WO2022113694A1 - Rotary table device - Google Patents

Rotary table device Download PDF

Info

Publication number
WO2022113694A1
WO2022113694A1 PCT/JP2021/040725 JP2021040725W WO2022113694A1 WO 2022113694 A1 WO2022113694 A1 WO 2022113694A1 JP 2021040725 W JP2021040725 W JP 2021040725W WO 2022113694 A1 WO2022113694 A1 WO 2022113694A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
row
bearing
base
motor
Prior art date
Application number
PCT/JP2021/040725
Other languages
French (fr)
Japanese (ja)
Inventor
拓明 下吉
公介 戸張
Original Assignee
日本トムソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本トムソン株式会社 filed Critical 日本トムソン株式会社
Priority to KR1020237005624A priority Critical patent/KR20230038785A/en
Priority to CN202180063917.4A priority patent/CN116097554A/en
Publication of WO2022113694A1 publication Critical patent/WO2022113694A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to a rotary table device.
  • This application claims priority based on Japanese Patent Application No. 2020-195910 filed on November 26, 2020, and incorporates all the contents described in the Japanese patent application.
  • a rotary table device including a bed as a fixed portion, a rotary table as a rotary portion, and a bearing arranged between them is known.
  • This rotary table device includes a direct drive servomotor in which a coil and a magnet are arranged in parallel with each other in the rotational direction, and is known to be driven by the direct drive servomotor (see, for example, Patent Document 1). ).
  • one of the objects of the present invention is to provide a compact rotary table device capable of exerting a large torque.
  • the rotary table device includes a base portion, a bearing installed on the base portion, a table rotatably supported with respect to the base portion via the bearing, and the base portion.
  • a motor for rotating the table in the rotation direction of the bearing is provided with respect to the portion.
  • a table groove portion recessed in the radial direction of the bearing is formed in an annular shape on the outer peripheral surface over the entire circumference.
  • the base portion includes an annular coil base that enters the table groove portion and is arranged along the table groove portion.
  • the motor includes a first motor and a second motor.
  • the first motor has a first magnet row, which is a row of magnets arranged along the rotation direction of the bearing, on the wall surface of the table defining the groove portion of the table, and a first surface of the coil base.
  • a first coil row which is a row of coils arranged so as to face the first magnet row, is included.
  • the second motor has a second magnet row, which is a row of magnets arranged along the rotation direction of the bearing on the wall surface of the table defining the groove portion of the table, and the second motor in the axial direction of the bearing.
  • a second coil row which is a row of coils arranged so as to face the second magnet row, is included on the second surface of the coil base located on the opposite side of the surface.
  • a compact rotary table device that can exert a large torque is provided.
  • FIG. 1 is a perspective view showing a rotary table device according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the rotary table device according to the first embodiment.
  • FIG. 3 is a perspective view showing a table of the rotary table device according to the first embodiment.
  • FIG. 4 is a side view showing a table of the rotary table device according to the first embodiment.
  • FIG. 5A is a cross-sectional view showing the table according to the first embodiment.
  • FIG. 5B is a cross-sectional view showing the table and bearings according to the first embodiment.
  • FIG. 6 is a perspective view showing a second member of the table according to the first embodiment.
  • FIG. 7 is a plan view showing the second member and the second magnet row of the table according to the first embodiment.
  • FIG. 8 is a perspective view showing the first member of the table according to the first embodiment.
  • FIG. 9 is a perspective view showing the first member and the first magnet row of the table in the first embodiment.
  • FIG. 10 is a perspective view showing the coil base according to the first embodiment.
  • FIG. 11 is a cross-sectional perspective view showing the coil base according to the first embodiment.
  • FIG. 12 is a perspective view showing the coil base and the substrate according to the first embodiment.
  • FIG. 13 is a perspective view showing the substrate and the coil according to the first embodiment.
  • FIG. 14 is a perspective view showing the substrate and the coil according to the first embodiment.
  • FIG. 15 is a plan view showing the rotary table device according to the first embodiment.
  • FIG. 16 is a schematic diagram showing an electrical connection of the rotary table device according to the first embodiment.
  • the rotary table device includes a base portion, a bearing installed on the base portion, a table rotatably supported with respect to the base portion via the bearing, and the base portion.
  • a motor for rotating the table in the rotation direction of the bearing is provided with respect to the portion.
  • a table groove portion recessed in the radial direction of the bearing is formed in an annular shape on the outer peripheral surface over the entire circumference.
  • the base portion includes an annular coil base that enters the table groove portion and is arranged along the table groove portion.
  • the motor includes a first motor and a second motor.
  • the first motor has a first magnet row, which is a row of magnets arranged along the rotation direction of the bearing, on the wall surface of the table defining the groove portion of the table, and a first surface of the coil base.
  • a first coil row which is a row of coils arranged so as to face the first magnet row, is included.
  • the second motor has a second magnet row, which is a row of magnets arranged along the rotation direction of the bearing on the wall surface of the table defining the groove portion of the table, and the second motor in the axial direction of the bearing.
  • a second coil row which is a row of coils arranged so as to face the second magnet row, is included on the second surface of the coil base located on the opposite side of the surface.
  • a rotary table device that is driven by a direct drive servomotor and positions a work in a predetermined position.
  • Such a rotary table device is often used for the purpose of attaching a work or the like of other parts to the table and rotating the work.
  • the angle of rotation is set to, for example, 60 °.
  • the driving force of the rotary table device is large so that the rotating operation can be reliably performed even when the attached work is large and heavy.
  • the rotary table device is compact and has dimensions that are not significantly different from the conventional device.
  • a table groove portion recessed in the radial direction of the bearing is formed over the entire circumference of the outer peripheral surface of the table.
  • the coil base on which the coil is placed should be placed so as to enter the table groove and follow the table groove. Further, the coils are arranged on both sides of the coil base.
  • two motors can be arranged without changing the radial and circumferential dimensions of the rotary table as compared with the rotary table device equipped with a conventional motor (one-stage motor).
  • a conventional motor one-stage motor
  • a first recess in which the first coil row is arranged is formed on the first surface of the coil base, and a second coil row is arranged on the second surface of the coil base. It can be assumed that a recess is formed. According to this configuration, it is possible to further suppress the axial dimension of the rotary table device, and a more compact rotary table device can be obtained.
  • the wall surface of the table defining the table groove portion may include a first wall surface facing the first surface of the coil base and a second wall surface facing the second surface of the coil base.
  • the first wall surface may have a first table wall surface portion that is a recess, and the first magnet row may be arranged in the first table wall surface portion.
  • the second wall surface may have a second table wall surface portion that is a recess, and the second magnet row may be arranged in the second table wall surface portion.
  • the table includes a first member including a plate-shaped portion and a second member including a plate-shaped portion stacked axially with respect to the first member. It can be.
  • the bearing is a cross roller bearing, and the outer ring of the cross roller bearing may be sandwiched between the first member and the second member.
  • the housing of the bearing is formed by the first member and the second member, and the outer ring of the bearing can be directly sandwiched and held by the first member and the second member.
  • This configuration facilitates machining and assembly of the turntable device.
  • the bearing can be reliably held and used for rotational operation without losing the driving force of the motor.
  • the bearing and the coil base can be assumed to have the same center position in the axial direction of the bearing.
  • the fact that the center position of the bearing and the coil base in the axial direction are the same means that the bearing and the coil base are arranged at the same height when viewed in the horizontal direction.
  • the rotary table device of the present disclosure is provided with motors on both sides of the coil base, and the sum of the torques of the two motors is the driving force of the rotary table device. It is preferable that the coil base and the bearing are arranged at the same height because the driving force of the rotary table device is transmitted to the bearing without generating an eccentric load.
  • a first substrate fixed to the coil base is further provided between the first coil row and the first magnet row, and the coil base is provided between the second coil row and the second magnet row.
  • the second coil row may be further fixed to the first substrate, and the second coil row may be fixed to the second substrate.
  • the rotary table device further includes a drive circuit and a control circuit for controlling the drive circuit, and the first motor and the second motor are electrically controlled in parallel with the drive circuit. It can be. According to this configuration, the first motor and the second motor are controlled by one drive circuit, and the first motor and the second motor operate simultaneously based on one signal (current). Therefore, the sum of the torques generated by the two motors can be effectively used without causing a deviation in the operation of the two motors.
  • FIG. 1 is a schematic perspective view showing the structure of the rotary table device according to the first embodiment.
  • the Z-axis direction is the direction in which the rotation axis (rotation axis of the bearing) R of the table of the rotary table device extends.
  • FIG. 2 is a schematic cross-sectional view showing the structure of the rotary table device, and shows a state cut by AA in FIG.
  • FIG. 15 is a schematic plan view showing the structure of the rotary table device.
  • the rotary table device 1 includes a base portion 10 which is a fixed portion, and a table 20 which is rotatable with respect to the base portion 10.
  • the base portion 10 is supported by the bed 40, which is a support base, the columns 41 (41a to 41d) provided at the four corners of the bed, and the columns 41a to 41d, and is fixed to the bed 40 via the columns 41a to 41d.
  • the coil base 50 is included.
  • the columns 41a to 41d are at the same height as each other, and the coil base 50 is provided horizontally.
  • the base portion 10 and the table 20 are connected to each other via a bearing 30.
  • the bearing 30 is installed on the base portion 10.
  • the inner ring 31 of the bearing 30 is fixed to the base portion 10, and the outer ring 32 of the bearing 30 is fixed to the table 20.
  • the base portion 10 has a cylindrical first central portion 42 rising from the bed 40 along a circular hole in the center of the bed 40, and a second central portion continuous above the first central portion 42. 43 and.
  • the bed 40 and the first central portion 42 are fixed by screws 45.
  • the first central portion 42 and the second central portion 43 are fixed by screws 46.
  • the first central portion 42 is a roughly cylindrical member, but the outer periphery of the upper portion thereof is a recess, and when combined with the lower surface of the second central portion 43, the housing of the inner ring 31 of the bearing 30 is configured. do.
  • the bearing 30 is a cross roller bearing provided with rollers 33.
  • a seal 34 is provided between the inner ring 31 and the outer ring 32.
  • an upper shutter 91 extending in an annular shape is arranged above the bearing 30.
  • the upper shutter 91 covers the gap between the inner ring 31 and the outer ring 32 above the bearing 30.
  • the upper shutter 91 is fixed to the second central portion 43 with a screw 48.
  • a lower shutter 92 extending in an annular shape is arranged below the bearing 30.
  • the lower shutter 92 covers the gap between the inner ring 31 and the outer ring 32 at the bottom of the bearing 30.
  • the lower shutter 92 is fixed to the bed 40 with screws 44.
  • the upper portion of the lower shutter 92 is formed on a slope that inclines downward from the upper end of the lower shutter 92 toward the center.
  • the upper shutter 91 and the lower shutter 92 may be made of resin or steel. If the bearing 30 has a seal 34, the shutters 91 and 92 can be deleted. Further, when the shutters 91 and 92 are present, the seal 34 of the bearing 30 can be deleted. Further, both the seal 34 and the shutters 91 and 92 can be removed.
  • the table 20 is formed with a table groove portion 60 which is a recess recessed inward from the outer circumference in the radial direction of the bearing 30 (XY direction in FIG. 2) over the entire circumference of the outer circumference.
  • the coil base 50 enters the table groove portion 60 and is arranged along the table groove portion 60.
  • the coil 101 is arranged on the first surface 50a of the coil base 50.
  • the magnet 201 is arranged on the wall surface 20a of the table 20 so as to face the coil 101.
  • the coil 301 is arranged on the second surface 50b of the coil base 50.
  • a magnet 401 is arranged on the wall surface 20b of the table 20 so as to face the coil 301.
  • the magnet 201 forms a part of the first magnet row 200, which is a row of magnets arranged side by side in the rotation direction of the bearing 30.
  • the coil 101 forms a part of the first coil row 100, which is a row of coils arranged in parallel so as to face the first magnet row 200.
  • the first coil row 100 and the first magnet row 200 constitute the first motor 150.
  • the magnet 401 forms a part of the second magnet row 400, which is a row of magnets arranged side by side in the rotation direction of the bearing 30.
  • the coil 301 forms a part of the second coil row 300, which is a row of coils arranged so as to face the second magnet row 400.
  • the second coil row 300 and the second magnet row 400 constitute the second motor 350. That is, the rotary table device 1 includes two motors, a first motor 150 and a second motor 350.
  • FIG. 3 is a perspective view showing the table 20 taken out.
  • FIG. 4 is a side view of the table 20.
  • FIG. 5A is a cross-sectional view of the table 20.
  • FIG. 5B is a cross-sectional view showing the table 20 and the bearing 30 taken out.
  • the first member 21 and the second member 22 are stacked in the axial direction (Z direction) of the rotary table device.
  • the first member 21 includes a first annular portion 23 which is roughly an annular plate shape, and a first tubular portion 24 which is a cylindrical portion extending downward from the inner circumference of the first annular portion 23 in the axial direction.
  • the second member 22 includes a second annular portion 25 which is roughly in the shape of an annular plate, and a second tubular portion 26 which is a cylindrical portion that rises from the inner circumference of the second annular portion 25 and extends in the axial direction. , including.
  • the end face of the first cylinder portion 24 and the end face of the second cylinder portion 26 are in contact with each other.
  • the first member 21 is formed with a screw hole 27a that penetrates the first annular portion 23 and the first tubular portion 24.
  • 16 screw holes 27a are formed at equal intervals in the circumferential direction.
  • a screw hole 27b (FIG. 6) corresponding to the screw hole 27a is formed on the end surface of the second cylinder portion 26 of the second member 22 in contact with the first cylinder portion 24.
  • the first member 21 and the second member 22 are fixed by inserting and fastening the screws over the screw holes 27a and 27b.
  • a fixing hole 730 for fixing the position scale is provided on the outer periphery of the second annular portion 25 of the second member 22.
  • the outer diameters of the first cylinder portion 24 and the second cylinder portion 26 are equal to each other. That is, the outer peripheral surface of the first cylinder portion 24 and the outer peripheral surface of the second cylinder portion 26 are flush with each other.
  • the table groove portion 60 is formed by the difference between the outer diameters of the first annular portion 23 and the second annular portion 25 and the outer diameters of the first tubular portion 24 and the second tubular portion 26.
  • the outer peripheral surface of the first cylinder portion 24 and the outer peripheral surface of the second cylinder portion 26 form an inner peripheral wall surface 60c that defines the table groove portion 60.
  • the wall surface 20a (FIG.
  • the table groove portion 60 is a donut-shaped (hollow cylindrical) groove that is recessed inward from the outer peripheral surface of the table 20 in the radial direction of the bearing.
  • annular recess 61 extending in the circumferential direction is formed on the surface of the first annular portion 23 on the side facing the second member 22, that is, on the first wall surface 60a of the table groove portion 60.
  • the surface of the second annular portion 25 on the side facing the first member 21, that is, the second wall surface 60b of the table groove portion 60 has the same diameter and depth as the recess 61 and extends in the circumferential direction.
  • An annular recess 62 is formed.
  • a recess 28 is formed which is recessed outward in the radial direction.
  • the outer ring 32 of the bearing 30 is sandwiched in the recess 28. That is, the recess 28 constitutes the housing of the outer ring 32 of the bearing 30.
  • the outer ring 32 is sandwiched by the first member 21 and the second member 22 of the table 20. Specifically, the outer ring 32 is fixed to the table 20 by the fastening force of the screw 47 (FIGS. 1 and 15) for fastening the first member 21 and the second member 22.
  • an adhesive or the like may be used for bonding.
  • a groove 29 is formed in which the corners of the first member 21 and the second member 22 are chamfered.
  • FIG. 6 is a perspective view showing only the second member 22 of the table 20 taken out.
  • FIG. 7 is a diagram showing the fit of the second member 22 and the second magnet row 400.
  • the second member 22 has a second annular portion 25 and a second tubular portion 26 which is a cylindrical portion that rises from the inner circumference of the second annular portion 25 and extends in the axial direction. And, including.
  • the upper surface (the surface shown in the figure) of the second annular portion 25 constitutes the second wall surface 60b of the table groove portion 60.
  • An annular recess 62 extending in the circumferential direction is formed on the second wall surface 60b.
  • Magnets 401 are arranged side by side in the recess 62 along the rotation direction (circumferential direction) of the bearing.
  • the magnet 401 is a plate-shaped magnet having a substantially trapezoidal surface that converges toward the center of rotation.
  • the depth of the recess 62 is formed to be substantially equal to the thickness of the magnet 401. That is, the magnet 401 is substantially housed in the recess 62, and the protrusion from the surface of the table 20 is slight.
  • Twenty-one magnets 401 arranged adjacent to each other form the second magnet row 400.
  • the magnet 401 is arranged over about 315 ° out of 360 ° all around the recess 62.
  • a pin hole 620 is formed on the bottom surface of the recess 62.
  • the pin hole 620 can be used to easily position the starting point when arranging the magnet 401.
  • the magnets 401 are arranged so that the north pole and the south pole alternate with each other.
  • the second magnet row 400 has 21 magnets 401 arranged over about 315 °, but the number of magnets and the form of the arrangement are not limited to this.
  • the magnet can be arranged over the entire circumference (360 °) of the recess 62.
  • the number and arrangement of magnets can be appropriately changed depending on the size and performance of the magnets, the torque and rotation speed required for the motor, other configurations of the rotary table device (for example, the arrangement of limit sensors), and the like.
  • FIG. 8 is a perspective view showing only the first member 21 of the table 20 taken out.
  • FIG. 9 is a diagram showing the fit of the first member 21 and the first magnet row 200.
  • the first member 21 has almost the same form as the second member 22.
  • a stopper fixing portion 210 is formed at one of the peripheral edges of the first annular portion 23 of the first member 21.
  • the stopper fixing portion 210 is formed as a recess. Since the stopper fixing portion 210 is formed as a recess, when the fixing screw 211 (FIG. 1) for fixing the stopper arranged on the lower surface of the first member 21 is inserted, the head of the fixing screw 211 is placed on the table 20. Does not protrude to the surface.
  • the outer diameter of the first annular portion 23 of the first member 21 is slightly larger than the outer diameter of the second annular portion 25 of the second member 22.
  • the first annular portion 23 is formed with a screw hole 9 that penetrates the first annular portion 23 in the thickness direction.
  • eight screw holes 9 are provided at equal intervals in the circumferential direction, but the number is not particularly limited.
  • the screw hole 9 is used to attach the rotary table device 1 to a work or the like of another member.
  • the first cylinder portion 24 is provided with a screw hole 27a that penetrates the first member in the thickness direction.
  • the screw hole 27a corresponds to the screw hole 27b of the second member 22.
  • the first member 21 and the second member 22 are fixed to each other by inserting and fastening the screws 47 (FIGS. 1 and 15) from the upper surface of the first member 21 into the screw holes 27a and 27b.
  • the lower surface (the surface appearing in the figure) of the first annular portion 23 constitutes the first wall surface 60a of the table groove portion 60.
  • An annular recess 61 extending in the circumferential direction is formed on the first wall surface 60a.
  • Magnets 201 are arranged side by side in the recess 61 along the rotation direction (circumferential direction) of the bearing. Twenty-one magnets 201 arranged adjacent to each other form the first magnet row 200.
  • the configuration of the first magnet row 200 is the same as the configuration of the second magnet row 400.
  • a pin hole 610 is formed on the bottom surface of the recess 61 to facilitate the start positioning of the first magnet row 200.
  • the first magnet row 200 and the second magnet row 400 are arranged at the same position in the circumferential direction of the rotary table device.
  • FIG. 10 is a perspective view showing only the coil base 50 taken out.
  • FIG. 11 is a cross-sectional perspective view showing a state in which the coil base 50 is cut at CC in FIG.
  • the entire coil base 50 is a steel plate-shaped member.
  • a circular hole centered on the rotation axis (rotation axis of the table 20) R of the bearing is formed in the center of the coil base 50.
  • the peripheral wall 50d defining the circular hole is separated from the outer peripheral surface of the first cylinder portion 24 of the table 20 and the outer peripheral surface of the second cylinder portion 26, that is, the inner peripheral wall surface 60c (FIG. 4) defining the table groove portion 60. While facing each other.
  • the diameter of the circle defined by the peripheral wall 50d is slightly larger than the diameter of the inner peripheral wall surface 60c of the table groove portion 60.
  • screw holes 58 for fixing the coil base 50 to the support column 41 are formed at the four corners of the coil base 50.
  • the four corners of the coil base 50 have an arc shape forming a part of a circular arc centered on the rotation axis R.
  • the coil base 50 has an expansion portion 55 protruding outward from the quadrangle defined by the bed 40.
  • the expansion portion 55 is formed with a screw hole 59 for inserting a screw for fixing the coil base 50 to the encoder head 710 (FIG. 1).
  • the coil base 50 has a first surface 50a and a second surface 50b.
  • FIG. 10 shows the first surface 50a of the coil base 50.
  • the first surface 50a is formed with a first recess 51, which is an annular recess extending in the circumferential direction of the rotation of the bearing.
  • the second surface 50b is also formed with a second recess 52, which is an annular recess extending in the circumferential direction of the rotation of the bearing.
  • the first recess 51 and the second recess 52 have the same width and depth as each other.
  • a plurality of holes 57 for inserting fixing pins (FIG.
  • the holes 57 penetrate from the first surface 50a to the second surface 50b, and the two holes are arranged as a set. A pin is inserted from the first surface 50a into one of the two holes in the set, and a pin is inserted from the second surface 50b into the other.
  • FIG. 12 is a perspective view showing the coil base 50 and the substrate taken out.
  • the first substrate 81 is arranged so as to be in contact with the first surface 50a of the coil base 50.
  • the first substrate 81 is attached so as to cover the entire circumference of the first recess 51.
  • a coil is attached to the surface of the first substrate 81 on the side facing the coil base 50 (see FIGS. 13 and 14).
  • the second surface 50b That is, the second substrate 82 (FIG. 2) is arranged so as to be in contact with the second surface 50b.
  • the second substrate 82 is attached so as to cover the entire circumference of the second recess 52.
  • a coil is attached to the surface of the second substrate 82 on the side facing the coil base 50.
  • the coil is housed in each of the first recess 51 and the second recess 52 provided on both sides of the coil base 50.
  • the first substrate 81 and the second substrate 82 are, for example, printed circuit boards.
  • Three electric wires corresponding to the U phase, the V phase, and the W phase are connected to the first substrate 81 and the second substrate 82, respectively.
  • Each of the three wires supplies U-phase, V-phase, and W-phase currents to the first coil row 100 and the second coil row 300 attached to the first substrate 81 and the second substrate 82.
  • the first coil row 100 and the second coil row 300 are connected to the drive circuit 600 described later via the first substrate 81 and the second substrate 82.
  • FIG. 13 and 14 are perspective views showing the substrate and the coil taken out.
  • FIG. 13 shows the side of the first substrate 81 facing the table 20 (see FIG. 2).
  • FIG. 14 shows the side of the first substrate 81 facing the coil base 50.
  • twelve coils 101 are arranged adjacent to each other on the surface of the first substrate 81 along the circumference of the first substrate 81.
  • a collar 110 is arranged in each of the coils 101, and a fixing hole 111 is formed in the collar 110.
  • the first coil row 100 is fixed to the coil base 50 by a fixing pin (not shown) inserted so as to extend over the fixing hole 111 and the hole 57 of the coil base 50 (FIG. 10).
  • the second substrate 82 also has the same configuration, and the description thereof will be omitted.
  • An insulating film (not shown) is attached to the first substrate 81 and the second substrate 82.
  • each coil 101 is a flat, annularly wound coreless coil. Twelve coils 101 constitute the first coil row 100.
  • the coil 101 is a three-phase coil, and in the first coil row 100, the U phase, the V phase, and the W phase are repeatedly arranged in this order from one end.
  • the coil row includes 12 coils in the first embodiment, the number and arrangement of the coils included in the coil row can be changed according to the size of the motor and the required torque.
  • the first coil row 100 and the second coil row 300 are arranged on both sides of the coil base 50, respectively. The number of coils constituting the first coil row 100 and the second coil row 300 is equal to each other.
  • the coils of the same phase can be arranged at the same position in the circumferential direction. With this configuration, it is possible to obtain a large torque by matching the directions of the torques output from the two motors.
  • the coil 101 is arranged on the first surface 50a of the coil base 50.
  • the magnet 201 is arranged on the wall surface 20a of the table 20 so as to face the coil 101.
  • the coil 101 constitutes the first coil row 100
  • the magnet 201 constitutes the first magnet row 200.
  • a first substrate 81 exists between the first coil row 100 and the first magnet row 200, and the first coil row 100 and the first magnet row 200 are separated from each other.
  • the first coil row 100 and the first magnet row 200 constitute the first motor 150.
  • the second surface 50b of the coil base 50 That is, on the second surface side of the coil base, the second coil row 300 and the second magnet row 400 face each other to form the second motor 350.
  • recesses are formed on both sides of the coil base 50, and coil rows are housed in the recesses. Further, the coil base 50 is arranged so as to enter the table groove portion 60 of the table 20. Further, a recess is provided on the surface of the table 20 facing the coil base 50, and a magnet row is housed in the recess.
  • stoppers 220 are attached to two of the four corners of the coil base 50.
  • a resin portion 222 is provided on each of the two stoppers 220 facing each other.
  • the stopper fixing portion 210 of the table 20 is located between the two stoppers 220.
  • a stopper facing the stopper 220 in the rotation direction is fixed to the lower portion of the stopper fixing portion 210.
  • the two stoppers 220 attached to the coil base 50 are fixed, and the stoppers attached to the table rotate together with the table.
  • the stopper 220 prevents the table 20 from over-rotating.
  • a scale 709 (FIG. 16) extending in the circumferential direction is attached to the outer peripheral side surface of the second member 22 of the table 20.
  • the scale 709 is preferably provided in a portion corresponding to the back of the columns 41a and 41b.
  • An encoder head 710 is provided facing the scale 709. By arranging the scale 709 behind the support column when viewed from the outside of the rotary table device, it is possible to prevent the adhesion of dust and the like.
  • a signal line is connected to the encoder head 710. Further, electric wires for supplying a three-phase current to the coils 101 and 301 are arranged.
  • FIG. 16 is a schematic diagram showing an electrical connection of the rotary table device 1.
  • the rotary table device 1 includes a drive driver 700, a drive unit 410, a scale 709 attached to the drive unit, and an encoder head 710 for detecting the operation of the drive unit 410.
  • the encoder head 710 is connected to a control circuit 500 described later.
  • the scale 709 and the encoder head 710 constitute an encoder system 720.
  • the encoder system 720 is connected to the control circuit 500.
  • the control circuit 500 controls the drive circuit 600 according to the output signal of the encoder head 710.
  • the drive driver 700 includes a control circuit 500 and a drive circuit 600.
  • a power supply (not shown) is connected to the drive driver 700.
  • the control circuit 500 controls the drive circuit 600 according to a preset program and according to a signal from the encoder head 710.
  • the drive circuit 600 sends out a current having a phase corresponding to each of the U phase, the V phase, and the W phase.
  • the electric wires L 1 , L 2 , and L 3 are branched and connected to the first motor 150 and the second motor 350, respectively. That is, the first motor 150 and the second motor 350 are electrically connected in parallel with the drive circuit 600. According to this configuration, two motors are operated simultaneously by one drive circuit. Therefore, control for synchronizing the motors is not required, and the two motors can be reliably and easily operated to obtain torque from the two motors.
  • the rotary table device 1 of the present disclosure is a direct drive type device in which the first motor 150 and the second motor 350 are operated by the current from the drive circuit 600, and the table 20 is moved by the generated torque.
  • 1 rotary table device 10 base part, 20 table, 20a, 20b wall surface, 21 first member, 22 second member, 23 first ring part, 24 first cylinder part, 25 second ring part, 26th 2 cylinders, 27a, 27b holes, 28 recesses, 29 grooves, 30 bearings, 31 inner rings, 32 outer rings, 33 coils, 34 seals, 40 beds, 41a to 41d columns, 42 1st center, 43 2nd center, 44, 45, 46, 47, 48 screws, 50 coil base, 50a, 50b coil base surface, 50d coil base inner peripheral wall, 51, 52 recesses, 55 expansion part, 57, 58, 59 holes, 60 table groove part, 60a, 60b wall surface, 60c inner peripheral wall surface, 61, 62 recesses, 610, 620 pin holes, 81 1st board, 82 2nd board, 91 upper shutter, 92 lower shutter, 100 1st coil row, 101 coil, 110 color, 111 Fixing hole, 150 1st motor, 200 1st magnet row

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Machine Tool Units (AREA)
  • Linear Motors (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

This rotary table device comprises: a foundation part; a bearing mounted to the foundation part; a table rotatably supported on the foundation part with the bearing therebetween; and motors for rotating the table with respect to the foundation part toward the rotation direction of the bearing. The table has a table groove part that is annularly formed in the outer circumferential surface along the entire circumference and is recessed in the radial direction of the bearing. The foundation part has an annular coil base that is inserted in the table groove part and is disposed along the table groove part. The motors include a first motor and a second motor. The first motor includes, on a wall surface of the table defining the table groove part, a first magnet array which is an array of a plurality of magnets arrayed along the rotation direction of the bearing, and includes, on a first surface of the coil base, a first coil array which is an array of a plurality of coils arrayed so as to face the first magnet array. The second motor includes, on the wall surface of the table defining the table groove part, a second magnet array which is an array of a plurality of magnets arrayed along the rotation direction of the bearing, and includes, in the axial direction of the bearing and on a second surface of the coil base opposite to the first surface, a second coil array which is an array of a plurality of coils arrayed so as to face the second magnet array.

Description

回転テーブル装置Rotating table device
 本発明は、回転テーブル装置に関する。本出願は、2020年11月26日出願の日本国特許出願2020-195910号に基づく優先権を主張し、前記日本国特許出願に記載された全ての記載内容を援用するものである。 The present invention relates to a rotary table device. This application claims priority based on Japanese Patent Application No. 2020-195910 filed on November 26, 2020, and incorporates all the contents described in the Japanese patent application.
 固定部であるベッドと、回転部である回転テーブルと、それらの間に配置される軸受と、を備える回転テーブル装置が知られている。この回転テーブル装置は、コイルと磁石とが互いに並行して回転方向に配置されたダイレクトドライブサーボモータを備えており、ダイレクトドライブサーボモータによって駆動されることが知られている(例えば特許文献1参照)。 A rotary table device including a bed as a fixed portion, a rotary table as a rotary portion, and a bearing arranged between them is known. This rotary table device includes a direct drive servomotor in which a coil and a magnet are arranged in parallel with each other in the rotational direction, and is known to be driven by the direct drive servomotor (see, for example, Patent Document 1). ).
特開2005-333763号公報Japanese Unexamined Patent Publication No. 2005-333763
 上記回転テーブル装置は、より大きなトルクを発揮できることが望まれる場合がある。また同時に、コンパクトであることが望まれる。そこで、大きなトルクを発揮でき、コンパクトな回転テーブル装置を提供することを本発明の目的の1つとする。 It may be desired that the rotary table device can exert a larger torque. At the same time, it is desired to be compact. Therefore, one of the objects of the present invention is to provide a compact rotary table device capable of exerting a large torque.
 本開示に従った回転テーブル装置は、基台部と、前記基台部に設置された軸受と、前記軸受を介して前記基台部に対して回転可能に支持されたテーブルと、前記基台部に対して前記テーブルを前記軸受の回転方向に回転させるモータと、を備える。前記テーブルには、前記軸受の径方向に凹むテーブル溝部が全周にわたって外周面に環状に形成されている。前記基台部は、前記テーブル溝部に進入し、前記テーブル溝部に沿うように配置される環状のコイルベースを含む。前記モータは、第1モータと、第2モータと、を含む。前記第1モータは、前記テーブル溝部を規定する前記テーブルの壁面に、前記軸受の回転方向に沿って複数配置された磁石の列である第1磁石列と、前記コイルベースの第1表面に、前記第1磁石列と相対するように複数配置されたコイルの列である第1コイル列と、を含む。前記第2モータは、前記テーブル溝部を規定する前記テーブルの壁面に、前記軸受の回転方向に沿って複数配置された磁石の列である第2磁石列と、前記軸受の軸方向において、前記第1表面とは反対側に位置する前記コイルベースの第2表面に、前記第2磁石列と相対するように複数配置されたコイルの列である第2コイル列と、を含む。 The rotary table device according to the present disclosure includes a base portion, a bearing installed on the base portion, a table rotatably supported with respect to the base portion via the bearing, and the base portion. A motor for rotating the table in the rotation direction of the bearing is provided with respect to the portion. On the table, a table groove portion recessed in the radial direction of the bearing is formed in an annular shape on the outer peripheral surface over the entire circumference. The base portion includes an annular coil base that enters the table groove portion and is arranged along the table groove portion. The motor includes a first motor and a second motor. The first motor has a first magnet row, which is a row of magnets arranged along the rotation direction of the bearing, on the wall surface of the table defining the groove portion of the table, and a first surface of the coil base. A first coil row, which is a row of coils arranged so as to face the first magnet row, is included. The second motor has a second magnet row, which is a row of magnets arranged along the rotation direction of the bearing on the wall surface of the table defining the groove portion of the table, and the second motor in the axial direction of the bearing. A second coil row, which is a row of coils arranged so as to face the second magnet row, is included on the second surface of the coil base located on the opposite side of the surface.
 上記回転テーブル装置によれば、大きなトルクを発揮でき、コンパクトな回転テーブル装置が提供される。 According to the rotary table device, a compact rotary table device that can exert a large torque is provided.
図1は、実施の形態1における回転テーブル装置を示す斜視図である。FIG. 1 is a perspective view showing a rotary table device according to the first embodiment. 図2は、実施の形態1における回転テーブル装置を示す断面図である。FIG. 2 is a cross-sectional view showing the rotary table device according to the first embodiment. 図3は、実施の形態1における回転テーブル装置のテーブルを示す斜視図である。FIG. 3 is a perspective view showing a table of the rotary table device according to the first embodiment. 図4は、実施の形態1における回転テーブル装置のテーブルを示す側面図である。FIG. 4 is a side view showing a table of the rotary table device according to the first embodiment. 図5Aは、実施の形態1におけるテーブルを示す断面図である。FIG. 5A is a cross-sectional view showing the table according to the first embodiment. 図5Bは、実施の形態1におけるテーブルおよび軸受を示す断面図である。FIG. 5B is a cross-sectional view showing the table and bearings according to the first embodiment. 図6は、実施の形態1におけるテーブルの第2部材を示す斜視図である。FIG. 6 is a perspective view showing a second member of the table according to the first embodiment. 図7は、実施の形態1におけるテーブルの第2部材および第2磁石列を示す平面図である。FIG. 7 is a plan view showing the second member and the second magnet row of the table according to the first embodiment. 図8は、実施の形態1におけるテーブルの第1部材を示す斜視図である。FIG. 8 is a perspective view showing the first member of the table according to the first embodiment. 図9は、実施の形態1におけるテーブルの第1部材および第1磁石列を示す斜視図である。FIG. 9 is a perspective view showing the first member and the first magnet row of the table in the first embodiment. 図10は、実施の形態1におけるコイルベースを示す斜視図である。FIG. 10 is a perspective view showing the coil base according to the first embodiment. 図11は、実施の形態1におけるコイルベースを示す断面斜視図である。FIG. 11 is a cross-sectional perspective view showing the coil base according to the first embodiment. 図12は、実施の形態1におけるコイルベースと基板を示す斜視図である。FIG. 12 is a perspective view showing the coil base and the substrate according to the first embodiment. 図13は、実施の形態1における基板とコイルを示す斜視図である。FIG. 13 is a perspective view showing the substrate and the coil according to the first embodiment. 図14は、実施の形態1における基板とコイルを示す斜視図である。FIG. 14 is a perspective view showing the substrate and the coil according to the first embodiment. 図15は、実施の形態1における回転テーブル装置を示す平面図である。FIG. 15 is a plan view showing the rotary table device according to the first embodiment. 図16は、実施の形態1における回転テーブル装置の電気的な接続を示す模式図である。FIG. 16 is a schematic diagram showing an electrical connection of the rotary table device according to the first embodiment.
 [実施形態の概要]
 最初に本開示の実施態様を列記して説明する。本開示に従った回転テーブル装置は、基台部と、前記基台部に設置された軸受と、前記軸受を介して前記基台部に対して回転可能に支持されたテーブルと、前記基台部に対して前記テーブルを前記軸受の回転方向に回転させるモータと、を備える。前記テーブルには、前記軸受の径方向に凹むテーブル溝部が全周にわたって外周面に環状に形成されている。前記基台部は、前記テーブル溝部に進入し、前記テーブル溝部に沿うように配置される環状のコイルベースを含む。前記モータは、第1モータと、第2モータと、を含む。前記第1モータは、前記テーブル溝部を規定する前記テーブルの壁面に、前記軸受の回転方向に沿って複数配置された磁石の列である第1磁石列と、前記コイルベースの第1表面に、前記第1磁石列と相対するように複数配置されたコイルの列である第1コイル列と、を含む。前記第2モータは、前記テーブル溝部を規定する前記テーブルの壁面に、前記軸受の回転方向に沿って複数配置された磁石の列である第2磁石列と、前記軸受の軸方向において、前記第1表面とは反対側に位置する前記コイルベースの第2表面に、前記第2磁石列と相対するように複数配置されたコイルの列である第2コイル列と、を含む。
[Outline of Embodiment]
First, embodiments of the present disclosure will be listed and described. The rotary table device according to the present disclosure includes a base portion, a bearing installed on the base portion, a table rotatably supported with respect to the base portion via the bearing, and the base portion. A motor for rotating the table in the rotation direction of the bearing is provided with respect to the portion. On the table, a table groove portion recessed in the radial direction of the bearing is formed in an annular shape on the outer peripheral surface over the entire circumference. The base portion includes an annular coil base that enters the table groove portion and is arranged along the table groove portion. The motor includes a first motor and a second motor. The first motor has a first magnet row, which is a row of magnets arranged along the rotation direction of the bearing, on the wall surface of the table defining the groove portion of the table, and a first surface of the coil base. A first coil row, which is a row of coils arranged so as to face the first magnet row, is included. The second motor has a second magnet row, which is a row of magnets arranged along the rotation direction of the bearing on the wall surface of the table defining the groove portion of the table, and the second motor in the axial direction of the bearing. A second coil row, which is a row of coils arranged so as to face the second magnet row, is included on the second surface of the coil base located on the opposite side of the surface.
 従来、ダイレクトドライブサーボモータによって駆動され、ワークを所定位置に位置決めする回転テーブル装置が知られている。このような回転テーブル装置は、テーブルに他部品のワーク等を取り付け、ワークを回転させる目的で使用されることが多い。回転角は、例えば、60°に設定される。また、360°回転するように構成された回転テーブル装置もある。ワークを回転させるという目的において、取り付けられるワークが大型で重い場合であっても回転動作を確実に実行できるように、回転テーブル装置の駆動力は大きいことが好ましい。一方で、従来の装置との置き換えや他部品との適合性を考慮すると、回転テーブル装置は、コンパクトで、従来の装置と大幅に異ならない寸法に収められていることが望ましい。 Conventionally, a rotary table device that is driven by a direct drive servomotor and positions a work in a predetermined position is known. Such a rotary table device is often used for the purpose of attaching a work or the like of other parts to the table and rotating the work. The angle of rotation is set to, for example, 60 °. There is also a rotary table device configured to rotate 360 °. For the purpose of rotating the work, it is preferable that the driving force of the rotary table device is large so that the rotating operation can be reliably performed even when the attached work is large and heavy. On the other hand, in consideration of replacement with the conventional device and compatibility with other parts, it is desirable that the rotary table device is compact and has dimensions that are not significantly different from the conventional device.
 モータの駆動力を向上させようとするとき、モータを構成するコイルや磁石の仕様を変更することが考えられる。しかしながら、コイルや磁石を変更することなく駆動力を向上させることが望まれる場合もある。このニーズに対応して、回転テーブル装置の回転軸方向にモータを2段に重ねることが着想された。この構成によれば、コイルや磁石を変更することなく、かつ、回転テーブル装置の径方向および周方向の寸法を変えることなく、リニアモータの駆動力を向上できることが見出された。さらなる検討の結果、2段に重ねたモータの配置を次の構成とすることが見出された。すなわち、回転テーブル装置に備えられるテーブルにおいて、テーブルの外周面の全周にわたって軸受の径方向に凹むテーブル溝部を形成すること。また、コイルが配置されるコイルベースを、テーブル溝部に進入し、かつ、テーブル溝部に沿うように配置すること。さらに、前記コイルベースの両面に、それぞれコイルを配置することである。 When trying to improve the driving force of the motor, it is conceivable to change the specifications of the coils and magnets that make up the motor. However, it may be desired to improve the driving force without changing the coil or magnet. In response to this need, the idea was to stack the motors in two stages in the direction of the rotation axis of the rotary table device. According to this configuration, it has been found that the driving force of the linear motor can be improved without changing the coil or magnet and without changing the radial and circumferential dimensions of the rotary table device. As a result of further studies, it was found that the arrangement of the motors stacked in two stages has the following configuration. That is, in the table provided in the rotary table device, a table groove portion recessed in the radial direction of the bearing is formed over the entire circumference of the outer peripheral surface of the table. In addition, the coil base on which the coil is placed should be placed so as to enter the table groove and follow the table groove. Further, the coils are arranged on both sides of the coil base.
 この構成によれば、従来のモータ(1段のモータ)を備える回転テーブル装置と比較して回転テーブルの径方向および周方向の寸法を変えることなく、2つのモータを配置できる。また、モータを2段に重ねながらも、軸方向の寸法の増大を抑制できる。このため、コンパクトな構成で、かつ、2つのモータから駆動力を得られる回転テーブル装置が提供される。 According to this configuration, two motors can be arranged without changing the radial and circumferential dimensions of the rotary table as compared with the rotary table device equipped with a conventional motor (one-stage motor). In addition, it is possible to suppress an increase in dimensions in the axial direction while stacking the motors in two stages. Therefore, a rotary table device having a compact configuration and capable of obtaining driving force from two motors is provided.
 前記の回転テーブル装置において、コイルベースの第1表面には、第1コイル列が配置される第1凹部が形成され、コイルベースの第2表面には、第2コイル列が配置される第2凹部が形成されているものとできる。この構成によれば、回転テーブル装置における軸方向の寸法をより抑制できることが可能で、さらにコンパクトな回転テーブル装置が得られる。 In the rotary table device, a first recess in which the first coil row is arranged is formed on the first surface of the coil base, and a second coil row is arranged on the second surface of the coil base. It can be assumed that a recess is formed. According to this configuration, it is possible to further suppress the axial dimension of the rotary table device, and a more compact rotary table device can be obtained.
 前記の回転テーブル装置において、テーブル溝部を規定するテーブルの壁面は、コイルベースの第1表面と相対する第1壁面と、コイルベースの第2表面と相対する第2壁面と、を含んでよい。前記第1壁面は凹部である第1テーブル壁面部分を有し、前記第1磁石列は前記第1テーブル壁面部分内に配置されるものとできる。前記第2壁面は凹部である第2テーブル壁面部分を有し、前記第2磁石列は前記第2テーブル壁面部分内に配置されるものとできる。この構成によれば、回転テーブル装置における軸方向の寸法をより抑制でき、さらにコンパクトな回転テーブル装置が得られる。 In the rotary table device, the wall surface of the table defining the table groove portion may include a first wall surface facing the first surface of the coil base and a second wall surface facing the second surface of the coil base. The first wall surface may have a first table wall surface portion that is a recess, and the first magnet row may be arranged in the first table wall surface portion. The second wall surface may have a second table wall surface portion that is a recess, and the second magnet row may be arranged in the second table wall surface portion. According to this configuration, the axial dimension of the rotary table device can be further suppressed, and a more compact rotary table device can be obtained.
 前記の回転テーブル装置において、前記テーブルは、板状部を含む第1部材と、前記第1部材に対して前記軸受の軸方向に積み重ねられている板状部を含む第2部材と、を含むものとできる。また、前記軸受はクロスローラ軸受であり、前記クロスローラ軸受の外輪は、前記第1部材と前記第2部材とに挟持されるものとできる。この構成によれば、第1部材と第2部材とによって軸受のハウジングを構成し、第1部材と第2部材とで軸受の外輪を直接挟み込んで保持できる。この構成によれば、回転テーブル装置の加工および組み立てが容易になる。また、軸受を確実に保持し、モータの駆動力を損失することなく回転動作に利用できる。 In the rotary table device, the table includes a first member including a plate-shaped portion and a second member including a plate-shaped portion stacked axially with respect to the first member. It can be. Further, the bearing is a cross roller bearing, and the outer ring of the cross roller bearing may be sandwiched between the first member and the second member. According to this configuration, the housing of the bearing is formed by the first member and the second member, and the outer ring of the bearing can be directly sandwiched and held by the first member and the second member. This configuration facilitates machining and assembly of the turntable device. In addition, the bearing can be reliably held and used for rotational operation without losing the driving force of the motor.
 前記の回転テーブル装置において、軸受とコイルベースとは、軸受の軸方向における中心位置が同じであるものとできる。軸受とコイルベースとの、軸受の軸方向における中心位置が同じということは、水平方向に見た時に、軸受とコイルベースとが同じ高さに配置されているということである。本開示の回転テーブル装置は、コイルベースの両面のそれぞれにモータが備えられており、2つのモータのトルクの和が回転テーブル装置の駆動力となる。コイルベースと軸受とが同じ高さに配置されていると、回転テーブル装置の駆動力が軸受に対して偏荷重を発生させることなく伝達されるため、好ましい。 In the rotary table device, the bearing and the coil base can be assumed to have the same center position in the axial direction of the bearing. The fact that the center position of the bearing and the coil base in the axial direction are the same means that the bearing and the coil base are arranged at the same height when viewed in the horizontal direction. The rotary table device of the present disclosure is provided with motors on both sides of the coil base, and the sum of the torques of the two motors is the driving force of the rotary table device. It is preferable that the coil base and the bearing are arranged at the same height because the driving force of the rotary table device is transmitted to the bearing without generating an eccentric load.
 前記の回転テーブル装置において、第1コイル列と第1磁石列との間に、コイルベースに固定された第1基板をさらに備え、第2コイル列と第2磁石列との間に、コイルベースに固定された第2基板をさらに備え、前記第1コイル列は前記第1基板に、前記第2コイル列は前記第2基板に、それぞれ固定されている構成としてもよい。コイルと磁石との間に基板を配置することによって、コイルと磁石との間隔を維持できる。また、基板によって、コイルが収められたコイルベースの凹部の上面を覆うことができる。この構成によって、凹部への埃等の侵入を防止することもできる。 In the rotary table device, a first substrate fixed to the coil base is further provided between the first coil row and the first magnet row, and the coil base is provided between the second coil row and the second magnet row. The second coil row may be further fixed to the first substrate, and the second coil row may be fixed to the second substrate. By arranging the substrate between the coil and the magnet, the distance between the coil and the magnet can be maintained. In addition, the substrate can cover the upper surface of the recess of the coil base in which the coil is housed. With this configuration, it is possible to prevent dust and the like from entering the recess.
 前記の回転テーブル装置において、駆動回路と、前記駆動回路を制御する制御回路と、をさらに備え、前記第1モータおよび前記第2モータは前記駆動回路に対して電気的に並列に制御されているものとできる。この構成によれば、第1モータおよび第2モータが1つの駆動回路によって制御され、1つの信号(電流)に基づいて第1モータおよび第2モータが同時に動く。このため、2つのモータの動作にずれが生じることなく、2つのモータが生み出すトルクの和を有効に利用できる。 The rotary table device further includes a drive circuit and a control circuit for controlling the drive circuit, and the first motor and the second motor are electrically controlled in parallel with the drive circuit. It can be. According to this configuration, the first motor and the second motor are controlled by one drive circuit, and the first motor and the second motor operate simultaneously based on one signal (current). Therefore, the sum of the torques generated by the two motors can be effectively used without causing a deviation in the operation of the two motors.
 [実施形態の具体例]
 次に、本開示の回転テーブルの具体的な実施の形態の一例を、図面を参照しつつ説明する。以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
[Specific example of embodiment]
Next, an example of a specific embodiment of the rotary table of the present disclosure will be described with reference to the drawings. In the following drawings, the same or corresponding parts are given the same reference number and the explanation is not repeated.
 (実施の形態1)
 図1は、実施の形態1における回転テーブル装置の構造を示す概略斜視図である。図1において、Z軸方向は、回転テーブル装置のテーブルの回転軸(軸受の回転軸)Rが延びる方向である。図2は、回転テーブル装置の構造を示す概略断面図であり、図1中のA-Aで切断した状態を示す。図15は、回転テーブル装置の構造を示す概略平面図である。
(Embodiment 1)
FIG. 1 is a schematic perspective view showing the structure of the rotary table device according to the first embodiment. In FIG. 1, the Z-axis direction is the direction in which the rotation axis (rotation axis of the bearing) R of the table of the rotary table device extends. FIG. 2 is a schematic cross-sectional view showing the structure of the rotary table device, and shows a state cut by AA in FIG. FIG. 15 is a schematic plan view showing the structure of the rotary table device.
 まず、回転テーブル装置1の概略的な構成を説明する。
 図1を参照して、実施の形態1における回転テーブル装置1は、固定部である基台部10と、基台部10に対して回転可能であるテーブル20と、を備える。基台部10は、支持台であるベッド40と、ベッドの4隅に備えられた支柱41(41a~41d)と、支柱41a~41dに支持され、支柱41a~41dを介してベッド40に固定されたコイルベース50と、を含む。支柱41a~41dは互いに同じ高さであり、コイルベース50は水平に設けられる。図2を参照して、実施の形態1における回転テーブル装置1は、基台部10とテーブル20とが、軸受30を介して接続されている。軸受30は基台部10に設置されている。軸受30の内輪31は基台部10に固定され、軸受30の外輪32はテーブル20に固定されている。
First, a schematic configuration of the rotary table device 1 will be described.
With reference to FIG. 1, the rotary table device 1 according to the first embodiment includes a base portion 10 which is a fixed portion, and a table 20 which is rotatable with respect to the base portion 10. The base portion 10 is supported by the bed 40, which is a support base, the columns 41 (41a to 41d) provided at the four corners of the bed, and the columns 41a to 41d, and is fixed to the bed 40 via the columns 41a to 41d. The coil base 50 is included. The columns 41a to 41d are at the same height as each other, and the coil base 50 is provided horizontally. With reference to FIG. 2, in the rotary table device 1 according to the first embodiment, the base portion 10 and the table 20 are connected to each other via a bearing 30. The bearing 30 is installed on the base portion 10. The inner ring 31 of the bearing 30 is fixed to the base portion 10, and the outer ring 32 of the bearing 30 is fixed to the table 20.
 図1、2、15を参照して、軸受30の内輪31の固定構造の概略を説明する。基台部10は上述の構成に加えて、ベッド40の中央の円形穴に沿ってベッド40から立ち上がる円筒状の第1中央部42と、第1中央部42の上方に連続する第2中央部43と、を含む。ベッド40と第1中央部42とは、ねじ45で固定される。第1中央部42と第2中央部43とは、ねじ46で固定される。第1中央部42は大略的に円筒状の部材であるが、その上部の外周が凹部とされており、第2中央部43の下面と組み合わさることで、軸受30の内輪31のハウジングを構成する。すなわち、軸受30の内輪31は、第1中央部42と第2中央部43とによって挟持固定される。軸受30は、ころ33を備えるクロスローラ軸受である。軸受30において、内輪31と外輪32との間には、シール34が備えられている。軸受30の外輪32の固定構造は、後述する。 The outline of the fixed structure of the inner ring 31 of the bearing 30 will be described with reference to FIGS. 1, 2, and 15. In addition to the above-described configuration, the base portion 10 has a cylindrical first central portion 42 rising from the bed 40 along a circular hole in the center of the bed 40, and a second central portion continuous above the first central portion 42. 43 and. The bed 40 and the first central portion 42 are fixed by screws 45. The first central portion 42 and the second central portion 43 are fixed by screws 46. The first central portion 42 is a roughly cylindrical member, but the outer periphery of the upper portion thereof is a recess, and when combined with the lower surface of the second central portion 43, the housing of the inner ring 31 of the bearing 30 is configured. do. That is, the inner ring 31 of the bearing 30 is sandwiched and fixed by the first central portion 42 and the second central portion 43. The bearing 30 is a cross roller bearing provided with rollers 33. In the bearing 30, a seal 34 is provided between the inner ring 31 and the outer ring 32. The fixed structure of the outer ring 32 of the bearing 30 will be described later.
 図1、図2、図15を参照して、軸受30の上部には、環状に延在する上シャッター91が配置されている。上シャッター91によって、軸受30上部の内輪31と外輪32との間隙が覆われている。上シャッター91は、ねじ48で第2中央部43に固定されている。軸受30の下部には、環状に延在する下シャッター92が配置されている。下シャッター92によって、軸受30下部の内輪31と外輪32との間隙が覆われている。下シャッター92は、ねじ44でベッド40に固定されている。下シャッター92の上部は、下シャッター92の上端から中心に向かって下向きに傾斜する斜面に形成されている。下シャッター92をこの形状とすることで、軸受30から潤滑剤が漏洩し、下シャッター92で潤滑剤を受ける場合であっても、潤滑剤がモータやその他の部分に侵入することを回避できる。上シャッター91および下シャッター92は、樹脂製または鋼製の部材であってよい。なお、軸受30にシール34がある場合は、シャッター91、92を削除することもできる。また、シャッター91、92がある場合は、軸受30のシール34を削除することもできる。さらに、シール34及びシャッター91、92の両方を削除することもできる。 With reference to FIGS. 1, 2, and 15, an upper shutter 91 extending in an annular shape is arranged above the bearing 30. The upper shutter 91 covers the gap between the inner ring 31 and the outer ring 32 above the bearing 30. The upper shutter 91 is fixed to the second central portion 43 with a screw 48. A lower shutter 92 extending in an annular shape is arranged below the bearing 30. The lower shutter 92 covers the gap between the inner ring 31 and the outer ring 32 at the bottom of the bearing 30. The lower shutter 92 is fixed to the bed 40 with screws 44. The upper portion of the lower shutter 92 is formed on a slope that inclines downward from the upper end of the lower shutter 92 toward the center. By forming the lower shutter 92 in this shape, even when the lubricant leaks from the bearing 30 and the lubricant is received by the lower shutter 92, it is possible to prevent the lubricant from invading the motor or other parts. The upper shutter 91 and the lower shutter 92 may be made of resin or steel. If the bearing 30 has a seal 34, the shutters 91 and 92 can be deleted. Further, when the shutters 91 and 92 are present, the seal 34 of the bearing 30 can be deleted. Further, both the seal 34 and the shutters 91 and 92 can be removed.
 図2を参照して、テーブル20には、その外周の全周にわたって、軸受30の径方向(図2中のXY方向)に、外周から内方に凹む凹部であるテーブル溝部60が形成されている。コイルベース50は、テーブル溝部60に進入し、テーブル溝部60に沿うように配置されている。コイルベース50の第1表面50aに、コイル101が配置されている。コイル101と相対するように、テーブル20の壁面20aに磁石201が配置されている。また、コイルベース50の第2表面50bに、コイル301が配置されている。コイル301と相対するように、テーブル20の壁面20bに磁石401が配置されている。 With reference to FIG. 2, the table 20 is formed with a table groove portion 60 which is a recess recessed inward from the outer circumference in the radial direction of the bearing 30 (XY direction in FIG. 2) over the entire circumference of the outer circumference. There is. The coil base 50 enters the table groove portion 60 and is arranged along the table groove portion 60. The coil 101 is arranged on the first surface 50a of the coil base 50. The magnet 201 is arranged on the wall surface 20a of the table 20 so as to face the coil 101. Further, the coil 301 is arranged on the second surface 50b of the coil base 50. A magnet 401 is arranged on the wall surface 20b of the table 20 so as to face the coil 301.
 磁石201は、軸受30の回転方向に並んで複数配置された磁石の列である第1磁石列200の一部をなす。コイル101は、第1磁石列200と相対するように並行して複数配置されたコイルの列である第1コイル列100の一部をなす。第1コイル列100および第1磁石列200は、第1モータ150を構成する。また、磁石401は、軸受30の回転方向に並んで複数配置された磁石の列である第2磁石列400の一部をなす。コイル301は、第2磁石列400と相対するように複数配置されたコイルの列である第2コイル列300の一部をなす。第2コイル列300および第2磁石列400は第2モータ350を構成する。つまり、回転テーブル装置1は、第1モータ150および第2モータ350の2つのモータを備える。 The magnet 201 forms a part of the first magnet row 200, which is a row of magnets arranged side by side in the rotation direction of the bearing 30. The coil 101 forms a part of the first coil row 100, which is a row of coils arranged in parallel so as to face the first magnet row 200. The first coil row 100 and the first magnet row 200 constitute the first motor 150. Further, the magnet 401 forms a part of the second magnet row 400, which is a row of magnets arranged side by side in the rotation direction of the bearing 30. The coil 301 forms a part of the second coil row 300, which is a row of coils arranged so as to face the second magnet row 400. The second coil row 300 and the second magnet row 400 constitute the second motor 350. That is, the rotary table device 1 includes two motors, a first motor 150 and a second motor 350.
 次に、回転テーブル装置1のテーブル20についてより詳しく説明する。
 図3は、テーブル20を取り出して示す斜視図である。図4はテーブル20の側面図である。図5Aは、テーブル20の断面図である。図5Bは、テーブル20および軸受30を取り出して示す断面図である。
Next, the table 20 of the rotary table device 1 will be described in more detail.
FIG. 3 is a perspective view showing the table 20 taken out. FIG. 4 is a side view of the table 20. FIG. 5A is a cross-sectional view of the table 20. FIG. 5B is a cross-sectional view showing the table 20 and the bearing 30 taken out.
 図3、図4を参照して、テーブル20は、第1部材21と第2部材22とが回転テーブル装置の軸方向(Z方向)に積み重ねられている。第1部材21は、大略的に円環板状である第1円環部23と、第1円環部23の内周から下方に軸方向に延びる円筒状部分である第1筒部24と、を含む。第2部材22は、大略的に円環板状である第2円環部25と、第2円環部25の内周から立ち上がって軸方向に延びる円筒状部分である第2筒部26と、を含む。第1筒部24の端面と第2筒部26の端面とが、互いに接している。第1部材21には、第1円環部23および第1筒部24を貫通するねじ穴27aが形成されている。実施の形態1においては周方向に等間隔に16箇所のねじ穴27aが形成されている。また、第2部材22の第2筒部26における第1筒部24と接する端面には、ねじ穴27aに対応するねじ穴27b(図6)が形成されている。ねじ穴27aおよび27bにわたるねじを挿入し、締結することによって、第1部材21と第2部材22とが固定される。第2部材22の第2円環部25の外周には、位置スケールを固定するための固定穴730が設けられている。 With reference to FIGS. 3 and 4, in the table 20, the first member 21 and the second member 22 are stacked in the axial direction (Z direction) of the rotary table device. The first member 21 includes a first annular portion 23 which is roughly an annular plate shape, and a first tubular portion 24 which is a cylindrical portion extending downward from the inner circumference of the first annular portion 23 in the axial direction. ,including. The second member 22 includes a second annular portion 25 which is roughly in the shape of an annular plate, and a second tubular portion 26 which is a cylindrical portion that rises from the inner circumference of the second annular portion 25 and extends in the axial direction. ,including. The end face of the first cylinder portion 24 and the end face of the second cylinder portion 26 are in contact with each other. The first member 21 is formed with a screw hole 27a that penetrates the first annular portion 23 and the first tubular portion 24. In the first embodiment, 16 screw holes 27a are formed at equal intervals in the circumferential direction. Further, a screw hole 27b (FIG. 6) corresponding to the screw hole 27a is formed on the end surface of the second cylinder portion 26 of the second member 22 in contact with the first cylinder portion 24. The first member 21 and the second member 22 are fixed by inserting and fastening the screws over the screw holes 27a and 27b. A fixing hole 730 for fixing the position scale is provided on the outer periphery of the second annular portion 25 of the second member 22.
 図4、図5を参照して、第1筒部24および第2筒部26の外径は、互いに等しい。つまり、第1筒部24の外周面と第2筒部26の外周面は面一である。第1円環部23および第2円環部25の外径と、第1筒部24および第2筒部26の外径との差によって、テーブル溝部60が形成されている。第1筒部24の外周面および第2筒部26の外周面が、テーブル溝部60を規定する内周壁面60cを構成している。第1部材21の第1円環部23における、コイルベース50と相対する側の壁面20a(図2)は、テーブル溝部60の第1壁面60aを構成している。第2部材22の第2円環部25における、コイルベース50と相対する側の壁面20b(図2)は、テーブル溝部60の第2壁面60bを構成している。テーブル溝部60は、テーブル20の外周面から内方に軸受の径方向に凹む、ドーナツ状(中空円筒状)の溝である。 With reference to FIGS. 4 and 5, the outer diameters of the first cylinder portion 24 and the second cylinder portion 26 are equal to each other. That is, the outer peripheral surface of the first cylinder portion 24 and the outer peripheral surface of the second cylinder portion 26 are flush with each other. The table groove portion 60 is formed by the difference between the outer diameters of the first annular portion 23 and the second annular portion 25 and the outer diameters of the first tubular portion 24 and the second tubular portion 26. The outer peripheral surface of the first cylinder portion 24 and the outer peripheral surface of the second cylinder portion 26 form an inner peripheral wall surface 60c that defines the table groove portion 60. The wall surface 20a (FIG. 2) on the side of the first annular portion 23 of the first member 21 facing the coil base 50 constitutes the first wall surface 60a of the table groove portion 60. The wall surface 20b (FIG. 2) on the side of the second ring portion 25 of the second member 22 facing the coil base 50 constitutes the second wall surface 60b of the table groove portion 60. The table groove portion 60 is a donut-shaped (hollow cylindrical) groove that is recessed inward from the outer peripheral surface of the table 20 in the radial direction of the bearing.
 図5Aを参照して、第1円環部23における第2部材22と相対する側の表面、すなわち、テーブル溝部60の第1壁面60aには、周方向に延在する環状の凹部61が形成されている。また、第2円環部25における第1部材21と相対する側の表面、すなわち、テーブル溝部60の第2壁面60bには、凹部61と同じ径および深さを有し、周方向に延在する環状の凹部62が形成されている。また、第1筒部24および第2筒部26の内周側には、径方向に外方に凹む、凹部28が形成されている。図5Bを参照して、凹部28に、軸受30の外輪32が挟持される。すなわち、凹部28は、軸受30の外輪32のハウジングを構成している。外輪32は、テーブル20の第1部材21および第2部材22によって挟持されている。具体的には、外輪32は、テーブル20に対して、第1部材21と第2部材22とを締結するねじ47(図1、図15)の締結力によって固定されている。外輪32とテーブル20とを確実に固定するために、挟持による固定に加えて接着剤等を用いて接着してもよい。また、凹部28における第1部材21および第2部材22の境界部では、第1部材21及び第2部材22の角が面取りされてなる溝29が形成されている。第1部材21および第2部材22を面取りすることによって、軸受30を挿入しやすくできる。 With reference to FIG. 5A, an annular recess 61 extending in the circumferential direction is formed on the surface of the first annular portion 23 on the side facing the second member 22, that is, on the first wall surface 60a of the table groove portion 60. Has been done. Further, the surface of the second annular portion 25 on the side facing the first member 21, that is, the second wall surface 60b of the table groove portion 60 has the same diameter and depth as the recess 61 and extends in the circumferential direction. An annular recess 62 is formed. Further, on the inner peripheral side of the first cylinder portion 24 and the second cylinder portion 26, a recess 28 is formed which is recessed outward in the radial direction. With reference to FIG. 5B, the outer ring 32 of the bearing 30 is sandwiched in the recess 28. That is, the recess 28 constitutes the housing of the outer ring 32 of the bearing 30. The outer ring 32 is sandwiched by the first member 21 and the second member 22 of the table 20. Specifically, the outer ring 32 is fixed to the table 20 by the fastening force of the screw 47 (FIGS. 1 and 15) for fastening the first member 21 and the second member 22. In order to securely fix the outer ring 32 and the table 20, in addition to fixing by sandwiching, an adhesive or the like may be used for bonding. Further, at the boundary between the first member 21 and the second member 22 in the recess 28, a groove 29 is formed in which the corners of the first member 21 and the second member 22 are chamfered. By chamfering the first member 21 and the second member 22, the bearing 30 can be easily inserted.
 図6は、テーブル20の第2部材22のみを取り出して示す斜視図である。図7は、第2部材22と第2磁石列400との収まりを示す図である。図6、図7を参照して、第2部材22は、第2円環部25と、第2円環部25の内周から立ち上がって軸方向に延びる円筒状部分である第2筒部26と、を含む。第2円環部25の上面(図に現われている面)は、テーブル溝部60の第2壁面60bを構成する。第2壁面60bには、周方向に延在する環状の凹部62が形成されている。 FIG. 6 is a perspective view showing only the second member 22 of the table 20 taken out. FIG. 7 is a diagram showing the fit of the second member 22 and the second magnet row 400. With reference to FIGS. 6 and 7, the second member 22 has a second annular portion 25 and a second tubular portion 26 which is a cylindrical portion that rises from the inner circumference of the second annular portion 25 and extends in the axial direction. And, including. The upper surface (the surface shown in the figure) of the second annular portion 25 constitutes the second wall surface 60b of the table groove portion 60. An annular recess 62 extending in the circumferential direction is formed on the second wall surface 60b.
 凹部62には、軸受の回転方向(周方向)に沿って、磁石401が並べて配置されている。磁石401は、回転中心に向かって収束する略台形状の面を有する板状の磁石である。凹部62の深さは、磁石401の厚みとほぼ等しく形成されている。すなわち、磁石401は凹部62内にほぼ収められ、テーブル20の表面からの突出はわずかである。互いに隣接して配置された21個の磁石401が、第2磁石列400を構成している。磁石401は、凹部62の全周360°のうち、約315°にわたって配置されている。凹部62の底面にはピン穴620が形成されている。ピン穴620を利用して、磁石401を配置する際の開始点の位置決めを容易にできる。第2磁石列400において、磁石401は、N極とS極が互いに交互になるように配置されている。なお、実施の形態1では、第2磁石列400は、21個の磁石401が約315°にわたって配列されてなるが、磁石の個数や配列の形態は、これに制限されない。例えば、凹部62の全周(360°)にわたって磁石を配置することもできる。磁石の個数や配列の形態は、磁石のサイズや性能、モータに要求されるトルクや回転速度、回転テーブル装置のその他の構成(例えばリミットセンサの配置)等に応じて、適宜変更されうる。 Magnets 401 are arranged side by side in the recess 62 along the rotation direction (circumferential direction) of the bearing. The magnet 401 is a plate-shaped magnet having a substantially trapezoidal surface that converges toward the center of rotation. The depth of the recess 62 is formed to be substantially equal to the thickness of the magnet 401. That is, the magnet 401 is substantially housed in the recess 62, and the protrusion from the surface of the table 20 is slight. Twenty-one magnets 401 arranged adjacent to each other form the second magnet row 400. The magnet 401 is arranged over about 315 ° out of 360 ° all around the recess 62. A pin hole 620 is formed on the bottom surface of the recess 62. The pin hole 620 can be used to easily position the starting point when arranging the magnet 401. In the second magnet row 400, the magnets 401 are arranged so that the north pole and the south pole alternate with each other. In the first embodiment, the second magnet row 400 has 21 magnets 401 arranged over about 315 °, but the number of magnets and the form of the arrangement are not limited to this. For example, the magnet can be arranged over the entire circumference (360 °) of the recess 62. The number and arrangement of magnets can be appropriately changed depending on the size and performance of the magnets, the torque and rotation speed required for the motor, other configurations of the rotary table device (for example, the arrangement of limit sensors), and the like.
 図8は、テーブル20の第1部材21のみを取り出して示す斜視図である。図9は、第1部材21と第1磁石列200との収まりを示す図である。第1部材21は第2部材22と大部分において同様の形態である。ここでは異なる構成を主に説明する。第1部材21の第1円環部23の辺縁の一箇所に、ストッパ固定部210が形成されている。ストッパ固定部210は、凹部として形成されている。ストッパ固定部210が凹部として形成されていることによって、第1部材21の下面に配置されるストッパを固定する固定ねじ211(図1)を挿入した時に、固定ねじ211の頭部がテーブル20の表面に突出しない。また、第1部材21の第1円環部23の外径は、第2部材22の第2円環部25の外径よりもやや大きい。第1円環部23には、第1円環部23を厚み方向に貫通するねじ穴9が形成されている。実施の形態1において、ねじ穴9は周方向に等間隔に8箇所設けられているが、この数は特に限定されない。ねじ穴9は、回転テーブル装置1を他部材のワーク等に取り付けるために用いられる。第1筒部24には、第1部材を厚み方向に貫通するねじ穴27aが設けられている。ねじ穴27aは、第2部材22のねじ穴27bに対応する。第1部材21の上面からねじ47(図1、図15)をねじ穴27a、27bに挿入して締結することによって、第1部材21と第2部材22とが互いに固定される。 FIG. 8 is a perspective view showing only the first member 21 of the table 20 taken out. FIG. 9 is a diagram showing the fit of the first member 21 and the first magnet row 200. The first member 21 has almost the same form as the second member 22. Here, different configurations will be mainly described. A stopper fixing portion 210 is formed at one of the peripheral edges of the first annular portion 23 of the first member 21. The stopper fixing portion 210 is formed as a recess. Since the stopper fixing portion 210 is formed as a recess, when the fixing screw 211 (FIG. 1) for fixing the stopper arranged on the lower surface of the first member 21 is inserted, the head of the fixing screw 211 is placed on the table 20. Does not protrude to the surface. Further, the outer diameter of the first annular portion 23 of the first member 21 is slightly larger than the outer diameter of the second annular portion 25 of the second member 22. The first annular portion 23 is formed with a screw hole 9 that penetrates the first annular portion 23 in the thickness direction. In the first embodiment, eight screw holes 9 are provided at equal intervals in the circumferential direction, but the number is not particularly limited. The screw hole 9 is used to attach the rotary table device 1 to a work or the like of another member. The first cylinder portion 24 is provided with a screw hole 27a that penetrates the first member in the thickness direction. The screw hole 27a corresponds to the screw hole 27b of the second member 22. The first member 21 and the second member 22 are fixed to each other by inserting and fastening the screws 47 (FIGS. 1 and 15) from the upper surface of the first member 21 into the screw holes 27a and 27b.
 図8、図9を参照して、第1円環部23の下面(図に現われている面)は、テーブル溝部60の第1壁面60aを構成する。第1壁面60aには、周方向に延在する環状の凹部61が形成されている。凹部61には、軸受の回転方向(周方向)に沿って、磁石201が並べて配置されている。互いに隣接して配置された21個の磁石201が、第1磁石列200を構成している。第1磁石列200の構成は、第2磁石列400の構成と同様である。凹部61の底面にはピン穴610が形成されており、第1磁石列200の開始位置決めが容易にされている。第1磁石列200と、第2磁石列400とは、回転テーブル装置の周方向における同位置に配置される。 With reference to FIGS. 8 and 9, the lower surface (the surface appearing in the figure) of the first annular portion 23 constitutes the first wall surface 60a of the table groove portion 60. An annular recess 61 extending in the circumferential direction is formed on the first wall surface 60a. Magnets 201 are arranged side by side in the recess 61 along the rotation direction (circumferential direction) of the bearing. Twenty-one magnets 201 arranged adjacent to each other form the first magnet row 200. The configuration of the first magnet row 200 is the same as the configuration of the second magnet row 400. A pin hole 610 is formed on the bottom surface of the recess 61 to facilitate the start positioning of the first magnet row 200. The first magnet row 200 and the second magnet row 400 are arranged at the same position in the circumferential direction of the rotary table device.
 次に、回転テーブル装置1のコイルベース50についてより詳しく説明する。
 図10は、コイルベース50のみを取り出して示す斜視図である。図11は、コイルベース50を図10中のC-Cで切断した状態を示す断面斜視図である。コイルベース50の全体は鋼製の板状部材である。図10を参照して、コイルベース50の中央には、軸受の回転軸(テーブル20の回転軸)Rを中心とする円形の穴が形成されている。円形穴を規定する周壁50dは、テーブル20の第1筒部24の外周面と第2筒部26の外周面、つまり、テーブル溝部60を規定する内周壁面60c(図4)と、離隔しつつ対向する。周壁50dが規定する円の直径は、テーブル溝部60の内周壁面60cの直径よりも、わずかに大きい。
Next, the coil base 50 of the rotary table device 1 will be described in more detail.
FIG. 10 is a perspective view showing only the coil base 50 taken out. FIG. 11 is a cross-sectional perspective view showing a state in which the coil base 50 is cut at CC in FIG. The entire coil base 50 is a steel plate-shaped member. With reference to FIG. 10, a circular hole centered on the rotation axis (rotation axis of the table 20) R of the bearing is formed in the center of the coil base 50. The peripheral wall 50d defining the circular hole is separated from the outer peripheral surface of the first cylinder portion 24 of the table 20 and the outer peripheral surface of the second cylinder portion 26, that is, the inner peripheral wall surface 60c (FIG. 4) defining the table groove portion 60. While facing each other. The diameter of the circle defined by the peripheral wall 50d is slightly larger than the diameter of the inner peripheral wall surface 60c of the table groove portion 60.
 図10を参照して、コイルベース50の4隅には、コイルベース50を支柱41に固定するためのねじ穴58が形成されている。コイルベース50の4隅は、回転軸Rを中心とする円の円弧の一部をなす弧状とされている。またコイルベース50は、ベッド40が規定する四角形よりも外方に張り出した、拡張部55を有する。拡張部55には、コイルベース50をエンコーダヘッド710(図1)に固定するねじを挿入するねじ穴59が形成されている。 With reference to FIG. 10, screw holes 58 for fixing the coil base 50 to the support column 41 are formed at the four corners of the coil base 50. The four corners of the coil base 50 have an arc shape forming a part of a circular arc centered on the rotation axis R. Further, the coil base 50 has an expansion portion 55 protruding outward from the quadrangle defined by the bed 40. The expansion portion 55 is formed with a screw hole 59 for inserting a screw for fixing the coil base 50 to the encoder head 710 (FIG. 1).
 図10、図11を参照して、コイルベース50は第1表面50aおよび第2表面50bを有する。図10には、コイルベース50の第1表面50aが表れている。第1表面50aには、軸受の回転の周方向に延在する環状の凹部である、第1凹部51が形成されている。図11を参照して、第2表面50bにも、軸受の回転の周方向に延在する環状の凹部である第2凹部52が形成されている。第1凹部51と第2凹部52とは互いに同じ幅および深さを有する。第1凹部51の底面には、コイルを固定するための固定用ピン(図12)を挿入するための穴57が周方向に複数形成されている。穴57は、第1表面50aから第2表面50bまで貫通し、2つの穴を一組として配列されている。一組の2つの穴のうちの一方には第1表面50aからピンが挿入され、他方には第2表面50bからピンが挿入される。 With reference to FIGS. 10 and 11, the coil base 50 has a first surface 50a and a second surface 50b. FIG. 10 shows the first surface 50a of the coil base 50. The first surface 50a is formed with a first recess 51, which is an annular recess extending in the circumferential direction of the rotation of the bearing. With reference to FIG. 11, the second surface 50b is also formed with a second recess 52, which is an annular recess extending in the circumferential direction of the rotation of the bearing. The first recess 51 and the second recess 52 have the same width and depth as each other. A plurality of holes 57 for inserting fixing pins (FIG. 12) for fixing the coil are formed on the bottom surface of the first recess 51 in the circumferential direction. The holes 57 penetrate from the first surface 50a to the second surface 50b, and the two holes are arranged as a set. A pin is inserted from the first surface 50a into one of the two holes in the set, and a pin is inserted from the second surface 50b into the other.
 図12は、コイルベース50と基板とを取り出して示す斜視図である。図10、図12を参照して、第1基板81が、コイルベース50の第1表面50aに接するように配置される。第1基板81は、第1凹部51の全周を覆うように取り付けられる。第1基板81のコイルベース50と対向する側の表面には、コイルが取り付けられている(図13、図14参照)。また、第2表面50bにおいても同様である。すなわち、第2基板82(図2)が、第2表面50bに接するように配置される。第2基板82は、第2凹部52の全周を覆うように取り付けられる。第2基板82のコイルベース50と対向する側の表面には、コイルが取り付けられている。この構成によって、コイルが、コイルベース50の両面に設けられた第1凹部51および第2凹部52のそれぞれに収められる。第1基板81および第2基板82は、例えばプリント基板である。第1基板81および第2基板82にはそれぞれ、U相、V相、W相に対応する3本の電線が接続されている。3本の電線のそれぞれが、第1基板81および第2基板82に取り付けられた第1コイル列100および第2コイル列300に、U相、V相、W相の電流を供給する。第1基板81および第2基板82を介して、第1コイル列100および第2コイル列300が、後述する駆動回路600に接続される。 FIG. 12 is a perspective view showing the coil base 50 and the substrate taken out. With reference to FIGS. 10 and 12, the first substrate 81 is arranged so as to be in contact with the first surface 50a of the coil base 50. The first substrate 81 is attached so as to cover the entire circumference of the first recess 51. A coil is attached to the surface of the first substrate 81 on the side facing the coil base 50 (see FIGS. 13 and 14). The same applies to the second surface 50b. That is, the second substrate 82 (FIG. 2) is arranged so as to be in contact with the second surface 50b. The second substrate 82 is attached so as to cover the entire circumference of the second recess 52. A coil is attached to the surface of the second substrate 82 on the side facing the coil base 50. With this configuration, the coil is housed in each of the first recess 51 and the second recess 52 provided on both sides of the coil base 50. The first substrate 81 and the second substrate 82 are, for example, printed circuit boards. Three electric wires corresponding to the U phase, the V phase, and the W phase are connected to the first substrate 81 and the second substrate 82, respectively. Each of the three wires supplies U-phase, V-phase, and W-phase currents to the first coil row 100 and the second coil row 300 attached to the first substrate 81 and the second substrate 82. The first coil row 100 and the second coil row 300 are connected to the drive circuit 600 described later via the first substrate 81 and the second substrate 82.
 図13および図14は、基板とコイルとを取り出して示す斜視図である。図13は、第1基板81のテーブル20と対向する側(図2参照)を示す。図14は、第1基板81のコイルベース50と対向する側を示す。図14を参照して、第1基板81の表面に、第1基板81の周に沿って、12個のコイル101が互いに隣接して配列されている。コイル101のそれぞれに、カラー110が配設され、カラー110には固定用孔111が形成されている。第1コイル列100は、固定用孔111およびコイルベース50の穴57(図10)にわたるよう挿入された固定用ピン(不図示)によって、コイルベース50に固定される。第2基板82も、同様の構成であり説明を省略する。第1基板81、第2基板82には、絶縁フィルム(不図示)が貼付されている。 13 and 14 are perspective views showing the substrate and the coil taken out. FIG. 13 shows the side of the first substrate 81 facing the table 20 (see FIG. 2). FIG. 14 shows the side of the first substrate 81 facing the coil base 50. With reference to FIG. 14, twelve coils 101 are arranged adjacent to each other on the surface of the first substrate 81 along the circumference of the first substrate 81. A collar 110 is arranged in each of the coils 101, and a fixing hole 111 is formed in the collar 110. The first coil row 100 is fixed to the coil base 50 by a fixing pin (not shown) inserted so as to extend over the fixing hole 111 and the hole 57 of the coil base 50 (FIG. 10). The second substrate 82 also has the same configuration, and the description thereof will be omitted. An insulating film (not shown) is attached to the first substrate 81 and the second substrate 82.
 図14を参照して、コイル101はそれぞれ、扁平で環状に巻回されたコアレスコイルである。12個のコイル101が、第1コイル列100を構成している。コイル101は3相コイルであり、第1コイル列100においては、一方の端からU相、V相、W相の順に繰り返して配列されている。なお、実施の形態1においてコイル列には12個のコイルが含まれるが、コイル列に含まれるコイルの数や配置は、モータの大きさや必要なトルクに応じて変更できる。図2、図14を参照して、コイルベース50の両面にそれぞれ、第1コイル列100および第2コイル列300が配設される。第1コイル列100および第2コイル列300を構成するコイルの数は、互いに等しい。また、第1コイル列100および第2コイル列300において、周方向における同じ位置には、同じ相のコイルが位置するように配置できる。この構成によって、2つのモータから出力されるトルクの方向を合わせて、大きなトルクを得ることができる。 With reference to FIG. 14, each coil 101 is a flat, annularly wound coreless coil. Twelve coils 101 constitute the first coil row 100. The coil 101 is a three-phase coil, and in the first coil row 100, the U phase, the V phase, and the W phase are repeatedly arranged in this order from one end. Although the coil row includes 12 coils in the first embodiment, the number and arrangement of the coils included in the coil row can be changed according to the size of the motor and the required torque. With reference to FIGS. 2 and 14, the first coil row 100 and the second coil row 300 are arranged on both sides of the coil base 50, respectively. The number of coils constituting the first coil row 100 and the second coil row 300 is equal to each other. Further, in the first coil row 100 and the second coil row 300, the coils of the same phase can be arranged at the same position in the circumferential direction. With this configuration, it is possible to obtain a large torque by matching the directions of the torques output from the two motors.
 次に、回転テーブル装置が備えるモータについて詳しく説明する。
 図2を参照して、コイルベース50の第1表面50aに、コイル101が配置されている。コイル101と相対するように、テーブル20の壁面20aに磁石201が配置されている。前述のとおり、コイル101は第1コイル列100を構成し、磁石201は第1磁石列200を構成する。第1コイル列100と第1磁石列200の間には第1基板81が存在し、第1コイル列100と第1磁石列200は互いに離隔している。第1コイル列100および第1磁石列200は、第1モータ150を構成する。コイルベース50の第2表面50bにおいても同様である。すなわち、コイルベースの第2表面側では、第2コイル列300と第2磁石列400とが相対し、第2モータ350を構成する。
Next, the motor included in the rotary table device will be described in detail.
With reference to FIG. 2, the coil 101 is arranged on the first surface 50a of the coil base 50. The magnet 201 is arranged on the wall surface 20a of the table 20 so as to face the coil 101. As described above, the coil 101 constitutes the first coil row 100, and the magnet 201 constitutes the first magnet row 200. A first substrate 81 exists between the first coil row 100 and the first magnet row 200, and the first coil row 100 and the first magnet row 200 are separated from each other. The first coil row 100 and the first magnet row 200 constitute the first motor 150. The same applies to the second surface 50b of the coil base 50. That is, on the second surface side of the coil base, the second coil row 300 and the second magnet row 400 face each other to form the second motor 350.
 本開示の回転テーブル装置1では、コイルベース50の両面に凹部が形成され、その凹部内にそれぞれコイル列が収められている。また、コイルベース50は、テーブル20のテーブル溝部60に進入するように配置される。さらに、テーブル20におけるコイルベース50と対向する面には凹部が設けられ、その凹部内に磁石列が収められている。これらの構成によって、モータを2段に重ねた場合であっても、軸方向の寸法の増加を抑制し、コンパクトな回転テーブル装置が実現できる。 In the rotary table device 1 of the present disclosure, recesses are formed on both sides of the coil base 50, and coil rows are housed in the recesses. Further, the coil base 50 is arranged so as to enter the table groove portion 60 of the table 20. Further, a recess is provided on the surface of the table 20 facing the coil base 50, and a magnet row is housed in the recess. With these configurations, even when the motors are stacked in two stages, an increase in dimensions in the axial direction can be suppressed, and a compact rotary table device can be realized.
 次に、その他の構成について説明する。
 図1、図15を参照して、コイルベース50の4隅のうちの2個所に、ストッパ220が取り付けられている。2つのストッパ220の互いに向き合う側にはそれぞれ、樹脂部222が備えられる。また、2つのストッパ220の間に、テーブル20のストッパ固定部210が位置している。ストッパ固定部210の下部には、回転方向においてストッパ220と対向するストッパが固定されている。コイルベース50に取り付けられる2つのストッパ220は固定されており、テーブルに取り付けられるストッパはテーブルとともに回転する。ストッパ220によって、テーブル20の回転過剰が防止される。
Next, other configurations will be described.
With reference to FIGS. 1 and 15, stoppers 220 are attached to two of the four corners of the coil base 50. A resin portion 222 is provided on each of the two stoppers 220 facing each other. Further, the stopper fixing portion 210 of the table 20 is located between the two stoppers 220. A stopper facing the stopper 220 in the rotation direction is fixed to the lower portion of the stopper fixing portion 210. The two stoppers 220 attached to the coil base 50 are fixed, and the stoppers attached to the table rotate together with the table. The stopper 220 prevents the table 20 from over-rotating.
 図1を参照して、テーブル20の第2部材22の外周側面に、周方向に延在するスケール709(図16)が貼付される。スケール709は、支柱41a、支柱41bの背後に相当する部分に設けられることが好ましい。スケール709に対向してエンコーダヘッド710が設けられる。回転テーブル装置の外側から見て、支柱の背後にスケール709を配置することで、埃の付着等を防止できる。エンコーダヘッド710に信号線が結線される。また、コイル101、301に三相電流を供給するための電線が配設される。 With reference to FIG. 1, a scale 709 (FIG. 16) extending in the circumferential direction is attached to the outer peripheral side surface of the second member 22 of the table 20. The scale 709 is preferably provided in a portion corresponding to the back of the columns 41a and 41b. An encoder head 710 is provided facing the scale 709. By arranging the scale 709 behind the support column when viewed from the outside of the rotary table device, it is possible to prevent the adhesion of dust and the like. A signal line is connected to the encoder head 710. Further, electric wires for supplying a three-phase current to the coils 101 and 301 are arranged.
 図16は回転テーブル装置1の電気的な接続を示す模式図である。特に、第1モータ150と第2モータ350との電気的な接続を示す。図16を参照して、回転テーブル装置1は、駆動ドライバ700と、駆動ユニット410と、駆動ユニットに取り付けられるスケール709と、駆動ユニット410の動作を検知するエンコーダヘッド710と、を含む。エンコーダヘッド710は、後述の制御回路500に接続されている。スケール709とエンコーダヘッド710により、エンコーダシステム720が構成されている。エンコーダシステム720は、制御回路500に接続されている。制御回路500は、エンコーダヘッド710の出力信号に応じて駆動回路600を制御するようになっている。駆動ドライバ700は、制御回路500と、駆動回路600と、を含む。駆動ドライバ700には、図示していない電源が接続されている。制御回路500は、予め設定されたプログラムに応じて、また、エンコーダヘッド710からの信号に応じて、駆動回路600を制御する。駆動回路600はU相、V相、W相のそれぞれに応じた位相の電流を送出する。電線L,L,Lは、それぞれ分岐されて、第1モータ150および第2モータ350に接続されている。すなわち、第1モータ150および第2モータ350は、駆動回路600に対して電気的に並列に接続されている。この構成によれば、1つの駆動回路によって2つのモータが同時に動作させられる。このため、モータを同調させる制御が不要であり、確実かつ容易に2つのモータを動かし、2つのモータからのトルクを得ることができる。本開示の回転テーブル装置1は、駆動回路600からの電流によって第1モータ150および第2モータ350が作動され、発生したトルクによってテーブル20が動かされるダイレクトドライブ型装置である。 FIG. 16 is a schematic diagram showing an electrical connection of the rotary table device 1. In particular, the electrical connection between the first motor 150 and the second motor 350 is shown. With reference to FIG. 16, the rotary table device 1 includes a drive driver 700, a drive unit 410, a scale 709 attached to the drive unit, and an encoder head 710 for detecting the operation of the drive unit 410. The encoder head 710 is connected to a control circuit 500 described later. The scale 709 and the encoder head 710 constitute an encoder system 720. The encoder system 720 is connected to the control circuit 500. The control circuit 500 controls the drive circuit 600 according to the output signal of the encoder head 710. The drive driver 700 includes a control circuit 500 and a drive circuit 600. A power supply (not shown) is connected to the drive driver 700. The control circuit 500 controls the drive circuit 600 according to a preset program and according to a signal from the encoder head 710. The drive circuit 600 sends out a current having a phase corresponding to each of the U phase, the V phase, and the W phase. The electric wires L 1 , L 2 , and L 3 are branched and connected to the first motor 150 and the second motor 350, respectively. That is, the first motor 150 and the second motor 350 are electrically connected in parallel with the drive circuit 600. According to this configuration, two motors are operated simultaneously by one drive circuit. Therefore, control for synchronizing the motors is not required, and the two motors can be reliably and easily operated to obtain torque from the two motors. The rotary table device 1 of the present disclosure is a direct drive type device in which the first motor 150 and the second motor 350 are operated by the current from the drive circuit 600, and the table 20 is moved by the generated torque.
 今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed this time are exemplary in all respects and are not restrictive in any respect. The scope of the present invention is defined by the scope of claims, not the above description, and is intended to include all modifications within the meaning and scope of the claims.
1 回転テーブル装置、10 基台部、20 テーブル、20a、20b 壁面、21 第1部材、22 第2部材、23 第1円環部、24 第1筒部、25 第2円環部、26 第2筒部、27a、27b 穴、28 凹部、29 溝、30 軸受、31 内輪、32 外輪、33 ころ、34 シール、40 ベッド、41a~41d 支柱、42 第1中央部、43 第2中央部、44、45、46、47、48 ねじ、50 コイルベース、50a、50b コイルベース表面、50d コイルベース内周壁、51、52 凹部、55 拡張部、57、58、59 穴、60 テーブル溝部、60a、60b 壁面、60c 内周壁面、61、62 凹部、610、620 ピン穴、81 第1基板、82 第2基板、91 上シャッター、92 下シャッター、100 第1コイル列、101 コイル、110 カラー、111 固定用孔、150 第1モータ、200 第1磁石列、201 磁石、210 ストッパ固定部、211 固定ねじ、220 ストッパ、222 樹脂部、300 第2コイル列、301 コイル、350 第2モータ、400 第2磁石列、401 磁石、410 駆動ユニット、500 制御回路、600 駆動回路、、700 駆動ドライバ、709 スケール、710 エンコーダヘッド、720 エンコーダシステム、730 固定穴、L,L,L 電線。 1 rotary table device, 10 base part, 20 table, 20a, 20b wall surface, 21 first member, 22 second member, 23 first ring part, 24 first cylinder part, 25 second ring part, 26th 2 cylinders, 27a, 27b holes, 28 recesses, 29 grooves, 30 bearings, 31 inner rings, 32 outer rings, 33 coils, 34 seals, 40 beds, 41a to 41d columns, 42 1st center, 43 2nd center, 44, 45, 46, 47, 48 screws, 50 coil base, 50a, 50b coil base surface, 50d coil base inner peripheral wall, 51, 52 recesses, 55 expansion part, 57, 58, 59 holes, 60 table groove part, 60a, 60b wall surface, 60c inner peripheral wall surface, 61, 62 recesses, 610, 620 pin holes, 81 1st board, 82 2nd board, 91 upper shutter, 92 lower shutter, 100 1st coil row, 101 coil, 110 color, 111 Fixing hole, 150 1st motor, 200 1st magnet row, 201 magnet, 210 stopper fixing part, 211 fixing screw, 220 stopper, 222 resin part, 300 2nd coil row, 301 coil, 350 2nd motor, 400th 2 magnet train, 401 magnet, 410 drive unit, 500 control circuit, 600 drive circuit, 700 drive driver, 709 scale, 710 encoder head, 720 encoder system, 730 fixing hole, L 1 , L 2 , L 3 wire.

Claims (8)

  1.  基台部と、
     前記基台部に設置された軸受と、
     前記軸受を介して前記基台部に対して回転可能に支持されたテーブルと、
     前記基台部に対して前記テーブルを前記軸受の回転方向に回転させるモータと、
    を備え、
     前記テーブルには、前記軸受の径方向に凹むテーブル溝部が全周にわたって外周面に環状に形成されており、
     前記基台部は、前記テーブル溝部に進入し、前記テーブル溝部に沿うように配置される環状のコイルベースを含み、
     前記モータは、
     第1モータと、
     第2モータと、を含み、
     前記第1モータは、
     前記テーブル溝部を規定する前記テーブルの壁面に、前記軸受の回転方向に沿って複数配置された磁石の列である第1磁石列と、
     前記コイルベースの第1表面に、前記第1磁石列と相対するように複数配置されたコイルの列である第1コイル列と、を含み、
     前記第2モータは、
     前記テーブル溝部を規定する前記テーブルの壁面に、前記軸受の回転方向に沿って複数配置された磁石の列である第2磁石列と、
     前記軸受の軸方向において、前記第1表面とは反対側に位置する前記コイルベースの第2表面に、前記第2磁石列と相対するように複数配置されたコイルの列である第2コイル列と、を含む、
     回転テーブル装置。
    Base and
    The bearing installed on the base and
    A table rotatably supported with respect to the base via the bearings,
    A motor that rotates the table in the direction of rotation of the bearing with respect to the base portion,
    Equipped with
    In the table, a table groove portion recessed in the radial direction of the bearing is formed in an annular shape on the outer peripheral surface over the entire circumference.
    The base includes an annular coil base that enters the table groove and is arranged along the table groove.
    The motor is
    With the first motor
    Including the second motor
    The first motor is
    A first magnet row, which is a row of magnets arranged along the rotation direction of the bearing, on the wall surface of the table defining the groove portion of the table.
    The first surface of the coil base includes a first coil row, which is a row of coils arranged so as to face the first magnet row.
    The second motor is
    A second magnet row, which is a row of magnets arranged along the rotation direction of the bearing, on the wall surface of the table defining the groove portion of the table.
    A second coil row, which is a row of coils arranged so as to face the second magnet row on the second surface of the coil base located on the side opposite to the first surface in the axial direction of the bearing. And, including,
    Rotating table device.
  2.  前記コイルベースの前記第1表面には、前記第1コイル列が配置される第1凹部が形成され、
     前記コイルベースの前記第2表面には、前記第2コイル列が配置される第2凹部が形成されている、
     請求項1に記載の回転テーブル装置。
    A first recess in which the first coil row is arranged is formed on the first surface of the coil base.
    A second recess in which the second coil row is arranged is formed on the second surface of the coil base.
    The rotary table device according to claim 1.
  3.  前記テーブル溝部を規定する前記テーブルの壁面は、
     前記コイルベースの第1表面と相対する第1壁面と、
     前記コイルベースの第2表面と相対する第2壁面と、を含み、
     前記第1壁面は凹部である第1テーブル壁面部分を有し、前記第1磁石列は前記第1テーブル壁面部分内に配置されており、
     前記第2壁面は凹部である第2テーブル壁面部分を有し、前記第2磁石列は前記第2テーブル壁面部分内に配置されている、
    請求項1または請求項2に記載の回転テーブル装置。
    The wall surface of the table that defines the groove portion of the table is
    A first wall surface facing the first surface of the coil base,
    Includes a second wall surface facing the second surface of the coil base.
    The first wall surface has a first table wall surface portion which is a recess, and the first magnet row is arranged in the first table wall surface portion.
    The second wall surface has a second table wall surface portion that is a recess, and the second magnet row is arranged in the second table wall surface portion.
    The rotary table device according to claim 1 or 2.
  4.  前記テーブルは、板状部を含む第1部材と、前記第1部材に対して前記軸受の軸方向に積み重ねられている板状部を含む第2部材と、を含む、
    請求項1から請求項3のいずれか1項に記載の回転テーブル装置。
    The table includes a first member including a plate-shaped portion and a second member including a plate-shaped portion stacked axially with respect to the first member.
    The rotary table device according to any one of claims 1 to 3.
  5.  前記軸受はクロスローラ軸受であり、前記クロスローラ軸受の外輪は、前記第1部材と前記第2部材とに挟持されている、
    請求項4に記載の回転テーブル装置。
    The bearing is a cross roller bearing, and the outer ring of the cross roller bearing is sandwiched between the first member and the second member.
    The rotary table device according to claim 4.
  6.  前記軸受と前記コイルベースとは、前記軸受の軸方向における中心位置が同じである、
    請求項1から請求項5のいずれか1項に記載の回転テーブル装置。
    The bearing and the coil base have the same center position in the axial direction of the bearing.
    The rotary table device according to any one of claims 1 to 5.
  7.  前記第1コイル列と前記第1磁石列との間に、前記コイルベースに固定された第1基板をさらに備え、
     前記第2コイル列と前記第2磁石列との間に、前記コイルベースに固定された第2基板をさらに備え、
     前記第1コイル列は前記第1基板に、前記第2コイル列は前記第2基板に、それぞれ固定されている、
    請求項1から請求項6のいずれか1項に記載の回転テーブル装置。
    A first substrate fixed to the coil base is further provided between the first coil row and the first magnet row.
    A second substrate fixed to the coil base is further provided between the second coil row and the second magnet row.
    The first coil row is fixed to the first substrate, and the second coil row is fixed to the second substrate.
    The rotary table device according to any one of claims 1 to 6.
  8.  駆動回路と、前記駆動回路を制御する制御回路と、をさらに備え、
     前記第1モータおよび前記第2モータは、前記駆動回路に対して電気的に並列に接続されている、
    請求項1から請求項7のいずれか1項に記載の回転テーブル装置。
    A drive circuit and a control circuit for controlling the drive circuit are further provided.
    The first motor and the second motor are electrically connected in parallel to the drive circuit.
    The rotary table device according to any one of claims 1 to 7.
PCT/JP2021/040725 2020-11-26 2021-11-05 Rotary table device WO2022113694A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237005624A KR20230038785A (en) 2020-11-26 2021-11-05 rotary table device
CN202180063917.4A CN116097554A (en) 2020-11-26 2021-11-05 Rotary table device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020195910A JP6856814B1 (en) 2020-11-26 2020-11-26 Rotating table device
JP2020-195910 2020-11-26

Publications (1)

Publication Number Publication Date
WO2022113694A1 true WO2022113694A1 (en) 2022-06-02

Family

ID=75377990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040725 WO2022113694A1 (en) 2020-11-26 2021-11-05 Rotary table device

Country Status (5)

Country Link
JP (1) JP6856814B1 (en)
KR (1) KR20230038785A (en)
CN (1) CN116097554A (en)
TW (1) TW202222014A (en)
WO (1) WO2022113694A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759325A (en) * 1993-08-12 1995-03-03 Shinano Kenshi Co Ltd Attaching construction for brushless motor
JPH11187635A (en) * 1997-12-19 1999-07-09 Sawafuji Electric Co Ltd Flat rotating machine
JP2002537749A (en) * 1999-02-12 2002-11-05 シラー,ヘルムート Electric machine
JP2005110353A (en) * 2003-09-29 2005-04-21 Hokuto Giken:Kk Flat brushless dc motor
JP2005333763A (en) * 2004-05-21 2005-12-02 Nippon Thompson Co Ltd Alignment stage device
JP2010284036A (en) * 2009-06-05 2010-12-16 Toshiba Corp Permanent magnet rotating electrical machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759325A (en) * 1993-08-12 1995-03-03 Shinano Kenshi Co Ltd Attaching construction for brushless motor
JPH11187635A (en) * 1997-12-19 1999-07-09 Sawafuji Electric Co Ltd Flat rotating machine
JP2002537749A (en) * 1999-02-12 2002-11-05 シラー,ヘルムート Electric machine
JP2005110353A (en) * 2003-09-29 2005-04-21 Hokuto Giken:Kk Flat brushless dc motor
JP2005333763A (en) * 2004-05-21 2005-12-02 Nippon Thompson Co Ltd Alignment stage device
JP2010284036A (en) * 2009-06-05 2010-12-16 Toshiba Corp Permanent magnet rotating electrical machine

Also Published As

Publication number Publication date
JP6856814B1 (en) 2021-04-14
CN116097554A (en) 2023-05-09
JP2022084203A (en) 2022-06-07
KR20230038785A (en) 2023-03-21
TW202222014A (en) 2022-06-01

Similar Documents

Publication Publication Date Title
US7256524B2 (en) Axial gap electric motor
US7190099B2 (en) Motor
JP3395071B2 (en) Motor structure
JP2006320189A (en) Brushless motor
US20070080597A1 (en) Motor and manufacturing method thereof
US11624424B2 (en) Rotation driving device
WO2022113694A1 (en) Rotary table device
JP5181627B2 (en) Rotating electric machine and method of manufacturing rotating electric machine
US20060163955A1 (en) Flat hollow brushless servo motor with tool mounting hole
JP2010104211A (en) Brushless motor
CN110971053A (en) Electric motor
JP2009225653A (en) Direct drive motor and structure for fixing direct drive motor to support member
US11152832B2 (en) Electric actuator
JPWO2018180344A1 (en) Stator for electric motor and electric motor
JP2010130765A (en) Electric motor
JP3431346B2 (en) Motor stator structure
WO2018123841A1 (en) Rotor and motor
JP3263613B2 (en) motor
CN217849141U (en) High-thrust direct screw rod output servo electric cylinder
JPS63171150A (en) Brushless dc motor
WO2023047733A1 (en) Rotary table device
JP2002315235A (en) Electric motor
JPH01231631A (en) Motor
JPH0756623Y2 (en) Axial gap type brushless motor
KR20240113031A (en) Motor Driving Apparatus and Swivel Actuator of Hollow Type Using the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237005624

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897670

Country of ref document: EP

Kind code of ref document: A1