En outre, l’invention concerne un procédé de stockage et de récupération d’énergie par gaz comprimé comprenant au moins les étapes suivantes : In addition, the invention relates to a method for storing and recovering energy by compressed gas comprising at least the following steps:
- En phase de stockage d’énergie : a) on comprime successivement au moins une fois un gaz dans une ligne de compression comprenant au moins un étage de compression, chaque étage de compression comprenant au moins un moyen de compression ; b) après chaque étape de compression, on récupère la chaleur dudit gaz comprimé dans au moins un moyen de stockage et de récupération de la chaleur ; c) on stocke ledit gaz comprimé refroidi dans au moins un moyen de stockage de gaz comprimé ; - In the energy storage phase: a) a gas is successively compressed at least once in a compression line comprising at least one compression stage, each compression stage comprising at least one compression means; b) after each compression step, the heat of said compressed gas is recovered in at least one heat storage and recovery means; c) said cooled compressed gas is stored in at least one compressed gas storage means;
- En phase de récupération d’énergie : d) on fait circuler le gaz comprimé sortant dudit au moins un moyen de stockage de gaz comprimé dans une ligne de détente comprenant au moins un étage de détente, et dans chaque étage de détente, on réchauffe le gaz comprimé en le faisant circuler dans un desdits moyens de stockage et de récupération de la chaleur grâce à la chaleur stockée lors de l’étape de compression, puis on détend le gaz comprimé réchauffé dans un moyen de détente, pour ce procédé, on échange de la chaleur entre ledit gaz détendu en sortie de ladite ligne de détente et un liquide, et on introduit ledit liquide réchauffé dans ledit gaz comprimé avant au moins une étape de réchauffage dudit gaz précédant une étape de détente. - In the energy recovery phase: d) the compressed gas leaving said at least one compressed gas storage means is circulated in an expansion line comprising at least one expansion stage, and in each expansion stage, it is heated the compressed gas by circulating it in one of said heat storage and recovery means thanks to the heat stored during the compression step, then the heated compressed gas is expanded in an expansion means, for this process, heat is exchanged between said expanded gas at the outlet of said expansion line and a liquid, and one introduces said heated liquid in said compressed gas before at least one step of heating said gas preceding an expansion step.
Selon un mode de réalisation, on réalise autant d’étapes de compression successives que d’étapes de détente successives, et on utilise le moyen de stockage et de récupération de la chaleur de chacune des étapes b) pour réchauffer le gaz comprimé de l’étape de détente correspondante. According to one embodiment, as many successive compression steps are carried out as successive expansion steps, and the heat storage and recovery means of each of the steps b) are used to heat the compressed gas from the corresponding relaxation step.
Conformément à une mise en oeuvre, après chaque étape de récupération de la chaleur, on refroidit le gaz comprimé en sortie du moyen de stockage et de récupération de la chaleur dans un moyen de refroidissement avant que le gaz ne soit envoyé dans l’étape de compression suivante ou dans le moyen de stockage de gaz comprimé. According to one implementation, after each heat recovery step, the compressed gas at the outlet of the heat storage and recovery means is cooled in a cooling means before the gas is sent to the step of next compression or in the compressed gas storage means.
Selon un aspect, on stocke la chaleur dans des particules de stockage de la chaleur. In one aspect, heat is stored in heat storage particles.
Selon une caractéristique, après au moins une étape de compression, on sépare ledit gaz et un liquide présent dans ledit gaz, et on stocke ledit gaz séparé, ledit liquide séparé et stocké étant ledit liquide réchauffé et introduit dans ladite au moins une étape de détente. According to one characteristic, after at least one compression step, said gas and a liquid present in said gas are separated, and said separated gas is stored, said separated and stored liquid being said liquid heated and introduced into said at least one expansion step. .
Selon une option de réalisation, on met en oeuvre une pluralité d’échanges de chaleur entre ledit gaz détendu en sortie de ladite ligne de détente et ledit liquide. According to one embodiment option, a plurality of heat exchanges are implemented between said expanded gas at the outlet of said expansion line and said liquid.
De manière avantageuse, on met en oeuvre ladite pluralité d’échanges de chaleur en série ou en parallèle pour la circulation dudit gaz détendu en sortie de ladite ligne de détente. Advantageously, said plurality of heat exchanges are implemented in series or in parallel for the circulation of said expanded gas at the outlet of said expansion line.
D'autres caractéristiques et avantages du système et du procédé selon l'invention, apparaîtront à la lecture de la description ci-après d'exemples non limitatifs de réalisations, en se référant aux figures annexées et décrites ci-après. Other characteristics and advantages of the system and of the method according to the invention will appear on reading the following description of non-limiting examples of embodiments, with reference to the appended figures and described below.
Liste des figures List of Figures
La figure 1 , déjà décrite, illustre un système et un procédé de stockage et de récupération d’énergie par gaz comprimé selon l’art antérieur. La figure 2 illustre un système et un procédé de stockage et de récupération d’énergie par gaz comprimé selon un premier mode de réalisation de l’invention. FIG. 1, already described, illustrates a system and a method for storing and recovering energy by compressed gas according to the prior art. FIG. 2 illustrates a system and a method for storing and recovering energy by compressed gas according to a first embodiment of the invention.
La figure 3 illustre un système et un procédé de stockage et de récupération d’énergie par gaz comprimé selon un deuxième mode de réalisation de l’invention. FIG. 3 illustrates a system and a method for storing and recovering energy by compressed gas according to a second embodiment of the invention.
La figure 4 illustre un système et un procédé de stockage et de récupération d’énergie par gaz comprimé selon un troisième mode de réalisation de l’invention. FIG. 4 illustrates a system and a method for storing and recovering energy by compressed gas according to a third embodiment of the invention.
La figure 5 illustre un système et un procédé de stockage et de récupération d’énergie par gaz comprimé selon un quatrième mode de réalisation de l’invention. FIG. 5 illustrates a system and a method for storing and recovering energy by compressed gas according to a fourth embodiment of the invention.
La figure 6 illustre un système et un procédé de stockage et de récupération d’énergie par gaz comprimé selon un cinquième mode de réalisation de l’invention. FIG. 6 illustrates a system and a method for storing and recovering energy by compressed gas according to a fifth embodiment of the invention.
La figure 7 illustre un système et un procédé de stockage et de récupération d’énergie par gaz comprimé selon un sixième mode de réalisation de l’invention. FIG. 7 illustrates a system and a method for storing and recovering energy by compressed gas according to a sixth embodiment of the invention.
Description des modes de réalisation Description of embodiments
La présente invention concerne un système et un procédé de stockage et de récupération d’énergie par gaz comprimé. The present invention relates to a system and a method for the storage and recovery of energy by compressed gas.
Dans la présente invention les termes « amont », « aval », « en entrée », « en sortie », « avant », « après » sont définis par le sens de circulation du gaz, respectivement pendant la phase de stockage d’énergie (phase de compression), et pendant la phase de récupération d’énergie (phase de détente). In the present invention the terms "upstream", "downstream", "input", "output", "before", "after" are defined by the direction of circulation of the gas, respectively during the energy storage phase (compression phase), and during the energy recovery phase (relaxation phase).
Le système selon l’invention comprend : The system according to the invention comprises:
- une ligne de compression (on appelle « ligne de compression », la ligne de gaz allant de l’entrée de gaz jusqu’au moyen de stockage de gaz comprimé passant par au moins un moyen de compression), avec au moins un étage de compression (lorsque la ligne de compression comporte au moins deux étages de compression ceux-ci sont successifs : en série), chaque étage de compression comprend : - a compression line (referred to as a "compression line", the gas line going from the gas inlet to the compressed gas storage means passing through at least one compression means), with at least one stage of compression (when the compression line has at least two compression stages, these are successive: in series), each compression stage includes:
• un moyen de compression du gaz (compresseur), permettant d’augmenter la pression du gaz, en vue de son stockage, les moyens de compression peuvent être des compresseurs axiaux, centrifuges, ou de toute autre technologie, • un moyen de stockage et de récupération de la chaleur agencé en aval du moyen de compression, afin de stocker la chaleur générée par la compression, et de diminuer la température du gaz avant l’étage de compression suivant ou avant le moyen de stockage de gaz comprimé, • a means of compressing the gas (compressor), making it possible to increase the pressure of the gas, with a view to its storage, the means of compression can be axial compressors, centrifugal, or any other technology, • a heat storage and recovery means arranged downstream of the compression means, in order to store the heat generated by the compression, and to reduce the temperature of the gas before the next compression stage or before the storage means of compressed gas,
- au moins un moyen de stockage du gaz comprimé, pour stocker le gaz comprimé en sortie de la ligne de compression afin de le réutiliser ultérieurement, le moyen de stockage du gaz comprimé peut être une cavité naturelle telle qu’une cavité saline, une ancienne mine ou un aquifère ou encore un stockage artificiel ; - at least one compressed gas storage means, for storing the compressed gas at the outlet of the compression line in order to reuse it later, the compressed gas storage means can be a natural cavity such as a saline cavity, an old mine or an aquifer or artificial storage;
- une ligne de détente de gaz (on appelle « ligne de détente », la ligne de gaz allant du moyen de stockage du gaz comprimé à la sortie du gaz en passant par au moins un moyen de détente) avec au moins un étage de détente (lorsque la ligne de détente comporte au moins deux étages de détente, ceux-ci sont successifs : en série), chaque étage de détente comprend : - a gas expansion line (referred to as "expansion line", the gas line going from the compressed gas storage means to the gas outlet passing through at least one expansion means) with at least one expansion stage (when the expansion line comprises at least two expansion stages, these are successive: in series), each expansion stage comprises:
• au moins un moyen de détente du gaz comprimé pour générer une énergie, par exemple une turbine, • at least one means of expanding the compressed gas to generate energy, for example a turbine,
• des conduites pour faire circuler le gaz dans un des moyens de stockage et de récupération de la chaleur de la ligne de compression, de manière à récupérer la chaleur stockée et d’augmenter la température du gaz pour augmenter l’énergie produite dans le moyen de détente. • pipes for circulating the gas in one of the means of storage and heat recovery of the compression line, so as to recover the stored heat and to increase the temperature of the gas to increase the energy produced in the means of relaxation.
Selon l’invention, le système et le procédé comprennent au moins un moyen d’échange de chaleur entre le gaz détendu en sortie de la ligne de détente et un liquide. De plus, au moins un étage de détente comporte un moyen d’introduction et de mélange du liquide réchauffé dans la ligne de détente. Le moyen d’introduction du liquide permet le mélange entre le gaz de la ligne de détente et le liquide issu du moyen de stockage de liquide. Ainsi, grâce à l’injection de liquide, le débit de gaz est augmenté dans chaque étage de détente, ce qui permet d’augmenter le rendement du système et du procédé. Les moyens d’introduction et de mélange du liquide sont agencés dans la ligne de détente en amont des moyens de stockage de chaleur, de cette manière, le mélange gaz et liquide injecté est réchauffé dans le moyen de stockage de la chaleur, ce qui permet de vaporiser le liquide, et de cette manière seul un gaz est conduit dans le moyen de détente. Ainsi, le gaz détendu et chaud en sortie de la ligne de détente est refroidi, alors que le liquide à injecter dans la ligne de détente peut être réchauffé. De cette manière, on peut récupérer de l’énergie thermique perdue, et ainsi diminuer les besoins de chauffage du mélange gaz comprimé et liquide, ce qui permet de diminuer les dimensions d’au moins un moyen de stockage et de récupération de la chaleur (et par conséquent le coût des moyens de stockage et de récupération de la chaleur), tout en conservant un procédé et un système simples. Conformément à un mode de réalisation de l’invention, le gaz peut être de l’air. Il peut s’agir de l’air prélevé dans le milieu ambiant. Alternativement, il peut comprendre tout autre gaz.According to the invention, the system and the method comprise at least one heat exchange means between the expanded gas at the outlet of the expansion line and a liquid. In addition, at least one expansion stage comprises a means for introducing and mixing the heated liquid in the expansion line. The liquid introduction means allows mixing between the gas from the expansion line and the liquid from the liquid storage means. Thus, thanks to the injection of liquid, the gas flow is increased in each expansion stage, which makes it possible to increase the efficiency of the system and of the process. The liquid introduction and mixing means are arranged in the expansion line upstream of the heat storage means, in this way the injected gas and liquid mixture is heated in the heat storage means, which allows to vaporize the liquid, and in this way only a gas is led into the expansion means. Thus, the expanded and hot gas at the outlet of the expansion line is cooled, while the liquid to be injected into the expansion line can be heated. In this way, it is possible to recover lost thermal energy, and thus reduce the heating needs of the compressed gas and liquid mixture, which makes it possible to reduce the dimensions of at least one heat storage and recovery means ( and therefore the cost of the heat storage and recovery means), while maintaining a simple method and system. According to one embodiment of the invention, the gas can be air. It may be air taken from the ambient environment. Alternatively, it may include any other gas.
Selon un aspect de l’invention, le liquide est de l’eau. Alternativement, il peut comprendre tout autre liquide. According to one aspect of the invention, the liquid is water. Alternatively, it may include any other liquid.
De préférence, de manière à optimiser le stockage et la récupération d’énergie, la ligne de compression comprend au moins deux étages de compression successifs, et la ligne de détente comprend au moins deux étages de détente successifs. Preferably, in order to optimize the storage and recovery of energy, the compression line comprises at least two successive compression stages, and the expansion line comprises at least two successive expansion stages.
Avantageusement, la ligne de compression et la ligne de détente peuvent comprendre autant d’étages. En d’autres termes, le nombre d’étages de compression et le nombre d’étages de détente peuvent être identiques. Cette réalisation permet une conception « symétrique » des lignes de compression et de détente, avec notamment des pressions et des températures de fonctionnement similaires, ce qui favorise les échanges de chaleur dans les moyens de stockage et de récupération de la chaleur. Ainsi, le système et le procédé sont simplifiés.Advantageously, the compression line and the expansion line can comprise as many stages. In other words, the number of compression stages and the number of expansion stages can be identical. This embodiment allows a "symmetrical" design of the compression and expansion lines, in particular with similar operating pressures and temperatures, which promotes heat exchange in the heat storage and recovery means. Thus, the system and method are simplified.
Pour ce mode de réalisation, le nombre d’étages de compression et de détente peut être compris entre deux et six, préférentiellement compris entre trois et cinq. Par exemple, le nombre d’étages de compression et de détente peut valoir trois, ce qui permet une bonne gestion des températures et des pressions, tout en conservant une conception simple. For this embodiment, the number of compression and expansion stages can be between two and six, preferably between three and five. For example, the number of compression and expansion stages can be three, which allows good management of temperatures and pressures, while maintaining a simple design.
En variante, le nombre d’étages de compression et le nombre d’étages de détente peuvent être différents. Pour cette réalisation, il peut être prévu de mutualiser au moins une partie des moyens de stockage et de récupération de la chaleur. Alternatively, the number of compression stages and the number of expansion stages may be different. For this embodiment, provision may be made to pool at least part of the heat storage and recovery means.
Lorsque la ligne de détente comporte une pluralité d’étages de détente, le système peut comprendre une pluralité de moyens d’échange de chaleur entre le gaz détendu en sortie de la ligne de détente et le liquide. When the expansion line comprises a plurality of expansion stages, the system may comprise a plurality of heat exchange means between the expanded gas at the outlet of the expansion line and the liquid.
Pour cette situation, les moyens d’échange de chaleur entre le gaz détendu en sortie de la ligne de détente et le liquide peuvent être traversés en série par le gaz détendu en sortie de la ligne de détente. Cette variante limite le nombre de conduites. Alternativement, les moyens d’échange de chaleur entre le gaz détendu en sortie de la ligne de détente et le liquide peuvent être traversés en parallèle par le gaz détendu en sortie de la ligne de détente. Cette variante permet que l’échange de chaleur pour chaque étage de détente soit réalisé avec la même température du gaz détendu. For this situation, the heat exchange means between the expanded gas at the outlet of the expansion line and the liquid can be passed through in series by the expanded gas at the outlet of the expansion line. This variant limits the number of pipes. Alternatively, the means for exchanging heat between the expanded gas at the outlet of the expansion line and the liquid can be traversed in parallel by the expanded gas at the outlet of the expansion line. This variant allows the heat exchange for each expansion stage to be carried out with the same temperature of the expanded gas.
Selon un mode de réalisation de l’invention, les moyens de stockage et de récupération de la chaleur peuvent comprendre des particules de stockage de la chaleur. Ainsi, l’échange de chaleur est réalisé par échange direct entre le gaz et un matériau, le matériau restant dans le moyen de stockage et de récupération de la chaleur. En d’autres termes, il n’y a pas de circulation des particules de stockage de la chaleur. Par conséquent, il n’est pas nécessaire d’avoir un système dédié qui comporte des réservoirs de stockage d’un fluide caloporteur, des moyens de pompage, et des conduites dédiées. Par exemple, le matériau peut être des pierres, du béton, des graviers, des billes de matériau à changement de phase (MCP), zéolites ou tout matériau analogue. According to one embodiment of the invention, the heat storage and recovery means may comprise heat storage particles. Thus, the heat exchange is carried out by direct exchange between the gas and a material, the material remaining in the heat storage and recovery means. In other words, there is no circulation of heat-storage particles. Consequently, it is not necessary to have a dedicated system which comprises storage tanks for a heat transfer fluid, pumping means, and dedicated pipes. For example, the material can be stones, concrete, gravel, beads of phase change material (PCM), zeolites or any similar material.
Conformément à une mise en oeuvre de l’invention, au moins un étage de compression peut comprendre un moyen de séparation gaz/liquide, qui permet d’extraire le liquide présent dans le gaz, notamment en raison de la condensation de l’eau présente dans le gaz, et permettant d’éliminer les traces de liquide qui pourraient être contenues dans le gaz après son refroidissement et qui pourraient endommager le système, notamment les moyens de compression. According to one implementation of the invention, at least one compression stage can comprise a gas/liquid separation means, which makes it possible to extract the liquid present in the gas, in particular due to the condensation of the water present in the gas, and making it possible to eliminate the traces of liquid which could be contained in the gas after it has cooled and which could damage the system, in particular the compression means.
Selon un mode de réalisation de l’invention, le moyen de séparation gaz/liquide peut être agencé en aval du moyen de stockage et de récupération de la chaleur. De cette manière, il est possible d’extraire le liquide formé par condensation dans le moyen de stockage et de récupération de la chaleur. According to one embodiment of the invention, the gas/liquid separation means can be arranged downstream of the heat storage and recovery means. In this way, it is possible to extract the liquid formed by condensation in the heat storage and recovery means.
Alternativement, le moyen de séparation gaz/liquide peut être agencé en amont du moyen de compression. Alternatively, the gas/liquid separation means can be arranged upstream of the compression means.
Pour cette mise en oeuvre du procédé selon l’invention, le système peut comprendre des moyens de stockage de liquide, afin de stocker le liquide extrait de la ligne de compression. Par exemple, il peut être prévu un moyen de stockage de liquide par étage de compression (donc par moyen de séparation gaz liquide). Ainsi, on peut stocker le liquide à différentes pressions. Pour cette mise en oeuvre de l’invention, le liquide extrait (séparé) de la ligne de compression, puis stocké, est le liquide qui est réchauffé, puis introduit dans la ligne de détente. Ainsi, il n’est pas nécessaire de prévoir une source de liquide spécifique. De plus, cette mise en oeuvre permet de récupérer l’énergie contenue dans le liquide dans la ligne de compression. For this implementation of the method according to the invention, the system can comprise liquid storage means, in order to store the liquid extracted from the compression line. For example, a liquid storage means may be provided per compression stage (therefore per gas-liquid separation means). Thus, the liquid can be stored at different pressures. For this implementation of the invention, the liquid extracted (separated) from the compression line, then stored, is the liquid which is reheated, then introduced into the expansion line. Thus, it is not necessary to provide a specific source of liquid. In addition, this implementation makes it possible to recover the energy contained in the liquid in the compression line.
Selon un aspect de cette mise en oeuvre, le moyen de stockage du liquide et le moyen d’échange de chaleur entre le gaz détendu et le liquide peuvent être des moyens différents et non intégrés, ce qui permet une meilleure gestion des températures et des pressions.According to one aspect of this implementation, the liquid storage means and the heat exchange means between the expanded gas and the liquid can be different and non-integrated means, which allows better management of temperatures and pressures. .
En variante, le moyen d’échange de chaleur entre le gaz détendu et le liquide peut être intégré au sein du moyen de stockage de liquide, de manière à limiter le nombre d’éléments du système. As a variant, the heat exchange means between the expanded gas and the liquid can be integrated within the liquid storage means, so as to limit the number of elements of the system.
De plus, au moins un étage de compression peut comprendre un moyen de refroidissement. Ce moyen de refroidissement peut être agencé en aval du moyen de stockage et de récupération de la chaleur. Ce moyen de refroidissement permet de refroidir de manière plus importante le gaz, ce qui permet de réduire les dimensions des moyens de stockage et de récupération de la chaleur. Ces moyens de refroidissement du gaz peuvent être des aéroréfrigérants ou des échangeurs de chaleur (tubes/calandre, à plaques, spiralés ou autres technologies adaptées) échangeant avec un fluide caloporteur pouvant être de l’eau, du propane, du butane ou tout autre réfrigérant adapté au refroidissement nécessaire. Les moyens de refroidissement peuvent être adaptés à la pression de l’air entrant et échangeant avec chacun d’entre eux. Les moyens de refroidissement n’interviennent pas dans la phase de récupération d’énergie. Additionally, at least one compression stage may include cooling means. This cooling means can be arranged downstream of the heat storage and recovery means. This cooling means makes it possible to cool the gas more significantly, which makes it possible to reduce the dimensions of the means for storing and recovering the heat. These gas cooling means can be air coolers or heat exchangers (tubes/calender, plate, spiral or other suitable technologies) exchanging with a heat transfer fluid which can be water, propane, butane or any other refrigerant. suitable for the necessary cooling. The cooling means can be adapted to the pressure of the air entering and exchanging with each of them. The cooling means are not involved in the energy recovery phase.
Pour un mode de réalisation, l’éventuel moyen de séparation gaz/liquide peut être agencé en aval du moyen de refroidissement. De cette manière, il est possible d’extraire le liquide formé par condensation dans le moyen de stockage et de récupération de la chaleur ainsi que dans le moyen de refroidissement. For one embodiment, the possible gas/liquid separation means can be arranged downstream of the cooling means. In this way, it is possible to extract the liquid formed by condensation in the heat storage and recovery means as well as in the cooling means.
En outre, l’invention concerne un procédé de stockage et de récupération d’énergie par gaz comprimé. Furthermore, the invention relates to a method for storing and recovering energy by compressed gas.
Le procédé selon l’invention met en oeuvre les étapes suivantes : The method according to the invention implements the following steps:
- En phase de stockage d’énergie (phase de compression) : a) on comprime au moins une fois un gaz dans une ligne de compression comprenant au moins un étage de compression, chaque étage de compression comprenant au moins un moyen de compression ; b) après chaque étape de compression, on récupère la chaleur du gaz comprimé dans au moins un moyen de stockage et de récupération de la chaleur ; c) on stocke le gaz comprimé refroidi en sortie de la ligne de compression dans un moyen de stockage de gaz comprimé ; - In the energy storage phase (compression phase): a) a gas is compressed at least once in a compression line comprising at least one compression stage, each compression stage comprising at least one compression means; b) after each compression step, the heat of the compressed gas is recovered in at least one heat storage and recovery means; c) the cooled compressed gas is stored at the outlet of the compression line in a compressed gas storage means;
- En phase de récupération d’énergie (phase de détente) : d) on fait circuler le gaz comprimé sortant du moyen de stockage de gaz comprimé dans un ligne de détente comprenant au moins un étage de détente, et dans chaque étage de détente, on réchauffe le gaz comprimé en le faisant circuler dans un des moyens de stockage et de récupération de la chaleur grâce à la chaleur stockée lors de l’étape de compression puis on détend le gaz comprimé réchauffé dans un moyen de détente. - In the energy recovery phase (expansion phase): d) the compressed gas leaving the compressed gas storage means is circulated in an expansion line comprising at least one expansion stage, and in each expansion stage, the compressed gas is heated by causing it to circulate in one of the means for storing and recovering the heat thanks to the heat stored during the compression step and then the heated compressed gas is expanded in an expansion means.
Selon l’invention, on échange de la chaleur entre le gaz détendu en sortie de la ligne de détente et un liquide. De plus, on introduit le liquide réchauffé dans le gaz comprimé avant au moins une étape de réchauffage du gaz précédant une étape de détente. L’étape d’introduction du liquide permet le mélange entre le gaz de la ligne de détente et le liquide issu du moyen de stockage de liquide. Ainsi, grâce à l’injection de l’eau, le débit de gaz est augmenté dans chaque étage de détente, ce qui permet d’augmenter le rendement du système et du procédé. L’étape d’introduction et de mélange du liquide peut être mise en oeuvre dans la ligne de détente en amont de l’étape de stockage de la chaleur, de cette manière, le mélange eau et liquide injecté est réchauffé dans le moyen de stockage de la chaleur, ce qui permet de vaporiser le liquide, et de cette manière seul un gaz est conduit dans le moyen de détente. Ainsi, le gaz chaud en sortie de la ligne de détente est refroidi, alors que le liquide à injecter dans la ligne de détente peut être réchauffé. De cette manière, on peut récupérer de l’énergie thermique perdue, et ainsi diminuer les besoins de chauffage du mélange gaz comprimé et liquide, ce qui permet de diminuer les dimensions d’au moins un moyen de stockage et de récupération de la chaleur (et par conséquent le coût des moyens de stockage et de récupération de la chaleur). According to the invention, heat is exchanged between the expanded gas at the outlet of the expansion line and a liquid. In addition, the heated liquid is introduced into the compressed gas before at least one step of heating the gas preceding an expansion step. The liquid introduction step allows mixing between the gas from the expansion line and the liquid from the liquid storage means. Thus, thanks to the injection of water, the gas flow is increased in each expansion stage, which makes it possible to increase the efficiency of the system and the process. The step of introducing and mixing the liquid can be implemented in the expansion line upstream of the heat storage step, in this way, the water and liquid mixture injected is heated in the storage means heat, which makes it possible to vaporize the liquid, and in this way only a gas is led into the expansion means. Thus, the hot gas leaving the expansion line is cooled, while the liquid to be injected into the expansion line can be heated. In this way, it is possible to recover lost thermal energy, and thus reduce the heating needs of the compressed gas and liquid mixture, which makes it possible to reduce the dimensions of at least one heat storage and recovery means ( and therefore the cost of the means of storing and recovering the heat).
De préférence, le procédé de stockage et de récupération d’énergie par gaz comprimé peut mettre en oeuvre le système de stockage et de récupération d’énergie par gaz comprimé selon l’une quelconque des variantes ou des combinaisons de variantes telles que décrites ci-dessus. Conformément à un mode de réalisation de l’invention, le gaz peut être de l’air. Il peut s’agir de l’air prélevé dans le milieu ambiant. Alternativement, il peut comprendre d’autre gaz. Preferably, the compressed gas energy storage and recovery method can implement the compressed gas energy storage and recovery system according to any one of the variants or combinations of variants as described below. above. According to one embodiment of the invention, the gas can be air. It may be air taken from the ambient environment. Alternatively, it may include other gas.
Selon un aspect de l’invention, le liquide peut être de l’eau. Alternativement, il peut comprendre d’autre liquide. According to one aspect of the invention, the liquid can be water. Alternatively, it may include other liquid.
De préférence, le procédé peut mettre en oeuvre au moins deux étapes de compression successives, et au moins deux étapes de détente successives, de manière à optimiser le stockage et la récupération d’énergie. Preferably, the method can implement at least two successive compression steps, and at least two successive expansion steps, so as to optimize the storage and recovery of energy.
Avantageusement, on peut réaliser autant d’étapes de compression que d’étapes de détente. Dans ce cas, la ligne de compression et la ligne de détente peuvent comprendre autant d’étages. En d’autres termes, le nombre d’étapes de compression et le nombre d’étapes de détente peuvent être identiques. Cette réalisation permet une conception « symétrique » des lignes de compression et de détente, avec notamment des pressions et des températures de fonctionnement similaires, ce qui favorise les échanges de chaleur dans les moyens de stockage et de récupération de la chaleur. Ainsi, le système et le procédé sont simplifiés. Advantageously, as many compression steps as expansion steps can be carried out. In this case, the compression line and the expansion line can comprise as many stages. In other words, the number of compression stages and the number of expansion stages can be identical. This embodiment allows a "symmetrical" design of the compression and expansion lines, in particular with similar operating pressures and temperatures, which promotes heat exchange in the heat storage and recovery means. Thus, the system and method are simplified.
Pour ce mode de réalisation, le nombre d’étapes de compression et de détente peut être compris entre deux et six, préférentiellement compris entre trois et cinq. Par exemple, le nombre d’étapes de compression et de détente peut valoir trois, ce qui permet une bonne gestion des températures et des pressions, tout en conservant une conception simple. For this embodiment, the number of compression and expansion stages can be between two and six, preferably between three and five. For example, the number of compression and expansion stages can be three, which allows good management of temperatures and pressures, while maintaining a simple design.
En variante, le nombre d’étapes de compression et le nombre d’étapes de détente peuvent être différents. Pour cette réalisation, il peut être prévu de mutualiser au moins une partie des moyens de stockage et de récupération de la chaleur. Alternatively, the number of compression stages and the number of expansion stages may be different. For this embodiment, provision may be made to pool at least part of the heat storage and recovery means.
De plus, la phase de stockage d’énergie peut comprendre une étape de refroidissement. Cette étape de refroidissement peut être réalisée après l’étape de stockage de la chaleur par un moyen de refroidissement. Cette étape de refroidissement permet de refroidir de manière plus importante le gaz, ce qui permet de réduire les dimensions des moyens de stockage et de récupération de la chaleur. Ces moyens de refroidissement peuvent être des aéroréfrigérants ou des échangeurs de chaleur (tubes/calandre, à plaques, spiralés ou autres technologies adaptées) échangeant avec un fluide caloporteur pouvant être de l’eau, du propane, du butane ou tout autre réfrigérant adapté au refroidissement nécessaire. Les moyens de refroidissement peuvent être adaptés à la pression de l’air entrant et échangeant avec chacun d’entre eux. In addition, the energy storage phase may include a cooling step. This cooling step can be carried out after the heat storage step by a cooling means. This cooling step makes it possible to cool the gas more significantly, which makes it possible to reduce the dimensions of the means for storing and recovering the heat. These cooling means can be air coolers or heat exchangers (tubes/shell, plates, spirals or other suitable technologies) exchanging with a heat transfer fluid which can be water, propane, butane or any other refrigerant suitable for the necessary cooling. The cooling means can be adapted to the pressure of the air entering and exchanging with each of them.
Pour ce mode de réalisation, l’éventuelle étape de séparation gaz/liquide peut être réalisée après l’étape de refroidissement. De cette manière, il est possible d’extraire le liquide formé par condensation dans le moyen de stockage et de récupération de la chaleur ainsi que dans l’étape de refroidissement. For this embodiment, the optional gas/liquid separation step can be carried out after the cooling step. In this way, it is possible to extract the liquid formed by condensation in the heat storage and recovery means as well as in the cooling stage.
Selon un mode de réalisation de l’invention, on peut stocker et récupérer la chaleur dans des particules de stockage de la chaleur. En d’autres termes, les moyens de stockage et de récupération de la chaleur comprennent des particules de stockage de la chaleur. Ainsi, l’échange de chaleur est réalisé par échange direct entre le gaz et un matériau, le matériau restant dans le moyen de stockage et de récupération de la chaleur. En d’autres termes, il n’y a pas de circulation des particules de stockage de la chaleur. Par conséquent, il n’est pas nécessaire d’avoir un système dédié qui comporte des réservoirs de stockage d’un fluide caloporteur, des moyens de pompage, et des conduites dédiées. Par exemple, le matériau peut être des pierres, du béton, des graviers, des billes de matériau à changement de phase (MCP), zéolite, ou tout matériau analogue. According to one embodiment of the invention, heat can be stored and recovered in heat storage particles. In other words, the heat storage and heat recovery means include heat storage particles. Thus, the heat exchange is carried out by direct exchange between the gas and a material, the material remaining in the heat storage and recovery means. In other words, there is no circulation of heat-storage particles. Consequently, it is not necessary to have a dedicated system which comprises storage tanks for a heat transfer fluid, pumping means, and dedicated pipes. For example, the material can be stones, concrete, gravel, beads of phase change material (PCM), zeolite, or any similar material.
Conformément à une mise en oeuvre de l’invention, après chaque étape de compression, on peut séparer le gaz et un liquide présent dans le gaz. Cette étape permet d’extraire le liquide présent dans le gaz, notamment en raison de la condensation de l’eau présente dans le gaz, et permettant d’éliminer les traces de liquide qui pourraient être contenues dans le gaz après son refroidissement et qui pourraient endommager le système, notamment les moyens de compression. According to one implementation of the invention, after each compression step, the gas and a liquid present in the gas can be separated. This step makes it possible to extract the liquid present in the gas, in particular due to the condensation of the water present in the gas, and making it possible to eliminate the traces of liquid which could be contained in the gas after it has cooled and which could damage the system, in particular the means of compression.
Selon un mode de réalisation de l’invention, l’étape de séparation gaz/liquide peut être réalisée après l’étape de stockage de la chaleur. De cette manière, il est possible d’extraire le liquide formé par condensation dans le moyen de stockage et de récupération de la chaleur. According to one embodiment of the invention, the gas/liquid separation step can be carried out after the heat storage step. In this way, it is possible to extract the liquid formed by condensation in the heat storage and recovery means.
Alternativement, l’étape de séparation gaz/liquide peut être réalisée avant l’étape de compression. Alternatively, the gas/liquid separation step can be carried out before the compression step.
En outre, le procédé peut comprendre une étape de stockage de liquide, afin de stocker le liquide extrait (séparé) de la ligne de compression. Par exemple, il peut être prévu un moyen de stockage de liquide par étape de compression (donc par étape de séparation gaz liquide). Ainsi, on peut stocker le liquide à différentes pressions. Further, the method may include a liquid storage step, to store the liquid extracted (separated) from the compression line. For example, there may be provided a means of liquid storage per compression stage (therefore per gas-liquid separation stage). Thus, the liquid can be stored at different pressures.
Pour cette mise en oeuvre de l’invention, le liquide extrait (séparé) de la ligne de compression puis stocké est le liquide qui est réchauffé puis introduit dans la ligne de détente. Ainsi, il n’est pas nécessaire de prévoir une source de liquide spécifique. De plus, cette mise en oeuvre permet de récupérer l’énergie contenue dans le liquide dans la ligne de compression. For this implementation of the invention, the liquid extracted (separated) from the compression line and then stored is the liquid which is heated and then introduced into the expansion line. Thus, it is not necessary to provide a specific source of liquid. In addition, this implementation makes it possible to recover the energy contained in the liquid in the compression line.
Selon un aspect de cette mise en oeuvre, le moyen de stockage du liquide et le moyen d’échange de chaleur entre le gaz détendu et le liquide peuvent être des moyens différents et non intégrés, ce qui permet une meilleure gestion des températures et des pressions.According to one aspect of this implementation, the liquid storage means and the heat exchange means between the expanded gas and the liquid can be different and non-integrated means, which allows better management of temperatures and pressures. .
En variante, le moyen d’échange de chaleur entre le gaz détendu et le liquide peut être intégré (inclus) au sein du moyen de stockage de liquide, de manière à limiter le nombre d’éléments du système. As a variant, the heat exchange means between the expanded gas and the liquid can be integrated (included) within the liquid storage means, so as to limit the number of elements of the system.
Lorsqu’on met en oeuvre une pluralité d’étapes de détente, on peut mettre en oeuvre une pluralité d’échanges de chaleur entre le gaz détendu en sortie de la ligne de détente et le liquide. When implementing a plurality of expansion steps, it is possible to implement a plurality of heat exchanges between the gas expanded at the outlet of the expansion line and the liquid.
Pour cette situation, les moyens d’échange de chaleur entre le gaz détendu en sortie de la ligne de détente et le liquide peuvent être traversés en série par le gaz détendu en sortie de la ligne de détente. Cette variante limite le nombre de conduites. For this situation, the heat exchange means between the expanded gas at the outlet of the expansion line and the liquid can be passed through in series by the expanded gas at the outlet of the expansion line. This variant limits the number of pipes.
Alternativement, les moyens d’échange de chaleur entre le gaz détendu en sortie de la ligne de détente et le liquide peuvent être traversés en parallèle par le gaz détendu en sortie de la ligne de détente. Cette variante permet que l’échange de chaleur pour chaque étage de détente soit réalisé avec la même température du gaz détendu. Alternatively, the heat exchange means between the expanded gas at the outlet of the expansion line and the liquid can be crossed in parallel by the expanded gas at the outlet of the expansion line. This variant allows the heat exchange for each expansion stage to be carried out with the same temperature of the expanded gas.
La figure 2 illustre, schématiquement et de manière non limitative, un système et un procédé de stockage et de récupération d’énergie par gaz comprimé (en l’occurrence l’air) selon un premier mode de réalisation de l’invention. Selon le premier mode de réalisation, le procédé et le système se composent d’une ligne de compression (1), incluant trois étages de compression (3) en fonction de la pression de l’air à atteindre. Chaque étage de compression (3) comprend un moyen de compression (100, 101 , 102) appelé aussi compresseur. Ces compresseurs (100, 101 , 102) peuvent être axiaux, centrifuges, ou de tout autre technologie. Le compresseur (100) est un compresseur basse pression, le compresseur (101 ) est un compresseur moyenne pression et le compresseur (102) est un compresseur haute pression. Le gaz à comprimer (10) utilisé dans le système et le procédé est de l’air ambiant, par exemple de l’air sec. On appelle élément (par exemple turbine, compresseur, etc.) basse pression un élément adapté à la basse pression dans laquelle le gaz ou le liquide circule dans l’élément, élément moyenne pression un élément adapté à la moyenne pression dans laquelle le gaz ou le liquide circule dans l’élément, et élément haute pression un élément adapté à la haute pression dans laquelle le gaz ou le liquide circule dans l’élément. Figure 2 illustrates, schematically and in a non-limiting manner, a system and a method for storing and recovering energy by compressed gas (in this case air) according to a first embodiment of the invention. According to the first embodiment, the method and the system consist of a compression line (1), including three compression stages (3) depending on the air pressure to be reached. Each compression stage (3) comprises compression means (100, 101, 102) also called a compressor. These compressors (100, 101, 102) can be axial, centrifugal, or any other technology. The compressor (100) is a low pressure compressor, the compressor (101) is a medium pressure compressor and the compressor (102) is a high pressure compressor. The gas to be compressed (10) used in the system and the method is ambient air, for example dry air. A low-pressure element (for example turbine, compressor, etc.) is called an element adapted to the low pressure in which the gas or liquid circulates in the element, medium-pressure element an element adapted to the medium pressure in which the gas or the liquid circulates in the element, and high pressure element an element adapted to the high pressure in which the gas or the liquid circulates in the element.
Durant la phase de stockage d’énergie, l’air est comprimé dans la ligne de compression (1) puis envoyé dans un moyen de stockage d’air comprimé (1000) adapté aux hautes pressions. Ce moyen de stockage d’air comprimé (1000) peut être une cavité naturelle telle qu’une cavité saline, une ancienne mine ou un aquifère ou encore un stockage artificiel.During the energy storage phase, the air is compressed in the compression line (1) then sent to a compressed air storage means (1000) suitable for high pressures. This compressed air storage means (1000) can be a natural cavity such as a salt cavity, an old mine or an aquifer or even an artificial storage.
Des moyens de stockage et de récupération de la chaleur (200, 201 , 202) sont disposés après chaque compresseur (100, 101 , 102) afin de refroidir l’air comprimé chaud en sortie de compression tout en stockant cette énergie thermique. L’échange/stockage s’effectue par contact direct entre l’air et le matériau permettant de stocker la chaleur de l’air. Ce matériau peut être des pierres, du béton, des graviers ou tout autre matériau solide adapté. Les moyens de stockage et de récupération de la chaleur (200, 201 , 202) sont adaptés à la pression de l’air entrant cédant son énergie à chacun d’entre eux. Le moyen de stockage et de récupération de la chaleur (200) est adapté à la basse pression, le moyen de stockage et de récupération de la chaleur (201) est adapté à la moyenne pression, et le moyen de stockage et de récupération de la chaleur (202) est adapté à la haute pression. Heat storage and recovery means (200, 201, 202) are arranged after each compressor (100, 101, 102) in order to cool the hot compressed air at the compression outlet while storing this thermal energy. The exchange/storage takes place by direct contact between the air and the material allowing the heat of the air to be stored. This material can be stones, concrete, gravel or any other suitable solid material. The heat storage and recovery means (200, 201, 202) are adapted to the pressure of the incoming air transferring its energy to each of them. The heat storage and recovery means (200) is suitable for low pressure, the heat storage and recovery means (201) is suitable for medium pressure, and the heat storage and recovery means heat (202) is suitable for high pressure.
Durant la phase de production d’énergie, l’air comprimé traverse la ligne de détente (2), qui comporte trois étages de détente (4). L’air est détendu via un ou plusieurs moyens de détente, par exemple des turbines (700, 701 , 702), placés dans chaque étage de détente (4), afin de produire de l’électricité via des alternateurs, non représentés. La turbine (702) est une turbine basse pression, la turbine (701) est une turbine moyenne pression, et la turbine (700) est une turbine haute pression. En première étape de chaque étage de détente (4), de l’eau est injectée dans l’air comprimé via des mélangeurs (600, 601 , 602), l’eau étant préalablement préchauffée par les moyens d’échange de chaleur (800, 801 , 802). Les moyens d’échange de chaleur (800, 801 , 802) peuvent être des échangeurs de chaleurs type tubes/calandre, à plaques, spiralés ou toute autre technologie adaptée et l’échange se fait entre l’eau injectée à la détente et la chaleur fatale de l’air sortant de la turbine basse pression (702). Les moyens d’échange de chaleur (800, 801 , 802) sont agencés en série par rapport au flux d’air basse pression sortant de la turbine basse pression (702), c’est-à-dire sortant de la ligne de détente. L’ordre de passage du gaz en sortie de la ligne de détente dans les moyens d’échanges de chaleur (800, 801 , 802) peut être l’ordre représenté sur la figure 2, ou tout autre ordre par exemple l’ordre (802, 801 , 800), ou (801 , 802, 800) ou (801 , 800, 802). During the energy production phase, the compressed air passes through the expansion line (2), which has three expansion stages (4). The air is expanded via one or more expansion means, for example turbines (700, 701, 702), placed in each expansion stage (4), in order to produce electricity via alternators, not shown. The turbine (702) is a low pressure turbine, the turbine (701) is a medium pressure turbine, and the turbine (700) is a high pressure turbine. In the first stage of each expansion stage (4), water is injected into the compressed air via mixers (600, 601, 602), the water being preheated beforehand by the heat exchange means (800 , 801 , 802). The heat exchange means (800, 801, 802) can be heat exchangers of the tube/shell, plate, spiral type or any other suitable technology and the exchange takes place between the water injected into the expansion and the waste heat of the air leaving the low pressure turbine (702). The heat exchange means (800, 801, 802) are arranged in series by relative to the flow of low pressure air leaving the low pressure turbine (702), that is to say leaving the expansion line. The order of passage of the gas at the outlet of the expansion line in the heat exchange means (800, 801, 802) can be the order represented in FIG. 2, or any other order, for example the order ( 802, 801, 800), or (801, 802, 800) or (801, 800, 802).
Le mélange air comprimé/eau est réchauffé, avant l’entrée dans la turbine, par les moyens de stockage et de récupération de la chaleur (200, 201 , 202), chargés thermiquement lors de la phase de compression précédente. L’eau contenue dans la ligne de détente (2) est évaporée et l’air réchauffé. Il n’y a donc pas d’eau liquide en entrée de turbines (700, 701 , 702), ce qui est préférable pour le bon fonctionnement de celles-ci, et le débit de passage plus important dû à l’injection d’eau ainsi que la température élevée de la ligne de détente (2) en entrée des turbines (700, 701 , 702) assure un meilleur rendement du procédé. The compressed air/water mixture is heated, before entering the turbine, by the heat storage and recovery means (200, 201, 202), thermally loaded during the previous compression phase. The water contained in the expansion line (2) is evaporated and the air heated. There is therefore no liquid water at the inlet of the turbines (700, 701, 702), which is preferable for the correct operation of these, and the greater flow rate due to the injection of water as well as the high temperature of the expansion line (2) at the inlet of the turbines (700, 701, 702) ensures better process efficiency.
La figure 3 illustre, schématiquement et de manière non limitative, un système et un procédé de stockage et de récupération d’énergie par gaz comprimé (en l’occurrence l’air) selon un deuxième mode de réalisation de l’invention. Le deuxième mode de réalisation diffère du premier mode de réalisation par le nombre d’étages de compression et le nombre d’étages de détente. Pour ce mode de réalisation, la ligne de compression (1) comprend deux étages de compression (3) et la ligne de détente (2) comprend deux étages de détente (4). Figure 3 illustrates, schematically and in a non-limiting way, a system and a method for storing and recovering energy by compressed gas (in this case air) according to a second embodiment of the invention. The second embodiment differs from the first embodiment by the number of compression stages and the number of expansion stages. For this embodiment, the compression line (1) comprises two compression stages (3) and the expansion line (2) comprises two expansion stages (4).
Le premier mode de réalisation peut également être modifié en ajoutant des étages de compression et/ou des étages de détente. The first embodiment can also be modified by adding compression stages and/or expansion stages.
La figure 4 illustre, schématiquement et de manière non limitative, un système et un procédé de stockage et de récupération d’énergie par gaz comprimé (en l’occurrence l’air) selon un troisième mode de réalisation de l’invention. Le troisième mode de réalisation diffère du premier mode de réalisation par le fait que chaque étage de compression comprend un moyen de séparation gaz/liquide, et que le système comprend des moyens de stockage du liquide, et par le fait que le liquide réchauffé et introduit dans la ligne de détente est le liquide séparé de la ligne de compression et stocké. Figure 4 illustrates, schematically and in a non-limiting manner, a system and a method for storing and recovering energy by compressed gas (in this case air) according to a third embodiment of the invention. The third embodiment differs from the first embodiment in that each compression stage comprises a gas/liquid separation means, and that the system comprises liquid storage means, and in the fact that the liquid heated and introduced in the expansion line is the liquid separated from the compression line and stored.
Selon le troisième mode de réalisation, le procédé et le système se composent d’une ligne de compression (1), incluant trois étages de compression (3) en fonction de la pression de l’air à atteindre. Chaque étage de compression (3) comprend un moyen de compression (100, 101 , 102) appelé aussi compresseur. Ces compresseurs (100, 101 , 102) peuvent être axiaux, centrifuges, ou de tout autre technologie. Le compresseur (100) est un compresseur basse pression, le compresseur (101 ) est un compresseur moyenne pression et le compresseur (102) est un compresseur haute pression. Le gaz à comprimer (10) dans le système et le procédé est de l’air ambiant, contenant une saturation en eau liée à sa température et sa pression. According to the third embodiment, the method and the system consist of a compression line (1), including three compression stages (3) depending on the air pressure to be reached. Each compression stage (3) comprises compression means (100, 101, 102) also called a compressor. These compressors (100, 101, 102) can be axial, centrifugal, or any other technology. The compressor (100) is a low pressure compressor, the compressor (101) is a medium pressure compressor and the compressor (102) is a high pressure compressor. The gas to be compressed (10) in the system and the process is ambient air, containing a water saturation related to its temperature and its pressure.
Durant la phase de stockage d’énergie, l’air est comprimé dans la ligne de compression (1) puis envoyé dans un moyen de stockage d’air comprimé (1000) adapté aux hautes pressions. Ce moyen de stockage d’air comprimé (1000) peut être une cavité naturelle telle qu’une cavité saline, une ancienne mine ou un aquifère ou encore un stockage artificiel.During the energy storage phase, the air is compressed in the compression line (1) then sent to a compressed air storage means (1000) suitable for high pressures. This compressed air storage means (1000) can be a natural cavity such as a salt cavity, an old mine or an aquifer or even an artificial storage.
Des moyens de stockage et de récupération de la chaleur (200, 201 , 202) sont disposés après chaque compresseur (100, 101 , 102) afin de refroidir l’air comprimé chaud en sortie de compression tout en stockant cette énergie thermique. L’échange/stockage s’effectue par contact direct entre l’air et le matériau permettant de stocker la chaleur de l’air. Ce matériau peut être des pierres, du béton, des graviers ou tout autre matériau solide adapté. Les moyens de stockage et de récupération de la chaleur (200, 201 , 202) sont adaptés à la pression de l’air entrant cédant son énergie à chacun d’entre eux. Le moyen de stockage et de récupération de la chaleur (200) est adapté à la basse pression, le moyen de stockage et de récupération de la chaleur (201) est adapté à la moyenne pression, et le moyen de stockage et de récupération de la chaleur (202) est adapté à la haute pression. Heat storage and recovery means (200, 201, 202) are arranged after each compressor (100, 101, 102) in order to cool the hot compressed air at the compression outlet while storing this thermal energy. The exchange/storage takes place by direct contact between the air and the material allowing the heat of the air to be stored. This material can be stones, concrete, gravel or any other suitable solid material. The heat storage and recovery means (200, 201, 202) are adapted to the pressure of the incoming air transferring its energy to each of them. The heat storage and recovery means (200) is suitable for low pressure, the heat storage and recovery means (201) is suitable for medium pressure, and the heat storage and recovery means heat (202) is suitable for high pressure.
Une fois l’air refroidi et avant l’étage de compression suivant, l’eau condensée (i. e. le liquide présent dans l’air), issue de l’humidité de l’air, est extraite de la ligne de compression par des séparateurs gaz-liquide (400, 401 , 402) afin d’avoir en entrée de compresseur un air sans aucune trace d’eau liquide. Cette condensation de l’eau peut avoir lieu dans les moyens de stockage et de récupération de la chaleur (200, 201 , 202). L’eau condensée à chaque étage de compression est envoyée dans des moyens de stockage du liquide (500, 501 , 502), qui résistent chacun à la pression à laquelle l’eau est extraite de l’air, en d’autres termes le moyen de stockage de liquide (500) est adapté à la basse pression, le moyen de stockage de liquide (501) est adapté à la moyenne pression, et le moyen de stockage de liquide (502) est adapté à la haute pression. Once the air has cooled and before the next compression stage, the condensed water (i.e. the liquid present in the air), resulting from the humidity of the air, is extracted from the compression line by separators gas-liquid (400, 401, 402) in order to have air at the compressor inlet without any trace of liquid water. This water condensation can take place in the heat storage and recovery means (200, 201, 202). The water condensed at each compression stage is sent to liquid storage means (500, 501, 502), each of which resists the pressure at which the water is extracted from the air, in other words the liquid storage means (500) is suitable for low pressure, the liquid storage means (501) is suitable for medium pressure, and the liquid storage means (502) is suitable for high pressure.
Durant la phase de production d’énergie, l’air comprimé traverse la ligne de détente (2), qui comporte trois étages de détente (4). L’air est détendu via un ou plusieurs moyens de détente, par exemple des turbines (700, 701 , 702), placés dans chaque étage de détente (4), afin de produire de l’électricité via des alternateurs, non représentés. La turbine (702) est une turbine basse pression, la turbine (701) est une turbine moyenne pression, et la turbine (700) est une turbine haute pression. En première étape de chaque étage de détente (4), de l’eau condensée et stockée durant la phase de stockage d’énergie, est réinjectée à l’air comprimé via des mélangeurs (600, 601 , 602), l’eau étant préalablement préchauffée par les moyens d’échange de chaleur (800, 801 , 802). Les moyens d’échange de chaleur (800, 801 , 802) peuvent être des échangeurs de chaleur type tubes/calandre, à plaques, spiralés ou toute autre technologie adaptée et l’échange se fait entre l’eau condensée et la chaleur fatale de l’air sortant de la turbine basse pression (702). Les moyens d’échange de chaleur (800, 801 , 802) sont agencés en série par rapport au flux d’air basse pression sortant de la turbine basse pression (702), c’est-à-dire sortant de la ligne de détente. During the energy production phase, the compressed air passes through the expansion line (2), which has three expansion stages (4). The air is expanded via one or more expansion means, for example turbines (700, 701, 702), placed in each expansion stage (4), in order to produce electricity via alternators, not shown. The turbine (702) is a low pressure turbine, the turbine (701) is a medium pressure turbine, and the turbine (700) is a high pressure turbine. In the first stage of each expansion stage (4), water condensed and stored during the energy storage phase is reinjected with compressed air via mixers (600, 601, 602), the water being previously preheated by the heat exchange means (800, 801, 802). The heat exchange means (800, 801, 802) can be tube/shell, plate, spiral type heat exchangers or any other suitable technology and the exchange takes place between the condensed water and the waste heat of the the air leaving the low pressure turbine (702). The heat exchange means (800, 801, 802) are arranged in series with respect to the flow of low pressure air leaving the low pressure turbine (702), that is to say leaving the expansion line .
Le mélange air comprimé/eau est réchauffé, avant l’entrée dans la turbine, par les moyens de stockage et de récupération de la chaleur (200, 201 , 202), chargés thermiquement lors de la phase de compression précédente. L’eau contenue dans la ligne de détente (2) est évaporée et l’air réchauffé. Il n’y a donc pas d’eau liquide en entrée de turbines (700, 701 , 702), ce qui est préférable pour le bon fonctionnement de celles-ci, et le débit de passage plus important dû à la réinjection d’eau ainsi que la température élevée de la ligne de détente (2) en entrée des turbines (700, 701 , 702) assure un meilleur rendement du procédé. The compressed air/water mixture is heated, before entering the turbine, by the heat storage and recovery means (200, 201, 202), thermally loaded during the previous compression phase. The water contained in the expansion line (2) is evaporated and the air heated. There is therefore no liquid water at the inlet of the turbines (700, 701, 702), which is preferable for the proper functioning of these, and the greater flow rate due to the reinjection of water as well as the high temperature of the expansion line (2) at the inlet of the turbines (700, 701, 702) ensures better process efficiency.
Le troisième mode de réalisation peut également être modifié en adaptant le nombre des étages de compression et/ou des étages de détente. The third embodiment can also be modified by adapting the number of compression stages and/or expansion stages.
La figure 5 illustre, schématiquement et de manière non limitative, un système et un procédé de stockage et de récupération d’énergie par gaz comprimé (en l’occurrence l’air) selon un quatrième mode de réalisation de l’invention. Le quatrième mode de réalisation correspond au troisième mode de réalisation pour lequel des moyens de refroidissement (300, 301 , 302) ont été ajoutés dans la ligne de compression (1 ). Par conséquent, seule la ligne de compression (1) est décrite pour ce mode de réalisation. Figure 5 illustrates, schematically and in a non-limiting manner, a system and a method for storing and recovering energy by compressed gas (in this case air) according to a fourth embodiment of the invention. The fourth embodiment corresponds to the third embodiment for which cooling means (300, 301, 302) have been added in the compression line (1). Therefore, only the compression line (1) is described for this embodiment.
Selon le quatrième mode de réalisation, le procédé et le système se composent d’une ligne de compression (1), incluant trois étages de compression (3) en fonction de la pression de l’air à atteindre. Chaque étage de compression (3) comprend un moyen de compression (100, 101 , 102) appelé aussi compresseur. Ces compresseurs (100, 101 , 102) peuvent être axiaux, centrifuges, ou de tout autre technologie. Le compresseur (100) est un compresseur basse pression, le compresseur (101 ) est un compresseur moyenne pression et le compresseur (102) est un compresseur haute pression. Le gaz à comprimer (10) dans le système et le procédé est de l’air ambiant, contenant une saturation en eau liée à sa température et sa pression. Durant la phase de stockage d’énergie, l’air est comprimé dans la ligne de compression (1) puis envoyé dans un moyen de stockage d’air comprimé (1000) adapté aux hautes pressions. Ce moyen de stockage d’air comprimé (1000) peut être une cavité naturelle telle qu’une cavité saline, une ancienne mine ou un aquifère ou encore un stockage artificiel.According to the fourth embodiment, the method and the system consist of a compression line (1), including three compression stages (3) depending on the air pressure to be reached. Each compression stage (3) comprises compression means (100, 101, 102) also called a compressor. These compressors (100, 101, 102) can be axial, centrifugal, or of any other technology. The compressor (100) is a low pressure compressor, the compressor (101) is a medium pressure compressor and the compressor (102) is a high pressure compressor. The gas to be compressed (10) in the system and the process is ambient air, containing a water saturation related to its temperature and its pressure. During the energy storage phase, the air is compressed in the compression line (1) then sent to a compressed air storage means (1000) suitable for high pressures. This compressed air storage means (1000) can be a natural cavity such as a saline cavity, an old mine or an aquifer or even an artificial storage.
Des moyens de stockage et de récupération de la chaleur (200, 201 , 202) sont disposés après chaque compresseur (100, 101 , 102) afin de refroidir l’air comprimé chaud en sortie de compression tout en stockant cette énergie thermique. L’échange/stockage s’effectue par contact direct entre l’air et le matériau permettant de stocker la chaleur de l’air. Ce matériau peut être des pierres, du béton, des graviers ou tout autre matériau solide adapté. Les moyens de stockage et de récupération de la chaleur (200, 201 , 202) sont adaptés à la pression de l’air entrant cédant son énergie à chacun d’entre eux. Le moyen de stockage et de récupération de la chaleur (200) est adapté à la basse pression, le moyen de stockage et de récupération de la chaleur (201) est adapté à la moyenne pression, et le moyen de stockage et de récupération de la chaleur (202) est adapté à la haute pression. Des moyens de refroidissement (300, 301 , 302) peuvent être disposés à la suite des moyens de stockage et de récupération de la chaleur (200, 201 , 202) si nécessaire afin de finir le refroidissement de l’air comprimé avant le prochain étage de compression ou avant son stockage. Ces moyens de refroidissement (300, 301 , 302) peuvent être des aéro-réfrigérants ou des échangeurs de chaleur (tubes/calandre, à plaques, spiralés ou autres technologies adaptées) échangeant avec un fluide caloporteur pouvant être de l’eau, du propane, du butane ou tout autre réfrigérant adapté au refroidissement nécessaire. Les moyens de refroidissement (300, 301 , 302) sont adaptés à la pression de l’air entrant et échangeant avec chacun d’entre eux. Le moyen de refroidissement (300) est adapté à la basse pression, le moyen de refroidissement (301) est adapté à la moyenne pression et le moyen de refroidissement (302) est adapté à la haute pression. Heat storage and recovery means (200, 201, 202) are arranged after each compressor (100, 101, 102) in order to cool the hot compressed air at the compression outlet while storing this thermal energy. The exchange/storage takes place by direct contact between the air and the material allowing the heat of the air to be stored. This material can be stones, concrete, gravel or any other suitable solid material. The heat storage and recovery means (200, 201, 202) are adapted to the pressure of the incoming air transferring its energy to each of them. The heat storage and recovery means (200) is suitable for low pressure, the heat storage and recovery means (201) is suitable for medium pressure, and the heat storage and recovery means heat (202) is suitable for high pressure. Cooling means (300, 301, 302) can be arranged after the heat storage and recovery means (200, 201, 202) if necessary in order to finish cooling the compressed air before the next stage compression or before storage. These cooling means (300, 301, 302) can be air coolers or heat exchangers (tubes/shell, plates, spirals or other suitable technologies) exchanging with a heat transfer fluid which can be water, propane , butane or any other refrigerant suitable for the necessary cooling. The cooling means (300, 301, 302) are adapted to the pressure of the air entering and exchanging with each of them. The cooling means (300) is suitable for low pressure, the cooling means (301) is suitable for medium pressure and the cooling means (302) is suitable for high pressure.
Une fois l’air refroidi et avant l’étage de compression suivant, l’eau condensée (i.e. le liquide présent dans l’air), issue de l’humidité de l’air, est extraite de la ligne de compression par des séparateurs gaz-liquide (400, 401 , 402) afin d’avoir en entrée de compresseur un air sans aucune trace d’eau liquide. Cette condensation de l’eau peut avoir lieu dans les moyens de stockage et de récupération de la chaleur (200, 201 , 202) et/ou dans les moyens de refroidissement (300, 301 , 302). L’eau condensée à chaque étage de compression est envoyée dans des moyens de stockage du liquide (500, 501 , 502), qui résistent chacun à la pression à laquelle l’eau est extraite de l’air, en d’autres termes le moyen de stockage de liquide (500) est adapté à la basse pression, le moyen de stockage de liquide (501 ) est adapté à la moyenne pression, et le moyen de stockage de liquide (502) est adapté à la haute pression. Le quatrième mode de réalisation peut également être modifié en adaptant le nombre des étages de compression et/ou des étages de détente. Once the air has cooled and before the next compression stage, the condensed water (ie the liquid present in the air), resulting from the humidity of the air, is extracted from the compression line by separators gas-liquid (400, 401, 402) in order to have air at the compressor inlet without any trace of liquid water. This water condensation can take place in the heat storage and recovery means (200, 201, 202) and/or in the cooling means (300, 301, 302). The water condensed at each compression stage is sent to liquid storage means (500, 501, 502), each of which resists the pressure at which the water is extracted from the air, in other words the liquid storage means (500) is suitable for low pressure, the liquid storage means (501) is suitable for medium pressure, and the liquid storage means (502) is suitable for high pressure. The fourth embodiment can also be modified by adapting the number of compression stages and/or expansion stages.
De plus, dans le quatrième mode de réalisation, le système et le procédé peuvent être prévus sans moyen de séparation gaz/liquide, ni moyen de stockage du liquide. Moreover, in the fourth embodiment, the system and the method can be provided without means of gas/liquid separation, nor means of storage of the liquid.
La figure 6 illustre, schématiquement et de manière non limitative, un système et un procédé de stockage et de récupération d’énergie par gaz comprimé (en l’occurrence l’air) selon un cinquième mode de réalisation de l’invention. Le cinquième mode de réalisation correspond au quatrième mode de réalisation pour lequel les moyens d’échange de chaleur entre le gaz détendu en sortie de la ligne de détente et le liquide sont intégrés dans le moyen de stockage du liquide. Figure 6 illustrates, schematically and in a non-limiting manner, a system and a method for storing and recovering energy by compressed gas (in this case air) according to a fifth embodiment of the invention. The fifth embodiment corresponds to the fourth embodiment for which the heat exchange means between the gas expanded at the outlet of the expansion line and the liquid are integrated into the liquid storage means.
Selon le cinquième mode de réalisation, le procédé et le système se composent d’une ligne de compression (1), incluant trois étages de compression (3) en fonction de la pression de l’air à atteindre. Chaque étage de compression (3) comprend un moyen de compression (100, 101 , 102) appelé aussi compresseur. Ces compresseurs (100, 101 , 102) peuvent être axiaux, centrifuges, ou de toute autre technologie. Le compresseur (100) est un compresseur basse pression, le compresseur (101 ) est un compresseur moyenne pression et le compresseur (102) est un compresseur haute pression. Le gaz à comprimer (10) dans le système et le procédé est de l’air ambiant, contenant une saturation en eau liée à sa température et sa pression. According to the fifth embodiment, the method and the system consist of a compression line (1), including three compression stages (3) depending on the air pressure to be reached. Each compression stage (3) comprises compression means (100, 101, 102) also called a compressor. These compressors (100, 101, 102) can be axial, centrifugal, or of any other technology. The compressor (100) is a low pressure compressor, the compressor (101) is a medium pressure compressor and the compressor (102) is a high pressure compressor. The gas to be compressed (10) in the system and the process is ambient air, containing water saturation related to its temperature and pressure.
Durant la phase de stockage d’énergie, l’air est comprimé dans la ligne de compression (1) puis envoyé dans un moyen de stockage d’air comprimé (1000) adapté aux hautes pressions. Ce moyen de stockage d’air comprimé (1000) peut être une cavité naturelle telle qu’une cavité saline, une ancienne mine ou un aquifère ou encore un stockage artificiel.During the energy storage phase, the air is compressed in the compression line (1) then sent to a compressed air storage means (1000) suitable for high pressures. This compressed air storage means (1000) can be a natural cavity such as a salt cavity, an old mine or an aquifer or even an artificial storage.
Des moyens de stockage et de récupération de la chaleur (200, 201 , 202) sont disposés après chaque compresseur (100, 101 , 102) afin de refroidir l’air comprimé chaud en sortie de compression tout en stockant cette énergie thermique. L’échange/stockage s’effectue par contact direct entre l’air et le matériau permettant de stocker la chaleur de l’air. Ce matériau peut être des pierres, du béton, des graviers ou tout autre matériau solide adapté. Les moyens de stockage et de récupération de la chaleur (200, 201 , 202) sont adaptés à la pression de l’air entrant cédant son énergie à chacun d’entre eux. Le moyen de stockage et de récupération de la chaleur (200) est adapté à la basse pression, le moyen de stockage et de récupération de la chaleur (201) est adapté à la moyenne pression, et le moyen de stockage et de récupération de la chaleur (202) est adapté à la haute pression. Des moyens de refroidissement (300, 301 , 302) peuvent être disposés à la suite des moyens de stockage et de récupération de la chaleur (200, 201 , 202) si nécessaire afin de finir le refroidissement de l’air comprimé avant le prochain étage de compression ou avant son stockage. Ces moyens de refroidissement (300, 301 , 302) peuvent être des aéro-réfrigérants ou des échangeurs de chaleur (tubes/calandre, à plaques, spiralés ou autres technologies adaptées) échangeant avec un fluide caloporteur pouvant être de l’eau, du propane, du butane ou tout autre réfrigérant adapté au refroidissement nécessaire. Les moyens de refroidissement (300, 301 , 302) sont adaptés à la pression de l’air entrant et échangeant avec chacun d’entre eux. Le moyen de refroidissement (300) est adapté à la basse pression, le moyen de refroidissement (301) est adapté à la moyenne pression et le moyen de refroidissement (302) est adapté à la haute pression. Heat storage and recovery means (200, 201, 202) are arranged after each compressor (100, 101, 102) in order to cool the hot compressed air at the compression outlet while storing this thermal energy. The exchange/storage takes place by direct contact between the air and the material allowing the heat of the air to be stored. This material can be stones, concrete, gravel or any other suitable solid material. The heat storage and recovery means (200, 201, 202) are adapted to the pressure of the incoming air transferring its energy to each of them. The heat storage and recovery means (200) is suitable for low pressure, the heat storage and recovery means (201) is suitable for medium pressure, and the heat storage and recovery means heat (202) is suitable for high pressure. Means cooling (300, 301, 302) can be arranged after the heat storage and recovery means (200, 201, 202) if necessary in order to finish cooling the compressed air before the next compression stage or before storage. These cooling means (300, 301, 302) can be air coolers or heat exchangers (tubes/shell, plates, spirals or other suitable technologies) exchanging with a heat transfer fluid which can be water, propane , butane or any other refrigerant suitable for the necessary cooling. The cooling means (300, 301, 302) are adapted to the pressure of the air entering and exchanging with each of them. The cooling means (300) is suitable for low pressure, the cooling means (301) is suitable for medium pressure and the cooling means (302) is suitable for high pressure.
Une fois l’air refroidi et avant l’étage de compression suivant, l’eau condensée (i.e. le liquide présent dans l’air), issue de l’humidité de l’air, est extraite de la ligne de compression par des séparateurs gaz-liquide (400, 401 , 402) afin d’avoir en entrée de compresseur un air sans aucune trace d’eau liquide. Cette condensation de l’eau peut avoir lieu dans les moyens de stockage et de récupération de la chaleur (200, 201 , 202) et/ou dans les moyens de refroidissement (300, 301 , 302). L’eau condensée à chaque étage de compression est envoyée dans des moyens de stockage du liquide (500, 501 , 502), qui résistent chacun à la pression à laquelle l’eau est extraite de l’air, en d’autres termes le moyen de stockage de liquide (500) est adapté à la basse pression, le moyen de stockage de liquide (501 ) est adapté à la moyenne pression, et le moyen de stockage de liquide (502) est adapté à la haute pression. Once the air has cooled and before the next compression stage, the condensed water (i.e. the liquid present in the air), resulting from the humidity of the air, is extracted from the compression line by separators gas-liquid (400, 401, 402) in order to have air at the compressor inlet without any trace of liquid water. This water condensation can take place in the heat storage and recovery means (200, 201, 202) and/or in the cooling means (300, 301, 302). The water condensed at each compression stage is sent to liquid storage means (500, 501, 502), each of which resists the pressure at which the water is extracted from the air, in other words the liquid storage means (500) is suitable for low pressure, the liquid storage means (501) is suitable for medium pressure, and the liquid storage means (502) is suitable for high pressure.
Durant la phase de production d’énergie, l’air comprimé traverse la ligne de détente (2), qui comporte trois étages de détente (4). L’air est détendu via un ou plusieurs moyens de détente, par exemple des turbines (700, 701 , 702), placés dans chaque étage de détente (4), afin de produire de l’électricité via des alternateurs, non représentés. La turbine (702) est une turbine basse pression, la turbine (701) est une turbine moyenne pression, et la turbine (700) est une turbine haute pression. During the energy production phase, the compressed air passes through the expansion line (2), which has three expansion stages (4). The air is expanded via one or more expansion means, for example turbines (700, 701, 702), placed in each expansion stage (4), in order to produce electricity via alternators, not shown. The turbine (702) is a low pressure turbine, the turbine (701) is a medium pressure turbine, and the turbine (700) is a high pressure turbine.
En première étape de chaque étage de détente (4), de l’eau condensée et stockée est réinjectée dans l’air comprimé de pression via des mélangeurs (600, 601 , 602), l’eau étant préalablement préchauffée par les moyens d’échange de chaleur intégrés dans les moyens de stockage du liquide (500, 501 , 502). Les moyens d’échange de chaleur peuvent être de type tubes/calandre, à plaques, spiralés ou toute autre technologie adaptée et l’échange se fait entre l’eau condensée et la chaleur fatale de l’air sortant de la turbine basse pression (702). Les moyens d’échange de chaleur sont agencés en série par rapport au flux d’air basse pression sortant de la turbine basse pression (702), c’est-à-dire sortant de la ligne de détente. In the first stage of each expansion stage (4), condensed and stored water is reinjected into the pressurized air via mixers (600, 601, 602), the water being preheated beforehand by means of heat exchange integrated in the liquid storage means (500, 501, 502). The heat exchange means can be of the tube/shell, plate, spiral type or any other suitable technology and the exchange takes place between the condensed water and the waste heat of the air leaving the low pressure turbine ( 702). The heat exchange means are arranged in series with respect to the air flow low pressure leaving the low pressure turbine (702), that is to say leaving the expansion line.
Le mélange air comprimé/eau est réchauffé, avant l’entrée dans la turbine, par les moyens de stockage et de récupération de la chaleur (200, 201 , 202), chargés thermiquement lors de la phase de compression précédente. L’eau contenue dans la ligne de détente (2) est évaporée et l’air réchauffé. Il n’y a donc pas d’eau liquide en entrée de turbines (700, 701 , 702), ce qui est préférable pour le bon fonctionnement de celles-ci, et le débit de passage plus important dû à la réinjection d’eau ainsi que la température élevée de la ligne de détente (2) en entrée des turbines (700, 701 , 702) assure un meilleur rendement du procédé. The compressed air/water mixture is heated, before entering the turbine, by the heat storage and recovery means (200, 201, 202), thermally loaded during the previous compression phase. The water contained in the expansion line (2) is evaporated and the air heated. There is therefore no liquid water at the inlet of the turbines (700, 701, 702), which is preferable for the proper functioning of these, and the greater flow rate due to the reinjection of water as well as the high temperature of the expansion line (2) at the inlet of the turbines (700, 701, 702) ensures better process efficiency.
Le cinquième mode de réalisation peut également être modifié en adaptant le nombre des étages de compression et/ou des étages de détente. The fifth embodiment can also be modified by adapting the number of compression stages and/or expansion stages.
De plus, le cinquième mode de réalisation peut être prévu sans moyen de séparation gaz/liquide, ni moyen de stockage du liquide ou sans moyen de refroidissement. In addition, the fifth embodiment can be provided without gas/liquid separation means, nor liquid storage means or without cooling means.
La figure 7 illustre, schématiquement et de manière non limitative, un système et un procédé de stockage et de récupération d’énergie par gaz comprimé (en l’occurrence l’air) selon un sixième mode de réalisation de l’invention. Le sixième mode de réalisation correspond au quatrième mode de réalisation pour lequel les moyens d’échange de chaleur entre le gaz détendu en sortie de la ligne de compression et le liquide sont agencés en parallèle pour la circulation du gaz détendu. Par conséquent, seule la ligne de détente est décrite. Figure 7 illustrates, schematically and in a non-limiting manner, a system and a method for storing and recovering energy by compressed gas (in this case air) according to a sixth embodiment of the invention. The sixth embodiment corresponds to the fourth embodiment for which the heat exchange means between the expanded gas at the outlet of the compression line and the liquid are arranged in parallel for the circulation of the expanded gas. Therefore, only the trigger line is described.
Durant la phase de production d’énergie, l’air comprimé traverse la ligne de détente (2), qui comporte trois étages de détente (4). L’air est détendu via un ou plusieurs moyens de détente, par exemple des turbines (700, 701 , 702), placés dans chaque étage de détente (4), afin de produire de l’électricité via des alternateurs, non représentés. La turbine (702) est une turbine basse pression, la turbine (701) est une turbine moyenne pression, et la turbine (700) est une turbine haute pression. During the energy production phase, the compressed air passes through the expansion line (2), which has three expansion stages (4). The air is expanded via one or more expansion means, for example turbines (700, 701, 702), placed in each expansion stage (4), in order to produce electricity via alternators, not shown. The turbine (702) is a low pressure turbine, the turbine (701) is a medium pressure turbine, and the turbine (700) is a high pressure turbine.
En première étape de chaque étage de détente (4), de l’eau condensée et stockée est réinjectée à l’air comprimé via des mélangeurs (600, 601 , 602), l’eau étant préalablement préchauffée par les moyens d’échange de chaleur (800, 801 , 802). Les moyens d’échange de chaleur (800, 801 , 802) peuvent être des échangeurs de chaleur type tubes/calandre, à plaques, spiralés ou toute autre technologie adaptée et l’échange se fait entre l’eau condensée et la chaleur fatale de l’air sortant de la turbine basse pression (702). Les moyens d’échange de chaleur (800, 801 , 802) sont agencés en parallèle par rapport au flux d’air basse pression sortant de la turbine basse pression (702), c’est-à-dire sortant de la ligne de détente. Pour ce mode de réalisation, le gaz détendu en sortie de la ligne de détente (2) traverse un séparateur de flux (ou « splitter ») (900) qui divise le flux en trois, chaque partie du flux du gaz détendu traverse un moyen d’échange de chaleur (800, 801 , 802).In the first stage of each expansion stage (4), condensed and stored water is reinjected with compressed air via mixers (600, 601, 602), the water being preheated beforehand by the heat exchange means. heat (800, 801, 802). The heat exchange means (800, 801, 802) can be tube/shell, plate, spiral type heat exchangers or any other suitable technology and the exchange takes place between the condensed water and the waste heat of the the air leaving the low pressure turbine (702). The heat exchange means (800, 801, 802) are arranged in parallel with respect to the flow low pressure air leaving the low pressure turbine (702), that is to say leaving the expansion line. For this embodiment, the expanded gas at the outlet of the expansion line (2) passes through a flow separator (or "splitter") (900) which divides the flow into three, each part of the flow of expanded gas passes through a means heat exchange (800, 801, 802).
Le mélange air comprimé/eau est réchauffé, avant l’entrée dans la turbine, par les moyens de stockage et de récupération de la chaleur (200, 201 , 202), chargés thermiquement lors de la phase de compression précédente. L’eau contenue dans la ligne de détente (2) est évaporée et l’air réchauffé. Il n’y a donc pas d’eau liquide en entrée de turbines (700, 701 , 702), ce qui est préférable pour le bon fonctionnement de celles-ci, et le débit de passage plus important dû à la réinjection d’eau ainsi que la température élevée de la ligne de détente (2) en entrée des turbines (700, 701 , 702) assure un meilleur rendement du procédé. The compressed air/water mixture is heated, before entering the turbine, by the heat storage and recovery means (200, 201, 202), thermally loaded during the previous compression phase. The water contained in the expansion line (2) is evaporated and the air heated. There is therefore no liquid water at the inlet of the turbines (700, 701, 702), which is preferable for the proper functioning of these, and the greater flow rate due to the reinjection of water as well as the high temperature of the expansion line (2) at the inlet of the turbines (700, 701, 702) ensures better process efficiency.
Le sixième mode de réalisation peut également être modifié en adaptant le nombre des étages de compression et/ou des étages de détente. The sixth embodiment can also be modified by adapting the number of compression stages and/or expansion stages.
De plus, le sixième mode de séparation peut être prévu sans moyen de séparation gaz/liquide, ni moyen de stockage du liquide ou sans moyen de refroidissement, ou avec une intégration des moyens d’échange de chaleur dans le moyen de stockage de liquide.
Figure imgf000027_0001
In addition, the sixth separation mode can be provided without gas/liquid separation means, nor liquid storage means or without cooling means, or with integration of the heat exchange means in the liquid storage means.
Figure imgf000027_0001
Les caractéristiques et avantages du procédé selon l'invention apparaîtront plus clairement à la lecture des exemples application ci-après. The characteristics and advantages of the process according to the invention will appear more clearly on reading the application examples below.
Exemple n°1 - non conforme à l’invention Example no. 1 - not in accordance with the invention
Cet exemple met en oeuvre le système et le procédé non conforme à l’invention illustré en figure 1. This example implements the system and the method not in accordance with the invention illustrated in Figure 1.
Pendant la phase de compression (1 ), un flux d’air extérieur (10), à une pression de 1 ,02 bar et une température de 27°C et possédant une humidité de 14,6 g eau / kg air (gramme d’eau par kilogramme d’air), est comprimé par un compresseur basse pression (100) d’où il sort (11 ) à une température de 255°C et une pression de 6 bar (0.6 MPa) (0.6 MPa). Ce flux (11) est envoyé vers un moyen de stockage et de récupération de la chaleur basse pression (200) qui refroidit l’air jusqu’à une température de 90°C (12) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (12) est refroidi une nouvelle fois par le moyen de refroidissement (300) jusqu’à atteindre une température de 50°C en sortie (13). Le flux (13) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant les phases de refroidissement en (200) et/ou (300). Cette eau condensée (14) est séparée de la ligne de compression (1) dans un séparateur gaz-liquide (400) opérant à la pression du flux (13). Le flux (15), de nouveau totalement gazeux, est comprimé par un compresseur moyenne pression (101) d’où il ressort (16) à une température de 275°C et une pression de 28 bar (2.8 MPa). Le flux (16) est envoyé vers un moyen de stockage et de récupération de la chaleur moyenne pression (201) qui refroidit l’air jusqu’à une température de 100°C (17) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (17) est refroidi une nouvelle fois par un moyen de refroidissement (301 ) jusqu’à atteindre une température de 50°C en sortie (18). Le flux (18) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant les phases de refroidissement en (201) et/ou (301). Cette eau condensée (19) est séparée de la ligne de compression (1 ) dans un séparateur gaz-liquide (401) opérant à la pression du flux (18). Le flux (20), de nouveau totalement gazeux, est comprimé par un compresseur haute pression (102) d’où il ressort (21) à une température de 250°C et une pression de 117 bar (11.7 MPa). Le flux (21) est envoyé vers un moyen de stockage et de récupération de la chaleur haute pression (202) qui refroidit l’air jusqu’à une température de 45°C (22) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (22) est refroidi une nouvelle fois par un moyen de refroidissement (302) jusqu’à atteindre une température de 30°C en sortie (23), 30°C étant la température de stockage de l’air. Le flux (23) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant les phases de refroidissement en (202) et/ou (302). Cette eau condensée (24) est séparée de la ligne de compression (1) dans un séparateur gaz-liquide (402) opérant à la pression du flux (23). During the compression phase (1), an external air flow (10), at a pressure of 1.02 bar and a temperature of 27° C. and having a humidity of 14.6 g water/kg air (gram of water per kilogram of air), is compressed by a low pressure compressor (100) from which it emerges (11) at a temperature of 255° C. and a pressure of 6 bar (0.6 MPa) (0.6 MPa). This flow (11) is sent to a low pressure heat storage and recovery means (200) which cools the air to a temperature of 90°C (12) and stores this thermal energy until the phase relaxation (2). The stream (12) is cooled again by the cooling means (300) until it reaches a temperature of 50° C. at the outlet (13). The flow (13) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (200) and/or (300). This condensed water (14) is separated from the compression line (1) in a gas-liquid separator (400) operating at the pressure of the stream (13). The flow (15), again completely gaseous, is compressed by a medium pressure compressor (101) from which it emerges (16) at a temperature of 275° C. and a pressure of 28 bar (2.8 MPa). The flow (16) is sent to a medium pressure heat storage and recovery means (201) which cools the air to a temperature of 100°C (17) and stores this thermal energy until the phase relaxation (2). The stream (17) is cooled again by a cooling means (301) until it reaches a temperature of 50° C. at the outlet (18). The flow (18) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (201) and/or (301). This condensed water (19) is separated from the compression line (1) in a gas-liquid separator (401) operating at the pressure of the stream (18). The flow (20), again completely gaseous, is compressed by a high pressure compressor (102) from which it emerges (21) at a temperature of 250° C. and a pressure of 117 bar (11.7 MPa). The flow (21) is sent to a high pressure heat storage and recovery means (202) which cools the air to a temperature of 45°C (22) and stores this thermal energy until the phase relaxation (2). The stream (22) is cooled again by a cooling means (302) until it reaches a temperature of 30° C. at the outlet (23), 30° C. being the air storage temperature. The flow (23) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (202) and/or (302). This condensed water (24) is separated from the compression line (1) in a gas-liquid separator (402) operating at the pressure of the stream (23).
Le flux d’air comprimé à une pression de 117 bar (11.7 MPa) et une température de 30°C (25) est alors envoyé vers le moyen de stockage d’air comprimé (1000) en attendant la phase de récupération de l’énergie (2). The compressed air flow at a pressure of 117 bar (11.7 MPa) and a temperature of 30°C (25) is then sent to the compressed air storage means (1000) pending the recovery phase of the energy (2).
Lorsque l’on veut produire de l’électricité, le flux d’air comprimé (26) à une pression de 117 bar (11.7 MPa) et une température de 30°C, sortant du moyen de stockage d’air comprimé (1000) est réchauffé dans le moyen de stockage et de récupération de la chaleur haute pression (202) qui libère la chaleur stockée durant la phase de compression (1 ) jusqu’à ce que le flux (27) atteigne une température de 240°C. Ce flux d’air chaud et comprimé (27) est détendu dans la turbine haute pression (700) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (28) une pression de 28 bar (2.8 MPa) et une température de 85°C. Le flux (28) est réchauffé dans le moyen de stockage et de récupération de la chaleur moyenne pression (201) qui libère la chaleur stockée durant la phase de compression (1) jusqu’à ce que le flux (29) atteigne une température de 265°C. Ce flux d’air chaud et comprimé (29) est détendu dans la turbine moyenne pression (701 ) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (30) une pression de 5 bar (0.5 MPa) et une température de 75°C. Le flux (30) est réchauffé dans le moyen de stockage et de récupération de la chaleur basse pression (200) qui libère la chaleur stockée durant la phase de compression (1) jusqu’à ce que le flux (31) atteigne une température de 245°C. Ce flux d’air chaud et comprimé (31) est détendu dans la turbine basse pression (702) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (32) une pression de 1 ,02 bar (0.1 MPa) et une température de 80°C. When it is desired to produce electricity, the flow of compressed air (26) at a pressure of 117 bar (11.7 MPa) and a temperature of 30° C., leaving the compressed air storage means (1000) is heated in the high pressure heat storage and recovery means (202) which releases the heat stored during the compression phase (1) until the stream (27) reaches a temperature of 240°C. This flow of hot and compressed air (27) is expanded in the high pressure turbine (700) producing electricity via an alternator, until it reaches at the outlet (28) a pressure of 28 bar (2.8 MPa) and a temperature of 85°C. The stream (28) is heated in the medium pressure heat storage and recovery means (201) which releases the heat stored during the compression phase (1) until the stream (29) reaches a temperature of 265°C. This flow of hot and compressed air (29) is expanded in the medium pressure turbine (701) producing electricity via an alternator, until a pressure of 5 bar (0.5 MPa) and a temperature of 75°C are reached at the outlet (30). The stream (30) is heated in the low pressure heat storage and recovery means (200) which releases the heat stored during the compression phase (1) until the stream (31) reaches a temperature of 245°C. This flow of hot, compressed air (31) is expanded in the low pressure turbine (702) producing electricity via an alternator, until it reaches a pressure of 1.02 bar (0.1 MPa) at the outlet (32). and a temperature of 80°C.
Le rendement du procédé et du système de stockage d’énergie de l’exemple 1 est de 69,6% pour une puissance consommée de 100 MW aux compresseurs. Le débit total d’eau condensée aux trois étages de compression est de 7,5 t/h. La puissance de stockage thermique est de 87 MWth (MW thermique) et la puissance de refroidissement nécessaire est de 20, 5 MWth. The efficiency of the process and of the energy storage system of example 1 is 69.6% for a power consumption of 100 MW at the compressors. The total flow of condensed water at the three compression stages is 7.5 t/h. The thermal storage power is 87 MWth (thermal MW) and the cooling power required is 20.5 MWth.
Exemple n°2 selon l’invention Example No. 2 according to the invention
Cet exemple met en oeuvre le système et le procédé selon le mode de réalisation de l’invention illustré en figure 5. This example implements the system and the method according to the embodiment of the invention illustrated in Figure 5.
Pendant la phase de compression (1 ), un flux d’air extérieur (10), à une pression de 1 ,02 bar (0.1 MPa) et une température de 27°C et possédant une humidité de 14,6 g eau / kgair, est comprimé par un compresseur basse pression (100) d’où il sort (11 ) à une température de 255°C et une pression de 6 bar (0.6 MPa). Ce flux (11 ) est envoyé vers un moyen de stockage et de récupération de la chaleur basse pression (200) qui refroidit l’air jusqu’à une température de 80°C (12) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (12) est refroidi une nouvelle fois par le moyen de refroidissement (300) jusqu’à atteindre une température de 50°C en sortie (13). Le flux (13) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant les phases de refroidissement en (200) et/ou (300). Cette eau condensée (14) est séparée du flux d’air (15) dans un séparateur gaz- liquide (400), opérant à la pression du flux (13), puis envoyée vers un moyen de stockage de liquide (500) sous une pression maintenue de 6 bar (0.6 MPa). Le flux (15), de nouveau totalement gazeux, est comprimé par un compresseur moyenne pression (101) d’où il ressort (16) à une température de 275°C et une pression de 28 bar (2.8 MPa). Le flux (16) est envoyé vers un moyen de stockage et de récupération de la chaleur moyenne pression (201 ) qui refroidit l’air jusqu’à une température de 80°C (17) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (17) est refroidi une nouvelle fois par le moyen de refroidissement (301 ) jusqu’à atteindre une température de 50°C en sortie (18). Le flux (18) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant les phases de refroidissement en (201) et/ou (301). Cette eau condensée (19) est séparée du flux d’air (20) dans un séparateur gaz-liquide (401), opérant à la pression du flux (18), puis envoyée vers un moyen de stockage de liquide (501 ) sous une pression maintenue de 28 bar (2.8 MPa). Le flux (20), de nouveau totalement gazeux, est comprimé par un compresseur haute pression (102) d’où il ressort (21) à une température de 250°C et une pression de 117 bar (11.7 MPa). Le flux (21) est envoyé vers un moyen de stockage et de récupération de la chaleur haute pression (202) qui refroidit l’air jusqu’à une température de 40°C (22) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (22) est refroidi une nouvelle fois par le moyen de refroidissement (302) jusqu’à atteindre une température de 30°C en sortie (23), 30°C étant la température de stockage de l’air. Le flux (23) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant les phases de refroidissement en (202) et/ou (302). Cette eau condensée (24) est séparée du flux d’air (25) dans un séparateur gaz-liquide (402), opérant à la pression du flux (23), puis envoyée vers un moyen de stockage de liquide (502) sous une pression maintenue de 117 bar (11 .7 MPa). During the compression phase (1), an external air flow (10), at a pressure of 1.02 bar (0.1 MPa) and a temperature of 27°C and having a humidity of 14.6 g water / kgair , is compressed by a low pressure compressor (100) from which it emerges (11) at a temperature of 255° C. and a pressure of 6 bar (0.6 MPa). This flow (11) is sent to a low-pressure heat storage and recovery means (200) which cools the air to a temperature of 80° C. (12) and stores this thermal energy until the phase relaxation (2). The stream (12) is cooled again by the cooling means (300) until it reaches a temperature of 50° C. at the outlet (13). The flow (13) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (200) and/or (300). This condensed water (14) is separated from the air stream (15) in a gas-liquid separator (400), operating at the pressure of the stream (13), then sent to a liquid storage means (500) under a maintained pressure of 6 bar (0.6 MPa). The flow (15), again completely gaseous, is compressed by a medium pressure compressor (101) from which it emerges (16) at a temperature of 275° C. and a pressure of 28 bar (2.8 MPa). The flow (16) is sent to a medium pressure heat storage and recovery means (201) which cools the air to a temperature of 80° C. (17) and stores this thermal energy until the phase relaxation (2). The stream (17) is cooled again by the cooling means (301) until it reaches a temperature of 50° C. at the outlet (18). The flow (18) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (201) and/or (301). This condensed water (19) is separated from the air stream (20) in a gas-liquid separator (401), operating at the pressure of the stream (18), then sent to a liquid storage means (501) under a maintained pressure of 28 bar (2.8 MPa). The flow (20), again completely gaseous, is compressed by a high pressure compressor (102) from which it emerges (21) at a temperature of 250° C. and a pressure of 117 bar (11.7 MPa). The flow (21) is sent to a high pressure heat storage and recovery means (202) which cools the air to a temperature of 40°C (22) and stores this thermal energy until the phase relaxation (2). The stream (22) is cooled again by the cooling means (302) until it reaches a temperature of 30° C. at the outlet (23), 30° C. being the air storage temperature. The flow (23) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (202) and/or (302). This condensed water (24) is separated from the air stream (25) in a gas-liquid separator (402), operating at the pressure of the stream (23), then sent to a liquid storage means (502) under a maintained pressure of 117 bar (11.7 MPa).
Le flux d’air comprimé à une pression de 117 bar (11.7 MPa) et une température de 30°C (25) est alors envoyé vers le moyen de stockage d’air comprimé (1000) en attendant la phase de récupération d’énergie (2). The compressed air flow at a pressure of 117 bar (11.7 MPa) and a temperature of 30°C (25) is then sent to the compressed air storage means (1000) while waiting for the energy recovery phase (2).
Lorsque l’on veut produire de l’électricité, un flux d’eau condensée (27) provenant du moyen de stockage de liquide (502) à une pression de 117 bar (11.7 MPa) et une température de 30°C est réchauffé dans l’échangeur de chaleur (802) jusqu’à atteindre une température de 75°C au flux (28) avant d’être réinjecté dans le flux d’air comprimé (26) sortant du moyen de stockage d’air comprimé (1000) via le mélangeur (600) pour former le flux (29). Le flux (29) est réchauffé dans le moyen de stockage et de récupération de la chaleur haute pression (202) qui libère la chaleur stockée durant la phase de compression (1) jusqu’à ce que le flux (30) atteigne une température de 240°C. Ce flux d’air chaud et comprimé (30) est détendu dans la turbine haute pression (700) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (31 ) une pression de 28 bar (2.8 MPa) et une température de 85°C. Un flux d’eau condensée (32) provenant du moyen de stockage de liquide (501 ) à une pression de 28 bar (2.8 MPa) et une température de 50°C est réchauffé dans l’échangeur de chaleur (801) jusqu’à atteindre une température de 77°C au flux (33) avant d’être réinjecté dans le flux d’air comprimé (31) via le mélangeur (601) pour former le flux (34). Le flux (34) est réchauffé dans le moyen de stockage et de récupération de la chaleur moyenne pression (201) qui libère la chaleur stockée durant la phase de compression (1) jusqu’à ce que le flux (35) atteigne une température de 255°C. Ce flux d’air chaud et comprimé (35) est détendu dans la turbine moyenne pression (701 ) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (36) une pression de 5 bar et une température de 70°C. Un flux d’eau condensée (37) provenant du moyen de stockage du liquide (500) à une pression de 6 bar (0.6 MPa) et une température de 50°C est réchauffé dans l’échangeur de chaleur (800) jusqu’à atteindre une température de 75°C au flux (38) avant d’être réinjecté dans le flux d’air comprimé (36) via le mélangeur (602) pour former le flux (39). Le flux (39) est réchauffé dans le moyen de stockage et de récupération de la chaleur basse pression (200) qui libère la chaleur stockée durant la phase de compression (1) jusqu’à ce que le flux (40) atteigne une température de 245°C. Ce flux d’air chaud et comprimé (40) est détendu dans la turbine basse pression (702) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (41 ) une pression de 1 ,02 bar (0.1 MPa) et une température de 80°C. Ce flux (41) est envoyé en série dans les échangeurs de chaleur (800, 801 , 802) pour réchauffer les flux d’eau condensée réinjectés à chaque étage de détente. When it is desired to produce electricity, a stream of condensed water (27) coming from the liquid storage means (502) at a pressure of 117 bar (11.7 MPa) and a temperature of 30° C. is heated in the heat exchanger (802) until a temperature of 75°C is reached at the flow (28) before being reinjected into the compressed air flow (26) leaving the compressed air storage means (1000) via the mixer (600) to form the stream (29). The stream (29) is heated in the high pressure heat storage and recovery means (202) which releases the heat stored during the compression phase (1) until the stream (30) reaches a temperature of 240°C. This flow of hot and compressed air (30) is expanded in the high pressure turbine (700) producing electricity via an alternator, until it reaches at the outlet (31) a pressure of 28 bar (2.8 MPa) and a temperature of 85°C. A flow of condensed water (32) coming from the liquid storage means (501) at a pressure of 28 bar (2.8 MPa) and a temperature of 50° C. is heated in the heat exchanger (801) until reach a temperature of 77°C in the stream (33) before being reinjected into the compressed air stream (31) via the mixer (601) to form the stream (34). The stream (34) is heated in the medium pressure heat storage and recovery means (201) which releases the heat stored during the compression phase (1) until the stream (35) reaches a temperature of 255°C. This flow of hot and compressed air (35) is expanded in the medium pressure turbine (701) producing electricity via an alternator, up to reach at outlet (36) a pressure of 5 bar and a temperature of 70°C. A stream of condensed water (37) coming from the liquid storage means (500) at a pressure of 6 bar (0.6 MPa) and a temperature of 50°C is heated in the heat exchanger (800) until reach a temperature of 75°C in the stream (38) before being reinjected into the compressed air stream (36) via the mixer (602) to form the stream (39). The stream (39) is reheated in the low pressure heat storage and recovery means (200) which releases the heat stored during the compression phase (1) until the stream (40) reaches a temperature of 245°C. This flow of hot, compressed air (40) is expanded in the low-pressure turbine (702) producing electricity via an alternator, until it reaches a pressure of 1.02 bar (0.1 MPa) at the outlet (41). and a temperature of 80°C. This stream (41) is sent in series to the heat exchangers (800, 801, 802) to heat the condensed water streams reinjected into each expansion stage.
Le rendement du procédé de stockage d’énergie est de 70,4% pour une puissance consommée de 100 MW aux compresseurs. Le débit total d’eau condensée aux trois étages de compression est de 7,5 t/h. La puissance de stockage thermique est de 92,5 MWth et la puissance de refroidissement nécessaire est de 14,9 MWth. The efficiency of the energy storage process is 70.4% for a power consumption of 100 MW at the compressors. The total flow of condensed water at the three compression stages is 7.5 t/h. The thermal storage power is 92.5 MWth and the cooling power required is 14.9 MWth.
La réinjection des eaux de condensation permet donc d’améliorer le rendement du procédé d’environ 1% par rapport à l’exemple 1 non conforme à l’invention et de réduire la puissance nécessaire au refroidissement d’environ 27%. The reinjection of condensation water therefore makes it possible to improve the yield of the process by approximately 1% compared to Example 1, which is not in accordance with the invention, and to reduce the power required for cooling by approximately 27%.
Exemple n°3 selon l’invention Example No. 3 according to the invention
Cet exemple met en oeuvre le système et le procédé selon le mode de réalisation de l’invention illustré en figure 7. This example implements the system and the method according to the embodiment of the invention illustrated in Figure 7.
Pendant la phase de compression (1 ), un flux d’air extérieur (10), à une pression de 1 ,02 bar (0.1 MPa) et une température de 27°C et possédant une humidité de 14,6 g eau / kg air, est comprimé par un compresseur basse pression (100) d’où il sort (11 ) à une température de 255°C et une pression de 6 bar (0.6 MPa). Ce flux (11) est envoyé vers moyen de stockage et de récupération de la chaleur basse pression (200) qui refroidit l’air jusqu’à une température de 80°C (12) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (12) est refroidi une nouvelle fois par le moyen de refroidissement (300) jusqu’à atteindre une température de 50°C en sortie (13). Le flux (13) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant les phases de refroidissement en (200) et/ou (300). Cette eau condensée (14) est séparée du flux d’air (15) dans un séparateur gaz- liquide (400), opérant à la pression du flux (13), puis envoyée vers un moyen de stockage de liquide (500) sous une pression maintenue de 6 bar (0.6 MPa). Le flux (15), de nouveau totalement gazeux, est comprimé par un compresseur moyenne pression (101) d’où il ressort (16) à une température de 275°C et une pression de 28 bar (2.8 MPa). Le flux (16) est envoyé vers un moyen de stockage et de récupération de la chaleur moyenne pression (201 ) qui refroidit l’air jusqu’à une température de 80°C (17) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (17) est refroidi une nouvelle fois par le moyen de refroidissement (301 ) jusqu’à atteindre une température de 50°C en sortie (18). Le flux (18) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant les phases de refroidissement en (201) et/ou (301). Cette eau condensée (19) est séparée du flux d’air (20) dans un séparateur gaz-liquide (401), opérant à la pression du flux (18), puis envoyée vers un moyen de stockage du liquide (501 ) sous une pression maintenue de 28 bar (2.8 MPa). Le flux (20), de nouveau totalement gazeux, est comprimé par un compresseur haute pression (102) d’où il ressort (21) à une température de 250°C et une pression de 117 bar (11.7 MPa). Le flux (21) est envoyé vers un moyen de stockage et de récupération de la chaleur haute pression (202) qui refroidit l’air jusqu’à une température de 40°C (22) et stocke cette énergie thermique jusqu’à la phase de détente (2). Le flux (22) est refroidi une nouvelle fois par le moyen de refroidissement (302) jusqu’à atteindre une température de 30°C en sortie (23), 30°C étant la température de stockage de l’air. Le flux (23) est alors composé d’air et d’eau, issue de l’humidité de l’air, condensée durant les phases de refroidissement en (202) et/ou (302). Cette eau condensée (24) est séparée du flux d’air (25) dans un séparateur gaz-liquide (402), opérant à la pression du flux (23), puis envoyée vers un moyen de stockage du liquide (502) sous une pression maintenue de 117 bar (11 .7 MPa). During the compression phase (1), an external air flow (10), at a pressure of 1.02 bar (0.1 MPa) and a temperature of 27°C and having a humidity of 14.6 g water / kg air, is compressed by a low pressure compressor (100) from which it leaves (11) at a temperature of 255° C. and a pressure of 6 bar (0.6 MPa). This flow (11) is sent to low pressure heat storage and recovery means (200) which cools the air to a temperature of 80°C (12) and stores this thermal energy until the relaxation (2). The stream (12) is cooled again by the cooling means (300) until it reaches a temperature of 50° C. at the outlet (13). The flow (13) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (200) and/or (300). This condensed water (14) is separated from the air stream (15) in a gas-liquid separator (400), operating at the pressure of the stream (13), then sent to a storage means for liquid (500) under a maintained pressure of 6 bar (0.6 MPa). The flow (15), again completely gaseous, is compressed by a medium pressure compressor (101) from which it emerges (16) at a temperature of 275° C. and a pressure of 28 bar (2.8 MPa). The flow (16) is sent to a medium pressure heat storage and recovery means (201) which cools the air to a temperature of 80° C. (17) and stores this thermal energy until the phase relaxation (2). The stream (17) is cooled again by the cooling means (301) until it reaches a temperature of 50° C. at the outlet (18). The flow (18) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (201) and/or (301). This condensed water (19) is separated from the air stream (20) in a gas-liquid separator (401), operating at the pressure of the stream (18), then sent to a liquid storage means (501) under a maintained pressure of 28 bar (2.8 MPa). The flow (20), again completely gaseous, is compressed by a high pressure compressor (102) from which it emerges (21) at a temperature of 250° C. and a pressure of 117 bar (11.7 MPa). The flow (21) is sent to a high pressure heat storage and recovery means (202) which cools the air to a temperature of 40°C (22) and stores this thermal energy until the phase relaxation (2). The stream (22) is cooled again by the cooling means (302) until it reaches a temperature of 30° C. at the outlet (23), 30° C. being the air storage temperature. The flow (23) is then composed of air and water, resulting from the humidity of the air, condensed during the cooling phases in (202) and/or (302). This condensed water (24) is separated from the air stream (25) in a gas-liquid separator (402), operating at the pressure of the stream (23), then sent to a liquid storage means (502) under a maintained pressure of 117 bar (11.7 MPa).
Le flux d’air comprimé à une pression de 117 bar (11.7 MPa) et une température de 30°C (25) est alors envoyé vers le moyen de stockage d’air comprimé (1000) en attendant la phase de récupération d’énergie (2). The compressed air flow at a pressure of 117 bar (11.7 MPa) and a temperature of 30°C (25) is then sent to the compressed air storage means (1000) while waiting for the energy recovery phase (2).
Lorsque l’on veut produire de l’électricité, un flux d’eau condensée (27) provenant du stockage (502) à une pression de 117 bar (11.7 MPa) et une température de 30°C est réchauffé dans l’échangeur de chaleur (802) jusqu’à atteindre une température de 77°C au flux (28) avant d’être réinjecté dans le flux d’air comprimé (26) sortant du moyen de stockage d’air comprimé (1000) via le mélangeur (600) pour former le flux (29). Le flux (29) est réchauffé dans le moyen de stockage et de récupération de la chaleur haute pression (202) qui libère la chaleur stockée durant la phase de compression (1) jusqu’à ce que le flux (30) atteigne une température de 240°C. Ce flux d’air chaud et comprimé (30) est détendu dans la turbine haute pression (700) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (31) une pression de 28 bar (2.8 MPa) et une température de 85°C. Un flux d’eau condensée (32) provenant du moyen de stockage du liquide (501 ) à une pression de 28 bar (2.8 MPa) et une température de 50°C est réchauffé dans l’échangeur de chaleur (801) jusqu’à atteindre une température de 77°C au flux (33) avant d’être réinjecté dans le flux d’air comprimé (31) via le mélangeur (601) pour former le flux (34). Le flux (34) est réchauffé dans le moyen de stockage et de récupération de la chaleur moyenne pression (201 ) qui libère la chaleur stockée durant la phase de compression (1) jusqu’à ce que le flux (35) atteigne une température de 255°C. Ce flux d’air chaud et comprimé (35) est détendu dans la turbine moyenne pression (701) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (36) une pression de 5 bar (0.5 MPa) et une température de 70°C. Un flux d’eau condensée (37) provenant du moyen de stockage du liquide (500) à une pression de 6 bar (0.6 MPa) et une température de 50°C est réchauffé dans l’échangeur de chaleur (800) jusqu’à atteindre une température de 77°C au flux (38) avant d’être réinjecté dans le flux d’air comprimé (36) via le mélangeur (602) pour former le flux (39). Le flux (39) est réchauffé dans le moyen de stockage et de récupération de la chaleur basse pression (200) qui libère la chaleur stockée durant la phase de compression (1) jusqu’à ce que le flux (40) atteigne une température de 245°C. Ce flux d’air chaud et comprimé (40) est détendu dans la turbine basse pression (702) produisant de l’électricité via un alternateur, jusqu’à atteindre en sortie (41) une pression de 1 ,02 bar (0.1 MPa) et une température de 80°C. Ce flux (41) est divisé en trois flux dans le séparateur/diviseur de flux (900). Ces flux peuvent être établis de façon proportionnelle aux flux de liquide (27, 32, 37) pour les réchauffer en parallèle dans les échangeurs de chaleur (800, 801 , 802) avant leur réinjection à chaque étage de détente.When it is desired to produce electricity, a stream of condensed water (27) coming from the storage (502) at a pressure of 117 bar (11.7 MPa) and a temperature of 30° C. is heated in the heat exchanger. heat (802) until a temperature of 77°C is reached in the stream (28) before being reinjected into the compressed air stream (26) leaving the compressed air storage means (1000) via the mixer ( 600) to form the stream (29). The stream (29) is heated in the high pressure heat storage and recovery means (202) which releases the heat stored during the compression phase (1) until the stream (30) reaches a temperature of 240°C. This flow of hot and compressed air (30) is expanded in the high pressure turbine (700) producing electricity via an alternator, until it reaches at the outlet (31) a pressure of 28 bar (2.8 MPa) and a temperature of 85°C. A flow of condensed water (32) from the liquid storage means (501) at a pressure of 28 bar (2.8 MPa) and a temperature of 50°C is heated in the heat exchanger (801) until a temperature of 77°C is reached in the flow (33) before being reinjected into the compressed air flow ( 31) via mixer (601) to form stream (34). The stream (34) is heated in the medium pressure heat storage and recovery means (201) which releases the heat stored during the compression phase (1) until the stream (35) reaches a temperature of 255°C. This flow of hot and compressed air (35) is expanded in the medium pressure turbine (701) producing electricity via an alternator, until it reaches at the outlet (36) a pressure of 5 bar (0.5 MPa) and a temperature of 70°C. A stream of condensed water (37) coming from the liquid storage means (500) at a pressure of 6 bar (0.6 MPa) and a temperature of 50°C is heated in the heat exchanger (800) until reach a temperature of 77°C at the stream (38) before being reinjected into the compressed air stream (36) via the mixer (602) to form the stream (39). The stream (39) is reheated in the low pressure heat storage and recovery means (200) which releases the heat stored during the compression phase (1) until the stream (40) reaches a temperature of 245°C. This flow of hot, compressed air (40) is expanded in the low pressure turbine (702) producing electricity via an alternator, until it reaches a pressure of 1.02 bar (0.1 MPa) at the outlet (41). and a temperature of 80°C. This stream (41) is divided into three streams in the stream splitter/divider (900). These flows can be established in proportion to the liquid flows (27, 32, 37) to heat them in parallel in the heat exchangers (800, 801, 802) before their reinjection at each expansion stage.
Le rendement du procédé de stockage d’énergie est de 70,4% pour une puissance consommée de 100 MW en phase de compression. Le débit total d’eau condensée aux trois étages de compression est de 7,5 t/h. La puissance de stockage thermique est de 92,5 MWth et la puissance de refroidissement nécessaire est de 14,9 MWth. The efficiency of the energy storage process is 70.4% for a power consumption of 100 MW in the compression phase. The total flow of condensed water at the three compression stages is 7.5 t/h. The thermal storage power is 92.5 MWth and the cooling power required is 14.9 MWth.
La réinjection des eaux de condensation permet donc d’améliorer le rendement du procédé d’environ 1% par rapport à l’exemple 1 non conforme à l’invention et de réduire la puissance nécessaire au refroidissement d’environ 27%. The reinjection of condensation water therefore makes it possible to improve the yield of the process by approximately 1% compared to Example 1, which is not in accordance with the invention, and to reduce the power required for cooling by approximately 27%.
Ainsi, les exemples 2 et 3 montrent que le système et le procédé selon l’invention permettent d’augmenter les performances du système et du procédé, tout en limitant la puissance nécessaire au refroidissement. Thus, examples 2 and 3 show that the system and the method according to the invention make it possible to increase the performance of the system and of the method, while limiting the power required for cooling.

Claims

Revendications Claims
1 . Système de stockage et de récupération d’énergie par gaz comprimé comprenant :1 . Compressed gas energy storage and recovery system comprising:
- Une ligne de compression de gaz (1 ) comprenant au moins un étage de compression (3), chaque étage de compression comprenant un moyen de compression (100, 101 , 102) et un moyen de stockage et de récupération de la chaleur (200, 201 , 202) agencé en aval dudit moyen de compression (100, 101 , 102), dans le sens de circulation dudit gaz, - A gas compression line (1) comprising at least one compression stage (3), each compression stage comprising compression means (100, 101, 102) and heat storage and recovery means (200 , 201, 202) arranged downstream of said compression means (100, 101, 102), in the direction of circulation of said gas,
- Au moins un moyen de stockage de gaz comprimé (1000) agencé en sortie de ladite ligne de compression de gaz (1) pour stocker ledit gaz comprimé, - At least one compressed gas storage means (1000) arranged at the outlet of said gas compression line (1) to store said compressed gas,
- Une ligne de détente de gaz (2) pour détendre ledit gaz comprimé stocké dans ledit moyen de stockage de gaz comprimé (1000), ladite ligne de détente de gaz (2) comprenant au moins un étage de détente (4), chaque étage de détente (4) comportant un moyen de détente (700, 701 , 702) et des conduites configurées pour faire circuler ledit gaz comprimé dans ledit moyen de stockage et de récupération de la chaleur (200, 201 , 202) dudit au moins un étage de compression (3) de manière à réchauffer ledit gaz comprimé, caractérisé en ce que ledit système comprend au moins un moyen d’échange de la chaleur (800, 801 , 802) entre ledit gaz détendu en sortie de ladite ligne de détente (2) et un liquide, et en ce qu’au moins un étage de détente (4) comporte un moyen d’introduction (600, 601 , 602) dudit liquide réchauffé, lesdits moyens d’introduction dudit liquide (600, 601 , 602) étant prévu en amont, dans le sens de circulation dudit gaz, dudit moyen de stockage et de récupération de la chaleur (200, 201 , 202). - A gas expansion line (2) for expanding said compressed gas stored in said compressed gas storage means (1000), said gas expansion line (2) comprising at least one expansion stage (4), each stage expansion (4) comprising expansion means (700, 701, 702) and pipes configured to circulate said compressed gas in said heat storage and recovery means (200, 201, 202) of said at least one stage compression (3) so as to heat said compressed gas, characterized in that said system comprises at least one heat exchange means (800, 801, 802) between said expanded gas at the outlet of said expansion line (2 ) and a liquid, and in that at least one expansion stage (4) comprises means for introducing (600, 601, 602) said heated liquid, said means for introducing said liquid (600, 601, 602) being provided upstream, in the direction of circulation of said gas, of said heat storage and recovery means (200, 201, 202).
2. Système selon la revendication 1 , dans lequel ladite ligne de compression (1) comprend autant d’étages de compression (3) successifs que la ligne de détente (2) comprend d’étages de détente (4) successifs, chaque moyen de stockage et de récupération de la chaleur (200, 201 , 202) d’un étage de compression (2) étant utilisé dans l’étage de détente (4) correspondant. 2. System according to claim 1, wherein said compression line (1) comprises as many successive compression stages (3) as the expansion line (2) comprises successive expansion stages (4), each means of storage and recovery of heat (200, 201, 202) from a compression stage (2) being used in the corresponding expansion stage (4).
3. Système selon la revendication 2, dans lequel ladite ligne de compression (1 ) et ladite ligne de détente (2) comportent respectivement trois étages successifs. 3. System according to claim 2, wherein said compression line (1) and said expansion line (2) respectively comprise three successive stages.
4. Système selon l’une des revendications précédentes, dans lequel ledit moyen de stockage et de récupération de la chaleur (200, 201 , 202) comprend des particules de stockage de la chaleur. 4. System according to one of the preceding claims, wherein said heat storage and recovery means (200, 201, 202) comprises heat storage particles.
5. Système selon l’une des revendications précédentes, dans lequel au moins un étage de compression (3) comprend un moyen de séparation gaz/liquide (400, 401 , 402), et ledit système comporte au moins un moyen de stockage dudit liquide séparé (500, 501 , 502), ledit liquide séparé et stocké étant ledit liquide réchauffé et introduit dans ladite ligne de détente (2). Système selon l’une des revendications précédentes, dans lequel ledit système comprend une pluralité de moyens d’échange de chaleur (800, 801 , 802) entre ledit gaz détendu en sortie de ladite ligne de détente et ledit liquide. Système selon l’une des revendications précédentes, dans lequel lesdits moyens d’échange de chaleur (800, 801 , 802) sont agencés en série ou en parallèle pour la circulation dudit gaz en sortie de ladite ligne de détente. Système selon l’une des revendications précédentes, dans lequel au moins un étage de compression (2) comprend un moyen de refroidissement (300, 301 , 302) en aval du moyen de stockage et de récupération de la chaleur (200, 201 , 202), dans le sens de circulation dudit gaz, de préférence, ledit moyen de refroidissement (300, 301 , 302) comprend un aéro-réfrigérant. rocédé de stockage et de récupération d’énergie par gaz comprimé comprenant au moins les étapes suivantes : 5. System according to one of the preceding claims, wherein at least one compression stage (3) comprises gas/liquid separation means (400, 401, 402), and said system comprises at least one means for storing said liquid separated (500, 501, 502), said separated and stored liquid being said heated liquid and introduced into said expansion line (2). System according to one of the preceding claims, in which said system comprises a plurality of heat exchange means (800, 801, 802) between said gas expanded at the outlet of said expansion line and said liquid. System according to one of the preceding claims, in which the said heat exchange means (800, 801, 802) are arranged in series or in parallel for the circulation of the said gas at the outlet of the said expansion line. System according to one of the preceding claims, in which at least one compression stage (2) comprises cooling means (300, 301, 302) downstream of the heat storage and recovery means (200, 201, 202 ), in the direction of circulation of said gas, preferably, said cooling means (300, 301, 302) comprises an air cooler. Compressed gas energy storage and recovery process comprising at least the following steps:
- En phase de stockage d’énergie : a) on comprime successivement au moins une fois un gaz dans une ligne de compression (1) comprenant au moins un étage de compression (3), chaque étage de compression (3) comprenant au moins un moyen de compression (100, 101 , 102) ; b) après chaque étape de compression, on récupère la chaleur dudit gaz comprimé dans au moins un moyen de stockage et de récupération de la chaleur (20, 201 , 202) c) on stocke ledit gaz comprimé refroidi dans au moins un moyen de stockage de gaz comprimé (1000) ; - In the energy storage phase: a) a gas is successively compressed at least once in a compression line (1) comprising at least one compression stage (3), each compression stage (3) comprising at least one compression means (100, 101, 102); b) after each compression step, the heat of said compressed gas is recovered in at least one heat storage and recovery means (20, 201, 202) c) said cooled compressed gas is stored in at least one storage means compressed gas (1000);
- En phase de récupération d’énergie : d) on fait circuler le gaz comprimé sortant dudit au moins un moyen de stockage de gaz comprimé (1000) dans une ligne de détente (2) comprenant au moins un étage de détente (4), et dans chaque étage de détente (4), on réchauffe le gaz comprimé en le faisant circuler dans un desdits moyens de stockage et de récupération de la chaleur (200, 201 , 202) grâce à la chaleur stockée lors de l’étape de compression, puis on détend le gaz comprimé réchauffé dans un moyen de détente (700, 701 , 702), caractérisé en ce qu’on échange de la chaleur entre ledit gaz détendu en sortie de ladite ligne de détente et un liquide, et on introduit ledit liquide réchauffé dans ledit gaz comprimé avant au moins une étape de réchauffage dudit gaz précédant une étape de détente. - In the energy recovery phase: d) circulating the compressed gas leaving said at least one compressed gas storage means (1000) in an expansion line (2) comprising at least one expansion stage (4), and in each expansion stage (4), the compressed gas is heated by circulating it in one of said heat storage and recovery means (200, 201, 202) thanks to the heat stored during the compression step , then the heated compressed gas is expanded in expansion means (700, 701, 702), characterized in that heat is exchanged between said expanded gas at the outlet of said expansion line and a liquid, and said liquid heated in said compressed gas before at least one step of heating said gas preceding an expansion step.
10. Procédé selon la revendication 9, dans lequel on réalise autant d’étapes de compression successives que d’étapes de détente successives, et on utilise le moyen de stockage et de récupération de la chaleur (200, 201 , 202) de chacune des étapes b) pour réchauffer le gaz comprimé de l’étape de détente correspondante.10. The method of claim 9, wherein as many successive compression steps are carried out as successive expansion steps, and the heat storage and recovery means (200, 201, 202) of each of the steps b) to heat the compressed gas of the corresponding expansion step.
11. Procédé selon l’une des revendications 9 ou 10, dans lequel après chaque étape de récupération de la chaleur, on refroidit le gaz comprimé en sortie du moyen de stockage et de récupération de la chaleur (200, 201 , 202) dans un moyen de refroidissement (300, 301 , 302) avant que le gaz ne soit envoyé dans l’étape de compression suivante ou dans le moyen de stockage de gaz comprimé. 11. Method according to one of claims 9 or 10, wherein after each heat recovery step, the compressed gas is cooled at the outlet of the heat storage and recovery means (200, 201, 202) in a cooling means (300, 301, 302) before the gas is sent to the next compression step or to the compressed gas storage means.
12. Procédé selon l’une des revendications 9 à 11 , dans lequel on stocke la chaleur dans des particules de stockage de la chaleur. 12. Method according to one of claims 9 to 11, in which the heat is stored in heat storage particles.
13. Procédé selon l’une des revendications 9 à 12, dans lequel après au moins une étape de compression, on sépare ledit gaz et un liquide présent dans ledit gaz, et on stocke ledit gaz séparé, ledit liquide séparé et stocké étant ledit liquide réchauffé et introduit dans ladite au moins une étape de détente. 13. Method according to one of claims 9 to 12, wherein after at least one compression step, separating said gas and a liquid present in said gas, and storing said separated gas, said separated and stored liquid being said liquid heated and introduced into said at least one expansion step.
14. Procédé selon l’une des revendications 9 à 13, dans lequel on met en oeuvre une pluralité d’échanges de chaleur entre ledit gaz détendu en sortie de ladite ligne de détente et ledit liquide. 14. Method according to one of claims 9 to 13, in which a plurality of heat exchanges are implemented between said gas expanded at the outlet of said expansion line and said liquid.
15. Procédé selon la revendication 14, dans lequel on met en oeuvre ladite pluralité d’échanges de chaleur en série ou en parallèle pour la circulation dudit gaz détendu en sortie de ladite ligne de détente. 15. Method according to claim 14, in which said plurality of heat exchanges are implemented in series or in parallel for the circulation of said expanded gas at the outlet of said expansion line.
PCT/EP2021/082601 2020-12-03 2021-11-23 System and method for storing and recovering energy using compressed gas with reheating of liquid WO2022117397A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2012638A FR3117166B1 (en) 2020-12-03 2020-12-03 Compressed gas energy storage and recovery system and method with liquid heating
FRFR2012638 2020-12-03

Publications (1)

Publication Number Publication Date
WO2022117397A1 true WO2022117397A1 (en) 2022-06-09

Family

ID=74347347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/082601 WO2022117397A1 (en) 2020-12-03 2021-11-23 System and method for storing and recovering energy using compressed gas with reheating of liquid

Country Status (2)

Country Link
FR (1) FR3117166B1 (en)
WO (1) WO2022117397A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066909A (en) * 1991-03-01 1994-01-14 Hitachi Kiden Kogyo Ltd Contact confirmation circuit of current collector in charging operation to battery in ground mobile
US20120085087A1 (en) * 2009-06-18 2012-04-12 Gdf Suez Regulating the Temperature of a Heat Regenerator Used in an Installation for Storing Energy by Adiabatic Compression of Air
WO2016012764A1 (en) 2014-07-21 2016-01-28 Demetair Systems Ltd A compressed air energy storage and recovery system
WO2016079485A1 (en) 2014-11-17 2016-05-26 Demetair Systems Ltd A waste heat recovery system combined with compressed air energy storage
US10317008B2 (en) * 2016-07-15 2019-06-11 IFP Energies Nouvelles Container for a system for storing and restoring heat, comprising at least two modules formed from concrete
FR3074844A1 (en) 2017-12-11 2019-06-14 IFP Energies Nouvelles IMPROVED METHOD OF STORAGE AND ENERGY GENERATION WITH OPTIMIZED WATER MANAGEMENT

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066909A (en) * 1991-03-01 1994-01-14 Hitachi Kiden Kogyo Ltd Contact confirmation circuit of current collector in charging operation to battery in ground mobile
US20120085087A1 (en) * 2009-06-18 2012-04-12 Gdf Suez Regulating the Temperature of a Heat Regenerator Used in an Installation for Storing Energy by Adiabatic Compression of Air
WO2016012764A1 (en) 2014-07-21 2016-01-28 Demetair Systems Ltd A compressed air energy storage and recovery system
WO2016079485A1 (en) 2014-11-17 2016-05-26 Demetair Systems Ltd A waste heat recovery system combined with compressed air energy storage
US10317008B2 (en) * 2016-07-15 2019-06-11 IFP Energies Nouvelles Container for a system for storing and restoring heat, comprising at least two modules formed from concrete
FR3074844A1 (en) 2017-12-11 2019-06-14 IFP Energies Nouvelles IMPROVED METHOD OF STORAGE AND ENERGY GENERATION WITH OPTIMIZED WATER MANAGEMENT
WO2019115121A1 (en) 2017-12-11 2019-06-20 IFP Energies Nouvelles Improved method for storing and producing energy with optimised water management

Also Published As

Publication number Publication date
FR3117166B1 (en) 2022-11-11
FR3117166A1 (en) 2022-06-10

Similar Documents

Publication Publication Date Title
FR3034813B1 (en) SYSTEM AND METHOD FOR STORING AND RECOVERING COMPRESSED AIR ENERGY WITH CONSTANT VOLUME HEATING
EP3052773B1 (en) Thermodynamic system for storing/producing electrical energy
EP2147193A2 (en) Installation and methods for storing and recovering electric energy
FR3074846A1 (en) METHOD FOR STORING AND GENERATING COMPRESSED AIR ENERGY WITH ADDITIONAL ENERGY RECOVERY
FR3002311A1 (en) DEVICE FOR LIQUEFACTING GAS, IN PARTICULAR NATURAL GAS
US11203973B2 (en) Method for storing and producing energy with optimized water management
WO2022117397A1 (en) System and method for storing and recovering energy using compressed gas with reheating of liquid
WO2014020277A1 (en) Device for storing and restoring electrical energy and method for storing and restoring electrical energy using such a device
WO2022117398A1 (en) System and method for storing and recovering energy using compressed gas with recovery of liquid
WO2022117407A1 (en) System and method for storing and recovering energy via compressed gas with a rankine cycle
FR3133431A1 (en) HEAT PUMP WITH TWO THERMAL ENERGY STORAGE AND RELEASE SYSTEMS
JP6946012B2 (en) CO2 liquefaction system and CO2 liquefaction method
FR3124550A1 (en) energy storage and recovery process with indirect compression heat storage
WO2022117406A1 (en) Method for storage and recovery of energy with thermal optimisation on expansion
US20210164496A1 (en) Improved system for storing and harvesting energy
FR3117163A1 (en) method for storing and recovering energy comprising a gas turbine for reheating compressed gas during expansion
EP3390938B1 (en) Hybrid method for liquefying a fuel gas and facility for implementing same
WO2023170300A1 (en) Heat pump having two thermal-energy storage and release systems
FR3029612A1 (en) GAS LIQUEFACTION SYSTEM WITH ABSORPTION MACHINE AND STIRLING HEAT PUMP
WO2020260155A1 (en) System and method for counter-current heat exchange between a fluid and heat storage particles
FR2944095A1 (en) Liquefied natural gas producing method for engine of jet aircraft, involves driving compressor by driving units, and transferring part of heat of fumes from gas turbine towards refrigerating machine
FR2997445A1 (en) METHOD AND SYSTEM FOR CONVERTING THERMAL ENERGY INTO MECHANICAL ENERGY, IN PARTICULAR FOR CONVERTING THE THERMAL ENERGY OF THE SEAS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21811088

Country of ref document: EP

Kind code of ref document: A1