WO2022116926A1 - 一种基于后屈曲现象的自供能压力传感器 - Google Patents

一种基于后屈曲现象的自供能压力传感器 Download PDF

Info

Publication number
WO2022116926A1
WO2022116926A1 PCT/CN2021/133829 CN2021133829W WO2022116926A1 WO 2022116926 A1 WO2022116926 A1 WO 2022116926A1 CN 2021133829 W CN2021133829 W CN 2021133829W WO 2022116926 A1 WO2022116926 A1 WO 2022116926A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
flexible piezoelectric
base
post
pressure sensor
Prior art date
Application number
PCT/CN2021/133829
Other languages
English (en)
French (fr)
Inventor
焦鹏程
欧阳璠
杨旸
李文焘
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2022116926A1 publication Critical patent/WO2022116926A1/zh
Priority to US18/327,910 priority Critical patent/US20230314251A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/008Transmitting or indicating the displacement of flexible diaphragms using piezoelectric devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the invention belongs to the field of pressure sensors, in particular to a self-powered pressure sensor based on a post-buckling phenomenon.
  • sensors play an increasingly important role in daily life as a source of information.
  • the sensor can transform the sensed information into electrical signals or other required forms of information output according to certain rules, so as to meet the requirements of information transmission, processing, storage, display, recording and control.
  • piezoelectric sensors piezoresistive sensors
  • capacitive sensors there are mainly three types of sensors currently used: piezoelectric sensors, piezoresistive sensors and capacitive sensors.
  • Piezoelectric sensor is a sensor made by using the piezoelectric effect produced by some dielectrics under force. Compared with piezoresistive and capacitive sensors, piezoelectric sensors have the advantages of wide frequency band, high sensitivity, high signal-to-noise ratio, simple structure, reliable operation and light weight.
  • the present invention provides a self-powered pressure sensor based on the post-buckling phenomenon, which can generate electrical energy through high-frequency pressure deformation.
  • self-powered pressure sensors can also achieve their own energy storage requirements.
  • piezoelectric sensors they have the advantages of flexibility, low power consumption, and no need to add power supplies. They can be used in the field of intelligent robots and bioengineering. Play an important role, for example, it can be used as a self-energy flexible patch for smart wearable devices.
  • the present invention provides a technical solution for a self-powered pressure sensor based on a post-buckling phenomenon.
  • the self-powered pressure sensor based on post-buckling phenomenon is characterized by comprising a carrier module, an electric energy storage module, a sensing information control module and a pressure sensing module mounted on the carrier module, the pressure sensing module comprising a base, a cover A plate and a flexible piezoelectric sheet, the cover plate is inserted into the base, a first elastic element is arranged between the cover plate and the base, and there is an installation cavity between the two, and the flexible piezoelectric sheet is arranged in the installation cavity, which is The periphery is matched with the installation cavity, and a second elastic element is arranged between the flexible piezoelectric sheet and the cover plate.
  • the cover plate When the cover plate is pressed down, the cover plate can squeeze the flexible piezoelectric sheet to deform and dent downward. Buckling phenomenon, when the flexible piezoelectric sheet is compressed, it can generate electric energy and transmit the electric energy to the electric energy storage module and the sensing information control module.
  • the electric energy storage module is used to store the electric energy
  • the sensing information control module is used to analyze and process the electrical signal.
  • the self-powered pressure sensor based on post-buckling phenomenon is characterized in that the base includes a lower base and an upper base screwed and fixed thereto, and the peripheral edges of the flexible piezoelectric sheet are clamped to the lower base. and the upper part of the base.
  • the self-powered pressure sensor based on post-buckling phenomenon is characterized in that one of the upper part of the base and the inner wall of the cover plate is surrounded by a plurality of sliding grooves, and the other is surrounded by sliding grooves for sliding cooperation with the sliding grooves. piece.
  • the self-powered pressure sensor based on post-buckling phenomenon is characterized in that the first elastic element and the second elastic element are both springs, the first elastic element is connected between the slider and the chute, and the second elastic element is The element is connected between the middle part of the flexible piezoelectric sheet and the cover plate.
  • the self-powered pressure sensor based on post-buckling phenomenon is characterized in that a boss is arranged on the lower part of the base, and when the flexible piezoelectric sheet is depressed downward, the boss can press against the depression amplitude of the flexible piezoelectric sheet Constrain.
  • the self-powered pressure sensor based on post-buckling phenomenon is characterized in that when the flexible piezoelectric sheet is in a normal state, the middle of the flexible piezoelectric sheet protrudes upward, and when the flexible piezoelectric sheet undergoes a post-buckling phenomenon, the flexible piezoelectric sheet The middle of the sheet is recessed downward.
  • the self-powered pressure sensor based on the post-buckling phenomenon is characterized in that the base and the cover are connected to the electric energy storage module and the sensing information control module through wires.
  • the self-powered pressure sensor based on the post-buckling phenomenon is characterized in that the carrier module is covered with pressure sensing modules.
  • the self-powered pressure sensor based on the post-buckling phenomenon is characterized in that the carrier module is provided with a groove for installing the pressure sensing module.
  • the self-powered pressure sensor based on the post-buckling phenomenon is characterized in that the electric energy storage module and the sensing information control module are arranged on both sides of the carrier module.
  • the self-powered pressure sensor provided by the present invention is inspired by providing power through high-frequency pressure deformation. Compared with traditional piezoresistive sensors, piezoelectric sensors and capacitive sensors, it has low power consumption, flexibility, and no With the advantages of adding power and the like, the present invention has great application value in the fields of intelligent robots and bioengineering, such as self-energy flexible patches for smart wearable devices.
  • Fig. 1 is the structural representation of the present invention
  • FIG. 2 is a schematic diagram of the decomposition structure of the pressure sensing module in the present invention.
  • FIG. 3 is one of the schematic structural diagrams of the pressure sensing module in the present invention when it is in use
  • FIG. 4 is the second schematic diagram of the structure of the pressure sensing module of the present invention when it is in use
  • FIG. 5 is a third schematic structural diagram of the pressure sensing module in the present invention when it is in use;
  • FIG. 7 is the second schematic diagram of the use state of the present invention.
  • a self-powered pressure sensor based on post-buckling phenomenon includes a carrier module 2, an electric energy storage module 1, a sensing information control module 3, and a pressure sensing module 4 mounted on the carrier module 2.
  • the pressure sensing module 4 It includes a base, a cover plate 401 and a flexible piezoelectric sheet 410.
  • the cover plate 401 is inserted into the base, and a first elastic element 408 is arranged between the cover plate 401 and the base.
  • the piezoelectric sheet 410 is arranged in the installation cavity, and the periphery of the piezoelectric sheet 410 cooperates with the installation cavity.
  • a second elastic element 413 is arranged between the flexible piezoelectric sheet 410 and the cover plate 401.
  • the cover plate 401 When the cover plate 401 is pressed down, the cover plate 401 can be squeezed. Press the flexible piezoelectric sheet 410 to deform and cause a post-buckling phenomenon of downward depression. When the flexible piezoelectric sheet 410 is pressed, it can generate electrical energy and transmit the electrical energy to the electrical energy storage module 1 and the sensing information control module 3.
  • the electrical energy storage module 1 is used to store electric energy
  • the sensing information control module 3 is used to analyze and process the electrical signal.
  • the flexible piezoelectric sheet 410 is a piezoelectric polymer.
  • the base includes a base lower portion 404 and a base upper portion 403 screwed and fixed thereto, and the peripheral edges of the flexible piezoelectric sheet 410 are clamped between the base lower portion 404 and the base upper portion 403 .
  • the lower part 404 of the base is a cylindrical structure with a closed bottom, and the upper part 403 of the base is a corresponding tubular structure.
  • the inner wall of one of the base upper part 403 and the cover plate 401 is surrounded by a plurality of sliding grooves 407 , and the other is surrounded by sliding blocks 406 for slidingly matching with the sliding grooves 407 .
  • the sliders 406 are evenly distributed around the bottom of the cover plate 401
  • the sliding grooves 407 are evenly distributed around the inner wall of the upper part 403 of the base.
  • first elastic element 408 and the second elastic element 413 are both springs, the first elastic element 408 is connected between the slider 406 and the chute 407 , and the second elastic element 413 is connected to the middle of the flexible piezoelectric sheet 410 and the cover plate 401 .
  • the lower part 404 of the base is provided with a boss 412 protruding from the bottom wall surface of the lower part 404 of the base.
  • the boss 412 can press against the depression of the flexible piezoelectric sheet 410 Amplitude is constrained.
  • the middle of the Protruding upward when the flexible piezoelectric sheet 410 undergoes a post-buckling phenomenon, the middle portion of the flexible piezoelectric sheet 410 is concave downward.
  • the lower part 404 of the base and the cover plate 401 are connected to the electric energy storage module 1 and the sensing information control module 3 through wires.
  • the cover plate 401 is connected to the electric energy storage module 1 and the sensing information control module 3 through the first wire 402
  • the lower part 404 of the base is connected to the electric energy storage module 1 and the sensing information control module 3 through the second electric wire 405 .
  • the carrier module 2 is covered with pressure sensing modules 4 .
  • the carrier module 2 is provided with a groove 5 for installing the pressure sensing module 4 .
  • the electric energy storage module 1 and the sensing information control module 3 are arranged on both sides of the carrier module 2 .
  • the elastic element 408 bounces up again, and in this process drives the flexible piezoelectric sheet 410 to deform and recover, so that the reciprocation generates electricity due to the piezoelectric effect.
  • the diameter of the flexible piezoelectric sheet 410 that can undergo post-buckling is larger than the diameter of the base.
  • the middle part will bulge upward, and the upper part 403 of the base has The outer thread 409 and the lower part 404 of the base have an inner thread 411 for constraining the flexible piezoelectric sheet 410 and fixing it.
  • the convex part of the flexible piezoelectric sheet 410 contacts with the cover plate 401.
  • the cover plate 401 moves downward under pressure, the upward protrusion of the flexible piezoelectric sheet 410 becomes Downward recess, the recessed part of the boss 412 is in contact, the cover plate 401 and the boss 412 are equivalent to the positive and negative poles of the power supply, after the flexible piezoelectric sheet 410 contacts the boss 412, the electrical energy is transmitted to the boss 412, and through the second wire 405 transmits the electrical energy, and the electrical energy storage module 1 stores the generated electrical energy.
  • Fig. 3-5 Take Fig. 3-5 as an example to illustrate the three states of the self-powered pressure sensor.
  • the flexible piezoelectric sheet 410 is in contact with the cover plate 401 .
  • the second elastic element 413 between the flexible piezoelectric sheet 410 and the cover plate 401 is in a natural tension state and is not affected by the flexible piezoelectric sheet 410 pulling force.
  • the cover plate 401 is pressed down, the flexible piezoelectric sheet 410 changes from an upward protrusion to a downward depression, and the flexible piezoelectric sheet 410 and the boss 412 are in a state of just contacting.
  • FIG. 5 shows the contact state in which the flexible piezoelectric sheet 410 and the boss 412 finally form a stable state. At this time, there is always transmission of electric energy.
  • the cover plate 401 Since the cover plate 401 is bounced upward by the first elastic unit 408 during this process, the cover plate The higher the 401 moves upward, the greater the pulling force of the cover plate 401 on the second elastic element 413, and when it reaches a certain level, the second elastic element 413 pulls up the flexible piezoelectric sheet 410 and returns to the initial state.
  • the self-powered pressure sensor based on the post-buckling phenomenon proposed by the present invention can convert high-frequency pressure deformation into electrical energy, and transfer the electrical energy through the material with the post-buckling phenomenon, so as to realize the purpose of self-storage function.
  • the pressure sensor has the advantages of flexibility, low energy consumption, no need to add auxiliary power, etc., and can store and supply energy by itself.
  • the invention of this design can act independently and supply energy by itself, which greatly improves the applicability of the present invention and makes the present invention have great application value in the field of intelligent robots and biological engineering.
  • the present invention can also be applied to the pulse of the human body to detect the pulse of the human body.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measuring Fluid Pressure (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本发明属于压力传感器领域,具体涉及一种基于后屈曲现象的自供能压力传感器,包括载体模块、电能储存模块、感知信息控制模块及压力感知模块,压力感知模块包括基座、盖板和柔性压电片,盖板插配于基座上,盖板与基座之间配合设置第一弹性元件,两者之间还具有安装腔,柔性压电片设置于安装腔内,其四周与安装腔限位配合,柔性压电片与盖板之间配合设置第二弹性元件。本发明提供的自供能压力传感器,灵感来源于通过高频压力变形提供电源,相比传统压阻传感器、压电传感器和电容传感器,具有功耗低、柔性、不需要添加电源等优点,本发明在智能机器人领域和生物工程领域,如用于智能穿戴设备的自能量柔性贴片方面具有很大的应用价值。

Description

一种基于后屈曲现象的自供能压力传感器 技术领域
本发明属于压力传感器领域,具体涉及一种基于后屈曲现象的自供能压力传感器。
背景技术
随着人类智能化程度的提高,传感器作为提供信息的来源,在日常生活中扮演了越来越重要的作用。传感器可以将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。根据传感原理不同,目前应用的传感器主要有压电传感器、压阻传感器和电容传感器三类。压电传感器是利用某些电介质受力后产生的压电效应制成的传感器。相比压阻和电容两类传感器,压电传感器具有频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等优点。传统的压电传感器在很多重要领域中依旧发挥着重要作用,但是存在某些压电材料需要防潮措施,而且输出的直流响应差的缺陷,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。随着传感器在智能机器人以及生物工程方面得到了更广泛的应用,对传感器的要求也变得更加严格,因此设计符合时代需求的新型传感器是十分必要的。
近年来,随着电子设备的迅速发展,新型自供能传感器在可穿戴设备、健康监测以及智能机器人等重要领域的发展潜力得到了广泛的关注和研究。与现有技术相比,本发明提供了一种基于后屈曲现象的自供能压力传感器,其可以通过高频压力变形产生电能。除了传感外,自供能压力传感器还可实现自身储存能量供能的需求,与传统压电传感器相比,具有柔性、功耗低、无需添加电源等优点,可以在智能机器人领域以及生物工程领域发挥重要作用,比如可以作为自能量柔 性贴片用于智能穿戴设备。
发明内容
为了弥补现有技术的不足,本发明提供一种基于后屈曲现象的自供能压力传感器技术方案。
所述的一种基于后屈曲现象的自供能压力传感器,其特征在于包括载体模块、电能储存模块、感知信息控制模块及配合安装于载体模块上的压力感知模块,压力感知模块包括基座、盖板和柔性压电片,盖板插配于基座上,盖板与基座之间配合设置第一弹性元件,两者之间还具有安装腔,柔性压电片设置于安装腔内,其四周与安装腔限位配合,柔性压电片与盖板之间配合设置第二弹性元件,下压盖板时,盖板能够挤压柔性压电片使其产生变形并发生朝下凹陷的后屈曲现象,柔性压电片受压时能够产生电能并将电能传输给电能储存模块和感知信息控制模块,电能储存模块用以对电能进行储存,感知信息控制模块用以对电信号进行分析处理。
所述的一种基于后屈曲现象的自供能压力传感器,其特征在于所述基座包括基座下部和与之螺接固定的基座上部,柔性压电片的四周边缘夹紧于基座下部与基座上部之间。
所述的一种基于后屈曲现象的自供能压力传感器,其特征在于所述基座上部和盖板其中一者内壁环布若干滑槽,另一者环布用以与滑槽滑动配合的滑块。
所述的一种基于后屈曲现象的自供能压力传感器,其特征在于所述第一弹性元件和第二弹性元件均为弹簧,第一弹性元件连接于滑块与滑槽之间,第二弹性元件连接于柔性压电片中部与盖板之间。
所述的一种基于后屈曲现象的自供能压力传感器,其特征在于所述基座下部上设置凸台,当柔性压电片朝下凹陷时,凸台能够对压柔性压电片的凹陷幅度进 行约束。
所述的一种基于后屈曲现象的自供能压力传感器,其特征在于所述柔性压电片处于正常状态时,其中部朝上凸起,当柔性压电片发生后屈曲现象时,柔性压电片的中部朝下凹陷。
所述的一种基于后屈曲现象的自供能压力传感器,其特征在于所述基座和盖板均通过电线与电能储存模块和感知信息控制模块连接。
所述的一种基于后屈曲现象的自供能压力传感器,其特征在于所述载体模块上布满压力感知模块。
所述的一种基于后屈曲现象的自供能压力传感器,其特征在于所述载体模块上开设用以安装压力感知模块的凹槽。
所述的一种基于后屈曲现象的自供能压力传感器,其特征在于所述电能储存模块、感知信息控制模块设置于载体模块的两侧。
与现有技术相比,本发明提供的自供能压力传感器,灵感来源于通过高频压力变形提供电源,相比传统压阻传感器、压电传感器和电容传感器,具有功耗低、柔性、不需要添加电源等优点,本发明在智能机器人领域和生物工程领域,如用于智能穿戴设备的自能量柔性贴片方面具有很大的应用价值。
附图说明
图1为本发明结构示意图;
图2为本发明中压力感知模块分解结构示意图;
图3为本发明中压力感知模块处于使用状态时的结构示意图之一;
图4为本发明中压力感知模块处于使用状态时的结构示意图之二;
图5为本发明中压力感知模块处于使用状态时的结构示意图之三;
图6为本发明使用状态示意图之一;
图7为本发明使用状态示意图之二。
具体实施方式
在本发明的描述中,需要理解的是,术语“一端”、“另一端”、“外侧”、“上”、“内侧”、“水平”、“同轴”、“中央”、“端部”、“长度”、“外端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
下面结合附图对本发明作进一步说明。
如图所示,一种基于后屈曲现象的自供能压力传感器,包括载体模块2、电能储存模块1、感知信息控制模块3及配合安装于载体模块2上的压力感知模块4,压力感知模块4包括基座、盖板401和柔性压电片410,盖板401插配于基座上,盖板401与基座之间配合设置第一弹性元件408,两者之间还具有安装腔,柔性压电片410设置于安装腔内,其四周与安装腔限位配合,柔性压电片410与盖板401之间配合设置第二弹性元件413,下压盖板401时,盖板401能够挤压柔性压电片410使其产生变形并发生朝下凹陷的后屈曲现象,柔性压电片410受压时能够产生电能并将电能传输给电能储存模块1和感知信息控制模块3,电能储存模块1用以对电能进行储存,感知信息控制模块3用以对电信号进行分析处理,感知信息控制模块3可以包括模数转换器、微控制和运算器等。其中,所述柔性压电片410为压电聚合物。
作为优化:所述基座包括基座下部404和与之螺接固定的基座上部403,柔性压电片410的四周边缘夹紧于基座下部404与基座上部403之间。其中,基座下部404为底部封闭的筒状结构,基座上部403为对应的管状结构.
进一步地,所述基座上部403和盖板401其中一者内壁环布若干滑槽407, 另一者环布用以与滑槽407滑动配合的滑块406。具体地,滑块406均匀环布于盖板401的底部四周,滑槽407均匀环布于基座上部403内壁。
进一步地,所述第一弹性元件408和第二弹性元件413均为弹簧,第一弹性元件408连接于滑块406与滑槽407之间,第二弹性元件413连接于柔性压电片410中部与盖板401之间。
进一步地,所述基座下部404上设置凸出于基座下部404底壁表面的凸台412,当柔性压电片410朝下凹陷时,凸台412能够对压柔性压电片410的凹陷幅度进行约束。
作为优化:所述柔性压电片410处于正常状态时(指柔性压电片410夹在基座内未受盖板401挤压时的状态,而非指其完全展开时的状态),其中部朝上凸起,当柔性压电片410发生后屈曲现象时,柔性压电片410的中部朝下凹陷。
作为优化:所述基座下部404和盖板401均通过电线与电能储存模块1和感知信息控制模块3连接。具体地,盖板401通过第一电线402与电能储存模块1和感知信息控制模块3连接,基座下部404通过第二电线405电能储存模块1和感知信息控制模块3连接。
作为优化:所述载体模块2上布满压力感知模块4。
作为优化:所述载体模块2上开设用以安装压力感知模块4的凹槽5。
作为优化:所述电能储存模块1、感知信息控制模块3设置于载体模块2的两侧。
以图1、图2所示为例解释该自供能压力传感器的工作原理,当外界施加高频变形压力时,可以受压的盖板401向下运动,盖板401的滑块406接触第一弹性元件408后再向上弹起,在这个过程中带动柔性压电片410变形又恢复,如此往复由于压电效应产生电能。可以发生后屈曲现象的柔性压电片410展开状态的 直径大于基座的直径,在安装时,柔性压电片410被塞到基座内时会发生中部向上的凸起,基座上部403具有外螺纹409,基座下部404具有内螺纹411,用于约束柔性压电片410,将其固定。在盖板401向下运动前,柔性压电片410的凸起部分与盖板401接触,当盖板401受到压力后向下运动,柔性压电片410在压力作用下向上的凸起变成向下的凹陷,凹陷部分凸台412接触,盖板401与凸台412相当于电源正负极,柔性压电片410接触凸台412后,将电能传输给凸台412,并通过第二电线405将电能传递出去,电能储存模块1中储存着生成的电能。
以图3-5为例来说明该自供能压力传感器的三种状态。当刚开始施加压力时,柔性压电片410与盖板401接触,此时柔性压电片410与盖板401之间的第二弹性元件413处于自然拉伸状态,不受柔性压电片410的拉力。随着盖板401下压,柔性压电片410从向上的凸起变成向下的凹陷,柔性压电片410与凸台412为刚刚接触状态,此时柔性压电片410上方的第二弹性元件413处于拉伸状态,但盖板401位于较低位置,第二弹性元件413对柔性压电片410的拉力还不是很大,柔性压电片410继续下压与凸台412接触。图5示出柔性压电片410与凸台412最终形成稳定状态的接触状态,此时一直会有电能的传输,由于这个过程中盖板401被第一弹性单元408往上弹开,盖板401越往上移,盖板401对第二弹性元件413的拉力越大,达到一定程度时,第二弹性元件413将柔性压电片410拉起,回到初始状态。
本发明提出的一种基于后屈曲现象的自供能压力传感器可以将高频的压力变形变为电能,通过具有后屈曲现象的材料进行电能传递,以实现自储能功能的目的。该压力传感器具有柔性、耗能少、无需添加辅助电源等优点,且能够自己储能与供能。该设计的发明可以独立作用,自我供能,大大提升了本发明的适用性,使得本发明在智能机器人领域和生物工程有着很大的应用价值。本发明还可 以贴敷于人体的脉搏处,用以检测人体脉搏。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种基于后屈曲现象的自供能压力传感器,其特征在于包括载体模块(2)、电能储存模块(1)、感知信息控制模块(3)及配合安装于载体模块(2)上的压力感知模块(4),压力感知模块(4)包括基座、盖板(401)和柔性压电片(410),盖板(401)插配于基座上,盖板(401)与基座之间配合设置第一弹性元件(408),两者之间还具有安装腔,柔性压电片(410)设置于安装腔内,其四周与安装腔限位配合,柔性压电片(410)与盖板(401)之间配合设置第二弹性元件(413),下压盖板(401)时,盖板(401)能够挤压柔性压电片(410)使其产生变形并发生朝下凹陷的后屈曲现象,所述柔性压电片(410)处于正常状态时,其中部朝上凸起,当柔性压电片(410)发生后屈曲现象时,柔性压电片(410)的中部朝下凹陷;柔性压电片(410)受压时能够产生电能并将电能传输给电能储存模块(1)和感知信息控制模块(3),电能储存模块(1)用以对电能进行储存,感知信息控制模块(3)用以对电信号进行分析处理。
  2. 根据权利要求1所述的一种基于后屈曲现象的自供能压力传感器,其特征在于所述基座包括基座下部(404)和与之螺接固定的基座上部(403),柔性压电片(410)的四周边缘夹紧于基座下部(404)与基座上部(403)之间。
  3. 根据权利要求2所述的一种基于后屈曲现象的自供能压力传感器,其特征在于所述基座上部(403)和盖板(401)其中一者内壁环布若干滑槽(407),另一者环布用以与滑槽(407)滑动配合的滑块(406)。
  4. 根据权利要求2所述的一种基于后屈曲现象的自供能压力传感器,其特征在于所述第一弹性元件(408)和第二弹性元件(413)均为弹簧,第一弹性元件(408)连接于滑块(406)与滑槽(407)之间,第二弹性元件(413)连接于柔性压电片(410)中部与盖板(401)之间。
  5. 根据权利要求2所述的一种基于后屈曲现象的自供能压力传感器,其特征在于所述基座下部(404)上设置凸台(412),当柔性压电片(410)朝下凹陷时,凸台(412)能够对压柔性压电片(410)的凹陷幅度进行约束。
  6. 根据权利要求1-5中任一所述的一种基于后屈曲现象的自供能压力传感器,其特征在于所述基座和盖板(401)均通过电线与电能储存模块(1)和感知信息控制模块(3)连接。
  7. 根据权利要求1-5中任一所述的一种基于后屈曲现象的自供能压力传感器,其特征在于所述载体模块(2)上布满压力感知模块(4)。
  8. 根据权利要求1-5中任一所述的一种基于后屈曲现象的自供能压力传感器,其特征在于所述载体模块(2)上开设用以安装压力感知模块(4)的凹槽(5)。
  9. 根据权利要求1-5中任一所述的一种基于后屈曲现象的自供能压力传感器,其特征在于所述电能储存模块(1)、感知信息控制模块(3)设置于载体模块(2)的两侧。
PCT/CN2021/133829 2020-12-04 2021-11-29 一种基于后屈曲现象的自供能压力传感器 WO2022116926A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/327,910 US20230314251A1 (en) 2020-12-04 2023-06-02 Self-powered pressure sensor based on postbuckling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011398243.7A CN112600460B (zh) 2020-12-04 2020-12-04 一种基于后屈曲现象的自供能压力传感器
CN202011398243.7 2020-12-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/327,910 Continuation US20230314251A1 (en) 2020-12-04 2023-06-02 Self-powered pressure sensor based on postbuckling

Publications (1)

Publication Number Publication Date
WO2022116926A1 true WO2022116926A1 (zh) 2022-06-09

Family

ID=75187898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133829 WO2022116926A1 (zh) 2020-12-04 2021-11-29 一种基于后屈曲现象的自供能压力传感器

Country Status (3)

Country Link
US (1) US20230314251A1 (zh)
CN (1) CN112600460B (zh)
WO (1) WO2022116926A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600460B (zh) * 2020-12-04 2022-03-25 浙江大学 一种基于后屈曲现象的自供能压力传感器
CN114110125B (zh) * 2021-11-12 2024-01-23 珠海格力电器股份有限公司 一种带有自供能传感器系统的谐波减速器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206528A (ja) * 2017-05-31 2018-12-27 株式会社Nsc タッチスイッチ
CN110353432A (zh) * 2019-06-11 2019-10-22 杭州电子科技大学 一种压电式发电的坐姿检测座椅及其发电、检测方法
CN210201745U (zh) * 2019-03-12 2020-03-27 南昌欧菲生物识别技术有限公司 换能器及压电换能装置
CN111426411A (zh) * 2020-05-11 2020-07-17 浙江大学 一种多尺度柔性光感机械压力传感器
CN112600460A (zh) * 2020-12-04 2021-04-02 浙江大学 一种基于后屈曲现象的自供能压力传感器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205423074U (zh) * 2016-03-23 2016-08-03 南京工程学院 一种弹簧振子型风力压电发电装置
CN206077259U (zh) * 2016-08-26 2017-04-05 山西省交通科学研究院 一种压电减速带能量收集系统
JP6673489B2 (ja) * 2016-09-26 2020-03-25 株式会社村田製作所 圧電発電装置、圧電発電モジュールおよび送信機
CN107947632A (zh) * 2017-11-28 2018-04-20 江苏大学 一种振动能量回收装置
CN110313915A (zh) * 2019-06-20 2019-10-11 东北大学 一种压电自供能的老人足部健康监测系统
CN111181441B (zh) * 2020-01-07 2022-11-29 哈尔滨工业大学 一种柔性密封下多片周向排布的气压能量转换器
CN111551271B (zh) * 2020-05-11 2021-10-22 浙江大学 一种自能量式的热响应监测装置
CN111917330A (zh) * 2020-08-11 2020-11-10 安徽华清可靠性工程技术研究院有限公司 一种基于压力能采集器的自供能传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206528A (ja) * 2017-05-31 2018-12-27 株式会社Nsc タッチスイッチ
CN210201745U (zh) * 2019-03-12 2020-03-27 南昌欧菲生物识别技术有限公司 换能器及压电换能装置
CN110353432A (zh) * 2019-06-11 2019-10-22 杭州电子科技大学 一种压电式发电的坐姿检测座椅及其发电、检测方法
CN111426411A (zh) * 2020-05-11 2020-07-17 浙江大学 一种多尺度柔性光感机械压力传感器
CN112600460A (zh) * 2020-12-04 2021-04-02 浙江大学 一种基于后屈曲现象的自供能压力传感器

Also Published As

Publication number Publication date
US20230314251A1 (en) 2023-10-05
CN112600460A (zh) 2021-04-02
CN112600460B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2022116926A1 (zh) 一种基于后屈曲现象的自供能压力传感器
CN102207415B (zh) 基于导电橡胶的柔性阵列片式压力传感器及制造方法
CN104535227B (zh) 压入式介电高弹体压力传感器
CN110365122B (zh) 基于摩擦纳米发电机的自供能无线传感系统
CN207281088U (zh) 一种新型自供能风速传感器及风速测量装置
CN205066911U (zh) 一种基于压电摩擦及光能发电的自供电体重秤
CN202815746U (zh) 电容屏触控笔
Zhang et al. Hybridized nanogenerators for multifunctional self-powered sensing: Principles, prototypes, and perspectives
CN114234825B (zh) 一种基于光纤的柔性可拉伸可穿戴传感器
CN110954251A (zh) 一种压容和压阻耦合的接近感知与接触力传感器
WO2021227339A1 (zh) 一种多尺度柔性光感机械压力传感器
CN101156772B (zh) 一种血压监测装置
CN110487452A (zh) 一种仿生柔性压力传感器、压力测量装置及监测系统
CN201767951U (zh) 皮肤测试仪器
CN108108650A (zh) 指纹识别模块,器件及其制造方法,以及电气设备
CN111564986A (zh) 基于青霉素药片的摩擦纳米发电机及其制作方法和应用
CN115574708A (zh) 一种柔性可拉伸应变交互式传感器
CN202818153U (zh) 一种压电发电遥控器
CN111917330A (zh) 一种基于压力能采集器的自供能传感器
CN209087365U (zh) 一种显示面板载具
CN208547621U (zh) 一种sgp多像素气体传感器测试装置
CN217877730U (zh) 一种lc传感器时域读出系统
CN205785643U (zh) 智能数字压力表
Han et al. Self-powered wearable sensors design considerations
CN211527633U (zh) 一种高性能低功耗pir传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899958

Country of ref document: EP

Kind code of ref document: A1