WO2022116609A1 - 一种无人机定位方法、装置及存储介质 - Google Patents

一种无人机定位方法、装置及存储介质 Download PDF

Info

Publication number
WO2022116609A1
WO2022116609A1 PCT/CN2021/115673 CN2021115673W WO2022116609A1 WO 2022116609 A1 WO2022116609 A1 WO 2022116609A1 CN 2021115673 W CN2021115673 W CN 2021115673W WO 2022116609 A1 WO2022116609 A1 WO 2022116609A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
drone
positioning
uav
signal
Prior art date
Application number
PCT/CN2021/115673
Other languages
English (en)
French (fr)
Inventor
沙承贤
Original Assignee
北京京东乾石科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东乾石科技有限公司 filed Critical 北京京东乾石科技有限公司
Priority to EP21899645.2A priority Critical patent/EP4207822A1/en
Priority to US18/250,240 priority patent/US20230410662A1/en
Publication of WO2022116609A1 publication Critical patent/WO2022116609A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0008Transmission of traffic-related information to or from an aircraft with other aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/35Services specially adapted for particular environments, situations or purposes for the management of goods or merchandise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/01Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations specially adapted for specific applications
    • G01S2205/03Airborne
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0072Transmission between mobile stations, e.g. anti-collision systems

Definitions

  • the present application relates to the field of communication positioning, and in particular, to a method, device and storage medium for positioning an unmanned aerial vehicle.
  • logistics drones have been applied to a certain extent.
  • logistics drones will also use formations to perform distribution and transportation tasks; the operation of formation logistics drones
  • the scene has the characteristics of openness and vastness.
  • GPS Global Positioning System
  • INS Inertial Navigation System
  • INS Inertial Navigation System
  • the logistics drone will take forced landing measures at random locations. Not only can the mission fail to be successfully completed, but it will also cause a great safety hazard under the flight area.
  • the main purpose of the embodiments of the present application is to provide a UAV positioning method, device and storage medium, so as to solve the problem of inaccurate attitude positioning and positioning after a single logistics UAV in a formation loses a GPS signal.
  • the embodiment of the present application provides a method for positioning an unmanned aerial vehicle, and the method includes:
  • the first UAV loses the satellite positioning signal
  • the first information represents the relative distance between each second drone and the first drone
  • the second information is carried in the UWB signal sent by the second drone, Characterize the real-time positioning information measured by the second UAV based on the satellite positioning signal;
  • the real-time positioning information of the first drone is determined.
  • the real-time positioning information of the first drone is determined based on the inertial navigation system.
  • the first information and the second information of each of the at least three second drones are determined based on the UWB signal, including:
  • the method also includes:
  • the corresponding first information is measured based on the UWB signal sent by the second drone.
  • the method also includes:
  • a first request is sent based on the UWB signal; the first request is used to request the second drone to carry the corresponding second information in the sent UWB signal.
  • the method also includes:
  • the method also includes:
  • the real-time positioning information of the first drone is determined based on the received satellite positioning signal.
  • the embodiment of the present application also provides an unmanned aerial vehicle positioning device, and the device includes:
  • the first determining unit is configured to determine, based on the UWB signal, the first information and the first information of each second UAV of the at least three second UAVs when the first UAV loses the satellite positioning signal.
  • Two information the first information represents the relative distance between each second drone and the first drone; the second information is carried in the UWB signal sent by the second drone, representing the The real-time positioning information measured by the second UAV based on the satellite positioning signal;
  • the second determination unit is configured to determine the real-time positioning information of the first UAV according to the first information and the second information of each of the at least three second UAVs.
  • Embodiments of the present application also provide a first drone, comprising: a processor and a memory configured to store a computer program that can be run on the processor,
  • the processor is configured to execute the steps of any of the above methods when running the computer program.
  • Embodiments of the present application further provide a storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of any of the foregoing methods.
  • the first information and the second information of each second drone in the at least three second drones are determined based on the UWB signal ;
  • the first information represents the relative distance between each second UAV and the first UAV;
  • the second information is carried in the UWB signal sent by the second UAV, indicating that the second UAV is based on satellite positioning
  • the real-time positioning information measured by the signal according to the first information and the second information of each of the at least three second unmanned aerial vehicles, the real-time positioning information of the first unmanned aerial vehicle is determined, so that in the formation, the real-time positioning information of the first unmanned aerial vehicle is determined
  • a single UAV loses the satellite positioning signal, it can obtain the relative distance between the UWB signal and other UAVs in the formation, as well as the GPS positioning information of other UAVs, so as to determine the accuracy of a single UAV.
  • the fixed attitude and positioning information of the UAV improves the reliability of the UAV on the way of the
  • FIG. 1 is a schematic flowchart of the realization of the method for positioning an unmanned aerial vehicle provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of determining real-time positioning information of a first drone by using a second drone according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a UAV positioning device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a first unmanned aerial vehicle provided by an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence.
  • the term “and/or” is only an association relationship to describe related objects, indicating that there can be three kinds of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone. three conditions.
  • the term “at least three” refers to any combination of any three or at least four of the multiple, for example, including at least three of A, B, C, D, can mean including from A, B, Any three or more elements selected from the set consisting of C and D.
  • logistics drones During the flight of logistics drones, they need to continuously obtain real-time positioning to ensure accurate flight according to the predetermined route.
  • Logistics drones usually use satellite positioning systems, such as GPS, for real-time positioning. In the event that a drone in the formation logistics drone loses its satellite signal, this drone can only rely on its own The INS performs short-term attitude positioning.
  • the INS relies on inertial sensors (acceleration sensors, gyroscopes) to update the measurement results of speed, position and attitude through integration. Due to the zero deviation of the inertial sensor, errors accumulated over time will occur, and these errors cannot be eliminated by fusing satellite positioning data, resulting in errors directly reflected in the measurement results of the speed, position and attitude of a single logistics drone, and also That is to say, in the related art, a single logistics drone in a formation cannot perform accurate attitude positioning when the satellite positioning signal is lost, which may lead to unpredictable flight of the logistics drone.
  • inertial sensors acceleration sensors, gyroscopes
  • FIG. 1 is a schematic diagram of an implementation flowchart of a method for positioning an unmanned aerial vehicle according to an embodiment of the present application. As shown in Figure 1, the method includes:
  • Step 101 In the case that the first drone loses the satellite positioning signal, determine the first information and the second information of each of the at least three second drones based on the UWB signal.
  • the first information represents the relative distance between each second drone and the first drone;
  • the second information is carried in the UWB signal sent by the second drone, representing the first drone 2.
  • the real-time positioning information measured by the UAV based on satellite positioning signals;
  • the satellite positioning signal may specifically be a GPS signal, a Global Navigation Satellite System (GLONASS, Global Navigation Satellite System) signal, a Galileo global satellite navigation and positioning signal, and a Beidou positioning signal.
  • GLONASS Global Navigation Satellite System
  • Galileo global satellite navigation and positioning signal a Beidou positioning signal.
  • the embodiments of the present application take GPS signals as an example for the following description.
  • the basic principle of GPS positioning is to determine the position of the point to be measured by using the method of spatial distance resection based on the instantaneous position of the satellite moving at high speed as the known starting data.
  • the situation that the first drone loses the GPS signal may be that the communication board that receives the GPS signal inside the drone is damaged, or there are too many environmental interference factors in a certain area where the drone is flying, and the drone cannot receive the GPS signal smoothly. satellite signal, resulting in loss of GPS signal.
  • the first information and the second information of each of the at least three second UAVs are determined based on the UWB signal
  • the UWB technology is a wireless carrier communication technology based on a time-of-flight ranging method (TOF, Time Of Flight) and two-way time-of-flight method (TW-TOF, Two Way-Time Of Flight)
  • TOF mainly uses signals between the asynchronous transceivers (transceivers) of the first UAV and the second UAV. The distance between the first UAV and the second UAV is measured by the round-trip flight time.
  • the first UAV and at least three second UAVs in TW-TOF will generate an independent time stamp from the moment they are started, and the transmitter of the first UAV transmits the request at time T1 on its own time stamp.
  • each of the at least three second drones transmits a response signal at time T2, and the first drone receives it at time T2 on its own timestamp, so that it can be
  • the flight time of the pulse signal between the first UAV and each of the second UAVs is calculated, so as to determine the flight distance between the first UAV and each of the second UAVs in combination with the speed of light.
  • the principle of positioning the first drone based on the UWB technology is to use at least three other second drones in the formation with known positions, and the first drone to be positioned carries a positioning tag , the positioning tag transmits pulses according to a certain frequency, continuously conducts distance measurement with at least three second UAVs with known positions, and accurately calculates the position of the positioning tag through a certain algorithm.
  • UWB technology has strong penetration ability and can accurately locate indoors, outdoors and underground. Unlike GPS, which provides absolute geographic location, UWB technology can give relative positions. The positioning accuracy of UWB technology can reach centimeter level.
  • the first information represents the relative distance between each second UAV and the first UAV, wherein the relative distance between each second UAV and the first UAV is based on The signal measurement of UWB technology is obtained; the second information is carried in the UWB signal sent by the second drone, and represents the real-time positioning information measured by the second drone based on the GPS signal.
  • the GPS signal When the GPS signal is used, the second drone will add its real-time positioning information measured by the GPS signal to the UWB signal sent by the second drone to the first drone, so that the first drone can use it to determine own real-time location information.
  • Step 102 Determine the real-time positioning information of the first UAV according to the first information and the second information of each of the at least three second UAVs.
  • Figure 2 shows a schematic diagram of determining the real-time positioning information of the first drone by using other second drones.
  • the first UAV P 1 has a situation of GPS signal loss, and at time t after the GPS signal is lost, the first UAV P 1 Determine the first information and the second information of the second UAV in the formation based on the UWB signal, the first information is the relative distance between each second UAV and the first UAV: L 12 , L 13 , L 14 , ..., L 1n , where L 12 represents the distance between the first drone P 1 and the second drone P 2 , and similarly, L 1n represents the distance between the first drone P 1 and the second drone P 2
  • the distance between the drones P n ; the second information is the real-time positioning information measured by the second drone based on its own GPS signal: ⁇ x 2
  • the determining of the real-time positioning information of the first drone according to the first information and the second information of each of the at least three second drones includes:
  • the first UAV uses the trilateration method to calculate the position of the first UAV, and the first UAV can be obtained.
  • Real-time positioning information of drones uses the relative distance between each second UAV and the first UAV as the radius to construct a circular trajectory. Since there is only one intersection point between the three intersecting circular trajectories, it is based on UWB.
  • the signal to determine the real-time information of the first UAV requires at least three second UAVs, and the position information of the only intersection point is the positioning information of the first UAV.
  • the specific calculation formula is as follows:
  • Equation 1 Linearize Equation 1 and use the equations in lines 1 to n-1 to subtract the equation in line n to get:
  • X is the positioning coordinate of the first UAV P 1 at time t
  • the obtained X is the real-time position of the first UAV P 1 at time t.
  • Equation 1 is not limited to the least squares method, and other specific algorithms that can solve Equation 1 should also be regarded as methods that can be used in the embodiments of the present application, such as Taylor algorithm, weighted least squares method, convex optimization. Algorithms, Machine Learning Algorithms, etc.
  • the first information and the second information of each of the at least three second drones are determined based on the UWB signal;
  • the first information represents the relative distance between each second drone and the first drone;
  • the second information is carried in the UWB signal sent by the second drone, representing the second drone based on the satellite positioning signal
  • the measured real-time positioning information; according to the first information and the second information of each of the at least three second drones, the real-time positioning information of the first drone is determined, so that the When a single drone loses its satellite positioning signal, it can obtain the relative distance between it and other drones in the formation based on the UWB signal, as well as the GPS positioning information of other drones, so as to determine the accurate location of a single drone.
  • the fixed attitude positioning information improves the reliability of the UAV on the way of the delivery mission and improves the delivery efficiency.
  • the real-time positioning information of the first UAV is determined according to the first information and the second information of each second UAV in the at least three second UAVs.
  • the method further includes:
  • the real-time positioning information of the first drone is determined based on the inertial navigation system.
  • the first drone when the first drone loses the satellite positioning signal, it does not immediately receive the first and second information of the second drone based on the UWB signal, but first enters and uses its own inertial navigation system to determine Pose positioning mode.
  • the working principle of the inertial navigation system is to obtain the instantaneous speed and instantaneous position data of the first UAV by measuring the acceleration of the first UAV and automatically perform integral operation.
  • the equipment that makes up the inertial navigation system is installed in the first UAV body. It does not need to rely on external information, nor radiate energy to the outside world, and is not easily interfered. It is an autonomous navigation system.
  • the inertial navigation system By first starting the inertial navigation system for positioning after the satellite positioning signal is lost, it can ensure that the first drone can rely on itself to perform relatively accurate positioning before the satellite positioning signal is lost and the real-time positioning information is determined based on the UWB signal. Pose positioning.
  • the real-time positioning of the first UAV is determined based on the inertial navigation system, and the first information of each second UAV of the at least three second UAVs is determined based on the UWB signal. and second information, including:
  • the set duration for the real-time positioning of the first drone based on the inertial navigation system can be set to N seconds, for example, N can be set to 2.
  • N can be set to 2.
  • the positioning information of the inertial navigation system is generated by integration, the positioning error will increase with time, and the accuracy of positioning by the inertial navigation system for a long time is poor.
  • the positioning information is determined based on the UWB signal, which can avoid positioning errors caused by using the inertial navigation system for a long time, so that the first UAV can further obtain more accurate positioning information.
  • the method further includes:
  • the corresponding first information is measured based on the UWB signal sent by the second drone.
  • the first information may be that the second UAV has already measured, and is carried in the UWB signal sent to the first UAV, that is, the distance between the measurement measured by the second UAV and the first UAV Therefore, the first UAV can directly extract the information representing the relative distance from the UWB signal sent by the second UAV. Or, the second drone does not measure the first information, and the first drone measures the relative distance between the first drone and the second drone by itself based on the UWB signal sent by the second drone .
  • the first UAV extracts the first information from the UWB signal sent by the second UAV, so the first information can be directly obtained without the need for calculation by itself, thereby reducing the calculation amount of the first UAV
  • the corresponding first information is obtained by self-measurement based on the UWB signal sent by the second unmanned aerial vehicle, which can reduce the amount of data transmitted between the first unmanned aerial vehicle and the second unmanned aerial vehicle.
  • the method further includes:
  • a first request is sent based on the UWB signal; the first request is used to request the second drone to carry the corresponding second information in the sent UWB signal.
  • the first drone and the second drone have been communicating with each other through UWB signals, based on the UWB signal sent by the second drone at this time. , only the relative distance between the second UAV and the first UAV can be determined.
  • the first drone In the case where the first drone loses the satellite positioning signal, the first drone needs to use the UWB signal for positioning, so in addition to obtaining the relative distance between the second drone and the first drone , it is also necessary to obtain the real-time positioning information of the second drone. Therefore, the first drone sends a first request based on UWB, and the first request is used to request the second drone to carry the corresponding second drone in the sent UWB signal. information.
  • the first UAV can obtain the relative distance between the first UAV and the second UAV required by its own positioning information and the real-time positioning information of the second UAV in time based on the UWB signal, so that accurate position.
  • the method further includes:
  • the exchange of UWB signals with the second UAV every certain period can not only realize other functions based on UWB signals, but also ensure that in the case that the first UAV loses the satellite positioning signal, it can still periodically send
  • the relative distance between the first drone and the second drone and the real-time positioning information of the second drone based on the satellite positioning signal are obtained from the UWB signal.
  • the first set period can be automatically shortened and adjusted to ensure the update frequency of the first information and the second information, thereby ensuring that the first drone loses the satellite positioning Accuracy of post-signal location information.
  • the method further includes:
  • the real-time positioning information of the first unmanned aerial vehicle is determined based on the received satellite positioning signal.
  • the first drone has been detecting whether the satellite positioning signal of the first drone has recovered while obtaining real-time positioning based on the UWB signal. Once the recovery of the satellite positioning signal is detected, the first drone will use the satellite positioning signal. Get real-time positioning information. If it is detected that the satellite positioning signal is still not recovered, continue to use the UWB signal to obtain real-time positioning information.
  • the first UAV detects whether the satellite positioning signal is recovered while using the UWB signal to obtain real-time positioning, and can start the satellite positioning signal for real-time positioning at the first time when the satellite positioning signal is recovered, which can ensure the coherence of accurate real-time positioning. sex.
  • the embodiment of the present application further provides an unmanned aerial vehicle positioning device, as shown in FIG. 3 , the device includes:
  • the first determining unit 301 is configured to determine, based on the UWB signal, the first information and the first information of each second UAV of the at least three second UAVs when the first UAV loses the satellite positioning signal.
  • second information the first information represents the relative distance between each second drone and the first drone; the second information is carried in the UWB signal sent by the second drone, Characterize the real-time positioning information measured by the second UAV based on the satellite positioning signal;
  • the second determination unit 302 is configured to determine the real-time positioning information of the first UAV according to the first information and the second information of each of the at least three second UAVs.
  • the apparatus further includes: a third determining unit, configured as:
  • the real-time positioning information of the first drone is determined based on the inertial navigation system.
  • the first determining unit 301 is configured to:
  • the apparatus further includes: an information acquisition unit configured to:
  • the corresponding first information is measured based on the UWB signal sent by the second drone.
  • the apparatus further includes: a requesting unit configured to:
  • a first request is sent based on the UWB signal; the first request is used to request the second drone to carry the corresponding second information in the sent UWB signal.
  • the apparatus further includes: an interaction unit configured to:
  • the apparatus further includes: a fourth determination unit configured to:
  • the real-time positioning information of the first drone is determined based on the received satellite positioning signal.
  • the first determination unit 301, the second determination unit 302, the third determination unit, the information acquisition unit, the request unit, the interaction unit, and the fourth determination unit can be
  • the communication interface in the UAV positioning device is implemented in combination with the processor.
  • the processor needs to run the program stored in the memory to realize the functions of the above program modules.
  • the UAV positioning device provided in the above embodiment performs UAV positioning
  • only the division of the above program modules is used as an example for illustration.
  • the above processing can be allocated by different The program module is completed, that is, the internal structure of the device is divided into different program modules to complete all or part of the above-described processing.
  • the UAV positioning device provided by the above embodiments and the UAV positioning method embodiments belong to the same concept, and the specific implementation process thereof is detailed in the method embodiments, which will not be repeated here.
  • FIG. 4 is a schematic diagram of the hardware structure of the first unmanned aerial vehicle in the embodiment of the present application , as shown in Figure 4, the first UAV includes:
  • a communication interface 401 capable of information interaction with other devices such as network devices;
  • the processor 402 is connected to the communication interface 401 to realize information exchange with other devices, and is configured to execute the positioning method of the UAV provided by one or more of the above technical solutions when running the computer program. And the computer program is stored on the memory 403 .
  • the processor 402 is configured to determine, based on the UWB signal, the first unmanned aerial vehicle of each of the at least three second unmanned aerial vehicles when the first unmanned aerial vehicle loses the satellite positioning signal. information and second information; the first information represents the relative distance between each second drone and the first drone; the second information is the UWB signal sent by the second drone It is carried in and represents the real-time positioning information measured by the second UAV based on the satellite positioning signal.
  • the processor 402 is further configured to determine the real-time positioning information of the first UAV according to the first information and the second information of each second UAV in the at least three second UAVs .
  • the processor 402 is specifically configured as:
  • the real-time positioning information of the first drone is determined based on the inertial navigation system.
  • processor 402 is configured as:
  • processor 402 is configured as:
  • the corresponding first information is measured based on the UWB signal sent by the second drone.
  • the communication interface 401 is configured as:
  • a first request is sent based on the UWB signal; the first request is used to request the second drone to carry the corresponding second information in the sent UWB signal.
  • the communication interface 401 is configured as:
  • processor 402 is configured as:
  • the real-time positioning information of the first drone is determined based on the received satellite positioning signal.
  • bus system 404 is configured to enable connection communication between these components.
  • bus system 404 also includes a power bus, a control bus, and a status signal bus.
  • the various buses are labeled as bus system 404 in FIG. 4 .
  • the memory 403 in the embodiment of the present application is configured to store various types of data to support the operation of the first drone. Examples of such data include: any computer program used to operate on the first drone.
  • the memory 403 may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • the non-volatile memory can be a read-only memory (ROM, Read Only Memory), a programmable read-only memory (PROM, Programmable Read-Only Memory), an erasable programmable read-only memory (EPROM, Erasable Programmable Read-only memory) Only Memory), Electrically Erasable Programmable Read-Only Memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), Magnetic Random Access Memory (FRAM, ferromagnetic random access memory), Flash Memory (Flash Memory), Magnetic Surface Memory , CD-ROM, or CD-ROM (Compact Disc Read-Only Memory); magnetic surface memory can be disk memory or tape memory.
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Type Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus Random Access Memory
  • the memory 403 described in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the methods disclosed in the above embodiments of the present application may be applied to the processor 402 or implemented by the processor 402 .
  • the processor 402 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above-mentioned method can be completed by an integrated logic circuit of hardware in the processor 402 or an instruction in the form of software.
  • the aforementioned processor 402 may be a general-purpose processor, a DSP, or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • the processor 402 may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of this application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the memory 403, and the processor 402 reads the program in the memory 403, and completes the steps of the foregoing method in combination with its hardware.
  • an embodiment of the present application further provides a storage medium, that is, a computer storage medium, specifically a computer-readable storage medium, for example, including a memory 403 storing a computer program, and the above-mentioned computer program can be executed by the processor 402, to complete the steps described in the preceding method.
  • the computer-readable storage medium may be memory such as FRAM, ROM, PROM, EPROM, EEPROM, Flash Memory, magnetic surface memory, optical disk, or CD-ROM.
  • the disclosed apparatus, terminal and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling, or direct coupling, or communication connection between the various components shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be electrical, mechanical or other forms. of.
  • the unit described above as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, it may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may all be integrated into one processing unit, or each unit may be separately used as a unit, or two or more units may be integrated into one unit; the above integration
  • the unit can be implemented either in the form of hardware or in the form of hardware plus software functional units.
  • the aforementioned program may be stored in a computer-readable storage medium, and when the program is executed, execute It includes the steps of the above method embodiments; and the aforementioned storage medium includes: a removable storage device, a ROM, a RAM, a magnetic disk or an optical disk and other media that can store program codes.
  • the above-mentioned integrated units of the present application are implemented in the form of software function modules and sold or used as independent products, they may also be stored in a computer-readable storage medium.
  • the computer software products are stored in a storage medium and include several instructions for An electronic device (which may be a personal computer, a server, or a network device, etc.) is caused to execute all or part of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: a removable storage device, a ROM, a RAM, a magnetic disk or an optical disk and other mediums that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请公开了一种无人机定位方法、装置及存储介质。其中,无人机定位方法包括:在所述第一无人机丢失卫星定位信号的情况下,基于UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息;所述第一信息表征每台第二无人机与所述第一无人机之间的相对距离;所述第二信息由第二无人机在发送的UWB信号中携带,表征第二无人机基于卫星定位信号测得的实时定位信息;根据所述至少三台第二无人机中的每台第二无人机的第一信息和第二信息,确定所述第一无人机的实时定位信息。

Description

一种无人机定位方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为202011403625.4,申请日为2020年12月02日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信定位领域,尤其涉及一种无人机定位方法、装置及存储介质。
背景技术
随着无人机技术的进一步提高,物流无人机已经得到了一定程度的应用,为了提高运送效率,物流无人机也会采用编队的形式执行配送、运输任务;编队物流无人机的运行场景具备空旷、广大等特点,对于编队中的单个物流无人机来说,定位高度依赖全球定位系统(GPS,Global Positioning System),当出现GPS信号丢失的情况时,单个物流无人机只能依靠自身的惯性导航系统(INS,Inertial Navigation System)进行短暂的惯性定姿定位,如果在此期间单个物流无人机的GPS信号无法恢复,该物流无人机将在随机位置采取迫降的措施,不仅无法顺利完成任务,还会对飞行区域下方造成很大的安全隐患。
发明内容
有鉴于此,本申请实施例的主要目的在于提供一种无人机定位方法、装置及存储介质,以解决编队中的单个物流无人机在丢失GPS信号后,定姿定位不准确的问题。
本申请实施例的技术方案是这样实现的:
本申请实施例提供了一种无人机定位方法,所述方法包括:
在所述第一无人机丢失卫星定位信号的情况下,基于超宽带(UWB,Ultra Wide Band)信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息;所述第一信息表征每台第二无人机与所述第一无人机之间的相对距离;所述第二信息由第二无人机在发送的UWB信号中携带,表征第二无人机基于卫星定位信号测得的实时定位信息;
根据所述至少三台第二无人机中的每台第二无人机的第一信息和第二 信息,确定所述第一无人机的实时定位信息。
上述方案中,在所述根据所述至少三台第二无人机中的每台第二无人机的第一信息和第二信息,确定所述第一无人机的实时定位信息之前,包括:
在所述第一无人机丢失卫星定位信号的情况下,基于惯性导航系统确定所述第一无人机的实时定位信息。
上述方案中,所述基于UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息,包括:
在基于惯性导航系统确定所述第一无人机的实时定位信息的持续时长大于设定时长的情况下,基于UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息。
上述方案中,所述方法还包括:
从第二无人机发送的UWB信号中提取对应的第一信息;或者,
基于第二无人机发送的UWB信号测得对应的第一信息。
上述方案中,所述方法还包括:
在所述第一无人机丢失卫星定位信号的情况下,基于UWB信号发送第一请求;所述第一请求用于请求第二无人机在发送的UWB信号中携带对应的第二信息。
上述方案中,所述方法还包括:
每隔第一设定周期与所述至少三台第二无人机交互UWB信号。
上述方案中,所述方法还包括:
在检测到所述第一无人机已恢复接收卫星定位信号的情况下,基于接收的卫星定位信号确定所述第一无人机的实时定位信息。
本申请实施例还提供了一种无人机定位装置,所述装置包括:
第一确定单元,配置为在所述第一无人机丢失卫星定位信号的情况下,基于UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息;所述第一信息表征每台第二无人机与所述第一无人机之间的相对距离;所述第二信息由第二无人机在发送的UWB信号中携带,表征第二无人机基于卫星定位信号测得的实时定位信息;
第二确定单元,配置为根据所述至少三台第二无人机中的每台第二无人机的第一信息和第二信息,确定所述第一无人机的实时定位信息。
本申请实施例还提供了一种第一无人机,包括:处理器和配置为存储能够在处理器上运行的计算机程序的存储器,
其中,所述处理器配置为运行所述计算机程序时,执行上述任一方法的步骤。
本申请实施例还提供了一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一方法的步骤。
在本申请实施例中,在第一无人机丢失卫星定位信号的情况下,基于 UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息;第一信息表征每台第二无人机与第一无人机之间的相对距离;第二信息由第二无人机在发送的UWB信号中携带,表征第二无人机基于卫星定位信号测得的实时定位信息;根据至少三台第二无人机中的每台第二无人机的第一信息和第二信息,确定第一无人机的实时定位信息,从而在编队中的单个无人机丢失卫星定位信号的情况下,能够基于UWB信号获得和编队中其他无人机之间的相对距离,以及其他无人机的GPS定位信息,从而确定出单个无人机的准确的定姿定位信息,提高了无人机在执行配送任务的途中的可靠性,提高了运送效率。
附图说明
图1为本申请实施例提供的无人机定位方法的实现流程示意图;
图2为本申请实施例提供的利用第二无人机确定第一无人机的实时定位信息的示意图;
图3为本申请实施例提供的无人机定位装置的示意图;
图4为本申请实施例提供的第一无人机的结构示意图。
具体实施方式
下面结合附图及具体实施例对本申请作进一步详细的说明。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
需要说明的是,本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
另外,在本申请实施例中,术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,术语“至少三台”表示多台中的任意三台或多台中的至少四台的任意组合,例如,包括A、B、C、D中的至少三台,可以表示包括从A、B、C、D构成的集合中选择的任意三个或三个以上元素。
物流无人机在执行配送任务的飞行过程中,需要持续获得实时定位才能保证按照预定的路线进行准确地飞行。物流无人机通常采用卫星定位系统,如GPS等进行实时定位,而在编队物流无人机中某一台无人机出现卫星信号丢失的情况下,这一台无人机只能依靠自身的INS进行短暂的定姿 定位。
当编队中的单个物流无人机在仅依赖自身的INS进行短暂的惯性定姿定位时,INS依靠惯性传感器(加速度传感器、陀螺仪),通过积分来完成速度、位置及姿态的测量结果更新,由于惯性传感器存在零位偏差,会产生随时间积累的误差,并且无法通过融合卫星定位数据来消除这些误差,导致误差直接反应在单个物流无人机的速度、位置及姿态的测量结果上,也就是说,相关技术中,编队中的单个物流无人机在丢失卫星定位信号的情况下无法进行准确的定姿定位,可能导致物流无人机进行不可预测的飞行。
基于此,本申请实施例提供了一种无人机定位方法,应用于第一无人机,这里,在实际应用时,第一无人机可为物流无人机编队中的任一无人机。图1为本申请实施例的无人机定位方法的实现流程示意图。如图1所示,所述方法包括:
步骤101:在所述第一无人机丢失卫星定位信号的情况下,基于UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息。
其中,所述第一信息表征每台第二无人机与所述第一无人机之间的相对距离;所述第二信息由第二无人机在发送的UWB信号中携带,表征第二无人机基于卫星定位信号测得的实时定位信息;
这里,卫星定位信号具体可为GPS信号、全球导航卫星系统(GLONASS,Global Navigation Satellite System)信号、伽利略全球卫星导航定位信号、北斗定位信号。为了便于阐释,本申请实施例以GPS信号为例进行下面的描述。
GPS定位的基本原理是根据高速运动的卫星瞬间位置作为已知的起算数据,采用空间距离后方交会的方法,确定待测点的位置。
所述第一无人机丢失GPS信号的情况可能是无人机内部接收GPS信号的通信板卡发生损坏,或者,无人机飞行的某一区域环境干扰因素太多,无人机无法顺利接收卫星信号,从而导致GPS信号丢失。
这里,基于UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息,其中,UWB技术是一种无线载波通信技术,基于飞行时间测距法(TOF,Time Of Flight)和双向飞行时间法(TW-TOF,Two Way-Time Of Flight)实现,TOF主要利用信号在第一无人机和第二无人机的异步收发机(transceiver)之间往返的飞行时间来测量第一无人机和第二无人机之间的距离。TW-TOF中第一无人机和至少三台第二无人机从启动开始即会生成一条独立的时间戳,第一无人机的发射机在自己的时间戳上的T1时刻发射请求性质的脉冲信号,至少三台第二无人机中的每台第二无人机在T2时刻发射一个响应性质的信号,第一无人机在自己的时间戳上的T2时刻接收,由此可以计算出脉冲信号在第一无人机和每台第二无人机之间的飞行时间,从而结合光速确定第一无人机和每台第二无人机之间的飞 行距离。在本申请实施例中,基于UWB技术对第一无人机进行定位的原理,是利用已知位置的编队中其他至少三台第二无人机,需要定位的第一无人机携带定位标签,定位标签按照一定的频率发射脉冲,不断地和已知位置的至少三台第二无人机进行测距,通过一定的算法精确地计算出定位标签的位置。UWB技术具有极强的穿透能力,可在室内外和地下进行精确定位,与GPS提供绝对地理位置不同,UWB技术可以给出相对位置,UWB技术的定位精度可达厘米级。
这里,所述第一信息表征每台第二无人机与所述第一无人机之间的相对距离,其中,每台第二无人机和第一无人机之间的相对距离基于UWB技术的信号测量得出;所述第二信息由第二无人机在发送的UWB信号中携带,表征第二无人机基于GPS信号测得的实时定位信息,在第一无人机丢失GPS信号时,第二无人机会把自身通过GPS信号测得的实时定位信息,附加在第二无人机发送给第一无人机的UWB信号中,以被第一无人机用于确定自身的实时定位信息。
步骤102:根据所述至少三台第二无人机中的每台第二无人机的第一信息和第二信息,确定所述第一无人机的实时定位信息。
这里,图2示出了利用其它第二无人机确定第一无人机的实时定位信息的示意图,根据图2,物流无人机组成的编队P={P 1,P 2,P 3,P 4……,P n,n≥4}在执行配送任务的过程中,第一无人机P 1出现了GPS信号丢失的情况,在GPS信号丢失之后的时刻t,第一无人机P 1基于UWB信号确定编队中第二无人机的第一信息和第二信息,第一信息为每台第二无人机与第一无人机之间的相对距离:L 12,L 13,L 14,……,L 1n,其中,L 12代表第一无人机P 1与第二无人机P 2之间的距离,同理,L 1n代表第一无人机P 1与第二无人机P n之间的距离;第二信息为第二无人机基于自身GPS信号测得的实时定位信息:{x 2t,y 2t,z 2t},{x 3t,y 3t,z 3t},{x 4t,y 4t,z 4t},……,{x nt,y nt,z nt},其中,{x 2t,y 2t,z 2t}代表第二无人机P 2在t时刻通过自身GPS信号测得的实时定位,同理,{x nt,y nt,z nt}代表第二无人机P n在t时刻通过自身GPS信号测得的实时定位。
所述根据至少三台第二无人机中的每台第二无人机的第一信息和第二信息,确定第一无人机的实时定位信息包括:
第一无人机获得第一信息的集合,即多台第二无人机与第一无人机之间相对距离的集合L={L 12,L 13,L 14,……,L 1n};
第一无人机获得第二信息的集合,即第二无人机的实时定位信息集合S={{x 2t,y 2t,z 2t},{x 3t,y 3t,z 3t},{x 4t,y 4t,z 4t},……,{x nt,y nt,z nt}}。
在通过TOF或TW-TOF测得第二无人机与第一无人机之间的距离后,第一无人机使用三边定位法计算第一无人机的位置,便可得到第一无人机的实时定位信息。三边定位法是利用每台第二无人机与第一无人机之间的相对距离为半径构建圆形轨迹,由于三个有交集的圆形轨迹之间存在唯一 一个交点,所以基于UWB信号确定第一无人机的实时信息至少需要三台第二无人机,唯一的交点的位置信息即为第一无人机的定位信息,具体计算公式如下:
Figure PCTCN2021115673-appb-000001
将公式1进行线性化处理,使用第1到n-1行的方程分别减去第n行方程得:
AX=b               公式2
其中,X为第一无人机P 1在t时刻的定位坐标,
Figure PCTCN2021115673-appb-000002
Figure PCTCN2021115673-appb-000003
Figure PCTCN2021115673-appb-000004
采用最小二乘法求解公式2可得:X=(A TA) -1A Tb。求解得出的X即为t时刻第一无人机P 1的实时位置。
需要说明的是,公式1的求解并不局限于最小二乘法,其它能够对公式1求解的具体算法也应视为本申请实施例可采用的方式,如泰勒算法、加权最小二乘法、凸优化算法、机器学习算法等。
在本实施例中,在第一无人机丢失卫星定位信号的情况下,基于UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息;第一信息表征每台第二无人机与第一无人机之间的相对距离;第二信 息由第二无人机在发送的UWB信号中携带,表征第二无人机基于卫星定位信号测得的实时定位信息;根据至少三台第二无人机中的每台第二无人机的第一信息和第二信息,确定第一无人机的实时定位信息,从而在编队中的单个无人机丢失卫星定位信号的情况下,能够基于UWB信号获得和编队中其他无人机之间的相对距离,以及其他无人机的GPS定位信息,从而确定出单个无人机的准确的定姿定位信息,提高了无人机在执行配送任务的途中的可靠性,提高了运送效率。
在一实施例中,在所述根据所述至少三台第二无人机中的每台第二无人机的第一信息和第二信息,确定所述第一无人机的实时定位信息之前,所述方法还包括:
在所述第一无人机丢失卫星定位信号的情况下,基于惯性导航系统确定所述第一无人机的实时定位信息。
这里,在第一无人机丢失卫星定位信号的情况下,并不是马上就基于UWB信号接收第二无人机的第一信息和第二信息,而是先进入利用自身的惯性导航系统进行定姿定位的模式。
惯性导航系统的工作原理是通过测量第一无人机的加速度,自动进行积分运算,获得第一无人机的瞬时速度和瞬时位置数据。组成惯性导航系统的设备都安装在第一无人机机体内,工作时不需要依赖外界信息,也不向外界辐射能量,不易受到干扰,是一种自主式导航系统。
通过在丢失卫星定位信号后首先启动惯性导航系统进行定位,能够保证第一无人机在丢失卫星定位信号、基于UWB信号确定实时定位信息之前,保证第一无人机可以依靠自身进行相对准确的定姿定位。
在丢失卫星定位信号后、基于惯性导航系统确定第一无人机实时定位的基础上,所述基于UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息,包括:
在基于惯性导航系统确定所述第一无人机的实时定位信息的持续时长大于设定时长的情况下,基于UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息。
这里,可以将第一无人机基于惯性导航系统进行实时定位的设定时长设为N秒,例如N可以取2,当第一无人机在N秒后检测到自身依旧没有恢复GPS信号时,开始基于UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息。
由于惯性导航系统的定位信息是通过积分产生,定位误差会随时间增长而增大,长时间依靠惯性导航系统定位的话精度较差,因此,在第一无人机通过惯性导航系统定位的时长大于设定时长后,基于UWB信号确定定位信息,能够避免长时间使用惯性导航系统带来的定位误差,从而第一无人机可以进一步获得更为精确的定位信息。
在一实施例中,所述方法还包括:
从第二无人机发送的UWB信号中提取对应的第一信息;或者,
基于第二无人机发送的UWB信号测得对应的第一信息。
这里,第一信息可以是第二无人机已经测量好,携带在发送给第一无人机的UWB信号中,也就是说,由第二无人机测得与第一无人机之间的相对距离,因此,第一无人机可以从第二无人机发送的UWB信号直接提取出表征相对距离的信息。或者,第二无人机并没有测量出第一信息,第一无人机基于第二无人机发送的UWB信号,自行测量得到第一无人机与第二无人机之间的相对距离。
通过上述方法,第一无人机从第二无人机发送的UWB信号中提取第一信息,因此自身不需要进行计算即可直接获得第一信息,从而减轻了第一无人机的计算量;基于第二无人机发送的UWB信号自行测量得到对应的第一信息,可以减少第一无人机与第二无人机之间的传输数据量。
在一实施例中,所述方法还包括:
在所述第一无人机丢失卫星定位信号的情况下,基于UWB信号发送第一请求;所述第一请求用于请求第二无人机在发送的UWB信号中携带对应的第二信息。
这里,在第一无人机没有丢失卫星定位信号的情况下,第一无人机与第二无人机之间一直通过UWB信号在互相通信,基于此时第二无人机发送的UWB信号中,只能够确定出第二无人机与第一无人机之间的相对距离。
而在第一无人机丢失卫星定位信号的情况下,此时第一无人机需要利用UWB信号进行定位,因此除了获得第二无人机与第一无人机之间的相对距离之外,还需获得第二无人机的实时定位信息,所以,第一无人机基于UWB发送第一请求,第一请求用于请求第二无人机在发送的UWB信号中携带对应的第二信息。
通过上述方法,第一无人机可以基于UWB信号,及时获得自身定位信息所需的与第二无人机之间的相对距离,以及第二无人机的实时定位信息,从而能够进行精准的定位。
在一实施例中,所述方法还包括:
每隔第一设定周期与所述至少三台第二无人机交互UWB信号。
这里,每隔一定周期与第二无人机交互UWB信号,不仅可以实现基于UWB信号实现的其他功能,还可以保证在第一无人机丢失了卫星定位信号的情况下,仍然通过周期性发送的UWB信号获取到第一无人机与第二无人机之间的相对距离和第二无人机的基于卫星定位信号得到的实时定位信息。此外,当第一无人机丢失了卫星定位信号后,第一设定周期可以自动进行缩短调整,以保证第一信息和第二信息的更新频率,从而保证了第一无人机丢失卫星定位信号后定位信息的精度。
在一实施例中,所述方法还包括:
在检测到所述第一无人机已恢复接收卫星定位信号的情况下,基于接 收的卫星定位信号确定所述第一无人机的实时定位信息。
这里,第一无人机在基于UWB信号获得实时定位的同时,一直在检测第一无人机的卫星定位信号是否恢复,一旦检测到卫星定位信号恢复,则第一无人机利用卫星定位信号获取实时定位信息。若检测到卫星定位信号依旧没有恢复,则继续利用UWB信号获取实时定位信息。
通过上述方法,第一无人机在利用UWB信号获取实时定位的同时检测卫星定位信号是否恢复,能在卫星定位信号恢复的第一时间启动卫星定位信号进行实时定位,能够保证精准实时定位的连贯性。
为实现本申请实施例的方法,本申请实施例还提供了一种无人机定位装置,如图3所示,所述装置包括:
第一确定单元301,配置为在所述第一无人机丢失卫星定位信号的情况下,基于UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息;所述第一信息表征每台第二无人机与所述第一无人机之间的相对距离;所述第二信息由第二无人机在发送的UWB信号中携带,表征第二无人机基于卫星定位信号测得的实时定位信息;
第二确定单元302,配置为根据所述至少三台第二无人机中的每台第二无人机的第一信息和第二信息,确定所述第一无人机的实时定位信息。
其中,在一个实施例中,所述装置还包括:第三确定单元,配置为:
在所述第一无人机丢失卫星定位信号的情况下,基于惯性导航系统确定所述第一无人机的实时定位信息。
在一个实施例中,所述第一确定单元301,配置为:
在基于惯性导航系统确定所述第一无人机的实时定位信息的持续时长大于设定时长的情况下,基于UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息。
在一个实施例中,所述装置还包括:信息获取单元,配置为:
从第二无人机发送的UWB信号中提取对应的第一信息;或者,
基于第二无人机发送的UWB信号测得对应的第一信息。
在一个实施例中,所述装置还包括:请求单元,配置为:
在所述第一无人机丢失卫星定位信号的情况下,基于UWB信号发送第一请求;所述第一请求用于请求第二无人机在发送的UWB信号中携带对应的第二信息。
在一个实施例中,所述装置还包括:交互单元,配置为:
每隔第一设定周期与所述至少三台第二无人机交互UWB信号。
在一个实施例中,所述装置还包括:第四确定单元,配置为:
在检测到所述第一无人机已恢复接收卫星定位信号的情况下,基于接收的卫星定位信号确定所述第一无人机的实时定位信息。
实际应用时,所述第一确定单元301、所述第二确定单元302、所述第三确定单元、所述信息获取单元、所述请求单元、所述交互单元、所述第 四确定单元可由无人机定位装置中的通信接口结合处理器来实现。当然,处理器需要运行存储器中存储的程序来实现上述各程序模块的功能。
需要说明的是:上述实施例提供的无人机定位装置在进行无人机定位时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的无人机定位装置与无人机定位方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
基于上述程序模块的硬件实现,且为了实现本申请实施例的方法,本申请实施例还提供了一种第一无人机,图4为本申请实施例第一无人机的硬件组成结构示意图,如图4所示,第一无人机包括:
通信接口401,能够与其它设备比如网络设备等进行信息交互;
处理器402,与通信接口401连接,以实现与其它设备进行信息交互,配置为运行计算机程序时,执行上述一个或多个技术方案提供的无人机的定位方法。而所述计算机程序存储在存储器403上。
具体地,所述处理器402,配置为在所述第一无人机丢失卫星定位信号的情况下,基于UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息;所述第一信息表征每台第二无人机与所述第一无人机之间的相对距离;所述第二信息由第二无人机在发送的UWB信号中携带,表征第二无人机基于卫星定位信号测得的实时定位信息。
所述处理器402,还配置为根据所述至少三台第二无人机中的每台第二无人机的第一信息和第二信息,确定所述第一无人机的实时定位信息。
其中,在一实施例中,在所述根据所述至少三台第二无人机中的每台第二无人机的第一信息和第二信息,确定所述第一无人机的实时定位信息之前,所述处理器402,具体配置为:
在所述第一无人机丢失卫星定位信号的情况下,基于惯性导航系统确定所述第一无人机的实时定位信息。
其中,在一实施例中,所述处理器402,配置为:
在基于惯性导航系统确定所述第一无人机的实时定位信息的持续时长大于设定时长的情况下,基于UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息。
其中,在一实施例中,所述处理器402,配置为:
从第二无人机发送的UWB信号中提取对应的第一信息;或者,
基于第二无人机发送的UWB信号测得对应的第一信息。
其中,在一实施例中,所述通信接口401,配置为:
在所述第一无人机丢失卫星定位信号的情况下,基于UWB信号发送第一请求;所述第一请求用于请求第二无人机在发送的UWB信号中携带对应的第二信息。
其中,在一实施例中,所述通信接口401,配置为:
每隔第一设定周期与所述至少三台第二无人机交互UWB信号。
其中,在一实施例中,所述处理器402,配置为:
在检测到所述第一无人机已恢复接收卫星定位信号的情况下,基于接收的卫星定位信号确定所述第一无人机的实时定位信息。
需要说明的是:处理器402和通信接口401的具体处理过程可参照上述方法理解。当然,实际应用时,第一无人机中的各个组件通过总线系统404耦合在一起。可理解,总线系统404配置为实现这些组件之间的连接通信。总线系统404除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图4中将各种总线都标为总线系统404。
本申请实施例中的存储器403配置为存储各种类型的数据以支持第一无人机的操作。这些数据的示例包括:用于在第一无人机上操作的任何计算机程序。
可以理解,存储器403可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器403旨在包括但不限于这些和任意其它适合类型的存储器。
上述本申请实施例揭示的方法可以应用于处理器402中,或者由处理器402实现。处理器402可能是一种集成电路芯片,具有信号的处理能力。 在实现过程中,上述方法的各步骤可以通过处理器402中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器402可以是通用处理器、DSP,或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器402可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器403,处理器402读取存储器403中的程序,结合其硬件完成前述方法的步骤。
处理器402执行所述程序时实现本申请实施例的各个方法中的相应流程,为了简洁,在此不再赘述。
在示例性实施例中,本申请实施例还提供了一种存储介质,即计算机存储介质,具体为计算机可读存储介质,例如包括存储计算机程序的存储器403,上述计算机程序可由处理器402执行,以完成前述方法所述步骤。计算机可读存储介质可以是FRAM、ROM、PROM、EPROM、EEPROM、Flash Memory、磁表面存储器、光盘、或CD-ROM等存储器。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置、终端和方法,可以通过其它的方式实现。以上所描述的设备实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本申请上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。 基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台电子设备(可以是个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种无人机定位方法,应用于第一无人机;所述方法包括:
    在所述第一无人机丢失卫星定位信号的情况下,基于超宽带UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息;所述第一信息表征每台第二无人机与所述第一无人机之间的相对距离;所述第二信息由第二无人机在发送的UWB信号中携带,表征第二无人机基于卫星定位信号测得的实时定位信息;
    根据所述至少三台第二无人机中的每台第二无人机的第一信息和第二信息,确定所述第一无人机的实时定位信息。
  2. 根据权利要求1所述的无人机定位方法,其中,在所述根据所述至少三台第二无人机中的每台第二无人机的第一信息和第二信息,确定所述第一无人机的实时定位信息之前,所述方法还包括:
    在所述第一无人机丢失卫星定位信号的情况下,基于惯性导航系统确定所述第一无人机的实时定位信息。
  3. 根据权利要求2所述的无人机定位方法,其中,所述基于UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息,包括:
    在基于惯性导航系统确定所述第一无人机的实时定位信息的持续时长大于设定时长的情况下,基于UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息。
  4. 根据权利要求1所述的无人机定位方法,其中,所述方法还包括:
    从第二无人机发送的UWB信号中提取对应的第一信息;或者,
    基于第二无人机发送的UWB信号测得对应的第一信息。
  5. 根据权利要求1所述的无人机定位方法,其中,所述方法还包括:
    在所述第一无人机丢失卫星定位信号的情况下,基于UWB信号发送第一请求;所述第一请求用于请求第二无人机在发送的UWB信号中携带对应的第二信息。
  6. 根据权利要求1所述的无人机定位方法,其中,所述方法还包括:
    每隔第一设定周期与所述至少三台第二无人机交互UWB信号。
  7. 根据权利要求1所述的无人机定位方法,其中,所述方法还包括:
    在检测到所述第一无人机已恢复接收卫星定位信号的情况下,基于接收的卫星定位信号确定所述第一无人机的实时定位信息。
  8. 一种无人机定位装置,所述装置包括:
    第一确定单元,配置为在所述第一无人机丢失卫星定位信号的情况下,基于UWB信号确定至少三台第二无人机中的每台第二无人机的第一信息和第二信息;所述第一信息表征每台第二无人机与所述第一无人机之间的 相对距离;所述第二信息由第二无人机在发送的UWB信号中携带,表征第二无人机基于卫星定位信号测得的实时定位信息;
    第二确定单元,配置为根据所述至少三台第二无人机中的每台第二无人机的第一信息和第二信息,确定所述第一无人机的实时定位信息。
  9. 一种第一无人机,包括:处理器和配置为存储能够在处理器上运行的计算机程序的存储器,
    其中,所述处理器配置为运行所述计算机程序时,执行权利要求1-7任一项所述方法的步骤。
  10. 一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-7任一项所述方法的步骤。
PCT/CN2021/115673 2020-12-02 2021-08-31 一种无人机定位方法、装置及存储介质 WO2022116609A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21899645.2A EP4207822A1 (en) 2020-12-02 2021-08-31 Unmanned aerial vehicle positioning method and apparatus, and storage medium
US18/250,240 US20230410662A1 (en) 2020-12-02 2021-08-31 Uav positioning method and device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011403625.4A CN113766416A (zh) 2020-12-02 2020-12-02 一种无人机定位方法、装置及存储介质
CN202011403625.4 2020-12-02

Publications (1)

Publication Number Publication Date
WO2022116609A1 true WO2022116609A1 (zh) 2022-06-09

Family

ID=78786155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115673 WO2022116609A1 (zh) 2020-12-02 2021-08-31 一种无人机定位方法、装置及存储介质

Country Status (4)

Country Link
US (1) US20230410662A1 (zh)
EP (1) EP4207822A1 (zh)
CN (1) CN113766416A (zh)
WO (1) WO2022116609A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12080058B2 (en) * 2022-09-06 2024-09-03 University Of Electronic Science And Technology Of China System for real-time target identification of unmanned aerial vehicle based on embedded technique and improved YOLO4 algorithm
CN115826622B (zh) * 2023-02-13 2023-04-28 西北工业大学 一种无人机群夜间协同定位方法
CN116961731B (zh) * 2023-08-11 2024-08-23 中电信数智科技有限公司 一种基于k-means算法的天地一体化无人机群调度方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180356532A1 (en) * 2015-11-18 2018-12-13 Korea Aerospace Research Institute Apparatus for determining precise location and method for determining precise location in woodlands
CN109154833A (zh) * 2017-09-28 2019-01-04 深圳市大疆创新科技有限公司 无人机所处区域的确定方法、终端设备及无人机
CN110716222A (zh) * 2019-11-11 2020-01-21 北京航空航天大学 一种基于无人机的无人车导航方法及系统
CN111473784A (zh) * 2020-04-16 2020-07-31 南京航空航天大学 基于分布节点信息区块的无人机集群协同导航系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170040961A (ko) * 2015-10-06 2017-04-14 엘지이노텍 주식회사 무인비행체 무선충전 시스템 및 이의 구동 방법
CN105607054A (zh) * 2016-01-27 2016-05-25 北京工业大学 收发一体式超宽带飞行雷达定时采样探测方法
CN108490473B (zh) * 2018-02-10 2022-04-26 深圳大学 一种融合gnss和uwb的无人机增强定位方法与系统
CN108521670B (zh) * 2018-03-14 2020-10-23 中国人民解放军国防科技大学 面向多机紧密编队飞行基于uwb通信与定位方法及一体化系统
CN109911188B (zh) * 2019-03-18 2022-02-11 东南大学 非卫星导航定位环境的桥梁检测无人机系统
CN110632553A (zh) * 2019-09-23 2019-12-31 深圳一电航空技术有限公司 定位方法、装置、系统、计算机可读存储介质及无人机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180356532A1 (en) * 2015-11-18 2018-12-13 Korea Aerospace Research Institute Apparatus for determining precise location and method for determining precise location in woodlands
CN109154833A (zh) * 2017-09-28 2019-01-04 深圳市大疆创新科技有限公司 无人机所处区域的确定方法、终端设备及无人机
CN110716222A (zh) * 2019-11-11 2020-01-21 北京航空航天大学 一种基于无人机的无人车导航方法及系统
CN111473784A (zh) * 2020-04-16 2020-07-31 南京航空航天大学 基于分布节点信息区块的无人机集群协同导航系统及方法

Also Published As

Publication number Publication date
EP4207822A1 (en) 2023-07-05
US20230410662A1 (en) 2023-12-21
CN113766416A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2022116609A1 (zh) 一种无人机定位方法、装置及存储介质
US11506512B2 (en) Method and system using tightly coupled radar positioning to improve map performance
US11422253B2 (en) Method and system for positioning using tightly coupled radar, motion sensors and map information
US10440678B2 (en) Estimating locations of mobile devices in a wireless tracking system
US12013472B2 (en) System and method for fusing dead reckoning and GNSS data streams
EP2616774B1 (en) Indoor positioning using pressure sensors
US11287824B2 (en) Detecting a location of an autonomous device
US11875519B2 (en) Method and system for positioning using optical sensor and motion sensors
US10732298B2 (en) Operating device, operating method, operating system, and operating program
Almansa et al. Autocalibration of a mobile uwb localization system for ad-hoc multi-robot deployments in gnss-denied environments
US20190139422A1 (en) Companion drone to assist location determination
CN111796315A (zh) 无人机室内外的定位方法及装置
US10146230B2 (en) Control device, optical device, and control method for tracking unmanned aerial vehicle, and system and program therefor
WO2018094863A1 (zh) 一种定位方法、装置和计算机存储介质
WO2020113391A1 (zh) 航向的确定方法、设备、存储介质和可移动平台
WO2015179016A2 (en) Direct geolocation from tdoa, fdoa, and agl
CN114861725A (zh) 一种目标感知跟踪的后处理方法、装置、设备及介质
Li et al. Research on relative positioning system of UAVs Swarm based on distributed UWB
JP2003232843A (ja) 電波測距装置
US20240310848A1 (en) Apparatus and method for detecting indoor environment using unmanned mobile vehicle
CN115307629A (zh) 一种用于车辆的融合定位系统
Colucci Development and implementation of a customized flight control system for an Unmanned Aerial Vehicle operating in a connected Industry environment
Chu et al. A Performance Analysis on Swarm Drone Loco Positioning System for Two-Way Ranging Protocol
WO2023107584A1 (en) Systems and techniques for dynamic mobile management using computer vision and navigation sensors
CN117452468A (zh) 导航定位方法及其设备、无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021899645

Country of ref document: EP

Effective date: 20230327

NENP Non-entry into the national phase

Ref country code: DE