WO2022114258A1 - High-speed wideband fmcw frequency modulator and nonlinearity compensation method thereof - Google Patents

High-speed wideband fmcw frequency modulator and nonlinearity compensation method thereof Download PDF

Info

Publication number
WO2022114258A1
WO2022114258A1 PCT/KR2020/016894 KR2020016894W WO2022114258A1 WO 2022114258 A1 WO2022114258 A1 WO 2022114258A1 KR 2020016894 W KR2020016894 W KR 2020016894W WO 2022114258 A1 WO2022114258 A1 WO 2022114258A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
dlf
fmcw
chirp
output
Prior art date
Application number
PCT/KR2020/016894
Other languages
French (fr)
Korean (ko)
Inventor
이성호
주하람
장성천
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Publication of WO2022114258A1 publication Critical patent/WO2022114258A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0991Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator being a digital oscillator, e.g. composed of a fixed oscillator followed by a variable frequency divider
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/183Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between fixed numbers or the frequency divider dividing by a fixed number
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division
    • H03L7/1974Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division
    • H03L7/1976Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division using a phase accumulator for controlling the counter or frequency divider
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L2207/00Indexing scheme relating to automatic control of frequency or phase and to synchronisation
    • H03L2207/50All digital phase-locked loop

Definitions

  • the present invention relates to a FMCW frequency modulator, and more particularly, a high-speed chirp for grasping characteristics (motion, state, etc.) of a target object, a wideband FMCW frequency modulator, adaptive gain control of the modulator, nonlinearity compensation, and initial correction method is about
  • FMCW frequency modulated continuous wave
  • a frequency modulator including a phase-locked loop also requires a high bandwidth to generate a high-speed chirp and wideband FMCW signal when the division ratio modulation method is used.
  • -Sigma modulator's quantization noise is not well filtered, so the jitter performance of the output clock is poor.
  • the direct VCO (Voltage Controlled Oscillator) modulation type frequency modulator may have a low bandwidth of the phase synchronization loop, but is sensitive to the VCO gain and is vulnerable to PVT (Process-Voltage-Temperature) change.
  • the chirp performance of conventional frequency modulators is greatly affected by the nonlinearity of a Digitally Controlled Oscillator (DCO) or a Digital to Analog Converter (DAC) due to the characteristics of wideband modulation. As a result, there is a problem that the accuracy of target object detection is lowered.
  • DCO Digitally Controlled Oscillator
  • DAC Digital to Analog Converter
  • the present invention has been devised to solve the above problems, and an object of the present invention is to provide a high-speed chirp, wideband FMCW frequency modulator using multiple modulation, and an adaptive gain control, nonlinearity compensation and initial correction method of the modulator. is in providing.
  • the FMCW frequency modulator includes: a Frequency Modulation Profile Generator (FMPG) for generating a chirp signal and applying it to a Digital Loop Filter (DLF) and a Multi-Modulus Divider (MMD); AGC (Automatic Gain Controller) for adjusting the gain of the chirp signal generated in the FMPG and applied to the DLF; BBPFD (Bang-Bang Phase-Frequency Detector) for calculating the difference between the reference signal and the output signal of the MMD; DLF that accumulates the difference signal output from the BBPFD, and uses a chirp signal whose gain is adjusted by the AGC when accumulating; Digitally-Controlled Oscillator (DCO) for generating a chirp signal based on the output signal of the DLF and outputting it as a Frequency Modulated Continuous Wave (FMCW) signal; and an MMD that divides the chirp signal generated by the DCO, and modulates a
  • FMPG Frequency Modulation Profile Generator
  • the FMCW frequency modulator may further include a Delta-Sigma Modulator (DSM) for delta-sigma-modulating a chirp signal generated from the FMPG and applied to the MMD.
  • DSM Delta-Sigma Modulator
  • the AGC may adjust the gain of the chirp signal generated from the FMPG based on the difference signal output from the chirp signal generated from the FMPG and the BBPFD.
  • the AGC includes: a first accumulator for accumulating the difference signal output from the BBPFD; a first switch for outputting a first accumulated value of the first accumulator in a section in which the division ratio is positive; a second switch for outputting a second accumulated value of the first accumulator in a section in which the division ratio is negative; a subtractor for calculating a difference between the second accumulated value output by the second switch and the first accumulated value output by the first switch; a determiner that determines the sign of the subtractor; When the sign determined by the determiner is +, a second accumulator for reducing the gain; may be included.
  • the second accumulator may increase the gain if the sign determined by the determiner is -. Gain adjustment may be made for each period of the division ratio.
  • the DLF is accumulated by applying a first weight to the difference signal output from the BBPFD, and during accumulation, the chirp signal generated from the FMPG whose gain is adjusted by the AGC may be accumulated together.
  • the DLF may be further accumulated by applying a second weight to the difference signal output from the BBPFD.
  • the FMCW frequency modulator further includes a compensator for linearly compensating the output signal of the DLF, and the DCO generates a chirp signal based on the signal compensated by the compensator and converts it to an FMCW signal. can be printed out.
  • the FMCW frequency modulation method the FMPG, generating a chirp signal to apply to the DLF and the MMD; adjusting, by the AGC, a gain of the chirp signal generated in the FMPG and applied to the DLF; calculating, by the BBPFD, a difference between the reference signal and the output signal of the MMD; A DLF accumulating the difference signal output from the BBPFD, using a chirp signal whose gain is adjusted by the AGC when accumulating; DCO, based on the output signal of the DLF, generating a chirp signal and outputting it as an FMCW signal;
  • the MMD divides the chirp signal generated by the DCO, and modulates a division ratio based on the chirp signal generated by the FMPG.
  • the FMCW frequency modulator, BBPFD for calculating the difference between the reference signal and the output signal of the MMD; DLF for accumulating the difference signal output from the BBPFD; a compensator for linearly compensating the output signal of the DLF; DCO for generating a chirp signal based on the signal compensated by the compensator and outputting it as an FMCW signal; MMD that divides the chirp signal generated by the DCO; includes.
  • FMCW frequency modulation method BBPFD, calculating the difference between the reference signal and the output signal of the MMD; accumulating, by the DLF, a difference signal output from the BBPFD; Compensating, linearly compensating the output signal of the DLF; DCO, based on the signal compensated by the compensator, generating a chirp signal and outputting it as an FMCW signal; and MMD, dispensing the chirp signal generated by the DCO.
  • FIG. 1 Examples of FMCW radar transmission and reception signals.
  • Fig. 4 The overall structural diagram of the high-speed chirped, wideband FMCW frequency modulator.
  • Phase-locked loop output waveform (a) high gain (b) low gain (c) coincidence as a function of division ratio of direct modulation path gain to correlation to modulation path gain.
  • the target detection technology using the FMCW radar signal is a technology that extracts information (movement, distance, etc.) from an object by using the time and phase difference between the transmitted FMCW radar signal and the radar signal that is reflected after the signal collides with the object.
  • the FMCW signal frequency-modulated signals in the form of sine wave, sawtooth wave, triangle wave, and square wave are mainly used.
  • the triangle wave and the sawtooth wave are most widely used among them, and when the radar signal of the sawtooth wave is applied, the phase difference between the transmitted radar signal and the received radar signal is shown in FIG. 1 .
  • the actual frequency modulation time is called chirp time (t CHIRP )
  • the amount of the modulated frequency is called modulation bandwidth (BW CHIRP ).
  • the frequency difference between the transmitted radar signal and the received radar signal at the same time is referred to as an intermediate frequency (IF) frequency.
  • IF intermediate frequency
  • the IF frequency is expressed as the following equation when the distance between the radar source and the object is R and the speed of the object is v.
  • the down-converted IF frequency signal passes through the bandpass filter and is transmitted to the radar signal processing unit, but as the chirp time increases, the IF frequency decreases, so that the high-pass corner of the bandpass filter must be lowered. Therefore, if the chirp time is reduced as shown in FIG. 2, the high-pass corner of the bandpass filter can be relaxed, which brings a systemic gain.
  • the IF signal can have a high signal-to-noise ratio (SNR) without being buried by the oscillator flicker noise, which has the advantage of increasing the SNR of the entire radar system.
  • SNR signal-to-noise ratio
  • the modulation bandwidth increases for the same chirp time, it becomes a relatively high-speed chirp, so it is necessary to implement a high-speed chirp and wideband FMCW frequency modulator for high-resolution radar object detection technology.
  • FIG. 4 The overall structure of a high-speed chirped, wideband FMCW modulator according to an embodiment of the present invention is shown in FIG. 4 .
  • an FMCW modulator was constructed using a multi-modulation-type phase synchronization loop.
  • a high-speed chirped, wideband FMCW frequency modulator according to an embodiment of the present invention, as shown in FIG. 4, BBPFD (Bang-Bang Phase-Frequency Detector) 105, DLF (Digital Loop Filter) 110, DSM ( Delta-Sigma Modulator(115), DEC(row & column DECoder)(120), DCO(Digitally-Controlled Oscillator)(125), AGC(Automatic Gain Controller)(130), Multiplier(135), FMPG(Frequency Modulation) Profile Generator) 140 , DSM 145 , and MMD (Multi-Modulus Divider) 150 are included.
  • BBPFD Beang-Bang Phase-Frequency Detector
  • DLF Digital Loop Filter
  • DSM Delta-Sigma Modulator(115), DEC(row & column DECoder)(120), DCO(Digitally-Controlled Oscillator)(125), AGC(Automatic Gain Controller)(130), Multiplier(135), FMPG
  • the high-speed chirp, wideband FMCW frequency modulator is a phase-locked loop composed of all-digital except for blocks such as the BBPFD 105, the DCO 125, and the MMD 150, and a frequency modulation path It consists of a 'Direct DCO Modulation Path' that can be said to be 'Direct DCO Modulation Path' and a 'Division Ratio Modulation Path' that can be called a phase modulation path.
  • the FMPG 140 generates a chirp signal and applies it to the DLF 110 through the Multiplier 135 and to the MMD 150 through the DSM 145 .
  • the chirp signal generated by the FMPG 140 by the DSM 145 is delta-sigma modulated and applied to the MMD 150 .
  • the AGC 130 adjusts the gain of the chirp signal generated by the FMPG 140 and applied to the DLF. To this end, the AGC 130 generates a gain for adjusting the gain of the chirp signal generated by the FMPG 140 based on the difference signal output from the chirp signal generated from the FMPG 140 and the BBPFD 105 . . A detailed configuration of the AGC 130 will be described later in detail.
  • the multiplier 135 multiplies the chirp signal generated by the FMPG 140 and the gain generated by the AGC 130 , and applies the gain-adjusted chirp signal to the DLF 110 .
  • the BBPFD 105 calculates a difference (error) between the reference signal and the output signal of the MMD 150 and outputs it to the DLF 110 .
  • the DLF 110 accumulates the difference signal output from the BBPFD 150 , and uses a chirp signal whose gain is adjusted by the AGC 130 during accumulation. Specifically, the DLF 110 applies a weight ⁇ to the difference signal output from the BBPFD 105 and accumulates it, but during accumulation, the chirp signal whose gain is adjusted by the AGC 130 is accumulated together. In addition, the DLF 110 further accumulates a value obtained by applying a weight ⁇ to the difference signal output from the BBPFD 105 to the accumulation result.
  • the DSM 115 modulates the output signal of the DLF 110 by delta-sigma and transmits it to the DCO 125 through the DEC 120 .
  • the DCO 125 generates a chirp signal based on the output signal of the DLF 110 and outputs it as an FMCW signal.
  • the MMD 150 divides the chirp signal generated by the DCO 125 . At this time, the MMD 150 modulates the division ratio based on the chirp signal generated by the FMPG 140 .
  • the frequency modulation path has a high-pass characteristic and the phase modulation path has a low-pass characteristic. Only then can the correlation between jitter be broken.
  • an embodiment of the present invention proposes a new real-time adaptive gain control method.
  • Fig. 5 shows the divided clock frequency and phase error according to the gain mismatch, and the BBPFD (105).
  • the frequency deviation of the output clock is greater than the ideal FMCW frequency deviation. Accordingly, the frequency waveform of the divided clock is also a triangular wave, and its average value is the same as the frequency of the reference clock.
  • the phase error detected at the input of the BBPFD 105 is obtained as a value obtained by integrating the frequency difference between the reference clock and the divided clock.
  • the output of the BBPFD 105 alternates between +1 and -1 periodically depending on whether the frequency waveform slope of the divided clock is positive or negative. Therefore, the sign of the output of the BBPFD 105 is changed when the slope value is changed.
  • the output of the BBPFD 105 changes earlier according to the Bang-Bang phase/frequency tracking characteristics.
  • the proportional gain of the DLF 110 is sufficiently larger than the integral gain, the phase synchronization loop tracks the input phase error in the shape of a triangular wave, and at the point where the Bang-Bang tracking phase meets the phase error in the open loop, the BBPFD (105) ) output is changed. If the direct modulation gain is smaller than the division ratio modulation gain, the opposite waveform is shown as shown in FIG. 5(b).
  • the output clock has an ideal FMCW frequency waveform and frequency deviation is minimized.
  • FIGS. 6 and 7 A block diagram of the AGC 130 for matching the gains of the two paths in real time and a timing diagram thereof are shown in FIGS. 6 and 7 .
  • the AGC 130 includes an accumulator #1 (131), a switch #1 (132), a switch #2 (133), a subtractor 134, a determiner 135, and an accumulator #2 (136). ) is included.
  • the output of the BBPFD 105 is accumulated during a half cycle of the mclk clock. This gives the average phase error over that period.
  • the accumulated value is sampled and reset.
  • sum_n is the accumulated value when mclk is low
  • sum_p is the accumulated value when mclk is high. If the subtraction value of these two values is positive, the direct modulation gain is small, and if it is negative, the direct modulation gain is large.
  • the accumulator #1 (131) accumulates the difference signal output from the BBPFD (105).
  • the switch #1(132) outputs the accumulated value #1 of the accumulator #1(131) in the section where the division ratio is positive, and the switch #2(133) accumulates the accumulator #1(131) in the section where the division ratio is negative. Print the value #2.
  • the subtractor 134 calculates a difference between the accumulated value #2 output by the switch #2 (133) and the accumulated value #1 output by the switch #1 (132).
  • the determiner 135 determines the sign of the subtractor 134 .
  • Accumulator #2 decreases the gain if the sign determined by the determiner 135 is +, and increases the gain if the sign determined by the determiner 135 is negative. Gain adjustment is made every cycle of the divide ratio.
  • the actual FMCW modulated waveform is not linear like an ideal sawtooth waveform but has a non-linear characteristic. This phenomenon is due to the nonlinearity of the DCO or DAC within the FMCW modulator.
  • the chirp signal is non-linear in this way, the IF frequency has different values in real time as shown in FIG. 8 . As a result, the accuracy of object detection is greatly reduced.
  • the nonlinearity compensation is in front of the Row & Column Decoder 120 to be applied to the DCO 125 after passing through the DLF 110 and the DSM 115.
  • it may be implemented in the form of a nonlinearity compensation (NC) mapping module 117 .
  • the NC (Nonlinearity Compensation) Mapping module 117 is a LUT type that receives a total of N-bit input codes and maps them to N-bit output codes.
  • LUT-based mapping divided into four sections is simply described as an example as shown in FIG. 10 .
  • the x-axis is the input code of mapping and the left y-axis is the output code. Both can have a value from 0 to a maximum of 2 N -1.
  • the right y-axis is a normalized value of the DCO output frequency according to the input code.
  • the ideal DCO line has a slope of 1. Assume that the approximated trend line is the same as S 1 ⁇ S 4 when modeling is performed by dividing the output frequency of the actual DCO according to the input code into four straight sections as shown in FIG. 10 . At this time, the O 1 , O 2 , O 3 codes are the quadrant values (the slope is If normalized to be 1, these are the DCO input code values when having I 1 , I 2 , I 3 ).
  • F min , F max , I 1 , I 2 , and I 3 are all values that can be obtained through actual DCO measurement, so O 1 , O 2 , O 3 can also be obtained, and normalized DCO frequency curves (S 1 ⁇ S 4 ) ), the slopes of S 1 , S 2 , S 3 , and S 4 can also be obtained.
  • the reciprocal values of the slope, W 1 , W 2 , W 3 , and W 4 can also be calculated.
  • the entire input code is divided into 4 equal sections so that the slope becomes W 1 , W 2 , W 3 , W 4 , so that Mapping functions (W 1 ⁇ W 4 ) can be obtained.
  • NC Mapping structure which is extended to a LUT having M sections, can be represented as shown in FIG. 11 .
  • the Frequency Measure block and Controller block can be implemented as digital IP within the DUT or can be configured with firmware or software outside the DUT.
  • the tradeoff correlation between the chirp bandwidth and the clock jitter of the FMCW frequency modulator is broken and the performance of both is improved by utilizing the digital phase synchronization loop of the multiple modulation method.
  • a new real-time adaptive gain control method is presented for gain matching between the phase modulation path and the frequency modulation path, which can be said to be the key to implementing a multi-modulation phase synchronization loop.

Abstract

A high-speed wideband FMCW frequency modulator and a nonlinearity compensation method thereof are provided. A FMCW frequency modulator according to an embodiment of the present invention comprises: an FMPG for generating a chirp signal and applying the chirp signal to a DLF and an MMD; an AGC for adjusting a gain of the chirp signal generated by the FMPG and applied to the DLF; a BBPFD for calculating a difference between a reference signal and an output signal of the MMD; a DLF for accumulating a difference signal output from the BBPFD, using the chirp signal, the gain of which is adjusted by the AGC, during accumulation; a DCO for generating a chirp signal on the basis of an output signal of the DLF, and outputting the chirp signal as an FMCW signal; and an MMD for dividing the chirp signal generated by the DCO, while modulating a division ratio on the basis of the chirp signal generated by the FMPG. Accordingly, the present invention can obtain good clock jitter performance while implementing high-speed chirp and wideband by utilizing a digital phase synchronization loop of a multi-modulation scheme in the frequency modulator.

Description

고속 광대역 FMCW 주파수 변조기 및 그 비선형성 보상 방법High-speed wideband FMCW frequency modulator and its nonlinearity compensation method
본 발명은 FMCW 주파수 변조기에 관한 것으로, 더욱 상세하게는 목표 객체의 특성(움직임, 상태 등)을 파악하기 위한 고속 첩, 광대역 FMCW 주파수 변조기, 변조기의 적응형 이득 제어와 비선형성 보상 및 초기 보정 방법에 관한 것이다.The present invention relates to a FMCW frequency modulator, and more particularly, a high-speed chirp for grasping characteristics (motion, state, etc.) of a target object, a wideband FMCW frequency modulator, adaptive gain control of the modulator, nonlinearity compensation, and initial correction method is about
최근 FMCW(Frequency Modulated Continuous Wave) 레이더 신호를 이용하여 표적을 실시간으로 탐지하고, 거리, 속도 등의 정보를 추출하는 방법에 대한 연구가 많이 진행되고 있다.Recently, many studies have been conducted on a method of detecting a target in real time using a frequency modulated continuous wave (FMCW) radar signal and extracting information such as distance and speed.
특히 고해상도의 표적 정보를 얻기 위해서는 펄스 폭이 매우 좁고 넓은 대역폭의 주파수 변조가 요구되는데, 기존에 많이 쓰였던 DDS(Direct Digital Synthesizer) 방식의 주파수 변조기는 위상 동기화 루프가 없기 때문에 고속의 선형적인 첩 신호를 생성하는 데 큰 어려움이 있다. 또한 추가적으로 고성능의 DAC(Digital-to-Analog-Converter)와 필터가 요구되므로 소모전력과 사이즈 측면에서 단점을 가지고 있다.In particular, in order to obtain high-resolution target information, frequency modulation with a very narrow pulse width and a wide bandwidth is required. Since the DDS (Direct Digital Synthesizer) type frequency modulator, which has been widely used in the past, does not have a phase synchronization loop, a high-speed, linear chirp signal is generated. There is great difficulty in creating it. In addition, since a high-performance DAC (Digital-to-Analog-Converter) and filter are required, it has disadvantages in terms of power consumption and size.
한편 위상 동기화 루프를 포함하는 주파수 변조기도 분주 비율 변조 방식을 활용할 경우 고속 첩, 광대역 FMCW 신호를 생성하기 위해서는 높은 대역폭이 필수적인데 내부 위상동기와 루프의 제한적인 대역폭으로 인하여 고속 첩이 어려우며 내부의 delta-sigma modulator의 양자화 잡음은 필터링이 잘 안 돼서 출력 클락의 지터 성능이 떨어진다는 단점이 있다. 뿐만 아니라 직접 VCO(Voltage Controlled Oscillator) 변조 방식의 주파수 변조기도 위상 동기화 루프의 대역폭은 낮아도 되지만 VCO 이득에 민감하여 PVT(Process-Voltage-Temperature) 변화에 취약하다는 단점이 있다.On the other hand, a frequency modulator including a phase-locked loop also requires a high bandwidth to generate a high-speed chirp and wideband FMCW signal when the division ratio modulation method is used. -Sigma modulator's quantization noise is not well filtered, so the jitter performance of the output clock is poor. In addition, the direct VCO (Voltage Controlled Oscillator) modulation type frequency modulator may have a low bandwidth of the phase synchronization loop, but is sensitive to the VCO gain and is vulnerable to PVT (Process-Voltage-Temperature) change.
또한 기존의 주파수 변조기들은 광대역 변조의 특성상 첩 성능이 DCO(Digitally Controlled Oscillator)나 DAC(Digital to Analog Converter)의 비선형성에 큰 영향을 받고 있다. 그 결과로 목표 객체 탐지의 정확도가 떨어지는 문제가 발생한다.In addition, the chirp performance of conventional frequency modulators is greatly affected by the nonlinearity of a Digitally Controlled Oscillator (DCO) or a Digital to Analog Converter (DAC) due to the characteristics of wideband modulation. As a result, there is a problem that the accuracy of target object detection is lowered.
따라서 고속 첩, 광대역 FMCW 주파수 변조기가 높은 선형성을 갖도록 구현하기 위해 새로운 방식의 비선형성 보상 기술들이 요구되고 있다.Therefore, in order to implement a high-speed chirped, wideband FMCW frequency modulator to have high linearity, new nonlinearity compensation techniques are required.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 다중 변조를 활용한 고속 첩, 광대역 FMCW 주파수 변조기 및 이 변조기의 적응형 이득 제어와 비선형성 보상 및 초기 보정 방법을 제공함에 있다.The present invention has been devised to solve the above problems, and an object of the present invention is to provide a high-speed chirp, wideband FMCW frequency modulator using multiple modulation, and an adaptive gain control, nonlinearity compensation and initial correction method of the modulator. is in providing.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른, FMCW 주파수 변조기는, 첩 신호를 생성하여 DLF(Digital Loop Filter)와 MMD(Multi-Modulus Divider)로 인가하는 FMPG(Frequency Modulation Profile Generator); FMPG에서 생성되어 DLF로 인가되는 첩 신호의 이득을 조정하는 AGC(Automatic Gain Controller); 기준 신호와 MMD의 출력 신호 간의 차를 산출하는 BBPFD(Bang-Bang Phase-Frequency Detector); BBPFD에서 출력되는 차 신호를 누산하되, 누산시 AGC에 의해 이득이 조정된 첩 신호를 이용하는 DLF; DLF의 출력 신호를 기초로, 첩 신호를 생성하여 FMCW(Frequency Modulated Continuous Wave) 신호로 출력하는 DCO(Digitally-Controlled Oscillator); DCO에서 생성된 첩 신호를 분주하되, FMPG에서 생성된 첩 신호를 기초로 분주 비율을 변조하는 MMD;를 포함한다.According to an embodiment of the present invention for achieving the above object, the FMCW frequency modulator includes: a Frequency Modulation Profile Generator (FMPG) for generating a chirp signal and applying it to a Digital Loop Filter (DLF) and a Multi-Modulus Divider (MMD); AGC (Automatic Gain Controller) for adjusting the gain of the chirp signal generated in the FMPG and applied to the DLF; BBPFD (Bang-Bang Phase-Frequency Detector) for calculating the difference between the reference signal and the output signal of the MMD; DLF that accumulates the difference signal output from the BBPFD, and uses a chirp signal whose gain is adjusted by the AGC when accumulating; Digitally-Controlled Oscillator (DCO) for generating a chirp signal based on the output signal of the DLF and outputting it as a Frequency Modulated Continuous Wave (FMCW) signal; and an MMD that divides the chirp signal generated by the DCO, and modulates a division ratio based on the chirp signal generated by the FMPG.
본 발명의 실시예에 따른 FMCW 주파수 변조기는, FMPG에서 생성되어 MMD로 인가되는 첩 신호를 델타-시그마 변조하는 DSM(Delta-Sigma Modulator);을 더 포함할 수 있다.The FMCW frequency modulator according to an embodiment of the present invention may further include a Delta-Sigma Modulator (DSM) for delta-sigma-modulating a chirp signal generated from the FMPG and applied to the MMD.
AGC는, FMPG에서 생성되는 첩 신호와 BBPFD에서 출력되는 차 신호를 기초로, FMPG에서 생성되는 첩 신호의 이득을 조정할 수 있다.The AGC may adjust the gain of the chirp signal generated from the FMPG based on the difference signal output from the chirp signal generated from the FMPG and the BBPFD.
AGC는, BBPFD에서 출력되는 차 신호를 누산하는 제1 누산기; 분주 비율이 양수인 구간에서 제1 누산기의 제1 누적 값을 출력하는 제1 스위치; 분주 비율이 음수인 구간에서 제1 누산기의 제2 누적 값을 출력하는 제2 스위치; 제2 스위치에 의해 출력되는 제2 누적 값과 제1 스위치에 의해 출력되는 제1 누적 값의 차를 계산하는 감산기; 감산기의 부호를 판정하는 판정기; 판정기에서 판정된 부호가 + 이면, 게인을 감소시키는 제2 누산기;를 포함할 수 있다.The AGC includes: a first accumulator for accumulating the difference signal output from the BBPFD; a first switch for outputting a first accumulated value of the first accumulator in a section in which the division ratio is positive; a second switch for outputting a second accumulated value of the first accumulator in a section in which the division ratio is negative; a subtractor for calculating a difference between the second accumulated value output by the second switch and the first accumulated value output by the first switch; a determiner that determines the sign of the subtractor; When the sign determined by the determiner is +, a second accumulator for reducing the gain; may be included.
제2 누산기는, 판정기에서 판정된 부호가 - 이면, 게인을 증가시킬 수 있다. 분주 비율의 주기 마다 게인 조정이 이루어질 수 있다.The second accumulator may increase the gain if the sign determined by the determiner is -. Gain adjustment may be made for each period of the division ratio.
DLF는, BBPFD에서 출력되는 차 신호에 제1 가중치를 적용하여 누산하되, 누산시 AGC에 의해 이득이 조정된 FMPG에서 생성되는 첩 신호를 함께 누산할 수 있다.The DLF is accumulated by applying a first weight to the difference signal output from the BBPFD, and during accumulation, the chirp signal generated from the FMPG whose gain is adjusted by the AGC may be accumulated together.
DLF는, BBPFD에서 출력되는 차 신호에 제2 가중치를 적용하여 더 누산할 수 있다.The DLF may be further accumulated by applying a second weight to the difference signal output from the BBPFD.
본 발명의 실시예에 따른 FMCW 주파수 변조기는, DLF의 출력 신호를 선형으로 보상하는 보상부;를 더 포함하고, DCO는, 보상부에서 보상된 신호를 기초로, 첩 신호를 생성하여 FMCW 신호로 출력할 수 있다.The FMCW frequency modulator according to an embodiment of the present invention further includes a compensator for linearly compensating the output signal of the DLF, and the DCO generates a chirp signal based on the signal compensated by the compensator and converts it to an FMCW signal. can be printed out.
한편, 본 발명의 다른 실시예에 따른, FMCW 주파수 변조방법은, FMPG가, 첩 신호를 생성하여 DLF와 MMD로 인가하는 단계; AGC가 FMPG에서 생성되어 DLF로 인가되는 첩 신호의 이득을 조정하는 단계; BBPFD가 기준 신호와 MMD의 출력 신호 간의 차를 산출하는 단계; DLF가, BBPFD에서 출력되는 차 신호를 누산하되, 누산시 AGC에 의해 이득이 조정된 첩 신호를 이용하는 단계; DCO가, DLF의 출력 신호를 기초로, 첩 신호를 생성하여 FMCW 신호로 출력하는 단계; MMD가, DCO에서 생성된 첩 신호를 분주하되, FMPG에서 생성된 첩 신호를 기초로 분주 비율을 변조하는 단계;를 포함한다.On the other hand, according to another embodiment of the present invention, the FMCW frequency modulation method, the FMPG, generating a chirp signal to apply to the DLF and the MMD; adjusting, by the AGC, a gain of the chirp signal generated in the FMPG and applied to the DLF; calculating, by the BBPFD, a difference between the reference signal and the output signal of the MMD; A DLF accumulating the difference signal output from the BBPFD, using a chirp signal whose gain is adjusted by the AGC when accumulating; DCO, based on the output signal of the DLF, generating a chirp signal and outputting it as an FMCW signal; The MMD divides the chirp signal generated by the DCO, and modulates a division ratio based on the chirp signal generated by the FMPG.
한편, 본 발명의 다른 실시예에 따른, FMCW 주파수 변조기는, 기준 신호와 MMD의 출력 신호 간의 차를 산출하는 BBPFD; BBPFD에서 출력되는 차 신호를 누산하는 DLF; DLF의 출력 신호를 선형으로 보상하는 보상부; 보상부에서 보상된 신호를 기초로, 첩 신호를 생성하여 FMCW 신호로 출력하는 DCO; DCO에서 생성된 첩 신호를 분주하는 MMD;를 포함한다.On the other hand, according to another embodiment of the present invention, the FMCW frequency modulator, BBPFD for calculating the difference between the reference signal and the output signal of the MMD; DLF for accumulating the difference signal output from the BBPFD; a compensator for linearly compensating the output signal of the DLF; DCO for generating a chirp signal based on the signal compensated by the compensator and outputting it as an FMCW signal; MMD that divides the chirp signal generated by the DCO; includes.
한편, 본 발명의 다른 실시예에 따른, FMCW 주파수 변조방법은, BBPFD가, 기준 신호와 MMD의 출력 신호 간의 차를 산출하는 단계; DLF가, BBPFD에서 출력되는 차 신호를 누산하는 단계; 보상부가, DLF의 출력 신호를 선형으로 보상하는 단계; DCO가, 보상부에서 보상된 신호를 기초로, 첩 신호를 생성하여 FMCW 신호로 출력하는 단계; MMD가, DCO에서 생성된 첩 신호를 분주하는 단계;를 포함한다.On the other hand, according to another embodiment of the present invention, FMCW frequency modulation method, BBPFD, calculating the difference between the reference signal and the output signal of the MMD; accumulating, by the DLF, a difference signal output from the BBPFD; Compensating, linearly compensating the output signal of the DLF; DCO, based on the signal compensated by the compensator, generating a chirp signal and outputting it as an FMCW signal; and MMD, dispensing the chirp signal generated by the DCO.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, 다중 변조 방식의 디지털 위상 동기화 루프를 주파수 변조기에 활용함으로써 고속 첩, 광대역을 구현하면서도 좋은 클락 지터 성능을 가질 수 있게 된다.As described above, according to the embodiments of the present invention, it is possible to have good clock jitter performance while realizing high-speed chirp and wide bandwidth by using a digital phase-locking loop of a multi-modulation method for a frequency modulator.
또한, 본 발명의 실시예들에 따르면, 다중 변조 방식에서 실시간 적응형 이득 제어 방법을 접목시켜, 두 변조 경로 간의 이득 매칭 성능을 높일 수 있으므로 고선형성의 첩 신호 발생이 가능해진다.In addition, according to embodiments of the present invention, it is possible to increase the gain matching performance between two modulation paths by grafting the real-time adaptive gain control method in the multi-modulation method, so that it is possible to generate a chirp signal with high linearity.
나아가, 본 발명의 실시예들에 따르면, DCO나 DAC의 비선형성에 의한 성능 저하를 보상 Mapping (Nbit-to-Nbit)을 통해 선형화함으써 고선형성을 가진 첩 신호 발생이 가능하고, M개의 구간으로 나눈 LUT(Look-up Table) 기반의 디지털 구현으로 Mapping 구조가 간단하고 초기 보정 절차도 비교적 간단하게 진행할 수 있게 된다.Furthermore, according to embodiments of the present invention, it is possible to generate a chirp signal with high linearity by linearizing performance degradation due to nonlinearity of DCO or DAC through compensation mapping (Nbit-to-Nbit), With a digital implementation based on a divided LUT (Look-up Table), the mapping structure is simple and the initial calibration procedure is relatively simple.
도 1. FMCW 레이다 전송파와 수신파 신호 예시.Figure 1. Examples of FMCW radar transmission and reception signals.
도 2. 저속 첩에 비해 고속 첩이 가능할 때 완화된 밴드패스 대역폭 예시Figure 2. Example of relaxed bandpass bandwidth when high-speed chirp is possible compared to low-speed chirp
도 3. 첩 속도에 따른 IF 주파수와 플리커 노이즈의 관계Fig. 3. Relationship between IF frequency and flicker noise according to chirp speed
도 4. 고속 첩, 광대역 FMCW 주파수 변조기의 전체 구조도.Fig. 4. The overall structural diagram of the high-speed chirped, wideband FMCW frequency modulator.
도 5. 직접 변조 경로 이득의 분주 비율 변조 경로 이득에 대한 상관관계에 따른 위상 동기화 루프 출력 파형 (a) 고이득 (b) 저이득 (c) 일치.Figure 5. Phase-locked loop output waveform (a) high gain (b) low gain (c) coincidence as a function of division ratio of direct modulation path gain to correlation to modulation path gain.
도 6. AGC의 블록 다이어그램Fig. 6. Block diagram of AGC
도 7. AGC의 타이밍 다이어그램Fig. 7. Timing diagram of AGC
도 8. FMCW 레이다 전송파/수신파 신호의 비선형성이 미치는 효과Fig. 8. Effect of nonlinearity of FMCW radar transmitted/received signal
도 9. FMCW 변조기 내의 Nbit-to-Nbit NC Mapping 예시Figure 9. Example of Nbit-to-Nbit NC Mapping in FMCW modulator
도 10. 4개의 구간으로 나눈 LUT 기반 NC Mapping (Nbit-to-Nbit) 예시Figure 10. Example of LUT-based NC Mapping (Nbit-to-Nbit) divided into 4 sections
도 11. M개의 구간으로 확장된 LUT 기반 NC Mapping (Nbit-to-Nbit) 11. LUT-based NC Mapping (Nbit-to-Nbit) extended to M sections
도 12. N-bit NC Mapping의 M개의 계수 초기 보정 방법12. Initial correction method of M coefficients of N-bit NC Mapping
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the drawings.
FMCW 레이더 신호를 이용한 표적 탐지 기술은 전송하는 FMCW 레이더 신호와 이 신호가 물체에 부딪힌 후에 반사되어 들어오는 레이더 신호 간의 시간 및 위상 차이를 이용하여 물체로부터 정보(움직임, 거리 등)를 추출하는 기술이다.The target detection technology using the FMCW radar signal is a technology that extracts information (movement, distance, etc.) from an object by using the time and phase difference between the transmitted FMCW radar signal and the radar signal that is reflected after the signal collides with the object.
FMCW 신호로는 주로 정현파(Sine wave), 톱니파(Sawtooth wave), 삼각파(Triangle wave), 구형파(Square wave) 형태로 주파수 변조된 신호들이 쓰인다. 특히 이 중에서도 삼각파와 톱니파가 가장 널리 쓰이고 있으며 톱니파의 레이더 신호를 인가하였을 때 전송된 레이더 신호와 수신된 레이더 신호의 위상 차이는 도 1과 같다. 이 때 실제 주파수 변조가 일어나는 시간을 첩 시간(tCHIRP)이라고 하고 변조되는 주파수 양을 변조 대역폭(BWCHIRP)이라고 한다. 그리고 전송된 레이더 신호와 수신된 레이더 신호의 같은 시간에서의 주파수 차이를 IF(Intermediate Frequency) 주파수라고 한다. As the FMCW signal, frequency-modulated signals in the form of sine wave, sawtooth wave, triangle wave, and square wave are mainly used. In particular, the triangle wave and the sawtooth wave are most widely used among them, and when the radar signal of the sawtooth wave is applied, the phase difference between the transmitted radar signal and the received radar signal is shown in FIG. 1 . In this case, the actual frequency modulation time is called chirp time (t CHIRP ), and the amount of the modulated frequency is called modulation bandwidth (BW CHIRP ). In addition, the frequency difference between the transmitted radar signal and the received radar signal at the same time is referred to as an intermediate frequency (IF) frequency.
이 때 IF 주파수는 레이더 소스와 물체 사이의 거리가 R, 물체의 속력을 v라고 할 때 다음의 식과 같이 표현된다.At this time, the IF frequency is expressed as the following equation when the distance between the radar source and the object is R and the speed of the object is v.
타겟 IF 주파수, fIF(t)Target IF frequency, f IF (t)
Figure PCTKR2020016894-appb-I000001
Figure PCTKR2020016894-appb-I000001
한편 이렇게 다운 컨버전 된 IF 주파수 신호는 밴드패스 필터를 통과하여 레이더 신호 처리부에 전달되는데 첩 시간이 길수록 IF 주파수가 낮아져서 밴드패스 필터의 하이패스 코너가 낮아져야 한다는 문제점이 있다. 따라서 도 2와 같이 첩 시간을 줄이면 밴드패스 필터의 하이패스 코너를 완화시켜 줄 수 있으며 이는 시스템적인 이득을 가져온다. On the other hand, the down-converted IF frequency signal passes through the bandpass filter and is transmitted to the radar signal processing unit, but as the chirp time increases, the IF frequency decreases, so that the high-pass corner of the bandpass filter must be lowered. Therefore, if the chirp time is reduced as shown in FIG. 2, the high-pass corner of the bandpass filter can be relaxed, which brings a systemic gain.
또한 고속 첩이 가능하면 IF 주파수가 높기 때문에 도 3과 같이 IF 신호가 오실레이터 플리커 노이즈에 묻히지 않고 높은 신호대잡음비(SNR)을 가질 수 있어서 전체 레이더 시스템의 SNR을 높일 수 있다는 장점이 있다. 같은 첩 시간에 대하여 변조 대역폭이 커지면 상대적으로 고속 첩이 되기 때문에 이렇게 고속 첩, 광대역 FMCW 주파수 변조기를 구현하는 것은 고해상도 레이더 물체 탐지 기술에 필요하다고 할 수 있다. In addition, if high-speed chirp is possible, since the IF frequency is high, as shown in FIG. 3, the IF signal can have a high signal-to-noise ratio (SNR) without being buried by the oscillator flicker noise, which has the advantage of increasing the SNR of the entire radar system. As the modulation bandwidth increases for the same chirp time, it becomes a relatively high-speed chirp, so it is necessary to implement a high-speed chirp and wideband FMCW frequency modulator for high-resolution radar object detection technology.
본 발명의 일 실시예에 따른 고속 첩, 광대역 FMCW 변조기의 전체 구조는 도 4와 같다. 첩 대역폭과 클락 지터간의 트레이드오프 상관관계를 깨고 둘 모두의 성능을 개선하기 위해 다중 변조 방식의 위상 동기화 루프를 활용하여 FMCW 변조기를 구성하였다.The overall structure of a high-speed chirped, wideband FMCW modulator according to an embodiment of the present invention is shown in FIG. 4 . In order to break the trade-off correlation between chirp bandwidth and clock jitter and to improve the performance of both, an FMCW modulator was constructed using a multi-modulation-type phase synchronization loop.
본 발명의 실시예에 따른 고속 첩, 광대역 FMCW 주파수 변조기는, 도 4에 도시된 바와 같이, BBPFD(Bang-Bang Phase-Frequency Detector)(105), DLF(Digital Loop Filter)(110), DSM(Delta-Sigma Modulator)(115), DEC(row & column DECoder)(120), DCO(Digitally-Controlled Oscillator)(125), AGC(Automatic Gain Controller)(130), Multiplier(135), FMPG(Frequency Modulation Profile Generator)(140), DSM(145), MMD(Multi-Modulus Divider)(150)를 포함하여 구성된다.A high-speed chirped, wideband FMCW frequency modulator according to an embodiment of the present invention, as shown in FIG. 4, BBPFD (Bang-Bang Phase-Frequency Detector) 105, DLF (Digital Loop Filter) 110, DSM ( Delta-Sigma Modulator(115), DEC(row & column DECoder)(120), DCO(Digitally-Controlled Oscillator)(125), AGC(Automatic Gain Controller)(130), Multiplier(135), FMPG(Frequency Modulation) Profile Generator) 140 , DSM 145 , and MMD (Multi-Modulus Divider) 150 are included.
본 발명의 실시예에 따른 고속 첩, 광대역 FMCW 주파수 변조기는, BBPFD(105), DCO(125), MMD(150) 등의 블록을 제외하고는 올-디지털로 구성된 위상 동기화 루프이며, 주파수 변조 경로라고 할 수 있는 '직접 DCO 변조 경로(Direct DCO Modulation Path)'와 위상 변조 경로라고 할 수 있는 '분주 비율 변조 경로(Division Ratio Modulation Path)'로 이루어된다. The high-speed chirp, wideband FMCW frequency modulator according to an embodiment of the present invention is a phase-locked loop composed of all-digital except for blocks such as the BBPFD 105, the DCO 125, and the MMD 150, and a frequency modulation path It consists of a 'Direct DCO Modulation Path' that can be said to be 'Direct DCO Modulation Path' and a 'Division Ratio Modulation Path' that can be called a phase modulation path.
FMPG(140)는 첩 신호를 생성하여, Multiplier(135)를 통해 DLF(110)로 인가하고, DSM(145)을 통해 MMD(150)로 인가한다. DSM(145)에 의해 FMPG(140)에 의해 생성된 첩 신호는 델타-시그마 변조되어 MMD(150)로 인가된다.The FMPG 140 generates a chirp signal and applies it to the DLF 110 through the Multiplier 135 and to the MMD 150 through the DSM 145 . The chirp signal generated by the FMPG 140 by the DSM 145 is delta-sigma modulated and applied to the MMD 150 .
AGC(130)는 FMPG(140)에서 생성되어 DLF로 인가되는 첩 신호의 이득을 조정한다. 이를 위해, AGC(130)는 FMPG(140)에서 생성되는 첩 신호와 BBPFD(105)에서 출력되는 차 신호를 기초로, FMPG(140)에서 생성되는 첩 신호의 이득을 조정하기 위한 게인을 생성한다. AGC(130)의 세부 구성에 대해서는 상세히 후술한다.The AGC 130 adjusts the gain of the chirp signal generated by the FMPG 140 and applied to the DLF. To this end, the AGC 130 generates a gain for adjusting the gain of the chirp signal generated by the FMPG 140 based on the difference signal output from the chirp signal generated from the FMPG 140 and the BBPFD 105 . . A detailed configuration of the AGC 130 will be described later in detail.
Multiplier(135)는 FMPG(140)에서 생성된 첩 신호와 AGC(130)에 의해 생성된 게인을 곱하여, 게인이 조정된 첩 신호를 DLF(110)로 인가한다.The multiplier 135 multiplies the chirp signal generated by the FMPG 140 and the gain generated by the AGC 130 , and applies the gain-adjusted chirp signal to the DLF 110 .
BBPFD(105)는 기준 신호와 MMD(150)의 출력 신호 간의 차(error)를 산출하여, DLF(110)로 출력한다.The BBPFD 105 calculates a difference (error) between the reference signal and the output signal of the MMD 150 and outputs it to the DLF 110 .
DLF(110)는 BBPFD(150)에서 출력되는 차 신호를 누산하되, 누산시 AGC(130)에 의해 이득이 조정된 첩 신호를 이용한다. 구체적으로, DLF(110)는 BBPFD(105)에서 출력되는 차 신호에 가중치 α를 적용하여 누산하되, 누산시 AGC(130)에 의해 이득이 조정된 첩 신호를 함께 누산한다. 또한, DLF(110)는 누산 결과에 BBPFD(105)에서 출력되는 차 신호에 가중치 β를 적용한 값을 더 누산한다.The DLF 110 accumulates the difference signal output from the BBPFD 150 , and uses a chirp signal whose gain is adjusted by the AGC 130 during accumulation. Specifically, the DLF 110 applies a weight α to the difference signal output from the BBPFD 105 and accumulates it, but during accumulation, the chirp signal whose gain is adjusted by the AGC 130 is accumulated together. In addition, the DLF 110 further accumulates a value obtained by applying a weight β to the difference signal output from the BBPFD 105 to the accumulation result.
DSM(115)은 DLF(110)의 출력 신호를 델타-시그마 변조하여, DEC(120)를 통해 DCO(125)로 전달한다. DCO(125)는 DLF(110)의 출력 신호를 기초로, 첩 신호를 생성하여 FMCW 신호로 출력한다.The DSM 115 modulates the output signal of the DLF 110 by delta-sigma and transmits it to the DCO 125 through the DEC 120 . The DCO 125 generates a chirp signal based on the output signal of the DLF 110 and outputs it as an FMCW signal.
MMD(150)는 DCO(125)에서 생성된 첩 신호를 분주한다. 이때, MMD(150)는 FMPG(140)에서 생성된 첩 신호를 기초로 분주 비율을 변조한다.The MMD 150 divides the chirp signal generated by the DCO 125 . At this time, the MMD 150 modulates the division ratio based on the chirp signal generated by the FMPG 140 .
다중 변조 방식의 위상 동기화 루프는 최적화된 동작을 위해서 두 변조 경로 간의 이득 매칭과 지연 매칭이 매우 중요하다. FMPG(140)에서 만들어진 삼각파 혹은 톱니파 첩 신호에 대하여 주파수 변조 경로는 하이패스 특성을 갖고 위상 변조 경로는 로우패스 특성을 갖기 때문에 두 경로간의 매칭이 잘 맞아야만 올패스 특성을 갖게 되어 변조 대역폭과 클락 지터간의 상관관계를 비로소 깨트릴 수 있다.In the multi-modulation phase synchronization loop, gain matching and delay matching between two modulation paths are very important for an optimized operation. With respect to the triangular or sawtooth chirp signal generated by the FMPG 140, the frequency modulation path has a high-pass characteristic and the phase modulation path has a low-pass characteristic. Only then can the correlation between jitter be broken.
일반적으로 디지털 루프를 구성하였을 때 두 경로 간의 지연 불일치는 크지 않고 그에 따른 영향도 미미하다. 반면 이득 불일치는 큰 부작용을 낳을 수 있기 때문에 본 발명의 실시예에서는 새로운 실시간 적응형 이득 제어 방법을 제시한다.In general, when the digital loop is configured, the delay mismatch between the two paths is not large and the effect thereof is insignificant. On the other hand, since the gain mismatch can cause a large side effect, an embodiment of the present invention proposes a new real-time adaptive gain control method.
이득 불일치에 따른 분주 클락 주파수와 위상 에러, BBPFD(105) 등을 그려보면 도 5와 같다.Fig. 5 shows the divided clock frequency and phase error according to the gain mismatch, and the BBPFD (105).
도 5(a)처럼 직접 변조 경로의 이득이 분주 비율 변조 경로의 이득에 비해 클 경우에 출력 클락의 주파수 편차는 이상적인 FMCW 주파수 편차보다 크다. 이에 따라 분주 클락의 주파수 파형도 삼각파이며 그 평균값은 레퍼런스 클락의 주파수와 같다. 이 때 BBPFD(105)의 입력에서 검출되는 위상 에러는 레퍼런스 클락과 분주 클락의 주파수 차이를 적분한 값으로 얻어진다.As shown in FIG. 5( a ), when the gain of the direct modulation path is larger than the gain of the division ratio modulation path, the frequency deviation of the output clock is greater than the ideal FMCW frequency deviation. Accordingly, the frequency waveform of the divided clock is also a triangular wave, and its average value is the same as the frequency of the reference clock. At this time, the phase error detected at the input of the BBPFD 105 is obtained as a value obtained by integrating the frequency difference between the reference clock and the divided clock.
오픈 루프 동작에서는 BBPFD(105)의 출력은 분주 클락의 주파수 파형 기울기가 양수이냐 음수이냐에 따라 +1과 -1이 주기적으로 번갈아 가며 나온다. 따라서 BBPFD(105) 출력의 부호는 기울기 값이 바뀔 때 함께 바뀐다.In the open loop operation, the output of the BBPFD 105 alternates between +1 and -1 periodically depending on whether the frequency waveform slope of the divided clock is positive or negative. Therefore, the sign of the output of the BBPFD 105 is changed when the slope value is changed.
한편 클로스드 루프 동작이 되면 Bang-Bang 위상/주파수 트랙킹 특성에 따라 BBPFD(105)의 출력이 좀 더 일찍 바뀐다. 일반적으로 DLF(110)의 비례 이득인 가 적분 이득인 보다 충분히 크다면 위상 동기화 루프는 입력 위상 에러를 삼각파 모양으로 트랙킹 하고 Bang-Bang 트랙킹 위상이 오픈 루프에서의 위상 에러와 만나는 지점에서 BBPFD(105) 출력은 바뀌게 된다. 직접 변조 이득이 분주 비율 변조 이득보다 작으면 도 5(b)와 같이 반대의 파형을 보이게 된다.On the other hand, in closed loop operation, the output of the BBPFD 105 changes earlier according to the Bang-Bang phase/frequency tracking characteristics. In general, if the proportional gain of the DLF 110 is sufficiently larger than the integral gain, the phase synchronization loop tracks the input phase error in the shape of a triangular wave, and at the point where the Bang-Bang tracking phase meets the phase error in the open loop, the BBPFD (105) ) output is changed. If the direct modulation gain is smaller than the division ratio modulation gain, the opposite waveform is shown as shown in FIG. 5(b).
한편 이득 매칭이 잘 이루어져서 두 경로의 이득이 일치하게 되면 분주 클락의 주파수 편차가 작아지게 돼서, 도 5(c)와 같이 BBPFD(105) 출력이 훨씬 랜덤하게 +1과 -1로 나오게 된다. 그 결과 출력 클락은 이상적인 FMCW 주파수 파형을 갖게 되며 주파수 편차는 최소화된다. On the other hand, if the gains of the two paths are matched because of the good gain matching, the frequency deviation of the divided clock becomes small, so that the BBPFD (105) output is more randomly +1 and -1 as shown in FIG. 5(c). As a result, the output clock has an ideal FMCW frequency waveform and frequency deviation is minimized.
실시간으로 두 경로의 이득을 매칭시키기 위한 AGC(130)의 블록 다이어그램 및 그 타이밍 다이어그램은 도 6 및 도 7과 같다.A block diagram of the AGC 130 for matching the gains of the two paths in real time and a timing diagram thereof are shown in FIGS. 6 and 7 .
도 6에 도시된 바와 같이, AGC(130)는 누산기 #1(131), 스위치 #1(132), 스위치 #2(133), 감산기(134), 판정기(135) 및 누산기 #2(136)를 포함하여 구성된다.As shown in FIG. 6 , the AGC 130 includes an accumulator #1 (131), a switch #1 (132), a switch #2 (133), a subtractor 134, a determiner 135, and an accumulator #2 (136). ) is included.
도 7에 도시된 바와 같이, BBPFD(105)의 출력은 mclk 클락의 반주기 동안 누적된다. 이를 통해 그 기간 동안의 평균적인 위상 에러를 얻게 된다. mclk의 엣지에서 누적값은 샘플되고 리셋된다. sum_n은 mclk이 low일 때 누적된 값이고 sum_p는 mclk이 high일 때 누적된 값이다. 이 두 값의 뺄셈 값이 양수이면 직접 변조 이득이 작은 것이고 음수이면 직접 변조 이득이 큰 것으로 이를 누적하여 피드백하면 주파수 변조기의 정상 동작 중에도 이득을 적응형 제어할 수 있다. As shown in FIG. 7 , the output of the BBPFD 105 is accumulated during a half cycle of the mclk clock. This gives the average phase error over that period. At the edge of mclk, the accumulated value is sampled and reset. sum_n is the accumulated value when mclk is low, and sum_p is the accumulated value when mclk is high. If the subtraction value of these two values is positive, the direct modulation gain is small, and if it is negative, the direct modulation gain is large.
구체적으로, 누산기 #1(131)는 BBPFD(105)에서 출력되는 차 신호를 누산한다. 스위치 #1(132)은 분주 비율이 양수인 구간에서 누산기 #1(131)의 누적 값 #1을 출력하고, 스위치 #2(133)는 분주 비율이 음수인 구간에서 누산기 #1(131)의 누적 값 #2를 출력한다.Specifically, the accumulator #1 (131) accumulates the difference signal output from the BBPFD (105). The switch #1(132) outputs the accumulated value #1 of the accumulator #1(131) in the section where the division ratio is positive, and the switch #2(133) accumulates the accumulator #1(131) in the section where the division ratio is negative. Print the value #2.
감산기(134)는 스위치 #2(133)에 의해 출력되는 누적 값 #2와 스위치 #1(132)에 의해 출력되는 누적 값 #1의 차를 계산한다. 판정기(135)는 감산기(134)의 부호를 판정한다.The subtractor 134 calculates a difference between the accumulated value #2 output by the switch #2 (133) and the accumulated value #1 output by the switch #1 (132). The determiner 135 determines the sign of the subtractor 134 .
누산기 #2(136)는 판정기(135)에서 판정된 부호가 + 이면 게인을 감소시키고, 판정기(135)에서 판정된 부호가 - 이면 게인을 증가시킨다. 게인 조정은 분주 비율의 주기 마다 이루어진다.Accumulator #2 (136) decreases the gain if the sign determined by the determiner 135 is +, and increases the gain if the sign determined by the determiner 135 is negative. Gain adjustment is made every cycle of the divide ratio.
한편 도 8에서와 같이 실제 FMCW 변조 파형은 이상적인 톱니파형처럼 선형적이지 않고 비선형적인 특성을 갖는다. 이러한 현상은 FMCW 변조기 내에서 DCO나 DAC의 비선형성 때문이다. 이렇게 첩 신호가 비선형적일 경우 IF 주파수는 도 8에 표시된 것과 같이 실시간으로 다른 값을 갖게 된다. 그 결과 물체 탐지의 정확도는 굉장히 저하되게 된다.On the other hand, as shown in FIG. 8 , the actual FMCW modulated waveform is not linear like an ideal sawtooth waveform but has a non-linear characteristic. This phenomenon is due to the nonlinearity of the DCO or DAC within the FMCW modulator. When the chirp signal is non-linear in this way, the IF frequency has different values in real time as shown in FIG. 8 . As a result, the accuracy of object detection is greatly reduced.
따라서 이러한 비선형성을 보상해주기 위해, 본 발명의 실시예에서는 도 9에 도시된 바와 같이, 도 4에서 제시한 FMCW 주파수 변조기에 비선형성 보상기(117)를 추가하는 방안을 제시한다.Therefore, in order to compensate for such nonlinearity, as shown in FIG. 9 , in an embodiment of the present invention, a method of adding a nonlinearity compensator 117 to the FMCW frequency modulator shown in FIG. 4 is proposed.
도 9에서 볼 수 있듯이, 다중 위상 동기화 루프를 활용한 FMCW 주파수 변조기에서 비선형성 보상은 DLF(110)와 DSM(115)을 통과한 후에 DCO(125)로 인가될 Row & Column Decoder(120) 앞 단에 NC(Nonlinearity Compensation) Mapping 모듈(117) 형태로 구현될 수 있다. NC(Nonlinearity Compensation) Mapping 모듈(117)은 총 Nbit의 입력 코드를 받아서 Nbit의 출력 코드로 대응시키는 LUT 형태이다.As can be seen in FIG. 9, in the FMCW frequency modulator using a multi-phase synchronization loop, the nonlinearity compensation is in front of the Row & Column Decoder 120 to be applied to the DCO 125 after passing through the DLF 110 and the DSM 115. However, it may be implemented in the form of a nonlinearity compensation (NC) mapping module 117 . The NC (Nonlinearity Compensation) Mapping module 117 is a LUT type that receives a total of N-bit input codes and maps them to N-bit output codes.
M개의 구간으로 나눈 LUT 기반의 NC Mapping을 쉽게 설명하기 위해, 간단하게 4개의 구간으로 나눈 LUT 기반의 Mapping을 예시로 설명하면 도 10과 같다. x축은 Mapping의 입력 코드이고 좌측 y축은 출력 코드이며 둘 다 0부터 최대 2N-1 까지의 값을 가질 수 있다. 한편 우측 y축은 입력 코드에 따른 DCO 출력 주파수를 정규화하여 나타낸 값이다.In order to easily explain LUT-based NC mapping divided into M sections, LUT-based mapping divided into four sections is simply described as an example as shown in FIG. 10 . The x-axis is the input code of mapping and the left y-axis is the output code. Both can have a value from 0 to a maximum of 2 N -1. On the other hand, the right y-axis is a normalized value of the DCO output frequency according to the input code.
Ideal DCO 라인은 기울기가 1인 값을 갖는다. 입력 코드에 따른 실제 DCO의 출력 주파수가 비선형적이어서 도 10과 같이 4개의 직선 구간으로 나누어 모델링을 했을 때 그 근사된 추세선이 S1 ~ S4과 같다고 가정하자. 이 때 O1, O2, O3 코드는 DCO의 출력 주파수가 입력 코드가 0일 때의 주파수(Fmin)와 2N-1 일 때의 주파수(Fmax)의 4등분점 값(기울기가 1이 되도록 정규화하면 I1, I2, I3)을 가질 때의 DCO 입력 코드 값들이다. 따라서 Fmin, Fmax, I1, I2, I3는 모두 DCO 실제 측정을 통하여 얻을 수 있는 값들이므로 O1, O2, O3 도 얻을 수 있으며 정규화된 DCO 주파수 곡선(S1 ~ S4)의 기울기들인 S1, S2, S3, S4도 구할 수 있다. 이를 통해 기울기의 역수 값인 W1, W2, W3, W4도 계산할 수 있으며 최종적으로 4개의 균등한 구간으로 전체 입력 코드를 나누어 기울기가 W1, W2, W3, W4가 되도록 NC Mapping 함수(W1 ~ W4)를 구할 수 있다. The ideal DCO line has a slope of 1. Assume that the approximated trend line is the same as S 1 ~ S 4 when modeling is performed by dividing the output frequency of the actual DCO according to the input code into four straight sections as shown in FIG. 10 . At this time, the O 1 , O 2 , O 3 codes are the quadrant values (the slope is If normalized to be 1, these are the DCO input code values when having I 1 , I 2 , I 3 ). Therefore, F min , F max , I 1 , I 2 , and I 3 are all values that can be obtained through actual DCO measurement, so O 1 , O 2 , O 3 can also be obtained, and normalized DCO frequency curves (S 1 ~ S 4 ) ), the slopes of S 1 , S 2 , S 3 , and S 4 can also be obtained. Through this, the reciprocal values of the slope, W 1 , W 2 , W 3 , and W 4 can also be calculated. Finally, the entire input code is divided into 4 equal sections so that the slope becomes W 1 , W 2 , W 3 , W 4 , so that Mapping functions (W 1 ~ W 4 ) can be obtained.
S1 ~ S4와 W1 ~ W4의 구체적인 계산은 다음 식과 같다.The detailed calculation of S 1 ~ S 4 and W 1 ~ W 4 is as follows.
Figure PCTKR2020016894-appb-I000002
Figure PCTKR2020016894-appb-I000002
이를 M개의 구간을 갖는 LUT로 확장한 NC Mapping 구조는 도 11과 같이 나타낼 수 있다.The NC Mapping structure, which is extended to a LUT having M sections, can be represented as shown in FIG. 11 .
이 때 M개의 LUT Coefficient인 W1 ~ WM 값을 결정하는 방법은 위에서 기술한 방법과 같다. 이러한 NC Mapping의 초기 보정 방법을 정리하면 도 12와 같다. Frequency Measure 블록과 Controller 블록은 DUT 내에 디지털 IP로 구현할 수도 있고 DUT 밖에 펌 웨어나 소프트웨어로 구성할 수도 있다.At this time, the method of determining the values of W 1 to W M , which are the M LUT coefficients, is the same as the method described above. A summary of the initial correction method of such NC Mapping is shown in FIG. 12 . The Frequency Measure block and Controller block can be implemented as digital IP within the DUT or can be configured with firmware or software outside the DUT.
①~④의 과정을 거쳐서 N-bit NC Mapping의 초기 보정 과정을 끝내면 비로소 DCO나 DAC로부터 비롯된 FMCW 변조기의 비선형성을 보상하고 고속 광대역임에도 선형적인 첩 신호를 만들 수 있다. When the initial correction process of N-bit NC Mapping is completed through the steps ①~④, it is possible to compensate the nonlinearity of the FMCW modulator derived from the DCO or DAC and make a linear chirp signal despite the high-speed broadband.
지금까지, 고속 광대역 FMCW 주파수 변조기와 그 비선형성 보상 Mapping 기술 및 초기 보정 방법에 대해 바람직한 실시예를 들어 상세히 설명하였다.Up to now, the high-speed wideband FMCW frequency modulator and its nonlinearity compensation mapping technology and initial correction method have been described in detail with reference to a preferred embodiment.
본 발명의 실시예에서는, 다중 변조 방식의 디지털 위상 동기화 루프를 활용함으로써 FMCW 주파수 변조기의 첩 대역폭과 클락 지터간의 트레이드오프 상관관계를 깨고 둘 모두의 성능을 개선하였다.In the embodiment of the present invention, the tradeoff correlation between the chirp bandwidth and the clock jitter of the FMCW frequency modulator is broken and the performance of both is improved by utilizing the digital phase synchronization loop of the multiple modulation method.
또한, 다중 변조 위상 동기화 루프 구현에 핵심이라고 할 수 있는 위상 변조 경로와 주파수 변조 경로의 이득 매칭을 위하여 새로운 실시간 적응형 이득 제어 방법을 제시하였다.In addition, a new real-time adaptive gain control method is presented for gain matching between the phase modulation path and the frequency modulation path, which can be said to be the key to implementing a multi-modulation phase synchronization loop.
그리고, DCO나 DAC의 높은 비선형성으로 인해 탐지 정확도가 감소하거나 실시간 적응형 이득 제어 기능이 오동작 할 수 있으므로 새로운 비선형성 보상 Mapping 방법을 추가하였고, 선형성 보상 Mapping을 초기 보정하기 위한 방법을 제시하였다.In addition, a new non-linearity compensation mapping method was added, and a method for initial correction of the linearity compensation mapping was presented because the detection accuracy may decrease or the real-time adaptive gain control function may malfunction due to the high nonlinearity of the DCO or DAC.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.In addition, although preferred embodiments of the present invention have been illustrated and described above, the present invention is not limited to the specific embodiments described above, and the technical field to which the present invention belongs without departing from the gist of the present invention as claimed in the claims In addition, various modifications are possible by those of ordinary skill in the art, and these modifications should not be individually understood from the technical spirit or perspective of the present invention.

Claims (12)

  1. 첩 신호를 생성하여 DLF(Digital Loop Filter)와 MMD(Multi-Modulus Divider)로 인가하는 FMPG(Frequency Modulation Profile Generator);a Frequency Modulation Profile Generator (FMPG) that generates a chirp signal and applies it to a Digital Loop Filter (DLF) and a Multi-Modulus Divider (MMD);
    FMPG에서 생성되어 DLF로 인가되는 첩 신호의 이득을 조정하는 AGC(Automatic Gain Controller);AGC (Automatic Gain Controller) for adjusting the gain of the chirp signal generated in the FMPG and applied to the DLF;
    기준 신호와 MMD의 출력 신호 간의 차를 산출하는 BBPFD(Bang-Bang Phase-Frequency Detector);BBPFD (Bang-Bang Phase-Frequency Detector) for calculating the difference between the reference signal and the output signal of the MMD;
    BBPFD에서 출력되는 차 신호를 누산하되, 누산시 AGC에 의해 이득이 조정된 첩 신호를 이용하는 DLF;DLF that accumulates the difference signal output from the BBPFD, and uses a chirp signal whose gain is adjusted by the AGC when accumulating;
    DLF의 출력 신호를 기초로, 첩 신호를 생성하여 FMCW(Frequency Modulated Continuous Wave) 신호로 출력하는 DCO(Digitally-Controlled Oscillator);Digitally-Controlled Oscillator (DCO) for generating a chirp signal based on the output signal of the DLF and outputting it as a Frequency Modulated Continuous Wave (FMCW) signal;
    DCO에서 생성된 첩 신호를 분주하되, FMPG에서 생성된 첩 신호를 기초로 분주 비율을 변조하는 MMD;를 포함하는 것을 특징으로 하는 FMCW 주파수 변조기.FMCW frequency modulator comprising: an MMD that divides the chirp signal generated by the DCO, and modulates a division ratio based on the chirp signal generated by the FMPG.
  2. 청구항 1에 있어서,The method according to claim 1,
    FMPG에서 생성되어 MMD로 인가되는 첩 신호를 델타-시그마 변조하는 DSM(Delta-Sigma Modulator);을 더 포함하는 것을 특징으로 하는 FMCW 주파수 변조기.FMCW frequency modulator further comprising a; delta-sigma modulator (DSM) for delta-sigma-modulating the chirp signal generated from the FMPG and applied to the MMD.
  3. 청구항 1에 있어서,The method according to claim 1,
    AGC는,AGC,
    FMPG에서 생성되는 첩 신호와 BBPFD에서 출력되는 차 신호를 기초로, FMPG에서 생성되는 첩 신호의 이득을 조정하는 것을 특징으로 하는 FMCW 주파수 변조기.FMCW frequency modulator, characterized in that the gain of the chirp signal generated by the FMPG is adjusted based on the difference signal output from the chirp signal generated from the FMPG and the BBPFD.
  4. 청구항 3에 있어서,4. The method according to claim 3,
    AGC는,AGC,
    BBPFD에서 출력되는 차 신호를 누산하는 제1 누산기;a first accumulator for accumulating the difference signal output from the BBPFD;
    분주 비율이 양수인 구간에서 제1 누산기의 제1 누적 값을 출력하는 제1 스위치;a first switch for outputting a first accumulated value of the first accumulator in a section in which the division ratio is positive;
    분주 비율이 음수인 구간에서 제1 누산기의 제2 누적 값을 출력하는 제2 스위치;a second switch for outputting a second accumulated value of the first accumulator in a section in which the division ratio is negative;
    제2 스위치에 의해 출력되는 제2 누적 값과 제1 스위치에 의해 출력되는 제1 누적 값의 차를 계산하는 감산기;a subtractor for calculating a difference between the second accumulated value output by the second switch and the first accumulated value output by the first switch;
    감산기의 부호를 판정하는 판정기;a determiner that determines the sign of the subtractor;
    판정기에서 판정된 부호가 + 이면, 게인을 감소시키는 제2 누산기;를 포함하는 것을 특징으로 하는 FMCW 주파수 변조기.and a second accumulator for reducing a gain when the sign determined by the determiner is +.
  5. 청구항 4에 있어서,5. The method of claim 4,
    제2 누산기는,The second accumulator is
    판정기에서 판정된 부호가 - 이면, 게인을 증가시키는 것을 특징으로 하는 FMCW 주파수 변조기.FMCW frequency modulator, characterized in that if the sign determined by the determiner is -, the gain is increased.
  6. 청구항 5에 있어서,6. The method of claim 5,
    분주 비율의 주기 마다 게인 조정이 이루어지는 것을 특징으로 하는 FMCW 주파수 변조기.FMCW frequency modulator, characterized in that the gain adjustment is made for each period of the division ratio.
  7. 청구항 3에 있어서,4. The method according to claim 3,
    DLF는,DLF,
    BBPFD에서 출력되는 차 신호에 제1 가중치를 적용하여 누산하되, 누산시 AGC에 의해 이득이 조정된 FMPG에서 생성되는 첩 신호를 함께 누산하는 것을 특징으로 하는 FMCW 주파수 변조기.An FMCW frequency modulator, characterized in that the difference signal output from the BBPFD is accumulated by applying a first weight, and when accumulating, the chirp signal generated from the FMPG whose gain is adjusted by the AGC is accumulated together.
  8. 청구항 7에 있어서,8. The method of claim 7,
    DLF는,DLF,
    BBPFD에서 출력되는 차 신호에 제2 가중치를 적용하여 더 누산하는 것을 특징으로 하는 FMCW 주파수 변조기.FMCW frequency modulator, characterized in that the difference signal output from the BBPFD is further accumulated by applying a second weight.
  9. 청구항 1에 있어서,The method according to claim 1,
    DLF의 출력 신호를 선형으로 보상하는 보상부;를 더 포함하고,Compensation unit for linearly compensating the output signal of the DLF; further comprising,
    DCO는,DCO,
    보상부에서 보상된 신호를 기초로, 첩 신호를 생성하여 FMCW 신호로 출력하는 것을 특징으로 하는 FMCW 주파수 변조기.FMCW frequency modulator, characterized in that based on the signal compensated by the compensator, generating a chirp signal and outputting it as an FMCW signal.
  10. FMPG(Frequency Modulation Profile Generator)가, 첩 신호를 생성하여 DLF(Digital Loop Filter)와 MMD(Multi-Modulus Divider)로 인가하는 단계;A Frequency Modulation Profile Generator (FMPG), generating a chirp signal and applying it to a Digital Loop Filter (DLF) and a Multi-Modulus Divider (MMD);
    AGC(Automatic Gain Controller)가 FMPG에서 생성되어 DLF로 인가되는 첩 신호의 이득을 조정하는 단계;AGC (Automatic Gain Controller) adjusting the gain of the chirp signal generated in the FMPG and applied to the DLF;
    BBPFD(Bang-Bang Phase-Frequency Detector)가 기준 신호와 MMD의 출력 신호 간의 차를 산출하는 단계;Calculating, by a Bang-Bang Phase-Frequency Detector (BBPFD), a difference between the reference signal and the output signal of the MMD;
    DLF가, BBPFD에서 출력되는 차 신호를 누산하되, 누산시 AGC에 의해 이득이 조정된 첩 신호를 이용하는 단계;A DLF accumulating a difference signal output from the BBPFD, using a chirp signal whose gain is adjusted by the AGC when accumulating;
    DCO(Digitally-Controlled Oscillator)가, DLF의 출력 신호를 기초로, 첩 신호를 생성하여 FMCW(Frequency Modulated Continuous Wave) 신호로 출력하는 단계;A digitally-controlled oscillator (DCO), based on the output signal of the DLF, generating a chirp signal and outputting it as a frequency modulated continuous wave (FMCW) signal;
    MMD가, DCO에서 생성된 첩 신호를 분주하되, FMPG에서 생성된 첩 신호를 기초로 분주 비율을 변조하는 단계;를 포함하는 것을 특징으로 하는 FMCW 주파수 변조방법.FMCW frequency modulation method comprising the; the MMD divides the chirp signal generated by the DCO, and modulates a division ratio based on the chirp signal generated by the FMPG.
  11. 기준 신호와 MMD의 출력 신호 간의 차를 산출하는 BBPFD(Bang-Bang Phase-Frequency Detector);BBPFD (Bang-Bang Phase-Frequency Detector) for calculating the difference between the reference signal and the output signal of the MMD;
    BBPFD에서 출력되는 차 신호를 누산하는 DLF(Digital Loop Filter);DLF (Digital Loop Filter) for accumulating the difference signal output from the BBPFD;
    DLF의 출력 신호를 선형으로 보상하는 보상부;a compensator for linearly compensating the output signal of the DLF;
    보상부에서 보상된 신호를 기초로, 첩 신호를 생성하여 FMCW 신호로 출력하는 DCO(Digitally-Controlled Oscillator);a digitally-controlled oscillator (DCO) for generating a chirp signal based on the signal compensated by the compensator and outputting it as an FMCW signal;
    DCO에서 생성된 첩 신호를 분주하는 MMD(Multi-Modulus Divider);를 포함하는 것을 특징으로 하는 FMCW 주파수 변조기.FMCW frequency modulator comprising a; MMD (Multi-Modulus Divider) for dividing the chirp signal generated by the DCO.
  12. BBPFD(Bang-Bang Phase-Frequency Detector)가, 기준 신호와 MMD의 출력 신호 간의 차를 산출하는 단계;Calculating, by a Bang-Bang Phase-Frequency Detector (BBPFD), a difference between a reference signal and an output signal of the MMD;
    DLF(Digital Loop Filter)가, BBPFD에서 출력되는 차 신호를 누산하는 단계;accumulating, by a digital loop filter (DLF), a difference signal output from the BBPFD;
    보상부가, DLF의 출력 신호를 선형으로 보상하는 단계;Compensating, linearly compensating the output signal of the DLF;
    DCO(Digitally-Controlled Oscillator)가, 보상부에서 보상된 신호를 기초로, 첩 신호를 생성하여 FMCW 신호로 출력하는 단계;A digitally-controlled oscillator (DCO), based on the signal compensated by the compensator, generating a chirp signal and outputting it as an FMCW signal;
    MMD(Multi-Modulus Divider)가, DCO에서 생성된 첩 신호를 분주하는 단계;를 포함하는 것을 특징으로 하는 FMCW 주파수 변조방법.FMCW frequency modulation method comprising a; by a Multi-Modulus Divider (MMD), dividing the chirp signal generated by the DCO.
PCT/KR2020/016894 2020-11-26 2020-11-26 High-speed wideband fmcw frequency modulator and nonlinearity compensation method thereof WO2022114258A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0160594 2020-11-26
KR1020200160594A KR102470031B1 (en) 2020-11-26 2020-11-26 High-speed broadband FMCW frequency modulator and nonlinearity compensation method thereof

Publications (1)

Publication Number Publication Date
WO2022114258A1 true WO2022114258A1 (en) 2022-06-02

Family

ID=81755122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016894 WO2022114258A1 (en) 2020-11-26 2020-11-26 High-speed wideband fmcw frequency modulator and nonlinearity compensation method thereof

Country Status (2)

Country Link
KR (1) KR102470031B1 (en)
WO (1) WO2022114258A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100141313A1 (en) * 2008-12-09 2010-06-10 Qualcomm Incorporated Digital phase-locked loop with two-point modulation and adaptive delay matching
US20150372690A1 (en) * 2014-06-23 2015-12-24 Intel IP Corporation Circuit, a time-to-digital converter, an integrated circuit, a transmitter, a receiver and a transceiver
EP3190704A1 (en) * 2016-01-06 2017-07-12 Nxp B.V. Digital phase locked loops
KR20180131017A (en) * 2017-05-31 2018-12-10 전자부품연구원 Frequency Synthesizer with Dual Paths for Wideband FMCW
KR20190000024A (en) * 2017-06-21 2019-01-02 삼성전자주식회사 Digital phase locked loop and operating method of digital phase locked loop

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795478B1 (en) * 2006-04-11 2008-01-16 엘아이지넥스원 주식회사 Voltage controlled oscillator
KR101224890B1 (en) * 2007-11-05 2013-01-22 삼성전자주식회사 Phase locked loop circuit performing two point modulation and methods of gain calibration of the phase locked loop
KR101397581B1 (en) * 2009-12-29 2014-05-21 재단법인 포항산업과학연구원 FMCW Generating Apparatus, Distance Measuring Device Equipped Therewith

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100141313A1 (en) * 2008-12-09 2010-06-10 Qualcomm Incorporated Digital phase-locked loop with two-point modulation and adaptive delay matching
US20150372690A1 (en) * 2014-06-23 2015-12-24 Intel IP Corporation Circuit, a time-to-digital converter, an integrated circuit, a transmitter, a receiver and a transceiver
EP3190704A1 (en) * 2016-01-06 2017-07-12 Nxp B.V. Digital phase locked loops
KR20180131017A (en) * 2017-05-31 2018-12-10 전자부품연구원 Frequency Synthesizer with Dual Paths for Wideband FMCW
KR20190000024A (en) * 2017-06-21 2019-01-02 삼성전자주식회사 Digital phase locked loop and operating method of digital phase locked loop

Also Published As

Publication number Publication date
KR102470031B1 (en) 2022-11-23
KR20220072978A (en) 2022-06-03

Similar Documents

Publication Publication Date Title
US8519875B2 (en) System and method for background calibration of time interleaved analog to digital converters
US8742970B2 (en) Analogue-to-digital converter
US4972189A (en) Correction for DC offset in A/D converters
US8184723B2 (en) Feedback system and apparatus for video compensation
KR100381014B1 (en) Amplitude noise suppression optical intensity modulation apparatus and method using linear optical modulator
JPS6310823A (en) Phase-locking loop system
US7990299B2 (en) Optical sampling method for analog to digital conversion
WO2022114258A1 (en) High-speed wideband fmcw frequency modulator and nonlinearity compensation method thereof
US4930142A (en) Digital phase lock loop
KR0138764B1 (en) A sampled data phase locking system
CN100384213C (en) Method and device for dynamically adjusting sync-on-green (SOG) signal of video signal
Kondo et al. 5.1 A 240× 192 pixel 10fps 70klux 225m-range automotive LiDAR SoC using a 40ch 0.0036 mm 2 voltage/time dual-data-converter-based AFE
CN114499504A (en) Phase-locked loop circuit, operating method thereof and sub-range control circuit
KR102169591B1 (en) Frequency Modulated Continuous Wave radar system and its operating method
US8532590B2 (en) Digital phase feedback for determining phase distortion
GB2255681A (en) Analog-to-digital converter
GB1240010A (en) Improvements in or relating to electrical phase difference detector systems
US20200396052A1 (en) Time Stamp Generation
GB2384105A (en) Image signal processing apparatus and method
JPS63208330A (en) Transmitter with delay compensation type adaptive predistorter
GB2159674A (en) A delta modulator/demodulator
EP1241790B1 (en) Full digital phase locked loop and circuitry for utilizing the same
US5430763A (en) Frequency stabilizing circuit used for a pulse modulator for an image signal including a synchronous signal
WO2011089675A1 (en) Angle modulator, transmission device, and wireless communication device
US20210159908A1 (en) System and method for background calibration of time interleaved adc

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963654

Country of ref document: EP

Kind code of ref document: A1