WO2022116042A1 - 麦克风阵列系统和电子设备 - Google Patents

麦克风阵列系统和电子设备 Download PDF

Info

Publication number
WO2022116042A1
WO2022116042A1 PCT/CN2020/133348 CN2020133348W WO2022116042A1 WO 2022116042 A1 WO2022116042 A1 WO 2022116042A1 CN 2020133348 W CN2020133348 W CN 2020133348W WO 2022116042 A1 WO2022116042 A1 WO 2022116042A1
Authority
WO
WIPO (PCT)
Prior art keywords
microphone
module
connection
microphone array
modules
Prior art date
Application number
PCT/CN2020/133348
Other languages
English (en)
French (fr)
Inventor
莫品西
吴晟
边云锋
薛政
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/133348 priority Critical patent/WO2022116042A1/zh
Publication of WO2022116042A1 publication Critical patent/WO2022116042A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor

Definitions

  • the present application relates to the field of sound collection, and in particular, to a microphone array system and an electronic device.
  • Microphone array technology is an effective sound source focusing technology, which can strengthen the target sound signal in the designated space area and weaken the interfering noise signal in the non-designated space area, so as to achieve the purpose of spatial filtering.
  • This technology has been widely used in many fields such as sound target detection, sound source localization, sound field imaging, etc.
  • the application objects include smart phones, smart speakers, conference microphone systems and audio-visual products.
  • the microphone array can be divided into one-dimensional line array, two-dimensional area array and three-dimensional array; from the layout mode, it can be divided into regular array and irregular array.
  • the performance of a microphone array is mainly affected by the number of microphones, spacing, array diameter, and layout. In addition, different application scenarios usually have different layout requirements for the microphone array.
  • the existing microphone array generally adopts a fixed microphone layout, that is, the number of microphones, the location coordinates, and the layout cannot be changed.
  • the fixed microphone array cannot flexibly change the array configuration according to its hardware capabilities, performance requirements and application scenarios to achieve optimal sound source focusing performance. This severely limits the performance expansion and multi-scene adaptation capability of the microphone array, and the design and use costs of the microphone array are too high.
  • the present application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • a first aspect of the present application proposes a microphone array system.
  • a second aspect of the present application proposes an electronic device.
  • a microphone array system includes a plurality of microphone modules and at least one connection module, the microphone module is used for receiving sound signals; any one of the at least one connection module
  • the connection module can be detachably connected to at least one microphone module among the plurality of microphone modules.
  • the microphone array system provided according to the above technical solutions of the present application also has the following additional technical features:
  • any one of the multiple microphone modules is provided with a first microphone interface; any one of the at least one connection module is provided with at least one second microphone interface, any one of the first microphone interfaces It can be detachably connected to any one of the at least one second microphone interface.
  • any connection module in the at least one connection module can be detachably connected with at least one other connection module in the at least one connection module.
  • any one of the at least one connection module is provided with at least one connection interface, and any two of the at least one connection module can be detachably connected via the connection interface.
  • any one of the multiple microphone modules can be built into any one of the at least one connection module to form a connected microphone module.
  • the number of at least one connection module is at least two, and at least some of the connection modules in all the connection modules have the same shape.
  • the number of at least one connection module is at least two, and all the connection modules have different shapes.
  • At least some of the at least one connection module extend in at least one direction.
  • At least some of the at least one connection module are switchable between at least two shapes.
  • any one of the at least one connection module can be communicatively connected to the microphone module detachably connected to it, so as to receive sound signals; the microphone array system further includes a data processor, and the data processor is connected to at least one of the microphone modules.
  • a connection module is communicatively connected to receive the sound signal.
  • the data processor is further configured to process the sound signal according to the received microphone array parameters and generate processed data.
  • the data processor is also used to hold processing data.
  • the data processor is also used to play the processed data.
  • the data processor is also used to send the processing data to the back-end signal processing device.
  • the data processor is also used for sending sound signals and/or processing data to the terminal equipment, so that the terminal equipment can perform display, analysis, post-processing or simulation operations on the sound signals and/or processing data.
  • the microphone array parameters include the number, coordinates, sensitivity, sampling rate, and activation state of the plurality of microphone modules.
  • the microphone array parameters are detected by at least some of the connection modules in the at least one connection module.
  • any connection module in the at least one connection module includes a detection circuit, and the detection circuit is used to detect the connection information of the corresponding connection module and the microphone module connected to it.
  • the geometric parameters and the geometric parameters of the connection module calculate the coordinates of the microphone module connected to the connection module corresponding to the detection circuit.
  • connection information includes the number of microphone modules connected to the connection module corresponding to the detection circuit, and the relative distance and relative angle between the connection module corresponding to the detection circuit and the connected microphone module.
  • the microphone array parameters are received from an external input device in communication with the data processor.
  • the plurality of microphone modules include analog microphone modules and/or digital microphone modules.
  • the microphone array system further includes: a multi-channel codec module, which is communicatively connected to at least part of the at least one connection module and the data processor. , the multi-channel codec module is used to convert the analog sound signal received by the analog microphone module into a digital sound signal and transmit it to the data processor.
  • the number of channels of the multi-channel codec module is greater than or equal to the number of analog microphone modules.
  • the multi-channel codec module is a multi-channel codec.
  • the multi-channel codec module includes multiple single-channel codecs and/or multiple multi-channel codecs connected in parallel, and the sampling clocks of the multi-channel codec modules are synchronized.
  • the multi-channel codec module is used to encode and transmit digital sound signals according to a specified protocol.
  • At least part of the at least one connection module includes a transmission circuit for transmitting multi-channel analog signals, and the analog sound signal is transmitted to the multi-channel codec module through the transmission circuit.
  • the multi-channel codec module is built in at least part of the at least one connection module.
  • an electronic device including the microphone array system according to any one of the technical solutions of the above-mentioned first aspect of the present application.
  • the embodiment of the present application provides a microphone array system, which can freely adjust the number, position, and layout of microphones, so as to achieve functions such as free expansion, diversified design, and multi-scene adaptation of the microphone array. While increasing the freedom of configuration of the microphone array, the design and use costs of the microphone array are reduced.
  • FIG. 1 shows a schematic structural diagram of a microphone array system according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of the connection between a microphone module and a connection module of a microphone array system according to another embodiment of the present application
  • FIG. 3 is a schematic diagram showing the connection of two connection modules of a microphone array system according to another embodiment of the present application.
  • FIG. 4 shows a schematic diagram of a microphone module of a microphone array system built in a connection module according to another embodiment of the present application
  • FIG. 5 shows a schematic diagram of a one-dimensional shape of a microphone array system connection module according to another embodiment of the present application.
  • FIG. 6 shows a schematic diagram of a one-dimensional form of a microphone array system connection module according to another embodiment of the present application.
  • FIG. 7 shows a schematic diagram of a two-dimensional form of a microphone array system connection module according to another embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a two-dimensional form of a microphone array system connection module according to another embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a two-dimensional form of a microphone array system connection module according to another embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a two-dimensional form of a microphone array system connection module according to another embodiment of the present application.
  • FIG. 11 shows a schematic diagram of a two-dimensional form of a microphone array system connection module according to another embodiment of the present application.
  • FIG. 12 shows a schematic diagram of a three-dimensional shape of a microphone array system connection module according to another embodiment of the present application.
  • FIG. 13 shows a schematic diagram of a three-dimensional shape of a microphone array system connection module according to another embodiment of the present application.
  • FIG. 14 shows a schematic diagram of a three-dimensional shape of a microphone array system connection module according to another embodiment of the present application.
  • FIG. 15 shows a schematic diagram of a three-dimensional shape of a connection module of a microphone array system according to another embodiment of the present application.
  • FIG. 16 shows a schematic diagram of a three-dimensional shape of a microphone array system connection module according to another embodiment of the present application.
  • FIG. 17 shows a schematic diagram of a three-dimensional form of a microphone array system connection module according to another embodiment of the present application.
  • FIG. 18 shows a schematic diagram of a three-dimensional shape of a connection module of a microphone array system according to another embodiment of the present application.
  • FIG. 19 shows a schematic diagram of a three-dimensional form of a microphone array system connection module according to another embodiment of the present application.
  • FIG. 20 shows a schematic diagram of a microphone array configuration according to an embodiment of the present application.
  • FIG. 21 shows a schematic diagram of a microphone array configuration of another embodiment of the present application.
  • FIG. 22 shows a schematic diagram of a microphone array configuration of another embodiment of the present application.
  • FIG. 23 shows a schematic diagram of a microphone array configuration of another embodiment of the present application.
  • FIG. 24 shows a schematic diagram of a microphone array configuration of another embodiment of the present application.
  • FIG. 25 shows a schematic diagram of connection of a microphone array system connection module according to another embodiment of the present application.
  • Figure 26 shows a schematic diagram of an expandable microphone array system according to an embodiment of the present application.
  • FIG. 27 shows a schematic diagram of an expandable microphone array system of another embodiment of the present application.
  • FIG. 28 shows a schematic diagram of an expandable microphone array system of another embodiment of the present application.
  • 29 shows a schematic diagram of an expandable microphone array system of another embodiment of the present application.
  • FIG. 30 shows a schematic diagram of the form of a connection module according to an embodiment of the present application.
  • FIG. 31 shows a schematic diagram of the form of a connection module according to an embodiment of the present application.
  • FIG. 32 shows a schematic structural diagram of a microphone array system according to another embodiment of the present application.
  • FIG. 33 shows a schematic structural diagram of a microphone array system in which the microphone module is an analog microphone module according to another embodiment of the present application.
  • 100 microphone array system 102 microphone module, 103 expandable microphone module, 104 connection module, 106 first microphone interface, 108 second microphone interface, 110 connection interface, 112 data processor, 114 multi-channel codec module.
  • an embodiment of the first aspect of the present application provides a microphone array system 100.
  • the microphone array system 100 includes a plurality of microphone modules 102 and at least one connection module 104.
  • the microphone modules 102 are used to receive sound signals; at least Any connection module 104 in one connection module 104 can be detachably connected with at least one microphone module 102 in the plurality of microphone modules 102 .
  • the microphone array system 100 provided by the embodiment of the present application is provided with a plurality of microphone modules 102, and each microphone module 102 can receive a sound signal from a sound source. Since the positions of each microphone module 102 are different, sound waves reach the microphone. There is a slight time difference between the times of different microphone modules 102 in the array system 100. Through the interaction of this time difference, the microphone array system 100 can obtain better directivity than a single microphone module 102. After searching for the position of the sound source, it can Point to the current sound source to enhance the audio acquisition effect, thereby enhancing the target sound signal in the designated space area, and weakening the interfering noise signal in the non-designated space area, so it can significantly reduce the impact of noise in the surrounding environment at the same time.
  • connection module 104 uses the connection module 104 to connect the various microphone modules 102 to ensure that it becomes a whole system, and to ensure that the positions of the microphone module 102 and the connection module 104 are completely fixed after the connection is formed, which can enhance the target sound more stably signal to achieve the effect of spatial filtering.
  • the existing microphone array generally adopts a fixed microphone layout, the layout of the microphone module 102 in the microphone array system 100 cannot be flexibly changed according to the actual situation. Therefore, considering the above problems, the embodiment of the present application will connect the module 104 and the microphone
  • the connection mode between the modules 102 is set to be detachable connection, which can be easily disassembled and reassembled in different usage scenarios, which greatly improves the versatility and expandability of the microphone array system 100 .
  • any microphone module 102 of the plurality of microphone modules 102 is provided with a first microphone interface 106 ; any one of the connection modules 104 of the at least one connection module 104 is provided with at least one second microphone interface 108 , any one The first microphone interface 106 can be detachably connected to any second microphone interface 108 of the at least one second microphone interface 108 .
  • FIG. 2 shows a schematic diagram of the connection between the microphone module 102 and the connection module 104 through the first microphone interface 106 and the second microphone interface 108, respectively, according to some embodiments of the present application.
  • connection method between the microphone module 102 and the connection module 104 is specifically defined.
  • Each microphone module 102 includes a first microphone interface 106
  • each connection module 104 includes one or more second microphone interfaces 108.
  • the first microphone interface 104 of the microphone module 102 and the second microphone interface 108 of the connection module 104 can be mutually
  • the connection that is to say, the microphone module 102 and the connection module 104 can be connected through corresponding microphone interfaces.
  • the interfaces of all the microphone modules 102 are unified, that is, all the first microphone interfaces 106 and the second microphone interfaces 108 are unified.
  • the first microphone interface 106 and the second microphone interface 108 are configured to be unified in structure and can be connected to each other, and each interface can be connected to a module corresponding to the interface at most.
  • the versatility of the interface is enhanced, so that each microphone module 102 and the connection module 104 can be connected to each other through the interface, which can be more convenient for the microphone array system.
  • 100 flexibly changes the array configuration according to actual needs and usage scenarios, making it more scalable.
  • any connection module 104 in the at least one connection module 104 can be detachable from at least one other connection module 104 in the at least one connection module 104 connect.
  • connection module 104 In this embodiment, the function of the connection module 104 is limited. In addition to being connected to the microphone module 102 , the connection module 104 can also be detachably connected to one or more other connection modules 104 . It can be understood that, in the process of assembling the microphone array system 100, the way that the plurality of connection modules 104 are connected to each other can be spliced into more different shapes, that is, more and more complicated microphone array configurations can be realized, which are more adaptable to each other. Different usage scenarios improve the versatility and scalability of the microphone array system 100 .
  • any one of the at least one connection module 104 is provided with at least one connection interface 110 , and any two connection modules 104 of the at least one connection module 104 can be detachably connected via the connection interface 110 .
  • FIG. 3 shows a schematic diagram of two connection modules 104 being connected via the connection interface 110 in some embodiments of the present application.
  • connection method between the connection modules 104 is specifically defined.
  • Each connection module 104 includes one or more connection interfaces 110, and the two connection interfaces 110 can be connected to each other, that is, two connection modules 104 can be connected through the corresponding connection interface 110.
  • multiple connection modules 104 are connected to each other, and more and more complex shapes can be spliced, so that the microphone array system 100 can be applied to more different usage scenarios, and the versatility of the microphone array system 100 is greatly improved.
  • the interfaces of all the connection modules 104 are unified, that is, all the connection interfaces 110 are unified.
  • All the connection interfaces 110 are set to be unified in structure and can be connected to each other, and each connection interface 110 can be connected to a module corresponding to the connection interface 110 at most.
  • the versatility of the interface is enhanced, so that every two connection modules 104 can be connected to each other through the connection interface 110, which makes it more convenient for the microphone array system 100 to be flexible according to actual needs and usage scenarios Transform the array configuration to make it more scalable.
  • any one of the plurality of microphone modules 102 can be built into any one of the at least one connection module 104 to form the connected microphone module 102 .
  • FIG. 4 shows a schematic diagram of the microphone module 102 being built into a connection module 104 according to some embodiments of the present application.
  • the microphone module 102 is embedded in the connection module 104 to form a microphone module 102 with connection function, which can be connected with other microphone modules 102 or connection modules 104 with connection function.
  • the microphone module 102 is built into the connection module 104, which can effectively avoid the collision of the microphone module 102, prolong its service life, reduce the loss rate of the microphone module 102, thereby reducing the use cost, and can also ensure that the microphone module 102 will not be damaged due to damage. Sound collection effect of the microphone array system 100 .
  • the microphone module 102 is built into the connection module 104, so that more microphone modules 102 can be placed in the limited space, so as to avoid insufficient placement of the microphone modules 102 due to space constraints, thereby affecting the microphone
  • the array system 100 enhances the effect of the target acoustic signal.
  • the microphone module 102 is built into the connection module 104, when splicing the same microphone array system, the total number of used modules is greatly reduced, that is, the total volume of the modules is reduced, thereby reducing its inventory cost and logistics cost.
  • the number of at least one connection module is at least two, and at least some of the connection modules in all the connection modules have the same shape. This includes the following two classes of embodiments:
  • connection modules 104 are identical in shape.
  • connection modules 104 are exactly the same, and the removed connection modules 104 can be easily connected to other positions of the entire microphone array system 100, which is more favorable for the connection modules 104 to be replaced with each other.
  • the same shape It is also more beneficial to assemble the connection module 104 into other array configurations after disassembly.
  • all production processes are identical, so there is no need to individually adjust the production line during production, which greatly reduces production costs.
  • connection module 104 and the microphone module 102 by reasonably arranging the connection module 104 and the microphone module 102, one-dimensional, two-dimensional, and three-dimensional microphone array configurations can be obtained.
  • 5 to 19 show schematic diagrams of possible forms of the connection module 104 according to some embodiments of the present application.
  • 5 and 6 show schematic diagrams of the one-dimensional shape of the connection module 104 according to some embodiments of the present application;
  • FIGS. 7 to 11 show schematic diagrams of the two-dimensional shape of the connection module 104 according to some embodiments of the present application.
  • 12 to 19 show schematic diagrams of the two-dimensional form of the connection module 104 according to some embodiments of the present application.
  • FIGS 20 and 21 respectively show schematic diagrams of regular and irregular microphone array configurations obtained by arranging different microphone modules 102 under the condition that the shapes of the connection modules 104 in some embodiments of the present application are identical.
  • Figures 22, 23 and 24 respectively illustrate the situation that the connection modules 104 in some embodiments of the present application are identical in shape, and the microphone modules 102 and the connection modules 104 are reasonably arranged to obtain one-dimensional, two-dimensional, and three-dimensional microphone arrays Schematic diagram of the configuration.
  • the number of at least one connection module 104 is at least three, and some of the connection modules 104 in all the connection modules 104 have the same shape.
  • connection module 104 can have various basic shapes, including one-dimensional, two-dimensional and three-dimensional shapes, and the special connection module 104 can also adopt any irregular shape. Some of the connection modules 104 have the same shape, and at least two of the connection modules 104 may have the same shape, and the shapes of the other connection modules 104 are different from the shapes of the at least two connection modules 104 of the same shape. For other connection modules 104, their shapes may be the same or different, and some of the connection modules 104 may have the same shape to achieve rich matching solutions, which can make the assembly results of each connection module 104 more diverse, and can achieve exactly the same A shape in which the connection module 104 cannot be assembled.
  • FIG. 25 shows a complex microphone array configuration obtained by rationally arranging the microphone module 102 and the connection module 104 when the connection modules 104 in some embodiments of the present application are not identical in shape.
  • the diversified connection of various basic modules can obtain a complex microphone array configuration, which can avoid costs such as design, processing, and transportation of the complex connection module 104 .
  • a complex multi-arm microphone array as an example, which can be composed of a central body and multiple cantilevers.
  • FIG. 8 shows a schematic diagram of the connection in the case where the shapes of the connection modules 104 in some embodiments of the present application are not identical.
  • the number of at least one connection module 104 is at least two, and all the connection modules 104 have different shapes.
  • connection modules 104 are completely different, and their irregular shapes can be assembled, which are suitable for the connection modules 104 splicing under special requirements, thus expanding the scope of application of the microphone array system 100 .
  • connection modules 104 of the at least one connection module 104 extend in at least one direction.
  • connection modules 104 in all the connection modules 104 extend in at least one direction, which can not only improve the richness of the morphological design of the connection modules 104, but also enable the connection modules 104 to be spliced into different shapes, thereby improving the The diversity of the microphone array configuration makes it suitable for more different usage scenarios, and has more versatility and scalability.
  • the connection module 104 can be designed in various forms, such as the forms shown in FIGS. 26 to 29 . Further, these connection modules 104 can be configured with multiple interfaces. As shown in FIG. 26 to FIG.
  • the microphone module 102 can be connected only at part of the interface, and the interface not connected to the microphone module 102 can be used as the expandable microphone module 103, so that the microphone module 103 can be expanded.
  • the array configuration is variable to form a scalable microphone array system.
  • connection modules 104 of the at least one connection module 104 are switchable between at least two shapes.
  • the microphone array system 100 with different configurations can be obtained by switching the form of one or more connection modules 104 in all the connection modules 104 .
  • the method does not require disassembly and assembly operations, which not only saves manpower and time resources, but also reduces the loss of disassembly and assembly operations on each module, especially its interface part.
  • FIG. 30 and FIG. 31 are schematic diagrams illustrating that the connection module 104 of some embodiments of the present application is switched between different forms through a hinged manner.
  • the microphone module 102 and the connection module 104 are hinged to form a one-dimensional linear shape; in FIG. 31 , the hinged shape obtained in FIG. 30 is reversed to obtain a two-dimensional area array.
  • any one of the connection modules 104 in the at least one connection module 104 can be communicatively connected to the microphone module 102 detachably connected therewith to receive sound signals; the microphone array system 100 further includes data The processor 112, the data processor 112 is connected in communication with the at least one connection module 104 to receive the sound signal.
  • a way and manner for the microphone array system 100 to receive sound signals is defined. After receiving the sound signal, the microphone module 102 transmits the received sound signal to the data processor 112 through the connection module 104, and the data processor 112 performs subsequent operations on the received sound signal.
  • the connection module 104 not only plays the role of connecting and fixing between the modules, but also can transmit the acquired sound signal, which is fully utilized. This way of transmitting the sound signal through the connection module 104 does not need to increase the transmission device, and reduces the hardware cost.
  • the data processor 112 is further configured to process the sound signal according to the received microphone array parameters and generate processed data.
  • the data processor 112 can run the corresponding microphone array algorithm program to process the sound signal by using the spatial characteristics of the sound field. For example, sound source localization can be performed to calculate the distance between the sound source and the microphone array. Information such as the position and angle of the system 100; it can also extract and separate the sound source signal, and extract a pure sound signal from the noise-containing sound signal; it can also remove the reverberation caused by the reflection of obstacles during the propagation of sound waves, etc. , after the corresponding processing, the signal processing result is generated, that is, the processing data is obtained.
  • the data processor 112 is also used to store processing data.
  • the data processor 112 may be used to store process data. After receiving the microphone array parameters, the data processor 112 can process the received sound signal through a corresponding microphone array algorithm program to generate processed data and save it, so as to facilitate later search and use of the processed data.
  • the data processor 112 is also used to play the processed data.
  • the data processor 112 may be used to play the processed data. After the data processor 112 receives the microphone array parameters, it can run the corresponding microphone array algorithm program, process the received sound signal, and generate and play the processed data, that is, the playback process processed by the microphone array algorithm program is strengthened and weakened. Noise sound signal. The processed sound signal is clearer, the sound quality is better, and the playback effect is better.
  • the data processor 112 is also used to send processing data to backend signal processing devices.
  • the data processor 112 may send the processed data to the back-end signal processing device.
  • the back-end signal processing device can perform further processing operations on it to obtain the required data.
  • the data processor 112 is further configured to send the sound signal and/or the processed data to the terminal device, so that the terminal device can perform display, analysis, post-processing or simulation operations on the sound signal and/or the processed data.
  • the data processor 112 may send the sound signal and/or the processed data to the terminal device.
  • the processed sound signal enhances the target sound signal and weakens the interference of the noise signal, that is, the pure sound signal data is extracted from the noise-containing sound signal, the influence of the interference data is weakened, and a better display can be obtained. , analysis, post-processing or simulation results.
  • the microphone array parameters include the number, coordinates, sensitivity, sampling rate, and activation state of the microphone modules 102 .
  • the microphone array parameters include the number, coordinates, sensitivity, sampling rate, and activation state of the microphone modules 102.
  • the data processor 112 can run the corresponding microphone array algorithm program, process the sound signal, and output the Signal processing results, that is, processing data.
  • the microphone array parameters are detected by at least some of the connection modules 104 of the at least one connection module.
  • an acquisition scheme of microphone array parameters is specifically defined, and the microphone array parameters can be detected by one or more connection modules 104 in all connection modules 104 .
  • the connection module 104 detects the microphone array parameters, the parameters are transmitted to the data processor 112 as a basis for processing the sound signal.
  • the data processor 112 processes the sound signal according to the received microphone array parameters to generate processed data.
  • the connection module 104 not only plays the role of connection and fixation between the modules, but also can detect and obtain the parameters of the microphone array, which is fully utilized.
  • This method of detecting the parameters of the microphone array through the connection module 104 does not need to increase the detection device, thereby reducing the hardware cost.
  • this method of acquiring the parameters of the microphone array through detection can not only obtain more accurate parameters, which is beneficial to the subsequent processing of sound signals in the data processor 112, but also simplifies the user's operation process and saves human resources.
  • any one of the connection modules 104 in the at least one connection module 104 includes a detection circuit, and the detection circuit is used to detect the connection information of the corresponding connection module 104 and the microphone module 102 connected to it, and according to the connection information, the microphone
  • the geometric parameters of the module 102 and the geometric parameters of the connection module 104 calculate the coordinates of the microphone module 102 connected to the connection module 104 corresponding to the detection circuit.
  • connection module 104 includes a detection circuit, and the detection circuit is used to detect the connection information of the microphone module 102 connected to it. Then, the coordinates of the microphone module 102 are obtained by calculation, and these parameters provide a basis for the subsequent data processor 112 to process the received sound signal.
  • the detection circuit is arranged in the connection module 104, and the connection module 104 is used to protect the detection circuit and avoid the collision and damage of the detection circuit, and at the same time, it is not necessary to increase the detection device, and the hardware cost is reduced.
  • connection information includes the number of microphone modules 102 connected to the connection module 104 corresponding to the detection circuit, and the relative distance and relative angle between the connection module 104 corresponding to the detection circuit and the connected microphone module 102 .
  • connection information of the microphone module 102 connected to the connection module 104 corresponding to the detection circuit is defined, and the connection information includes the number of the microphone modules 102 connected to the connection module 104 and the number of the microphone modules 102 connected to the connection module 104 . relative distance and relative angle.
  • the specific position of each microphone module 102 can be obtained, and then the configuration of the microphone array system 100 can be obtained. Since the positions of different microphone modules 102 are different, that is, the distances from the sound source are different, the intensity and time of the sound signals received by different microphone modules 102 are different.
  • the microphone array system 100 uses the above differences to process the received sound signals. It can weaken the interference such as noise or reverberation, and extract the pure sound signal after filtering.
  • the microphone array parameters are received by an external input device in communication with the data processor 112 .
  • a solution for acquiring microphone array parameters is specifically defined, and the microphone array parameters can be received by an external input device communicatively connected to the data processor 112 . That is, the user can input the parameters of the microphone array to the data processor 112 by himself through the external input device connected in communication with the data processor 112 as a basis for processing the sound signal.
  • the data processor 112 processes the sound signal according to the received microphone array parameters to generate processed data.
  • This method of inputting the parameters of the microphone array by an external device does not need to set up a detection device or a detection circuit, which greatly reduces the hardware cost.
  • this method of receiving microphone array parameters through an external input device can omit the steps of parameter detection and transmission, thereby shortening the time of the entire sound signal processing process and effectively improving the processing efficiency.
  • the microphone array system 100 may include the above two methods for acquiring parameters of the microphone array, and the user can flexibly choose which method to use according to the actual situation. For example, when the user is uncertain about the configuration and other parameters of the microphone array or wants to operate more easily, the connection module 104 can detect the parameters of the microphone array. If the user already knows the configuration and other parameters of the microphone array, he can use The external input device directly inputs the parameters of the microphone array to the data processor 112 . This diversified method realizes the personalized selection of the acquisition method of microphone array parameters, which is closer to the usage habits of different users, and can be better applied to different usage scenarios and different user groups.
  • the plurality of microphone modules 102 include analog microphone modules and/or digital microphone modules.
  • the type of the microphone module 102 is limited, which can be either an analog microphone module or a data microphone module.
  • the analog microphone module directly outputs the collected analog sound signal.
  • the package size of the analog microphone module is mostly smaller than that of the data microphone. Therefore, it can be used in scenarios where the system volume and component layout are limited; while the digital microphone uses the analog-to-digital conversion function. Transferred from the codec to the microphone, it is suitable for use scenarios where the transmission of analog audio signals is susceptible to interference.
  • the microphone module 102 can be either an analog microphone module or a data microphone module.
  • some of the microphone modules 102 in all the plurality of microphone modules 102 can be analog microphone modules, and some of the microphone modules 102 can be analog microphone modules.
  • As a data microphone module it can be applied to different usage scenarios, which improves the versatility of the microphone array system 100 .
  • the microphone array system 100 further includes a multi-channel codec module 114 , which is connected with at least part of the connection module 104 and the data processor in the at least one connection module 104 .
  • 112 is connected for communication, and the multi-channel codec module 114 is used to convert the analog sound signal received by the analog microphone module into a digital sound signal, and transmit it to the data processor 112 .
  • the microphone array system 100 when the microphone module 102 includes an analog microphone, the microphone array system 100 further includes a multi-channel codec module 114 . Since the analog microphone module directly outputs the collected analog sound signal, the data processor 112 cannot directly process the analog signal. Therefore, considering the above signal processing problem, the microphone array system 100 introduces a multi-channel codec module 114 .
  • the multi-channel encoding and decoding module 114 is connected to the connection module 104, and specifically can be connected to the connection module 104 connected with the analog microphone module. After the analog microphone module collects the sound signal, the analog sound signal is transmitted to the multi-channel decoding module through the connection module 104.
  • the multi-channel decoding module converts the received analog sound signal into a digital sound signal that can be directly processed by the data processor 112 through analog-to-digital conversion, which is convenient for the data processor 112 to process the sound signal.
  • FIG. 33 shows a schematic structural diagram of the microphone array system 100 in which the microphone module 102 is an analog microphone module according to some embodiments of the present application.
  • the number of channels of the multi-channel codec module 114 is greater than or equal to the number of analog microphone modules.
  • the number of channels of the multi-channel decoding and encoding module is specifically limited.
  • the number of channels of the multi-channel encoding and decoding module 114 is greater than or equal to the number of analog microphone modules.
  • Each channel of the multi-channel codec module 114 can receive a signal source. Therefore, considering that all analog microphone modules collect and transmit analog sound signals at the same time, the number of channels of the multi-channel codec module 114 is set to be greater than or equal to the analog microphone module. It can ensure that each analog microphone module has a separate channel for transmitting analog sound signals, avoiding the situation that some analog microphone modules have no channel to transmit analog sound signals, resulting in the lack of signals received by the microphone array system 100 .
  • the multi-channel codec module 114 is a multi-channel codec.
  • an implementation manner of the multi-channel codec module 114 is defined, that is, the multi-channel codec module 114 may be set as a multi-channel codec.
  • a multi-channel codec can simultaneously receive sound signals collected by multiple analog microphone modules without using multiple single-channel codecs, each of which receives sound signals collected by one analog microphone module. Therefore, using the multi-channel codec as the multi-channel codec module 114 greatly reduces the volume of the system, and solves the problem that the layout of components is limited in some scenarios.
  • the multi-channel codec module 114 includes multiple single-channel codecs and/or multiple multi-channel codecs connected in parallel, and the sampling clocks of the multi-channel codec modules 114 are synchronized.
  • an implementation of the multi-channel codec module 114 is defined, that is, the multi-channel codec module 114 may be configured as multiple single-channel codecs and/or multiple multi-channel codecs connected in parallel. There is a limit to the number of signals that a multi-channel codec can receive at the same time. Therefore, considering that the number of analog microphone modules exceeds the number of channels of a multi-channel codec, multiple single-channel codecs and /or a method of paralleling multiple multi-channel codecs.
  • This parallel implementation greatly expands the channel upper limit of the multi-channel codec module 114, solves the problem that the number of analog microphone modules exceeds the upper limit of the channel number of the multi-channel codec, and improves the versatility and feasibility of the microphone array system 100. Extensibility.
  • setting the sampling clock synchronization of the channel encoding and decoding module ensures that the time when each channel receives the analog sound signal is based on the synchronization time, so as to prevent the sampling clock from being out of synchronization, resulting in the received sound signal not being sent at the same time. That is, the problem of deviation of the received sound signals due to time asynchrony is avoided.
  • the multi-channel codec module 114 is used to encode and transmit digital sound signals according to a specified protocol.
  • the multi-channel encoding and decoding module 114 can encode and transmit the digital sound signal according to the specified protocol, that is, according to the specified protocol, encode and compress the converted digital sound signal and convert it into another data format, which is more convenient for digital Transmission of sound signals.
  • connection modules 104 of the at least one connection module includes a transmission circuit for transmitting a multi-channel analog signal, and the analog sound signal is transmitted to the multi-channel codec module 114 via the transmission circuit.
  • a way and manner for the multi-channel codec module 114 to receive the sound signal is defined.
  • the analog microphone module After the analog microphone module receives the sound signal, it transmits the received analog sound signal through the transmission circuit to the multi-channel encoding and decoding module 114 through the connection module 104 connected to it, and the multi-channel encoding and decoding module 114 processes the received analog sound signal. After the analog-to-digital conversion, the converted digital sound signal is transmitted to the data processor 112 .
  • the connection module 104 not only plays the role of connecting and fixing the modules, but also can transmit the acquired analog sound signal, which is fully utilized. In this way of transmitting the analog sound signal through the connection module 104, it is not necessary to increase the transmission device, and the hardware cost is reduced.
  • the multi-channel codec module 114 is built into at least some of the connection modules 104 of the at least one connection module 104 .
  • the placement position of the multi-channel encoding and decoding module 114 is specifically limited, and the multi-channel encoding and decoding module 114 is built in the connection module 104, specifically, it can be built in the connection module 104 connected with the analog microphone module.
  • the connection module 104 protects the multi-channel encoding/decoding module 114, prevents the multi-channel encoding/decoding module 114 from being bumped and damaged, reduces the use cost, and also reduces the volume of the microphone array system 100, making it applicable to use scenarios with limited space.
  • An embodiment of the second aspect of the present application provides an electronic device.
  • an electronic device including the microphone array system 100 as in any embodiment of the above-mentioned first aspect of the present application.
  • the term “plurality” refers to two or more, unless expressly limited otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense.
  • “connected” can be a fixed connection, a detachable connection, or an integral connection;
  • “connected” can be It is directly connected or indirectly connected through an intermediary.
  • the specific meanings of the above terms in this application can be understood according to specific situations.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

本申请提供了一种麦克风阵列系统和电子设备,其中,麦克风阵列系统包括多个麦克风模块及至少一个连接模块,麦克风模块用于接收声音信号;至少一个连接模块中的任一连接模块能够与多个麦克风模块中的至少一个麦克风模块可拆卸连接。电子设备包括了麦克风阵列系统。本申请提供的麦克风阵列系统,可自由调整麦克风数量、位置和布局方式,达到麦克风阵列的自由扩展、多样化设计和多场景适配等功能。在增加麦克风阵列构型自由度的同时,降低麦克风阵列的设计和使用成本。

Description

麦克风阵列系统和电子设备 技术领域
本申请涉及声音采集领域,具体而言,涉及一种麦克风阵列系统和一种电子设备。
背景技术
麦克风阵列技术是一种有效的声源聚焦技术,能加强指定空间区域的目标声信号,并削弱非指定空间区域的干扰噪声信号,达到空间滤波的目的。该技术已广泛应用于声目标检测、声源定位、声场成像等多个领域,应用对象包括智能手机、智能音箱、会议麦克风系统和声像仪等产品。麦克风阵列从空间维度上,可分为一维线阵、二维面阵和三维阵列;从布局方式上,可分为规则阵列和非规则阵列。麦克风阵列的性能主要由麦克风数量、间距、阵径、布局等方面的影响。另外,不同的应用场景对麦克风阵列的布局要求通常也不同。
现有的麦克风阵列一般采用固定的麦克风布局方式,即麦克风数量、位置坐标、布局方式都不可变。固化的麦克风阵列无法根据其硬件能力、性能需求和应用场景等条件灵活变换阵列构型,以达到最优的声源聚焦性能。这严重限制了麦克风阵列的性能拓展和多场景适配能力,且麦克风阵列的设计和使用成本过高。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一方面提出了一种麦克风阵列系统。
本申请的第二方面提出了一种电子设备。
有鉴于此,根据本申请的第一方面,提供了一种麦克风阵列系统,麦克风阵列系统包括多个麦克风模块及至少一个连接模块,麦克风模块用于接收声音信号;至少一个连接模块中的任一连接模块能够与多个麦克风模块中的至少一个麦克风模块可拆卸连接。
另外,根据本申请上述技术方案提供的麦克风阵列系统,还具有如下附加技术特征:
在一种可能的设计中,多个麦克风模块中的任一麦克风模块设有第一麦克风接口;至少一个连接模块中的任一连接模块设有至少一个第二麦克风接口,任一第一麦克风接口能够与至少一个第二麦克风接口中的任一第二麦克风接口可拆卸连接。
在一种可能的设计中,基于至少一个连接模块的数量为至少两个的情况,至少一个连接模块中的任一连接模块能够与至少一个连接模块中的其他至少一个连接模块可拆卸连接。
在一种可能的设计中,至少一个连接模块中的任一连接模块设有至少一个连接接口,至少一个连接模块中的任意两个连接模块能够经连接接口可拆卸连接。
在一种可能的设计中,多个麦克风模块中的任一麦克风模块能够内置于至少一个连接模块中的任一连接模块中,形成连接麦克风模块。
在一种可能的设计中,至少一个连接模块的数量为至少两个,全部连接模块中的至少部分连接模块形态相同。
在一种可能的设计中,至少一个连接模块的数量为至少两个,全部连接模块的形态各不相同。
在一种可能的设计中,至少一个连接模块中的至少部分连接模块沿至少一个方向延伸。
在一种可能的设计中,至少一个连接模块中的至少部分连接模块能够在至少两个形状之间切换。
在一种可能的设计中,至少一个连接模块中的任一连接模块能够和与之可拆卸连接的麦克风模块通信连接,以接收声音信号;麦克风阵列系统还包括数据处理器,数据处理器与至少一个连接模块通信连接,以接收声音信号。
在一种可能的设计中,数据处理器还用于根据接收到的麦克风阵列参数处理声音信号,并生成处理数据。
在一种可能的设计中,数据处理器还用于保存处理数据。
在一种可能的设计中,数据处理器还用于播放处理数据。
在一种可能的设计中,数据处理器还用于发送处理数据至后端信号处理设备。
在一种可能的设计中,数据处理器还用于发送声音信号和/或处理数据至终端设备,以供终端设备对声音信号和/或处理数据执行显示、分析、后处理或仿真的操作。
在一种可能的设计中,麦克风阵列参数包括多个麦克风模块的数量、坐标、灵敏度、采样率和激活状态。
在一种可能的设计中,麦克风阵列参数由至少一个连接模块中的至少部分连接模块检测得到。
在一种可能的设计中,至少一个连接模块中的任一连接模块包括检测电路,检测电路用于检测对应的连接模块和与之相连的麦克风模块的连接信息,并根据连接信息、麦克风模块的几何参数、连接模块的几何参数计算检测电路对应的连接模块所连接的麦克风模块的坐标。
在一种可能的设计中,连接信息包括检测电路对应的连接模块所连接的麦克风模块的数量、检测电路对应的连接模块与所连接的麦克风模块的相对距离和相对角度。
在一种可能的设计中,麦克风阵列参数由与数据处理器通信连接的外接输入设备接收得到。
在一种可能的设计中,多个麦克风模块包括模拟麦克风模块和/或数字麦克风模块。
在一种可能的设计中,基于多个麦克风模块包括模拟麦克风模块的情况,麦克风阵列系统还包括:多通道编码解码模块,其与至少一个连接模块中的至少部分连接模块以及数据处理器通信连接,多通道编码解码模块用于将模拟麦克风模块接收的模拟声音信号转换为数字声音信号,并传输至数据处理器。
在一种可能的设计中,多通道编码解码模块的通道数量大于等于模拟麦克风模块的数量。
在一种可能的设计中,多通道编码解码模块为多通道编码解码器。
在一种可能的设计中,多通道编码解码模块包括并联的多个单通道编码解码器和/或多个多通道编码解码器,多通道编码解码模块的采样时钟同步。
在一种可能的设计中,多通道编码解码模块用于按照指定协议编码传输数字声音信号。
在一种可能的设计中,至少一个连接模块中的至少部分连接模块包括用于传输多通道模拟信号的传输电路,模拟声音信号经传输电路传送至多通道编码解码模块。
在一种可能的设计中,多通道编码解码模块内置于至少一个连接模块中的至少部分连接模块中。
根据本申请的第二方面,提供了一种电子设备,包括如本申请的上述第一方面任一种技术方案中的麦克风阵列系统。
本申请实施例提供了一种麦克风阵列系统,可自由调整麦克风数量、位置和布局方式,达到麦克风阵列的自由扩展、多样化设计和多场景适配等功能。在增加麦克风阵列构型自由度的同时,降低麦克风阵列的设计和使用成本。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请的一个实施例的麦克风阵列系统结构示意图;
图2示出了本申请的另一个实施例的麦克风阵列系统麦克风模块和连接模块相连接的示意图;
图3示出了本申请的另一个实施例的麦克风阵列系统两个连接模块相连接的示意图;
图4示出了本申请的另一个实施例的麦克风阵列系统麦克风模块内置于连接模块的示意图;
图5示出了本申请的另一个实施例的麦克风阵列系统连接模块的一维形态的示意图;
图6示出了本申请的另一个实施例的麦克风阵列系统连接模块的一维形态的示意图;
图7示出了本申请的另一个实施例的麦克风阵列系统连接模块的二维形态的示意图;
图8示出了本申请的另一个实施例的麦克风阵列系统连接模块的二维形态的示意图;
图9示出了本申请的另一个实施例的麦克风阵列系统连接模块的二维形态的示意图;
图10示出了本申请的另一个实施例的麦克风阵列系统连接模块的二维形态的示意图;
图11示出了本申请的另一个实施例的麦克风阵列系统连接模块的二维形态的示意图;
图12示出了本申请的另一个实施例的麦克风阵列系统连接模块的三维形态的示意图;
图13示出了本申请的另一个实施例的麦克风阵列系统连接模块的三维形态的示意图;
图14示出了本申请的另一个实施例的麦克风阵列系统连接模块的三维形态的示意图;
图15示出了本申请的另一个实施例的麦克风阵列系统连接模块的三维形态的示意图;
图16示出了本申请的另一个实施例的麦克风阵列系统连接模块的三维形态的示意图;
图17示出了本申请的另一个实施例的麦克风阵列系统连接模块的三维形态的示意图;
图18示出了本申请的另一个实施例的麦克风阵列系统连接模块的三维形态的示意图;
图19示出了本申请的另一个实施例的麦克风阵列系统连接模块的三 维形态的示意图;
图20示出了本申请的一个实施例的麦克风阵列构型的示意图;
图21示出了本申请的另一个实施例的麦克风阵列构型的示意图;
图22示出了本申请的另一个实施例的麦克风阵列构型的示意图;
图23示出了本申请的另一个实施例的麦克风阵列构型的示意图;
图24示出了本申请的另一个实施例的麦克风阵列构型的示意图;
图25示出了本申请的另一个实施例的麦克风阵列系统连接模块连接的示意图;
图26示出了本申请的一个实施例的可扩展的麦克风阵列系统的示意图;
图27示出了本申请的另一个实施例的可扩展的麦克风阵列系统的示意图;
图28示出了本申请的另一个实施例的可扩展的麦克风阵列系统的示意图;
图29示出了本申请的另一个实施例的可扩展的麦克风阵列系统的示意图;
图30示出了本申请的一个实施例的连接模块形态的示意图;
图31示出了本申请的一个实施例的连接模块形态的示意图;
图32示出了本申请的另一个实施例的麦克风阵列系统结构示意图;
图33示出了本申请的另一个实施例的麦克风模块为模拟麦克风模块的麦克风阵列系统结构示意图。
其中,图1至图33中附图标记与部件名称之间的对应关系为:
100麦克风阵列系统,102麦克风模块,103可拓展麦克风模块,104连接模块,106第一麦克风接口,108第二麦克风接口,110连接接口,112数据处理器,114多通道编码解码模块。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不 冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
如图1所示,本申请第一方面的实施例提供了一种麦克风阵列系统100,麦克风阵列系统100包括多个麦克风模块102及至少一个连接模块104,麦克风模块102用于接收声音信号;至少一个连接模块104中的任一连接模块104能够与多个麦克风模块102中的至少一个麦克风模块102可拆卸连接。
本申请实施例提供的麦克风阵列系统100,设置多个麦克风模块102,每个麦克风模块102均能接收声源发出的声音信号,由于每个麦克风模块102的位置都不相同,因此,声波抵达麦克风阵列系统100中不同麦克风模块102的时间存在微小的时差,通过这种时差的相互作用,麦克风阵列系统100可以得到比单个的麦克风模块102更好地指向性,在搜索到声源的位置之后可以指向当前声源,加强音频采集效果,从而加强指定空间区域的目标声信号,并削弱非指定空间区域的干扰噪声信号,因此可以同时显著降低周边环境中噪声的影响。在此基础上,使用连接模块104将各个麦克风模块102连接起来,保证其成为一个整体的系统,并能够确保连接成型后麦克风模块102和连接模块104的位置完全固定,可以更稳定地加强目标声信号,实现空间滤波的作用。此外,由于现有的麦克风阵列一般采用固定的麦克风布局方式,无法根据实际情况灵活更改麦克风阵列系统100中麦克风模块102的布局,因此,考虑到上述问题,本申请实施例将连接模块104和麦克风模块102之间的连接方式设置成可拆卸连接,在不同的使用场景下,可以方便拆卸及重新拼装,大大提高了麦克风阵列系统100的通用性和可扩展性。
在一些实施例中,多个麦克风模块102中的任一麦克风模块102设有第一麦克风接口106;至少一个连接模块104中的任一连接模块104设有至少一个第二麦克风接口108,任一第一麦克风接口106能够与至少一个第二麦克风接口108中的任一第二麦克风接口108可拆卸连接。图2示出 了本申请的一些实施例的麦克风模块102和连接模块104分别通过第一麦克风接口106和第二麦克风接口108相连接的示意图。
在该实施例中,具体限定了麦克风模块102和连接模块104之间的连接方法。每个麦克风模块102包含一个第一麦克风接口106,每个连接模块104包含一个或多个第二麦克风接口108,麦克风模块102的第一麦克风接口104和连接模块104的第二麦克风接口108可以互相连接,也就是说,可以通过对应的麦克风接口,连接麦克风模块102和连接模块104。
进一步地,对于一个麦克风阵列系统100,所有麦克风模块102接口统一,也就是所有第一麦克风接口106和第二麦克风接口108均统一。第一麦克风接口106和第二麦克风接口108结构上设置为统一的,可以互相连接,且每个接口最多可连一个对应接口的模块。通过把第一麦克风接口106和第二麦克风接口108设置成统一结构,增强了接口的通用性,使每个麦克风模块102和连接模块104之间都可以通过接口互相连接,可以更方便麦克风阵列系统100根据实际需求和使用场景灵活变换阵列构型,使其具有更好的可扩展性。
在一些实施例中,基于至少一个连接模块104的数量为至少两个的情况,至少一个连接模块104中的任一连接模块104能够与至少一个连接模块104中的其他至少一个连接模块104可拆卸连接。
在该实施例中,限定了连接模块104的作用,除与麦克风模块102连接外,连接模块104还可以与其他一个或多个连接模块104可拆卸连接。可以理解的是,在麦克风阵列系统100的拼装过程中,多个连接模块104互相连接的方式,可以拼接出更多不同形状,也就是可以实现更多更复杂的麦克风阵列构型,更能适应不同的使用场景,提高了麦克风阵列系统100的通用性和可扩展性。
在一些实施例中,至少一个连接模块104中的任一连接模块104设有至少一个连接接口110,至少一个连接模块104中的任意两个连接模块104能够经连接接口110可拆卸连接。图3示出了本申请的一些实施例的两个连接模块104经连接接口110相连接的示意图。
在该实施例中,具体限定了连接模块104之间的连接方法。每个连接 模块104包含一个或多个连接接口110,两个连接接口110之间可以互相连接,也就是说,可以通过对应的连接接口110,连接两个连接模块104。在此基础上,多个连接模块104相互连接,可以拼接出更多更复杂的形状,使麦克风阵列系统100可以适用于更多不同的使用场景,大大提高了麦克风阵列系统100的通用性。
进一步地,对于一个麦克风阵列系统100,所有连接模块104接口统一,也就是所有连接接口110均统一。所有连接接口110在结构上设置为统一的,可以互相连接,且每个连接接口110最多可连一个对应连接接口110的模块。通过把所有连接接口110设置成统一结构,增强了接口的通用性,使每两个连接模块104之间都可以通过连接接口110互相连接,可以更方便麦克风阵列系统100根据实际需求和使用场景灵活变换阵列构型,使其具有更好的可扩展性。
在一些实施例中,多个麦克风模块102中的任一麦克风模块102能够内置于至少一个连接模块104中的任一连接模块104中,形成连接麦克风模块102。图4示出了本申请的一些实施例的麦克风模块102内置于一个连接模块104中的示意图。
在该实施例中,将麦克风模块102嵌入到连接模块104中,构成一个带连接功能的麦克风模块102,可与其他带连接功能的麦克风模块102或连接模块104相连。将麦克风模块102内置于连接模块104中,可以有效避免麦克风模块102的磕碰,延长其使用寿命,降低麦克风模块102损耗率,从而降低使用成本,同时也可以保证不会因麦克风模块102损坏而影响麦克风阵列系统100的声音采集效果。此外,在空间比较小的情况下,将麦克风模块102内置于连接模块104中,可以在有限的空间内放置更多麦克风模块102,避免由于空间限制,导致麦克风模块102放置数量不足,从而影响麦克风阵列系统100加强目标声信号的效果。最后,将麦克风模块102内置于连接模块104中,在拼接相同的麦克风阵列系统时,大大减少了使用模块的总数量,也就是减少了模块的总体积,因而降低了其库存成本和物流成本。
在一些实施例中,至少一个连接模块的数量为至少两个,全部连接模 块中的至少部分连接模块形态相同。这包含以下两类实施例:
在一些实施例中,全部连接模块104的形态完全相同。
在该实施例中,限定连接模块104的形态完全相同,拆下的连接模块104可以轻易连接在整个麦克风阵列系统100的其他位置,更有利于连接模块104之间互相替换,此外,相同的形态也更有利于连接模块104拆卸后拼装成其他阵列构型。最后,形态完全相同的连接模块104,所有生产工序都完全相同,因此在生产时不需对生产线进行单独调整,大大降低了生产成本。
具体地,一种基础模块的多样化连接可以得到多样化的麦克风阵列构型。以立方体基础模块为例,通过合理地布置连接模块104和麦克风模块102,可以得到一维、二维、三维的麦克风阵列构型。图5至图19示出了本申请的一些实施例的连接模块104的可能形态的示意图。其中图5和图6示出了本申请的一些实施例的连接模块104的一维形态的示意图;图7至图11示出了本申请的一些实施例的连接模块104的二维形态的示意图;图12至图19示出了本申请的一些实施例的连接模块104的二维形态的示意图。图20和图21分别示出了本申请的一些实施例的连接模块104的形态完全相同情况下,不同的麦克风模块102布置得到规则和非规则麦克风阵列构型的示意图。图22、图23和图24分别示出了本申请的一些实施例的连接模块104的形态完全相同情况下,合理地布置麦克风模块102和连接模块104得到一维、二维、三维的麦克风阵列构型的示意图。
在另一些实施例中,至少一个连接模块104的数量为至少三个,全部连接模块104中的部分连接模块104的形态相同。
在该实施例中,连接模块104可以有多种基础形态,包括一维、二维和三维的形态,特殊的连接模块104也可以采用任意非规则形态。部分连接模块104的形态相同,可以是其中至少两个连接模块104具有一种相同的形态,其他连接模块104的形态与这至少两个相同形态的连接模块104的形态不同。对于其他连接模块104,其形态可以相同,也可以各不相同,还可以部分连接模块104形态相同,实现丰富的搭配方案,可以使各连接模块104的拼装结果更加多样化,能够实现完全相同的连接模块104无法 拼装得到的形状。因此,多样化的形态可以增强麦克风阵列系统100的适用性,使其在不同的环境及需求下都能有针对性地拼装成更适用的形状,实现加强指定空间区域的目标声信号,并削弱非指定空间区域的干扰噪声信号的效果。图25示出了本申请的一些实施例的连接模块104形态不完全相同时,合理地布置麦克风模块102和连接模块104得到的复杂麦克风阵列构型。
具体地,多种基础模块的多样化连接可以得到复杂的麦克风阵列构型,可避免复杂连接模块104的设计、加工和运输等成本。以一个复杂的多臂型麦克风阵列为例,其可以由一个中心体和多个悬臂组合而成。图8示出了本申请的一些实施例的连接模块104的形态不完全相同情况下的连接的示意图。
在一些实施例中,至少一个连接模块104的数量为至少两个,全部连接模块104的形态各不相同。
在该实施例中,限定连接模块104的形态完全不同,可以拼装出各自不规则形状,适用于特殊需求下的连接模块104拼接,扩大了麦克风阵列系统100的适用范围。
在一些实施例中,至少一个连接模块104中的至少部分连接模块104沿至少一个方向延伸。
在该实施例中,全部连接模块104中的一个或多个连接模块104沿至少一个方向延伸,既能够提升连接模块104的形态设计丰富性,又可以使连接模块104拼接成不同的形态,提高了麦克风阵列构型的多样性,使其能适用于更多不同的使用场景,更具有通用性和可扩展性。具体地,连接模块104可设计为以图26至图29所示的形态为例的丰富形态。进一步地,这些连接模块104可配置多个接口,如图26至图29所示,可以仅在部分接口处连接麦克风模块102,未连接麦克风模块102的接口则作为可拓展麦克风模块103,使得麦克风阵列构型可变,形成可扩展的麦克风阵列系统。
在一些实施例中,至少一个连接模块104中的至少部分连接模块104能够在至少两个形状之间切换。
在该实施例中,在各模块连接方式不变的情况下,通过切换全部连接模块104中的一个或多个连接模块104的形态可以获得不同构型的麦克风阵列系统100,这种改变形状的方法不需要进行拆装操作,既节省了人力和时间资源,也减少了拆装操作对各模块尤其是其接口部分的损耗。
具体地,多个立方体通过多个铰链相连得到一个可变形态的连接模块104,其展开形态为一个一维线性的形态,通过翻转可变形为一个二维面阵,形成至少两种麦克风阵列构型,适合多场景应用的快速切换。图30和图31示出了本申请的一些实施例的连接模块104通过铰接方式在不同形态间切换的示意图。其中图30中,麦克风模块102和连接模块104铰接成为一个一维线性的形态;图31中,图30所铰接得到的形态进行翻转,得到一个二维面阵。
如图32所示,在一些实施例中,至少一个连接模块104中的任一连接模块104能够和与之可拆卸连接的麦克风模块102通信连接,以接收声音信号;麦克风阵列系统100还包括数据处理器112,数据处理器112与至少一个连接模块104通信连接,以接收声音信号。
在该实施例中,限定了麦克风阵列系统100接收声音信号的一种途径与方式。麦克风模块102接收到声音信号后,通过连接模块104将接收到的声音信号传输到数据处理器112,由数据处理器112针对接收到的声音信号进行后续操作。连接模块104既起到了各模块之间的连接及固定作用,又可以传输获取到的声音信号,得到了充分的利用。这种通过连接模块104进行声音信号传输的方式,不需再增加传输装置,减少了硬件成本。
在一些实施例中,数据处理器112还用于根据接收到的麦克风阵列参数处理声音信号,并生成处理数据。
在该实施例中,数据处理器112接收到麦克风阵列参数后,可以运行相应的麦克风阵列算法程序,利用声场的空间特性处理声音信号,例如,可以进行声源定位,计算得到声源距离麦克风阵列系统100的位置和角度等信息;也可以进行声源信号的提取与分离,从含噪声的声音信号中提取出纯净的声音信号;还可以去除声波传播过程中被障碍物反射造成的混响等,经过相应的处理后,生成信号处理结果,也就是得到处理数据。
在一些实施例中,数据处理器112还用于保存处理数据。
在该实施例中,数据处理器112可用于保存处理数据。数据处理器112在接收到麦克风阵列参数后,可以通过相应的麦克风阵列算法程序处理接收到的声音信号,生成处理数据并保存下来,便于后期查找并使用该处理数据。
在一些实施例中,数据处理器112还用于播放处理数据。
在该实施例中,数据处理器112可用于播放处理数据。数据处理器112在接收到麦克风阵列参数后,可以运行相应的麦克风阵列算法程序,处理接收到的声音信号,生成并播放处理数据,也就是播放经过麦克风阵列算法程序处理的,得到加强并削弱了噪声的声音信号。经过处理后的声音信号更加清晰,音质更佳,播放效果更好。
在一些实施例中,数据处理器112还用于发送处理数据至后端信号处理设备。
在该实施例中,数据处理器112在处理接收到的声音信号后,可将处理数据发送至后端信号处理设备。后端信号处理设备在接收到处理数据后,可对其进行进一步的处理操作,得到需要的数据。
在一些实施例中,数据处理器112还用于发送声音信号和/或处理数据至终端设备,以供终端设备对声音信号和/或处理数据执行显示、分析、后处理或仿真的操作。
在该实施例中,数据处理器112在处理接收到的声音信号后,可将声音信号和/或处理数据发送至终端设备。经过处理后的声音信号增强了目标声信号,并且削弱了噪声信号的干扰,也就是在含噪声的声音信号中提取出纯净的声音信号数据,削弱了干扰数据的影响,可以得到更好的显示、分析、后处理或仿真结果。
在一些实施例中,麦克风阵列参数包括麦克风模块102的数量、坐标、灵敏度、采样率和激活状态。
在该实施例中,麦克风阵列参数包括麦克风模块102的数量、坐标、灵敏度、采样率和激活状态,数据处理器112接收到这些参数后,可以运行相应的麦克风阵列算法程序,处理声音信号,输出信号处理结果,也就 是处理数据。
在一些实施例中,麦克风阵列参数由至少一个连接模块中的至少部分连接模块104检测得到。
在该实施例中,具体限定了麦克风阵列参数的一种获取方案,麦克风阵列参数可以由全部连接模块104中的一个或多个连接模块104检测得到。连接模块104检测到麦克风阵列参数后,传输给数据处理器112,作为处理声音信号的依据。数据处理器112根据接收到的麦克风阵列参数处理声音信号,生成处理数据。连接模块104既起到了各模块之间的连接及固定作用,又可以检测得到麦克风阵列参数,得到了充分的利用。这种通过连接模块104进行麦克风阵列参数检测的方式,不需再增加检测装置,减少了硬件成本。此外,这种通过检测获取麦克风阵列参数的方式,既可以得到更精准的参数,有利于后续在数据处理器112中进行声音信号的处理,又简化了用户的操作过程,节省了人力资源。
在一些实施例中,至少一个连接模块104中的任一连接模块104包括检测电路,检测电路用于检测对应的连接模块104和与之相连的麦克风模块102的连接信息,并根据连接信息、麦克风模块102的几何参数、连接模块104的几何参数计算检测电路对应的连接模块104所连接的麦克风模块102的坐标。
在该实施例中,具体限定了连接模块104检测麦克风阵列参数及麦克风模块102坐标计算的一种方案,连接模块104包括检测电路,检测电路用于检测与之相连的麦克风模块102的连接信息,进而计算得到该麦克风模块102的坐标,这些参数为后续数据处理器112处理接收到的声音信号提供了依据。此外,将检测电路设置在连接模块104内,在利用连接模块104保护检测电路,避免检测电路磕碰损坏的同时,不需再增加检测装置,减少了硬件成本。
在一些实施例中,连接信息包括检测电路对应的连接模块104所连接的麦克风模块102的数量、检测电路对应的连接模块104与所连接的麦克风模块102的相对距离和相对角度。
在该实施例中,限定了检测电路对应的连接模块104所连接的麦克风 模块102的连接信息,连接信息包括该连接模块104所连接的麦克风模块102的数量,以及其与所连接的麦克风模块102的相对距离和相对角度。通过上述连接信息,可以得到每个麦克风模块102的具体位置,进而得到麦克风阵列系统100的构型。由于不同麦克风模块102位置不同,也就是其距离声源的距离不同,因而导致不同麦克风模块102接收到声音信号的强度及时间等出现差异,麦克风阵列系统100利用上述差异处理接收到的声音信号,可以削弱其中的噪声或混响等干扰,提取得到滤波处理后的纯净的声音信号。
在一些实施例中,麦克风阵列参数由与数据处理器112通信连接的外接输入设备接收得到。
在该实施例中,具体限定了麦克风阵列参数的一种获取方案,麦克风阵列参数可以由与数据处理器112通信连接的外接输入设备接收得到。也就是,用户可以通过与数据处理器112通信连接的外接输入设备,自行输入麦克风阵列参数至数据处理器112,作为处理声音信号的依据。数据处理器112根据接收到的麦克风阵列参数处理声音信号,生成处理数据。这种通过外界设备自行输入麦克风阵列参数的方式,不需设置检测装置或检测电路,大大减少了硬件成本。此外,这种通过外接输入设备接收麦克风阵列参数的方式,可以省略参数的检测及传输步骤,进而缩短了整个声音信号处理流程的时间,有效提高了处理效率。
进一步地,麦克风阵列系统100系统可包含上述两种获取麦克风阵列参数的方式,用户可根据实际情况,灵活选择使用哪种方式。例如用户在不确定麦克风阵列构型及其他参数或者希望操作更加简便的情况下,可以采用连接模块104检测得到麦克风阵列参数的方式,而如果用户已经知道麦克风阵列构型及其他参数,则可以采用外接输入设备直接输入麦克风阵列参数至数据处理器112的方式。这种多元化的方法,实现了麦克风阵列参数获取方式的个性化选择,更贴近不同用户的使用习惯,可以更好地适用于不同的使用场景以及不同的用户群体。
在一些实施例中,多个麦克风模块102包括模拟麦克风模块和/或数字麦克风模块。
在该实施例中,限定了麦克风模块102的种类,既可以为模拟麦克风模块,也可以为数据麦克风模块。模拟麦克风模块直接输出采集到的模拟声音信号,模拟麦克风模块的封装尺寸多数比数据麦克风小,因此,可以用于对系统体积和元器件布局有限制的场景下;而数字麦克风将模数转换功能从编解码器转移进了麦克风,适用于在模拟音频信号传输容易受到干扰的使用场景。该实施例考虑到上述问题,限定麦克风模块102既可以为模拟麦克风模块,也可以为数据麦克风模块,当然也可以全部多个麦克风模块102中的部分麦克风模块102为模拟麦克风模块,部分麦克风模块102为数据麦克风模块,因此,可以适用于不同的使用场景,提高了麦克风阵列系统100的通用性。
在一些实施例中,基于多个麦克风模块102包括模拟麦克风模块的情况,麦克风阵列系统100还包括多通道编码解码模块114,其与至少一个连接模块104中的至少部分连接模块104以及数据处理器112通信连接,多通道编码解码模块114用于将模拟麦克风模块接收的模拟声音信号转换为数字声音信号,并传输至数据处理器112。
在该实施例中,在麦克风模块102包括模拟麦克风的情况下,麦克风阵列系统100还包括多通道编码解码模块114。由于模拟麦克风模块直接输出采集到的模拟声音信号,而数据处理器112无法直接处理模拟信号,因此,考虑到上述信号处理问题,麦克风阵列系统100引入了多通道编码解码模块114。多通道编码解码模块114与连接模块104相连接,具体可以与连接有模拟麦克风模块的连接模块104相连接,模拟麦克风模块采集到声音信号后,经连接模块104将模拟声音信号传输至多通道解码模块,由多通道解码模块经过模数转换,将接收到的模拟声音信号转换为数据处理器112可以直接处理的数字声音信号,便于数据处理器112进行声音信号的处理。图33示出了本申请的一些实施例的麦克风模块102为模拟麦克风模块的麦克风阵列系统100结构示意图。
在一些实施例中,多通道编码解码模块114的通道数量大于等于模拟麦克风模块的数量。
在该实施例中,具体限定了多通道解码编码模块的通道数量,在麦克 风模块102为模拟麦克风的情况下,多通道编码解码模块114的通道数量大于等于模拟麦克风模块的数量。多通道编码解码模块114的每一个通道都可以接收信号源,因此考虑到所有模拟麦克风模块同时采集并传输模拟声音信号的情况,将多通道编码解码模块114的通道数量设置为大于等于模拟麦克风模块的数量,可以保证每个模拟麦克风模块都有单独的通道可以用来传输模拟声音信号,避免出现部分模拟麦克风模块没有通道可以传输模拟声音信号,导致麦克风阵列系统100接收到的信号缺失的情况。
在一些实施例中,多通道编码解码模块114为多通道编码解码器。
在该实施例中,限定了多通道编码解码模块114的一种实现方式,即多通道编码解码模块114可以设置为多通道编码解码器。一个多通道编码解码器可以同时接收多个模拟麦克风模块采集到的声音信号,而不需使用多个单通道编码解码器,每个单通道编码解码器接收一个模拟麦克风模块采集到的声音信号。因此,使用多通道编码解码器作为多通道编码解码模块114的方式,大大减小了系统的体积,解决了某些场景对元器件布局有限制的问题。
在一些实施例中,多通道编码解码模块114包括并联的多个单通道编码解码器和/或多个多通道编码解码器,多通道编码解码模块114的采样时钟同步。
在该实施例中,限定了多通道编码解码模块114的一种实现方式,即多通道编码解码模块114可以设置为并联的多个单通道编码解码器和/或多个多通道编码解码器。一个多通道编码解码器可以同时接收的信号数量是有限制的,因此,考虑到模拟麦克风模块数量过多,超过多通道编码解码器的通道数量的情况,引入了多个单通道编码解码器和/或多个多通道编码解码器并联的方法。这种并联的实现方式,大大扩展了多通道编码解码模块114的通道上限,解决了模拟麦克风模块数量超过多通道编码解码器的通道数量上限的问题,提高了麦克风阵列系统100的通用性和可扩展性。此外,设置通道编码解码模块的采样时钟同步,保证了各通道接收到模拟声音信号的时间是以同步时间为基准的,避免出现采样时钟不同步,导致接收到的声音信号不是同一时刻发出的,也就是避免了接收到的声音信号 由于时间不同步出现偏差的问题。
在一些实施例中,多通道编码解码模块114用于按照指定协议编码传输数字声音信号。
在该实施例中,多通道编码解码模块114可以按照指定协议编码传输数字声音信号,也就是按照指定协议,将转换得到的数字声音信号进行编码压缩、转换成另一种数据格式,更便于数字声音信号的传输。
在一些实施例中,至少一个连接模块中的至少部分连接模块104包括用于传输多通道模拟信号的传输电路,模拟声音信号经传输电路传送至多通道编码解码模块114。
在该实施例中,限定了多通道编码解码模块114接收声音信号的一种途径与方式。模拟麦克风模块接收到声音信号后,通过与之相连的连接模块104将接收到的模拟声音信号经传输电路传输至多通道编码解码模块114,由多通道编码解码模块114对接收到的模拟声音信号进行模数转换后,将转换得到的数字声音信号传输至数据处理器112。连接模块104既起到了各模块之间的连接及固定作用,又可以传输获取到的模拟声音信号,得到了充分的利用。这种通过连接模块104进行模拟声音信号传输的方式,不需再增加传输装置,减少了硬件成本。
在一些实施例中,多通道编码解码模块114内置于至少一个连接模块104中的至少部分连接模块104中。
在该实施例中,具体限定了多通道编码解码模块114的放置位置,将多通道编码解码模块114内置于连接模块104中,具体可以内置于连接有模拟麦克风模块的连接模块104中,可利用连接模块104保护多通道编码解码模块114,避免多通道编码解码模块114磕碰损坏,降低使用成本的同时,也减小了麦克风阵列系统100的体积,使其可以适用于空间有限制的使用场景。
本申请第二方面的实施例提供了一种电子设备。
在该实施例中,提出了一种电子设备,包括如本申请的上述第一方面任一实施例中的麦克风阵列系统100。
在本申请中,术语“多个”则指两个或两个以上,除非另有明确的限 定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (24)

  1. 一种麦克风阵列系统,其特征在于,包括:
    多个麦克风模块,用于接收声音信号;及
    至少一个连接模块,所述至少一个连接模块中的任一连接模块能够与所述多个麦克风模块中的至少一个麦克风模块可拆卸连接。
  2. 根据权利要求1所述的麦克风阵列系统,其特征在于,
    所述多个麦克风模块中的任一麦克风模块设有第一麦克风接口;
    所述至少一个连接模块中的任一连接模块设有至少一个第二麦克风接口,任一所述第一麦克风接口能够与所述至少一个第二麦克风接口中的任一第二麦克风接口可拆卸连接。
  3. 根据权利要求1所述的麦克风阵列系统,其特征在于,
    基于所述至少一个连接模块的数量为至少两个的情况,所述至少一个连接模块中的任一连接模块能够与所述至少一个连接模块中的其他至少一个连接模块可拆卸连接。
  4. 根据权利要求3所述的麦克风阵列系统,其特征在于,
    所述至少一个连接模块中的任一连接模块设有至少一个连接接口,所述至少一个连接模块中的任意两个连接模块能够经所述连接接口可拆卸连接。
  5. 根据权利要求3所述的麦克风阵列系统,其特征在于,
    所述多个麦克风模块中的任一麦克风模块能够内置于所述至少一个连接模块中的任一连接模块中,形成连接麦克风模块。
  6. 根据权利要求3所述的麦克风阵列系统,其特征在于,
    所述至少一个连接模块的数量为至少两个,全部连接模块中的至少部分连接模块形态相同;或
    所述至少一个连接模块的数量为至少两个,全部连接模块的形态各不相同。
  7. 根据权利要求1所述的麦克风阵列系统,其特征在于,
    所述至少一个连接模块中的至少部分连接模块沿至少一个方向延伸。
  8. 根据权利要求1所述的麦克风阵列系统,其特征在于,
    所述至少一个连接模块中的至少部分连接模块能够在至少两个形状之间切换。
  9. 根据权利要求1至8中任一项所述的麦克风阵列系统,其特征在于,所述至少一个连接模块中的任一连接模块能够和与之可拆卸连接的麦克风模块通信连接,以接收所述声音信号;
    所述麦克风阵列系统还包括:
    数据处理器,与所述至少一个连接模块通信连接,以接收所述声音信号。
  10. 根据权利要求9所述的麦克风阵列系统,其特征在于,
    所述数据处理器还用于根据接收到的麦克风阵列参数处理所述声音信号,并生成处理数据。
  11. 根据权利要求10所述的麦克风阵列系统,其特征在于,
    所述数据处理器还用于保存所述处理数据;或
    所述数据处理器还用于播放所述处理数据;或
    所述数据处理器还用于发送所述处理数据至后端信号处理设备;或
    所述数据处理器还用于发送所述声音信号和/或所述处理数据至终端设备,以供所述终端设备对所述声音信号和/或所述处理数据执行显示、分析、后处理或仿真的操作。
  12. 根据权利要求10所述的麦克风阵列系统,其特征在于,
    所述麦克风阵列参数包括所述多个麦克风模块的数量、坐标、灵敏度、采样率和激活状态。
  13. 根据权利要求10所述的麦克风阵列系统,其特征在于,
    所述麦克风阵列参数由所述至少一个连接模块中的至少部分连接模块检测得到。
  14. 根据权利要求13所述的麦克风阵列系统,其特征在于,
    所述至少一个连接模块中的任一连接模块包括检测电路,所述检测电路用于检测对应的连接模块和与之相连的麦克风模块的连接信息,并根据所述连接信息、麦克风模块的几何参数、连接模块的几何参数计算所述检测电路对应的连接模块所连接的麦克风模块的坐标。
  15. 根据权利要求14所述的麦克风阵列系统,其特征在于,
    所述连接信息包括所述检测电路对应的连接模块所连接的麦克风模块的数量、所述检测电路对应的连接模块与所连接的麦克风模块的相对距离和相对角度。
  16. 根据权利要求10所述的麦克风阵列系统,其特征在于,所述麦克风阵列参数由与所述数据处理器通信连接的外接输入设备接收得到。
  17. 根据权利要求9所述的麦克风阵列系统,其特征在于,
    所述多个麦克风模块包括模拟麦克风模块和/或数字麦克风模块。
  18. 根据权利要求17所述的麦克风阵列系统,其特征在于,基于所述多个麦克风模块包括模拟麦克风模块的情况,所述麦克风阵列系统还包括:多通道编码解码模块,其与所述至少一个连接模块中的至少部分连接模块以及所述数据处理器通信连接,所述多通道编码解码模块用于将所述模拟麦克风模块接收的模拟声音信号转换为数字声音信号,并传输至所述数据处理器。
  19. 根据权利要求18所述的麦克风阵列系统,其特征在于,所述多通道编码解码模块的通道数量大于等于所述模拟麦克风模块的数量。
  20. 根据权利要求18所述的麦克风阵列系统,其特征在于,
    所述多通道编码解码模块为多通道编码解码器;或
    所述多通道编码解码模块包括并联的多个单通道编码解码器和/或多个多通道编码解码器,所述多通道编码解码模块的采样时钟同步。
  21. 根据权利要求18所述的麦克风阵列系统,其特征在于,所述多通道编码解码模块用于按照指定协议编码传输所述数字声音信号。
  22. 根据权利要求18所述的麦克风阵列系统,其特征在于,所述至少一个连接模块中的至少部分连接模块包括用于传输多通道模拟信号的传输电路,所述模拟声音信号经所述传输电路传送至所述多通道编码解码模块。
  23. 根据权利要求18所述的麦克风阵列系统,其特征在于,所述多通道编码解码模块内置于所述至少一个连接模块中的至少部分连接模块中。
  24. 一种电子设备,其特征在于,包括如权利要求1至23中任一项所述的麦克风阵列系统。
PCT/CN2020/133348 2020-12-02 2020-12-02 麦克风阵列系统和电子设备 WO2022116042A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/133348 WO2022116042A1 (zh) 2020-12-02 2020-12-02 麦克风阵列系统和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/133348 WO2022116042A1 (zh) 2020-12-02 2020-12-02 麦克风阵列系统和电子设备

Publications (1)

Publication Number Publication Date
WO2022116042A1 true WO2022116042A1 (zh) 2022-06-09

Family

ID=81853758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133348 WO2022116042A1 (zh) 2020-12-02 2020-12-02 麦克风阵列系统和电子设备

Country Status (1)

Country Link
WO (1) WO2022116042A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080013748A1 (en) * 2006-07-17 2008-01-17 Fortemedia, Inc. Electronic device capable of switching between different operational modes via external microphone
CN107271139A (zh) * 2017-08-14 2017-10-20 中国航空工业集团公司哈尔滨空气动力研究所 一种组合式麦克风阵列装置
CN209170601U (zh) * 2018-12-27 2019-07-26 深圳Tcl新技术有限公司 麦克风安装结构及远场语音设备组件
CN110530602A (zh) * 2019-08-05 2019-12-03 中国航空工业集团公司哈尔滨空气动力研究所 一种组合式麦克风阵列装置
CN210383923U (zh) * 2018-06-07 2020-04-24 韩国美迪塔株式会社 医疗诊断装置
CN211744676U (zh) * 2020-05-15 2020-10-23 浙江讯飞智能科技有限公司 一种麦克风阵列支架和收音设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080013748A1 (en) * 2006-07-17 2008-01-17 Fortemedia, Inc. Electronic device capable of switching between different operational modes via external microphone
CN107271139A (zh) * 2017-08-14 2017-10-20 中国航空工业集团公司哈尔滨空气动力研究所 一种组合式麦克风阵列装置
CN210383923U (zh) * 2018-06-07 2020-04-24 韩国美迪塔株式会社 医疗诊断装置
CN209170601U (zh) * 2018-12-27 2019-07-26 深圳Tcl新技术有限公司 麦克风安装结构及远场语音设备组件
CN110530602A (zh) * 2019-08-05 2019-12-03 中国航空工业集团公司哈尔滨空气动力研究所 一种组合式麦克风阵列装置
CN211744676U (zh) * 2020-05-15 2020-10-23 浙江讯飞智能科技有限公司 一种麦克风阵列支架和收音设备

Similar Documents

Publication Publication Date Title
US10219094B2 (en) Acoustic detection of audio sources to facilitate reproduction of spatial audio spaces
CN108428452B (zh) 终端支架和远场语音交互系统
US11109133B2 (en) Array microphone module and system
US10771877B2 (en) Dual earpieces for same ear
EP1909531B1 (en) Array speaker system and array microphone system
US20210377648A1 (en) Different Head Detection In Headphones
CN108028976A (zh) 分布式音频麦克风阵列和定位器配置
CN104756526A (zh) 信号处理装置、信号处理方法、测量方法及测量装置
CN104641720A (zh) 通信设备和通信方法
CN104412619A (zh) 信息处理系统和记录介质
CN104380698A (zh) 一种通话设备及应用于通话设备的切换方法、装置
WO2022116042A1 (zh) 麦克风阵列系统和电子设备
Tiete et al. MEMS microphones for wireless applications
CN110890100B (zh) 语音增强、多媒体数据采集、播放方法、装置及监控系统
CN109417669A (zh) 用于获得音频信号的装置、方法和计算机程序
JP2013213739A (ja) 音源位置推定装置、音源位置推定方法及びそのプログラム
CN212346569U (zh) 超声系统
CN103905960A (zh) 手持装置中的增强立体声音频记录
CN102196348B (zh) 人体声音传送设备
JP2018120007A (ja) 音声信号変換装置、その方法、及びプログラム
CN112492506A (zh) 音频播放方法、装置、计算机可读存储介质及机器人
US20230156419A1 (en) Sound field microphones
CN107770679B (zh) 处理信号的方法以及相应的设备
CN111986715A (zh) 一种录音系统及录音方法
CN105491297A (zh) 一种摄像参数的调整方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963890

Country of ref document: EP

Kind code of ref document: A1