WO2022114504A1 - 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치 - Google Patents

평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치 Download PDF

Info

Publication number
WO2022114504A1
WO2022114504A1 PCT/KR2021/013691 KR2021013691W WO2022114504A1 WO 2022114504 A1 WO2022114504 A1 WO 2022114504A1 KR 2021013691 W KR2021013691 W KR 2021013691W WO 2022114504 A1 WO2022114504 A1 WO 2022114504A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
powder
electrode
filter electrode
surface treatment
Prior art date
Application number
PCT/KR2021/013691
Other languages
English (en)
French (fr)
Inventor
이덕연
이창영
정만기
이수민
김경환
김상진
곽재원
Original Assignee
주식회사 이노플라즈텍
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이노플라즈텍, 울산과학기술원 filed Critical 주식회사 이노플라즈텍
Priority to EP21898330.2A priority Critical patent/EP4252902A4/en
Priority to US18/036,405 priority patent/US20240001327A1/en
Priority to CN202180076303.XA priority patent/CN116472108A/zh
Priority to JP2023530769A priority patent/JP2023550765A/ja
Publication of WO2022114504A1 publication Critical patent/WO2022114504A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/129Radiofrequency
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00635Introduction of reactive groups to the surface by reactive plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0835Details relating to the shape of the electrodes substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma

Definitions

  • the present invention relates to a plasma apparatus for surface treatment of powder using a plate-type filter electrode, and more particularly, by dispersing and adsorbing nano- or micro-sized powder on a porous, plate-shaped filter electrode, the surface can be treated more uniformly. It relates to a plasma device for powder surface treatment.
  • carbon nanopowder materials such as carbon nanotubes and graphene are prone to mutual aggregation despite their excellent physical properties.
  • the conventional dispersion technique may be divided into a mechanical method such as milling, a wet method using a chemical reaction, and a dry method using plasma.
  • the dry plasma method is a preferred method in consideration of mass productivity and environmental friendliness, but a device such as rotation and stirring is essential to uniformly mix carbon nanopowders in order to perform plasma surface treatment on carbon nanopowders, As the size of the powder decreases, it is very difficult to uniformly treat the surface, the functionalization efficiency is low, and the processing time is long.
  • a plasma apparatus for powder surface treatment using a plate-type filter electrode comprising: a chamber for forming a space in which plasma is generated; a filter electrode installed inside the chamber, formed to have a flat plate shape and a porous structure, and to generate plasma when power is applied to surface-treat and functionalize the powder; adsorption means for reducing the internal pressure of the filter electrode to adsorb the powder to the surface of the filter electrode; and a vibration generator provided in any one of the chamber and the filter electrode, and applying vibration to the filter electrode in at least one of a vertical direction and a horizontal direction to disperse the powder on the surface of the filter electrode.
  • a plurality of the filter electrodes are stacked so as to have spaced apart spaces from each other, and are arranged in each of the spaced spaces to supply the powder to the spaced space so that the powder is adsorbed on the upper and lower surfaces of the filter electrodes to generate a powder injector.
  • a plurality of the filter electrodes are stacked so as to have a space apart from each other, and are provided to be movable along the space, so that the powder is adsorbed on the upper and lower surfaces of the filter electrodes continuously for each space.
  • By supplying it further includes a powder injector.
  • a rack formed to be fitted with the plurality of filter electrodes, and a shock absorbing member provided between the rack and the filter electrode to absorb shock when the filter electrode vibrates.
  • the adsorption means includes a vacuum pump that sucks air from each lower portion of the plurality of filter electrodes to form each interior of the filter electrodes in a vacuum state, and a vacuum connecting the vacuum pump and each lower portion of the plurality of filter electrodes includes euros.
  • the adsorption means includes a vacuum pump that sucks the air inside the filter electrode and forms the inside of the filter electrode in a vacuum state.
  • the filter electrode is formed between an upper filter part having an upper surface and formed in a porous structure, a lower filter part having a lower surface and formed in a porous structure, and formed between the upper filter part and the lower surface filter part to be vacuumed by the vacuum pump. It includes a vacuum part to be in a state.
  • the filter electrodes are arranged in a vertical direction so that a plurality of the filter electrodes have spaced apart spaces from each other, and further include a powder injector for supplying the powder to the spaced space between the plurality of filter electrodes.
  • the vibration generator includes an acoustic vibration module that generates sound and resonates to apply acoustic vibration.
  • the vibration generator includes an ultrasonic vibrator for applying vibration by generating ultrasonic waves.
  • the powder includes nano or micro-sized powder.
  • a plasma apparatus for powder surface treatment using a plate-type filter electrode comprising: a chamber for forming a space in which plasma is generated; a filter electrode installed inside the chamber, formed to have a flat plate shape and a porous structure, and to generate plasma when power is applied to surface-treat and functionalize the powder; an adsorption means for reducing the internal pressure of the filter electrode to adsorb the powder to the surface of the filter electrode; provided in any one of the chamber and the filter electrode, to the filter electrode in at least one of a vertical direction and a horizontal direction and a vibration generator for dispersing the powder on the surface of the filter electrode by applying vibration to a vacuum pump for sucking the internal air of the filter electrodes to form a vacuum state inside each of the filter electrodes, and a vacuum flow path connecting the vacuum pump and the plurality of filter electrodes, wherein the vibration generator is provided to each It is provided and includes an ultrasonic vibrator vibrating by generating ultrasonic waves.
  • the powder includes nano or micro-sized powder.
  • a plasma apparatus for powder surface treatment using a plate-type filter electrode comprising: a chamber for forming a space in which plasma is generated; a filter electrode installed inside the chamber, formed to have a flat plate shape and a porous structure, and to generate plasma when power is applied to surface-treat and functionalize the powder; adsorption means for reducing the internal pressure of the filter electrode to adsorb the powder to the surface of the filter electrode; a vibration generator provided in any one of the chamber and the filter electrode and applying vibration to the filter electrode in at least one of a vertical direction and a horizontal direction to disperse the powder on the surface of the filter electrode; A plurality of silvers are stacked so as to have a space apart from each other, and the adsorption means is provided in the chamber to suck the internal air of the plurality of filter electrodes to form a vacuum state inside each of the filter electrodes. a pump, and a vacuum passage connecting the vacuum pump and the plurality of filter electrodes, where
  • the powder includes nano or micro-sized powder.
  • a plasma apparatus for surface treatment of powder using a plate-type filter electrode is formed to have a flat plate shape and a porous structure, and generates plasma when power is applied to surface-treat nano- or micro-sized powder a filter electrode for functionalization; a vibration generator for vibration-dispersing the powder on a surface of the filter electrode by applying vibration to the filter electrode; and an adsorption means for adsorbing the powder to the surface of the filter electrode by reducing the internal pressure of the filter electrode so as to prevent the vibration-dispersed powder from being separated from the filter electrode to the outside.
  • the vibration generator includes at least one of an ultrasonic vibrator that generates ultrasonic waves to apply vibration, and an acoustic vibration module that generates sound and resonates to apply acoustic vibrations.
  • the adsorption means includes a vacuum pump that sucks the air inside the filter electrode and forms the inside of the filter electrode in a vacuum state.
  • a plurality of the filter electrodes are stacked so as to have a space apart from each other.
  • a plasma apparatus for surface treatment of powder using a flat filter electrode comprises: a filter electrode formed of a flat plate having a porous structure, generating plasma when power is applied to surface-treat and functionalize the powder; a ground electrode stacked vertically spaced apart from the filter electrode, formed in a flat plate to correspond to the filter electrode, and grounded; and an adsorption means for reducing the internal pressure of any one of the filter electrode and the ground electrode to adsorb the powder to the surface of any one of the filter electrode and the ground electrode.
  • a plurality of the filter electrodes are stacked so as to have a space apart from each other, and a plurality of the ground electrodes are alternately stacked with the filter electrodes.
  • the filter electrode and the ground electrode By applying vibration to any one of the filter electrode and the ground electrode, it further includes a vibration generator for vibration-dispersing the powder on one surface of the filter electrode and the ground electrode.
  • the vibration generator includes at least one of an ultrasonic vibrator that generates ultrasonic waves to apply vibration, and an acoustic vibration module that generates sound and resonates to apply acoustic vibrations.
  • the adsorption means includes a vacuum pump that sucks the internal air of any one of the filter electrode and the ground electrode to form the inside in a vacuum state.
  • the processing capacity that can be processed at once can be maximized, and thus processing efficiency can be improved.
  • the powder can be evenly dispersed and mixed on the surface of the filter electrode, so that the powders are evenly surface treated can do.
  • FIG. 1 is a block diagram schematically showing a plasma apparatus for powder surface treatment using a plate-type filter electrode according to a first embodiment of the present invention.
  • FIG. 2 is a side view illustrating the plate-type filter electrode shown in FIG. 1 .
  • FIG. 3 is a perspective view illustrating the plate-type filter electrode shown in FIG. 1 .
  • FIG. 4 is a cross-sectional view showing a filter electrode according to a second embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing a plasma apparatus for powder surface treatment using a plate-type filter electrode according to a third embodiment of the present invention.
  • FIG. 6 is a diagram schematically showing a plasma apparatus for powder surface treatment using a plate-type filter electrode according to a fourth embodiment of the present invention.
  • FIG. 7 is a view schematically showing a plasma apparatus for powder surface treatment using a plate-type filter electrode according to a fifth embodiment of the present invention.
  • FIG. 8 is a diagram schematically showing a plasma apparatus for powder surface treatment using a plate-type filter electrode according to a sixth embodiment of the present invention.
  • FIG. 9 is a diagram schematically showing a plasma apparatus for powder surface treatment using a plate-type filter electrode according to a seventh embodiment of the present invention.
  • FIG. 1 is a block diagram schematically showing a plasma apparatus for powder surface treatment using a plate-type filter electrode according to an embodiment of the present invention.
  • FIG. 2 is a side view illustrating the plate-type filter electrode shown in FIG. 1 .
  • FIG. 3 is a perspective view illustrating the plate-type filter electrode shown in FIG. 1 .
  • the plasma apparatus for powder surface treatment using a plate-type filter electrode includes a chamber 10, a filter electrode 20, an adsorption means 30, and a vibration generator.
  • the chamber 10 forms a space in which the plurality of filter electrodes 20 are accommodated and plasma is generated therein.
  • a power supply (not shown) and a gas supply unit (not shown) for supplying external gas are connected to the chamber 10 .
  • the chamber 10 is grounded and serves as a ground electrode.
  • a rack 25 into which the plurality of filter electrodes 20 are fitted is provided inside the chamber 10 .
  • the present invention is not limited thereto, and it is of course possible to stack the plurality of filter electrodes 20 in a vertical direction spaced apart from each other by a predetermined distance without using the rack 25 .
  • the rack 25 may be fixedly installed inside the chamber 10, and is installed to be withdrawable from the chamber 10 so that the plurality of filter electrodes 20 are inserted and then reintroduced. It is possible.
  • the filter electrode 20 is a power electrode to which power is applied from the power supply device (not shown).
  • the filter electrode 20 is formed into a plasma inside the chamber 10 .
  • RF radio frequency
  • one filter electrode 20 is used and a high-frequency power source is applied to the filter electrode 20 as an example.
  • the present invention is not limited thereto, and AC plasma discharge or DC plasma discharge is also possible, and the filter electrode 20 is a first electrode and a configuration including a second electrode having a potential difference with the first electrode is also possible, It is also possible to use as a second electrode by grounding. In the case of AC plasma discharge, each electrode is covered with a dielectric.
  • the plasma generated from the filter electrode 20 makes the powder functionalized by surface treatment.
  • Surface functionalization of the powder disperses the powders without agglomeration without deterioration of existing physical properties, but the interfacial bonding force between the powder and other dissimilar materials can be improved.
  • the filter electrode 20 is formed in a flat plate shape so that the powder is placed on the upper surface.
  • the filter electrode 20 is, for example, described as having a rectangular plate shape, but is not limited thereto, and it is of course possible to have a disc shape.
  • a plurality of the filter electrodes 20 are stacked so as to have a space apart from each other in the vertical or horizontal direction.
  • the plurality of filter electrodes 20 will be described as an example that 10 of the plurality of filter electrodes 20 are vertically spaced apart from each other in the rack 25 .
  • the number of stacks of the filter electrodes 20 can be adjusted according to the processing capacity.
  • the filter electrode 20 is formed to have a porous structure, respectively.
  • the filter electrode 20 includes a filter part 20a formed of a porous body or a porous mesh, and a vacuum part 20b formed under the filter part 20a and brought into a vacuum state by a vacuum pump 32 to be described later. includes Of course, the filter electrode 20 may be formed so that only the upper surface has a porous structure.
  • the filter unit 20a is processed to a nano or micro unit size, and it is preferable that pores are formed smaller than the size of the powder or a nano nonwoven fabric is provided to prevent the powder from passing through.
  • the adsorption means 30 is a device for reducing the internal pressure of the filter electrode 20 to adsorb the powder on the surface of the filter electrode 20 .
  • the adsorption means 30 includes a vacuum pump 32 , a vacuum flow path 33 , and a powder blocking unit (not shown) for filtering powder.
  • the vacuum pump 32 is installed outside the chamber 10, sucks air from the inside of the plurality of filter electrodes 20, and turns the inside of the plurality of filter electrodes 20 into a vacuum state. to form
  • the vacuum flow path 33 is a flow path connecting the vacuum pump 32 and the lower portions of the plurality of filter electrodes 20 .
  • One end of the vacuum passage 33 is connected to the lower portions of the plurality of filter electrodes 20 , and the other end is connected to the vacuum pump 32 .
  • the vacuum flow path 33 is connected to the vacuum part 20b of the filter electrode 20 .
  • the present invention is not limited thereto, and the vacuum pump 32 may be installed in each lower portion of the filter electrode 20 , and may of course be installed in the rack 25 .
  • the vibration generator applies vibration to the filter electrode 20 in at least one of a vertical direction and a horizontal direction to disperse the powder on the surface of the filter electrode 20 . That is, the vibration generator disperses the powder by generating vibration such as an effect of tapping the lower portion of the filter electrode 20 .
  • the vibration generator may use an acoustic vibration module (not shown) or an ultrasonic vibrator 40 .
  • the acoustic vibration module (not shown) is an acoustic resonance vibrator that generates and resonates sound to generate acoustic vibration in the filter electrode 20 .
  • the acoustic vibration module may be mounted on the filter electrode 20 or may be installed on the rack 25 .
  • the ultrasonic vibrator is used as an example.
  • the ultrasonic vibrator 40 is provided on the filter electrode 20, respectively, and generates an ultrasonic wave with power applied from the power supply device (not shown) to generate vibration.
  • the ultrasonic vibrator 40 will be described as an example mounted on each lower portion of the filter electrode 20 .
  • a plurality of the ultrasonic vibrator 40 may be mounted to be spaced apart from each other by a predetermined distance.
  • the ultrasonic vibrator 40 will be described as an example in which three are provided on the lower central side of the filter electrode 20 .
  • the ultrasonic vibrator 40 applies vibration to the lower central side of the filter electrode 20 to disperse the powder on the surface of the filter electrode 20 from the center to the edges.
  • the ultrasonic vibrator 40 is attached to the lower surface of the vacuum part 20b of the filter electrode 20 as an example, but it is not limited thereto and the ultrasonic vibrator 40 is the filter electrode It is of course also possible to be installed to be spaced apart from (20) by a predetermined interval.
  • the ultrasonic vibrator 40 is installed in the rack 25 , it is of course possible to apply vibration to the rack 25 to vibrate the plurality of filter electrodes 20 .
  • the powder includes nano- or micro-sized powders such as carbon nanotubes and graphene.
  • the filter electrodes 20 After putting powder on each of the upper surfaces of the plurality of filter electrodes 20 , the filter electrodes 20 are inserted into the rack 25 to be stacked.
  • the plurality of filter electrodes 20 are sandwiched between the rack 25 and the plurality of filter electrodes 20 are stacked for example, but the present invention is not limited thereto, and the plurality of filters without using the rack 25 . It is of course also possible to stack the electrodes 20 to be spaced apart from each other by a predetermined distance.
  • the present invention is not limited to the above embodiment, and it is of course possible to supply powder to the plurality of filter electrodes 20 mounted in the chamber 10 .
  • the powder When the inside of the vacuum part 20b of the filter electrodes 20 is in a vacuum state, the powder is adsorbed to the surfaces of the filter electrodes 20 . That is, the adsorption force A acts on the powders in a direction toward the surface of the filter electrodes 20 .
  • vibration is applied to the filter electrodes 20 by the ultrasonic vibrator 40 .
  • a dispersion force B acts on the powders in a bouncing direction from the surface of the filter electrode 20 .
  • the adsorption force (A) and the dispersion force (B) can be adjusted according to the suction force of the vacuum pump 30 and the vibration strength of the ultrasonic vibrator 40 .
  • the adsorption force (A) and the dispersing force (B) can be optimally calculated by experiments or the like.
  • the surface treatment process by the plasma may be performed for a preset time. When the set time elapses, the plasma treatment is stopped and the powder is collected.
  • powders are adsorbed and dispersed on the surfaces of the plurality of filter electrodes 20 and then surface-treated by plasma.
  • the powders can move to each other without flying from the surface of the filter electrode 20 , so that the entire powder is evenly treated with plasma is possible
  • the powder can be evenly mixed and dispersed, so that a uniform surface treatment is possible.
  • FIG. 4 is a cross-sectional view showing a filter electrode according to a second embodiment of the present invention.
  • the filter electrode 220 includes an upper filter unit 220a, a lower filter unit 220b and a vacuum unit 220c. is different from, and the rest of the configurations and actions are similar, so that the description will be focused on the different configurations and detailed descriptions of the similar configurations will be omitted.
  • the filter electrode 220 is formed to have a porous structure, and a plurality of the filter electrodes 220 are stacked to have a space apart from each other in the vertical direction.
  • the upper filter part 220a and the lower filter part 220b are formed of a porous body or a porous mesh.
  • the upper filter part 220a and the lower filter part 220b are processed to a nano or micro unit size, and the pores are formed smaller than the size of the powder or are formed to prevent the powder from passing by providing a nano nonwoven fabric desirable.
  • the vacuum unit 220c is formed between the upper filter unit 220a and the lower filter unit 220b, and is in a vacuum state by the vacuum pump 32 .
  • a vacuum flow path 33 is connected to the vacuum part 220c.
  • the vacuum pump 32 When the vacuum pump 32 is operated, the vacuum pump 32 sucks the internal air of the vacuum part 220c so that the inside of the vacuum part 220c is in a vacuum state.
  • the powder supplied to the inside of the chamber 10 or around the filter electrode 220 is transferred to the upper filter part 220a and the lower filter part 220b. can be adsorbed on the surface of
  • the plasma treatment capacity can be increased.
  • FIG. 5 is a diagram schematically showing a plasma apparatus for powder surface treatment using a plate-type filter electrode according to a third embodiment of the present invention.
  • a plasma apparatus for powder processing using a plate-type filter electrode includes a chamber 310 , a filter electrode 320 , an adsorption means 330 , and a vibration generator.
  • the vibration generator is different from the first embodiment in that the acoustic vibration module 355 is different from the first embodiment, and the rest of the configuration and operation are similar.
  • the acoustic vibration module 355 is an acoustic resonance vibrator that generates and resonates sound to generate acoustic vibration in the filter electrode 320 .
  • An upper portion of the acoustic vibration module 355 is connected to the filter electrode 320 by a connecting member 352 .
  • one filter electrode 320 is disposed, but the present invention is not limited thereto, and a plurality of the filter electrodes 320 may be disposed to be spaced apart from each other by a predetermined distance in the vertical or horizontal direction. have.
  • a vacuum flow path 333 connected to a vacuum pump (not shown) is connected to the inside of the filter electrode 320 .
  • a rack is provided inside the chamber so that the filter electrode 320 is inserted therein, and a rack is provided between the rack and the filter electrode 320 to absorb shock when the filter electrode 320 vibrates.
  • a shock absorbing member (not shown) may be provided.
  • FIG. 6 is a diagram schematically showing a plasma apparatus for powder surface treatment using a plate-type filter electrode according to a fourth embodiment of the present invention.
  • a plurality of filter electrodes 420 are vertically spaced apart from each other at predetermined intervals, and the filter electrodes are 420 is different from the third embodiment in that it includes an upper filter unit 420a, a lower filter unit 420b, and a vacuum unit 420c, respectively, and the rest of the configuration and operation are similar, so focus on the different configurations and a detailed description of similar configurations will be omitted.
  • a plurality of the filter electrodes 420 are stacked so as to have a space apart from each other in the vertical direction.
  • the number of stacks of the filter electrodes 420 can be adjusted according to the processing capacity.
  • the upper filter unit 420a and the lower filter unit 420b are formed of a porous body or a porous mesh.
  • the upper filter unit 420a and the lower filter unit 420b are machined in nano or micro unit size, and pores are formed smaller than the size of the powder to prevent the powder from passing through.
  • the vacuum part 420c is formed between the upper filter part 420a and the lower surface filter part 420b, and is in a vacuum state by the vacuum pump 432 .
  • a vacuum flow path 433 is connected to the vacuum part 420c.
  • the vacuum pump 432 When the vacuum pump 432 is operated, the vacuum pump 432 sucks the internal air of the vacuum part 420c, so that the inside of the vacuum part 420c is in a vacuum state.
  • the powder supplied to the inside of the chamber 310 or around the filter electrode 420 is transferred to the upper filter unit 420a and the lower filter unit 420b. can be adsorbed on the surface of
  • the plasma treatment capacity can be increased.
  • the vacuum part 420c of the plurality of filter electrodes 420 has been described as being in a vacuum state by one vacuum pump 432, but the present invention is not limited thereto, and the plurality of filters It is of course possible that a vacuum passage and a vacuum pump are respectively connected to each of the vacuum units 420c of the electrodes 420 .
  • a powder sprayer (not shown) for spraying and supplying powder is provided in the space between the plurality of filter electrodes 420 .
  • the powder injector (not shown) is disposed for each spaced space between the plurality of filter electrodes 420, and it is also possible to collectively inject the powder into the spaced space, and one powder injector (not shown) moves in the vertical direction. It is of course also possible to continuously spray each spaced space between the filter electrodes 420 while being installed to be movable. In addition, the powder injector (not shown) may of course inject the powder into the chamber 310 .
  • FIG. 7 is a view schematically showing a plasma apparatus for powder surface treatment using a plate-type filter electrode according to a fifth embodiment of the present invention.
  • the filter electrode 520 and the ground electrode 530 are disposed to be spaced apart from each other in the vertical direction.
  • the point in which the powder is supplied between the filter electrode 520 and the ground electrode 530 is different from the first embodiment, and the rest of the configuration and operation are similar, and thus the different points will be described in detail.
  • the filter electrode 520 is formed in a flat plate shape having a porous structure, and generates plasma when power is applied to surface-treat the powder to make it functional.
  • the power source any one of RF, AC, and DC pluse plasma power may be used. In this embodiment, it will be described as an example that RF power is applied.
  • the filter electrode 520 includes a filter unit 520a formed of a porous material or a porous mesh, and a vacuum unit 520b formed under the filter unit 520a and brought into a vacuum state by a vacuum pump to be described later.
  • the filter electrode 520 may be formed such that only the upper surface has a porous structure.
  • a separation space is formed between the filter electrode 520 and the ground electrode 530 .
  • the ground electrode 530 is formed in a flat plate shape to correspond to the filter electrode 520 .
  • the ground electrode 530 may have a porous structure or may be formed in a general flat plate shape.
  • the adsorption means is provided under the filter electrode 520 .
  • the adsorption means further includes a vacuum passage 540 connected to the vacuum part 520b of the filter electrode 520 and a vacuum pump (not shown) connected to the vacuum passage 540 .
  • a vibration generator (not shown) for vibration-dispersing the powder is provided under each of the filter electrode 520 and the ground electrode 530 .
  • the vibration generator (not shown) may use an ultrasonic vibrator, an acoustic vibration module, or the like.
  • FIG. 8 is a diagram schematically showing a plasma apparatus for powder surface treatment using a plate-type filter electrode according to a sixth embodiment of the present invention.
  • the filter electrode 620 and the ground electrode 630 are disposed to be spaced apart from each other in the vertical direction. It is different from the fifth embodiment in that the suction means is provided under the ground electrode 630 , and the rest of the configuration and operation are similar.
  • the filter electrode 620 is formed in a flat plate shape having a porous structure, and generates plasma when power is applied to surface-treat the powder to make it functional.
  • the power source any one of RF, AC, and DC pluse plasma power may be used. In this embodiment, it will be described as an example that RF power is applied.
  • a separation space is formed between the filter electrode 620 and the ground electrode 630 .
  • the ground electrode 630 is formed in a flat plate shape to correspond to the filter electrode 620 .
  • the ground electrode 630 will be described as an example having a porous structure.
  • the ground electrode 630 includes a porous part 630a formed of a porous body or a porous mesh, and a vacuum part 630b formed under the porous part 630a and brought into a vacuum state by a vacuum pump to be described later.
  • the ground electrode 630 may be formed so that only the upper surface has a porous structure.
  • the adsorption means is provided under the ground electrode 630 .
  • the adsorption means further includes a vacuum passage 640 connected to the vacuum 630b of the ground electrode 630 and a vacuum pump (not shown) connected to the vacuum passage 640 .
  • a vibration generator (not shown) for vibration-dispersing the powder is provided under the ground electrode 630 .
  • the vibration generator (not shown) may use an ultrasonic vibrator, an acoustic vibration module, or the like.
  • FIG. 9 is a diagram schematically showing a plasma apparatus for powder surface treatment using a plate-type filter electrode according to a seventh embodiment of the present invention.
  • a plurality of filter electrodes 720 are stacked and disposed to be spaced apart from each other in the vertical direction, and the plurality of ground electrodes 730 are formed in the filter. It is different from the fifth embodiment in that the electrodes 720 and the electrodes 720 are alternately stacked and disposed, and the rest of the configuration and operation are similar. .
  • any one of RF, AC, and DC pluse plasma power may be used. In this embodiment, it will be described as an example that RF power is applied.
  • the plasma density may be relatively reduced compared to the case of using a single ground electrode.
  • the ion collision effect may be further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)

Abstract

본 발명에 따른 분말 처리용 플라즈마 장치는, 평판형이고 다공성 구조의 필터 전극을 복수개 적층 배치함으로써, 한번에 처리할 수 있는 처리 용량을 극대화시킬 수 있으므로 처리 효율이 향상될 수 있다. 또한, 흡착수단을 이용하여 필터 전극의 표면에 분말을 흡착시키면서, 진동 발생기를 이용하여 필터 전극에 진동을 가함으로써, 분말이 필터 전극의 표면에서 고르게 분산되어 섞일 수 있기 때문에, 분말들을 고르게 표면처리할 수 있다.

Description

평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치
본 발명은 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치에 관한 것으로서, 보다 상세하게는 나노 또는 마이크로 크기의 분말을 다공성이고 평판 형태의 필터 전극 위에 분산시키고 흡착시킴으로써, 보다 균일하게 표면처리할 수 있는 분말 표면처리용 플라즈마 장치에 관한 것이다.
일반적으로 탄소나노튜브, 그래핀 등 탄소나노분말 소재는 우수한 물성에도 불구하고 상호 응집이 일어나기 쉬우므로, 사업화되기 위해서는 모재나 용매에 균일하게 섞이게 하는 분산 기술이 필수적이다.
종래의 분산 기술은 밀링 등의 기계적 방식, 화학 반응을 이용한 습식 방식 및 플라즈마를 이용한 건식 방식 등으로 구분될 수 있다.
기계적 방식이나 습식 방식은, 복잡한 공정, 긴 공정시간, 소재의 손상, 불순물 잔류, 폐수 발생 등의 문제점이 있다.
반면, 건식 플라즈마 방식은 양산성이나 환경 친화성 등을 고려시 선호되는 방법이나, 탄소나노분말에 플라즈마 표면처리를 하기 위해서 탄소나노분말을 균일하게 섞어주기 위한 회전, 교반 등의 장치가 필수적이며, 분말의 크기가 작아질수록 균일한 표면처리가 매우 어렵고, 기능화 효율이 낮고, 처리시간이 오래 걸리는 문제점이 있다.
최근에는 건식 방식에서 회전이나 교반 등 기계적인 방법을 이용하고, 분말을 균일하게 섞어주는 기술이 채택되고 있으나, 챔버 내에서 부유하는 다량의 분말을 균일하게 고효율로 플라즈마 처리하는 것은 매우 어려운 문제점이 있다.
본 발명의 목적은, 나노분말을 균일하게 처리하고, 처리 시간은 단축하고 처리 용량은 향상시킬 수 있는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치를 제공하는 데 있다.
본 발명의 일측면에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치는, 플라즈마가 생성되는 공간을 형성하는 챔버와; 상기 챔버의 내부에 설치되고, 평판 형상이고 다공성 구조를 가지도록 형성되며, 전원 인가시 플라즈마를 생성하여 분말을 표면처리하여 기능화시키는 필터 전극과; 상기 필터 전극의 내부 압력을 감소시켜, 상기 필터 전극의 표면에 상기 분말을 흡착시키는 흡착수단과; 상기 챔버와 상기 필터 전극 중 어느 하나에 구비되고, 상기 필터 전극에 상하방향과 수평방향 중 적어도 일방향으로 진동을 가하여, 상기 필터 전극의 표면에서 상기 분말을 분산시키는 진동 발생기를 포함한다.
상기 필터 전극은, 복수개가 서로 이격공간을 가지도록 적층되어 배치되고, 상기 이격공간마다 배치되어, 상기 필터 전극들의 상,하면에 상기 분말이 흡착되도록 상기 이격공간으로 상기 분말을 공급하여 분말 분사기를 더 포함한다.
상기 필터 전극은, 복수개가 서로 이격공간을 가지도록 적층되어 배치되고, 상기 이격공간을 따라 이동가능하게 구비되어, 상기 필터 전극들의 상,하면에 상기 분말이 흡착되도록 상기 이격공간마다 연속적으로 상기 분말을 공급하여 분말 분사기를 더 포함한다.
상기 챔버의 내부에 구비되어 상기 복수의 필터 전극들이 끼워지도록 형성된 랙(Rack)과, 상기 랙과 상기 필터 전극 사이에 구비되어, 상기 필터 전극의 진동시 충격을 흡수하는 충격흡수부재를 더 포함한다.
상기 흡착수단은, 상기 복수의 필터 전극들의 각 하부로부터 공기를 흡입하여 상기 필터 전극들의 각 내부를 진공 상태로 형성하는 진공 펌프와, 상기 진공 펌프와 상기 복수의 필터 전극들의 각 하부를 연결하는 진공 유로를 포함한다.
상기 흡착수단은, 상기 필터 전극의 내부 공기를 흡입하여 상기 필터 전극의 내부를 진공 상태로 형성하는 진공 펌프를 포함한다.
상기 필터 전극은, 상면을 형성하고 다공성 구조로 형성된 상면 필터부와, 하면을 형성하고 다공성 구조로 형성된 하면 필터부와, 상기 상면 필터부와 상기 하면 필터부 사이에 형성되어 상기 진공 펌프에 의해 진공 상태가 되는 진공부를 포함한다.
상기 필터 전극은, 복수개가 서로 이격공간을 가지도록 상하방향으로 적층되어 배치되고, 상기 복수의 필터 전극들 사이의 이격공간으로 상기 분말을 공급하는 분말 분사기를 더 포함한다.
상기 진동 발생기는, 음향을 발생시키고 공명시켜 음향 진동을 가하는 음향 진동 모듈을 포함한다.
상기 진동 발생기는, 초음파를 발생시켜 진동을 가하는 초음파 진동자를 포함한다.
상기 분말은, 나노 또는 마이크로 크기의 분말을 포함한다.
본 발명의 다른 측면에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치는, 플라즈마가 생성되는 공간을 형성하는 챔버와; 상기 챔버의 내부에 설치되고, 평판 형상이고 다공성 구조를 가지도록 형성되며, 전원 인가시 플라즈마를 생성하여 분말을 표면처리하여 기능화시키는 필터 전극과; 상기 필터 전극의 내부 압력을 감소시켜, 상기 필터 전극의 표면에 상기 분말을 흡착시키는 흡착수단과;상기 챔버와 상기 필터 전극 중 어느 하나에 구비되고, 상기 필터 전극에 상하방향과 수평방향 중 적어도 일방향으로 진동을 가하여, 상기 필터 전극의 표면에서 상기 분말을 분산시키는 진동 발생기를 포함하고, 상기 필터 전극은, 복수개가 서로 이격공간을 가지도록 적층되어 배치되고, 상기 흡착수단은, 상기 복수의 필터 전극들의 내부 공기를 흡입하여 상기 필터 전극들의 각 내부를 진공 상태로 형성하는 진공 펌프와, 상기 진공 펌프와 상기 복수의 필터 전극들을 연결하는 진공 유로를 포함하고, 상기 진동 발생기는, 상기 필터 전극에 각각 구비되어, 초음파를 발생시켜 진동하는 초음파 진동자를 포함한다.
상기 분말은, 나노 또는 마이크로 크기의 분말을 포함한다.
본 발명의 또 다른 측면에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치는, 플라즈마가 생성되는 공간을 형성하는 챔버와; 상기 챔버의 내부에 설치되고, 평판 형상이고 다공성 구조를 가지도록 형성되며, 전원 인가시 플라즈마를 생성하여 분말을 표면처리하여 기능화시키는 필터 전극과; 상기 필터 전극의 내부 압력을 감소시켜, 상기 필터 전극의 표면에 분말을 흡착시키는 흡착수단과; 상기 챔버와 상기 필터 전극 중 어느 하나에 구비되고, 상기 필터 전극에 상하방향과 수평방향 중 적어도 일방향으로 진동을 가하여, 상기 필터 전극의 표면에서 상기 분말을 분산시키는 진동 발생기를 포함하고, 상기 필터 전극은, 복수개가 서로 이격공간을 가지도록 적층되어 배치되고, 상기 흡착수단은, 상기 챔버에 구비되어, 상기 복수의 필터 전극들의 내부 공기를 흡입하여 상기 필터 전극들의 각 내부를 진공 상태로 형성하는 진공 펌프와, 상기 진공 펌프와 상기 복수의 필터 전극들을 연결하는 진공 유로를 포함하고, 상기 진동 발생기는, 상기 필터 전극에 각각 구비되어, 음향을 발생시키고 공명시켜 음향 진동을 발생시키는 음향 진동 모듈을 포함한다.
상기 분말은, 나노 또는 마이크로 크기의 분말을 포함한다.
본 발명의 또 다른 측면에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치는, 평판 형상이고 다공성 구조를 가지도록 형성되며, 전원 인가시 플라즈마를 생성하여, 나노 또는 마이크로 크기의 분말을 표면처리하여 기능화시키는 필터 전극과; 상기 필터 전극에 진동을 가하여, 상기 필터 전극의 표면에서 상기 분말을 진동 분산시키는 진동 발생기와; 상기 진동 분산되는 상기 분말이 상기 필터 전극으로부터 외부로 이탈되는 것을 방지하게 하도록, 상기 필터 전극의 내부 압력을 감소시켜, 상기 필터 전극의 표면으로 분말을 흡착시키는 흡착수단을 포함한다.
상기 진동 발생기는, 초음파를 발생시켜 진동을 가하는 초음파 진동자와, 음향을 발생시키고 공명시켜 음향 진동을 가하는 음향 진동 모듈 중 적어도 하나를 포함한다.
상기 흡착수단은, 상기 필터 전극의 내부 공기를 흡입하여 상기 필터 전극의 내부를 진공 상태로 형성하는 진공 펌프를 포함한다.
상기 필터 전극은, 복수개가 서로 이격공간을 가지도록 적층되어 배치된다.
본 발명의 또 다른 측면에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치는, 다공성 구조를 가지는 평판으로 형성되며, 전원 인가시 플라즈마를 생성하여 분말을 표면처리하여 기능화시키는 필터 전극과; 상기 필터 전극으로부터 상하방향으로 이격되게 적층되어 배치되고, 상기 필터 전극에 대응되도록 평판으로 형성되며, 접지되는 접지 전극과; 상기 필터 전극과 상기 접지 전극 중 어느 하나의 내부 압력을 감소시켜, 상기 필터 전극과 상기 접지 전극 중 어느 하나의 표면에 상기 분말을 흡착시키는 흡착수단을 포함한다.
상기 필터 전극은, 복수개가 서로 이격공간을 가지도록 적층되어 배치되고, 상기 접지 전극은, 복수개가 상기 필터 전극들과 교대로 적층되어 배치된다.
상기 필터 전극과 상기 접지 전극 중 어느 하나에 진동을 가하여, 상기 필터 전극과 상기 접지 전극 중 어느 하나의 표면에서 상기 분말을 진동 분산시키는 진동 발생기를 더 포함한다.
상기 진동 발생기는, 초음파를 발생시켜 진동을 가하는 초음파 진동자와, 음향을 발생시키고 공명시켜 음향 진동을 가하는 음향 진동 모듈 중 적어도 하나를 포함한다.
상기 흡착수단은, 상기 필터 전극과 상기 접지 전극 중 어느 하나의 내부 공기를 흡입하여 내부를 진공 상태로 형성하는 진공 펌프를 포함한다.
본 발명에 따른 분말 처리용 플라즈마 장치는, 평판형이고 다공성 구조의 필터 전극을 복수개 적층 배치함으로써, 한번에 처리할 수 있는 처리 용량을 극대화시킬 수 있으므로 처리 효율이 향상될 수 있다.
또한, 흡착수단을 이용하여 필터 전극의 표면에 분말을 흡착시키면서, 진동 발생기를 이용하여 필터 전극에 진동을 가함으로써, 분말이 필터 전극의 표면에서 고르게 분산되어 섞일 수 있기 때문에, 분말들을 고르게 표면처리할 수 있다.
도 1은 본 발명의 제1실시예에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치를 개략적으로 나타낸 구성도이다.
도 2는 도 1에 도시된 평판형 필터 전극을 나타낸 측면도이다.
도 3은 도 1에 도시된 평판형 필터 전극을 나타낸 사시도이다.
도 4는 본 발명의 제2실시예에 따른 필터 전극을 나타낸 단면도이다.
도 5는 본 발명의 제3실시예에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치를 개략적으로 나타낸 도면이다.
도 6은 본 발명의 제4실시예에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치를 개략적으로 나타낸 도면이다.
도 7은 본 발명의 제5실시예에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치를 개략적으로 나타낸 도면이다.
도 8은 본 발명의 제6실시예에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치를 개략적으로 나타낸 도면이다.
도 9는 본 발명의 제7실시예에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치를 개략적으로 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 대해 설명하면 다음과 같다.
도 1은 본 발명의 실시예에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치를 개략적으로 나타낸 구성도이다. 도 2는 도 1에 도시된 평판형 필터 전극을 나타낸 측면도이다. 도 3은 도 1에 도시된 평판형 필터 전극을 나타낸 사시도이다.
도 1 내지 도 3을 참조하면, 본 발명의 실시예에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치는, 챔버(10), 필터 전극(20), 흡착수단(30) 및 진동 발생기를 포함한다.
상기 챔버(10)는, 상기 복수의 필터 전극들(20)이 수용되고, 내부에서 플라즈마가 생성되는 공간을 형성한다.
상기 챔버(10)에는 전원장치(미도시), 외부 가스를 공급하는 가스 공급부(미도시)가 연결된다. 상기 챔버(10)는 접지되어 그라운드 전극 역할을 한다.
상기 챔버(10)의 내부에는 상기 복수의 필터 전극들(20)이 끼워지는 랙(Rack)(25)이 구비된다. 다만, 이에 한정되지 않고, 상기 랙(25)을 사용하지 않고, 상기 복수의 필터 전극들(20)을 서로 소정간격 이격되게 상하방향으로 적층 배치하는 것도 물론 가능하다.
상기 랙(25)은, 상기 챔버(10)의 내부에 고정 설치되는 것도 가능하고, 상기 챔버(10)로부터 인출가능하도록 설치되어 상기 복수의 필터 전극들(20)이 끼운 후 다시 인입하는 것도 물론 가능하다.
상기 필터 전극(20)은, 상기 전원장치(미도시)로부터 전원이 인가되는 전원 전극이다. 상기 필터 전극(20)은, 상기 전원장치(미도시)로부터 전원이 인가되고 상기 가스 공급부(미도시)로부터 상기 챔버(10)의 내부로 가스가 공급되면, 상기 챔버(10)의 내부에 플라즈마를 발생시킨다. 본 실시예에서는, 고주파(RF) 플라즈마방전을 이용하기 때문에, 1개의 필터 전극(20)이 사용되고 상기 필터 전극(20)에 고주파 전원이 인가되는 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, AC 플라즈마 방전이나 DC 플라즈마 방전도 가능하며, 상기 필터 전극(20)을 제1전극으로 하고 상기 제1전극과 전위차를 갖는 제2전극을 포함하는 구성도 가능하고, 주변을 그라운드 처리하여 제2전극으로 사용하는 것도 가능하다. AC 플라즈마 방전의 경우, 각 전극에는 유전체가 덮이게 된다.
상기 필터 전극(20)에서 발생한 플라즈마는 상기 분말을 표면 처리하여 기능화시킨다. 상기 분말의 표면 기능화는 기존 물성의 저하 없이 분말들끼리는 응집되지 않게 분산시키되, 상기 분말과 다른 이종 재료의 계면 결합력은 향상시킬 수 있다.
상기 필터 전극(20)은, 상면에 분말이 올려지도록 평평한 판 형상으로 형성된다. 상기 필터 전극(20)은, 사각판 형상인 것으로 예를 들어 설명하나, 이에 한정되지 않고 원판 형상인 것도 물론 가능하다.
상기 필터 전극(20)은 복수개가 상하방향 또는 수평방향으로 서로 이격공간을 가지도록 적층되어 배치된다. 본 실시예에서는, 상기 복수의 필터 전극들(20)은 상기 랙(25)에 10개가 상하방향으로 이격되게 끼워진 것으로 예를 들어 설명한다. 상기 필터 전극들(20)의 적층 개수는 처리 용량에 따라 조절가능하다.
상기 필터 전극(20)은, 각각 다공성 구조를 가지도록 형성된다.
상기 필터 전극(20)은, 다공질체나 다공성 메쉬로 형성된 필터부(20a)와, 상기 필터부(20a)의 하부에 형성되고 후술하는 진공 펌프(32)에 의해 진공 상태가 되는 진공부(20b)를 포함한다. 상기 필터 전극(20)은 상면만 다공성 구조를 가지도록 형성되는 것도 물론 가능하다.
상기 필터부(20a)는, 나노 또는 마이크로 단위 사이즈로 가공되며, 구멍이 상기 분말의 크기보다는 작게 형성되거나 나노 부직포가 구비되어 상기 분말이 통과하지는 못하도록 형성되는 것이 바람직하다.
상기 흡착수단(30)은, 상기 필터 전극(20)의 내부 압력을 감소시켜, 상기 필터 전극(20)의 표면에 상기 분말을 흡착시키기 위한 장치이다.
상기 흡착수단(30)은, 진공 펌프(32), 진공 유로(33) 및 분말을 걸러주기 위한 분말 차단부(미도시)를 포함한다.
상기 진공 펌프(32)는, 상기 챔버(10)의 외부에 설치되어, 상기 복수의 필터 전극들(20)의 내부로부터 공기를 흡입하여 상기 복수의 필터 전극들(20)의 내부를 진공상태로 형성한다.
상기 진공 유로(33)는, 상기 진공 펌프(32)와 상기 복수의 필터 전극들(20)의 각 하부를 연결하는 유로이다. 상기 진공 유로(33)의 일단부는 상기 복수의 필터 전극들(20)의 하부에 각각 연결되고, 타단부는 상기 진공 펌프(32)에 연결된다. 상기 진공 유로(33)는, 상기 필터 전극(20)의 진공부(20b)에 연결된다.
다만, 이에 한정되지 않고, 상기 진공 펌프(32)는, 상기 필터 전극(20)의 각 하부마다 설치되는 것도 가능하고, 상기 랙(25)에 설치되는 것도 물론 가능하다.
상기 진동 발생기는, 상기 필터 전극(20)에 상하방향과 수평방향 중 적어도 일방향으로 진동을 가하여, 상기 필터 전극(20)의 표면에서 상기 분말을 분산시킨다. 즉, 상기 진동 발생기는, 상기 필터 전극(20)의 하부를 두드리는 효과와 같은 진동을 발생시켜 상기 분말을 분산시킨다.
상기 진동 발생기는, 음향 진동 모듈(미도시)이나 초음파 진동자(40)를 사용할 수 있다.
상기 음향 진동 모듈(미도시)은, 음향을 발생시키고 공명시켜, 상기 필터 전극(20)에 음향 진동을 발생시키는 음향 공명 진동기이다. 상기 음향 진동 모듈은, 상기 필터 전극(20)에 장착되는 것도 가능하고, 상기 랙(25)에 설치된 것도 가능하다.
이하, 도 3을 참조하여, 본 실시예에서는 상기 초음파 진동자를 사용하는 것으로 예를 들어 설명한다.
상기 초음파 진동자(40)는, 상기 필터 전극(20)에 각각 구비되어, 상기 전원장치(미도시)로부터 인가되는 전원으로 초음파를 발생시켜 진동을 발생시킨다.
상기 초음파 진동자(40)는, 상기 필터 전극(20)의 각 하부마다 장착된 것으로 예를 들어 설명한다. 상기 초음파 진동자(40)는, 복수개가 서로 소정간격 이격되게 장착될 수 있다. 본 실시예에서는, 상기 초음파 진동자(40)는, 상기 필터 전극(20)의 하부 중앙측에 3개가 구비된 것으로 예를 들어 설명한다. 상기 초음파 진동자(40)는 상기 필터 전극(20)의 하부 중앙측에 진동을 가함으로써, 상기 필터 전극(20)의 표면에서 상기 분말이 중앙으로부터 가장자리로 퍼지도록 분산시킬 수 있다.
본 실시예에서는, 상기 초음파 진동자(40)가 상기 필터 전극(20)의 진공부(20b)의 하면에 부착된 것으로 예를 들어 설명하나, 이에 한정되지 않고 상기 초음파 진동자(40)는 상기 필터 전극(20)과 소정간격 이격되게 설치되는 것도 물론 가능하다.
또한, 상기 초음파 진동자(40)는, 상기 랙(25)에 설치되어, 상기 랙(25)에 진동을 가하여 상기 복수의 필터 전극들(20)을 진동시키는 것도 물론 가능하다.
한편, 상기 분말은, 탄소나노튜브, 그래핀 등 나노 또는 마이크로 크기의 분말을 포함한다.
상기와 같이 구성된 본 발명의 실시예에 따른 플라즈마 장치의 작동을 설명하면, 다음과 같다.
상기 복수의 필터 전극들(20)의 각 상면에 분말을 올린 후, 상기 필터 전극들(20)을 상기 랙(25)에 끼워 적층 배치한다.
본 실시예에서는, 상기 랙(25)에 상기 복수의 필터 전극들(20)을 끼워 적층 배치하는 것으로 예를 들어 설명하나, 이에 한정되지 않고, 상기 랙(25)을 사용하지 않고 상기 복수의 필터 전극들(20)이 서로 소정간격 이격되게 적층 배치하는 것도 물론 가능하다.
또한, 상기 실시예에 한정되지 않고, 상기 챔버(10)의 내부에 장착된 상기 복수의 필터 전극들(20)에 분말을 공급하는 것도 물론 가능하다.
상기 진공 펌프(32)를 작동시키면, 상기 진공 펌프(32)의 흡입 압력에 의해 상기 필터 전극들(20)의 진공부(20b)의 내부 압력이 감소된다.
상기 필터 전극들(20)의 진공부(20b)의 내부가 진공 상태가 되면, 상기 분말은 상기 필터 전극들(20)의 표면에 흡착된다. 즉, 상기 분말들에는 상기 필터 전극들(20)의 표면을 향한 방향으로 흡착력(A)이 작용한다.
또한, 상기 초음파 진동자(40)를 작동시키면, 상기 초음파 진동자(40)에 의해 상기 필터 전극들(20)에 진동이 가해진다.
상기 필터 전극(20)의 하부에 진동이 가해지면, 상기 필터 전극(20)의 상면에서 상기 분말들의 위치가 바뀌면서 고르게 분산된다. 즉, 상기 분말들에는 상기 필터 전극(20)의 표면으로부터 튕기는 방향으로 분산력(B)이 작용한다.
이 때, 상기 흡착력(A)과 상기 분산력(B)은, 상기 진공 펌프(30)의 흡입력과 상기 초음파 진동자(40)의 진동 세기에 따라 조절 가능하다. 상기 흡착력(A)과 상기 분산력(B)은 실험 등에 의해 최적의 값을 산출가능하다. 상기 흡착력(A)과 상기 분산력(B)을 적절하게 조절함으로써, 상기 분말들이 상기 필터 전극(20)의 표면으로부터 날아가지 않으면서 서로 위치 이동만 가능하여, 분말들 전체가 고르게 플라즈마 표면 처리가 가능하다.
또한, 상기 필터 전극(20)의 표면에 일정 두께 이상으로 분말이 쌓이는 것이 방지될 수 있다.
또한, 상기 초음파 진동자(40)를 이용해 상기 필터 전극(20)을 두드리는 효과를 줌으로써, 상기 필터 전극(20)의 표면에서 분말을 완전히 떼어냈다가 분산시키는 것을 반복하는 공정이 필요하지 않으므로, 처리 시간이 단축될 수 있다.
따라서, 상기 필터 전극(20)의 표면에 분말들이 흡착된 상태에서 위치 이동이 가능하여 고르게 혼합되어, 분말들이 고르게 플라즈마에 의해 표면처리된다.
상기 플라즈마에 의해 표면처리되는 공정은 미리 설정된 설정 시간동안 수행될 수 있다. 상기 설정시간이 경과하면, 플라즈마 처리를 중단하고, 상기 분말을 수거한다.
상기와 같이, 본 발명에서는 상기 복수의 필터 전극들(20)의 표면에 분말들이 흡착되고 분산된 후 플라즈마에 의해 표면처리된다.
따라서, 상기 필터 전극들(20)의 적층 개수에 따라 한번에 처리할 수 있는 용량을 최대화시킬 수 있다.
또한, 상기 흡착력(A)과 상기 분산력(B)을 적절하게 조절함으로써, 상기 분말들이 상기 필터 전극(20)의 표면으로부터 날아가지 않으면서 서로 위치 이동이 가능하여, 분말들 전체가 고르게 플라즈마 표면 처리가 가능하다.
또한, 상기와 같은 방법은, 상기 필터 전극(20)의 표면으로부터 분말을 완전히 떼어냈다가 분산시키는 것을 반복하는 반복 공정이 필요없으므로, 한번에 표면처리가 가능하여 처리 용량에 비해 처리 시간이 단축될 수 있다.
또한, 상기 필터 전극들(20)에 진동을 가함으로써, 상기 분말을 고르게 섞고 분산시킬 수 있으므로, 균일한 표면처리가 가능한 이점이 있다.
도 4는 본 발명의 제2실시예에 따른 필터 전극을 나타낸 단면도이다.
도 4를 참조하면, 본 발명의 제2실시예에 따른 필터 전극(220)은, 상면 필터부(220a), 하면 필터부(220b) 및 진공부(220c)를 포함하는 것이 상기 제1실시예와 상이하고, 그 외 나머지 구성 및 작용은 유사하므로 상이한 구성을 중심으로 설명하고 유사 구성에 대한 상세한 설명은 생략한다.
상기 필터 전극(220)은 다공성 구조를 가지도록 형성되고, 복수개가 상하방향으로 서로 이격공간을 가지도록 적층되어 배치된다.
상기 상면 필터부(220a)와 상기 하면 필터부(220b)는, 다공질체나 다공성 메쉬로 형성된다. 상기 상면 필터부(220a)와 상기 하면 필터부(220b)는, 나노 또는 마이크로 단위 사이즈로 가공되며, 구멍이 상기 분말의 크기보다는 작게 형성되거나 나노 부직포를 구비하여 상기 분말이 통과하지는 못하도록 형성되는 것이 바람직하다.
상기 진공부(220c)는, 상기 상면 필터부(220a)와 상기 하면 필터부(220b)사이에 형성되어, 상기 진공 펌프(32)에 의해 진공 상태가 된다. 상기 진공부(220c)에는 진공 유로(33)가 연결된다.
상기 진공 펌프(32)의 작동되면, 상기 진공 펌프(32)가 상기 진공부(220c)의 내부 공기를 흡입하게 되어 상기 진공부(220c)의 내부가 진공상태가 된다.
상기 진공부(220c)의 내부가 진공상태가 되면, 상기 챔버(10)의 내부 또는 상기 필터 전극(220)의 주변으로 공급된 분말이 상기 상면 필터부(220a)와 상기 하면 필터부(220b)의 표면에 흡착될 수 있다.
따라서, 상기 필터 전극(220)의 상,하면에 모두 분말들이 흡착되어 플라즈마 표면처리될 수 있으므로, 플라즈마 처리 용량이 증가될 수 있다.
도 5는 본 발명의 제3실시예에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치를 개략적으로 나타낸 도면이다.
도 5를 참조하면, 본 발명의 제3실시예에 따른 평판형 필터 전극을 이용한 분말 처리용 플라즈마 장치는, 챔버(310), 필터 전극(320), 흡착수단(330) 및 진동 발생기를 포함하되, 상기 진동 발생기는 음향 진동 모듈(355)인 것이 상기 제1실시예와 상이하고, 그 외 나머지 구성 및 작용은 유사하므로 상이한 구성을 중심으로 설명하고 유사 구성에 대한 상세한 설명은 생략한다.
상기 음향 진동 모듈(355)은, 음향을 발생시키고 공명시켜, 상기 필터 전극(320)에 음향 진동을 발생시키는 음향 공명 진동기이다.
상기 음향 진동 모듈(355)의 상부는 연결 부재(352)에 의해 상기 필터 전극(320)과 연결된다.
본 실시예에서는, 상기 필터 전극(320)이 한 개가 배치된 것으로 예를 들어 설명하였으나, 이에 한정되지 않고 상기 필터 전극(320)은 복수개가 상하방향 또는 수평방향으로 서로 소정간격 이격되게 배치될 수 있다.
상기 필터 전극(320)의 내부에는 진공 펌프(미도시)와 연결되는 진공 유로(333)가 연결된다.
또한, 상기 챔버의 내부에 구비되어 상기 필터 전극(320)이 끼워지도록 형성된 랙(Rack)이 구비되며, 상기 랙과 상기 필터 전극(320)사이에는 상기 필터 전극(320)의 진동시 충격을 흡수하는 충격흡수부재(미도시)가 구비될 수 있다.
도 6은 본 발명의 제4실시예에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치를 개략적으로 나타낸 도면이다.
도 6을 참조하면, 본 발명의 제4실시예에 따른 평판형 필터 전극을 이용한 분말 처리용 플라즈마 장치는, 복수의 필터 전극들(420)이 상하방향으로 소정간격 이격되게 배치되고, 필터 전극들(420)은 각각 상면 필터부(420a), 하면 필터부(420b) 및 진공부(420c)를 포함하는 것이 상기 제3실시예와 상이하고, 그 외 나머지 구성 및 작용은 유사하므로 상이한 구성을 중심으로 설명하고 유사 구성에 대한 상세한 설명은 생략한다.
상기 필터 전극들(420)은 복수개가 상하방향으로 서로 이격공간을 가지도록 적층되어 배치된다. 상기 필터 전극들(420)의 적층 개수는 처리 용량에 따라 조절가능하다.
상기 상면 필터부(420a)와 상기 하면 필터부(420b)는, 다공질체나 다공성 메쉬로 형성된다. 상기 상면 필터부(420a)와 상기 하면 필터부(420b)는, 나노 또는 마이크로 단위 사이즈로 가공되며, 구멍이 상기 분말의 크기보다는 작게 형성되어 상기 분말이 통과하지는 못하도록 형성되는 것이 바람직하다.
상기 진공부(420c)는, 상기 상면 필터부(420a)와 상기 하면 필터부(420b)사이에 형성되어, 상기 진공 펌프(432)에 의해 진공 상태가 된다. 상기 진공부(420c)에는 진공 유로(433)가 연결된다.
상기 진공 펌프(432)의 작동되면, 상기 진공 펌프(432)가 상기 진공부(420c)의 내부 공기를 흡입하게 되어 상기 진공부(420c)의 내부가 진공상태가 된다.
상기 진공부(420c)의 내부가 진공상태가 되면, 상기 챔버(310)의 내부 또는 상기 필터 전극(420)의 주변으로 공급된 분말이 상기 상면 필터부(420a)와 상기 하면 필터부(420b)의 표면에 흡착될 수 있다.
따라서, 상기 필터 전극(420)의 상,하면에 모두 분말들이 흡착되어 플라즈마 표면처리될 수 있으므로, 플라즈마 처리 용량이 증가될 수 있다.
상기 실시예에서는, 상기 복수의 필터 전극들(420)의 진공부(420c)가 하나의 진공 펌프(432)에 의해 진공상태가 되는 것으로 예를 들어 설명하였으나, 이에 한정되지 않고, 상기 복수의 필터 전극들(420)의 진공부(420c)마다 진공 유로와 진공 펌프가 각각 연결되는 것도 물론 가능하다.
또한, 상기 복수의 필터 전극들(420)사이의 이격공간에는 분말을 분사하여 공급하는 분말 분사기(미도시)가 구비된다.
상기 분말 분사기(미도시)는 상기 복수의 필터 전극들(420)사이의 이격 공간마다 배치되어 상기 이격 공간들로 일괄적으로 분사하는 것도 가능하고, 하나의 분말 분사기(미도시)가 상하방향으로 이동가능하도록 설치되어 이동하면서 상기 필터 전극들(420)사이의 이격 공간마다 연속적으로 분사하는 것도 물론 가능하다. 또한, 상기 분말 분사기(미도시)는, 상기 챔버(310)의 내부로 분말을 분사하는 것도 물론 가능하다.
도 7은 본 발명의 제5실시예에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치를 개략적으로 나타낸 도면이다.
도 7를 참조하면, 본 발명의 제5실시예에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치는, 필터 전극(520)과 접지 전극(530)이 상하방향으로 서로 이격되게 배치되어 상기 필터 전극(520)과 상기 접지 전극(530)사이에 분말이 공급되는 점이 상기 제1실시예와 상이하고, 그 외 나머지 구성 및 작용은 유사하므로, 상이한 점을 중심으로 상세히 설명한다.
상기 필터 전극(520)은, 다공성 구조를 가지는 평판 형상으로 형성되어, 전원 인가시 플라즈마를 생성하여 분말을 표면처리하여 기능화시킨다. 여기서, 상기 전원은, RF, AC, DC pluse 중 어느 하나의 플라즈마 전원이 사용될 수 있다. 본 실시예에서는 RF 전원이 인가되는 것으로 예를 들어 설명한다.
상기 필터 전극(520)은, 다공질체나 다공성 메쉬로 형성된 필터부(520a)와, 상기 필터부(520a)의 하부에 형성되고 후술하는 진공 펌프에 의해 진공 상태가 되는 진공부(520b)를 포함한다. 상기 필터 전극(520)은 상면만 다공성 구조를 가지도록 형성되는 것도 물론 가능하다.
상기 필터 전극(520)과 상기 접지 전극(530)사이에는 이격 공간이 형성된다.
상기 접지 전극(530)은, 상기 필터 전극(520)에 대응되도록 평판 형상으로 형성된다. 상기 접지 전극(530)은, 다공성 구조를 가지는 것도 가능하고, 일반 평판 형상으로 형성되는 것도 가능하다.
상기 필터 전극(520)의 하부에는 흡착수단이 구비된다. 상기 흡착수단은, 상기 필터 전극(520)의 진공부(520b)에 연결된 진공유로(540)와, 상기 진공유로(540)에 연결된 진공펌프(미도시)를 더 포함한다.
상기 필터 전극(520)과 상기 접지 전극(530)의 각 하부에는 분말을 진동 분산시키기 위한 진동 발생기(미도시)가 구비된다. 상기 진동 발생기(미도시)는, 초음파 진동자, 음향 진동 모듈 등을 사용할 수 있다.
도 8은 본 발명의 제6실시예에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치를 개략적으로 나타낸 도면이다.
도 8을 참조하면, 본 발명의 제6실시예에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치는, 필터 전극(620)과 접지 전극(630)이 상하방향으로 서로 이격되게 배치되되 상기 접지 전극(630)의 하부에 흡착수단이 구비된 점이 상기 제5실시예와 상이하고, 그 외 나머지 구성 및 작용은 유사하므로, 상이한 점을 중심으로 상세히 설명한다.
상기 필터 전극(620)은, 다공성 구조를 가지는 평판 형상으로 형성되어, 전원 인가시 플라즈마를 생성하여 분말을 표면처리하여 기능화시킨다. 여기서, 상기 전원은, RF, AC, DC pluse 중 어느 하나의 플라즈마 전원이 사용될 수 있다. 본 실시예에서는 RF 전원이 인가되는 것으로 예를 들어 설명한다.
상기 필터 전극(620)과 상기 접지 전극(630)사이에는 이격 공간이 형성된다.
상기 접지 전극(630)은, 상기 필터 전극(620)에 대응되도록 평판 형상으로 형성된다. 상기 접지 전극(630)은, 다공성 구조를 가지는 것으로 예를 들어 설명한다. 상기 접지 전극(630)은, 다공질체나 다공성 메쉬로 형성된 다공성부(630a)와, 상기 다공성부(630a)의 하부에 형성되고 후술하는 진공 펌프에 의해 진공 상태가 되는 진공부(630b)를 포함한다. 상기 접지 전극(630)은 상면만 다공성 구조를 가지도록 형성되는 것도 물론 가능하다.
상기 접지 전극(630)의 하부에는 흡착수단이 구비된다. 상기 흡착수단은, 상기 접지 전극(630)의 진공(630b)에 연결된 진공유로(640)와, 상기 진공유로(640)에 연결된 진공펌프(미도시)를 더 포함한다.
상기 접지 전극(630)의 하부에는 분말을 진동 분산시키기 위한 진동 발생기(미도시)가 구비된다. 상기 진동 발생기(미도시)는, 초음파 진동자, 음향 진동 모듈 등을 사용할 수 있다.
도 9는 본 발명의 제7실시예에 따른 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치를 개략적으로 나타낸 도면이다.
도 9를 참조하면, 본 발명의 제7실시예에 따른 플라즈마 장치는, 복수의 필터 전극들(720)이 상하방향으로 서로 이격되게 적층되어 배치되고, 복수의 접지 전극들(730)이 상기 필터 전극들(720)과 교대로 적층되어 배치된 점이 상기 제5실시예와 상이하고, 그 외 나머지 구성 및 작용은 유사하므로, 유사한 내용에 대한 상세한 설명은 생략하고, 상이한 점을 중심으로 상세히 설명한다.
상기 필터 전극들(720)에 인가되는 전원은, RF, AC, DC pluse 중 어느 하나의 플라즈마 전원이 사용될 수 있다. 본 실시예에서는 RF 전원이 인가되는 것으로 예를 들어 설명한다.
상기와 같이, 상기 복수의 접지 전극들(730)이 상기 복수의 필터 전극들(720)과 교대로 적층되어 배치될 경우, 단일의 접지 전극을 사용하는 경우에 비해 플라즈마 밀도가 상대적으로 감소될 수 있으나, 이온 충돌 효과는 보다 향상될 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
본 발명에 따르면 보다 균일하게 표면처리할 수 있는 분말 표면처리용 플라즈마 장치를 제조할 수 있다.

Claims (24)

  1. 플라즈마가 생성되는 공간을 형성하는 챔버와;
    상기 챔버의 내부에 설치되고, 평판 형상이고 다공성 구조를 가지도록 형성되며, 전원 인가시 플라즈마를 생성하여 분말을 표면처리하여 기능화시키는 필터 전극과;
    상기 필터 전극의 내부 압력을 감소시켜, 상기 필터 전극의 표면에 상기 분말을 흡착시키는 흡착수단과;
    상기 챔버와 상기 필터 전극 중 어느 하나에 구비되고, 상기 필터 전극에 상하방향과 수평방향 중 적어도 일방향으로 진동을 가하여, 상기 필터 전극의 표면에서 상기 분말을 분산시키는 진동 발생기를 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  2. 청구항 1에 있어서,
    상기 필터 전극은, 복수개가 서로 이격공간을 가지도록 적층되어 배치되고,
    상기 이격공간마다 배치되어, 상기 필터 전극들의 상,하면에 상기 분말이 흡착되도록 상기 이격공간으로 상기 분말을 공급하여 분말 분사기를 더 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  3. 청구항 1에 있어서,
    상기 필터 전극은, 복수개가 서로 이격공간을 가지도록 적층되어 배치되고,
    상기 이격공간을 따라 이동가능하게 구비되어, 상기 필터 전극들의 상,하면에 상기 분말이 흡착되도록 상기 이격공간마다 연속적으로 상기 분말을 공급하여 분말 분사기를 더 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  4. 청구항 1에 있어서,
    상기 챔버의 내부에 구비되어 상기 복수의 필터 전극들이 끼워지도록 형성된 랙(Rack)과,
    상기 랙과 상기 필터 전극 사이에 구비되어, 상기 필터 전극의 진동시 충격을 흡수하는 충격흡수부재를 더 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  5. 청구항 2에 있어서,
    상기 흡착수단은,
    상기 복수의 필터 전극들의 각 하부로부터 공기를 흡입하여 상기 필터 전극들의 각 내부를 진공 상태로 형성하는 진공 펌프와,
    상기 진공 펌프와 상기 복수의 필터 전극들의 각 하부를 연결하는 진공 유로를 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  6. 청구항 1에 있어서,
    상기 흡착수단은,
    상기 필터 전극의 내부 공기를 흡입하여 상기 필터 전극의 내부를 진공 상태로 형성하는 진공 펌프를 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  7. 청구항 6에 있어서,
    상기 필터 전극은,
    상면을 형성하고 다공성 구조로 형성된 상면 필터부와, 하면을 형성하고 다공성 구조로 형성된 하면 필터부와, 상기 상면 필터부와 상기 하면 필터부 사이에 형성되어 상기 진공 펌프에 의해 진공 상태가 되는 진공부를 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  8. 청구항 7에 있어서,
    상기 필터 전극은, 복수개가 서로 이격공간을 가지도록 상하방향으로 적층되어 배치되고,
    상기 복수의 필터 전극들 사이의 이격공간으로 상기 분말을 공급하는 분말 분사기를 더 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  9. 청구항 1에 있어서,
    상기 진동 발생기는,
    음향을 발생시키고 공명시켜 음향 진동을 가하는 음향 진동 모듈을 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  10. 청구항 1에 있어서,
    상기 진동 발생기는,
    초음파를 발생시켜 진동을 가하는 초음파 진동자를 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  11. 청구항 1에 있어서,
    상기 분말은, 나노 또는 마이크로 크기의 분말을 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  12. 플라즈마가 생성되는 공간을 형성하는 챔버와;
    상기 챔버의 내부에 설치되고, 평판 형상이고 다공성 구조를 가지도록 형성되며, 전원 인가시 플라즈마를 생성하여 분말을 표면처리하여 기능화시키는 필터 전극과;
    상기 필터 전극의 내부 압력을 감소시켜, 상기 필터 전극의 표면에 상기 분말을 흡착시키는 흡착수단과;
    상기 챔버와 상기 필터 전극 중 어느 하나에 구비되고, 상기 필터 전극에 상하방향과 수평방향 중 적어도 일방향으로 진동을 가하여, 상기 필터 전극의 표면에서 상기 분말을 분산시키는 진동 발생기를 포함하고,
    상기 필터 전극은, 복수개가 서로 이격공간을 가지도록 적층되어 배치되고,
    상기 흡착수단은,
    상기 복수의 필터 전극들의 내부 공기를 흡입하여 상기 필터 전극들의 각 내부를 진공 상태로 형성하는 진공 펌프와, 상기 진공 펌프와 상기 복수의 필터 전극들을 연결하는 진공 유로를 포함하고,
    상기 진동 발생기는,
    상기 필터 전극에 각각 구비되어, 초음파를 발생시켜 진동하는 초음파 진동자를 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  13. 청구항 12에 있어서,
    상기 분말은, 나노 또는 마이크로 크기의 분말을 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  14. 플라즈마가 생성되는 공간을 형성하는 챔버와;
    상기 챔버의 내부에 설치되고, 평판 형상이고 다공성 구조를 가지도록 형성되며, 전원 인가시 플라즈마를 생성하여 분말을 표면처리하여 기능화시키는 필터 전극과;
    상기 필터 전극의 내부 압력을 감소시켜, 상기 필터 전극의 표면에 분말을 흡착시키는 흡착수단과;
    상기 챔버와 상기 필터 전극 중 어느 하나에 구비되고, 상기 필터 전극에 상하방향과 수평방향 중 적어도 일방향으로 진동을 가하여, 상기 필터 전극의 표면에서 상기 분말을 분산시키는 진동 발생기를 포함하고,
    상기 필터 전극은, 복수개가 서로 이격공간을 가지도록 적층되어 배치되고,
    상기 흡착수단은,
    상기 챔버에 구비되어, 상기 복수의 필터 전극들의 내부 공기를 흡입하여 상기 필터 전극들의 각 내부를 진공 상태로 형성하는 진공 펌프와, 상기 진공 펌프와 상기 복수의 필터 전극들을 연결하는 진공 유로를 포함하고,
    상기 진동 발생기는,
    상기 필터 전극에 각각 구비되어, 음향을 발생시키고 공명시켜 음향 진동을 발생시키는 음향 진동 모듈을 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  15. 청구항 14에 있어서,
    상기 분말은, 나노 또는 마이크로 크기의 분말을 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  16. 평판 형상이고 다공성 구조를 가지도록 형성되며, 전원 인가시 플라즈마를 생성하여, 나노 또는 마이크로 크기의 분말을 표면처리하여 기능화시키는 필터 전극과;
    상기 필터 전극에 진동을 가하여, 상기 필터 전극의 표면에서 상기 분말을 진동 분산시키는 진동 발생기와;
    상기 진동 분산되는 상기 분말이 상기 필터 전극으로부터 외부로 이탈되는 것을 방지하게 하도록, 상기 필터 전극의 내부 압력을 감소시켜, 상기 필터 전극의 표면으로 분말을 흡착시키는 흡착수단을 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  17. 청구항 16에 있어서,
    상기 진동 발생기는,
    초음파를 발생시켜 진동을 가하는 초음파 진동자와 음향을 발생시키고 공명시켜 음향 진동을 가하는 음향 진동 모듈 중 적어도 하나를 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  18. 청구항 16에 있어서,
    상기 흡착수단은,
    상기 필터 전극의 내부 공기를 흡입하여 상기 필터 전극의 내부를 진공 상태로 형성하는 진공 펌프를 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  19. 청구항 16에 있어서,
    상기 필터 전극은, 복수개가 서로 이격공간을 가지도록 적층되어 배치된 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  20. 다공성 구조를 가지는 평판으로 형성되며, 전원 인가시 플라즈마를 생성하여 분말을 표면처리하여 기능화시키는 필터 전극과;
    상기 필터 전극으로부터 상하방향으로 이격되게 적층되어 배치되고, 상기 필터 전극에 대응되도록 평판으로 형성되며, 접지되는 접지 전극과;
    상기 필터 전극과 상기 접지 전극 중 어느 하나의 내부 압력을 감소시켜, 상기 필터 전극과 상기 접지 전극 중 어느 하나의 표면에 상기 분말을 흡착시키는 흡착수단을 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  21. 청구항 20에 있어서,
    상기 필터 전극은, 복수개가 서로 이격공간을 가지도록 적층되어 배치되고,
    상기 접지 전극은, 복수개가 상기 필터 전극들과 교대로 적층되어 배치된 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  22. 청구항 20에 있어서,
    상기 필터 전극과 상기 접지 전극 중 어느 하나에 진동을 가하여, 상기 필터 전극과 상기 접지 전극 중 어느 하나의 표면에서 상기 분말을 진동 분산시키는 진동 발생기를 더 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  23. 청구항 22에 있어서,
    상기 진동 발생기는,
    초음파를 발생시켜 진동을 가하는 초음파 진동자와, 음향을 발생시키고 공명시켜 음향 진동을 가하는 음향 진동 모듈 중 적어도 하나를 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
  24. 청구항 20에 있어서,
    상기 흡착수단은,
    상기 필터 전극과 상기 접지 전극 중 어느 하나의 내부 공기를 흡입하여 내부를 진공 상태로 형성하는 진공 펌프를 포함하는 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치.
PCT/KR2021/013691 2020-11-25 2021-10-06 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치 WO2022114504A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21898330.2A EP4252902A4 (en) 2020-11-25 2021-10-06 PLASMA DEVICE FOR TREATING POWDER SURFACES WITH FLAT FILTER ELECTRODES
US18/036,405 US20240001327A1 (en) 2020-11-25 2021-10-06 Powder surface treatment plasma device using a flat filter electrode
CN202180076303.XA CN116472108A (zh) 2020-11-25 2021-10-06 利用平板型过滤器电极的粉末表面处理用等离子体装置
JP2023530769A JP2023550765A (ja) 2020-11-25 2021-10-06 平板型フィルター電極を利用した粉末表面処理用プラズマ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0160038 2020-11-25
KR1020200160038A KR102405333B1 (ko) 2020-11-25 2020-11-25 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치

Publications (1)

Publication Number Publication Date
WO2022114504A1 true WO2022114504A1 (ko) 2022-06-02

Family

ID=81755230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013691 WO2022114504A1 (ko) 2020-11-25 2021-10-06 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치

Country Status (6)

Country Link
US (1) US20240001327A1 (ko)
EP (1) EP4252902A4 (ko)
JP (1) JP2023550765A (ko)
KR (2) KR102405333B1 (ko)
CN (1) CN116472108A (ko)
WO (1) WO2022114504A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990082348A (ko) * 1996-02-06 1999-11-25 이.아이,듀우판드네모아앤드캄파니 플라즈마 활성화 종을 갖는 탈집괴 입자의 처리
KR20010068436A (ko) * 2000-01-05 2001-07-23 황해웅 코로나 플라즈마를 이용한 휘발성 유기화합물 제거 및탈취장치
KR20080107552A (ko) * 2007-06-07 2008-12-11 주성엔지니어링(주) 충격완충장치 및 이를 포함하는 플라즈마 박막처리장치
KR20140074611A (ko) * 2012-12-10 2014-06-18 한국기초과학지원연구원 분말 플라즈마 처리 장치
KR20200102810A (ko) * 2019-02-22 2020-09-01 울산과학기술원 수평이동식 파우더 플라즈마 처리장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110086220A (ko) * 2010-01-22 2011-07-28 인제대학교 산학협력단 플라스마 표면처리장치
US8333166B2 (en) * 2011-05-04 2012-12-18 Nordson Corporation Plasma treatment systems and methods for uniformly distributing radiofrequency power between multiple electrodes
KR101477575B1 (ko) * 2013-02-14 2014-12-30 재단법인 철원플라즈마 산업기술연구원 파우더 플라즈마 처리장치
WO2014143731A2 (en) * 2013-03-15 2014-09-18 Kettering University Method and apparatus for surface chemical functionalization of powders and nanoparticles
KR101529565B1 (ko) * 2013-11-21 2015-06-19 재단법인 철원플라즈마 산업기술연구원 파우더 배치형 플라즈마 처리장치 및 방법
WO2015157204A1 (en) * 2014-04-07 2015-10-15 Powder Treatment Technology LLC Surface energy modified particles, method of making, and use thereof
KR101942139B1 (ko) 2015-02-06 2019-01-24 한국기초과학지원연구원 분말 플라즈마 처리 장치
KR102208457B1 (ko) * 2019-02-01 2021-01-27 한국핵융합에너지연구원 분말 플라즈마 처리장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990082348A (ko) * 1996-02-06 1999-11-25 이.아이,듀우판드네모아앤드캄파니 플라즈마 활성화 종을 갖는 탈집괴 입자의 처리
KR20010068436A (ko) * 2000-01-05 2001-07-23 황해웅 코로나 플라즈마를 이용한 휘발성 유기화합물 제거 및탈취장치
KR20080107552A (ko) * 2007-06-07 2008-12-11 주성엔지니어링(주) 충격완충장치 및 이를 포함하는 플라즈마 박막처리장치
KR20140074611A (ko) * 2012-12-10 2014-06-18 한국기초과학지원연구원 분말 플라즈마 처리 장치
KR20200102810A (ko) * 2019-02-22 2020-09-01 울산과학기술원 수평이동식 파우더 플라즈마 처리장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4252902A4 *

Also Published As

Publication number Publication date
CN116472108A (zh) 2023-07-21
KR102417624B1 (ko) 2022-07-06
EP4252902A1 (en) 2023-10-04
KR102417624B9 (ko) 2023-04-12
JP2023550765A (ja) 2023-12-05
KR102405333B1 (ko) 2022-06-07
KR20220072822A (ko) 2022-06-02
EP4252902A4 (en) 2024-05-29
KR20220072438A (ko) 2022-06-02
US20240001327A1 (en) 2024-01-04
KR102405333B9 (ko) 2023-05-11

Similar Documents

Publication Publication Date Title
KR102465656B1 (ko) 수평 전극을 이용한 분말 표면처리용 플라즈마 장치
JP2867526B2 (ja) 半導体製造装置
KR0140521B1 (ko) 플라즈마 처리장치
WO2022114504A1 (ko) 평판형 필터 전극을 이용한 분말 표면처리용 플라즈마 장치
WO2013065906A1 (en) Induction electrostatic precipitator using multi-cross pin ionizer
CN1612314A (zh) 静电吸附装置、等离子体处理装置及等离子体处理方法
WO2003054911A8 (en) Plasma process apparatus
WO2021015542A1 (ko) 잔여분말제거장치를 구비한 3d프린터
WO2021015543A1 (ko) 잔여분말제거장치를 이용한 3d프린터 잔여분말 제거 방법
CN101258579B (zh) 便携式模具清洗设备及其方法
CN100388430C (zh) 基板清洗装置和基板清洗方法
JPH0451542A (ja) 静電吸着方法
JP4245868B2 (ja) 基板載置部材の再利用方法、基板載置部材および基板処理装置
JPH11319741A (ja) 除塵方法及び除塵装置
JP3849527B2 (ja) 焦電性材料の薄板から複数の素子チップを製造する方法
KR102607066B1 (ko) 수평 전극을 이용한 분말 표면처리용 플라즈마 장치
WO2014015485A1 (zh) 器件承载装置
KR102606700B1 (ko) 수평 전극을 이용한 분말 표면처리용 플라즈마 장치
CN218013367U (zh) 一种用于烧结机机头烟气处理的干式静电除尘器
JP3336989B2 (ja) ドライエッチング装置
KR102606699B1 (ko) 수평 전극을 이용한 분말 표면처리용 플라즈마 장치
JPH11111830A (ja) 静電吸着装置および静電吸着方法、ならびにそれを用いた処理装置および処理方法
JP3801130B2 (ja) 半導体装置の製造方法及び製造装置
KR102597526B1 (ko) 수평 전극을 이용한 분말 표면처리용 플라즈마 장치
WO2022124841A1 (ko) 통기성 부재의 내면을 플라즈마 처리하는 방법 및 이의 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898330

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18036405

Country of ref document: US

Ref document number: 202180076303.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023530769

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021898330

Country of ref document: EP

Effective date: 20230626