WO2022114996A1 - Замкнутый энергетический цикл - Google Patents

Замкнутый энергетический цикл Download PDF

Info

Publication number
WO2022114996A1
WO2022114996A1 PCT/RU2021/050181 RU2021050181W WO2022114996A1 WO 2022114996 A1 WO2022114996 A1 WO 2022114996A1 RU 2021050181 W RU2021050181 W RU 2021050181W WO 2022114996 A1 WO2022114996 A1 WO 2022114996A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
working fluid
phase
inert gas
cycle
Prior art date
Application number
PCT/RU2021/050181
Other languages
English (en)
French (fr)
Inventor
Владимир Петрович СИЗОВ
Original Assignee
Общество с ограниченной ответственностью "Новый цикл"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Новый цикл" filed Critical Общество с ограниченной ответственностью "Новый цикл"
Publication of WO2022114996A1 publication Critical patent/WO2022114996A1/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids

Definitions

  • the invention relates to the field of converting thermal energy into mechanical energy using as a working fluid a mixture of insoluble or poorly soluble in each other substances that are in equilibrium in the liquid and gas phases.
  • a closed energy cycle is known (according to patent RU2304722), in which a mixture of substances is used as a working fluid, consisting of several components that are in equilibrium in the liquid and gas phases.
  • the working fluid In the first working phase, at the initial temperature and initial pressure, the working fluid expands with the performance of work and subsequent heat removal. The expansion of the working fluid and the subsequent removal of heat is carried out to a temperature at which the working fluid is separated into a gas phase and a liquid phase.
  • the liquid phase of the working fluid is separated from the gas phase and separately compressed. After compression, the liquid phase is heated by heat supply and mixed with the gas phase to form a working fluid at the initial temperature.
  • a closed energy cycle is known (according to patent RU2114999) in which a gas is added to the working fluid placed in the tank, the molecular weight of which does not exceed the molecular weight of the working fluid, and thermal energy is imparted to this liquid from a device for heating the working fluid to bring it into steam . Then the working liquid in the vapor phase is supplied to the device for converting energy into mechanical work, with the expansion of the working liquid and the decrease in temperature. Gas is separated from the expanded and cooled working fluid. The expanded and cooled liquid in the liquid phase and the released gas are cyclically returned to the reservoir.
  • Water is used as a working fluid, into which it is heated in a tank to produce steam and hydrogen or helium is added to it in an amount of 0.1 to 9 wt.% to form a gas-steam mixture having increased values of enthalpy and compressibility coefficient.
  • An open energy cycle is known (according to the application US2005172623), which uses a heated carrier gas, which is adiabatically compressed, the heat released from compression is absorbed by the boiling liquid injected from the reservoir, which is consumed during operation. pump up liquid into a constant volume of carrier gas, while part of the liquid passes into the gas phase. Then, the temperature of the gas mixture is equalized before the rapid expansion step at constant volume. There is a transfer of thermal energy from the carrier gas to the injected liquid. If there is enough temperature difference to transfer heat, further evaporation of the liquid will occur. Then, there is an adiabatic expansion of the mixture in the expander. The mixture is depleted and collected in a condenser to separate the mixture into its components. Then, the carrier gas returns to the beginning of the cycle. The liquid is consumed during the cycle and cannot be returned to its beginning
  • a closed energy cycle is known (according to patent RU2148722), selected as a prototype, in which, as a working substance, a gas-liquid solution of butane and nitrogen is used, which has inverse temperature solubility.
  • the first working phase the volume of the chamber expands, the pressure drops, during expansion, mechanical work is performed, with an increase in volume and a drop in pressure, the gas phase is released, which is accompanied by the release of heat.
  • the gas dissolves in the liquid, which is accompanied by the absorption of heat, so the work of compression decreases. Due to the limited solubility of nitrogen in butane, it is necessary to heat the solution during the compression stage, and besides, butane does not change its phase state in the cycle. Both of these factors also reduce the thermal efficiency of the cycle.
  • the technical objective of the invention is to increase the thermal efficiency of the energy cycle.
  • thermodynamic cycle in which the thermodynamic states of the working fluid, in our case, a gas-liquid mixture, coincide at the beginning and at the end.
  • this concept includes those processes in which it is allowed to add or remove components of the working fluid, due, for example, to losses, leaks, or, if necessary, change the state or mode of operation of a heat engine using this cycle.
  • the working fluid is fed to the compression phase in the ratio at which the liquid evaporates due to the heating of the compressible inert gas, then the working fluid in the gas phase is heated and sent to the expander to perform work, after which the working fluid the body is brought to its original temperature by means of heat exchange and returned to the beginning of the cycle.
  • the temperature of the working fluid is measured at the end of the compression phase and, depending on the temperature, the ratio of inert gas and liquid is regulated when they are supplied to the compression phase.
  • Argon is used as an inert gas
  • butane is used as a liquid.
  • Freon or saturated hydrocarbon can be used as a liquid.
  • figure 1 diagram of the energy cycle
  • fig. 2 phase diagram T - P for a pair of argon - butane.
  • a mixture of an inert gas and a liquid which is in the liquid phase at the beginning of the cycle, is used as a working fluid.
  • the inert gas and liquid are either in as a mixture of gases, or as a mixture (rather than a solution) of a gas and a liquid.
  • the working fluid is supplied to the compression phase A-B, to the compressor 1, in the ratio at which the compressible inert gas is heated. Due to the heat released in this case, boiling and complete evaporation of the liquid occur.
  • the process is characterized by low mechanical costs for compression, since the temperature and enthalpy change insignificantly, little work is done.
  • Cyclic positive displacement compressors eg reciprocating, screw
  • An inert gas and liquid are simultaneously supplied to this volume for compression. In each compressor cycle, a certain amount of inert gas and liquid is supplied so that the heat from the compression of the inert gas is equal to the heat required by the liquid for complete evaporation.
  • the ratio of inert gas and liquid is regulated when they are supplied to the compression phase in such a way as to ensure maximum efficiency of the compression phase in the steady operating mode of the heat engine: excess liquids can lead to incomplete evaporation, an excess of inert gas will lead to mechanical energy losses for compressing the working fluid.
  • control and adjustment can be carried out using a controller connected to a thermometer and metered injection devices.
  • the working fluid which is at the outlet of the compressor 1 in the gas phase, is heated at a constant pressure in the heater 2 (energy cycle phase B-C) to the calculated temperature, which can be used as a heated container.
  • the design temperature is chosen in such a way as to ensure the maximum thermal efficiency of the cycle: it is necessary to heat up to such a temperature that, during subsequent expansion in the expander 3, the mixture of gases cools down almost to the dew point for the liquid. If drops of liquid appear in the cavity of the expander 3, they cease to perform useful work (underheating). If overheated, then it will be necessary to take away excess heat in the condenser 4.
  • the working fluid is sent to the expander 3 to perform mechanical work (expansion phase C-D), the heat engine converts thermal energy into mechanical energy (and then, for example, into electrical energy).
  • the heat engine converts thermal energy into mechanical energy (and then, for example, into electrical energy).
  • any of the known mechanisms can be used, for example, a turbine.
  • the working fluid is fed to the cooling phase D-A, to the condenser 4 (heat exchanger), where, by means of heat exchange, it is brought to the initial temperature and returned to the beginning of the cycle.
  • the condenser 4 heat exchanger
  • the cycle involves 1 kg of argon and 0.1356 kg of liquid butane.
  • the initial pressure for this mixture is 3 bar at 30°C.
  • Compressor 1 compresses the mixture (working fluid) to 8 bar with complete evaporation of butane.
  • the temperature of the gaseous working fluid will be 69 °C.
  • the mixture is heated to 100 ° C and it does work in expander 3, while the pressure is reduced to 3 bar, the temperature is up to 31 °C.
  • condenser 4 with a slight decrease in temperature to 30 °C, butane passes into the liquid phase, and argon with liquid butane returns to the beginning of the cycle.
  • the calculated thermal efficiency of such a process is about 90%.
  • other gases can be used as an inert gas: krypton, xenon, helium, neon, which have similar physical and physical properties. So, below is a table of energy cycle parameters using such gases.
  • any liquid can be used as a liquid that can be mixed with an inert gas (is non-volatile, being in a liquid phase) under the conditions of a condenser and evaporating in a compressor.
  • the most suitable liquids are low-boiling substances (substances with a low specific heat of vaporization), for example, they include, but are not limited to, all freons and saturated hydrocarbons. Obviously, there are a lot of such substances and it is impossible to describe the features of the energy cycle for all inert gas-liquid pairs. As examples, the table shows the parameters of the energy cycle for different pairs:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к области преобразования тепловой энергии в механическую с использованием в качестве рабочего тела смеси нерастворимых или малорастворимых друг в друге веществ, находящихся в равновесии в жидкой и газовой фазах. Технической задачей является повышение термического КПД энергетического цикла. Замкнутый энергетический цикл, в котором в качестве рабочего тела используется смесь инертного газа и жидкости, находящейся в начале цикла в жидкой фазе. Рабочее тело подают на фазу сжатия в соотношении, при котором происходит испарение жидкости за счет разогрева сжимаемого инертного газа. Затем, рабочее тело, находящееся в газовой фазе, нагревают и направляют в расширитель для совершения работы, после чего, рабочее тело посредством теплообмена доводится до первоначальной температуры и возвращается в начало цикла. Производят измерение температуры рабочего тела в конце фазы сжатия и, в зависимости от температуры регулируют соотношение инертного газа и жидкости при их подаче на фазу сжатия. В качестве инертного газа используют аргон, в качестве жидкости используют бутан. В качестве жидкости могут использовать фреон или предельный углеводород.

Description

Замкнутый энергетический цикл
Изобретение относится к области преобразования тепловой энергии в механическую с использованием в качестве рабочего тела смеси нерастворимых или малорастворимых друг в друге веществ, находящихся в равновесии в жидкой и газовой фазах.
Известен замкнутый энергетический цикл (по патенту RU2304722), в котором в качестве рабочего тела используется смесь веществ, состоящая из нескольких компонентов, находящихся в равновесии в жидкой и газовой фазах. В первой рабочей фазе при первоначальной температуре и первоначальном давлении рабочее тело расширяется с совершением работы и последующим отводом тепла. Расширение рабочего тела и последующий отвод тепла проводят до температуры, при которой рабочее тело разделяется на газовую фазу и жидкую фазу. Жидкую фазу рабочего тела отделяют от газовой фазы и раздельно сжимают. После сжатия жидкую фазу нагревают путем подвода тепла и смешивают с газовой фазой с образованием рабочего тела при первоначальной температуре.
Известен замкнутый энергетический цикл (по патенту RU2114999) в котором, в рабочую жидкость, помещенную в резервуар, добавляют газ, молекулярная масса которого не превышает молекулярную массу рабочей жидкости, и сообщают этой жидкости тепловую энергию от устройства для нагрева рабочей жидкости до приведения ее в пар. Затем подают рабочую жидкость в парообразной фазе в устройство для преобразования энергии в механическую работу, с расширением рабочей жидкости и снижением температуры. Выделяют из расширенной и охлажденной рабочей жидкости газ. Циклически возвращают расширенную и охлажденную жидкость в жидкой фазе и выделенный газ в резервуар. В качестве рабочей жидкости используют воду, в которую в резервуаре нагревают до получения пара и добавляют в нее в количестве от 0,1 до 9 мас.% водород или гелий для образования смеси газа с паром, имеющей повышенные значения энтальпии и коэффициента сжимаемости.
Общим недостатком известных решения является низкий термический КПД, связанный с тем, что сжатие двух рабочих тел происходит раздельно и не используется теплота, выделяющаяся при сжатии газа.
Известен незамкнутый энергетический цикл (по заявке US2005172623), в котором используется нагретый газ-носитель, который адиабатически сжимают, выделяющееся от сжатия тепло поглощается впрыскиваемой из резервуара закипающей жидкостью, которая расходуется в процессе работы. Нагнетают жидкость в постоянный объем газа-носителя, при этом, часть жидкости переходит в газовую фазу. Затем, выравнивают температуру смеси газов перед этапом быстрого расширения при постоянном объеме. Происходит передача тепловой энергии от газа- носителя к нагнетаемой жидкости. Если существует достаточная разница температур для передачи тепла, произойдет дальнейшее испарение жидкости. Затем, происходит адиабатическое расширение смеси в расширителе. Происходит истощение смеси, которая собирается в конденсатор для разделения смеси на компоненты. Затем, газ- носитель возвращается в начало цикла. Жидкость в процессе цикла расходуется и не может быть возвращена в его начало
Известен замкнутый энергетический цикл (по патенту RU2148722), выбранный в качестве прототипа, в котором, в качестве рабочего вещества используется газожидкостный раствор бутана и азота, обладающий обратной растворимостью по температуре. В первой рабочей фазе объем камеры расширяется, давление падает, при расширении выполняется механическая работа, при увеличении объема и падении давления происходит выделение газовой фазы, которое сопровождается выделением тепла. При сжатии происходит растворение газа в жидкости, которое сопровождается поглощением тепла, поэтому работа сжатия уменьшается. Из-за ограниченной растворимости азота в бутане, требуется нагревать раствор на этапе сжатия, кроме того, бутан не меняет фазовое состояние в цикле. Оба этих фактора также снижают термический КПД цикла.
Технической задачей изобретения является повышение термического КПД энергетического цикла.
Технический результат достигается в замкнутом энергетическом цикле, в котором в качестве рабочего тела используется смесь инертного газа и жидкости, находящейся в начале цикла в жидкой фазе. Под замкнутым энергетическом циклом мы понимаем термодинамический цикл, в котором термодинамические состояния рабочего тела, в нашем случае газо-жидкостной смеси, в начале и в конце совпадают. В том числе, в это понятие включаются те процессы, в которых допускается добавление или извлечение компонент рабочего тела, вследствие, например, потерь, утечек, или, при необходимости изменить состояние или режим работы тепловой машины, использующей этот цикл. Рабочее тело подают на фазу сжатия в соотношении, при котором происходит испарение жидкости за счет разогрева сжимаемого инертного газа, затем рабочее тело, находящееся в газовой фазе, нагревают и направляют в расширитель для совершения работы, после чего, рабочее тело посредством теплообмена доводится до первоначальной температуры и возвращается в начало цикла. Производят измерение температуры рабочего тела в конце фазы сжатия и, в зависимости от температуры регулируют соотношение инертного газа и жидкости при их подаче на фазу сжатия. В качестве инертного газа используют аргон, в качестве жидкости используют бутан. В качестве жидкости могут использовать фреон или предельный углеводород.
Изобретение поясняется рисунками: фиг.1 - схема энергетического цикла; фиг. 2 - фазовая диаграмма Т - Р для пары аргон - бутан.
В замкнутом энергетическом цикле в качестве рабочего тела используется смесь инертного газа и жидкости, находящейся в начале цикла в жидкой фазе. Началом цикла мы называем состояние смеси перед подачей на фазу сжатия А-В - в компрессор 1. То есть, мы выбираем такую пару инертного газа и жидкости, и такие параметры энергетического цикла, при которых, инертный газ и жидкость находятся в конденсаторе 4, на фазе охлаждения смеси D-А, или, что то же самое, перед подачей в компрессор 1, в газообразной и жидкой фазах соответственно.
Использование химически инертного газа и скорость протекания процессов определяют то, что инертный газ и жидкость значимо для хода процесса не растворяются друг в друг и установившееся термодинамическое равновесие на фазах цикла не смещается из-за растворения - в разных фазах цикла инертный газ и жидкость находятся либо в виде смеси газов, либо в виде смеси (а не раствора) газа и жидкости.
Рабочее тело подают на фазу сжатия A-В, в компрессор 1, в соотношении, при котором происходит разогрев сжимаемого инертного газа. За счет выделяющегося при этом тепла, происходит закипание и полное испарение жидкости. Процесс характеризуется малыми механическими затратами на сжатие, так как температура и энтальпия меняются незначительно, совершается малая работа. Могут использоваться циклические компрессоры объёмного сжатия (например, поршневые, винтовые), имеющие замкнутый объём для сжатия. В этот объём для сжатия одновременно подаются инертный газ и жидкость. В каждый цикл работы компрессора подается определённое количество инертного газа и жидкости с тем, чтобы тепло от сжатия инертного газа было равно теплу, необходимому жидкости для полного испарения.
Для повышения теплового КПД и для повышения стабильности тепловых характеристик энергетического цикла, производят измерение температуры рабочего тела в конце фазы сжатия A-В, на выходе из компрессора 1. В зависимости от измеренной температуры, регулируют соотношение инертного газа и жидкости при их подаче на фазу сжатия таким образом, чтобы обеспечить максимальную эффективность фазы сжатия при установившемся рабочем режиме тепловой машины: избыток жидкости может привести к неполному испарению, избыток инертного газа приведет к потерям механической энергии на сжатие рабочего тела. В автоматическом режиме такой контроль и регулировка могут производится с использованием контроллера, соединенного с термометром и с устройствами дозированного впрыска.
Затем, рабочее тело, находящееся на выходе из компрессора 1 в газовой фазе, при постоянном давлении нагревают в нагревателе 2 (фаза энергетического цикла В- С) до расчетной температуры, в качестве которого может использоваться подогреваемая емкость.
Расчетная температура выбирается таким образом, чтобы обеспечить максимальный тепловой КПД цикла: необходимо нагревать до такой температуры, чтобы при последующем расширении в расширителе 3, смесь газов остыла практически до точки росы для жидкости. Если капли жидкости появятся в полости расширителя 3, они перестают совершать полезную работу (недогрев). Если перегреть, то потребуется отнимать лишнее тепло в конденсаторе 4.
После фазы нагрева, рабочее тело направляют в расширитель 3 для совершения механической работы (фаза расширения С-D), тепловая машина преобразует тепловую энергию в механическую (и далее, например, в электрическую). При этом, может использоваться любой из известных механизмов, например, турбина.
После расширителя, рабочее тело подается на фазу охлаждения D-А, в конденсатор 4 (теплообменник), где, посредством теплообмена доводится до первоначальной температуры и возвращается в начало цикла.
В качестве примера, рассмотрим работу энергетического цикла на паре аргон - бутан.
В цикле участвует 1 кг аргона и 0,1356 кг жидкого бутана. Начальное давление для такой смеси составляет 3 бар при температуре 30 °С. В компрессоре 1 происходит сжатие смеси (рабочего тела) до 8 бар с полным испарением бутана. На выходе из компрессора температура газообразного рабочего тела составит 69 °С. Далее, при постоянном давлении нагревают смесь до 100 °С и она совершает работу в расширителе 3, при этом давление понижается до 3 бар, температура до 31 °С. В конденсаторе 4, при незначительном понижении температуры до 30 °С, бутан переходит в жидкую фазу а аргон с жидким бутаном возвращаются в начало цикла Расчетное тепловое КПД такого процесса составляет около 90%. В качестве инертного газа очевидно могут использоваться и другие газы: криптон, ксенон, гелий, неон, имеющие сходные физические и физические свойства. Так, ниже приводится таблица параметров энергетического цикла с использованием таких газов.
В качестве жидкости может использоваться любая жидкость, которая может находится с инертным газом в виде смеси (является нелетучей, находящейся в жидкой фазе) в условиях конденсатора и испаряющейся в компрессоре. Наиболее подходящими жидкостями являются легкокипящие вещества (вещества с малой удельной теплотой парообразования), к ним, например, можно отнести, но не ограничивая только ими, все фреоны и предельные углеводороды. Очевидно, что таких веществ очень много и невозможно описать особенности энергетического цикла для всех пар инертный газ - жидкость. В качестве примеров, в таблице приведены параметры энергетического цикла для разных пар:
Figure imgf000006_0001

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
Е Замкнутый энергетический цикл, в котором в качестве рабочего тела используется смесь инертного газа и жидкости, находящейся в начале цикла в жидкой фазе, рабочее тело подают на фазу сжатия в соотношении, при котором происходит испарение жидкости за счет разогрева сжимаемого инертного газа, затем рабочее тело, находящееся в газовой фазе, нагревают и направляют в расширитель для совершения работы, после чего рабочее тело посредством теплообмена доводится до первоначальной температуры и возвращается в начало цикла.
2. Энергетический цикл по п.1, характеризующийся тем, что производят измерение температуры рабочего тела в конце фазы сжатия и в зависимости от температуры регулируют соотношение инертного газа и жидкости при их подаче на фазу сжатия.
3. Энергетический цикл по п.1, характеризующийся тем, что в качестве инертного газа используют аргон, в качестве жидкости используют бутан.
4. Энергетический цикл по п.1, характеризующийся тем, что в качестве жидкости используют фреон или предельный углеводород.
ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)
PCT/RU2021/050181 2020-11-24 2021-06-24 Замкнутый энергетический цикл WO2022114996A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2020138358 2020-11-24
RU2020138358A RU2747894C1 (ru) 2020-11-24 2020-11-24 Замкнутый энергетический цикл

Publications (1)

Publication Number Publication Date
WO2022114996A1 true WO2022114996A1 (ru) 2022-06-02

Family

ID=75920003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2021/050181 WO2022114996A1 (ru) 2020-11-24 2021-06-24 Замкнутый энергетический цикл

Country Status (2)

Country Link
RU (1) RU2747894C1 (ru)
WO (1) WO2022114996A1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA000058B1 (ru) * 1996-02-09 1998-04-30 Эксерджи Инк. Способ преобразования тепла в полезную энергию и устройство для его осуществления
RU2148722C1 (ru) * 1998-09-24 2000-05-10 Научно-исследовательская фирма "Эн-Ал" Энергетический цикл, в котором используется смесь
US20110061388A1 (en) * 2009-09-15 2011-03-17 General Electric Company Direct evaporator apparatus and energy recovery system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA000058B1 (ru) * 1996-02-09 1998-04-30 Эксерджи Инк. Способ преобразования тепла в полезную энергию и устройство для его осуществления
RU2148722C1 (ru) * 1998-09-24 2000-05-10 Научно-исследовательская фирма "Эн-Ал" Энергетический цикл, в котором используется смесь
US20110061388A1 (en) * 2009-09-15 2011-03-17 General Electric Company Direct evaporator apparatus and energy recovery system

Also Published As

Publication number Publication date
RU2747894C1 (ru) 2021-05-17

Similar Documents

Publication Publication Date Title
EP2157317B2 (en) Thermoelectric energy storage system and method for storing thermoelectric energy
KR880002380B1 (ko) 액화천연가스의 증발로부터 에너지를 회수하는 방법과 장치
US20160032783A1 (en) Apparatus and Method for Storing Energy
JPH0626441A (ja) 熱力学サイクルの実施方法および装置
WO2011161094A2 (en) Thermoelectric energy storage system
JP2015523491A5 (ru)
KR880002381B1 (ko) 액화천연가스의 증발로 부터 에너지를 회수하는 방법 및 장치
WO1998006791A1 (en) Pentafluoropropanes and hexafluoropropanes as working fluids for power generation
BR112018004559B1 (pt) Orc para transformar o calor residual de uma fonte de calor em energia mecânica e instalação de compressor fazendo uso de tal orc
RU2747894C1 (ru) Замкнутый энергетический цикл
EA043750B1 (ru) Замкнутый энергетический цикл
JP2014190285A (ja) バイナリー発電装置の運転方法
US4459810A (en) Working fluids for use with rankine cycle
RU2778186C1 (ru) Замкнутый энергетический цикл и тепловой двигатель для его осуществления
US20130227948A1 (en) Method and system for converting thermal power, delivered from a variable temperature heat source, into mechanical power
RU2773086C1 (ru) Способ преобразования тепловой энергии
Braimakis et al. Ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery
WO2007133110A1 (fr) Cycle énergétique
JPS6312506B2 (ru)
AU2022384823A1 (en) Thermal oscillation systems
JPH0223591B2 (ru)
KR20010010878A (ko) 열을 유용한 에너지로 변환하는 장치 및 방법
JPS6312510B2 (ru)
JPH0223590B2 (ru)
WO1999022187A1 (fr) Procede et appareil de refrigeration sans chauffage et a transformation de phase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21898788

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21898788

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.11.2023)