WO2022116125A1 - 一种天线模组及天线阵列 - Google Patents

一种天线模组及天线阵列 Download PDF

Info

Publication number
WO2022116125A1
WO2022116125A1 PCT/CN2020/133769 CN2020133769W WO2022116125A1 WO 2022116125 A1 WO2022116125 A1 WO 2022116125A1 CN 2020133769 W CN2020133769 W CN 2020133769W WO 2022116125 A1 WO2022116125 A1 WO 2022116125A1
Authority
WO
WIPO (PCT)
Prior art keywords
horizontal
antenna module
antenna
interval
horizontal extension
Prior art date
Application number
PCT/CN2020/133769
Other languages
English (en)
French (fr)
Inventor
周伟希
王贤彪
刘国文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080107669.4A priority Critical patent/CN116569413A/zh
Priority to PCT/CN2020/133769 priority patent/WO2022116125A1/zh
Publication of WO2022116125A1 publication Critical patent/WO2022116125A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an antenna module and an antenna array.
  • millimeter wave millimeter wave
  • 5G millimeter wave frequency bands According to the International Telecommunication Union (ITU), 24.25-27.5GHz, 37-43.5GHz, 45.5-47GHz, 47.2-48.2GHz and 66-71GHz are 5G millimeter wave frequency bands.
  • the 5G millimeter-wave frequency bands used by various operators may be different, so it is required that the millimeter-wave antennas installed on mobile high-tech electronic products should cover as many frequency bands as possible.
  • the antenna modules installed on electronic products are mainly patch antennas, which have relatively narrow bandwidths, making it difficult to achieve broadband and multi-frequency coverage.
  • an embodiment of the present application provides an antenna module, including: four radiating units arranged around and two feeding structures; An interval, a second interval, a third interval and a fourth interval, the first interval and the third interval are aligned and communicated, and the second interval and the fourth interval are aligned and communicated; the two feeding structures cross each other, so the Two ends of the first feeding structure are respectively accommodated in the first interval and the third interval, and both ends of the second feeding structure are accommodated in the second interval and the fourth interval, respectively.
  • the antenna module excites two orthogonal radiation energy through two feeding structures respectively, so as to realize dual polarization.
  • the antenna module structure provided by the present application can cover all commercial millimeter-wave frequency bands when in use, and can seamlessly realize global roaming, which has strong commercial value.
  • each of the radiation units includes a horizontal radiator and a vertical radiator;
  • the horizontal radiator is a square metal sheet located on top of the radiation unit;
  • the top end of the vertical radiator is connected to the horizontal radiator, and the bottom end of the vertical radiator is connected to the antenna reference ground.
  • the vertical radiator includes a first horizontal extension body and a first metallized via hole; the first horizontal extension body passes through the first metallized vias are connected; on the first horizontal extension body, the first metallized vias connecting the upper structure and the first metallization vias connecting the lower structure are arranged on the first horizontal extension body sides.
  • the first horizontal extension body is a square metal sheet.
  • the sum of the length of the side of the first horizontal extension and the length of the first metallized via is the sum of the signal at the center frequency of the antenna module. quarter wavelength.
  • each of the feed structures includes a horizontal feed structure and a vertical feed structure; the horizontal feed structure is located on top of the feed structure a metal sheet; the top end of the vertical feeding structure is connected to the horizontal feeding structure, and the bottom end of the vertical feeding structure is connected to a radio frequency circuit.
  • the horizontal feeding structure is composed of two rectangular structures connected in the middle by a columnar structure, and the width of the rectangular structure is greater than the width of the columnar structure.
  • the vertical feed structure includes a second horizontal extension body and a second metallized via; A metallized via connection; on the first horizontal extension body, the first metallized via hole connecting the upper layer structure and the first metallization via hole connecting the lower layer structure are arranged on the first horizontal extension body on both sides.
  • the second horizontal extension body is a square metal sheet.
  • the side length of the horizontal radiator is a quarter wavelength of the center frequency of the antenna module.
  • the radiation unit and the feeding structure are encapsulated in two prepreg layers and a board core layer; There is the board core layer; the semi-cured layer is provided with a metal layer, and the first horizontal extension body in the vertical radiator and the second horizontal extension body of the vertical feeding structure are embedded in the metal layer middle.
  • an embodiment of the present application provides an antenna array, including a plurality of antenna modules according to the first aspect; the antenna modules are distributed in an array of M rows and N columns, where M is an integer greater than 0, so The N is an integer greater than 0.
  • 1 is a schematic diagram of an existing antenna module
  • FIG. 2 is a schematic diagram of another existing antenna module
  • FIG. 3 is a top view of an antenna module according to an embodiment of the present application.
  • FIG. 4 is a cross-sectional view of an antenna module according to an embodiment of the present application.
  • FIG. 5 is a three-dimensional schematic diagram of a single radiation unit in an embodiment of the present application.
  • FIG. 6 is a side view of a single radiation unit in an embodiment of the application.
  • FIG. 7 is an analytic diagram of a horizontally extending body in an embodiment of the present application.
  • FIG. 8 is an example diagram of the adjustment of the horizontal extension body in the embodiment of the present application.
  • FIG. 9 is a perspective view of two feed structures in an embodiment of the present application.
  • FIG. 10 is a side view of a single feed structure in the embodiment of the application.
  • FIG. 11 is a top view of two horizontal feed structures in an embodiment of the present application.
  • FIG. 13 is a gain curve diagram of an antenna module provided by an embodiment of the application.
  • FIG. 14 is a directional diagram of an antenna module at 24 GHz provided by an embodiment of the application.
  • FIG. 15 is a directional diagram of an antenna module at 43.5 GHz provided by an embodiment of the application.
  • FIG. 16 is a schematic top view of an antenna array according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a conventional antenna module.
  • the existing antenna module realizes dual frequency through multi-layer coupling, usually the lower patch generates low frequency, and the upper patch generates high frequency.
  • the dual-frequency scheme of this antenna module is realized by coupling between patches. Since the layer spacing in the package is not arbitrary, the ratio of the two resonant frequencies has a low degree of freedom, and the relative bandwidth of each frequency band is narrow, making it difficult to Covers the currently required bandwidth.
  • the antenna module requires additional stacking, which usually results in an increase in height, which is not conducive to low-profile designs.
  • FIG. 2 is a schematic diagram of another conventional antenna module.
  • the scheme realizes dual-frequency operation and expands the bandwidth by adding parasitic elements to the radiation patch.
  • the parasitic unit is introduced into the antenna module, and the main patch can excite the parasitic unit through coupling, which can change the antenna impedance, thereby improving the high-frequency gain of the antenna module.
  • the high-frequency signal of this scheme is obtained through parasitic elements, and is not used in the form of a low-frequency patch antenna. Although the available bandwidth may be obtained, it often brings distortion of the pattern.
  • the same layer does not require additional stacking, but it will increase the size of the cell, and the cell spacing will be reduced after the array is formed, and the mutual coupling of the array elements will often deteriorate.
  • the embodiments of the present application provide a new type of antenna module to solve the problem of insufficient bandwidth in the above-mentioned antenna module.
  • the antenna module can solve the problem of insufficient bandwidth in the above-mentioned antenna module, and at the same time can obtain a stable pattern, achieve ultra-wideband frequency coverage on a lower profile, and meet the requirements of millimeter waves in 5G New Radio (5G New Radio).
  • 5G New Radio 5G New Radio
  • the full coverage of the frequency band (FR2 frequency band), and easy to implement in the package, has good electrical performance and mass production.
  • the antenna module provided by the embodiments of the present application can be produced by using a process of embedding an antenna in a package.
  • Antenna in package is a technology that integrates the antenna and chip in the package based on packaging materials and processes to achieve system-level wireless functions. Its advantages are: simplified system design, product miniaturization, and low cost. Since AiP technology conforms to the trend of increasing integration of silicon-based semiconductor processes, it provides a good antenna and packaging solution for system-level wireless chips. And with the rapid development of communication information, AiP technology has become a necessary technology for the fifth generation mobile communication technology (5th generation mobile networks, 5G technology) and automotive radar chips.
  • FIG. 3 is a top view of an antenna module according to an embodiment of the present application.
  • the antenna module includes four radiating elements 1 and two feeding structures 2 .
  • the four radiation units 1 are arranged around in the horizontal direction, and a first interval 301 , a second interval 302 , a third interval 303 and a fourth interval 304 are sequentially arranged between the adjacent radiation units of the four radiation units 1 for placing the Two feed structures 2 .
  • the first space 301 and the third space 303 are used for placing the feeding structure 2 shown by the solid line
  • the second space 302 and the fourth space 304 are used for placing the feeding structure 2 shown by the dotted line.
  • first interval 301 and the third interval 303 are aligned and communicated, that is, they are aligned and communicated on the same channel, so that the feeding structure 2 shown by the solid line can be placed on the channel, and the feeding structure shown by the solid line can be placed on the channel.
  • Two ends of the electrical structure 2 are respectively accommodated in the first space 301 and the third space 303 .
  • the channel shown in FIG. 3 is of a straight type. In practical applications, the channel may also be of a curved type, which is not limited in the embodiment of the present application.
  • the second space 302 and the fourth space 304 are also aligned and communicated, and the two ends of the feeding structure 2 shown by the dotted line are respectively accommodated in the second space 302 and the fourth space 304 .
  • the spacing between the four radiating elements 1 is d, and adjusting the size of d can control the spacing between the radiating elements 1 and the feeding structure 2, so as to adjust the antenna impedance and obtain appropriate impedance matching.
  • FIG. 4 is a side view of the antenna module shown in FIG. 3 .
  • the antenna module is packaged by connecting a substrate and a radio frequency integrated circuit chip (RFIC) through solder balls.
  • the substrate is a three-layer structure, and each layer structure can embed the antenna in the dielectric layer according to the method of encapsulating the embedded antenna.
  • the material used for filling the dielectric layer may be a material suitable for encapsulating the embedded antenna.
  • the first dielectric layer 3 may be a prepreg layer (also referred to as a prepreg, a PP layer)
  • the second dielectric layer 4 may be a core layer (also referred to as a core layer)
  • the third dielectric layer 5 may be It is a prepreg layer.
  • This three-layer structure can use the characteristics of the prepreg layer to enhance the flatness of the package.
  • the first dielectric layer 3 , the second dielectric layer 4 and the third dielectric layer 5 may all be provided with metal layers, and these metal layers may be embedded in the three-layer structure in a manner of encapsulating the embedded antenna. Via holes may be provided between the metal layers to realize electrical connection.
  • the radiation unit 1 part of the antenna module is first described below.
  • the first dielectric layer 3 is embedded with seven metal layers
  • the second dielectric layer 4 has no metal layer
  • the third dielectric layer 5 is embedded with seven metal layers.
  • the antenna designer may set metal layers with different numbers of layers according to actual needs, which is not limited in this embodiment of the present application. It can be understood that the metal layers in FIG. 4 are only an example, and in practical applications, the spacing between the metal layers can be adjusted according to actual needs.
  • metal sheets of different lengths may be embedded in the metal layer for signal transmission. Other parts of the metal layer that are not embedded in the metal sheet are filled with the material used to fill the dielectric layer.
  • the metal layers can be connected through vias for signal transmission. Therefore, after the antenna module receives the signal, the signal can be transmitted to the antenna reference ground 7 through the metal sheet embedded in the metal layer and the via hole.
  • the size, shape, length, and position of the embedded metal sheet in the metal layer can be designed according to actual needs, which are not limited in the embodiments of the present application.
  • the metal layer on the top of the first dielectric layer may be exposed on the top of the antenna module according to actual needs, or embedded inside the antenna module according to actual needs, which is not limited in this embodiment of the present application. It can be understood that, the metal layer under the antenna reference ground 7 in the third dielectric layer 5 may be embedded with a metal sheet or not embedded with a metal sheet according to actual needs, which is not limited in this embodiment of the present application.
  • the antenna module provided in the embodiment of the present application has a total of 4 radiating units symmetrically distributed, and the structures of the 4 radiating units are similar.
  • One of the radiating units will be described below, and the structures of the other radiating units may refer to the following embodiments.
  • FIG. 5 is a schematic perspective view of a single radiation unit in an embodiment of the present application.
  • FIG. 6 is an A-A sectional view of the radiation unit shown in FIG. 5 .
  • the radiation unit includes seven metal layers in the first dielectric layer 3 , via holes in the second dielectric layer 4 , two metal layers in the third dielectric layer 5 , and via holes between all the metal layers.
  • the first metal layer 11 is embedded with a square metal sheet with a side length w, and the value of w is set according to the frequency range of the signal to be sent and received by the antenna, usually In other words, it should be a quarter wavelength of the signal at the center frequency of the frequency range.
  • the square metal sheet may also be referred to as the horizontal radiator 11 or the horizontal radiating part of the radiating unit.
  • the vertical radiation part of the radiation unit ie, the vertical radiator 12
  • the horizontal extension body 121 is a square metal sheet, and the horizontal extension bodies 121 are longitudinally connected by metallized vias 123 .
  • the horizontal radiator 11 and the horizontal extension body 121 may also be longitudinally connected through metallized vias 123 .
  • the antenna reference ground 7 and the horizontal extension body 121 may also be longitudinally connected through metallized vias 123 .
  • a circle (or piece) of exuded metal will be left in the metal layer that can be embedded with metal sheets but not embedded with metal sheets, as shown in Figure 6
  • the exuded metal 122 (including exuded metal 122a, exuded metal 122b, exuded metal 122c, exuded metal 122d).
  • the exuded metal 122 does not have much influence on the technical effect of the embodiments of the present application, and the embodiments of the present application do not exclude the technical solution without the exuded metal 122 .
  • the transmission path of the signal received by the antenna module can be equivalent to a bending line, and the bending line is represented by a dotted line 124 in FIG. 6 .
  • the signal can travel along this dashed line 124 .
  • the total length of the dashed line 124 is the total length of the bend line.
  • the value of the total length of the bent line can be set according to the frequency range of the signal to be sent and received by the antenna, and generally speaking, it should be a quarter wavelength of the signal at the center frequency of the frequency range. The following explains how the signal transmission path realizes the bending through FIG. 7 .
  • FIG. 7 is an analytical diagram of a horizontally extending body in an embodiment of the present application.
  • These horizontally extending bodies 121 specifically include a horizontally extending body 121a, a horizontally extending body 121b, and a horizontally extending body 121c.
  • the shapes of the horizontally extending bodies 121 are all squares. In practical applications, other shapes may be designed according to actual needs, which are not limited in the embodiments of the present application.
  • These horizontal extensions 121 use different via holes to connect the metal sheet of the previous layer and the metal sheet of the next layer, and the via holes on the horizontal extension body 121 are generally arranged on both sides of the horizontal extension body 121, so the signals transmitted from the via holes are
  • the horizontal extension bodies 121 need to pass through, so that the signal received by the antenna module passes through the horizontal extension bodies 121 , that is, the signal transmission path is bent.
  • the side lengths L2 of the horizontally extending body 121a and the horizontally extending body 121b can be designed according to actual needs.
  • the designer can adjust the length of the signal path through the horizontal extension body 121 by adjusting the side length L2 of the horizontal extension body 121a and the horizontal extension body 121b, thereby adjusting the bending degree of the signal transmission path and adjusting the overall performance of the antenna.
  • the height h2 of the horizontal extension body 121 a is actually the distance between the horizontal extension body 121 a and the antenna reference ground 7 .
  • the distance can be adjusted by arranging the horizontal extensions 121a in different metal layers.
  • the horizontal extension body 121a shown in FIG. 6 is disposed on the third metal layer counting down from the top of the antenna.
  • the designer can set the horizontal extension body 121a on the fourth layer from the top of the antenna, so that the height h2 of the horizontal extension body 121a is reduced.
  • the side length design and height design of the horizontal extending body 121b and the horizontal extending body 121c are similar to those of the horizontal extending body 121a, which will not be repeated here.
  • the depth of the metallized vias 123 connected between the two horizontal extensions 121 is larger. For example, in FIG.
  • FIG. 6 and FIG. 7 only show the embodiment designed with three horizontal extension bodies 121. In practical applications, the designer can also design more horizontal extension bodies 121 or design less horizontal extension bodies 121 according to the actual situation. The embodiment of the present application does not limit the number of the horizontal extension bodies 121 .
  • the side lengths and heights of all the horizontal extensions 121 and the depths of the metallized vias 123 can be adjusted according to the actual situation, so as to obtain a suitable structure and balance the height of the antenna and the overall performance. This is not limited.
  • FIG. 8 is a diagram of three design variations of the horizontally extending body in the embodiment of the present application.
  • the radiation unit on the left side of FIG. 8 is similar to that of FIG. 6 and will not be repeated here. Taking the radiation unit on the left side of Figure 8 as the prototype, the two horizontal extensions corresponding to the side length L2 are removed in the design, and the corresponding metal layer will no longer be provided with metal sheets, and the metallized vias can connect the lowermost horizontal extension.
  • the new design scheme is shown in the schematic diagram on the upper right side of Figure 8. Under this design, the antenna is designed with a horizontal extension body, and the transmission path of the antenna signal is shown by the dotted line in the schematic diagram on the upper right side of FIG. 8 .
  • the horizontal extension corresponding to the side length L1 is removed during the design, and the corresponding metal layer is no longer provided with metal sheets, and the metallized vias can be connected to the antenna reference ground below, resulting in a new design.
  • the scheme is shown in the schematic diagram on the right side of the middle of Figure 8. Under this design, the antenna is designed with two horizontal extensions, and the transmission path of the antenna signal is shown by the dotted line in the schematic diagram on the right side of the middle of Figure 8.
  • the two horizontal extensions corresponding to the side length L2 and the horizontal extension body corresponding to the side length L1 are removed during the design, and the corresponding metal layer is no longer provided with metal sheets, and the antenna design does not involve
  • the metallized vias can connect the horizontal radiating element on the top and the antenna reference ground below.
  • the new design scheme is shown in the schematic diagram on the lower right side of Figure 8. Under this design, the antenna has no horizontal extension, and the transmission path of the antenna signal is shown by the dotted line in the schematic diagram on the lower right side of FIG. 8 .
  • the above design schemes are only a few examples of antenna design. In practical applications, designers can also make other antenna design schemes according to the actual situation, such as the antenna design scheme of 4 horizontal extensions, the antenna design of 5 horizontal extensions Design solutions, etc., are not limited in the embodiments of the present application.
  • the feeding of the antenna is completed by two orthogonal feeding structures 2, which respectively excite two orthogonal radiated energies to realize the function of dual polarization.
  • FIG. 9 is a perspective view of the two feeding structures in the embodiment of the application. It can be seen that the two feed structures are staggered up and down and placed in a cross. Specifically, one feed structure is placed above the other feed structure with overlapping portions as viewed from the top view FIG. 3 .
  • FIG. 10 is a cross-sectional view of a single feeding structure in an embodiment of the present application. Each feeding structure is divided into a horizontal feeding structure 21 and a vertical feeding structure 22, the horizontal feeding structure 21 is located on the top of the feeding structure, and the horizontal feeding structure 21 is located at the top of the feeding structure 21.
  • the horizontal feeding structure 21 is formed by connecting two rectangular structures 211 with a columnar structure 212 sandwiched therebetween.
  • the rectangular structure 211 may be a rectangular metal sheet
  • the columnar structure 212 may be a strip-shaped metal sheet with a narrow width.
  • the horizontal feeding structure 21 similar to the “dumbbell” shape can make the intersecting part of the two horizontal feeding structures (as viewed from the top view in FIG. 3 ) smaller, thereby reducing the influence between the two electromagnetic fields and reducing the two horizontal feeding structures.
  • the degree of coincidence of polarizations between the feeding structures increases the degree of polarization isolation.
  • the total length of the horizontal feeding structure 21 is L3, and by adjusting L3, the frequency range of the signal sent and received by the antenna can be adjusted.
  • the vertical feeding structure 22 is formed by connecting the horizontal extension body 221 and the metallized via hole 222 .
  • the horizontal extension body 221 includes a horizontal extension body 221a and a horizontal extension body 221b.
  • the vias through which the horizontal extension body 221a connects the upper metal layer and the lower metal layer are generally arranged on both sides of the horizontal extension body 221a. Therefore, when a signal is transmitted to the horizontal extension body 221a
  • the horizontal extension body 221a passes through the horizontal extension body 221a horizontally, which is similar to the horizontal extension body 121 in the respective embodiments corresponding to FIG. 6 , and will not be repeated here.
  • the horizontal extension body 221b The top ends of the vertical feed structures 22 are connected to the horizontal feed structures through metallized vias 222 .
  • the bottom of the vertical feeding structure is connected to the radio frequency circuit through the transmission line 8 .
  • the transmission line 8 is a 50 ohm transmission line.
  • FIG. 11 is a top view of two horizontal feeding structures in an embodiment of the present application.
  • the width w1 of the rectangular structure 211 is greater than the width w2 of the columnar structure 212 . Reducing the width w2 of the columnar structure 212 can make the intersecting part of the two horizontal feeding structures smaller, thereby reducing the influence between the two electromagnetic fields, reducing the degree of overlap of polarization between the two horizontal feeding structures, and increasing the Polarization isolation.
  • adjusting the width w1 of the rectangular structure 211 can change the impedance of the feeding structure, the larger w1, the lower the impedance, and vice versa.
  • the distance between the two rectangular structures 211 is the length L4 of the columnar structure 22 , which can also be adjusted according to design requirements. The designer can adjust the width w1 of the rectangular structure and the width w2 of the columnar structure according to actual needs and the comprehensive performance of the antenna, which is not limited in this embodiment of the present application.
  • the radio frequency integrated circuit chip may be replaced by a circuit board printed with a radio frequency circuit, which is not limited in the embodiment of the present application.
  • the feeding structure is connected to the radio frequency integrated circuit chip, and the main function is to connect the radio frequency circuit on the radio frequency integrated circuit chip. Therefore, other design solutions with radio frequency circuits belong to the technical solutions provided by the embodiments of the present application.
  • the radio frequency integrated circuit chip is connected to the feeding structure through a transmission line.
  • the radio frequency integrated circuit chip can be connected to the transmission line on the feeding structure through solder balls.
  • FIG. 12 is a reflection coefficient curve diagram of an antenna module provided by an embodiment of the present application.
  • FIG. 13 is a gain curve diagram of an antenna module provided by an embodiment of the present application. These two curves are obtained by simulation. It can be seen from these two curves that the antenna module covers the frequency band of n257-n260 well, that is, it covers the two high and low frequency bands of millimeter wave, and can achieve global roaming coverage.
  • FIG. 14 is a directional diagram of an antenna module provided in an embodiment of the present application at 24 GHz.
  • FIG. 15 is a directional diagram at 43.5 GHz of an antenna module provided by an embodiment of the present application. From Figure 14 and Figure 15, it can be seen that the high-frequency and low-frequency far-field three-dimensional pattern characteristics of the antenna module, that is, the antenna module has good directional radiation characteristics at high and low frequencies, meeting the index.
  • FIG. 16 is a schematic top view of an antenna array according to an embodiment of the present application.
  • the antenna array includes 4 antenna modules according to the above embodiments, and the 4 antenna modules are distributed in 2 rows and 2 columns.
  • the designer can also configure several antenna modules according to the actual situation to form an antenna array with M rows and N columns (M is an integer greater than 0, and N is an integer greater than 0). limited.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例提供的天线模组通过两个馈电结构分别激励起两路正交的辐射能量,实现双极化。并且,本申请提供的天线模组结构在使用时能够覆盖所有的商用毫米波频段,可以无缝实现全球漫游,有很强的商用价值。

Description

一种天线模组及天线阵列 技术领域
本申请涉及通信技术领域,尤其涉及一种天线模组及天线阵列。
背景技术
随着高科技电子产品的普及,特别是为了配合移动的需求,大多数移动的高科技电子产品都增加了无线通讯的功能。在第五代移动通信技术(5th generation mobile networks,5G技术)中,毫米波(millimeter wave)天线应用广泛。
国际电信联盟(international telecommunication union,ITU)规定,24.25-27.5GHz、37-43.5GHz、45.5-47GHz、47.2-48.2GHz和66-71GHz为5G毫米波频段。各个运营商所使用的5G毫米波频段可能不相同,因此要求安装在移动高科技电子产品上的毫米波天线应该尽可能覆盖更多的频段。
目前,安装在电子产品上的天线模组主要是贴片天线,相对而言带宽较窄,较难实现宽频、多频的覆盖。
发明内容
第一方面,本申请实施例提供了一种天线模组,包括:四个环绕设置的辐射单元,以及两个馈电结构;所述四个辐射单元中的相邻辐射单元间依次设置有第一间隔,第二间隔,第三间隔和第四间隔,所述第一间隔和第三间隔对齐相通,所述第二间隔和第四间隔对齐相通;所述两个馈电结构相互交叉,所述第一馈电结构的两端被分别收容在所述第一间隔和第三间隔中,所述第二馈电结构的两端被分别收容在第二间隔和第四间隔中。本申请实施例提供的技术方案中,天线模组通过两个馈电结构分别激励起两路正交的辐射能量,实现双极化。并且,本申请提供的天线模组结构在使用时能够覆盖所有的商用毫米波频段,可以无缝实现全球漫游,有很强的商用价值。
结合第一方面,在本申请实施例的一种实现方式中,每个所述辐射单元包括水平辐射体和垂直辐射体;所述水平辐射体为位于所述辐射单元顶部的正方形金属片;所述垂直辐射体的顶端连接所述水平辐射体,所述垂直辐射体的底端连接天线参考地。
结合第一方面,在本申请实施例的一种实现方式中,所述垂直辐射体包括第一水平延展体和第一金属化过孔;所述第一水平延展体之间通过所述第一金属化过孔连接;所述第一水平延展体上,连接上层结构的所述第一金属化过孔与连接下层结构的所述第一金属化过孔设置在所述第一水平延展体的两侧。
结合第一方面,在本申请实施例的一种实现方式中,所述第一水平延展体为正方形金属片。
结合第一方面,在本申请实施例的一种实现方式中,所述第一水平延展体的边长和所述第一金属化过孔的长度总和为所述天线模组中心频率的信号的四分之一波长。
结合第一方面,在本申请实施例的一种实现方式中,每个所述馈电结构包括水平馈电 结构和垂直馈电结构;所述水平馈电结构为位于所述馈电结构顶部的金属片;所述垂直馈电结构的顶端连接所述水平馈电结构,所述垂直馈电结构的底端接入射频电路。
结合第一方面,在本申请实施例的一种实现方式中,所述水平馈电结构由中间通过柱状结构连接的两个长方形结构组成,所述长方形结构的宽度大于所述柱状结构的宽度。
结合第一方面,在本申请实施例的一种实现方式中,所述垂直馈电结构包括第二水平延展体和第二金属化过孔;所述第一水平延展体之间通过所述第一金属化过孔连接;所述第一水平延展体上,连接上层结构的所述第一金属化过孔与连接下层结构的所述第一金属化过孔设置在所述第一水平延展体的两侧。
结合第一方面,在本申请实施例的一种实现方式中,所述第二水平延展体为正方形金属片。
结合第一方面,在本申请实施例的一种实现方式中,所述水平辐射体的边长为所述天线模组中心频率的四分之一波长。
结合第一方面,在本申请实施例的一种实现方式中,所述辐射单元和所述馈电结构封装在两个半固化层和板芯层中;所述两个半固化层之间设置有所述板芯层;所述半固化层内设置有金属层,所述垂直辐射体中的第一水平延展体和所述垂直馈电结构的第二水平延展体内嵌在所述金属层中。
第二方面,本申请实施例提供一种天线阵列,包括多个如第一方面的天线模组;所述天线模组呈M行N列的阵列分布,所述M为大于0的整数,所述N为大于0的整数。
附图说明
图1为现有天线模组的示意图;
图2为另一种现有天线模组的示意图;
图3为本申请实施例提供的一种天线模组的俯视图;
图4为本申请实施例提供的一种天线模组的剖面图;
图5为本申请实施例中单个辐射单元的立体示意图;
图6为本申请实施例中单个辐射单元的侧视图;
图7为本申请实施例中水平延展体的解析图;
图8为本申请实施例中水平延展体调节的示例图;
图9为本申请实施例中两个馈电结构的立体图;
图10为本申请实施例中单独一个馈电结构的侧视图;
图11为本申请实施例中两个水平馈电结构的俯视图;
图12为本申请实施例提供的天线模组的反射系数曲线图;
图13为本申请实施例提供的天线模组的增益曲线图;
图14为本申请实施例提供的天线模组在24GHz的方向图;
图15为本申请实施例提供的天线模组在43.5GHz的方向图;
图16为本申请实施例提供的一种天线阵列的俯视示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行详细描述。
图1为现有天线模组的示意图。现有天线模组通过多层耦合,实现双频,通常下贴片产生低频,上贴片产生高频。这种天线模组的双频方案通过耦合贴片间耦合得以实现,由于在封装中层间距不是任意的,两个谐振频率的比值自由度较低,且每个频段的相对带宽都较窄,难以覆盖目前所需带宽。此外,该天线模组需要额外的叠层,通常会带来高度上的增加,不利于低剖面的设计。
图2为另一种现有天线模组的示意图。该方案通过在辐射贴片增加寄生单元,从而实现双频工作,拓展带宽。天线模组中引入寄生单元,主贴片能够通过耦合激励寄生单元,能够改变天线阻抗,从而提高天线模组的高频增益。然而,该方案的高频信号是通过寄生单元得到的,而不用于低频的贴片天线形式,虽然可能得到可用的带宽,但是往往会带来方向图的畸变。其次,该方案中,同层不需要额外的叠层但会带来单元尺寸的增加,组阵后单元间距缩小,阵元互耦往往会恶化。
有鉴于此,本申请实施例为解决上述天线模组中带宽不足的情况,提供了一种新型的天线模组。该天线模组能够解决上述天线模组中带宽不足的情况,同时可以获得稳定的方向图,在较低的剖面上实现超宽带的频率覆盖,满足5G新空口(5G New Radio)中的毫米波频段(FR2频段)的全覆盖,并易于在封装中实现,具有很好的电性能和可量产性。
为了下述各实施例的描述清楚简洁,首先给出相关技术的简要介绍:
本申请实施例所提供的的天线模组可以采用封装内嵌天线工艺生产。封装内嵌天线(antenna in package,AiP)是基于封装材料与工艺,将天线与芯片集成在封装内,实现系统级无线功能的一门技术。其优点在于:简化系统设计、产品小型化、低成本。AiP技术由于顺应了硅基半导体工艺集成度提高的潮流,为系统级无线芯片提供了良好的天线与封装解决方案。且随着通信信息的快速发展,AiP技术已成为第五代移动通信技术(5th generation mobile networks,5G技术)与汽车雷达芯片必选的一项技术。
图3为本申请实施例提供的一种天线模组的俯视图。如图3所示,该天线模组包括四个辐射单元1和两个馈电结构2。这四个辐射单元1在水平方向环绕设置,四个辐射单元1的相邻辐射单元间依次设置有第一间隔301、第二间隔302、第三间隔303和第四间隔304,用于放置该两个馈电结构2。示例性的,第一间隔301和第三间隔303用于放置实线所示的馈电结构2,第二间隔302和第四间隔304用于放置虚线所示的馈电结构2。可以理解的是,第一间隔301和第三间隔303对齐相通,即在同一通道上对齐且连通,使得实线所示的馈电结构2可以放置到该通道上,且实线所示的馈电结构2的两端被分别收容在第一间隔301和第三间隔303。本申请实施例中图3所示的通道为直线型,在实际应用中,该通道还可以是弯曲型,本申请实施例对此不作限定。同理,第二间隔302和第四间隔304也对齐相通,虚线所示的馈电结构2的两端被分别收容在第二间隔302和第四间隔304。四个辐射单元1之间的间距为d,调整d的大小可以控制辐射单元1与馈电结构2之间的间距,从而调整天线阻抗,获得合适的阻抗匹配。
图4为图3所示天线模组的侧视图。该天线模组由基板和射频集成电路芯片(radio  frequency integrated circuit chip,RFIC)通过焊球连接后封装而成。其中,基板为三层结构,每层结构都可以按照封装内嵌天线的方式将天线内嵌在介质层中。填充介质层所用的材料可以是封装内嵌天线适用的材料。示例性的,第一介质层3可以是半固化层(也可以称为半固化片、PP层),第二介质层4可以是板芯层(也可以称为core层),第三介质层5可以是半固化层,这种三层结构能够利用半固化层的特点来增强封装平整度。第一介质层3、第二介质层4和第三介质层5中均可以设置有金属层,这些金属层可以以封装内嵌天线的方式内嵌在这三层结构中。金属层之间可以设置有过孔,以实现电气连接。以下首先对该天线模组的辐射单元1部分进行描述。
一、辐射单元:
如图4所示,第一介质层3内嵌有7层金属层,第二介质层4内无金属层,第三层介质层5内嵌有7层金属层。在实际应用中,天线设计人员可以根据实际需要设置不同层数的金属层,本申请实施例对此不做限定。可以理解的是,图4中的金属层仅是一种示例,在实际应用中,金属层之间的间距可以根据实际需要进行调节。
本申请实施例中,金属层中可以内嵌有不同长度的金属片,以供信号传输。金属层未内嵌金属片的其他部分,由填充介质层所用的材料填充。金属层之间可以通过过孔连接,以供信号传输。因此,天线模组接收到信号后,信号可以通过金属层中内嵌的金属片以及过孔传输至天线参考地7。金属层中内嵌金属片的大小、形状、长度、位置可以根据实际需要进行设计,本申请实施例对此不做限定。
可以理解的是,第一介质层顶部的金属层可以根据实际需要裸露在天线模组顶部,或者根据实际需要内嵌在天线模组内部,本申请实施例对此不做限定。可以理解的是,第三介质层5中天线参考地7下方的金属层可以根据实际需要内嵌金属片或者不内嵌金属片,本申请实施例对此不做限定。
以下提供一种较优的天线设计实施例:
本申请实施例提供的天线模组共有4个辐射单元对称分布,4个辐射单元的结构类似,以下将以其中一个辐射单元进行描述,其他辐射单元的结构可参照以下实施例。
图5为本申请实施例中单个辐射单元的立体示意图。图6为图5所示辐射单元的A-A剖面图。该辐射单元包括第一介质层3中的7层金属层、第二介质层4中的过孔、第三介质层5中的2层金属层以及所有金属层之间的过孔。
请参阅图6,在第一介质层1中,第一层金属层11内嵌有边长为w的正方形金属片,w的取值要根据天线要收发的信号的频率范围来设定,通常来说,应为频率范围的中心频率的信号的四分之一波长。该正方形金属片也可以称为水平辐射体11或辐射单元的水平辐射部分。而辐射单元的垂直辐射部分(即垂直辐射体12)由多层水平延展体121和金属化过孔123组成。其中,水平延展体121为正方形金属片,水平延展体121之间通过金属化过孔123纵向连接。可以理解的是,水平辐射体11与水平延展体121之间也可以通过金属化过孔123纵向连接。天线参考地7与与水平延展体121之间也可以通过金属化过孔123纵向连接。在过孔的形成过程中,钻孔后镀金属时,在可内嵌金属片但未内嵌金属片的金属层中会留下一圈(或一块)渗出的金属,即图6所示的渗出金属122(包括渗出金属122a、 渗出金属122b、渗出金属122c、渗出金属122d)。这种渗出金属122对本申请实施例的技术效果并无太大影响,本申请实施例不排除无渗出金属122的技术方案。
参考图6,天线模组接收到的信号传输的路径可以等效为一个弯折线该弯折线在图6中以虚线124表示。天线接收信号后,信号可以沿该虚线124传输。虚线124的总长度即弯折线的总长度。该弯折线的总长度取值可以根据天线要收发的信号的频率范围来设定,通常来说,应为频率范围的中心频率的信号的四分之一波长。以下通过图7解释信号传输的路径如何实现弯折。
图7为本申请实施例中水平延展体的解析图。这些水平延展体121具体包括水平延展体121a、水平延展体121b、水平延展体121c。在本申请实施例中,这些水平延展体121的形状均为正方形,在实际应用中,可以根据实际需要设计成其他形状,本申请实施例对此不做限定。这些水平延展体121连接上一层金属片和下一层金属片所用的过孔不同,且水平延展体121上的过孔一般设置在水平延展体121的两侧,因此从过孔传输的信号需要经过这些水平延展体121,从而使得天线模组接收到的信号经过这些水平延展体121,即信号传输的路径实现弯折。其中,水平延展体121a以及水平延展体121b的边长L2可以根据实际需要进行设计。设计人员可以通过调节水平延展体121a和水平延展体121b的边长L2来调节信号经过水平延展体121的路径长度,从而调节信号传输的路径的弯折程度,调整天线的整体性能。请参阅图6,水平延展体121a的高度h2实际上是水平延展体121a到天线参考地7之间的距离。该距离可以通过将水平延展体121a设置在不同的金属层来进行调节。示例性的,图6所示水平延展体121a设置在天线顶部往下数的第三层金属层。在实际应用中,设计人员可以将水平延展体121a设置在天线顶部往下数的第四层,则水平延展体121a的高度h2减小。水平延展体121b、水平延展体121c的边长设计、高度设计与水平延展体121a类似,此处不再赘述。一般地,当两个水平延展体121之间相隔的金属层较多时,两个水平延展体121之间连接的金属化过孔123的深度较大。例如图6中水平延展体121a与水平延展体121b相隔1层金属层,而水平延展体121b与水平延展体121c相隔2层金属层,因此它们之间的金属化过孔123的深度较大。图6和图7仅示出了设计有三个水平延展体121的实施例,在实际应用中,设计人员还可以根据实际情况设计更多的水平延展体121或者设计更少的水平延展体121,本申请实施例对水平延展体121的数量不做限定。可以理解的是,所有水平延展体121的边长、高度,以及金属化过孔123的深度均可以根据实际情况进行调节,用于得到合适的结构,平衡天线高度和整体性能,本申请实施例对此不做限定。
图8为本申请实施例中水平延展体的三种设计变化图。图8左侧的辐射单元与图6类似,此处不再赘述。以图8左侧的辐射单元为原型,设计时去除边长L2对应的两个水平延展体,则对应的金属层不再设置金属片,金属化过孔能够连接最下面的水平延展体,得到新的设计方案如图8右上侧示意图所示。这种设计下,天线设计有1个水平延展体,天线信号的传输路径如图8右上侧示意图的虚线所示。以图8左侧的辐射单元为原型,设计时去除边长L1对应的水平延展体,则对应的金属层不再设置金属片,金属化过孔能够连接下面的天线参考地,得到新的设计方案如图8中间右侧示意图所示。这种设计下,天线设计 有2个水平延展体,天线信号的传输路径如图8中间右侧示意图的虚线所示。以图8左侧的辐射单元为原型,设计时去除边长L2对应的两个水平延展体以及边长L1对应的水平延展体,则对应的金属层不再设置金属片,该天线设计不涉及水平延展体,金属化过孔能够连接顶部的水平辐射单元以及下面的天线参考地,得到新的设计方案如图8右下侧示意图所示。这种设计下,天线没有水平延展体,天线信号的传输路径如图8右下侧示意图的虚线所示。以上设计方案仅是天线设计时的几种举例,在实际应用中,设计人员还可以根据实际情况做出其他天线设计方案,例如4个水平延展体的天线设计方案,5个水平延展体的天线设计方案等,本申请实施例对此不做限定。
二、馈电结构;
本申请实施例中,天线的馈电是由两个正交的馈电结构2完成的,分别激励起两路正交的辐射能量,实现双极化的功能。
在俯视图图3中,这两个馈电结构2交叉放置,但实际上其在垂直方向上是分开的,如图9所示,图9为本申请实施例中两个馈电结构的立体图。可以看出,这两个馈电结构上下交错,交叉放置。具体地,一个馈电结构放置在另一个馈电结构的上方,且从俯视图图3观察有重叠部分。图10为本申请实施例中单独一个馈电结构的剖面图。每个馈电结构分为水平馈电结构21和垂直馈电结构22,该水平馈电结构21位于馈电结构的顶部,水平馈电结构21位于可以为位于馈电结构21顶部的长方形条状金属片,用于实现馈电功能。在一种更优的实现方式中,水平馈电结构21由两个长方形结构211中间夹着一个柱状结构212连接而成。其中,长方形结构211可以为长方形金属片,柱状结构212可以为宽度较窄的条状金属片。这种类似“哑铃”形态的水平馈电结构21能够使得两个水平馈电结构相交(从俯视图图3观察)的部分变小,从而减小两者电磁场之间的影响,减小两个水平馈电结构之间极化的重合度,增大极化隔离度。水平馈电结构21的总长度为L3,通过调节L3能够调节天线收发信号的频率范围。垂直馈电结构22由水平延展体221以及金属化过孔222连接而成。水平延展体221包括水平延展体221a和水平延展体221b,水平延展体221a连接上层金属层以及下层金属层的过孔一般设置在水平延展体221a的两侧,因此当信号传输至水平延展体221a时水平经过该水平延展体221a,与前述图6对应各个实施例中水平延展体121类似,此处不再赘述。水平延展体221b同理。垂直馈电结构22的顶端通过金属化过孔222连接到水平馈电结构。垂直馈电结构的底部通过传输线8连接到射频电路中。示例性的,该传输线8为50欧姆传输线。
图11为本申请实施例中两个水平馈电结构的俯视图。其中,长方形结构211的宽度w1大于柱状结构212的宽度w2。减少柱状结构212的宽度w2能够使得两个水平馈电结构相交的部分变小,从而减小两者电磁场之间的影响,减小两个水平馈电结构之间极化的重合度,增大极化隔离度。而调整长方形结构211的宽度w1可以改变馈电结构的阻抗,w1越大,阻抗越低,反之越高。两个长方形结构211之间的距离即柱状结构22的长度L4,同理可以根据设计需要进行调节。设计人员可以根据实际需要以及天线的综合性能对长方形结构的宽度w1以及柱状结构的宽度w2进行相应的调整,本申请实施例对此不做限定。
三、射频集成电路芯片:
在本申请实施例中,射频集成电路芯片可以用印刷有射频电路的电路板代替,本申请实施例对此不做限定。馈电结构连接射频集成电路芯片,主要作用是连接射频集成电路芯片上的射频电路,因此具有射频电路的其他设计方案均属于本申请实施例提供的技术方案范围。
在本申请实施例中,射频集成电路芯片通过传输线连接馈电结构。具体地,射频集成电路芯片可以通过焊球与馈电结构上的传输线连接。
图12为本申请实施例提供的天线模组的反射系数曲线图。图13为本申请实施例提供的天线模组的增益曲线图。这两条曲线由仿真得到,从这两条曲线可以看出,天线模组很好地覆盖了n257-n260的频段,即覆盖了毫米波的两个高低频段,可以实现全球漫游覆盖。
图14为本申请实施例提供的天线模组在24GHz的方向图。图15为本申请实施例提供的天线模组在43.5GHz的方向图。从图14和图15可以看出天线模组的高低频远场三维方向图特性,即该天线模组在高低频均有着很好的定向辐射特性,满足指标。
图16为本申请实施例提供的一种天线阵列的俯视示意图。该天线阵列包括4个如上述各个实施例的天线模组,这4个天线模组成2行2列分布。在实际应用中,设计人员还可以根据实际情况配置若干个天线模组,组成M行N列的天线阵列(M为大于0的整数,N为大于0的整数),本申请实施例对此不作限定。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。

Claims (12)

  1. 一种天线模组,其特征在于,包括:四个环绕设置的辐射单元,以及两个馈电结构;
    所述四个辐射单元中的相邻辐射单元间依次设置有第一间隔,第二间隔,第三间隔和第四间隔,所述第一间隔和第三间隔对齐相通,所述第二间隔和第四间隔对齐相通;
    所述两个馈电结构相互交叉,所述第一馈电结构的两端被分别收容在所述第一间隔和第三间隔中,所述第二馈电结构的两端被分别收容在第二间隔和第四间隔中。
  2. 根据权利要求1所述的天线模组,其特征在于,每个所述辐射单元包括水平辐射体和垂直辐射体;
    所述水平辐射体为位于所述辐射单元顶部的正方形金属片;
    所述垂直辐射体的顶端连接所述水平辐射体,所述垂直辐射体的底端连接天线参考地。
  3. 根据权利要求2所述的天线模组,其特征在于,所述垂直辐射体包括第一水平延展体和第一金属化过孔;
    所述第一水平延展体之间通过所述第一金属化过孔连接;
    所述第一水平延展体上,连接上层结构的所述第一金属化过孔与连接下层结构的所述第一金属化过孔设置在所述第一水平延展体的两侧。
  4. 根据权利要求3所述的天线模组,其特征在于,所述第一水平延展体为正方形金属片。
  5. 根据权利要求3或4所述的天线模组,其特征在于,所述第一水平延展体的边长和所述第一金属化过孔的长度总和为所述天线模组中心频率的信号的四分之一波长。
  6. 根据权利要求1至5任意一项所述的天线模组,其特征在于,每个所述馈电结构包括水平馈电结构和垂直馈电结构;
    所述水平馈电结构为位于所述馈电结构顶部的金属片;
    所述垂直馈电结构的顶端连接所述水平馈电结构,所述垂直馈电结构的底端接入射频电路。
  7. 根据权利要求6所述的天线模组,其特征在于,所述水平馈电结构由中间通过柱状结构连接的两个长方形结构组成,所述长方形结构的宽度大于所述柱状结构的宽度。
  8. 根据权利要求6或7所述的天线模组,其特征在于,所述垂直馈电结构包括第二水平延展体和第二金属化过孔;
    所述第一水平延展体之间通过所述第一金属化过孔连接;
    所述第一水平延展体上,连接上层结构的所述第一金属化过孔与连接下层结构的所述第一金属化过孔设置在所述第一水平延展体的两侧。
  9. 根据权利要求8所述的天线模组,其特征在于,所述第二水平延展体为正方形金属片。
  10. 根据权利要求1至9任意一项所述的天线模组,其特征在于,所述水平辐射体的边长为所述天线模组中心频率的四分之一波长。
  11. 根据权利要求1至10任意一项所述的天线模组,其特征在于,所述辐射单元和所述馈电结构封装在两个半固化层和板芯层中;
    所述两个半固化层之间设置有所述板芯层;
    所述半固化层内设置有金属层,所述垂直辐射体中的第一水平延展体和所述垂直馈电结构的第二水平延展体内嵌在所述金属层中。
  12. 一种天线阵列,其特征在于,包括多个如权利要求1至11任意一项所述的天线模组;
    所述天线模组呈M行N列的阵列分布,所述M为大于0的整数,所述N为大于0的整数。
PCT/CN2020/133769 2020-12-04 2020-12-04 一种天线模组及天线阵列 WO2022116125A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080107669.4A CN116569413A (zh) 2020-12-04 2020-12-04 一种天线模组及天线阵列
PCT/CN2020/133769 WO2022116125A1 (zh) 2020-12-04 2020-12-04 一种天线模组及天线阵列

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/133769 WO2022116125A1 (zh) 2020-12-04 2020-12-04 一种天线模组及天线阵列

Publications (1)

Publication Number Publication Date
WO2022116125A1 true WO2022116125A1 (zh) 2022-06-09

Family

ID=81852870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133769 WO2022116125A1 (zh) 2020-12-04 2020-12-04 一种天线模组及天线阵列

Country Status (2)

Country Link
CN (1) CN116569413A (zh)
WO (1) WO2022116125A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115632228A (zh) * 2022-09-29 2023-01-20 湖南迈克森伟电子科技有限公司 天线单元、天线阵列及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0817310A2 (en) * 1996-06-28 1998-01-07 HE HOLDINGS, INC. dba HUGHES ELECTRONICS Wide-band/dual-band stacked-disc radiators on stacked-dielectric posts phased array antenna
CN109962332A (zh) * 2017-12-26 2019-07-02 三星电机株式会社 天线模块和天线装置
CN110350315A (zh) * 2019-06-29 2019-10-18 瑞声科技(南京)有限公司 天线和电子设备
US20200014090A1 (en) * 2018-07-03 2020-01-09 Samsung Electronics Co., Ltd. Antenna module
CN211428346U (zh) * 2019-10-31 2020-09-04 Oppo广东移动通信有限公司 天线模组及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0817310A2 (en) * 1996-06-28 1998-01-07 HE HOLDINGS, INC. dba HUGHES ELECTRONICS Wide-band/dual-band stacked-disc radiators on stacked-dielectric posts phased array antenna
CN109962332A (zh) * 2017-12-26 2019-07-02 三星电机株式会社 天线模块和天线装置
US20200014090A1 (en) * 2018-07-03 2020-01-09 Samsung Electronics Co., Ltd. Antenna module
CN110350315A (zh) * 2019-06-29 2019-10-18 瑞声科技(南京)有限公司 天线和电子设备
CN211428346U (zh) * 2019-10-31 2020-09-04 Oppo广东移动通信有限公司 天线模组及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115632228A (zh) * 2022-09-29 2023-01-20 湖南迈克森伟电子科技有限公司 天线单元、天线阵列及电子设备
CN115632228B (zh) * 2022-09-29 2023-09-29 湖南迈克森伟电子科技有限公司 天线单元、天线阵列及电子设备

Also Published As

Publication number Publication date
CN116569413A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
US10431892B2 (en) Antenna-in-package structures with broadside and end-fire radiations
US11545761B2 (en) Dual-band cross-polarized 5G mm-wave phased array antenna
US8179333B2 (en) Antennas using chip-package interconnections for millimeter-wave wireless communication
WO2021082988A1 (zh) 天线模组及电子设备
CN110707427B (zh) 一种硅基小型共口径双频双极化宽带阵列天线
US8957819B2 (en) Dielectric antenna and antenna module
US7999753B2 (en) Apparatus and methods for constructing antennas using vias as radiating elements formed in a substrate
US8164167B2 (en) Integrated circuit structure and a method of forming the same
US20150070228A1 (en) Antenna-in-package structures with broadside and end-fire radiations
CN111293428B (zh) 贴片天线单元以及封装天线结构
KR20160004720A (ko) 무선 통신 기기에서 안테나 장치
CN111883910B (zh) 一种双极化低剖面磁电偶极子天线及无线通信设备
US20210005955A1 (en) Antenna module and communication apparatus equipped with the same
CN107591618A (zh) 一种毫米波空气槽差分集成天线
US11715886B2 (en) Low-cost, IPD and laminate based antenna array module
CN111129713A (zh) 一种5g毫米波双极化天线模组及终端设备
CN115207636A (zh) 一种缝隙耦合多点馈电的毫米波圆极化天线单元
WO2022116125A1 (zh) 一种天线模组及天线阵列
CN113782960B (zh) 正交线极化的小型化共口径天线
KR20080069815A (ko) 내장형 안테나
CN211507886U (zh) 一种5g毫米波双极化天线模组及终端设备
WO2022172079A1 (en) Dual-polarized magneto-electric antenna array
CN115425394B (zh) 一种基于层叠式结构的带状线以及基于异质基材三维堆叠的层叠式阵面天线单元
CN214411516U (zh) 一种毫米波天线模组及通信设备
CN215266657U (zh) 一种毫米波介质谐振器天线模组及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107669.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963971

Country of ref document: EP

Kind code of ref document: A1