WO2022114422A1 - Automatic parking system for movement of robot supporting delivery of heavy items - Google Patents

Automatic parking system for movement of robot supporting delivery of heavy items Download PDF

Info

Publication number
WO2022114422A1
WO2022114422A1 PCT/KR2021/006879 KR2021006879W WO2022114422A1 WO 2022114422 A1 WO2022114422 A1 WO 2022114422A1 KR 2021006879 W KR2021006879 W KR 2021006879W WO 2022114422 A1 WO2022114422 A1 WO 2022114422A1
Authority
WO
WIPO (PCT)
Prior art keywords
parking
robot
driving
motor
controller
Prior art date
Application number
PCT/KR2021/006879
Other languages
French (fr)
Korean (ko)
Inventor
문희창
박재웅
박정근
Original Assignee
(주)언맨드솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)언맨드솔루션 filed Critical (주)언맨드솔루션
Publication of WO2022114422A1 publication Critical patent/WO2022114422A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention is a technology for mounting a robot for supporting the delivery of heavy goods in a vehicle.
  • Delivery workers often use carriers to deliver heavy goods to recipients more easily, but loading or unloading from delivery vehicles can be difficult and difficult. And this leads to a waste of manpower and time.
  • the Korea Post is attempting to introduce a postman-following robot (hereinafter abbreviated as 'robot') that supports the delivery of heavy goods.
  • 'robot' a postman-following robot
  • the robot acts as a delivery assistant by loading heavy goods to be delivered by the postman (delivery worker) and accompanying the delivery man. For example, if a robot delivers a package to a postman while going back and forth between the parcel storage by autonomous movement, the postman delivers it to the recipient or the receiving point. Since the robot shares the labor intensity of the postman in this way, the quality of delivery labor can be further improved, such as improving working conditions, as the postman only has to focus on delivery.
  • the present invention was devised from concerns about safe and rapid parking of robots.
  • An automatic parking system for moving a robot for supporting delivery of heavy goods comprises: a receiver for receiving a parking command from a remote operator; a driving motor for generating a driving force required for forward and reverse driving according to the parking command received by the receiver; a braking motor that generates a stopping force when a stop is requested in the driving process according to the operation of the driving motor; a steering motor generating a steering force for steering required for driving according to the operation of the driving motor and the braking motor; Lidar for detecting obstacles in the loading box of the delivery vehicle in advance for the operation of the driving motor, the braking motor and the steering motor; And after selecting a parking point by mapping the surrounding space in the mounting box based on the obstacle information detected by the lidar, calculate the moving distance in the surrounding space from the distance information obtained by mapping to park the robot at the parking spot a controller for generating a driving path for the purpose and controlling the driving motor, the braking motor, and the steering motor so that the robot moves according to the generated driving path; Including, the controller calculates
  • the controller may move the robot by selecting a plurality of parking points and then generating a first driving route to any one specific first parking point.
  • the controller can move the robot by creating a second driving path to a second parking point different from the first parking point. have.
  • the controller After confirming the parking area where the robot can park in the surrounding space confirmed by mapping, the controller selects a first parking spot and creates a first driving path, and moves the robot along the first driving path.
  • the robot may be moved to the second driving path by selecting a second parking point and creating a second driving path.
  • the robot since the robot performs the parking operation by autonomous driving, the labor intensity of the delivery person is reduced, and the parking time is reduced, so that the delivery time can be further reduced.
  • FIG. 1 is a block diagram of an automatic parking system for moving a robot for supporting delivery of heavy goods according to an embodiment of the present invention.
  • FIG. 2 to 5 are reference views for explaining a parking method performed by the automatic parking system of FIG. 1 .
  • FIG. 1 is a block diagram of an automatic parking system 10 (hereinafter abbreviated as 'automatic parking system') for moving a robot for supporting delivery of heavy goods according to an embodiment of the present invention.
  • the automatic parking system 10 is configured in a robot.
  • the automatic parking system 10 includes a receiver 11 , a driving motor 12 , a braking motor 13 , a steering motor 14 , a lidar 15 , a controller 16 , and an alarm 17 ).
  • the receiver 11 is provided to receive a parking command from a remote operator.
  • the driving motor 12 generates a driving force required for forward and backward driving according to the parking command received by the receiver 11 .
  • the driving motor 12 and the braking motor 13 or steering motor 14 to be described later are also used for movement to follow the delivery man.
  • the braking motor 13 generates a stopping force when a stop is required or the speed is slowed down in the driving process according to the operation of the driving motor 12 .
  • the steering motor 14 generates a steering force required to change the driving direction during driving according to the operation of the driving motor 12 and the braking motor 13 .
  • the lidar 15 is provided to detect obstacles (such as luggage or an inner wall of a loading box) in advance for the operation of the driving motor 12 , the braking motor 13 , and the steering motor 14 .
  • This rider 15 is used to create a driving route by mapping the surrounding space before starting driving for parking.
  • the controller 16 controls each of the above-described components.
  • the controller 16 selects a parking point by mapping the surrounding space in the loading box of the delivery vehicle based on the obstacle information detected from the lidar 15, and the distance information (distance between various obstacles and obstacles) obtained by mapping and information about the distance between the robot and the robot), calculates the moving distance in the surrounding space and creates a driving route for parking at the parking spot.
  • the controller 16 calculates the safety distance on the left and right sides of the mounting box from the distance information to set a parking point, and a straight vector ( ) and the turning radius of the robot to reflect the straight forward vector ( ) and the intersection vector ( ), and then the cross vector ( ), turning radius and straight vector ( ) to create a driving path (C). After that, the controller 16 controls the driving motor 12, the braking motor 13, and the steering motor 14 to move the robot along the generated driving path C to park the robot at the parking point P. make it
  • the alarm 17 is provided to notify when the robot cannot perform a parking function due to an obstacle after entering the mounting box.
  • the alarm 17 may be implemented to generate an alarm that can be visually recognized, such as a light of a specific color, or an alarm that can be recognized as a sound, such as sound. it could be
  • the detection of the obstacle may be implemented in various ways.
  • the controller 16 may detect an obstacle by a load applied to the driving motor 12 . That is, the controller 16 calculates an appropriate load amount of the drive motor 12 in consideration of the weight of the cargo loaded on the robot, and when the load amount of the drive motor 12 exceeds the appropriate load amount while the robot is moving, it is used as an obstacle. can be judged to be due to
  • an obstacle detector (which may be a limit switch or a proximity sensor) that can detect an obstacle is provided at the lower end of the robot, and the controller 16 can detect the obstacle by a signal from the obstacle detector. .
  • the delivery man uses the lifter provided in the delivery vehicle to raise the robot to a height where the robot can enter the loading box, and when the robot is finished, it uses the remote controller to command the robot to automatically park. Accordingly, the robot is switched to the automatic parking mode by operating the automatic parking system (10).
  • the controller 16 operates the lidar 15 to map the surrounding space in the mounting box to obtain distance information.
  • the controller 16 recognizes the parking point P by calculating the moving distance in the surrounding space from the distance information. At this time, the parking point can be set by calculating the safe distance on the left and right in the mounting box. That is, since it can be dangerous to attach too much to the left and right walls or luggage in the loading box, the parking point P is set by calculating a safety distance that is a certain interval.
  • the controller 16 calculates the moving distance in the surrounding space from the distance information obtained by mapping and generates a driving route C for parking the robot at the parking point P. At this time, the controller 16, as described above, the straight vector ( ) and the intersection vector ( ), and then both straight vectors ( ) and the intersection vector ( ), the driving route (C) is created in consideration of the turning radius in the vicinity of the intersection point.
  • the controller 16 moves the robot to the parking point P along the driving path C while controlling the driving motor 12 , the braking motor 13 and the steering motor 14 .
  • the controller 16 When an obstacle is detected while the robot is moving, the controller 16 generates an alarm through the alarm 17 .
  • any one specific travel route is selected as the first travel route to move the robot.
  • two (or more) parking points P1 and P2 are selected as shown in FIG. 1 by comparing the width of the robot and the parking area in the surrounding space mapped by the lidar 15 and selects a first parking point P1 according to a preset priority among two parking points P1 and P2, and generates a first driving route C1 leading to the first parking point P1.
  • the priority may be determined by a condition such that a line formed by an obstacle such as a wall or luggage is relatively straighter in the front-rear direction.
  • a second parking point P2 different from the first parking point P1 is used.
  • the robot is moved by creating a travel route (C2).
  • the second driving path C2 may be previously generated together with the first driving path C1 or may be generated when an obstacle appears.
  • the controller 16 selects the first parking point P1 after checking the parking area S where the robot can park in the surrounding space confirmed by mapping, and , a first driving path C1 to the first parking point P1 is generated and the robot is moved along the first driving path C1. And when the parking function cannot be performed due to an obstacle in the process of moving the robot along the first driving path C1, the controller 16 selects the second parking point P2 and selects the second driving path C2 ) and then move the robot along the second travel path C2.
  • the second driving path C2 may be a path moving from a point blocked by an obstacle to the second parking point P2.
  • the controller 16 must be implemented so that the coordinates of the current point can be accurately calculated and stored while the robot moves along the first travel path C1. Accordingly, when the robot is blocked by an obstacle while moving the first driving path C1, it is possible to quickly calculate the second driving path C2 by comparing the second parking point P2 with the current point.
  • the first additional example and the second additional example can be applied more preferably.
  • the robot when the robot gets off the delivery vehicle, it can be implemented to memorize the driving path the robot has parked as it is, and then move to the opposite path.
  • the parking performed by the automatic parking system 10 as described above is performed even when the delivery vehicle is located in the luggage storage, but is naturally made even when the delivery vehicle moves between delivery areas. This can speed up the delivery service.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Traffic Control Systems (AREA)
  • Electromagnetism (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)

Abstract

The present invention relates to an automatic parking system for the movement of a robot that supports the delivery of heavy delivery items. Due to the present invention, a robot can select a parking spot by using a lidar inside a box mounted in a delivery vehicle, generate a travel route, and thus park automatically. Thus, the labour intensity of a delivery service is reduced, the delivery speed is increased accordingly, and thus delivery time can be reduced.

Description

고 중량물품 배달지원용 로봇의 이동을 위한 자동 주차 시스템Automated parking system for moving robots to support the delivery of heavy goods
본 발명은 고 중량물품의 배달을 지원하기 위한 로봇을 차량에 탑재시키기 위한 기술이다.The present invention is a technology for mounting a robot for supporting the delivery of heavy goods in a vehicle.
현대 사회는 전통적인 편지배달을 넘어서 온갖 종류의 물품들이 배달서비스에 의해 다뤄지고 있다. 그리고 그 중에는 고 중량의 물품들도 상당한 비율을 차지한다.In modern society, beyond the traditional mail delivery, all kinds of goods are handled by delivery services. And among them, high-weight items also account for a significant proportion.
고 중량물품들은 배달원들이 다루기가 힘들고 곤란하다.Heavy items are difficult and difficult for delivery personnel to handle.
종종 배달원들은 캐리어를 이용하여 보다 쉽게 고 중량물품들을 수령자에게 배달하기도 하지만, 배달차량에 싣거나 배달차량으로부터 부리는 작업도 힘들고 곤란할 수 있다. 그리고 이는 그 만큼 인력이나 시간의 낭비를 가져온다.Delivery workers often use carriers to deliver heavy goods to recipients more easily, but loading or unloading from delivery vehicles can be difficult and difficult. And this leads to a waste of manpower and time.
그래서 대한민국 우정사업본부는 고 중량물품의 배달을 지원하는 집배원 추종로봇(이하 '로봇'이라 약칭함)의 도입을 시도하고 있다.Therefore, the Korea Post is attempting to introduce a postman-following robot (hereinafter abbreviated as 'robot') that supports the delivery of heavy goods.
로봇은 집배원(배달원)이 배달할 고 중량물품을 싣고서 배달원과 동행하면서 배달보조 역할을 한다. 예를 들어 로봇이 자율이동으로 택배보관소를 왕복하면서 집배원에게 택배를 전달하면 집배원이 수령자나 수령지점으로 배달한다. 이렇게 로봇이 집배원의 노동 강도를 분담해주기 때문에, 집배원은 배달에만 집중하면 돼 근로여건이 개선되는 등 배달노동의 질이 한층 향상될 수 있다.The robot acts as a delivery assistant by loading heavy goods to be delivered by the postman (delivery worker) and accompanying the delivery man. For example, if a robot delivers a package to a postman while going back and forth between the parcel storage by autonomous movement, the postman delivers it to the recipient or the receiving point. Since the robot shares the labor intensity of the postman in this way, the quality of delivery labor can be further improved, such as improving working conditions, as the postman only has to focus on delivery.
그런데 로봇이 우체국에서 배달구역으로 이동하기 위해서는 배달차량에 승차한 상태가 되어야 하고, 집배원을 추종하기 위해서는 배달차량으로부터 하차한 상태가 되어한다. 그리고 로봇의 승차 및 하차뿐만 아니라 로봇을 배달차량의 탑재박스 내 적당한 주차지점에 주차시키기 위한 곤란함이 있고, 그로 인한 시간이 소요됨을 알 수 있게 한다. 따라서 집배원의 원격 수동 조작으로 로봇을 수월하게 주차시키는 것을 예정해 볼 수 있다. 그러나 그렇다 하더라도 제한된 탑재공간 내의 적절한 주차지점에 로봇을 탑재시켜야 하기 때문에, 집배원의 조작 곤란함에 따른 번거로움, 조작미숙에 따른 로봇이나 수하물의 파손 및 조심스러운 조작에 따른 시간의 과도한 소요라는 문제가 발생할 수 있음이 예측된다.However, in order for the robot to move from the post office to the delivery area, it has to get on the delivery vehicle and get off the delivery vehicle to follow the postman. And it makes it possible to know that there is difficulty in not only getting on and off the robot, but also parking the robot at an appropriate parking spot in the loading box of the delivery vehicle, and it takes time. Therefore, it is possible to plan to park the robot easily with the remote manual operation of the postman. However, even so, since the robot must be mounted at an appropriate parking spot within the limited loading space, problems such as inconvenience due to the difficulty of handling by the postman, damage to the robot or baggage due to inexperienced operation, and excessive time required due to careful manipulation may occur. It can be predicted that
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
한국등록특허 등록번호 제10-0867699호Korean Patent Registration No. 10-0867699
본 발명은 로봇의 안전하고 신속한 주차에 대한 고민으로부터 안출되었다.The present invention was devised from concerns about safe and rapid parking of robots.
본 발명에 따른 고 중량물품 배달지원용 로봇의 이동을 위한 자동 주차 시스템은 원격지의 조작자로부터 주차명령을 수신하기 위한 수신기; 상기 수신기에 의해 수신된 주차명령에 따라 전진 및 후진 주행에 필요한 구동력을 발생시키는 구동모터; 상기 구동모터의 작동에 따른 주행 과정에서 정지가 요구될 시에 정지력을 발생시키는 제동모터; 상기 구동모터 및 제동모터의 작동에 따른 주행에서 요구되는 조향을 위해 조향력을 발생시키는 조향모터; 상기 구동모터, 제동모터 및 조향모터의 작동을 위해 사전에 배달차량의 탑재박스 내에 있는 장애물을 감지하는 라이다; 및 상기 라이다에 의해 감지된 장애물 정보를 기반으로 탑재박스 내의 주변 공간을 맵핑하여 주차지점을 선정한 후, 맵핑에 의해 얻은 거리정보로부터 주변 공간에서의 이동 거리를 계산해서 주차지점에 로봇을 주차시키기 위한 주행경로를 생성하고, 생성된 주행경로에 따라 로봇이 이동하도록 상기 구동모터, 제동모터 및 조향모터를 제어하는 제어기; 를 포함하며, 상기 제어기는 거리정보로부터 탑재박스 내 좌우측의 안전거리를 계산하여 주차지점을 설정하고, 직진이동에 의해 주차지점에 주차시킬 수 있는 직진벡터와 로봇의 선회반경을 반영하여 직진벡터와 현재 위치가 교차하는 교차벡터를 구한 후 교차벡터, 선회반경 및 직진벡터로 이어지는 주행경로를 생성한다.An automatic parking system for moving a robot for supporting delivery of heavy goods according to the present invention comprises: a receiver for receiving a parking command from a remote operator; a driving motor for generating a driving force required for forward and reverse driving according to the parking command received by the receiver; a braking motor that generates a stopping force when a stop is requested in the driving process according to the operation of the driving motor; a steering motor generating a steering force for steering required for driving according to the operation of the driving motor and the braking motor; Lidar for detecting obstacles in the loading box of the delivery vehicle in advance for the operation of the driving motor, the braking motor and the steering motor; And after selecting a parking point by mapping the surrounding space in the mounting box based on the obstacle information detected by the lidar, calculate the moving distance in the surrounding space from the distance information obtained by mapping to park the robot at the parking spot a controller for generating a driving path for the purpose and controlling the driving motor, the braking motor, and the steering motor so that the robot moves according to the generated driving path; Including, the controller calculates the safe distance on the left and right sides of the mounting box from the distance information to set the parking point, and reflects the straight vector and the turning radius of the robot that can be parked at the parking spot by moving straight forward. After obtaining the intersection vector where the current position intersects, the driving path leading to the intersection vector, turning radius, and straight vector is generated.
상기 제어기는 복수개의 주차지점을 선정한 후 어느 하나의 특정 제1 주차지점으로 가는 제1 주행경로를 생성하여 로봇을 이동시킬 수 있다.The controller may move the robot by selecting a plurality of parking points and then generating a first driving route to any one specific first parking point.
상기 제어기는 제1 주행경로로 로봇을 이동시키는 과정에서 장애물에 의해 주차기능을 수행할 수 없을 때에는 제1 주차지점과는 다른 제2 주차지점으로 가는 제2 주행경로를 생성하여 로봇을 이동시킬 수 있다.When the controller cannot perform the parking function due to an obstacle in the process of moving the robot along the first driving path, the controller can move the robot by creating a second driving path to a second parking point different from the first parking point. have.
상기 제어기는 맵핑에 의해 확인된 주변 공간에서 로봇의 주차가 가능한 주차영역을 확인한 후 제1 주차지점의 선정 및 제1 주행경로를 생성하고, 제1 주행경로를 따라 로봇을 이동시키는 과정에서 장애물에 의해 주차기능을 수행할 수 없는 경우에는 제2 주차지점의 선정 및 제2 주행경로를 생성하여 로봇을 제2 주행경로로 이동시킬 수 있다.After confirming the parking area where the robot can park in the surrounding space confirmed by mapping, the controller selects a first parking spot and creates a first driving path, and moves the robot along the first driving path. When the parking function cannot be performed by the user, the robot may be moved to the second driving path by selecting a second parking point and creating a second driving path.
본 발명에 따르면 로봇이 자율주행으로 주차 작업을 하기 때문에 배달원의 노동 강도가 줄어들고, 주차 시간이 줄어 그만큼 더 배달 시간을 줄일 수 있게 된다.According to the present invention, since the robot performs the parking operation by autonomous driving, the labor intensity of the delivery person is reduced, and the parking time is reduced, so that the delivery time can be further reduced.
도 1은 본 발명의 일 실시예에 따른 고 중량물품 배달지원용 로봇의 이동을 위한 자동 주차 시스템에 대한 구성도이다.1 is a block diagram of an automatic parking system for moving a robot for supporting delivery of heavy goods according to an embodiment of the present invention.
도 2 내지 도 5는 도 1의 자동 주차 시스템에 의해 이루어지는 주차 방법을 설명하기 위한 참고도들이다.2 to 5 are reference views for explaining a parking method performed by the automatic parking system of FIG. 1 .
본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 설명하되, 설명의 간결함을 위해 중복되는 구성에 대한 설명은 가급적 생략하거나 압축한다.A preferred embodiment according to the present invention will be described with reference to the accompanying drawings, but for the sake of brevity of description, the description of overlapping components is omitted or compressed as much as possible.
도 1은 본 발명의 일 실시예에 고 중량물품 배달지원용 로봇의 이동을 위한 자동 주차 시스템(10, 이하 '자동 주차 시스템'이라 약칭함)에 대한 구성도이다. 물론, 자동 주차 시스템(10)은 로봇에 구성되어 있다.1 is a block diagram of an automatic parking system 10 (hereinafter abbreviated as 'automatic parking system') for moving a robot for supporting delivery of heavy goods according to an embodiment of the present invention. Of course, the automatic parking system 10 is configured in a robot.
본 실시예에 따른 자동 주차 시스템(10)은 수신기(11), 구동모터(12), 제동모터(13), 조향모터(14), 라이다(15), 제어기(16) 및 경보기(17)를 포함한다.The automatic parking system 10 according to this embodiment includes a receiver 11 , a driving motor 12 , a braking motor 13 , a steering motor 14 , a lidar 15 , a controller 16 , and an alarm 17 ). includes
수신기(11)는 원격지의 조작자로부터 주차명령을 수신하기 위해 마련된다.The receiver 11 is provided to receive a parking command from a remote operator.
구동모터(12)는 수신기(11)에 의해 수신된 주차명령에 따라 전진 및 후진 주행에 필요한 구동력을 발생시킨다. 물론, 구동모터(12)와 후술할 제동모터(13)나 조향모터(14) 등은 배달원을 추종하기 위한 이동에도 사용된다.The driving motor 12 generates a driving force required for forward and backward driving according to the parking command received by the receiver 11 . Of course, the driving motor 12 and the braking motor 13 or steering motor 14 to be described later are also used for movement to follow the delivery man.
제동모터(13)는 구동모터(12)의 작동에 따른 주행 과정에서 정지가 요구되거나 속도를 늦출 시에 정지력을 발생시킨다.The braking motor 13 generates a stopping force when a stop is required or the speed is slowed down in the driving process according to the operation of the driving motor 12 .
조향모터(14)는 구동모터(12) 및 제동모터(13)의 작동에 따른 주행 시에 주행 방향의 전환을 위해 요구되는 조향력을 발생시킨다.The steering motor 14 generates a steering force required to change the driving direction during driving according to the operation of the driving motor 12 and the braking motor 13 .
라이다(15)는 구동모터(12), 제동모터(13) 및 조향모터(14)의 작동을 위해 사전에 장애물(수하물이나 탑재박스의 내벽 등)을 감지하기 위해 마련된다. 이러한 라이더(15)는 주차를 위한 주행 시작 전에 주변 공간을 맵핑하여 주행경로를 생성하기 위해서 사용된다.The lidar 15 is provided to detect obstacles (such as luggage or an inner wall of a loading box) in advance for the operation of the driving motor 12 , the braking motor 13 , and the steering motor 14 . This rider 15 is used to create a driving route by mapping the surrounding space before starting driving for parking.
제어기(16)는 상기한 각 구성들을 제어한다. 특히, 제어기(16)는 라이다(15)로부터 감지된 장애물 정보를 기반으로 배달차량의 탑재박스 내 주변 공간을 맵핑하여 주차지점을 선정하고, 맵핑에 의해 얻은 거리정보(각종 장애물 간의 거리와 장애물과 로봇과의 거리에 대한 정보 등)로부터 주변 공간에서의 이동 거리를 계산해서 주차지점에 주차시키기 위한 주행경로를 생성한다.The controller 16 controls each of the above-described components. In particular, the controller 16 selects a parking point by mapping the surrounding space in the loading box of the delivery vehicle based on the obstacle information detected from the lidar 15, and the distance information (distance between various obstacles and obstacles) obtained by mapping and information about the distance between the robot and the robot), calculates the moving distance in the surrounding space and creates a driving route for parking at the parking spot.
주행경로의 생성에 대하여 도 2를 참조하여 설명한다. 제어기(16)는 거리정보로부터 탑재박스 내 좌우측의 안전거리를 계산하여 주차지점을 설정하고, 직진이동에 의해 주차지점에 주차시킬 수 있는 직선 경로 상의 직진벡터(
Figure PCTKR2021006879-appb-img-000001
)와 로봇의 선회반경을 반영하여 직진벡터(
Figure PCTKR2021006879-appb-img-000002
)와 현재 위치가 교차하는 교차벡터(
Figure PCTKR2021006879-appb-img-000003
)를 구한 후 교차벡터터(
Figure PCTKR2021006879-appb-img-000004
), 선회반경 및 직진벡터(
Figure PCTKR2021006879-appb-img-000005
)로 이어지는 주행경로(C)를 생성한다. 그 후, 제어기(16)는 생성된 주행경로(C)를 따라 로봇이 이동하도록 구동모터(12), 제동모터(13) 및 조향모터(14)를 제어하여 로봇을 주차지점(P)에 주차시킨다.
Generation of the travel route will be described with reference to FIG. 2 . The controller 16 calculates the safety distance on the left and right sides of the mounting box from the distance information to set a parking point, and a straight vector (
Figure PCTKR2021006879-appb-img-000001
) and the turning radius of the robot to reflect the straight forward vector (
Figure PCTKR2021006879-appb-img-000002
) and the intersection vector (
Figure PCTKR2021006879-appb-img-000003
), and then the cross vector (
Figure PCTKR2021006879-appb-img-000004
), turning radius and straight vector (
Figure PCTKR2021006879-appb-img-000005
) to create a driving path (C). After that, the controller 16 controls the driving motor 12, the braking motor 13, and the steering motor 14 to move the robot along the generated driving path C to park the robot at the parking point P. make it
경보기(17)는 로봇이 탑재박스 내에 진입한 후 장애물에 의해 주차기능을 수행할 수 없을 때, 이를 알리기 위해 마련된다. 이러한 경보기(17)는 특정 색깔의 불빛과 같은 시각적 인식이 가능한 경보를 발생시키도록 구현되거나, 소리와 같은 청각적 인식이 가능한 경보를 발생시키도록 구현될 수 있으며, 두 가지 방식 모두 발생시키도록 구현될 수 있을 것이다.The alarm 17 is provided to notify when the robot cannot perform a parking function due to an obstacle after entering the mounting box. The alarm 17 may be implemented to generate an alarm that can be visually recognized, such as a light of a specific color, or an alarm that can be recognized as a sound, such as sound. it could be
이 때, 장애물의 감지 다양한 방식으로 구현될 수 있다.In this case, the detection of the obstacle may be implemented in various ways.
예를 들어, 제어기(16)는 구동모터(12)에 걸리는 부하에 의해 장애물을 감지할 수 있다. 즉, 제어기(16)는 로봇에 적재된 화물의 중량을 감안하여 구동모터(12)의 적정 부하량을 계산하고, 로봇이 이동하는 도중 구동모터(12)의 부하량이 적정 부하량을 넘어서면 이를 장애물로 인한 것으로 판단할 수 있다.For example, the controller 16 may detect an obstacle by a load applied to the driving motor 12 . That is, the controller 16 calculates an appropriate load amount of the drive motor 12 in consideration of the weight of the cargo loaded on the robot, and when the load amount of the drive motor 12 exceeds the appropriate load amount while the robot is moving, it is used as an obstacle. can be judged to be due to
예를 들어, 로봇의 하단 부위에 장애물을 감지할 수 있는 장애물감지기(리미트스위치나 근접센서 등일 수 있다)를 구비하고, 제어기(16)는 장애물감지기에 의해 오는 신호에 의해 장애물을 감지할 수 있다.For example, an obstacle detector (which may be a limit switch or a proximity sensor) that can detect an obstacle is provided at the lower end of the robot, and the controller 16 can detect the obstacle by a signal from the obstacle detector. .
이하에서는 위와 같은 구성을 가지는 자동 주차 시스템(10)에서 이루어지는 자동 주차 방법에 대해서 설명한다.Hereinafter, an automatic parking method performed in the automatic parking system 10 having the above configuration will be described.
배달원은 배달차량에 구비된 리프터를 이용하여 로봇이 탑재박스로 진입할 수 있는 높이까지 로봇을 상승시키고, 로봇의 상승이 완료되면 리모트콘트롤러를 이용하여 로봇에게 자동 주차를 명령한다. 이에 따라 로봇은 자동 주차 시스템(10)을 작동시킴으로써 자동 주차 모드로 전환된다.The delivery man uses the lifter provided in the delivery vehicle to raise the robot to a height where the robot can enter the loading box, and when the robot is finished, it uses the remote controller to command the robot to automatically park. Accordingly, the robot is switched to the automatic parking mode by operating the automatic parking system (10).
1. 거리정보 획득<S31>1. Acquire distance information<S31>
제어기(16)는 라이다(15)를 작동시켜서 탑재박스 내의 주변 공간을 맵핑하여 거리정보를 얻는다.The controller 16 operates the lidar 15 to map the surrounding space in the mounting box to obtain distance information.
2. 주차지점 인식<S32>2. Parking point recognition<S32>
제어기(16)는 거리정보로부터 주변 공간에서의 이동 거리를 계산해서 주차지점(P)을 인식한다. 이 때, 주차지점은 탑재박스 내 좌우측의 안전거리를 계산하여 설정될 수 있다. 즉, 탑재박스 내의 좌우측 벽이나 수하물에 너무 붙는 것도 위험할 수 있으므로, 어느 정도 일정한 간격인 안전거리를 계산하여 주차지점(P)을 설정하는 것이다. The controller 16 recognizes the parking point P by calculating the moving distance in the surrounding space from the distance information. At this time, the parking point can be set by calculating the safe distance on the left and right in the mounting box. That is, since it can be dangerous to attach too much to the left and right walls or luggage in the loading box, the parking point P is set by calculating a safety distance that is a certain interval.
3. 주행경로 생성<S33>3. Create driving route<S33>
제어기(16)는 맵핑에 의해 얻은 거리정보로부터 주변 공간에서의 이동 거리를 계산해서 주차지점(P)에 로봇을 주차시키기 위한 주행경로(C)를 생성한다. 이 때, 제어기(16)는 전술한 바와 같이 직진벡터(
Figure PCTKR2021006879-appb-img-000006
)와 교차벡터(
Figure PCTKR2021006879-appb-img-000007
)를 구한 후 양 직진벡터(
Figure PCTKR2021006879-appb-img-000008
)와 교차벡터(
Figure PCTKR2021006879-appb-img-000009
)의 교차점 근방에서의 선회반경을 고려하여 주행경로(C)를 생성한다.
The controller 16 calculates the moving distance in the surrounding space from the distance information obtained by mapping and generates a driving route C for parking the robot at the parking point P. At this time, the controller 16, as described above, the straight vector (
Figure PCTKR2021006879-appb-img-000006
) and the intersection vector (
Figure PCTKR2021006879-appb-img-000007
), and then both straight vectors (
Figure PCTKR2021006879-appb-img-000008
) and the intersection vector (
Figure PCTKR2021006879-appb-img-000009
), the driving route (C) is created in consideration of the turning radius in the vicinity of the intersection point.
위와 같은 주차지점(P) 인식과 주행경로(C)의 생성은 여러 추가적인 예들을 가질 수 있으므로, 이러한 추가적인 예들에 대해서는 차후에 설명한다.Since the above recognition of the parking point P and the generation of the driving route C may have several additional examples, these additional examples will be described later.
4. 로봇의 이동<S34>4. Robot movement<S34>
제어기(16)는 구동모터(12), 제동모터(13) 및 조향모터(14)를 제어하면서 주행경로(C)를 따라 로봇을 주차지점(P)으로 이동시킨다.The controller 16 moves the robot to the parking point P along the driving path C while controlling the driving motor 12 , the braking motor 13 and the steering motor 14 .
5. 경보 발생<S35>5. Alarm <S35>
로봇이 이동하는 과정에서 장애물이 감지되면, 제어기(16)는 경보기(17)를 통해 경보를 발생시킨다.When an obstacle is detected while the robot is moving, the controller 16 generates an alarm through the alarm 17 .
<주차지점의 선정 및 주행경로의 생성에 관한 주가적인 예><Example of stock price regarding selection of parking point and creation of driving route>
1. 제1 추가예1. First additional example
본 예는 제어기(16)가 복수개의 주행경로를 생성한 후 어느 하나의 특정 주행경로를 제1 주행경로로 선택하여 로봇을 이동시킨다. 예를 들어, 라이다(15)에 의해 매핑된 주변 공간에서 로봇의 폭과 주차 가능한 영역을 비교해서 도 1에서와 같이 2개(또는 그 이상일 수 있음)의 주차지점(P1, P2)을 선정하고, 2개의 주차지점(P1, P2) 중 미리 설정된 우선순위 따른 제1 주차지점(P1)을 선정하고, 제1 주차지점(P1)으로 가는 제1 주행경로(C1)를 생성하는 것이다. 여기서 우선순위는 벽이나 수하물 등의 장애물이 형성하는 선이 전후 방향으로 비교적 더 직선인 것과 같은 조건 등에 의해 결정될 수 있다.In this example, after the controller 16 generates a plurality of travel routes, any one specific travel route is selected as the first travel route to move the robot. For example, two (or more) parking points P1 and P2 are selected as shown in FIG. 1 by comparing the width of the robot and the parking area in the surrounding space mapped by the lidar 15 and selects a first parking point P1 according to a preset priority among two parking points P1 and P2, and generates a first driving route C1 leading to the first parking point P1. Here, the priority may be determined by a condition such that a line formed by an obstacle such as a wall or luggage is relatively straighter in the front-rear direction.
그 후, 제1 주행경로(C1)를 따라 로봇을 이동시키는 과정에서 장애물에 의해 주차기능을 수행할 수 없을 때에는 제1 주차지점(P1)과는 다른 제2 주차지점(P2)으로 가는 제2 주행경로(C2)를 생성하여 로봇을 이동시킨다.After that, when the parking function cannot be performed due to an obstacle in the process of moving the robot along the first driving path C1, a second parking point P2 different from the first parking point P1 is used. The robot is moved by creating a travel route (C2).
여기서 제2 주행경로(C2)는 제1 주행경로(C1)와 함께 미리 생성될 수도 있고, 장애물이 나타났을 때 생성될 수도 있다.Here, the second driving path C2 may be previously generated together with the first driving path C1 or may be generated when an obstacle appears.
1. 제2 추가예1. Second additional example
본 예는 도 1의 (a)에서 참조되는 바와 같이 제어기(16)가 맵핑에 의해 확인된 주변 공간에서 로봇의 주차가 가능한 주차영역(S)을 확인한 후 제1 주차지점(P1)을 선정하고, 제1 주차지점(P1)으로 가는 제1 주행경로(C1)를 생성해서 제1 주행경로(C1)를 따라 로봇을 이동시킨다. 그리고 제1 주행경로(C1)를 따라 로봇을 이동시키는 과정에서 장애물에 의해 주차기능을 수행할 수 없는 경우에, 제어기(16)는 제2 주차지점(P2)을 선정하고 제2 주행경로(C2)를 생성한 다음 제2 주행경로(C2)를 따라 로봇을 이동시킨다.In this example, as referenced in Fig. 1 (a), the controller 16 selects the first parking point P1 after checking the parking area S where the robot can park in the surrounding space confirmed by mapping, and , a first driving path C1 to the first parking point P1 is generated and the robot is moved along the first driving path C1. And when the parking function cannot be performed due to an obstacle in the process of moving the robot along the first driving path C1, the controller 16 selects the second parking point P2 and selects the second driving path C2 ) and then move the robot along the second travel path C2.
위의 제1 추가예와 제2 추가예에서 제2 주행경로(C2)는 장애물에 의해 막힌 지점에서 제2 주차지점(P2)으로 이동하는 경로일 수 있다. 이를 위해 제어기(16)는 로봇이 제1 주행경로(C1)를 따라 이동하는 과정에서 현재 지점의 좌표를 정확히 계산해서 기억할 수 있도록 구현되어야 한다. 그에 따라 로봇이 제1 주행경로(C1)를 이동 중에 장애물에 의해 막힐 경우, 제2 주차지점(P2)과 현재 지점을 비교하여 제2 주행경로(C2)를 빠르게 계산할 수 있게 된다.In the above first and second additional examples, the second driving path C2 may be a path moving from a point blocked by an obstacle to the second parking point P2. To this end, the controller 16 must be implemented so that the coordinates of the current point can be accurately calculated and stored while the robot moves along the first travel path C1. Accordingly, when the robot is blocked by an obstacle while moving the first driving path C1, it is possible to quickly calculate the second driving path C2 by comparing the second parking point P2 with the current point.
물론, 로봇의 이동이 장애물에 막힌 지점에서 다시 라이다(15)에 의해 주변 공간을 맵핑해 낸 후 제2 주차지점(P2)을 확인할 수도 있지만, 이럴 경우 시간이 다소 소요될 수 있다는 점에서 위의 제1 추가예와 제2 추가예가 좀 더 바람직하게 적용될 수 있다.Of course, it is also possible to check the second parking point P2 after mapping the surrounding space by the lidar 15 again at the point where the movement of the robot is blocked by the obstacle, but in this case it may take some time. The first additional example and the second additional example can be applied more preferably.
또한, 위의 추가예들은 제2 주차지점(P2)과 제2 주행경로(C2)만을 추가하고 있지만, 실시하기에 따라서는 3개 이상의 주차지점과 3개 이상의 주행경로들이 생성될 수 있음은 당연하다. 이러한 추가예들을 통해 협소한 공간에서 배달원이나 조작자가 직접 장애물을 제거해 내는 번거로움이 해결될 수 있다. In addition, although the above additional examples add only the second parking point P2 and the second driving route C2, it is natural that three or more parking points and three or more driving routes may be generated depending on the implementation. do. Through these additional examples, the inconvenience of a delivery person or an operator directly removing an obstacle in a narrow space can be solved.
한편, 로봇이 배달차량으로부터 하차할 경우에는, 로봇이 주차했던 주행경로를 그대로 기억했다가 반대의 경로로 이동하도록 구현될 수 있다.On the other hand, when the robot gets off the delivery vehicle, it can be implemented to memorize the driving path the robot has parked as it is, and then move to the opposite path.
참고로, 위와 같은 자동 주차 시스템(10)에 의해 이루어지는 주차는 배달차량이 수하물 창고에 위치할 경우에도 이루어지지만, 배달차량이 배달구역 간을 이동하는 경우에도 당연히 이루어진다. 그에 따라 배달 서비스의 속도가 빨라질 수 있다.For reference, the parking performed by the automatic parking system 10 as described above is performed even when the delivery vehicle is located in the luggage storage, but is naturally made even when the delivery vehicle moves between delivery areas. This can speed up the delivery service.
상술한 바와 같이, 본 발명에 대한 구체적인 설명은 첨부된 도면을 참조한 실시예들에 의해서 이루어졌지만, 상술한 실시예는 본 발명의 바람직한 예를 들어 설명하였을 뿐이기 때문에, 본 발명이 상기의 실시예들에만 국한되는 것으로 이해되어져서는 아니 되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 균등범위로 이해되어져야 할 것이다.As described above, the detailed description of the present invention has been made by the embodiments with reference to the accompanying drawings, but since the above-described embodiments have been described only by taking preferred examples of the present invention, the present invention is not limited to the above embodiments It should not be construed as being limited only to the above, and the scope of the present invention should be understood as the following claims and their equivalents.

Claims (4)

  1. 원격지의 조작자로부터 주차명령을 수신하기 위한 수신기;a receiver for receiving a parking command from a remote operator;
    상기 수신기에 의해 수신된 주차명령에 따라 전진 및 후진 주행에 필요한 구동력을 발생시키는 구동모터;a driving motor for generating a driving force required for forward and reverse driving according to the parking command received by the receiver;
    상기 구동모터의 작동에 따른 주행 과정에서 정지가 요구될 시에 정지력을 발생시키는 제동모터;a braking motor that generates a stopping force when a stop is requested in the driving process according to the operation of the driving motor;
    상기 구동모터 및 제동모터의 작동에 따른 주행에서 요구되는 조향을 위해 조향력을 발생시키는 조향모터;a steering motor generating a steering force for steering required for driving according to the operation of the driving motor and the braking motor;
    상기 구동모터, 제동모터 및 조향모터의 작동을 위해 사전에 배달차량의 탑재박스 내에 있는 장애물을 감지하는 라이다; 및Lidar for detecting obstacles in the loading box of the delivery vehicle in advance for the operation of the driving motor, the braking motor and the steering motor; and
    상기 라이다에 의해 감지된 장애물 정보를 기반으로 탑재박스 내의 주변 공간을 맵핑하여 주차지점을 선정한 후, 맵핑에 의해 얻은 거리정보로부터 주변 공간에서의 이동 거리를 계산해서 주차지점에 로봇을 주차시키기 위한 주행경로를 생성하고, 생성된 주행경로에 따라 로봇이 이동하도록 상기 구동모터, 제동모터 및 조향모터를 제어하는 제어기; 를 포함하며,After selecting a parking point by mapping the surrounding space in the mounting box based on the obstacle information detected by the lidar, calculating the moving distance in the surrounding space from the distance information obtained by mapping to park the robot at the parking point a controller that generates a driving path and controls the driving motor, the braking motor, and the steering motor so that the robot moves according to the generated driving path; includes,
    상기 제어기는 거리정보로부터 탑재박스 내 좌우측의 안전거리를 계산하여 주차지점을 설정하고, 직진이동에 의해 주차지점에 주차시킬 수 있는 직진벡터와 로봇의 선회반경을 반영하여 직진벡터와 현재 위치가 교차하는 교차벡터를 구한 후 교차벡터, 선회반경 및 직진벡터로 이어지는 주행경로를 생성하는The controller sets a parking point by calculating the safe distance on the left and right sides of the mounting box from the distance information, and reflects the straight vector and the turning radius of the robot that can be parked at the parking spot by moving straight forward so that the straight vector and the current position intersect After obtaining an intersection vector that
    고 중량물품 배달지원용 로봇의 이동을 위한 자동 주차 시스템.Automated parking system for moving robots for heavy-duty delivery support.
  2. 제1 항에 있어서,According to claim 1,
    상기 제어기는 복수개의 주차지점을 선정한 후 어느 하나의 특정 제1 주차지점으로 가는 제1 주행경로를 생성하여 로봇을 이동시킬 수 있는The controller can move the robot by selecting a plurality of parking points and then generating a first driving route to any one specific first parking point.
    고 중량물품 배달지원용 로봇의 이동을 위한 자동 주차 시스템.Automated parking system for moving robots for heavy-duty delivery support.
  3. 제2 항에 있어서,3. The method of claim 2,
    상기 제어기는 제1 주행경로로 로봇을 이동시키는 과정에서 장애물에 의해 주차기능을 수행할 수 없을 때에는 제1 주차지점과는 다른 제2 주차지점으로 가는 제2 주행경로를 생성하여 로봇을 이동시킬 수 있는When the controller cannot perform the parking function due to an obstacle in the process of moving the robot along the first driving path, the controller can move the robot by creating a second driving path to a second parking point different from the first parking point. there is
    고 중량물품 배달지원용 로봇의 이동을 위한 자동 주차 시스템.Automated parking system for moving robots for heavy-duty delivery support.
  4. 제1 항에 있어서,According to claim 1,
    상기 제어기는 맵핑에 의해 확인된 주변 공간에서 로봇의 주차가 가능한 주차영역을 확인한 후 제1 주차지점의 선정 및 제1 주행경로를 생성하고, 제1 주행경로를 따라 로봇을 이동시키는 과정에서 장애물에 의해 주차기능을 수행할 수 없는 경우에는 제2 주차지점의 선정 및 제2 주행경로를 생성하여 로봇을 제2 주행경로로 이동시키는After confirming the parking area where the robot can park in the surrounding space confirmed by mapping, the controller selects a first parking spot and creates a first driving path, and moves the robot along the first driving path. If the parking function cannot be performed by the
    고 중량물품 배달지원용 로봇의 이동을 위한 자동 주차 시스템.Automated parking system for moving robots for heavy-duty delivery support.
PCT/KR2021/006879 2020-11-25 2021-06-02 Automatic parking system for movement of robot supporting delivery of heavy items WO2022114422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0159630 2020-11-25
KR1020200159630A KR20220072239A (en) 2020-11-25 2020-11-25 Automatic parking system of moving delivery assistance robot for high weight item

Publications (1)

Publication Number Publication Date
WO2022114422A1 true WO2022114422A1 (en) 2022-06-02

Family

ID=81754716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006879 WO2022114422A1 (en) 2020-11-25 2021-06-02 Automatic parking system for movement of robot supporting delivery of heavy items

Country Status (2)

Country Link
KR (1) KR20220072239A (en)
WO (1) WO2022114422A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005271866A (en) * 2004-03-26 2005-10-06 Toyota Motor Corp Parking assistance method and parking assistance device
JP2014054912A (en) * 2012-09-12 2014-03-27 Denso Corp Parking support system
KR20170025206A (en) * 2015-08-27 2017-03-08 현대자동차주식회사 Remote automatic parking assist system and control method thereof
KR20170030370A (en) * 2015-09-09 2017-03-17 현대모비스 주식회사 Apparatus and method for sharing a parking garage?s information and apparatus and method for supporting parking
JP2020070160A (en) * 2018-10-31 2020-05-07 トヨタ自動車株式会社 Delivery system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867699B1 (en) 2007-07-20 2008-11-10 현대자동차주식회사 Automatic parking system of a motor vehicle of providing a parking path including a forward path

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005271866A (en) * 2004-03-26 2005-10-06 Toyota Motor Corp Parking assistance method and parking assistance device
JP2014054912A (en) * 2012-09-12 2014-03-27 Denso Corp Parking support system
KR20170025206A (en) * 2015-08-27 2017-03-08 현대자동차주식회사 Remote automatic parking assist system and control method thereof
KR20170030370A (en) * 2015-09-09 2017-03-17 현대모비스 주식회사 Apparatus and method for sharing a parking garage?s information and apparatus and method for supporting parking
JP2020070160A (en) * 2018-10-31 2020-05-07 トヨタ自動車株式会社 Delivery system

Also Published As

Publication number Publication date
KR20220072239A (en) 2022-06-02

Similar Documents

Publication Publication Date Title
EP3000772B1 (en) Fork-lift truck and method for operating a fork-lift truck
US20160090283A1 (en) Fork-Lift Truck
JP4856394B2 (en) Object position measuring apparatus for container crane and automatic cargo handling apparatus using the object position measuring apparatus
US20080011554A1 (en) Movable sensor device on the loading means of a forklift
US4753357A (en) Container crane
US7123132B2 (en) Chassis alignment system
US11702323B2 (en) Automatically guided lifting gantry device for containers and method for operating such a lifting gantry device
WO2020203253A1 (en) Weight estimation system
JP2022189891A (en) Vehicle transportation device
CN115826576A (en) Intelligent control system and method for self-loading and unloading forklift robot
WO2022114422A1 (en) Automatic parking system for movement of robot supporting delivery of heavy items
JP6684531B2 (en) Unmanned transport system
JP2001322720A (en) Container loading and unloading method and its sytem
CN112673329A (en) Automatic navigation trolley with dynamic safety area
JP7287231B2 (en) Operation support device for cargo handling vehicle
JP2021160860A (en) Freight handling assistance system
JP2021088440A (en) Loading and unloading system
KR100344102B1 (en) Automatic landing method and automatic landing apparatus for spreader
JP7112803B1 (en) Transport system and transport control method
CN113703460B (en) Method, device and system for identifying vacant position of navigation vehicle
EP3978872A1 (en) Guidance system
JP7135883B2 (en) Mobile body running system
JPH112508A (en) Position detecting device for lifting load
JP2019169019A (en) Travel control system for travel device
CN216736362U (en) Intelligent transfer trolley

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21898251

Country of ref document: EP

Kind code of ref document: A1