WO2022114127A1 - Substrate processing device and substrate processing method - Google Patents

Substrate processing device and substrate processing method Download PDF

Info

Publication number
WO2022114127A1
WO2022114127A1 PCT/JP2021/043391 JP2021043391W WO2022114127A1 WO 2022114127 A1 WO2022114127 A1 WO 2022114127A1 JP 2021043391 W JP2021043391 W JP 2021043391W WO 2022114127 A1 WO2022114127 A1 WO 2022114127A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
processing
support tray
container body
lid portion
Prior art date
Application number
PCT/JP2021/043391
Other languages
French (fr)
Japanese (ja)
Inventor
周武 墨
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to KR1020237017247A priority Critical patent/KR20230085211A/en
Priority to CN202180079981.1A priority patent/CN116529862A/en
Publication of WO2022114127A1 publication Critical patent/WO2022114127A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67303Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders

Definitions

  • the present invention relates to a substrate processing technique for processing a substrate by supplying a processing fluid to the processing space while accommodating the substrate in the processing space of the container body.
  • the processing process of various substrates such as semiconductor substrates and glass substrates for display devices includes processing the substrates with various processing fluids.
  • Such treatment may be performed in an airtight treatment container for the purpose of efficient use of the treatment fluid and prevention of dissipation to the outside.
  • the processing container has an opening for loading and unloading the substrate and a container body having a processing space for accommodating the substrate in a horizontal posture, and the opening is closed to ensure the airtightness of the internal space.
  • a lid is provided.
  • the substrate (wafer) to be processed is placed in a processing container (the "container body" of the present invention) in a state of being placed on a flat plate-shaped holder integrated with a lid.
  • the supercritical fluid is supplied from one side of the substrate toward the other side of the substrate so that a laminar flow is formed on the upper surface of the substrate.
  • the laminar flow of the supercritical fluid passes above the fine pattern formed on the upper surface of the substrate.
  • the treatment liquid held between the fine patterns is agitated, and the treatment liquid and the supercritical fluid are efficiently replaced. Further, since the processing fluid flows in one direction on the upper surface of the substrate, the reattachment of the particles removed from the substrate to the substrate is suppressed.
  • the processing space is designed to be formed slightly larger than the envelope outer shape of the substrate and the holder. That is, the gap between the upper surface of the substrate accommodated in the processing space in the vertical direction and the ceiling surface of the processing space facing the upper surface of the substrate is limited to several mm or less. Therefore, it is possible to reduce the amount of the processing fluid used and improve the processing efficiency. On the other hand, even if the gap is slightly lower than the optimum value in the vertical direction, the flow rate and the flow velocity of the processing fluid supplied to the upper surface of the substrate are significantly reduced. As a result, the above substitution becomes incomplete, which may lead to deterioration in the quality of substrate processing.
  • the present invention has been made in view of the above problems, and an object thereof is to improve the quality of the above processing in a substrate processing technique in which a substrate is accommodated in a processing space in a horizontal posture and processed.
  • One aspect of the present invention is a substrate processing apparatus, in which a flat plate-shaped support tray that supports the lower surface of a substrate in a horizontal position and a processing space and a processing space that can accommodate the support tray that supports the substrate are supported in communication with each other.
  • the container body is provided with an opening for passing the tray on the side, the lid is provided so that the opening can be closed while holding the support tray, and the lid is moved in the vertical direction relative to the container body. It is characterized in that it is provided with a vertical movement mechanism that adjusts the relative position of the substrate supported by the support tray in the vertical direction with respect to the processing space.
  • another aspect of the present invention is a substrate processing method, in which the opening of the container body is opened by moving the lid portion holding the flat plate-shaped support tray that supports the lower surface of the substrate in the horizontal posture in the horizontal direction.
  • the lid for holding the support tray and the container body having the processing space are relatively moved in the vertical direction.
  • the relative position of the substrate supported by the support tray with respect to the processing space is adjusted in the vertical direction. Then, the substrate is processed in the processing space.
  • the lid portion is moved in the vertical direction relative to the container body to adjust the relative position of the substrate with respect to the processing space in the vertical direction, the substrate processing in the processing space is performed.
  • the quality of the can be improved.
  • the plurality of components of each aspect of the present invention described above are not all essential, and may be used to solve some or all of the above-mentioned problems, or part or all of the effects described herein.
  • the technical features included in the above-mentioned aspect of the present invention it is also possible to combine some or all with some or all of the technical features contained in the other aspects of the invention described above to form an independent form of the invention.
  • FIG. 1 shows the schematic structure of the 1st Embodiment of the substrate processing apparatus which concerns on this invention. It is a perspective view which shows the main part of a processing unit. It is a figure which shows typically the flow of the processing fluid in the processing space. It is a flowchart and operation schematic diagram which show the height adjustment process executed in 1st Embodiment. It is a flowchart and operation schematic diagram which shows a part of the processing executed by the substrate processing system including the substrate processing apparatus of FIG. It is a figure which shows the structure of the vertical movement mechanism in the 2nd Embodiment of the substrate processing apparatus which concerns on this invention.
  • FIG. 1 is a diagram showing a schematic configuration of an embodiment of a substrate processing apparatus according to the present invention.
  • FIG. 2 is a perspective view showing a main part of the processing unit.
  • FIG. 3 is a diagram schematically showing the flow of the processing fluid in the processing space.
  • the substrate processing device 1 is a device for processing the surface of various substrates such as a semiconductor substrate by using a supercritical fluid.
  • the XYZ Cartesian coordinate system is set as shown in FIG.
  • the XY plane is a horizontal plane
  • the Z direction represents a vertical direction. More specifically, the (-Z) direction represents a vertical downward direction.
  • the "board" in the present embodiment includes a semiconductor wafer, a glass substrate for a photomask, a glass substrate for a liquid crystal display, a glass substrate for a plasma display, a substrate for a FED (Field Emission Display), a substrate for an optical disk, a substrate for a magnetic disk, and light.
  • Various substrates such as magnetic disk substrates can be applied.
  • a substrate processing apparatus mainly used for processing a disk-shaped semiconductor wafer will be described with reference to the drawings, but the present invention can be similarly applied to the processing of various substrates exemplified above.
  • various shapes of the substrate can be applied.
  • the board processing device 1 includes a processing unit 10, a transfer unit 30, a supply unit 50, and a control unit 90.
  • the processing unit 10 is the main execution body of the supercritical drying process.
  • the transfer unit 30 receives the unprocessed substrate S conveyed by an external transfer device (not shown) and carries it into the processing unit 10, and also transfers the processed substrate S from the processing unit 10 to the external transfer device.
  • the supply unit 50 supplies the chemical substances, power, energy, and the like necessary for processing to the processing unit 10 and the transfer unit 30.
  • the control unit 90 controls each part of these devices to realize a predetermined process.
  • the control unit 90 includes a CPU 91 that executes various control programs, a memory 92 that temporarily stores processing data, a storage 93 that stores control programs executed by the CPU 91, and information with users and external devices. It is equipped with an interface 94 for exchanging.
  • the operation of the device which will be described later, is realized by the CPU 91 executing a control program written in the storage 93 in advance and causing each part of the device to perform a predetermined operation.
  • the processing unit 10 has a structure in which a processing chamber 12 is mounted on a pedestal 11 via an elevating actuator 20.
  • the elevating actuator 20 is often used in, for example, a Petri dish height automatic adjustment mechanism, and in the present embodiment, a servomotor is used as a drive source.
  • the elevating actuator 20 is elevated and controlled by the chamber elevating control unit 57 of the supply unit 50 in a state of being connected to the entire lower surface of the processing chamber 12.
  • the chamber elevating control unit 57 operates in response to a control command from the control unit 90, and has a function of controlling the position of the processing chamber 12 in the vertical direction Z, that is, the so-called height position.
  • the height position control of the processing chamber 12 will be described in detail later.
  • the processing chamber 12 is composed of a combination of several metal blocks, and the inside thereof is hollow to form a processing space SP.
  • the substrate S to be processed is carried into the processing space SP and undergoes processing.
  • a slit-shaped opening 121 extending in the X direction is formed in the central portion of the ( ⁇ Y) side side surface 127 of the processing chamber 12, and the processing space SP and the external space communicate with each other through the opening 121. ..
  • a lid member 13 is provided on the (-Y) side of the processing chamber 12 so as to close the opening 121.
  • the lid member 13 has a closing surface 131 on the (+ Y) direction side.
  • the closed surface 131 moves to the processing chamber 12 as the lid member 13 moves in the (+ Y) direction while facing the ( ⁇ Y) side side surface 127 of the processing chamber 12.
  • the closing surface 131 closes the opening 121 provided on the ( ⁇ Y) side side surface 127.
  • the ( ⁇ Y) side side surface 127 and the closed surface 131 correspond to an example of the “closed surface” and the “closed surface” of the present invention, respectively.
  • the ( ⁇ Y) side side surface 127 of the processing chamber 12 will be referred to as a “closed surface 127”.
  • a flat plate-shaped support tray 15 is attached in a horizontal position to the central portion of the closed surface 131 of the lid member 13, and is held by the closed surface 131.
  • the upper surface of the support tray 15 is a support surface on which the substrate S can be placed.
  • the lid member 13 is supported so as to be horizontally movable in the Y direction by a support mechanism (not shown).
  • the lid member 13 can be moved back and forth in the Y direction with respect to the processing chamber 12 by the advancing / retreating mechanism 52 provided in the supply unit 50.
  • the advancing / retreating mechanism 52 has a linear motion mechanism such as a linear motor, a linear motion guide, a ball screw mechanism, a solenoid, and an air cylinder, and such a linear motion mechanism makes the lid member 13 in the Y direction. Move to.
  • the advancing / retreating mechanism 52 operates in response to a control command from the control unit 90.
  • the lid member 13 retracts in the ( ⁇ Y) direction to separate from the processing chamber 12.
  • the support tray 15 is pulled out from the processing space SP through the opening 121, and the support tray 15 can be accessed. That is, the substrate S can be placed on the support tray 15 and the substrate S mounted on the support tray 15 can be taken out.
  • the lid member 13 advances in the (+ Y) direction, the support tray 15 is accommodated in the processing space SP. When the substrate S is placed on the support tray 15, the substrate S is carried into the processing space SP together with the support tray 15.
  • the processing space SP is sealed by the lid member 13 advancing in the (+ Y) direction and the closing surface 131 closing the opening 121.
  • a seal member 122 is provided between the closed surface 131 of the lid member 13 and the closed surface 127 of the processing chamber 12, and the airtight state of the processing space SP is maintained.
  • the seal member 122 is made of rubber, for example, and in the present embodiment, it is attached to a groove (not shown) provided on the peripheral edge of the closed surface 127 so as to surround the opening 121 in the closed surface 127 of the processing chamber 12. There is. Therefore, regardless of the movement of the lid member 13 in the horizontal direction Y, the seal member 122 is fixedly arranged in the processing chamber 12.
  • the fixing position of the seal member 122 is not limited to this, and the seal member 122 may be fixed to the closing surface 131 of the lid member 13. In this case, the sealing member 122 moves in the (+ Y) direction together with the lid member 13 and performs a sealing function in close contact with the closed surface 127 of the processing chamber 12.
  • the lid member 13 is fixed to the processing chamber 12 by a lock mechanism (not shown). As described above, in this embodiment, the lid member 13 is in a closed state (solid line) in which the opening 121 is closed to seal the processing space SP, and a separated state in which the substrate S can be taken in and out at a large distance from the opening 121. It can be switched between (dotted line) and. Then, in the closed state, the seal member 122 is interposed between the closed surface 131 and the closed surface 127, and airtightness is ensured.
  • the treatment fluid of a substance that can be used for supercritical treatment for example, carbon dioxide
  • the treatment fluid of a substance that can be used for supercritical treatment is treated as a treatment fluid in a gas, liquid or supercritical state.
  • Carbon dioxide is a chemical substance suitable for supercritical drying treatment because it is in a supercritical state at a relatively low temperature and low pressure and has a property of well dissolving an organic solvent often used for substrate treatment.
  • the critical points at which carbon dioxide is in a supercritical state are an atmospheric pressure (critical pressure) of 7.38 MPa and a temperature (critical temperature) of 31.1 ° C.
  • the processing fluid is filled in the processing space SP, and when the inside of the processing space SP reaches an appropriate temperature and pressure, the processing space SP is filled with the processing fluid in a supercritical state. In this way, the substrate S is processed by the supercritical fluid in the processing chamber 12.
  • the supply unit 50 is provided with a fluid recovery unit 53, and the treated fluid is collected by the fluid recovery unit 53. Each part of the fluid supply part 55 and the fluid recovery part 53 is controlled by the control unit 90, and the processing fluid is circulated in the processing container by the flow shown in FIG.
  • the fluid supply unit 55 for supplying the processing fluid is provided on the (+ Y) side of the processing space SP, that is, the introduction flow path 123 provided on the side opposite to the opening 121 when viewed from the processing space SP. , 124. More specifically, the first introduction flow path 123 and the second introduction flow path 124 are formed in the processing chamber 12 on the (+ Y) side of the (+ Y) side end of the substrate S housed in the processing space SP. Has been done.
  • the first introduction flow path 123 is connected to the fluid supply unit 55 by a pipe 172 having a valve 171. When the valve 171 is opened, the processing fluid from the fluid supply unit 55 flows into the first introduction flow path 123.
  • the first introduction flow path 123 finally sets the flow direction of the fluid to the horizontal direction Y, and discharges the processing fluid from the first introduction port 123a that opens facing the processing space SP at the (+ Y) side end of the processing space SP. do.
  • the second introduction flow path 124 is connected to the fluid supply unit 55 by a pipe 174 having a valve 173.
  • the valve 173 When the valve 173 is opened, the processing fluid from the fluid supply unit 55 flows into the second flow path 124.
  • the second introduction flow path 124 finally sets the flow direction of the fluid to the horizontal direction Y, and discharges the processing fluid from the second introduction port 124a which opens facing the processing space SP at the (+ Y) side end of the processing space SP. do.
  • the first introduction port 123a is open facing the processing space SP above the substrate S held in the processing space SP.
  • the second introduction port 124a opens toward the processing space SP below the substrate S held in the processing space SP, more strictly below the support tray 15 that supports the substrate S.
  • the first introduction port 123a and the second introduction port 124a are slit-shaped openings extending in the X direction with a certain opening width, and extend outward from the end portion of the substrate S in the X direction. Therefore, the processing fluids discharged from the first introduction port 123a and the second introduction port 124a are thin in the vertical direction (Z direction) and in the X direction in a thin layer shape wider than the width of the substrate S ( ⁇ Y).
  • the processing fluid is not discharged until the processing space SP is filled with the supercritical fluid.
  • the processing fluid may stay in the processing space SP, and impurities existing in the processing space SP may adhere to the substrate S and contaminate the substrate S.
  • it is desirable to discharge the processing fluid even in the supercritical state so that the substrate S is always supplied with a clean processing fluid.
  • a first discharge flow path 125 and a second discharge flow path 126 for discharging the treatment fluid are provided in the vicinity of the ( ⁇ Y) side end portion of the treatment space SP.
  • the first discharge port 125a is opened in the ceiling surface SPa of the processing space SP on the ( ⁇ Y) side of the substrate S accommodated in the processing space SP, and the first discharge flow path communicating with the first discharge port 125a is opened.
  • 125 is connected to the fluid recovery unit 53 via a pipe 176 having a valve 175.
  • the valve 175 is opened, the processing fluid in the processing space SP is discharged to the fluid recovery unit 53 via the first discharge flow path 125.
  • a second discharge port 126a is opened in the bottom surface SPb of the processing space SP on the (-Y) side of the (-Y) side end of the substrate S accommodated in the processing space SP, and communicates with the second discharge port 126a.
  • the second discharge flow path 126 is connected to the fluid recovery unit 53 via a pipe 178 having a valve 177. When the valve 177 is opened, the processing fluid in the processing space SP is discharged to the fluid recovery unit 53 via the second discharge flow path 126.
  • the first discharge port 125a and the second discharge port 126a are slit-shaped openings extending in the X direction with a certain opening width, and extend to the outside of the end portion of the substrate S in the X direction.
  • the substrate S is further opened on the (-Y) side of the (-Y) side end.
  • the processing space SP is substantially divided in the vertical direction by the support tray 15. Therefore, the processing fluid flowing above the substrate S is discharged from the first discharge port 125a, while the processing fluid flowing below the substrate S is discharged from the second discharge port 126a.
  • the opening degree of the valves 171 and 175 is adjusted so that the flow rate of the processing fluid supplied to the first introduction flow path 123 and the flow rate of the processing fluid discharged from the first discharge flow path 125 are equal to each other.
  • the opening degrees of the valves 173 and 177 are adjusted so that the flow rate of the processing fluid supplied to the second introduction flow path 124 and the flow rate of the processing fluid discharged from the second discharge flow path 126 are equal to each other. Will be.
  • the processing fluid introduced from the fluid supply unit 55 via the first introduction flow path 123 is discharged from the first introduction port 123a in the substantially horizontal direction Y, flows along the upper surface of the substrate S, and finally flows. It is discharged to the outside from the first discharge port 125a, and finally collected by the fluid recovery unit 53.
  • the processing fluid introduced from the fluid supply unit 55 via the second introduction flow path 124 is discharged from the second introduction port 124a in the substantially horizontal direction Y, flows along the lower surface of the support tray 15, and finally. It is discharged to the outside from the second discharge port 126a and finally collected by the fluid recovery unit 53.
  • a heater 153 is built in the support tray 15. The temperature of the heater 153 is controlled by the temperature control unit 56 of the supply unit 50. Further, the temperature control unit 56 operates in response to a control command from the control unit 90, and has a function of controlling the temperature of the processing fluid supplied from the fluid supply unit 55.
  • the processing space SP has a shape and volume that can accept the support tray 15 and the substrate S supported by the support tray 15. That is, the processing space SP accepts a rectangular cross-sectional shape that is wider than the width of the support tray 15 in the horizontal direction X and larger than the combined height of the support tray 15 and the substrate S in the vertical direction, and the support tray 15. It has a possible depth. As described above, the processing space SP has a shape and a volume sufficient to receive the support tray 15 and the substrate S, but the gap between the support tray 15 and the substrate S and the inner wall surface of the processing space SP is small. .. Therefore, the amount of processing fluid required to fill the processing space SP is relatively small.
  • the transfer unit 30 is responsible for transferring the substrate S between the external transfer device and the support tray 15.
  • the transfer unit 30 includes a main body 31, an elevating member 33, a base member 35, and a plurality of lift pins 37.
  • the elevating member 33 is a columnar member extending in the Z direction, and is movably supported in the Z direction by a support mechanism (not shown).
  • a base member 35 having a substantially horizontal upper surface is attached to the upper part of the elevating member 33, and a plurality of lift pins 37 are erected upward from the upper surface of the base member 35.
  • Each of the lift pins 37 supports the substrate S in a horizontal posture from below by abutting the upper end portion thereof on the lower surface of the substrate S. In order to stably support the substrate S in a horizontal posture, it is desirable that three or more lift pins 37 having the same height at the upper ends are provided.
  • the elevating member 33 can be moved up and down by the lift elevating mechanism 51 provided in the supply unit 50.
  • the lift elevating mechanism 51 has, for example, a linear motor, a linear motion guide, a ball screw mechanism, a solenoid, an air cylinder, or the like, and such a linear motion mechanism Zs the elevating member 33. Move in the direction.
  • the lift elevating mechanism 51 operates in response to a control command from the control unit 90.
  • the base member 35 moves up and down by raising and lowering the elevating member 33, and a plurality of lift pins 37 move up and down integrally with the base member 35. As a result, the transfer of the substrate S between the transfer unit 30 and the support tray 15 is realized.
  • the support tray 15 When the lid member 13 is in a separated state moved in the ( ⁇ Y) direction, the support tray 15 is in a state of being pulled out from the processing chamber 12 to the external space as shown in FIG. A base member 35 having a lift pin 37 is arranged below the support tray 15 at this time. A through hole 152 having a diameter larger than the diameter of the lift pin 37 is formed at a position of the support tray 15 immediately above the lift pin 37.
  • the substrate S supported and transported by the hand H of the external transport device is delivered to the lift pin 37.
  • the substrate S is handed over from the lift pin 37 to the support tray 15.
  • the substrate S can be carried out by the reverse procedure of the above.
  • Reference numeral 54 in FIG. 1 is a height sensor that measures the height position of the processing chamber 12, that is, the position of the processing chamber 12 in the vertical direction Z.
  • the measurement result by the height sensor 54 is sent to the control unit 90. Then, the control unit 90 executes the height adjusting step described below based on the measurement result.
  • FIG. 4 is a flowchart and an operation schematic diagram showing the height adjustment process executed in the first embodiment.
  • This height adjusting step is executed at the timing when the assembly of the substrate processing apparatus 1 is completed, at the time of maintenance, or when the type or processing content of the substrate S to be processed is changed. Further, the execution of the height adjustment step is realized by the CPU 91 of the control unit 90 executing the control program and causing each part of the apparatus to perform the operation described below.
  • the advancing / retreating mechanism 52 moves the lid member 13 in the ( ⁇ Y) direction in response to a control command from the control unit 90.
  • the support tray 15 is pulled out of the processing chamber 12 together with the lid member 13 and retracted from the processing space SP (step S11).
  • the height sensor 54 measures the height position of the processing chamber 12, that is, the height of the chamber.
  • the lid member 13 and the support tray 15 move horizontally at a predetermined height position, and the processing space SP is also provided in the processing chamber 12 with preset dimensions.
  • the CPU 91 is based on the design values relating to their height positions, the measurement results of the height sensor 54, various dimensions of the processing space SP (reference numeral W in the figure is the width in the vertical direction Z), and the thickness of the substrate S.
  • the upper gap CLa and the lower gap CLb are calculated (step S13).
  • the "upper clearance CLa” means the distance between the upper surface Sa of the substrate S supported by the support tray 15 in the vertical direction Z and the ceiling surface Spa of the processing space SP.
  • the "lower gap CLb” means the distance between the lower surface 15b of the support tray 15 and the bottom surface SPb of the processing space SP in the vertical direction Z.
  • the upper gap CLa is the width of the processing fluid supplied to the upper surface Sa of the substrate S in the vertical direction Z, and if this is narrowed, the quality of the substrate processing may deteriorate. That is, when the upper gap CLa is lower than the appropriate value, the flow rate and the flow velocity of the processing fluid supplied to the upper surface Sa of the substrate S are significantly reduced. As a result, the above substitution may be incomplete and processing defects may occur. Further, since the support tray 15 has a built-in heater 153, thermal deformation of the support tray 15 is unavoidable.
  • the support tray 15 may come into contact with the bottom surface SPb of the processing space SP when advancing and retreating in the Y direction with respect to the processing chamber 12, and in actual use. It is preferable to adjust the lower clearance CLb to 1 mm or more. Further, from the viewpoint of improving the processing efficiency of the substrate S, it is desirable to widen the upper gap CLa more than the lower gap CLb, and the ratio of the upper gap CLa to the total value of the upper gap CLa and the lower gap CLb is 65% to 75%. It is preferable to adjust so that it is within the range of.
  • the CPU 91 corrects the relative height position of the support tray 15 with respect to the processing space SP (steps S15 and S16). Then, the height adjustment process is completed. That is, the CPU 91 calculates the displacement amount of the processing chamber 12 in the vertical direction Z, which is necessary to keep the ratio within the appropriate range, as the correction movement amount (step S15). Then, the CPU 91 gives a control command corresponding to the corrected movement amount to the chamber elevating control unit 57. Upon receiving this, the chamber elevating control unit 57 controls the elevating actuator 20 to move the processing chamber 12 in the vertical direction Z by the corrected movement amount. For example, as shown in the upper right corner of FIG. 4, when the ratio is less than 50%, the elevating actuator 20 moves the processing chamber 12 in the (+ Z) direction.
  • Such a height adjusting step corresponds to an example of the "third step" of the present invention, and the relative position of the substrate S supported by the support tray 15 in the vertical direction Z by the height adjusting step with respect to the processing space SP is always appropriate. Adjusted to range. Then, a series of processes shown in FIG. 5 is executed in such an adjusted state.
  • FIG. 5 is a flowchart and an operation schematic diagram showing a part of the processing executed by the substrate processing system including the substrate processing apparatus of FIG.
  • This substrate processing apparatus 1 is used for the purpose of drying the substrate S washed with the cleaning liquid in the previous step. Specifically, it is as follows. After the substrate S is washed with the cleaning liquid in the previous step (step S21), the substrate S is conveyed to the substrate processing apparatus 1 in a state where a liquid film of isopropyl alcohol (IPA) is formed on the surface (step S22) (step S23). ).
  • IPA isopropyl alcohol
  • the pattern when a fine pattern is formed on the upper surface Sa of the substrate S, the pattern may collapse due to the surface tension of the liquid residually adhering to the substrate S.
  • watermarks may remain on the upper surface Sa of the substrate S due to incomplete drying.
  • the upper surface Sa (pattern forming surface) of the substrate S may be transported in a state of being covered with a liquid or solid surface layer.
  • the cleaning liquid when it contains water as a main component, it can be transported in a state where a liquid film is formed by a liquid having a lower surface tension and less corrosiveness to the substrate, for example, an organic solvent such as IPA or acetone. Will be executed. That is, the substrate S is supported in a horizontal state and is conveyed to the substrate processing apparatus 1 in a state where a liquid film is formed on the upper surface thereof.
  • a liquid film is formed by a liquid having a lower surface tension and less corrosiveness to the substrate, for example, an organic solvent such as IPA or acetone.
  • the substrate S is placed on the support tray 15 with the pattern forming surface set to the upper surface Sa and the upper surface Sa covered with a thin liquid film (step S24).
  • the support tray 15 and the lid member 13 are integrally advanced in the (+ Y) direction, the support tray 15 that supports the substrate S is housed in the processing space SP in the processing chamber 12, and the opening 121 closes the lid member 13. It is closed by the surface 131 (step S25).
  • the flow rate and the flow velocity of the processing fluid supplied to the upper surface Sa of the substrate S can be set to values suitable for the supercritical drying process (step S26) described below.
  • steps S25 and S26 correspond to examples of the "first step” and the "second step” of the present invention, respectively.
  • the processing space SP in which the substrate S is carried in together with the support tray 15 and sealed supercritical drying processing is executed, and the contents are as follows.
  • the processing fluid is first introduced into the processing space SP in a gas phase state.
  • the atmosphere of the processing space SP is replaced by the processing fluid.
  • CO2 carbon dioxide
  • the processing fluid in the liquid phase state is introduced into the processing space SP.
  • the liquid carbon dioxide dissolves the liquid (organic solvent; for example, IPA) constituting the liquid film on the substrate S well and releases it from the upper surface of the substrate S.
  • IPA organic solvent
  • the processing fluid in the supercritical state is introduced into the processing space SP.
  • a processing fluid previously set to a supercritical state may be introduced outside the processing chamber 12, or the temperature and pressure in the processing chamber 12 filled with the liquid processing fluid may be set to a critical point or higher. May be in a mode of reaching a supercritical state.
  • the inside of the processing chamber 12 is depressurized while maintaining the temperature, so that the supercritical fluid is vaporized and discharged without going through the liquid phase.
  • the substrate S becomes a dry state.
  • the pattern forming surface of the substrate S is not exposed to the interface between the liquid phase and the gas phase, the occurrence of pattern collapse due to the surface tension of the liquid is prevented.
  • the surface tension of the supercritical fluid is extremely low, the processing fluid often wraps around the inside of the pattern even if the substrate has a fine pattern formed on the surface. Therefore, the liquid or the like remaining inside the pattern can be efficiently replaced. In this way, the substrate S is satisfactorily dried.
  • the processed substrate S is dispensed to a subsequent process (step S27). That is, when the lid member 13 moves in the ( ⁇ Y) direction, the support tray 15 is pulled out from the processing chamber 12, and the substrate S is delivered to the external transfer device via the transfer unit 30. At this time, the substrate S is in a dry state.
  • the content of the post-process is arbitrary.
  • the support tray 15 is advanced in the (+ Y) direction, and the substrate S to be processed is stored in the processing space SP (first step).
  • the indicated height adjustment step (third step) is being executed. Therefore, in the vertical direction Z, the substrate S supported by the support tray 15 is positioned at a position suitable for supercritical drying treatment with respect to the processing space SP. That is, the upper gap CLa is sufficiently wider than the lower gap CLb while securing the lower gap CLb such that the support tray 15 does not come into contact with the bottom surface SPb of the processing space SP. Then, the processing fluid is supplied to the processing space SP to perform the supercritical drying process. As a result, the quality of processing in the processing space SP can be improved.
  • the lid member 13 in the height adjusting step, is retracted in the ( ⁇ Y) direction with respect to the closed surface 127 to which the seal member 122 is attached (step S11), and then the processing chamber is processed. 12 is moved up and down in the vertical direction Z (step S16). Therefore, the relative position of the processing space SP with respect to the substrate S in the vertical direction Z can be adjusted without damaging the seal member 122.
  • the seal member 122 may be attached to the closed surface 131 of the lid member 13 instead of the closed surface 127. In this case, the lid member 13 may be attached in the ( ⁇ Y) direction while the seal member 122 is attached to the closed surface 131. It is desirable to move the processing chamber 12 up and down in the vertical direction Z after retracting.
  • the elevating actuator 20 is connected to the lower surface of the outer surface of the processing chamber 12 facing the (-Z) direction, and the processing chamber 12 is moved up and down from the outside. Therefore, the substrate S can be positioned at a position suitable for supercritical drying processing with respect to the processing space SP while keeping the processing space SP clean.
  • the location where the elevating actuator 20 is connected is arbitrary as long as it is the outer surface of the processing chamber 12 other than the closed surface 127.
  • the processing chamber 12 and the lid member 13 correspond to an example of the “container body” and the “cover portion” of the present invention, respectively.
  • the elevating actuator 20 corresponds to an example of the “vertical movement mechanism” and the “first elevating member” of the present invention.
  • the advancing / retreating mechanism 52 corresponds to an example of the "horizontal movement mechanism” of the present invention.
  • the upper gap CLa and the lower gap CLb correspond to an example of the "first gap” and the "second gap” of the present invention, respectively.
  • the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention.
  • the elevating actuator 20 since the elevating actuator 20 is connected to the entire processing chamber 12, the processing chamber 12 only elevates and elevates in the vertical direction Z while maintaining a horizontal posture.
  • the elevating actuator 20 may be configured to be composed of a plurality of elevating members 21 to 24, and the elevating members 21 to 24 may be individually controlled by the chamber elevating control unit 57 (. 2nd embodiment).
  • the elevating members 21 to 24 are fixed on the pedestal 11 corresponding to the four corners of the lower surface of the processing chamber 12.
  • the amount of elevation of the processing chamber 12 in the vertical direction Z by the elevating members 21 to 24 is increased according to the inclination direction and the amount of inclination of the substrate S.
  • Each can be controlled. Even if the substrate S is tilted or bent by such individual control, the substrate S is not only positioned at a position suitable for supercritical drying processing with respect to the processing space SP, but is always processed.
  • the space SP can be positioned substantially parallel to the substrate S. Thereby, the upper gap CLa can be uniformly adjusted over the entire upper surface of the substrate S. As a result, the supercritical drying treatment with the treatment fluid can be uniformly applied to the entire upper surface of the substrate S.
  • the vertical movement mechanism (elevating actuator 20) is connected to the outer peripheral surface of the processing chamber 12 excluding the closed surface 127.
  • a vertical movement mechanism including a second elevating member such as an elevating actuator is connected to the outer peripheral surface of the outer peripheral surface of the lid member 13 excluding the closed surface 131 to connect the lid member 13 in the vertical direction. It may be moved up and down to Z. As a result, the substrate S can be positioned at a position suitable for supercritical drying processing with respect to the processing space SP.
  • the height adjustment step is executed based on the measurement result (height position of the processing chamber 12) by the height sensor 54.
  • the height adjustment step may be performed based on the discharge flow rate of the processing fluid.
  • a measuring unit for measuring the flow rate of the processing fluid discharged from the first discharge port 125a and the flow rate of the processing fluid discharged from the second discharge port 126a is provided, and the lid member is provided based on the measurement result by the measuring unit. 13 may be moved in the vertical direction Z relative to the processing chamber 12.
  • carbon dioxide is used as a treatment fluid for supercritical treatment
  • IPA is used as a liquid for forming a liquid film.
  • this is merely an example, and the chemical substances used are not limited thereto.
  • the present invention can be suitably applied to all substrate processing techniques for processing a substrate by supplying a processing fluid to the processing space while accommodating the substrate in the processing space of the container body.
  • Substrate processing device 10 ... Processing unit 12 ... Processing chamber (container body) 13 ... Closure member (closure part) 15 ... Support tray 15b ... Bottom surface (of support tray 15) 20 ... Elevating actuator (vertical movement mechanism) 21 to 24 ... Elevating member (vertical movement mechanism) 52 ... Advance / retreat mechanism (horizontal movement mechanism) 54 ... Height sensor 55 ... Fluid supply unit 121 ... Opening (of the container body) 122 ... Seal member 123 ... First introduction flow path 123a ... First introduction port 124 ... Second introduction flow path 124a ... Second introduction port 125 ... 1st discharge flow path 125a ... 1st discharge port 126 ... 2nd discharge flow path 126a ...
  • 2nd discharge port 127 ... Closed surface 131 ... (of the container body) Closed surface CLa ... Upper gap (first) gap) CLb ... Lower gap (second gap) S ... Substrate Sa ... Top surface SP (of substrate S) SP ... Processing space SPa ... Ceiling surface SPb ... (of processing space SP) Bottom surface Z ... Vertical direction

Abstract

The present invention comprises: a support tray that is a flat plate shape and supports a lower surface of a substrate in a horizontal position; a container body in which a processing space that can accommodate the support tray supporting the substrate is provided, and in which an opening that is in communication with the processing space and is for allowing the support tray to pass through is provided in the rear; a lid part that is provided so as to be able to block the opening while retaining the support tray; and a vertical movement mechanism that, by causing the lid part to move relative to the container body in a vertical direction, adjusts the vertical direction relative location of the substrate supported by the support tray, said relative location being relative to the processing space.

Description

基板処理装置および基板処理方法Board processing equipment and board processing method
 この発明は、容器本体の処理空間に基板を収容しながら処理空間に処理流体を供給して基板を処理する基板処理技術に関するものである。 The present invention relates to a substrate processing technique for processing a substrate by supplying a processing fluid to the processing space while accommodating the substrate in the processing space of the container body.
 以下に示す日本出願の明細書、図面および特許請求の範囲における開示内容は、参照によりその全内容が本書に組み入れられる:
 特願2020-197880(2020年11月30日出願)。
The specification, drawings and claims of the Japanese application shown below are incorporated herein by reference in their entirety:
Japanese Patent Application No. 2020-197880 (filed on November 30, 2020).
 半導体基板、表示装置用ガラス基板等の各種基板の処理工程には、基板を各種の処理流体によって処理するものが含まれる。このような処理は、処理流体の効率的な利用や外部への散逸防止を目的として、気密性の処理容器内で行われる場合がある。この場合、処理容器には、基板の搬入・搬出のための開口部および基板を水平姿勢で収容する処理空間を有する容器本体と、該開口部を閉塞して内部空間の気密性を確保するための蓋部とが設けられる。例えば特許文献1に記載の処理装置では、処理対象となる基板(ウエハ)が、蓋体と一体化された平板状のホルダーに載置された状態で処理容器(本発明の「容器本体」に相当)の処理領域(本発明の「処理空間」に相当)内に搬入される。そして、基板の一の側方から基板の他の側方に向けて、基板の上面に層流が形成されるように超臨界流体が供給される。これにより、基板の上面に形成された微細パターンの上方を超臨界流体の層流が通過する。その通過時に、微細パターン間に保持された処理液が攪拌され、処理液と超臨界流体との置換が効率よく行われる。また、処理流体が基板の上面を一方向に向けて流れるため、基板から除去されたパーティクルの基板への再付着が抑制される。 The processing process of various substrates such as semiconductor substrates and glass substrates for display devices includes processing the substrates with various processing fluids. Such treatment may be performed in an airtight treatment container for the purpose of efficient use of the treatment fluid and prevention of dissipation to the outside. In this case, the processing container has an opening for loading and unloading the substrate and a container body having a processing space for accommodating the substrate in a horizontal posture, and the opening is closed to ensure the airtightness of the internal space. A lid is provided. For example, in the processing apparatus described in Patent Document 1, the substrate (wafer) to be processed is placed in a processing container (the "container body" of the present invention) in a state of being placed on a flat plate-shaped holder integrated with a lid. It is carried into the processing area (corresponding to the "processing space" of the present invention). Then, the supercritical fluid is supplied from one side of the substrate toward the other side of the substrate so that a laminar flow is formed on the upper surface of the substrate. As a result, the laminar flow of the supercritical fluid passes above the fine pattern formed on the upper surface of the substrate. At the time of passing through the treatment liquid, the treatment liquid held between the fine patterns is agitated, and the treatment liquid and the supercritical fluid are efficiently replaced. Further, since the processing fluid flows in one direction on the upper surface of the substrate, the reattachment of the particles removed from the substrate to the substrate is suppressed.
特開2015-039040号公報JP-A-2015-039040
 ところで、このように構成された装置では、処理空間が、基板およびホルダーの包絡外形よりも僅かに大きく形成されるように設計されている。つまり、鉛直方向において処理空間に収容された基板の上面と、当該基板の上面に対向する処理空間の天井面との隙間は数mm以下に制限されている。このため、処理流体の使用量を低減し処理効率を向上させることが可能である。その反面、鉛直方向において上記隙間が最適値よりも僅かに下回るだけでも、基板の上面に供給される処理流体の流量や流速が大幅に低下する。その結果、上記置換が不完全となり、基板処理の品質低下を招くことがあった。 By the way, in the device configured in this way, the processing space is designed to be formed slightly larger than the envelope outer shape of the substrate and the holder. That is, the gap between the upper surface of the substrate accommodated in the processing space in the vertical direction and the ceiling surface of the processing space facing the upper surface of the substrate is limited to several mm or less. Therefore, it is possible to reduce the amount of the processing fluid used and improve the processing efficiency. On the other hand, even if the gap is slightly lower than the optimum value in the vertical direction, the flow rate and the flow velocity of the processing fluid supplied to the upper surface of the substrate are significantly reduced. As a result, the above substitution becomes incomplete, which may lead to deterioration in the quality of substrate processing.
 この発明は上記課題に鑑みなされたものであり、基板を水平姿勢で処理空間に収容して処理する基板処理技術において、上記処理の品質を高めることを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to improve the quality of the above processing in a substrate processing technique in which a substrate is accommodated in a processing space in a horizontal posture and processed.
 この発明の一の態様は、基板処理装置であって、水平姿勢の基板の下面を支持する平板状の支持トレイと、基板を支持する支持トレイを収容可能な処理空間および処理空間に連通し支持トレイを通過させるための開口が側方に設けられた容器本体と、支持トレイを保持しながら開口を閉塞可能に設けられる蓋部と、蓋部を容器本体に対して相対的に鉛直方向に移動させることにより、支持トレイに支持された基板の鉛直方向における処理空間に対する相対位置を調整する鉛直移動機構と、を備えることを特徴としている。 One aspect of the present invention is a substrate processing apparatus, in which a flat plate-shaped support tray that supports the lower surface of a substrate in a horizontal position and a processing space and a processing space that can accommodate the support tray that supports the substrate are supported in communication with each other. The container body is provided with an opening for passing the tray on the side, the lid is provided so that the opening can be closed while holding the support tray, and the lid is moved in the vertical direction relative to the container body. It is characterized in that it is provided with a vertical movement mechanism that adjusts the relative position of the substrate supported by the support tray in the vertical direction with respect to the processing space.
 また、この発明の他の態様は、基板処理方法であって、水平姿勢の基板の下面を支持する平板状の支持トレイを保持した蓋部を水平方向に移動させることで、容器本体の開口を介して支持トレイを容器本体の処理空間に収容するとともに蓋部により開口を閉塞させる第1工程と、蓋部により開口を閉塞された容器本体の処理空間内で処理流体によって基板を処理する第2工程と、第1工程に先立って、蓋部を容器本体に対して相対的に鉛直方向に移動させることにより、支持トレイに支持された基板の鉛直方向における処理空間に対する相対位置を調整する第3工程と、を備えることを特徴としている。 Further, another aspect of the present invention is a substrate processing method, in which the opening of the container body is opened by moving the lid portion holding the flat plate-shaped support tray that supports the lower surface of the substrate in the horizontal posture in the horizontal direction. The first step of accommodating the support tray in the processing space of the container body and closing the opening by the lid portion, and the second step of treating the substrate with the processing fluid in the processing space of the container body whose opening is closed by the lid portion. A third step of adjusting the relative position of the substrate supported by the support tray in the vertical direction with respect to the processing space by moving the lid portion in the vertical direction relative to the container body prior to the step and the first step. It is characterized by having a process.
 これらの発明において、支持トレイを保持する蓋部と、処理空間を有する容器本体とが鉛直方向に相対移動される。これにより、鉛直方向において、支持トレイで支持される基板の処理空間に対する相対位置が調整される。そして、当該基板は処理空間内で基板処理される。 In these inventions, the lid for holding the support tray and the container body having the processing space are relatively moved in the vertical direction. As a result, the relative position of the substrate supported by the support tray with respect to the processing space is adjusted in the vertical direction. Then, the substrate is processed in the processing space.
 上記のように、本発明では、蓋部を容器本体に対して相対的に鉛直方向に移動して基板の鉛直方向における処理空間に対する相対位置を調整しているので、当該処理空間での基板処理の品質を高めることができる。 As described above, in the present invention, since the lid portion is moved in the vertical direction relative to the container body to adjust the relative position of the substrate with respect to the processing space in the vertical direction, the substrate processing in the processing space is performed. The quality of the can be improved.
 上述した本発明の各態様の有する複数の構成要素はすべてが必須のものではなく、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、適宜、前記複数の構成要素の一部の構成要素について、その変更、削除、新たな他の構成要素との差し替え、限定内容の一部削除を行うことが可能である。また、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、上述した本発明の一態様に含まれる技術的特徴の一部又は全部を上述した本発明の他の態様に含まれる技術的特徴の一部又は全部と組み合わせて、本発明の独立した一形態とすることも可能である。 The plurality of components of each aspect of the present invention described above are not all essential, and may be used to solve some or all of the above-mentioned problems, or part or all of the effects described herein. In order to achieve the above, it is possible to change, delete, replace a part of the plurality of components with new other components, and partially delete the limited contents, as appropriate. Further, in order to solve a part or all of the above-mentioned problems, or to achieve a part or all of the effects described in the present specification, the technical features included in the above-mentioned aspect of the present invention. It is also possible to combine some or all with some or all of the technical features contained in the other aspects of the invention described above to form an independent form of the invention.
本発明に係る基板処理装置の第1実施形態の概略構成を示す図である。It is a figure which shows the schematic structure of the 1st Embodiment of the substrate processing apparatus which concerns on this invention. 処理ユニットの主要部を示す斜視図である。It is a perspective view which shows the main part of a processing unit. 処理空間における処理流体の流れを模式的に示す図である。It is a figure which shows typically the flow of the processing fluid in the processing space. 第1実施形態で実行される高さ調整工程を示すフローチャートおよび動作模式図である。It is a flowchart and operation schematic diagram which show the height adjustment process executed in 1st Embodiment. 図1の基板処理装置を含む基板処理システムにより実行される処理の一部を示すフローチャートおよび動作模式図である。It is a flowchart and operation schematic diagram which shows a part of the processing executed by the substrate processing system including the substrate processing apparatus of FIG. 本発明に係る基板処理装置の第2実施形態における鉛直移動機構の構成を示す図である。It is a figure which shows the structure of the vertical movement mechanism in the 2nd Embodiment of the substrate processing apparatus which concerns on this invention.
 図1は本発明に係る基板処理装置の一実施形態の概略構成を示す図である。図2は処理ユニットの主要部を示す斜視図である。図3は処理空間における処理流体の流れを模式的に示す図である。この基板処理装置1は、例えば半導体基板のような各種基板の表面を超臨界流体を用いて処理するための装置である。以下の各図における方向を統一的に示すために、図1に示すようにXYZ直交座標系を設定する。ここで、XY平面は水平面であり、Z方向は鉛直方向を表す。より具体的には、(-Z)方向が鉛直下向きを表す。 FIG. 1 is a diagram showing a schematic configuration of an embodiment of a substrate processing apparatus according to the present invention. FIG. 2 is a perspective view showing a main part of the processing unit. FIG. 3 is a diagram schematically showing the flow of the processing fluid in the processing space. The substrate processing device 1 is a device for processing the surface of various substrates such as a semiconductor substrate by using a supercritical fluid. In order to show the directions in each of the following figures in a unified manner, the XYZ Cartesian coordinate system is set as shown in FIG. Here, the XY plane is a horizontal plane, and the Z direction represents a vertical direction. More specifically, the (-Z) direction represents a vertical downward direction.
 本実施形態における「基板」としては、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板などの各種基板を適用可能である。以下では主として円盤状の半導体ウエハの処理に用いられる基板処理装置を例に採って図面を参照して説明するが、上に例示した各種の基板の処理にも同様に適用可能である。また基板の形状についても各種のものを適用可能である。 The "board" in the present embodiment includes a semiconductor wafer, a glass substrate for a photomask, a glass substrate for a liquid crystal display, a glass substrate for a plasma display, a substrate for a FED (Field Emission Display), a substrate for an optical disk, a substrate for a magnetic disk, and light. Various substrates such as magnetic disk substrates can be applied. In the following, a substrate processing apparatus mainly used for processing a disk-shaped semiconductor wafer will be described with reference to the drawings, but the present invention can be similarly applied to the processing of various substrates exemplified above. In addition, various shapes of the substrate can be applied.
 基板処理装置1は、処理ユニット10、移載ユニット30、供給ユニット50および制御ユニット90を備えている。処理ユニット10は、超臨界乾燥処理の実行主体となるものである。移載ユニット30は、図示しない外部の搬送装置により搬送されてくる未処理基板Sを受け取って処理ユニット10に搬入し、また処理後の基板Sを処理ユニット10から外部の搬送装置に受け渡す。供給ユニット50は、処理に必要な化学物質、動力およびエネルギー等を、処理ユニット10および移載ユニット30に供給する。 The board processing device 1 includes a processing unit 10, a transfer unit 30, a supply unit 50, and a control unit 90. The processing unit 10 is the main execution body of the supercritical drying process. The transfer unit 30 receives the unprocessed substrate S conveyed by an external transfer device (not shown) and carries it into the processing unit 10, and also transfers the processed substrate S from the processing unit 10 to the external transfer device. The supply unit 50 supplies the chemical substances, power, energy, and the like necessary for processing to the processing unit 10 and the transfer unit 30.
 制御ユニット90は、これら装置の各部を制御して所定の処理を実現する。この目的のために、制御ユニット90は、各種の制御プログラムを実行するCPU91、処理データを一時的に記憶するメモリ92、CPU91が実行する制御プログラムを記憶するストレージ93、およびユーザや外部装置と情報交換を行うためのインターフェース94などを備えている。後述する装置の動作は、CPU91が予めストレージ93に書き込まれた制御プログラムを実行し装置各部に所定の動作を行わせることにより実現される。 The control unit 90 controls each part of these devices to realize a predetermined process. For this purpose, the control unit 90 includes a CPU 91 that executes various control programs, a memory 92 that temporarily stores processing data, a storage 93 that stores control programs executed by the CPU 91, and information with users and external devices. It is equipped with an interface 94 for exchanging. The operation of the device, which will be described later, is realized by the CPU 91 executing a control program written in the storage 93 in advance and causing each part of the device to perform a predetermined operation.
 処理ユニット10は、図1に示すように、台座11の上に昇降アクチュエータ20を介して処理チャンバ12が取り付けられた構造を有している。この昇降アクチュエータ20は、例えばペトリ皿高さ自動調整機構などに多用されているものであり、なお、本実施形態では、サーボモータを駆動源として用いている。この昇降アクチュエータ20は、処理チャンバ12の下面全体に接続された状態で、供給ユニット50のチャンバ昇降制御部57によって昇降制御される。チャンバ昇降制御部57は制御ユニット90からの制御指令に応じて作動し、鉛直方向Zにおける処理チャンバ12の位置、いわゆる高さ位置を制御する機能を有している。なお、処理チャンバ12の高さ位置制御については、後で詳述する。 As shown in FIG. 1, the processing unit 10 has a structure in which a processing chamber 12 is mounted on a pedestal 11 via an elevating actuator 20. The elevating actuator 20 is often used in, for example, a Petri dish height automatic adjustment mechanism, and in the present embodiment, a servomotor is used as a drive source. The elevating actuator 20 is elevated and controlled by the chamber elevating control unit 57 of the supply unit 50 in a state of being connected to the entire lower surface of the processing chamber 12. The chamber elevating control unit 57 operates in response to a control command from the control unit 90, and has a function of controlling the position of the processing chamber 12 in the vertical direction Z, that is, the so-called height position. The height position control of the processing chamber 12 will be described in detail later.
 処理チャンバ12は、いくつかの金属ブロックの組み合わせにより構成され、その内部が空洞となって処理空間SPを構成している。処理対象の基板Sは処理空間SP内に搬入されて処理を受ける。処理チャンバ12の(-Y)側側面127の中央部には、X方向に細長く延びるスリット状の開口121が形成されており、開口121を介して処理空間SPと外部空間とが連通している。 The processing chamber 12 is composed of a combination of several metal blocks, and the inside thereof is hollow to form a processing space SP. The substrate S to be processed is carried into the processing space SP and undergoes processing. A slit-shaped opening 121 extending in the X direction is formed in the central portion of the (−Y) side side surface 127 of the processing chamber 12, and the processing space SP and the external space communicate with each other through the opening 121. ..
 処理チャンバ12の(-Y)側には、開口121を閉塞するように蓋部材13が設けられている。この蓋部材13は、(+Y)方向側に閉塞面131を有している。この閉塞面131は処理チャンバ12の(-Y)側側面127と対向しながら蓋部材13の(+Y)方向への移動に伴って処理チャンバ12に移動する。そして、閉塞面131が(-Y)側側面127に設けられた開口121を閉塞する。これによって、気密性の処理容器が構成され、内部の処理空間SPで基板Sに対する高圧下での処理が可能となる。このように、本実施形態では、(-Y)側側面127および閉塞面131がそれぞれ本発明の「被閉塞面」および「閉塞面」の一例に相当している。なお、以下においては、処理チャンバ12の(-Y)側側面127を「被閉塞面127」と称する。 A lid member 13 is provided on the (-Y) side of the processing chamber 12 so as to close the opening 121. The lid member 13 has a closing surface 131 on the (+ Y) direction side. The closed surface 131 moves to the processing chamber 12 as the lid member 13 moves in the (+ Y) direction while facing the (−Y) side side surface 127 of the processing chamber 12. Then, the closing surface 131 closes the opening 121 provided on the (−Y) side side surface 127. As a result, an airtight processing container is configured, and the substrate S can be processed under high pressure in the internal processing space SP. As described above, in the present embodiment, the (−Y) side side surface 127 and the closed surface 131 correspond to an example of the “closed surface” and the “closed surface” of the present invention, respectively. In the following, the (−Y) side side surface 127 of the processing chamber 12 will be referred to as a “closed surface 127”.
 また、蓋部材13の閉塞面131の中央部には平板状の支持トレイ15が水平姿勢で取り付けられ、閉塞面131で保持されている。この支持トレイ15の上面は基板Sを載置可能な支持面となっている。蓋部材13は図示を省略する支持機構により、Y方向に水平移動自在に支持されている。 Further, a flat plate-shaped support tray 15 is attached in a horizontal position to the central portion of the closed surface 131 of the lid member 13, and is held by the closed surface 131. The upper surface of the support tray 15 is a support surface on which the substrate S can be placed. The lid member 13 is supported so as to be horizontally movable in the Y direction by a support mechanism (not shown).
 蓋部材13は、供給ユニット50に設けられた進退機構52により、処理チャンバ12に対してY方向に進退移動可能となっている。具体的には、進退機構52は、例えばリニアモータ、直動ガイド、ボールねじ機構、ソレノイド、エアシリンダ等の直動機構を有しており、このような直動機構が蓋部材13をY方向に移動させる。進退機構52は制御ユニット90からの制御指令に応じて動作する。 The lid member 13 can be moved back and forth in the Y direction with respect to the processing chamber 12 by the advancing / retreating mechanism 52 provided in the supply unit 50. Specifically, the advancing / retreating mechanism 52 has a linear motion mechanism such as a linear motor, a linear motion guide, a ball screw mechanism, a solenoid, and an air cylinder, and such a linear motion mechanism makes the lid member 13 in the Y direction. Move to. The advancing / retreating mechanism 52 operates in response to a control command from the control unit 90.
 蓋部材13が(-Y)方向に後退することにより処理チャンバ12から離間する。これにより、図1中の点線で示すように支持トレイ15が処理空間SPから開口121を介して外部へ引き出され、支持トレイ15へのアクセスが可能となる。すなわち、支持トレイ15への基板Sの載置、および支持トレイ15に載置されている基板Sの取り出しが可能となる。一方、蓋部材13が(+Y)方向に前進することにより、支持トレイ15は処理空間SP内へ収容される。支持トレイ15に基板Sが載置されている場合、基板Sは支持トレイ15とともに処理空間SPに搬入される。 The lid member 13 retracts in the (−Y) direction to separate from the processing chamber 12. As a result, as shown by the dotted line in FIG. 1, the support tray 15 is pulled out from the processing space SP through the opening 121, and the support tray 15 can be accessed. That is, the substrate S can be placed on the support tray 15 and the substrate S mounted on the support tray 15 can be taken out. On the other hand, as the lid member 13 advances in the (+ Y) direction, the support tray 15 is accommodated in the processing space SP. When the substrate S is placed on the support tray 15, the substrate S is carried into the processing space SP together with the support tray 15.
 蓋部材13が(+Y)方向に前進して閉塞面131が開口121を塞ぐことにより、処理空間SPが密閉される。蓋部材13の閉塞面131と処理チャンバ12の被閉塞面127との間にはシール部材122が設けられ、処理空間SPの気密状態が保持される。シール部材122は例えばゴム製であり、本実施形態では、処理チャンバ12の被閉塞面127において開口121を取り囲むように被閉塞面127の周縁部に設けられた溝部(図示省略)に取り付けられている。したがって、蓋部材13の水平方向Yへの移動にかかわらずシール部材122は処理チャンバ12に固定配置されている。なお、シール部材122の固定位置はこれに限定されるものではなく、蓋部材13の閉塞面131にシール部材122を固定してもよい。この場合、シール部材122は蓋部材13とともに(+Y)方向に移動して処理チャンバ12の被閉塞面127と密接してシール機能を果たす。 The processing space SP is sealed by the lid member 13 advancing in the (+ Y) direction and the closing surface 131 closing the opening 121. A seal member 122 is provided between the closed surface 131 of the lid member 13 and the closed surface 127 of the processing chamber 12, and the airtight state of the processing space SP is maintained. The seal member 122 is made of rubber, for example, and in the present embodiment, it is attached to a groove (not shown) provided on the peripheral edge of the closed surface 127 so as to surround the opening 121 in the closed surface 127 of the processing chamber 12. There is. Therefore, regardless of the movement of the lid member 13 in the horizontal direction Y, the seal member 122 is fixedly arranged in the processing chamber 12. The fixing position of the seal member 122 is not limited to this, and the seal member 122 may be fixed to the closing surface 131 of the lid member 13. In this case, the sealing member 122 moves in the (+ Y) direction together with the lid member 13 and performs a sealing function in close contact with the closed surface 127 of the processing chamber 12.
 また、図示しないロック機構により、蓋部材13は処理チャンバ12に対して固定される。このように、この実施形態では、蓋部材13は、開口121を閉塞して処理空間SPを密閉する閉塞状態(実線)と、開口121から大きく離間して基板Sの出し入れが可能となる離間状態(点線)との間で切り替えられる。そして、閉塞状態では、閉塞面131と被閉塞面127との間にシール部材122が介在し、気密性が確保される。 Further, the lid member 13 is fixed to the processing chamber 12 by a lock mechanism (not shown). As described above, in this embodiment, the lid member 13 is in a closed state (solid line) in which the opening 121 is closed to seal the processing space SP, and a separated state in which the substrate S can be taken in and out at a large distance from the opening 121. It can be switched between (dotted line) and. Then, in the closed state, the seal member 122 is interposed between the closed surface 131 and the closed surface 127, and airtightness is ensured.
 こうして処理空間SPの気密状態が確保された状態で、処理空間SP内で基板Sに対する処理が実行される。この実施形態では、供給ユニット50に設けられた流体供給部55から、処理流体として、超臨界処理に利用可能な物質の処理流体、例えば二酸化炭素を気体、液体または超臨界の状態で処理ユニット10に供給する。二酸化炭素は比較的低温、低圧で超臨界状態となり、また基板処理に多用される有機溶剤をよく溶かす性質を有するという点で、超臨界乾燥処理に好適な化学物質である。二酸化炭素が超臨界状態となる臨界点は、気圧(臨界圧力)が7.38MPa、温度(臨界温度)が31.1℃である。 In this way, the processing for the substrate S is executed in the processing space SP while the airtight state of the processing space SP is secured. In this embodiment, from the fluid supply unit 55 provided in the supply unit 50, the treatment fluid of a substance that can be used for supercritical treatment, for example, carbon dioxide, is treated as a treatment fluid in a gas, liquid or supercritical state. Supply to. Carbon dioxide is a chemical substance suitable for supercritical drying treatment because it is in a supercritical state at a relatively low temperature and low pressure and has a property of well dissolving an organic solvent often used for substrate treatment. The critical points at which carbon dioxide is in a supercritical state are an atmospheric pressure (critical pressure) of 7.38 MPa and a temperature (critical temperature) of 31.1 ° C.
 処理流体は処理空間SPに充填され、処理空間SP内が適当な温度および圧力に到達すると、処理空間SPは超臨界状態の処理流体で満たされる。こうして基板Sが処理チャンバ12内で超臨界流体により処理される。供給ユニット50には流体回収部53が設けられており、処理後の流体は流体回収部53により回収される。流体供給部55および流体回収部53の各部は制御ユニット90により制御され、図3に示す流れで処理流体を処理容器内で流通させる。すなわち、同図に示すように、処理流体を供給する流体供給部55は、処理空間SPの(+Y)側、つまり処理空間SPから見て開口121とは反対側に設けられた導入流路123,124に接続されている。より具体的には、処理空間SPに収容された基板Sの(+Y)側端部よりもさらに(+Y)側において、処理チャンバ12に第1導入流路123、第2導入流路124が形成されている。 The processing fluid is filled in the processing space SP, and when the inside of the processing space SP reaches an appropriate temperature and pressure, the processing space SP is filled with the processing fluid in a supercritical state. In this way, the substrate S is processed by the supercritical fluid in the processing chamber 12. The supply unit 50 is provided with a fluid recovery unit 53, and the treated fluid is collected by the fluid recovery unit 53. Each part of the fluid supply part 55 and the fluid recovery part 53 is controlled by the control unit 90, and the processing fluid is circulated in the processing container by the flow shown in FIG. That is, as shown in the figure, the fluid supply unit 55 for supplying the processing fluid is provided on the (+ Y) side of the processing space SP, that is, the introduction flow path 123 provided on the side opposite to the opening 121 when viewed from the processing space SP. , 124. More specifically, the first introduction flow path 123 and the second introduction flow path 124 are formed in the processing chamber 12 on the (+ Y) side of the (+ Y) side end of the substrate S housed in the processing space SP. Has been done.
 第1導入流路123はバルブ171を有する配管172により流体供給部55に接続されている。バルブ171が開成されることにより、流体供給部55からの処理流体が第1導入流路123に流れ込む。第1導入流路123は流体の流通方向を最終的に水平方向Yにして、処理空間SPの(+Y)側端部において処理空間SPに臨んで開口する第1導入口123aから処理流体を吐出する。 The first introduction flow path 123 is connected to the fluid supply unit 55 by a pipe 172 having a valve 171. When the valve 171 is opened, the processing fluid from the fluid supply unit 55 flows into the first introduction flow path 123. The first introduction flow path 123 finally sets the flow direction of the fluid to the horizontal direction Y, and discharges the processing fluid from the first introduction port 123a that opens facing the processing space SP at the (+ Y) side end of the processing space SP. do.
 一方、第2導入流路124はバルブ173を有する配管174により流体供給部55に接続されている。バルブ173が開成されることにより、流体供給部55からの処理流体が第2流路124に流れ込む。第2導入流路124は流体の流通方向を最終的に水平方向Yにして、処理空間SPの(+Y)側端部において処理空間SPに臨んで開口する第2導入口124aから処理流体を吐出する。 On the other hand, the second introduction flow path 124 is connected to the fluid supply unit 55 by a pipe 174 having a valve 173. When the valve 173 is opened, the processing fluid from the fluid supply unit 55 flows into the second flow path 124. The second introduction flow path 124 finally sets the flow direction of the fluid to the horizontal direction Y, and discharges the processing fluid from the second introduction port 124a which opens facing the processing space SP at the (+ Y) side end of the processing space SP. do.
 第1導入口123aは、処理空間SP内で保持される基板Sよりも上方の処理空間SPに臨んで開口している。一方、第2導入口124aは、処理空間SP内で保持される基板Sよりも下方、より厳密には基板Sを支持する支持トレイ15よりも下方の処理空間SPに臨んで開口している。第1導入口123aおよび第2導入口124aは、一定の開口幅をもってX方向に細長く延びるスリット状の開口であり、X方向においては基板Sの端部よりも外側まで延びている。したがって、第1導入口123aおよび第2導入口124aからそれぞれ吐出される処理流体は、上下方向(Z方向)に薄く、かつX方向には基板Sの幅よりも広い薄層状で(-Y)方向に向かう流れとして、処理空間SPに導入される。なお、最終的に第1導入口123a、第2導入口124aから吐出される処理流体の方向が概ね水平方向Yとなっていればよく、途中の流路形状は図示のものに限定されない。 The first introduction port 123a is open facing the processing space SP above the substrate S held in the processing space SP. On the other hand, the second introduction port 124a opens toward the processing space SP below the substrate S held in the processing space SP, more strictly below the support tray 15 that supports the substrate S. The first introduction port 123a and the second introduction port 124a are slit-shaped openings extending in the X direction with a certain opening width, and extend outward from the end portion of the substrate S in the X direction. Therefore, the processing fluids discharged from the first introduction port 123a and the second introduction port 124a are thin in the vertical direction (Z direction) and in the X direction in a thin layer shape wider than the width of the substrate S (−Y). It is introduced into the processing space SP as a directional flow. It is only necessary that the direction of the processing fluid finally discharged from the first introduction port 123a and the second introduction port 124a is the horizontal direction Y, and the shape of the flow path in the middle is not limited to the one shown in the drawing.
 基板Sの周囲を超臨界流体で満たすという処理の目的からは、処理空間SPが超臨界流体で満たされるまで処理流体の排出を行わないという選択肢もあり得る。しかしながら、このようにすると処理空間SP内で処理流体が滞留し、処理空間SP内に存在する不純物が基板Sに付着し基板Sを汚染するおそれがある。これを防止するためには、超臨界状態においても処理流体の排出を行い、基板Sに常時清浄な処理流体が供給されるようにすることが望ましい。 For the purpose of processing that the periphery of the substrate S is filled with the supercritical fluid, there may be an option that the processing fluid is not discharged until the processing space SP is filled with the supercritical fluid. However, if this is done, the processing fluid may stay in the processing space SP, and impurities existing in the processing space SP may adhere to the substrate S and contaminate the substrate S. In order to prevent this, it is desirable to discharge the processing fluid even in the supercritical state so that the substrate S is always supplied with a clean processing fluid.
 このために、処理空間SPの(-Y)側端部近傍には、処理流体を排出するための第1排出流路125および第2排出流路126が設けられている。具体的には、処理空間SPに収容される基板Sよりも(-Y)側の処理空間SPの天井面SPaに第1排出口125aが開口しており、これに連通する第1排出流路125が、バルブ175を有する配管176を介して流体回収部53に接続されている。バルブ175が開成されることにより、処理空間SP内の処理流体が第1排出流路125を介して流体回収部53へ排出される。 For this purpose, a first discharge flow path 125 and a second discharge flow path 126 for discharging the treatment fluid are provided in the vicinity of the (−Y) side end portion of the treatment space SP. Specifically, the first discharge port 125a is opened in the ceiling surface SPa of the processing space SP on the (−Y) side of the substrate S accommodated in the processing space SP, and the first discharge flow path communicating with the first discharge port 125a is opened. 125 is connected to the fluid recovery unit 53 via a pipe 176 having a valve 175. When the valve 175 is opened, the processing fluid in the processing space SP is discharged to the fluid recovery unit 53 via the first discharge flow path 125.
 一方、処理空間SPに収容される基板Sの(-Y)側端部よりもさらに(-Y)側の処理空間SPの底面SPbに第2排出口126aが開口しており、これに連通する第2排出流路126が、バルブ177を有する配管178を介して流体回収部53に接続されている。バルブ177が開成されることにより、処理空間SP内の処理流体が第2排出流路126を介して流体回収部53へ排出される。 On the other hand, a second discharge port 126a is opened in the bottom surface SPb of the processing space SP on the (-Y) side of the (-Y) side end of the substrate S accommodated in the processing space SP, and communicates with the second discharge port 126a. The second discharge flow path 126 is connected to the fluid recovery unit 53 via a pipe 178 having a valve 177. When the valve 177 is opened, the processing fluid in the processing space SP is discharged to the fluid recovery unit 53 via the second discharge flow path 126.
 第1排出口125aおよび第2排出口126aは、一定の開口幅をもってX方向に細長く延びるスリット状の開口であり、X方向においては基板Sの端部よりも外側まで延びている。Y方向においては、基板Sの(-Y)側端部よりもさらに(-Y)側で開口している。また、これらの配設位置の近傍では、処理空間SPは支持トレイ15により上下方向にほぼ分断されている。したがって、基板Sの上方を流れる処理流体は第1排出口125aから排出される一方、基板Sの下方を流れる処理流体は第2排出口126aから排出されることになる。 The first discharge port 125a and the second discharge port 126a are slit-shaped openings extending in the X direction with a certain opening width, and extend to the outside of the end portion of the substrate S in the X direction. In the Y direction, the substrate S is further opened on the (-Y) side of the (-Y) side end. Further, in the vicinity of these arrangement positions, the processing space SP is substantially divided in the vertical direction by the support tray 15. Therefore, the processing fluid flowing above the substrate S is discharged from the first discharge port 125a, while the processing fluid flowing below the substrate S is discharged from the second discharge port 126a.
 第1導入流路123に供給される処理流体の流量と、第1排出流路125から排出される処理流体の流量とが等しくなるように、バルブ171,175の開度調整が行われる。同様に、第2導入流路124に供給される処理流体の流量と、第2排出流路126から排出される処理流体の流量とが等しくなるように、バルブ173,177の開度調整が行われる。 The opening degree of the valves 171 and 175 is adjusted so that the flow rate of the processing fluid supplied to the first introduction flow path 123 and the flow rate of the processing fluid discharged from the first discharge flow path 125 are equal to each other. Similarly, the opening degrees of the valves 173 and 177 are adjusted so that the flow rate of the processing fluid supplied to the second introduction flow path 124 and the flow rate of the processing fluid discharged from the second discharge flow path 126 are equal to each other. Will be.
 これらの構成により、流体供給部55から第1導入流路123を介して導入される処理流体は、第1導入口123aからほぼ水平方向Yに吐出され、基板Sの上面に沿って流れて最終的に第1排出口125aから外部へ排出されて、最終的に流体回収部53に回収される。一方、流体供給部55から第2導入流路124を介して導入される処理流体は、第2導入口124aからほぼ水平方向Yに吐出され、支持トレイ15の下面に沿って流れて最終的に第2排出口126aから外部へ排出されて、最終的に流体回収部53に回収される。つまり、処理空間SP内では、基板Sの上方および支持トレイ15の下方のそれぞれに、(-Y)方向に向かう処理流体の層流が形成されると期待される。図3に示す白抜き矢印は、このような処理流体の流れを模式的に示したものである。 With these configurations, the processing fluid introduced from the fluid supply unit 55 via the first introduction flow path 123 is discharged from the first introduction port 123a in the substantially horizontal direction Y, flows along the upper surface of the substrate S, and finally flows. It is discharged to the outside from the first discharge port 125a, and finally collected by the fluid recovery unit 53. On the other hand, the processing fluid introduced from the fluid supply unit 55 via the second introduction flow path 124 is discharged from the second introduction port 124a in the substantially horizontal direction Y, flows along the lower surface of the support tray 15, and finally. It is discharged to the outside from the second discharge port 126a and finally collected by the fluid recovery unit 53. That is, in the processing space SP, it is expected that a laminar flow of the processing fluid directed in the (−Y) direction is formed above the substrate S and below the support tray 15, respectively. The white arrows shown in FIG. 3 schematically show the flow of such a processing fluid.
 このように、処理空間SP、特に基板Sの上方の空間において一方向に向かう処理流体の層流を形成することで、基板Sの周囲で乱流が生じるのを防止することができる。そのため、仮に基板Sの表面に液体が付着していたとしても、これが超臨界状態の処理流体に溶け込み下流側へ流されることで、乾燥後の基板Sに残留することは回避される。また、汚染源となる不純物が発生しやすい開口121が基板Sよりも下流側となるように処理流体の流通方向を設定することで、開口121まわりで発生した不純物が乱流によって上流側へ運ばれ基板Sに付着することが回避される。これにより、基板Sを汚染することなく良好に乾燥させることが可能である。 In this way, by forming a laminar flow of the processing fluid in one direction in the processing space SP, particularly in the space above the substrate S, it is possible to prevent turbulence from occurring around the substrate S. Therefore, even if the liquid adheres to the surface of the substrate S, it is prevented from remaining on the substrate S after drying because it dissolves in the processing fluid in the supercritical state and flows to the downstream side. Further, by setting the flow direction of the processing fluid so that the opening 121 in which impurities that are a pollution source are likely to be generated is on the downstream side of the substrate S, the impurities generated around the opening 121 are carried to the upstream side by turbulence. Adhesion to the substrate S is avoided. This makes it possible to satisfactorily dry the substrate S without contaminating it.
 超臨界状態の処理流体が処理チャンバ12内で冷やされて相変化するのを防止するため、処理チャンバ12内部には適宜の熱源が設けられることが好ましい。特に基板Sの周辺で意図せぬ相変化が生じるのを防止するために、この実施形態では、図1および図3に示すように、支持トレイ15にヒーター153が内蔵されている。ヒーター153は供給ユニット50の温度制御部56によって温度制御されている。また、温度制御部56は制御ユニット90からの制御指令に応じて作動し、流体供給部55から供給される処理流体の温度を制御する機能も有している。 In order to prevent the processing fluid in the supercritical state from being cooled in the processing chamber 12 and undergoing a phase change, it is preferable to provide an appropriate heat source inside the processing chamber 12. In particular, in order to prevent an unintended phase change from occurring around the substrate S, in this embodiment, as shown in FIGS. 1 and 3, a heater 153 is built in the support tray 15. The temperature of the heater 153 is controlled by the temperature control unit 56 of the supply unit 50. Further, the temperature control unit 56 operates in response to a control command from the control unit 90, and has a function of controlling the temperature of the processing fluid supplied from the fluid supply unit 55.
 処理空間SPは、支持トレイ15およびこれに支持される基板Sを受け入れ可能な形状および容積を有している。すなわち、処理空間SPは、水平方向Xには支持トレイ15の幅よりも広く、鉛直方向には支持トレイ15と基板Sとを合わせた高さよりも大きい矩形の断面形状と、支持トレイ15を受け入れ可能な奥行きとを有している。このように処理空間SPは支持トレイ15および基板Sを受け入れるだけの形状および容積を有しているが、支持トレイ15および基板Sと、処理空間SPの内壁面との間の隙間は僅かである。したがって、処理空間SPを充填するために必要な処理流体の量は比較的少なくて済む。 The processing space SP has a shape and volume that can accept the support tray 15 and the substrate S supported by the support tray 15. That is, the processing space SP accepts a rectangular cross-sectional shape that is wider than the width of the support tray 15 in the horizontal direction X and larger than the combined height of the support tray 15 and the substrate S in the vertical direction, and the support tray 15. It has a possible depth. As described above, the processing space SP has a shape and a volume sufficient to receive the support tray 15 and the substrate S, but the gap between the support tray 15 and the substrate S and the inner wall surface of the processing space SP is small. .. Therefore, the amount of processing fluid required to fill the processing space SP is relatively small.
 移載ユニット30は、図1に示すように、外部の搬送装置と支持トレイ15との間における基板Sの受け渡しを担う。この目的のために、移載ユニット30は、本体31と、昇降部材33と、ベース部材35と、複数のリフトピン37とを備えている。昇降部材33はZ方向に延びる柱状の部材であり、図示しない支持機構により、Z方向に移動自在に支持されている。昇降部材33の上部には略水平の上面を有するベース部材35が取り付けられており、ベース部材35の上面から上向きに、複数のリフトピン37が立設されている。リフトピン37の各々は、その上端部が基板Sの下面に当接することで基板Sを下方から水平姿勢に支持する。基板Sを水平姿勢で安定的に支持するために、上端部の高さが互いに等しい3以上のリフトピン37が設けられることが望ましい。 As shown in FIG. 1, the transfer unit 30 is responsible for transferring the substrate S between the external transfer device and the support tray 15. For this purpose, the transfer unit 30 includes a main body 31, an elevating member 33, a base member 35, and a plurality of lift pins 37. The elevating member 33 is a columnar member extending in the Z direction, and is movably supported in the Z direction by a support mechanism (not shown). A base member 35 having a substantially horizontal upper surface is attached to the upper part of the elevating member 33, and a plurality of lift pins 37 are erected upward from the upper surface of the base member 35. Each of the lift pins 37 supports the substrate S in a horizontal posture from below by abutting the upper end portion thereof on the lower surface of the substrate S. In order to stably support the substrate S in a horizontal posture, it is desirable that three or more lift pins 37 having the same height at the upper ends are provided.
 昇降部材33は、供給ユニット50に設けられたリフト昇降機構51により昇降移動可能となっている。具体的には、リフト昇降機構51は、例えばリニアモータ、直動ガイド、ボールねじ機構、ソレノイド、エアシリンダ等の直動機構を有しており、このような直動機構が昇降部材33をZ方向に移動させる。リフト昇降機構51は制御ユニット90からの制御指令に応じて動作する。 The elevating member 33 can be moved up and down by the lift elevating mechanism 51 provided in the supply unit 50. Specifically, the lift elevating mechanism 51 has, for example, a linear motor, a linear motion guide, a ball screw mechanism, a solenoid, an air cylinder, or the like, and such a linear motion mechanism Zs the elevating member 33. Move in the direction. The lift elevating mechanism 51 operates in response to a control command from the control unit 90.
 昇降部材33の昇降によりベース部材35が上下動し、これと一体的に複数のリフトピン37が上下動する。これにより、移載ユニット30と支持トレイ15との間での基板Sの受け渡しが実現される。 The base member 35 moves up and down by raising and lowering the elevating member 33, and a plurality of lift pins 37 move up and down integrally with the base member 35. As a result, the transfer of the substrate S between the transfer unit 30 and the support tray 15 is realized.
 蓋部材13が(-Y)方向に移動した離間状態にあるとき、図2に示すように、支持トレイ15は処理チャンバ12から外部空間へ引き出された状態となる。このときの支持トレイ15の下方に、リフトピン37を有するベース部材35が配置されている。支持トレイ15のうちリフトピン37の直上に相当する位置には、リフトピン37の直径よりも大径の貫通孔152が穿設されている。 When the lid member 13 is in a separated state moved in the (−Y) direction, the support tray 15 is in a state of being pulled out from the processing chamber 12 to the external space as shown in FIG. A base member 35 having a lift pin 37 is arranged below the support tray 15 at this time. A through hole 152 having a diameter larger than the diameter of the lift pin 37 is formed at a position of the support tray 15 immediately above the lift pin 37.
 ベース部材35が上昇すると、リフトピン37の上端は貫通孔152を通して支持トレイ15の支持面151よりも上方に到達する。この状態で、外部の搬送装置のハンドHにより支持され搬送されてくる基板Sがリフトピン37に受け渡される。ハンドHの退避後にリフトピン37が下降することにより、基板Sはリフトピン37から支持トレイ15へ受け渡される。基板Sの搬出は、上記と逆の手順により行うことができる。 When the base member 35 rises, the upper end of the lift pin 37 reaches above the support surface 151 of the support tray 15 through the through hole 152. In this state, the substrate S supported and transported by the hand H of the external transport device is delivered to the lift pin 37. When the lift pin 37 is lowered after the hand H is retracted, the substrate S is handed over from the lift pin 37 to the support tray 15. The substrate S can be carried out by the reverse procedure of the above.
 なお、図1中の符号54は処理チャンバ12の高さ位置、つまり鉛直方向Zにおける処理チャンバ12の位置を計測する高さセンサである。この高さセンサ54による計測結果は制御ユニット90に送られる。そして、制御ユニット90は当該計測結果に基づいて次に説明する高さ調整工程を実行する。 Reference numeral 54 in FIG. 1 is a height sensor that measures the height position of the processing chamber 12, that is, the position of the processing chamber 12 in the vertical direction Z. The measurement result by the height sensor 54 is sent to the control unit 90. Then, the control unit 90 executes the height adjusting step described below based on the measurement result.
 図4は第1実施形態で実行される高さ調整工程を示すフローチャートおよび動作模式図である。この高さ調整工程は、基板処理装置1の組立完了時、メンテナンス時や処理対象となる基板Sの種類や処理内容などが変更された時などのタイミングで実行される。また、高さ調整工程の実行は、制御ユニット90のCPU91が上記制御プログラムを実行し装置各部に以下に説明する動作を行わせることにより実現される。 FIG. 4 is a flowchart and an operation schematic diagram showing the height adjustment process executed in the first embodiment. This height adjusting step is executed at the timing when the assembly of the substrate processing apparatus 1 is completed, at the time of maintenance, or when the type or processing content of the substrate S to be processed is changed. Further, the execution of the height adjustment step is realized by the CPU 91 of the control unit 90 executing the control program and causing each part of the apparatus to perform the operation described below.
 高さ調整工程では、最初に、制御ユニット90からの制御指令に応じて進退機構52が蓋部材13を(-Y)方向に移動させる。これにより、蓋部材13と一緒に支持トレイ15が処理チャンバ12の外側に引き出されて処理空間SPから退避する(ステップS11)。そして、次のステップS12で、高さセンサ54が処理チャンバ12の高さ位置、つまりチャンバ高さを計測する。ここで、蓋部材13および支持トレイ15は予め設計された高さ位置で水平移動し、処理空間SPも予め設定された寸法で処理チャンバ12に設けられている。そこで、CPU91は、それらの高さ位置に関する設計値、高さセンサ54の計測結果、処理空間SPの各種寸法(同図中の符号Wは鉛直方向Zにおける幅)および基板Sの厚みに基づき、図4の右上段に示すように、上方隙間CLaおよび下方隙間CLbを算出する(ステップS13)。ここで、「上方隙間CLa」とは、鉛直方向Zにおける支持トレイ15に支持される基板Sの上面Saと処理空間SPの天井面SPaとの間隔を意味している。また、「下方隙間CLb」とは、鉛直方向Zにおける支持トレイ15の下面15bと処理空間SPの底面SPbとの間隔を意味している。 In the height adjustment step, first, the advancing / retreating mechanism 52 moves the lid member 13 in the (−Y) direction in response to a control command from the control unit 90. As a result, the support tray 15 is pulled out of the processing chamber 12 together with the lid member 13 and retracted from the processing space SP (step S11). Then, in the next step S12, the height sensor 54 measures the height position of the processing chamber 12, that is, the height of the chamber. Here, the lid member 13 and the support tray 15 move horizontally at a predetermined height position, and the processing space SP is also provided in the processing chamber 12 with preset dimensions. Therefore, the CPU 91 is based on the design values relating to their height positions, the measurement results of the height sensor 54, various dimensions of the processing space SP (reference numeral W in the figure is the width in the vertical direction Z), and the thickness of the substrate S. As shown in the upper right corner of FIG. 4, the upper gap CLa and the lower gap CLb are calculated (step S13). Here, the "upper clearance CLa" means the distance between the upper surface Sa of the substrate S supported by the support tray 15 in the vertical direction Z and the ceiling surface Spa of the processing space SP. Further, the "lower gap CLb" means the distance between the lower surface 15b of the support tray 15 and the bottom surface SPb of the processing space SP in the vertical direction Z.
 ここで、上方隙間CLaは、基板Sの上面Saに供給される処理流体の鉛直方向Zの幅であり、これが狭まると、基板処理の品質低下を招くおそれがある。つまり、上方隙間CLaが適正値を下回ると、基板Sの上面Saに供給される処理流体の流量や流速が大幅に低下する。その結果、上記置換が不完全となり、処理不良が発生することがある。また、支持トレイ15にはヒーター153が内蔵されているため、支持トレイ15の熱変形は不可避である。したがって、下方隙間CLbが0.5mmよりも狭まると、支持トレイ15が、処理チャンバ12に対してY方向に進退する際に、処理空間SPの底面SPbに接触する可能性があり、実使用上においては下方隙間CLbを1mm以上に調整するのが好適である。また、基板Sの処理効率を高めるという観点から、上方隙間CLaを下方隙間CLbよりも広げるのが望ましく、上方隙間CLaと下方隙間CLbとの合計値に対する上方隙間CLaの比率が65%ないし75%の範囲内となるように調整するのが好適である。 Here, the upper gap CLa is the width of the processing fluid supplied to the upper surface Sa of the substrate S in the vertical direction Z, and if this is narrowed, the quality of the substrate processing may deteriorate. That is, when the upper gap CLa is lower than the appropriate value, the flow rate and the flow velocity of the processing fluid supplied to the upper surface Sa of the substrate S are significantly reduced. As a result, the above substitution may be incomplete and processing defects may occur. Further, since the support tray 15 has a built-in heater 153, thermal deformation of the support tray 15 is unavoidable. Therefore, if the lower clearance CLb is narrower than 0.5 mm, the support tray 15 may come into contact with the bottom surface SPb of the processing space SP when advancing and retreating in the Y direction with respect to the processing chamber 12, and in actual use. It is preferable to adjust the lower clearance CLb to 1 mm or more. Further, from the viewpoint of improving the processing efficiency of the substrate S, it is desirable to widen the upper gap CLa more than the lower gap CLb, and the ratio of the upper gap CLa to the total value of the upper gap CLa and the lower gap CLb is 65% to 75%. It is preferable to adjust so that it is within the range of.
 そこで、本実施形態では、65%ないし75%の範囲を上記比率の適正範囲として定義し、CPU91がステップS13で算出された上方隙間CLaおよび下方隙間CLbに基づいて上記比率が適正範囲内に収まっているか否かを判定する(ステップS14)。例えば図4の右下段に示すように、上記比率(=100×CLa/(CLa+CLb))が適正範囲内に収まっていると判定すると、CPU91はそのまま高さ調整工程を終了する。 Therefore, in the present embodiment, the range of 65% to 75% is defined as the appropriate range of the above ratio, and the ratio is within the appropriate range based on the upper gap CLa and the lower gap CLb calculated by the CPU 91 in step S13. It is determined whether or not it is (step S14). For example, as shown in the lower right of FIG. 4, when it is determined that the above ratio (= 100 × CLa / (CLa + CLb)) is within an appropriate range, the CPU 91 ends the height adjustment step as it is.
 一方、例えば図4の右上段に示すように、上記比率が適正範囲から外れていると判定すると、CPU91は処理空間SPに対する支持トレイ15の相対高さ位置を補正した(ステップS15、S16)後で、高さ調整工程を終了する。すなわち、CPU91は、上記比率を適正範囲内に入れるために必要な処理チャンバ12の鉛直方向Zにおける変位量を補正移動量として算出する(ステップS15)。そして、CPU91は当該補正移動量に対応した制御指令をチャンバ昇降制御部57に与える。これを受け取ったチャンバ昇降制御部57が昇降アクチュエータ20を制御して処理チャンバ12を鉛直方向Zに補正移動量だけ移動させる。例えば図4の右上段に示すように上記比率が50%を下回っている場合、昇降アクチュエータ20により処理チャンバ12が(+Z)方向に移動される。 On the other hand, for example, as shown in the upper right of FIG. 4, when it is determined that the ratio is out of the appropriate range, the CPU 91 corrects the relative height position of the support tray 15 with respect to the processing space SP (steps S15 and S16). Then, the height adjustment process is completed. That is, the CPU 91 calculates the displacement amount of the processing chamber 12 in the vertical direction Z, which is necessary to keep the ratio within the appropriate range, as the correction movement amount (step S15). Then, the CPU 91 gives a control command corresponding to the corrected movement amount to the chamber elevating control unit 57. Upon receiving this, the chamber elevating control unit 57 controls the elevating actuator 20 to move the processing chamber 12 in the vertical direction Z by the corrected movement amount. For example, as shown in the upper right corner of FIG. 4, when the ratio is less than 50%, the elevating actuator 20 moves the processing chamber 12 in the (+ Z) direction.
 このような高さ調整工程が本発明の「第3工程」の一例に相当し、高さ調整工程によって支持トレイ15に支持される基板Sの鉛直方向Zにおける処理空間SPに対する相対位置は常に適正範囲に調整される。そして、このように調整された状態で図5に示す一連の処理が実行される。 Such a height adjusting step corresponds to an example of the "third step" of the present invention, and the relative position of the substrate S supported by the support tray 15 in the vertical direction Z by the height adjusting step with respect to the processing space SP is always appropriate. Adjusted to range. Then, a series of processes shown in FIG. 5 is executed in such an adjusted state.
 図5は、図1の基板処理装置を含む基板処理システムにより実行される処理の一部を示すフローチャートおよび動作模式図である。この基板処理装置1は、前工程において洗浄液により洗浄された基板Sを乾燥させる目的に使用される。具体的には以下の通りである。前工程で基板Sが洗浄液により洗浄された後(ステップS21)、イソプロピルアルコール(IPA)による液膜が表面に形成された状態で(ステップS22)、基板処理装置1に搬送されてくる(ステップS23)。 FIG. 5 is a flowchart and an operation schematic diagram showing a part of the processing executed by the substrate processing system including the substrate processing apparatus of FIG. This substrate processing apparatus 1 is used for the purpose of drying the substrate S washed with the cleaning liquid in the previous step. Specifically, it is as follows. After the substrate S is washed with the cleaning liquid in the previous step (step S21), the substrate S is conveyed to the substrate processing apparatus 1 in a state where a liquid film of isopropyl alcohol (IPA) is formed on the surface (step S22) (step S23). ).
 例えば基板Sの上面Saに微細パターンが形成されている場合、基板Sに残留付着している液体の表面張力によってパターンの倒壊が生じるおそれがある。また、不完全な乾燥によって基板Sの上面Saにウォーターマークが残留する場合がある。また、基板S表面が外気に触れることで酸化等の変質を生じる場合がある。このような問題を未然に回避するために、基板Sの上面Sa(パターン形成面)を液体または固体の表面層で覆った状態で搬送することがある。 For example, when a fine pattern is formed on the upper surface Sa of the substrate S, the pattern may collapse due to the surface tension of the liquid residually adhering to the substrate S. In addition, watermarks may remain on the upper surface Sa of the substrate S due to incomplete drying. Further, when the surface of the substrate S comes into contact with the outside air, deterioration such as oxidation may occur. In order to avoid such a problem, the upper surface Sa (pattern forming surface) of the substrate S may be transported in a state of being covered with a liquid or solid surface layer.
 例えば洗浄液が水を主成分とするものである場合には、これより表面張力が低く、かつ基板に対する腐食性が低い液体、例えばIPAやアセトン等の有機溶剤により液膜を形成した状態で搬送が実行される。すなわち、基板Sは水平状態に支持され、かつその上面に液膜が形成された状態で、基板処理装置1に搬送されてくる。 For example, when the cleaning liquid contains water as a main component, it can be transported in a state where a liquid film is formed by a liquid having a lower surface tension and less corrosiveness to the substrate, for example, an organic solvent such as IPA or acetone. Will be executed. That is, the substrate S is supported in a horizontal state and is conveyed to the substrate processing apparatus 1 in a state where a liquid film is formed on the upper surface thereof.
 基板Sは、パターン形成面を上面Saにして、しかも該上面Saが薄い液膜に覆われた状態で支持トレイ15に載置される(ステップS24)。支持トレイ15および蓋部材13が一体的に(+Y)方向に前進すると、基板Sを支持する支持トレイ15が処理チャンバ12内の処理空間SPに収容されるとともに、開口121が蓋部材13の閉塞面131により閉塞される(ステップS25)。このとき、図5の右側図面に示すように、支持トレイ15に支持された基板Sの鉛直方向Zにおける処理空間SPに対する相対位置は調整されており、常に上記比率(=100×CLa/(CLa+CLb))は適正範囲内に収まっている。つまり、支持トレイ15の熱変形量よりも十分に広い下方隙間CLbを確保しつつ、上方隙間CLaが下方隙間CLbよりも十分に広くなっている。したがって、基板Sの上面Saに供給される処理流体の流量や流速を次に説明する超臨界乾燥処理(ステップS26)に適した値とすることができる。このように、ステップS25、S26がそれぞれ本発明の「第1工程」および「第2工程」の一例に相当している。 The substrate S is placed on the support tray 15 with the pattern forming surface set to the upper surface Sa and the upper surface Sa covered with a thin liquid film (step S24). When the support tray 15 and the lid member 13 are integrally advanced in the (+ Y) direction, the support tray 15 that supports the substrate S is housed in the processing space SP in the processing chamber 12, and the opening 121 closes the lid member 13. It is closed by the surface 131 (step S25). At this time, as shown in the right drawing of FIG. 5, the relative position of the substrate S supported by the support tray 15 with respect to the processing space SP in the vertical direction Z is adjusted, and the above ratio (= 100 × CLa / (CLa + CLb) is always adjusted. )) Is within the proper range. That is, the upper gap CLa is sufficiently wider than the lower gap CLb while ensuring a lower gap CLb that is sufficiently wider than the amount of thermal deformation of the support tray 15. Therefore, the flow rate and the flow velocity of the processing fluid supplied to the upper surface Sa of the substrate S can be set to values suitable for the supercritical drying process (step S26) described below. As described above, steps S25 and S26 correspond to examples of the "first step" and the "second step" of the present invention, respectively.
 支持トレイ15とともに基板Sが搬入され密閉された処理空間SPでは、超臨界乾燥処理が実行されるが、その内容は以下の通りである。外部から液膜が形成された基板Sが処理チャンバ12に搬入されると、まず処理流体が気相状態で処理空間SPに導入される。処理空間SP内を排気しつつ気相の処理流体を送り込むことで、処理空間SPの雰囲気が処理流体により置換される。なお、本実施形態では、処理流体として二酸化炭素(CO2)が用いられる事例を説明するが、処理流体の種類はこれに限定されない。 In the processing space SP in which the substrate S is carried in together with the support tray 15 and sealed, supercritical drying processing is executed, and the contents are as follows. When the substrate S on which the liquid film is formed is carried into the processing chamber 12 from the outside, the processing fluid is first introduced into the processing space SP in a gas phase state. By sending the gas phase processing fluid while exhausting the inside of the processing space SP, the atmosphere of the processing space SP is replaced by the processing fluid. In this embodiment, a case where carbon dioxide (CO2) is used as the processing fluid will be described, but the type of the processing fluid is not limited to this.
 液相状態の処理流体が処理空間SPに導入される。液状の二酸化炭素は基板S上の液膜を構成する液体(有機溶剤;例えばIPA)をよく溶かし、基板Sの上面から遊離させる。処理空間SP内の液体を排出することで、基板Sに残留するIPAを排出することができる。次に、超臨界状態の処理流体が処理空間SPに導入される。処理チャンバ12の外部で予め超臨界状態とされた処理流体が導入されてもよく、また液状の処理流体で満たされた処理チャンバ12内の温度および圧力を臨界点以上とすることにより、処理流体を超臨界状態に至らせる態様でもよい。 The processing fluid in the liquid phase state is introduced into the processing space SP. The liquid carbon dioxide dissolves the liquid (organic solvent; for example, IPA) constituting the liquid film on the substrate S well and releases it from the upper surface of the substrate S. By discharging the liquid in the processing space SP, the IPA remaining on the substrate S can be discharged. Next, the processing fluid in the supercritical state is introduced into the processing space SP. A processing fluid previously set to a supercritical state may be introduced outside the processing chamber 12, or the temperature and pressure in the processing chamber 12 filled with the liquid processing fluid may be set to a critical point or higher. May be in a mode of reaching a supercritical state.
 その後、処理チャンバ12内が温度を維持しつつ減圧されることにより、超臨界流体は液相を介することなく気化して排出される。これにより基板Sは乾燥状態となる。この間、基板Sのパターン形成面が液相と気相との界面に曝されることがないので、液体の表面張力に起因するパターン倒壊の発生が防止される。また、超臨界流体は表面張力が極めて低いため、表面に微細なパターンが形成された基板であってもパターン内部まで処理流体がよく回り込む。このため、パターン内部に残留する液体等を効率よく置換することができる。このようにして基板Sが良好に乾燥される。 After that, the inside of the processing chamber 12 is depressurized while maintaining the temperature, so that the supercritical fluid is vaporized and discharged without going through the liquid phase. As a result, the substrate S becomes a dry state. During this time, since the pattern forming surface of the substrate S is not exposed to the interface between the liquid phase and the gas phase, the occurrence of pattern collapse due to the surface tension of the liquid is prevented. Further, since the surface tension of the supercritical fluid is extremely low, the processing fluid often wraps around the inside of the pattern even if the substrate has a fine pattern formed on the surface. Therefore, the liquid or the like remaining inside the pattern can be efficiently replaced. In this way, the substrate S is satisfactorily dried.
 そして、処理後の基板Sは後工程へ払い出される(ステップS27)。すなわち、蓋部材13が(-Y)方向へ移動することで支持トレイ15が処理チャンバ12から外部へ引き出され、移載ユニット30を介して外部の搬送装置へ基板Sが受け渡される。このとき、基板Sは乾燥した状態となっている。なお、後工程の内容は任意である。 Then, the processed substrate S is dispensed to a subsequent process (step S27). That is, when the lid member 13 moves in the (−Y) direction, the support tray 15 is pulled out from the processing chamber 12, and the substrate S is delivered to the external transfer device via the transfer unit 30. At this time, the substrate S is in a dry state. The content of the post-process is arbitrary.
 以上のように、上記第1実施形態では、支持トレイ15を(+Y)方向に前進させて処理対象となる基板Sを処理空間SPに格納する(第1工程)のに先立って、図4に示す高さ調整工程(第3工程)を実行している。このため、鉛直方向Zにおいて、支持トレイ15で支持される基板Sは処理空間SPに対して超臨界乾燥処理に適した位置に位置決めされる。つまり、支持トレイ15を処理空間SPの底面SPbと接触しない程度の下方隙間CLbを確保しつつ、上方隙間CLaを下方隙間CLbよりも十分に広げている。その上で処理流体を処理空間SPに供給して超臨界乾燥処理を実行している。その結果、処理空間SPでの処理の品質を高めることができる。 As described above, in the first embodiment, the support tray 15 is advanced in the (+ Y) direction, and the substrate S to be processed is stored in the processing space SP (first step). The indicated height adjustment step (third step) is being executed. Therefore, in the vertical direction Z, the substrate S supported by the support tray 15 is positioned at a position suitable for supercritical drying treatment with respect to the processing space SP. That is, the upper gap CLa is sufficiently wider than the lower gap CLb while securing the lower gap CLb such that the support tray 15 does not come into contact with the bottom surface SPb of the processing space SP. Then, the processing fluid is supplied to the processing space SP to perform the supercritical drying process. As a result, the quality of processing in the processing space SP can be improved.
 また、上記第1実施形態では、高さ調整工程では、シール部材122が取り付けられた被閉塞面127に対して蓋部材13を(-Y)方向に後退させた(ステップS11)後で処理チャンバ12を鉛直方向Zに昇降させている(ステップS16)。したがって、シール部材122に対してダメージを与えることなく、鉛直方向Zにおける基板Sに対する処理空間SPの相対位置を調整することができる。なお、シール部材122の取付を被閉塞面127ではなく、蓋部材13の閉塞面131としてもよく、この場合、シール部材122を閉塞面131に取り付けたまま蓋部材13を(-Y)方向に後退させた後で処理チャンバ12を鉛直方向Zに昇降させるのが望ましい。 Further, in the first embodiment, in the height adjusting step, the lid member 13 is retracted in the (−Y) direction with respect to the closed surface 127 to which the seal member 122 is attached (step S11), and then the processing chamber is processed. 12 is moved up and down in the vertical direction Z (step S16). Therefore, the relative position of the processing space SP with respect to the substrate S in the vertical direction Z can be adjusted without damaging the seal member 122. The seal member 122 may be attached to the closed surface 131 of the lid member 13 instead of the closed surface 127. In this case, the lid member 13 may be attached in the (−Y) direction while the seal member 122 is attached to the closed surface 131. It is desirable to move the processing chamber 12 up and down in the vertical direction Z after retracting.
 さらに、上記第1実施形態では、処理チャンバ12の外側面のうち(-Z)方向を向いた下面に昇降アクチュエータ20を接続し、処理チャンバ12を外側から昇降させている。したがって、処理空間SPを清浄に保ちながら当該処理空間SPに対して基板Sを超臨界乾燥処理に適した位置に位置決めすることができる。なお、昇降アクチュエータ20を接続する箇所については、処理チャンバ12の外側面のうち被閉塞面127以外であれば、任意である。 Further, in the first embodiment, the elevating actuator 20 is connected to the lower surface of the outer surface of the processing chamber 12 facing the (-Z) direction, and the processing chamber 12 is moved up and down from the outside. Therefore, the substrate S can be positioned at a position suitable for supercritical drying processing with respect to the processing space SP while keeping the processing space SP clean. The location where the elevating actuator 20 is connected is arbitrary as long as it is the outer surface of the processing chamber 12 other than the closed surface 127.
 以上説明したように、第1実施形態の基板処理装置1においては、処理チャンバ12および蓋部材13がそれぞれ本発明の「容器本体」および「蓋部」の一例に相当している。また、昇降アクチュエータ20が本発明の「鉛直移動機構」および「第1昇降部材」の一例に相当している。また、進退機構52が本発明の「水平移動機構」の一例に相当している。また、上方隙間CLaおよび下方隙間CLbがそれぞれ本発明の「第1隙間」および「第2隙間」の一例に相当している。 As described above, in the substrate processing apparatus 1 of the first embodiment, the processing chamber 12 and the lid member 13 correspond to an example of the "container body" and the "cover portion" of the present invention, respectively. Further, the elevating actuator 20 corresponds to an example of the "vertical movement mechanism" and the "first elevating member" of the present invention. Further, the advancing / retreating mechanism 52 corresponds to an example of the "horizontal movement mechanism" of the present invention. Further, the upper gap CLa and the lower gap CLb correspond to an example of the "first gap" and the "second gap" of the present invention, respectively.
 なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、昇降アクチュエータ20が処理チャンバ12全体と接続されているため、処理チャンバ12は水平姿勢のまま鉛直方向Zに昇降するのみである。これに対し、図6に示すように、昇降アクチュエータ20を複数の昇降部材21~24で構成するとともにチャンバ昇降制御部57により昇降部材21~24を個々に制御するように構成してもよい(第2実施形態)。この第2実施形態では、図6に示すように、処理チャンバ12の下面の四隅に対応して昇降部材21~24が台座11上に固定されている。このため、例えば基板Sが若干傾斜した姿勢で処理空間SPに挿入された場合、その基板Sの傾斜方向および傾斜量に応じて昇降部材21~24による鉛直方向Zにおける処理チャンバ12の昇降量をそれぞれ制御することが可能である。このような個別制御によって、基板Sの傾きや撓みなどが発生している場合であっても、処理空間SPに対して基板Sを超臨界乾燥処理に適した位置に位置決めするだけなく、常に処理空間SPを基板Sとほぼ平行に位置決めすることができる。これによって、基板Sの上面全体にわたって上方隙間CLaを均一に調整することができる。その結果、処理流体による超臨界乾燥処理を基板Sの上面全体に対して均質に施すことができる。 It should be noted that the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, in the above embodiment, since the elevating actuator 20 is connected to the entire processing chamber 12, the processing chamber 12 only elevates and elevates in the vertical direction Z while maintaining a horizontal posture. On the other hand, as shown in FIG. 6, the elevating actuator 20 may be configured to be composed of a plurality of elevating members 21 to 24, and the elevating members 21 to 24 may be individually controlled by the chamber elevating control unit 57 (. 2nd embodiment). In this second embodiment, as shown in FIG. 6, the elevating members 21 to 24 are fixed on the pedestal 11 corresponding to the four corners of the lower surface of the processing chamber 12. Therefore, for example, when the substrate S is inserted into the processing space SP in a slightly inclined posture, the amount of elevation of the processing chamber 12 in the vertical direction Z by the elevating members 21 to 24 is increased according to the inclination direction and the amount of inclination of the substrate S. Each can be controlled. Even if the substrate S is tilted or bent by such individual control, the substrate S is not only positioned at a position suitable for supercritical drying processing with respect to the processing space SP, but is always processed. The space SP can be positioned substantially parallel to the substrate S. Thereby, the upper gap CLa can be uniformly adjusted over the entire upper surface of the substrate S. As a result, the supercritical drying treatment with the treatment fluid can be uniformly applied to the entire upper surface of the substrate S.
 また、上記実施形態では、処理チャンバ12の外周面のうち被閉塞面127を除く外周面に鉛直移動機構(昇降アクチュエータ20)を接続している。しかしながら、これに代えて、またはこれに加えて蓋部材13の外周面のうち閉塞面131を除く外周面に昇降アクチュエータなどの第2昇降部材を含む鉛直移動機構を接続し蓋部材13を鉛直方向Zに昇降させてもよい。これにより、処理空間SPに対して基板Sを超臨界乾燥処理に適した位置に位置決めすることができる。 Further, in the above embodiment, the vertical movement mechanism (elevating actuator 20) is connected to the outer peripheral surface of the processing chamber 12 excluding the closed surface 127. However, instead of or in addition to this, a vertical movement mechanism including a second elevating member such as an elevating actuator is connected to the outer peripheral surface of the outer peripheral surface of the lid member 13 excluding the closed surface 131 to connect the lid member 13 in the vertical direction. It may be moved up and down to Z. As a result, the substrate S can be positioned at a position suitable for supercritical drying processing with respect to the processing space SP.
 また、上記実施形態では、高さセンサ54による計測結果(処理チャンバ12の高さ位置)に基づいて高さ調整工程を実行している。しかしながら、これに代えて、またはこれに加えて処理流体の排出流量に基づいて高さ調整工程を実行してもよい。例えば、第1排出口125aから排出される処理流体の流量と、第2排出口126aから排出される処理流体の流量とを測定する測定部を設け、当該測定部による測定結果に基づき、蓋部材13を処理チャンバ12に対して相対的に鉛直方向Zに移動させるもよい。 Further, in the above embodiment, the height adjustment step is executed based on the measurement result (height position of the processing chamber 12) by the height sensor 54. However, alternative or in addition to this, the height adjustment step may be performed based on the discharge flow rate of the processing fluid. For example, a measuring unit for measuring the flow rate of the processing fluid discharged from the first discharge port 125a and the flow rate of the processing fluid discharged from the second discharge port 126a is provided, and the lid member is provided based on the measurement result by the measuring unit. 13 may be moved in the vertical direction Z relative to the processing chamber 12.
 さらに、上記実施形態では、超臨界処理用の処理流体として二酸化炭素を、また液膜を形成するための液体としてIPAを用いている。しかしながら、これは単なる例示であり、用いられる化学物質はこれらに限定されるものではない。 Further, in the above embodiment, carbon dioxide is used as a treatment fluid for supercritical treatment, and IPA is used as a liquid for forming a liquid film. However, this is merely an example, and the chemical substances used are not limited thereto.
 以上、特定の実施例に沿って発明を説明したが、この説明は限定的な意味で解釈されることを意図したものではない。発明の説明を参照すれば、本発明のその他の実施形態と同様に、開示された実施形態の様々な変形例が、この技術に精通した者に明らかとなるであろう。故に、添付の特許請求の範囲は、発明の真の範囲を逸脱しない範囲内で、当該変形例または実施形態を含むものと考えられる。 The invention has been described above according to a specific embodiment, but this description is not intended to be interpreted in a limited sense. With reference to the description of the invention, as with other embodiments of the invention, various variations of the disclosed embodiments will be apparent to those familiar with the art. Therefore, the appended claims are considered to include such modifications or embodiments without departing from the true scope of the invention.
 この発明は、容器本体の処理空間に基板を収容しながら処理空間に処理流体を供給して基板を処理する基板処理技術全般に好適に適用することができる。 The present invention can be suitably applied to all substrate processing techniques for processing a substrate by supplying a processing fluid to the processing space while accommodating the substrate in the processing space of the container body.
 1…基板処理装置
 10…処理ユニット
 12…処理チャンバ(容器本体)
 13…蓋部材(蓋部)
 15…支持トレイ
 15b…(支持トレイ15の)下面
 20…昇降アクチュエータ(鉛直移動機構)
 21~24…昇降部材(鉛直移動機構)
 52…進退機構(水平移動機構)
 54…高さセンサ
 55…流体供給部
 121…(容器本体の)開口
 122…シール部材
 123…第1導入流路
 123a…第1導入口
 124…第2導入流路
 124a…第2導入口
 125…第1排出流路
 125a…第1排出口
 126…第2排出流路
 126a…第2排出口
 127…(容器本体の)被閉塞面
 131…(蓋部の)閉塞面
 CLa…上方隙間(第1隙間)
 CLb…下方隙間(第2隙間)
 S…基板
 Sa…(基板Sの)上面
 SP…処理空間
 SPa…(処理空間SPの)天井面
 SPb…(処理空間SPの)底面
 Z…鉛直方向
1 ... Substrate processing device 10 ... Processing unit 12 ... Processing chamber (container body)
13 ... Closure member (closure part)
15 ... Support tray 15b ... Bottom surface (of support tray 15) 20 ... Elevating actuator (vertical movement mechanism)
21 to 24 ... Elevating member (vertical movement mechanism)
52 ... Advance / retreat mechanism (horizontal movement mechanism)
54 ... Height sensor 55 ... Fluid supply unit 121 ... Opening (of the container body) 122 ... Seal member 123 ... First introduction flow path 123a ... First introduction port 124 ... Second introduction flow path 124a ... Second introduction port 125 ... 1st discharge flow path 125a ... 1st discharge port 126 ... 2nd discharge flow path 126a ... 2nd discharge port 127 ... Closed surface 131 ... (of the container body) Closed surface CLa ... Upper gap (first) gap)
CLb ... Lower gap (second gap)
S ... Substrate Sa ... Top surface SP (of substrate S) SP ... Processing space SPa ... Ceiling surface SPb ... (of processing space SP) Bottom surface Z ... Vertical direction

Claims (12)

  1.  水平姿勢の基板の下面を支持する平板状の支持トレイと、
     前記基板を支持する前記支持トレイを収容可能な処理空間および前記処理空間に連通し前記支持トレイを通過させるための開口が側方に設けられた容器本体と、
     前記支持トレイを保持しながら前記開口を閉塞可能に設けられる蓋部と、
     前記蓋部を前記容器本体に対して相対的に鉛直方向に移動させることにより、前記支持トレイに支持された基板の前記鉛直方向における前記処理空間に対する相対位置を調整する鉛直移動機構と、
    を備えることを特徴とする基板処理装置。
    A flat plate-shaped support tray that supports the lower surface of the board in a horizontal position,
    A processing space that can accommodate the support tray that supports the substrate, and a container body that communicates with the processing space and has an opening for passing the support tray on the side.
    A lid portion provided so as to be able to close the opening while holding the support tray, and
    A vertical movement mechanism that adjusts the relative position of the substrate supported by the support tray in the vertical direction with respect to the processing space by moving the lid portion in the vertical direction relative to the container body.
    A substrate processing apparatus characterized by comprising.
  2.  請求項1に記載の基板処理装置であって、
     前記鉛直移動機構は、前記鉛直方向において、前記支持トレイに支持された基板の上面と前記容器本体との間に形成される第1隙間が前記支持トレイの下面と前記容器本体との間に形成される第2隙間よりも広くなるように、前記相対位置を調整する基板処理装置。
    The substrate processing apparatus according to claim 1.
    In the vertical movement mechanism, in the vertical direction, a first gap formed between the upper surface of the substrate supported by the support tray and the container body is formed between the lower surface of the support tray and the container body. A substrate processing device that adjusts the relative position so as to be wider than the second gap.
  3.  請求項2に記載の基板処理装置であって、
     前記鉛直移動機構は、前記第1隙間と前記第2隙間との合計値に対する前記第1隙間の比率が65%以上75%以下である基板処理装置。
    The substrate processing apparatus according to claim 2.
    The vertical movement mechanism is a substrate processing apparatus in which the ratio of the first gap to the total value of the first gap and the second gap is 65% or more and 75% or less.
  4.  請求項1ないし3のいずれか一項に記載の基板処理装置であって、
     前記容器本体は、中央部に前記開口が設けられる被閉塞面を有し、
     前記鉛直移動機構は、前記容器本体のうち前記被閉塞面を除く外周面に接続されて前記容器本体を昇降させる第1昇降部材を有する基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 3.
    The container body has a closed surface provided with the opening in the center thereof.
    The vertical movement mechanism is a substrate processing apparatus having a first elevating member connected to an outer peripheral surface of the container body excluding the closed surface to raise and lower the container body.
  5.  請求項1ないし4のいずれか一項に記載の基板処理装置であって、
     前記蓋部は、前記容器本体と対向して前記開口を閉塞可能な閉塞面を有するとともに、前記閉塞面で前記支持トレイを保持し、
     前記鉛直移動機構は、前記蓋部のうち前記閉塞面を除く外周面に接続されて前記蓋部を昇降させる第2昇降部材を有する基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 4.
    The lid portion has a closing surface that faces the container body and can close the opening, and holds the support tray on the closing surface.
    The vertical movement mechanism is a substrate processing apparatus having a second elevating member connected to an outer peripheral surface of the lid portion excluding the closed surface to elevate the lid portion.
  6.  請求項1ないし3のいずれか一項に記載の基板処理装置であって、
     前記容器本体に対して前記蓋部を水平方向に前進させることにより前記蓋部に保持される前記支持トレイを前記処理空間に挿入するとともに前記蓋部で前記開口を閉塞させ、前記容器本体に対して前記蓋部を水平方向に後退させることにより前記蓋部に保持される前記支持トレイを前記処理空間から引き出す水平移動機構と、
     前記容器本体と、前記水平移動機構により前進された前記蓋部との間で前記開口を取り囲むように配置されるシール部材と、をさらに備え、
     前記容器本体は、中央部に前記開口が設けられる被閉塞面を有し、
     前記蓋部は、前記被閉塞面と対向して前記開口を閉塞可能な閉塞面を有するとともに、前記閉塞面の中央部で前記支持トレイを保持し、
     前記シール部材は、前記被閉塞面の周縁部に取り付けられ、前記水平移動機構により前進してきた前記蓋部と密接して前記処理空間を密閉する基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 3.
    The support tray held by the lid portion is inserted into the processing space by advancing the lid portion horizontally with respect to the container body, and the opening is closed by the lid portion so as to the container body. A horizontal movement mechanism for pulling out the support tray held by the lid portion from the processing space by retracting the lid portion in the horizontal direction.
    Further comprising a sealing member arranged to surround the opening between the container body and the lid portion advanced by the horizontal movement mechanism.
    The container body has a closed surface provided with the opening in the central portion.
    The lid portion has a closed surface that faces the closed surface and can close the opening, and holds the support tray at the center of the closed surface.
    The sealing member is a substrate processing apparatus attached to the peripheral edge of the closed surface and in close contact with the lid portion advanced by the horizontal movement mechanism to seal the processing space.
  7.  請求項1ないし3のいずれか一項に記載の基板処理装置であって、
     前記容器本体に対して保持前記蓋部を水平方向に前進させることにより前記蓋部に保持される前記支持トレイを前記処理空間に挿入するとともに前記蓋部で前記開口を閉塞させ、前記容器本体に対して前記蓋部を水平方向に後退させることにより前記蓋部に保持される前記支持トレイを前記処理空間から引き出す水平移動機構と、
     前記容器本体と、前記水平移動機構により前進された前記蓋部との間で前記開口を取り囲むように配置されるシール部材と、をさらに備え、
     前記容器本体は、中央部に前記開口が設けられる被閉塞面を有し、
     前記蓋部は、前記被閉塞面と対向して前記開口を閉塞可能な閉塞面を有するとともに、前記閉塞面の中央部で前記支持トレイを保持し、
     前記シール部材は、前記閉塞面の周縁部に取り付けられ、前記水平移動機構により前記蓋部と一体的に前進して前記被閉塞面の周縁部と密接して前記処理空間を密閉する基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 3.
    Holding with respect to the container body The support tray held by the lid portion is inserted into the processing space by advancing the lid portion in the horizontal direction, and the opening is closed by the lid portion to form the container body. On the other hand, a horizontal movement mechanism for pulling out the support tray held by the lid portion from the processing space by retracting the lid portion in the horizontal direction.
    Further comprising a sealing member arranged to surround the opening between the container body and the lid portion advanced by the horizontal movement mechanism.
    The container body has a closed surface provided with the opening in the central portion.
    The lid portion has a closed surface that faces the closed surface and can close the opening, and holds the support tray at the center of the closed surface.
    The sealing member is attached to the peripheral edge portion of the closed surface, and is integrally advanced with the lid portion by the horizontal moving mechanism to be in close contact with the peripheral edge portion of the closed surface to seal the processing space. ..
  8.  請求項1ないし7のいずれか一項に記載の基板処理装置であって、
     前記処理空間に処理流体を供給する流体供給部をさらに備え、
     前記容器本体には、
     前記処理空間に前記処理流体を導入するための導入口として、平面視において前記基板の一端部よりも外側で、前記処理空間のうち前記基板よりも上方の空間に臨んで開口する第1導入口と、
     前記一端部よりも外側で、前記処理空間のうち前記支持トレイよりも下方の空間に臨んで開口する第2導入口と、
    が設けられる基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 7.
    Further provided with a fluid supply unit for supplying the processing fluid to the processing space,
    The container body has
    As an introduction port for introducing the processing fluid into the processing space, a first introduction port that opens to face the space above the substrate in the processing space outside one end of the substrate in a plan view. When,
    A second introduction port that opens to face the space below the support tray in the processing space outside the one end.
    Board processing device provided with.
  9.  請求項1ないし7のいずれか一項に記載の基板処理装置であって、
     平面視において前記基板の一端部よりも外側から前記処理空間に処理流体を供給する流体供給部をさらに備え、
     前記容器本体には、
     前記処理空間から前記処理流体を排出するための排出口として、平面視において前記基板の前記一端部とは反対側の他端部よりも外側で、前記処理空間のうち前記支持トレイよりも上方の空間に臨んで開口する第1排出口と、
     前記他端部よりも外側で、前記処理空間のうち前記支持トレイよりも下方の空間に臨んで開口する第2排出口と、
    が設けられる基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 7.
    Further, a fluid supply unit for supplying a processing fluid to the processing space from the outside of one end of the substrate in a plan view is provided.
    The container body has
    As a discharge port for discharging the processing fluid from the processing space, it is outside the other end of the substrate opposite to the one end in a plan view, and above the support tray in the processing space. The first outlet that opens facing the space,
    A second discharge port that opens to face the space below the support tray in the processing space outside the other end.
    Board processing device provided with.
  10.  請求項9に記載の基板処理装置であって、
     前記第1排出口から排出される前記処理流体の流量と、前記第2排出口から排出される前記処理流体の流量とを測定する測定部をさらに備え、
     前記鉛直移動機構は、前記測定部による測定結果に基づき、前記蓋部を前記容器本体に対して相対的に鉛直方向に移動させる基板処理装置。
    The substrate processing apparatus according to claim 9.
    Further, a measuring unit for measuring the flow rate of the processing fluid discharged from the first discharge port and the flow rate of the processing fluid discharged from the second discharge port is provided.
    The vertical movement mechanism is a substrate processing device that moves the lid portion in the vertical direction relative to the container body based on the measurement result by the measurement unit.
  11.  請求項1ないし7のいずれか一項に記載の基板処理装置であって、
     前記処理空間に超臨界処理用の処理流体を供給する流体供給部をさらに備える基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 7.
    A substrate processing apparatus further comprising a fluid supply unit that supplies a processing fluid for supercritical processing to the processing space.
  12.  水平姿勢の基板の下面を支持する平板状の支持トレイを保持した蓋部を水平方向に移動させることで、容器本体の開口を介して前記支持トレイを前記容器本体の処理空間に収容するとともに前記蓋部により前記開口を閉塞させる第1工程と、
     前記蓋部により前記開口を閉塞された前記容器本体の前記処理空間内で処理流体によって前記基板を処理する第2工程と、
     前記第1工程に先立って、前記蓋部を前記容器本体に対して相対的に鉛直方向に移動させることにより、前記支持トレイに支持された基板の前記鉛直方向における前記処理空間に対する相対位置を調整する第3工程と、
    を備えることを特徴とする基板処理方法。
     
    By moving the lid portion holding the flat plate-shaped support tray that supports the lower surface of the substrate in the horizontal posture in the horizontal direction, the support tray is accommodated in the processing space of the container body through the opening of the container body, and the support tray is accommodated in the processing space of the container body. The first step of closing the opening with the lid and
    A second step of treating the substrate with a treatment fluid in the treatment space of the container body whose opening is closed by the lid portion.
    Prior to the first step, the lid portion is moved in the vertical direction relative to the container body to adjust the relative position of the substrate supported by the support tray in the vertical direction with respect to the processing space. The third step to do and
    A substrate processing method comprising.
PCT/JP2021/043391 2020-11-30 2021-11-26 Substrate processing device and substrate processing method WO2022114127A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237017247A KR20230085211A (en) 2020-11-30 2021-11-26 Substrate processing apparatus and substrate processing method
CN202180079981.1A CN116529862A (en) 2020-11-30 2021-11-26 Substrate processing apparatus and substrate processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-197880 2020-11-30
JP2020197880A JP2022086069A (en) 2020-11-30 2020-11-30 Substrate processing device and substrate processing method

Publications (1)

Publication Number Publication Date
WO2022114127A1 true WO2022114127A1 (en) 2022-06-02

Family

ID=81755637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043391 WO2022114127A1 (en) 2020-11-30 2021-11-26 Substrate processing device and substrate processing method

Country Status (5)

Country Link
JP (1) JP2022086069A (en)
KR (1) KR20230085211A (en)
CN (1) CN116529862A (en)
TW (1) TWI804076B (en)
WO (1) WO2022114127A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020127513A (en) * 2019-02-07 2020-08-27 京楽産業.株式会社 Game machine
JP2020127512A (en) * 2019-02-07 2020-08-27 京楽産業.株式会社 Game machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157746A (en) * 2016-03-03 2017-09-07 東京エレクトロン株式会社 Substrate processing device, substrate processing method, and storage medium
JP2018530919A (en) * 2015-10-04 2018-10-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Process chamber with reduced volume
JP2019067863A (en) * 2017-09-29 2019-04-25 東京エレクトロン株式会社 Substrate processing apparatus
JP2019091772A (en) * 2017-11-14 2019-06-13 東京エレクトロン株式会社 Cleaning apparatus and cleaning method for substrate processing apparatus
JP2020170873A (en) * 2016-11-04 2020-10-15 東京エレクトロン株式会社 Substrate processing device, substrate processing method and recording medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6015738B2 (en) 2014-11-25 2016-10-26 東京エレクトロン株式会社 Processing apparatus, processing method, and storage medium
US10872789B2 (en) * 2017-09-28 2020-12-22 Taiwan Semiconductor Manufacturing Co., Ltd. Wafer cooling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018530919A (en) * 2015-10-04 2018-10-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Process chamber with reduced volume
JP2017157746A (en) * 2016-03-03 2017-09-07 東京エレクトロン株式会社 Substrate processing device, substrate processing method, and storage medium
JP2020170873A (en) * 2016-11-04 2020-10-15 東京エレクトロン株式会社 Substrate processing device, substrate processing method and recording medium
JP2019067863A (en) * 2017-09-29 2019-04-25 東京エレクトロン株式会社 Substrate processing apparatus
JP2019091772A (en) * 2017-11-14 2019-06-13 東京エレクトロン株式会社 Cleaning apparatus and cleaning method for substrate processing apparatus

Also Published As

Publication number Publication date
JP2022086069A (en) 2022-06-09
CN116529862A (en) 2023-08-01
KR20230085211A (en) 2023-06-13
TW202236479A (en) 2022-09-16
TWI804076B (en) 2023-06-01

Similar Documents

Publication Publication Date Title
WO2022114127A1 (en) Substrate processing device and substrate processing method
US20100022093A1 (en) Vacuum processing apparatus, method of operating same and storage medium
JP4642619B2 (en) Substrate processing system and method
KR101871006B1 (en) Method and apparatus for drying under reduced pressure
KR101664939B1 (en) Load lock device
KR101878992B1 (en) Hydrophobizing device, hydrophobizing method and recordable medium for computer
WO2009107664A1 (en) Load lock apparatus and substrate cooling method
JP3902583B2 (en) Purge system and purge method inside portable airtight container
JP2009032878A (en) Apparatus and method for processing substrate, and storage medium
US20140157722A1 (en) Lid opening/closing system for closed container, and substrate processing method using the same
KR101935953B1 (en) Apparatus and Method for treating substrate
JP2011035199A (en) Substrate mounting mechanism and substrate processing apparatus using the same
US20110179717A1 (en) Substrate processing apparatus
KR101500050B1 (en) Method and apparatus for cooling subject to be processed, and computer-readable storage medium
KR101964655B1 (en) Apparatus and Method for treating substrate
JP4830995B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
WO2021171810A1 (en) Substrate treatment device and substrate treatment method
KR102378336B1 (en) Bake apparatus and bake method
US20200335385A1 (en) Substrate processing apparatus
JP2021125471A (en) Substrate processing apparatus
US20220090859A1 (en) Apparatus and method for treating substrate
TWI796903B (en) Substrate processing apparatus and substrate processing method
JP2002173775A (en) Semiconductor manufacturing apparatus, and manufacturing method of semiconductor apparatus
US20220290921A1 (en) Method and apparatus for treating a substrate
US20230162994A1 (en) Apparatus for treating substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898099

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237017247

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180079981.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21898099

Country of ref document: EP

Kind code of ref document: A1