WO2022113564A1 - Image display device and display device - Google Patents

Image display device and display device Download PDF

Info

Publication number
WO2022113564A1
WO2022113564A1 PCT/JP2021/038383 JP2021038383W WO2022113564A1 WO 2022113564 A1 WO2022113564 A1 WO 2022113564A1 JP 2021038383 W JP2021038383 W JP 2021038383W WO 2022113564 A1 WO2022113564 A1 WO 2022113564A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
display device
dimensional
dimensional image
image display
Prior art date
Application number
PCT/JP2021/038383
Other languages
French (fr)
Japanese (ja)
Inventor
俊明 空華
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to CN202180077948.5A priority Critical patent/CN116472488A/en
Publication of WO2022113564A1 publication Critical patent/WO2022113564A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • G09G5/37Details of the operation on graphic patterns
    • G09G5/377Details of the operation on graphic patterns for mixing or overlaying two or more graphic patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/307Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using fly-eye lenses, e.g. arrangements of circular lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/346Image reproducers using prisms or semi-transparent mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/361Reproducing mixed stereoscopic images; Reproducing mixed monoscopic and stereoscopic images, e.g. a stereoscopic image overlay window on a monoscopic image background
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/383Image reproducers using viewer tracking for tracking with gaze detection, i.e. detecting the lines of sight of the viewer's eyes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/388Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • This technique relates to an image display device and a display device.
  • HMD Head Mounted Display
  • the head-mounted display is used by being worn on the user's head.
  • Patent Document 1 proposes a technique related to a wearable 3D augmented reality display having an integral imaging optical component.
  • Patent Document 2 proposes a technique related to a head-mounted light field display system (HMD) having a light field projector in each of the eyes.
  • HMD head-mounted light field display system
  • Patent Documents 1 and 2 may not be able to further improve the immersive feeling, further suppress the rendering cost, and further suppress the transmission cost.
  • An object of the present invention is to provide an image display device and a display device provided with the image display device.
  • the present inventors surprisingly realized a further improvement in immersiveness, a further reduction in rendering cost, and a further reduction in transmission cost.
  • this technique has, as the first aspect, A two-dimensional image forming apparatus, a three-dimensional image forming apparatus, a beam splitter, and an eyepiece are provided for each of the user's eyes.
  • the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus pass through the beam splitter and the eyepiece in this order, and are used by the user.
  • an image display device that is incident on each of both eyes.
  • the beam splitter may be a half mirror.
  • a two-dimensional image produced by the first image light emitted from the two-dimensional image forming apparatus and a three-dimensional image produced by the second image light emitted from the three-dimensional image forming apparatus may be superimposed.
  • the resulting image may be visible to the user.
  • the two-dimensional image by the first image light emitted from the two-dimensional image forming apparatus may be displayed in substantially the entire field of view of the user.
  • the three-dimensional image by the second image light emitted from the three-dimensional image forming apparatus may be displayed in a part of the field of view of the user.
  • the two-dimensional image by the first image light emitted from the two-dimensional image forming apparatus may be displayed in substantially the entire field of view of the user.
  • the three-dimensional image by the second image light emitted from the three-dimensional image forming apparatus may be displayed in a substantially central portion of the user's field of view.
  • the three-dimensional image by the second image light emitted from the three-dimensional image forming apparatus may be displayed in a rectangular range in the user's field of view.
  • the three-dimensional image by the second image light emitted from the three-dimensional image forming apparatus may be displayed in a circular range in the user's field of view.
  • the three-dimensional image by the second image light emitted from the three-dimensional image forming apparatus may be displayed in an elliptical range in the user's visual field.
  • the three-dimensional image forming apparatus may form a three-dimensional image by using an integral imaging method.
  • the three-dimensional image forming apparatus may form a three-dimensional image by using a tensor display method.
  • the three-dimensional image forming apparatus may form a three-dimensional image by using a super-multicular method.
  • the three-dimensional image forming apparatus may form a three-dimensional image by using a holographic method.
  • the three-dimensional image forming apparatus may form a three-dimensional image by spatially multi-layered image planes.
  • the three-dimensional image forming apparatus may form a three-dimensional image by the image planes which are multi-layered in time.
  • the image display device on the first side surface may include a free curved lens including the beam splitter and the eyepiece.
  • the image display device on the first side surface according to the present technology may further include a line-of-sight detection device.
  • This technology has the second aspect, The frame attached to the user's head and With an image display device attached to the frame, The image display device provides a display device, which is an image display device on the first side surface according to the present technology.
  • FIG. 1 is a diagram showing a configuration example of an image display device according to a first embodiment to which the present technology is applied.
  • FIG. 2 is a diagram showing an example of a method in which an image display device of a first embodiment to which the present technology is applied superimposes and displays a two-dimensional image and a three-dimensional image.
  • FIG. 3 is a diagram showing a modified example 1 of a method in which an image display device of a first embodiment to which the present technique is applied superimposes and displays a two-dimensional image and a three-dimensional image.
  • FIG. 4 is a diagram showing a modified example 2 of a method in which an image display device of a first embodiment to which the present technique is applied superimposes and displays a two-dimensional image and a three-dimensional image.
  • FIG. 1 is a diagram showing a configuration example of an image display device according to a first embodiment to which the present technology is applied.
  • FIG. 3 is a diagram showing a modified example 1 of a method in which an image display device
  • FIG. 5 is a diagram showing a modified example 3 of a method in which an image display device of a first embodiment to which the present technique is applied superimposes and displays a two-dimensional image and a three-dimensional image.
  • FIG. 6 is a diagram showing a configuration example of an image display device according to a second embodiment to which the present technology is applied.
  • FIG. 7 is a diagram showing a configuration example of an image display device according to a third embodiment to which the present technology is applied.
  • FIG. 8 is a diagram showing a configuration example of an image display device according to a fourth embodiment to which the present technology is applied.
  • FIG. 9 is a diagram showing a configuration example of an image display device according to a fifth embodiment to which the present technology is applied.
  • FIG. 10 is a diagram showing a configuration example of an image display device according to a sixth embodiment to which the present technology is applied.
  • FIG. 11 is a diagram showing a configuration example of an image display device according to a seventh embodiment to which the present technology is applied.
  • FIG. 12 is a diagram showing a configuration example of an image display device according to an eighth embodiment to which the present technology is applied.
  • the present technology relates to an image display device that presents a three-dimensional image and a display device including the image display device (for example, a head-mounted display (HMD: Head Mounted Display)).
  • a display device including the image display device (for example, a head-mounted display (HMD: Head Mounted Display)).
  • HMD Head Mounted Display
  • a head-mounted display may adopt a structure that does not induce accommodation as depth perception while presenting binocular disparity, in which case accommodation accommodation contradiction (VAC) is adopted. May cause contradiction).
  • VAC Accommodation accommodation contradiction
  • VAC is a phenomenon in which the focus adjustment is fixed on the image display surface while the convergence angle reacts to the image presented by binocular disparity, such as 3D sickness, VR sickness, eye strain, and headache. It causes physiological discomfort and restrictions on the age of the user.
  • a head-mounted display (HMD: Head Mounted Display) that displays an image having depth information by using an integral imaging type light field composed of a display and a microlens array can be mentioned. ..
  • the image generated by the light field and the real world transmitted through the optical system are superimposed to present the augmented reality to the user.
  • the field of view since the image is displayed at a high resolution, the field of view must be limited to a limited area near the center, and it is difficult to obtain an immersive feeling.
  • a head-mounted display (HMD: Head Mounted Display) that displays an image having depth information using a light field of an integral imaging method can be mentioned. Be done.
  • the display that generates the light field is composed of an LED emitter which is a minute light source, and the display in which the LED emitters are arranged is mechanically moved and synchronized with the display image by time division. High resolution light fields can be generated over the entire field.
  • in this technical example 4 in order to display a high-resolution image over the entire field of view, it is necessary to render and display a large amount of image at high speed, which may lead to an increase in rendering cost and transmission cost. ..
  • a head-mounted display (HMD: Head Mounted Display) that solves the VAC can be mentioned.
  • This technical example 5 is a technique of a method of forming multiple layers of virtual image planes as a technical example other than the above technical examples 1 to 4.
  • This method has a simple structure and mechanism, and can be implemented without the need for special equipment or high-cost calculations.
  • the depth information is discrete, and in order to sufficiently reduce the VAC of the user's eye and eliminate the physiological discomfort, it is necessary to increase the number of virtual image planes, and the HMD becomes large. there's a possibility that.
  • the present technology is an optical circuit using, for example, a two-dimensional image forming apparatus (for example, a two-dimensional display display), a three-dimensional image forming apparatus (for example, a three-dimensional display display), a beam splitter (for example, a half mirror), and an eyepiece. Consists of. This configuration is prepared for both eyes.
  • the two-dimensional display may display a stereoscopic image using the difference between the left and right eyes over the entire field of view, and the three-dimensional display may have depth information by using a light field or the like.
  • a stereoscopic image (stereoscopic image) in which focus adjustment is induced may be displayed in a limited range of the center of the visual field.
  • the images (videos) presented by the two-dimensional display and the three-dimensional display can be superimposed and visually recognized by the user by passing through an optical circuit.
  • This technology superimposes a two-dimensional image (two-dimensional image) that does not induce focus adjustment on a wide field of view, and a high-resolution three-dimensional image (three-dimensional image) that induces focus adjustment on a limited field of view. be able to. Therefore, according to the present technology, the contradiction of congestion adjustment can be resolved and a high immersive feeling can be obtained, and the structure of the image display device according to the present technology can be relatively simplified, so that manufacturing and assembly can be performed. The cost can be suppressed. Further, according to the present technique, since a high-resolution image having depth information can be limited to, for example, the center of the field of view, rendering cost and transmission cost can be suppressed as compared with the case where the image is displayed in the entire field of view.
  • the image display device of the first embodiment (example 1 of the image display device) according to the present technology includes a two-dimensional image forming device, a three-dimensional image forming device, and a beam splitter for each of the user's eyes. , With an eyepiece.
  • the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus are eyepieces with the beam splitter. It is incident on each of the user's eyes through the lens in this order.
  • the three-dimensional image forming device forms a three-dimensional image by using an integral imaging method.
  • the beam splitter include a half mirror and the like.
  • the image display device of the first embodiment according to the present technology has a wide field of view of a two-dimensional image (two-dimensional image) that does not induce focus adjustment, and a high-resolution three-dimensional image (three-dimensional image) that induces focus adjustment. It can be presented superimposed on a limited viewing range.
  • image display method image display method
  • the contradiction of accommodation control can be solved and a high immersive feeling can be obtained at low cost.
  • the image display device of the first embodiment according to the present technology has a depth using a two-dimensional image forming device (for example, a two-dimensional display display), a light field, or the like that presents a stereo image (stereo image) for each eye.
  • a two-dimensional image forming apparatus (for example, a two-dimensional display display) displays a stereo image over a wide field of view.
  • a three-dimensional image forming apparatus for example, a three-dimensional display display
  • the image display device and the like of the fourth embodiment and the multilayer image (imaginary image) plane method (see the image display device and the like of the fifth and sixth embodiments according to the present technique described later) and the like. May be good.
  • the image display device of the first embodiment according to the present technology achieves a wide field of view and high resolution with a relatively simple configuration as compared with the above-mentioned technical examples 1 to 5 as an HMD for improving VAC. Moreover, it is possible to suppress rendering costs and transmission costs.
  • the human eye has the highest visual acuity in the central visual acuity region and low visual acuity in other regions. Therefore, humans are insensitive to image quality deterioration in the peripheral visual field region.
  • a 3D image (3D image) having high resolution and depth information is displayed in the substantially central part of the field of view, and a low resolution and wide field 2D image is displayed.
  • a 3D image (3D image) having high resolution and depth information is displayed in the substantially central part of the field of view, and a low resolution and wide field 2D image is displayed.
  • the image display device 101 is composed of an image display device 101-L for the left eye and an image display device 101-R for the right eye.
  • the image display device 101-L includes a two-dimensional display 2-L, an integral imaging type three-dimensional display 1-L, a half mirror 3-L, and an eyepiece 4-L.
  • the three-dimensional display 1-L of the integral imaging method is composed of a microlens 1-1-L and a display 1-2-L.
  • the first image light emitted from the two-dimensional display 2-L and the second image light emitted from the integral imaging type three-dimensional display 1-L are the half mirror 3-L.
  • the eyepiece lens 4-L are incident on the user's left eye 500-L in this order. Therefore, in the image display device 101-L, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
  • the image display device 101-R includes a two-dimensional display 2-R, an integral imaging type three-dimensional display 1-R, a half mirror 3-R, and an eyepiece 4-R.
  • the three-dimensional display 1-R of the integral imaging method is composed of a microlens 1-1-R and a display 1-2-R.
  • the first image light emitted from the two-dimensional display 2-R and the second image light emitted from the integral imaging type three-dimensional display 1-R are the half mirror 3-R.
  • the eyepiece lens 4-R are incident on the user's left eye 500-R in this order. Therefore, in the image display device 101-R, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
  • a three-dimensional image for reproducing depth information displayed in a part of the user's field of view for example, a substantially central portion of the user's field of view
  • a three-dimensional image displayed in substantially the entire area of the user's field of view are displayed.
  • FIG. 2 is a diagram showing an example of a method in which the image display device of the first embodiment according to the present technology superimposes and displays a two-dimensional image and a three-dimensional image.
  • the image display device 102 shown in FIG. 2 includes a two-dimensional display display 2, an integral imaging method (light field method) three-dimensional display display 1, a half mirror 3, and an eyepiece lens 4.
  • the three-dimensional display display 1 is composed of a microlens 1 and a display 1-2.
  • the three-dimensional image (three-dimensional image) in which the depth information is reproduced is magnified as a virtual image by the eyepiece 4 (dotted line G32-A).
  • the two-dimensional image (two-dimensional image) is also magnified as a virtual image by the eyepiece 4 (solid line G22-A).
  • a virtual image G32-B of a three-dimensional image (three-dimensional image) is displayed in a substantially central portion of the user's field of view, and a two-dimensional image (two-dimensional) is displayed in substantially the entire area of the user's field of view.
  • the virtual image G32-B of the video) is displayed, and the user can view the video in which these two virtual images are superimposed.
  • FIG. 3 is a diagram showing a modified example 1 of a method in which the image display device of the first embodiment according to the present technology superimposes and displays a two-dimensional image and a three-dimensional image, and more specifically, in consideration of congestion.
  • This is an example in which the range for displaying a virtual image of a three-dimensional image (three-dimensional image) is changed with respect to the range shown in FIG. 2B.
  • the virtual image G23-L of the two-dimensional image is displayed in substantially the entire field of the user, and the virtual image G33-L of the three-dimensional image (three-dimensional image) is displayed. It is displayed on the right side with respect to the substantially center of the user's field of view (FIG. 3A).
  • Reference numeral K1 shown in FIG. 3A indicates an optical axis
  • reference numeral K2 indicates a center of an image (video) having depth information
  • a distance d between reference numeral K1 and reference numeral K2 is IPD / 2.
  • the virtual image G23-R of the two-dimensional image (two-dimensional image) is displayed in substantially the entire field of the user's field of view, and the virtual image G33-R of the three-dimensional image (three-dimensional image) is displayed. Is displayed on the left side with respect to the substantially center of the user's field of view (FIG. 3B).
  • FIG. 4 is a diagram showing a modification 2 of a method in which the image display device of the first embodiment according to the present technology superimposes and displays a two-dimensional image and a three-dimensional image, and is a three-dimensional image (three-dimensional image). It is a figure which shows the example which made the range of () circular (Note that FIG. 2B and FIG. 3 are an example which made the range of a three-dimensional image (three-dimensional image) rectangular).
  • the virtual image G24-L of the two-dimensional image is displayed in substantially the entire field of the user, and the virtual image G34-L of the three-dimensional image (three-dimensional image) is displayed. It is displayed in a circular shape on the right side with respect to the substantially central portion of the user's field of view (FIG. 4A).
  • Reference numeral K1 shown in FIG. 4A indicates an optical axis
  • reference numeral K2 indicates a center of an image (video) having depth information
  • a distance d between reference numeral K1 and reference numeral K2 is IPD / 2.
  • the virtual image G24-R of the two-dimensional image (two-dimensional image) is displayed in substantially the entire field of the user's field of view, and the virtual image G34-R of the three-dimensional image (three-dimensional image) is displayed. Is displayed in a circular shape on the left side with respect to the substantially central portion of the user's field of view (FIG. 4B).
  • FIG. 5 is a diagram showing a modified example 3 of a method in which the image display device of the first embodiment according to the present technology superimposes and displays a two-dimensional image and a three-dimensional image, and is a three-dimensional image (three-dimensional image).
  • 2B and 3 are examples in which the range of the three-dimensional image (three-dimensional image) is rectangular
  • FIG. 4 is a diagram showing an example in which the range of) is made elliptical. This is an example in which the range of a three-dimensional image (three-dimensional image) is made circular.
  • the virtual image G25-L of the two-dimensional image is displayed in substantially the entire field of the user, and the virtual image G35-L of the three-dimensional image (three-dimensional image) is displayed. It is displayed in an elliptical shape on the right side with respect to the substantially central portion of the user's field of view (FIG. 5A).
  • Reference numeral K1 shown in FIG. 5A indicates an optical axis
  • reference numeral K2 indicates a center of an image (video) having depth information
  • a distance d between reference numeral K1 and reference numeral K2 is IPD / 2.
  • the virtual image G25-R of the two-dimensional image (two-dimensional image) is displayed in substantially the entire field of the user's field of view, and the virtual image G35-R of the three-dimensional image (three-dimensional image) is displayed. Is displayed in an elliptical shape on the left side with respect to the substantially central portion of the user's field of view (FIG. 4B).
  • the image display device of the second embodiment includes a two-dimensional image forming device, a three-dimensional image forming device, and a beam splitter for each of the user's eyes. , With an eyepiece.
  • the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus are eyepieces with the beam splitter. It is incident on each of the user's eyes through the lens in this order.
  • the three-dimensional image forming device forms a three-dimensional image by using a tensor display method (a method using a plurality of transmissive displays).
  • a tensor display method a method using a plurality of transmissive displays.
  • the calculation cost increases compared to the integral imaging method, but by limiting the field of view, the calculation cost can be suppressed compared to the existing method. can.
  • the beam splitter include a half mirror and the like.
  • FIG. 6 shows the image display device 106.
  • the image display device 106 includes an image display device 106-L for the left eye and an image display device 106-R for the right eye.
  • the image display device 106-L includes a two-dimensional display 2-L, a tensor display type three-dimensional display 16-L, a half mirror 3-L, and an eyepiece 4-L.
  • the tensor display type three-dimensional display 16-L is composed of two displays 16-2-1-L and 16-2-2-L, but even if it is composed of three or more displays. good.
  • the first image light emitted from the two-dimensional display 2-L and the second image light emitted from the tensor display type three-dimensional display 16-L are the half mirror 3-L.
  • the eyepiece lens 4-L are incident on the user's left eye 500-L in this order. Therefore, in the image display device 106-L, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
  • the image display device 106-R includes a two-dimensional display 2-R, a tensor display type three-dimensional display 16-R, a half mirror 3-R, and an eyepiece 4-R.
  • the tensor display type three-dimensional display 16-R is composed of two displays 16-2-1-R and 16-2-2-R, but even if it is composed of three or more displays. good.
  • the first image light emitted from the two-dimensional display 2-R and the second image light emitted from the tensor display type three-dimensional display 16-R are referred to as a half mirror 3-R.
  • the eyepiece lens 4-R are incident on the user's left eye 500-R in this order. Therefore, in the image display device 106-R, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
  • a three-dimensional image for reproducing the depth information displayed in a part of the user's field of view for example, a substantially central portion of the user's field of view
  • a three-dimensional image displayed in substantially the entire area of the user's field of view are displayed.
  • the contents of the description of the image display device of the second embodiment (example 2 of the image display device) according to the present technology are the same as those of the first embodiment of the present technology described above, unless there is a particular technical contradiction. It can be applied to an image display device and an image display device according to a third to eighth embodiment of the present technique described later.
  • the image display device of the third embodiment includes a two-dimensional image forming device, a three-dimensional image forming device, and a beam splitter for each of the user's eyes. , With an eyepiece.
  • the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus are eyepieces with the beam splitter. It is incident on each of the user's eyes through the lens in this order.
  • the three-dimensional image forming device forms a three-dimensional image by using a super-multicular method.
  • the beam splitter include a half mirror and the like.
  • FIG. 7 shows the image display device 107.
  • the image display device 107 includes an image display device 107-L for the left eye and an image display device 107-R for the right eye.
  • the image display device 107-L includes a two-dimensional display display 2-L, a super-multi-eye type three-dimensional display display 17-L, a half mirror 3-L, and an eyepiece lens 4-L.
  • the super-multicular three-dimensional display 17-L is composed of a lenticular lens 17-1-L and a display 17-2-L.
  • the first image light emitted from the two-dimensional display display 2-L and the second image light emitted from the super-multicular three-dimensional display display 17-L are the half mirror 3-L.
  • the eyepiece lens 4-L are incident on the user's left eye 500-L in this order. Therefore, in the image display device 107-L, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
  • the image display device 107-R includes a two-dimensional display 2-R, a super-multi-eye type three-dimensional display 17-R, a half mirror 3-R, and an eyepiece 4-R.
  • the super-multicular three-dimensional display 17-R is composed of a lenticular lens 17-1-R and a display 17-2-R.
  • the first image light emitted from the two-dimensional display display 2-R and the second image light emitted from the super-multicular three-dimensional display display 17-R are the half mirror 3-R.
  • the eyepiece lens 4-R in this order, are incident on the user's left eye 500-R. Therefore, in the image display device 107-R, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
  • a three-dimensional image for reproducing the depth information displayed in a part of the user's field of view for example, a substantially central portion of the user's field of view
  • a three-dimensional image displayed in substantially the entire area of the user's field of view are displayed.
  • the contents of the description of the image display device of the third embodiment (example 3 of the image display device) according to the present technology are the first and second items according to the above-mentioned present technology, unless there is a particular technical contradiction. It can be applied to the image display device of the embodiment and the image display device of the fourth to eighth embodiments according to the present technique described later.
  • the image display device of the fourth embodiment includes a two-dimensional image forming device, a three-dimensional image forming device, and a beam splitter for each of the user's eyes. , With an eyepiece.
  • the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus are eyepieces with the beam splitter. It is incident on each of the user's eyes through the lens in this order.
  • the three-dimensional image forming device forms a three-dimensional image by using a holographic method.
  • the calculation cost is higher than that of the integral imaging method, but by limiting the field of view, the calculation cost can be suppressed compared to the existing method.
  • the structure can be complicated, higher resolution and higher depth reproducibility can be achieved.
  • the beam splitter include a half mirror and the like.
  • FIG. 8 shows the image display device 108.
  • the image display device 108 includes an image display device 108-L for the left eye and an image display device 108-R for the right eye.
  • the image display device 108-L includes a two-dimensional display 2-L, a holographic three-dimensional display 18-L, a half mirror 3-L, and an eyepiece 4-L.
  • the holographic three-dimensional display 18-L has a spatial light modulator 18-2-L and a light source 18-3-L (laser light source or the like).
  • the first image light emitted from the two-dimensional display display 2-L and the second image light emitted from the holographic three-dimensional display display 18-L are the half mirror 3-L and the half mirror 3-L. It is incident on the user's left eye 500-L via the eyepiece lenses 4-L and in this order. Therefore, in the image display device 108-L, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
  • the image display device 108-R includes a two-dimensional display 2-R, a holographic three-dimensional display 18-R, a half mirror 3-R, and an eyepiece 4-R.
  • the holographic three-dimensional display 18-R has a spatial light modulator 18-2-R and a light source 18-3-R (laser light source or the like).
  • the first image light emitted from the two-dimensional display display 2-R and the second image light emitted from the holographic three-dimensional display display 18-R are the half mirror 3-R and the half mirror 3-R. It is incident on the user's left eye 500-R via the eyepiece lenses 4-R in this order. Therefore, in the image display device 108-R, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
  • the three-dimensional image for reproducing the depth information displayed in a part of the user's field of view (for example, the substantially central portion of the user's field of view) and the three-dimensional image are displayed in substantially the entire area of the user's field of view. Can be superimposed on a two-dimensional visual field image.
  • the contents of the description of the image display device of the fourth embodiment (example 4 of the image display device) according to the present technology are the first to third aspects of the present technology described above, unless there is a particular technical contradiction. It can be applied to the image display device of the embodiment and the image display device of the fifth to eighth embodiments according to the present technique described later.
  • the image display device of the fifth embodiment includes a two-dimensional image forming device, a three-dimensional image forming device, and a beam splitter for each of the user's eyes. , With an eyepiece.
  • the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus are eyepieces with the beam splitter. It is incident on each of the user's eyes through the lens in this order.
  • the three-dimensional image forming device has a spatially multi-layered image plane, that is, a spatially multi-layered imaginary image using a stacked display.
  • a three-dimensional image is formed by the surface method.
  • the beam splitter include a half mirror and the like.
  • FIG. 9 shows the image display device 109.
  • the image display device 109 includes an image display device 109-L for the left eye and an image display device 109-R for the right eye.
  • the image display device 109-L includes a two-dimensional display 2-L, a multi-layered image plane type three-dimensional display display 19-L, a half mirror 3-L, and an eyepiece 4-L.
  • the multi-layered image plane type three-dimensional display display 19-L forms a three-dimensional image by spatially multi-layered image planes.
  • the multi-layered image plane type three-dimensional display display 19-L is composed of laminated displays 19-2-1-L and 19-2-L.
  • the multi-layered image plane type three-dimensional display 19-L is composed of two displays 19-2-1-L and 19-2-L, but is composed of three or more displays. You may.
  • the first image light emitted from the two-dimensional display 2-L and the second image light emitted from the multi-layered image plane type three-dimensional display display 19-L are the half mirror 3-.
  • L and the eyepiece lens 4-L are incident on the user's left eye 500-L in this order. Therefore, in the image display device 109-L, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
  • the image display device 109-R includes a two-dimensional display 2-R, a multi-layered image plane type three-dimensional display display 19-R, a half mirror 3-R, and an eyepiece 4-R.
  • the multi-layered image plane type three-dimensional display display 19-R forms a three-dimensional image by spatially multi-layered image planes.
  • the multi-layered image plane type three-dimensional display 19-R is composed of laminated displays 19-2-1-R and 19-2-R.
  • the multi-layered image plane type three-dimensional display 19-R is composed of two displays 19-2-1-R and 19-2-R, but is composed of three or more displays. You may.
  • the first image light emitted from the two-dimensional display display 2-R and the second image light emitted from the multi-layered image plane type three-dimensional display display 19-R are the half mirror 3-.
  • the R and the eyepiece 4-R are incident on the user's left eye 500-R in this order. Therefore, in the image display device 109-R, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
  • a three-dimensional image for reproducing the depth information displayed in a part of the user's field of view for example, a substantially central portion of the user's field of view
  • a three-dimensional image displayed in substantially the entire area of the user's field of view are displayed.
  • the contents of the description of the image display device of the fifth embodiment (example 5 of the image display device) according to the present technology are the first to fourth aspects of the present technology described above, unless there is a particular technical contradiction. It can be applied to the image display device of the embodiment and the image display device of the sixth to eighth embodiments according to the present technique described later.
  • the image display device of the sixth embodiment includes a two-dimensional image forming device, a three-dimensional image forming device, and a beam splitter for each of the user's eyes. , With an eyepiece.
  • the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus are eyepieces with the beam splitter. It is incident on each of the user's eyes through the lens in this order.
  • the three-dimensional image forming device is a time-multilayered virtual image that moves the display in the optical axis direction by the time-multilayered image plane.
  • a three-dimensional image is formed by the surface method.
  • the beam splitter include a half mirror and the like.
  • FIG. 10 shows the image display device 110.
  • the image display device 110 includes an image display device 110-L for the left eye and an image display device 110-R for the right eye.
  • the image display device 110-L includes a two-dimensional display 2-L, a multi-layered image plane type three-dimensional display 610-L, a half mirror 3-L, and an eyepiece 4-L.
  • the multi-layered image plane type three-dimensional display display 610-L forms a three-dimensional image by the time-multilayered image planes.
  • the virtual image position can be changed by moving the multi-layered image plane type three-dimensional display 610-L in the optical axis direction (arrow P10-L).
  • the first image light emitted from the two-dimensional display display 2-L and the second image light emitted from the multi-layered image plane type three-dimensional display display 610-L are the half mirror 3-.
  • L and the eyepiece lens 4-L are incident on the user's left eye 500-L in this order. Therefore, in the image display device 110-L, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
  • the image display device 110-R includes a two-dimensional display 2-R, a multi-layered image plane type three-dimensional display 610-R, a half mirror 3-R, and an eyepiece 4-R.
  • the multi-layered image plane type three-dimensional display display 610-R forms a three-dimensional image by the time-multilayered image planes.
  • the virtual image position can be changed by moving the multi-layered image plane type three-dimensional display 610-R in the optical axis direction (arrow P10-L).
  • the first image light emitted from the two-dimensional display display 2-R and the second image light emitted from the multi-layered image plane type three-dimensional display display 610-R are the half mirror 3-.
  • the R and the eyepiece 4-R are incident on the user's left eye 500-R in this order. Therefore, in the image display device 110-R, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
  • a three-dimensional image for reproducing the depth information displayed in a part of the user's field of view for example, a substantially central portion of the user's field of view
  • a three-dimensional image displayed in substantially the entire area of the user's field of view are displayed.
  • the contents of the description of the image display device of the sixth embodiment (example 6 of the image display device) according to the present technology are the first to fifth aspects of the present technology described above, unless there is a particular technical contradiction. It can be applied to the image display device of the embodiment and the image display device of the seventh to eighth embodiments according to the present technique described later.
  • the image display device of the seventh embodiment includes a two-dimensional image forming device, a three-dimensional image forming device, a beam splitter, and a beam splitter for each of the user's eyes. It includes a free curved lens including an eyepiece.
  • the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus pass through the free curved lens. Then, it is incident on each of the user's eyes.
  • the free-form surface lens includes a beam splitter and an eyepiece.
  • the free-form surface lens can be manufactured, for example, by adding the function of a beam splitter to the adhesive surface between the eyepieces.
  • the image display device of the seventh embodiment according to the present technology can be made smaller and thinner as a whole. Can be done.
  • the three-dimensional image forming device forms a three-dimensional image by using an integral imaging method.
  • the three-dimensional image forming apparatus included in the image display apparatus of the seventh embodiment according to the present technology may form a three-dimensional image by using a tensor display method, or may use a super-multicular method to form a three-dimensional image.
  • An image may be formed, a three-dimensional image may be formed by using a holography method, a three-dimensional image may be formed by a spatially multi-layered image plane, or a three-dimensional image may be formed by temporally multi-layered images.
  • a three-dimensional image may be formed from the converted image plane.
  • FIG. 11 shows the image display device 111.
  • the image display device 111 includes an image display device 111-L for the left eye and an image display device 111-R for the right eye.
  • the image display device 111-L includes a two-dimensional display 2-L, an integral imaging type three-dimensional display 1-L, and a free-form surface lens 411-L.
  • the free-form surface lens 411-L is composed of a beam splitter and an eyepiece.
  • the first image light emitted from the two-dimensional display 2-L and the second image light emitted from the integral imaging type three-dimensional display 1-L are the free curved lens 411- It is incident on the user's left eye 500-L via L. Therefore, in the image display device 111-L, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
  • the image display device 111-R includes a two-dimensional display 2-R, an integral imaging type three-dimensional display 1-R, and a free-form surface lens 411-R.
  • the free-form surface lens 411-L is composed of a beam splitter and an eyepiece.
  • the first image light emitted from the two-dimensional display 2-R and the second image light emitted from the integral imaging type three-dimensional display 1-R are the free curved lens 411-. It is incident on the user's left eye 500-R via R. Therefore, in the image display device 111-R, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
  • the three-dimensional image for reproducing the depth information displayed in a part of the user's field of view (for example, the substantially central portion of the user's field of view) and the three-dimensional image are displayed in substantially the entire area of the user's field of view. Can be superimposed on a two-dimensional visual field image.
  • the contents of the description of the image display device of the seventh embodiment (example 7 of the image display device) according to the present technology are the first to sixth aspects of the present technology described above, unless there is a particular technical contradiction. It can be applied to the image display device of the embodiment and the image display device of the eighth embodiment according to the present technique described later.
  • the image display device of the eighth embodiment includes a two-dimensional image forming device, a three-dimensional image forming device, and a beam splitter for each of the user's eyes. , An eyepiece and a line-of-sight detection device.
  • the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus are eyepieces with the beam splitter. It is incident on each of the user's eyes through the lens in this order.
  • the image display device of the eighth embodiment according to the present technology With a line-of-sight detection device, it is possible to change the range of displaying a three-dimensional image (three-dimensional image) following the line of sight.
  • a near-infrared light source and a camera can be used to detect the line of sight.
  • an actuator or the like that can be moved in a plane perpendicular to the optical axis is used.
  • the three-dimensional image forming device forms a three-dimensional image by using an integral imaging method.
  • the three-dimensional image forming apparatus included in the image display apparatus of the eighth embodiment according to the present technology may form a three-dimensional image by using a tensor display method, or may use a super-multicular method to form a three-dimensional image.
  • An image may be formed, a three-dimensional image may be formed by using a holography method, a three-dimensional image may be formed by a spatially multi-layered image plane, or a three-dimensional image may be formed by temporally multi-layered images.
  • a three-dimensional image may be formed from the converted image plane. Examples of the beam splitter include a half mirror and the like.
  • FIG. 12 shows the image display device 112.
  • the image display device 112 includes an image display device 112-L for the left eye and an image display device 112-R for the right eye.
  • the image display device 112-L includes a two-dimensional display 2-L, an integral imaging type three-dimensional display 1-L, a half mirror 3-L, an eyepiece 4-L, and a line-of-sight detection device 712-. L and.
  • the line-of-sight detection device 712-L is composed of a light source 712-1-L (near-infrared LED or the like) and an image sensor 712-2-L.
  • the line-of-sight detection device 712-L can move while following the line of sight in the vertical direction (arrow P12-L) and / or the left-right direction (not shown, left-right direction in FIG. 12) by using an actuator or the like.
  • the first image light emitted from the two-dimensional display 2-L and the second image light emitted from the integral imaging type three-dimensional display 1-L are the half mirror 3-L. And the eyepiece lens 4-L are incident on the user's left eye 500-L in this order. Therefore, in the image display device 112-L, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
  • the image display device 112-R includes a two-dimensional display 2-R, an integral imaging type three-dimensional display 1-R, a half mirror 3-R, an eyepiece 4-R, and a line-of-sight detection device 712-.
  • the line-of-sight detection device 712-R is composed of a light source 712-1-R (near-infrared LED or the like) and an image sensor 712-2-R.
  • the line-of-sight detection device 712-R can move while following the line of sight in the vertical direction (arrow P12-L) and / or the left-right direction (not shown, left-right direction in FIG. 12) by using an actuator or the like.
  • the first image light emitted from the two-dimensional display 2-R and the second image light emitted from the integral imaging type three-dimensional display 1-R are the half mirror 3-R. And the eyepiece lens 4-R are incident on the user's left eye 500-R in this order. Therefore, in the image display device 112-R, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
  • the three-dimensional image for reproducing the depth information displayed in a part of the user's field of view (for example, the substantially central portion of the user's field of view) and the three-dimensional image are displayed in substantially the entire area of the user's field of view. Can be superimposed on a two-dimensional visual field image. Further, in the image display device 112, it is possible to always display a three-dimensional image (three-dimensional image) having high resolution and depth information by following the line of sight, for example, at a substantially central portion of the field of view.
  • the contents of the description of the image display device of the eighth embodiment (example 8 of the image display device) according to the present technology are the first to seventh items according to the above-mentioned present technology, unless there is a particular technical contradiction. It can be applied to the image display device of the embodiment.
  • the display device of the ninth embodiment (example 1 of the display device) according to the present technology includes a frame mounted on the user's head and an image display device attached to the frame, and the image display device includes an image display device. It is a display device provided with at least one image display device of the first embodiment to the eighth embodiment of the present technology.
  • Examples of the display device of the ninth embodiment (example 1 of the display device) according to the present technology include an eyewear display (Eyewear Display), a head-mounted display (HMD: Head Mounted Display), and the like.
  • the display device of the ninth embodiment according to the present technology is, for example, mounted on the head of a user, has a spectacle-like shape, and is configured to project image light (image light) to each of both eyes. It may have been done.
  • the present technology can also have the following configurations.
  • a two-dimensional image forming apparatus, a three-dimensional image forming apparatus, a beam splitter, and an eyepiece are provided for each of the user's eyes.
  • the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus pass through the beam splitter and the eyepiece in this order, and are used by the user.
  • An image display device that is incident on each of both eyes.
  • [3] The two-dimensional image by the first image light emitted from the two-dimensional image forming apparatus and the three-dimensional image by the second image light emitted from the three-dimensional image forming apparatus are superimposed and visually recognized by the user.
  • the image display device according to [1] or [2].
  • [4] The two-dimensional image generated by the first image light emitted from the two-dimensional image forming apparatus is displayed in substantially the entire field of view of the user.
  • the two-dimensional image generated by the first image light emitted from the two-dimensional image forming apparatus is displayed in substantially the entire field of view of the user.
  • the third-dimensional image by the second image light emitted from the three-dimensional image forming apparatus is displayed in a rectangular range in the user's field of view, according to any one of [1] to [5].
  • the third-dimensional image by the second image light emitted from the three-dimensional image forming apparatus is displayed in a circular range in the user's field of view, according to any one of [1] to [5].
  • the third-dimensional image by the second image light emitted from the three-dimensional image forming apparatus is displayed in an elliptical range in the user's visual field, according to any one of [1] to [5].
  • Image display device. [9] The image display device according to any one of [1] to [8], wherein the three-dimensional image forming apparatus forms a three-dimensional image by using an integral imaging method.
  • the image display device according to any one of [1] to [8], wherein the three-dimensional image forming device forms a three-dimensional image by using a tensor display method.
  • the image display device according to any one of [1] to [8], wherein the three-dimensional image forming apparatus forms a three-dimensional image by using a super-multicular method.
  • the image display device according to any one of [1] to [8], wherein the three-dimensional image forming apparatus forms a three-dimensional image by using a holographic method.
  • the image display device according to any one of [1] to [8], wherein the three-dimensional image forming apparatus forms a three-dimensional image by spatially multilayered image planes.
  • the image display device according to any one of [1] to [8], wherein the three-dimensional image forming apparatus forms a three-dimensional image by means of image planes having multiple layers in time.
  • the image display device according to any one of [1] to [14], comprising a free-form surface lens including the beam splitter and the eyepiece.
  • the image display device according to any one of [1] to [15], further comprising a line-of-sight detection device.
  • the frame attached to the user's head and With an image display device attached to the frame, The display device, wherein the image display device is the image display device according to any one of [1] to [16].
  • Integral imaging type 3D display (3D image forming device), 2 (2-L, 2-R) ... 2D display display (2D image forming device), 3 (3-L, 3-R) ... Half mirror (beam splitter), 4 (4-L, 4-R) ... Eyepiece, 16 (16-L, 16-R) ...
  • Tensor display type 3D display (3D image forming device), 17 (17-L, 17-R) ... Ultra-multicular 3D display (3D image forming device), 18 (18-L, 18-R) ... Holographic 3D display (3D image forming device), 19 (19-L, 19-R) ...
  • a three-dimensional display (three-dimensional image forming apparatus) of a multi-layered image plane method (an example in which a spatially multi-layered image plane is adopted), 101 (101-L, 101-R), 102, 106 (106-L, 106-R), 107 (107-L, 107-R), 108 (108-L, 108-R), 109 (109-) L, 109-R), 110 (110-L, 110-R), 111 (111-L, 111-R), 112 (112-L, 112-R) ...
  • Image display device 411 (411-L, 411-R) ... Free-form surface lens, 500 (500-L, 500-R) ... Eyeball, 610 (610-L, 610-R) ...
  • a three-dimensional display (three-dimensional image forming apparatus) of a multi-layered image plane method (an example in which a temporally multi-layered image plane is adopted).
  • 712 (712-L, 712-R) ... Line-of-sight detection device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

To provide an image display device whereby further enhancement of immersion can be realized, further suppression of rendering cost can be realized, or further suppression of transmission cost can be realized. Provided is an image display device comprising, for each eye of a user, a two-dimensional-image formation device, a three-dimensional-image formation device, a beam splitter, and an eyepiece lens, a first image light emitted from the two-dimensional-image formation device and a second image light emitted from the three-dimensional-image formation device being incident on each eye of the user via the respective beam splitter and eyepiece lens.

Description

画像表示装置及び表示装置Image display device and display device
 本技術は、画像表示装置及び表示装置に関する。 This technique relates to an image display device and a display device.
 近年、ユーザの眼の前にある現実の風景などの外界の光景に画像(映像)を重ねて表示する技術(AR(Augmented Reality:拡張現実)技術)や、ユーザの眼の前にある現実とは違う現実を画像(映像)として表示する技術(VR(Virtual Reality:仮想現実)技術)に注目が集まっている。これらの技術を利用した製品の一つとして、例えば、3次元画像(3次元映像)を表示する頭部装着型ディスプレイ(HMD: Head Mounted Display)が挙げられる。頭部装着型ディスプレイは、ユーザの頭部に装着して使用される。 In recent years, with the technology (AR (Augmented Reality) technology) that superimposes an image (video) on a scene of the outside world such as a real landscape in front of the user's eyes, and the reality in front of the user's eyes. Is attracting attention as a technology (VR (Virtual Reality) technology) that displays a different reality as an image (video). As one of the products using these techniques, for example, a head-mounted display (HMD: Head Mounted Display) that displays a three-dimensional image (three-dimensional image) can be mentioned. The head-mounted display is used by being worn on the user's head.
 例えば、特許文献1では、インテグラルイメージング光学部品を有する、ウェアラブル3D拡張現実ディスプレイに関する技術が提案されている。 For example, Patent Document 1 proposes a technique related to a wearable 3D augmented reality display having an integral imaging optical component.
 また、例えば、特許文献2では、両眼のそれぞれに、ライトフィールドプロジェクタを有する、ヘッドマウントライトフィールドディスプレイシステム(HMD)に関する技術が提案されている。 Further, for example, Patent Document 2 proposes a technique related to a head-mounted light field display system (HMD) having a light field projector in each of the eyes.
特表2017-515162号公報Japanese Patent Publication No. 2017-515162 特表2015-521298号公報Special Table 2015-521298
 しかしながら、特許文献1及び2で提案された技術では、没入感の更なる向上や、レンダリングコストの更なる抑制や、伝送コストの更なる抑制を図れないおそれがある。 However, the techniques proposed in Patent Documents 1 and 2 may not be able to further improve the immersive feeling, further suppress the rendering cost, and further suppress the transmission cost.
 そこで、本技術は、このような状況に鑑みてなされたものであり、没入感の更なる向上の実現や、レンダリングコストの更なる抑制の実現や、伝送コストの更なる抑制の実現をすることができる、画像表示装置及びその画像表示装置を備える表示装置を提供することを主目的とする。 Therefore, this technology was made in view of such a situation, and it is necessary to further improve the immersive feeling, further suppress the rendering cost, and further suppress the transmission cost. An object of the present invention is to provide an image display device and a display device provided with the image display device.
 本発明者らは、上述の目的を解決するために鋭意研究を行った結果、驚くべきことに、没入感の更なる向上の実現や、レンダリングコストの更なる抑制の実現や、伝送コストの更なる抑制の実現に成功し、本技術を完成するに至った。 As a result of diligent research to solve the above-mentioned object, the present inventors surprisingly realized a further improvement in immersiveness, a further reduction in rendering cost, and a further reduction in transmission cost. We succeeded in realizing the suppression, and completed this technology.
 すなわち、本技術は、第1の側面として、
 ユーザの両眼のそれぞれに対して、2次元画像形成装置と、3次元画像形成装置と、ビームスプリッタと、接眼レンズと、を備え、
 該2次元画像形成装置から出射された第1画像光及び該3次元画像形成装置から出射された第2画像光が、該ビームスプリッタと、該接眼レンズとをこの順で介して、該ユーザの両眼のそれぞれに入射される、画像表示装置を提供する。
That is, this technique has, as the first aspect,
A two-dimensional image forming apparatus, a three-dimensional image forming apparatus, a beam splitter, and an eyepiece are provided for each of the user's eyes.
The first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus pass through the beam splitter and the eyepiece in this order, and are used by the user. Provided is an image display device that is incident on each of both eyes.
 本技術に係る第1の側面の画像表示装置において、
 前記ビームスプリッタがハーフミラーでもよい。
In the image display device on the first side surface according to the present technology,
The beam splitter may be a half mirror.
 本技術に係る第1の側面の画像表示装置において、
 前記2次元画像形成装置から出射された前記第1画像光による2次元画像と、前記3次元画像形成装置から出射された前記第2画像光による3次元画像とが重畳されてもよく、その重畳された画像が、前記ユーザに視認されてよい。
In the image display device on the first side surface according to the present technology,
A two-dimensional image produced by the first image light emitted from the two-dimensional image forming apparatus and a three-dimensional image produced by the second image light emitted from the three-dimensional image forming apparatus may be superimposed. The resulting image may be visible to the user.
 本技術に係る第1の側面の画像表示装置において、
 前記2次元画像形成装置から出射された前記第1画像光による2次元画像が、前記ユーザの視野の略全域に表示されてもよく、
 前記3次元画像形成装置から出射された前記第2画像光による3次元画像が、前記ユーザの視野の一部に表示されてもよい。
In the image display device on the first side surface according to the present technology,
The two-dimensional image by the first image light emitted from the two-dimensional image forming apparatus may be displayed in substantially the entire field of view of the user.
The three-dimensional image by the second image light emitted from the three-dimensional image forming apparatus may be displayed in a part of the field of view of the user.
 本技術に係る第1の側面の画像表示装置において、
 前記2次元画像形成装置から出射された前記第1画像光による2次元画像が、前記ユーザの視野の略全域に表示されてもよく、
 前記3次元画像形成装置から出射された前記第2画像光による3次元画像が、前記ユーザの視野の略中心部に表示されてもよい。
In the image display device on the first side surface according to the present technology,
The two-dimensional image by the first image light emitted from the two-dimensional image forming apparatus may be displayed in substantially the entire field of view of the user.
The three-dimensional image by the second image light emitted from the three-dimensional image forming apparatus may be displayed in a substantially central portion of the user's field of view.
 本技術に係る第1の側面の画像表示装置において、
 前記3次元画像形成装置から出射された前記第2画像光による3次元画像が、前記ユーザの視野において矩形状の範囲で表示されてもよい。
In the image display device on the first side surface according to the present technology,
The three-dimensional image by the second image light emitted from the three-dimensional image forming apparatus may be displayed in a rectangular range in the user's field of view.
 本技術に係る第1の側面の画像表示装置において、
 前記3次元画像形成装置から出射された前記第2画像光による3次元画像が、前記ユーザの視野において円形状の範囲で表示されてもよい。
In the image display device on the first side surface according to the present technology,
The three-dimensional image by the second image light emitted from the three-dimensional image forming apparatus may be displayed in a circular range in the user's field of view.
 本技術に係る第1の側面の画像表示装置において、
 前記3次元画像形成装置から出射された前記第2画像光による3次元画像が、前記ユーザの視野において楕円形状の範囲で表示されてもよい。
In the image display device on the first side surface according to the present technology,
The three-dimensional image by the second image light emitted from the three-dimensional image forming apparatus may be displayed in an elliptical range in the user's visual field.
 本技術に係る第1の側面の画像表示装置において、
 前記3次元画像形成装置が、インテグラルイメージング方式を用いて3次元画像を形成してもよい。
In the image display device on the first side surface according to the present technology,
The three-dimensional image forming apparatus may form a three-dimensional image by using an integral imaging method.
 本技術に係る第1の側面の画像表示装置において、
 前記3次元画像形成装置が、テンソルディスプレイ方式を用いて3次元画像を形成してもよい。
In the image display device on the first side surface according to the present technology,
The three-dimensional image forming apparatus may form a three-dimensional image by using a tensor display method.
 本技術に係る第1の側面の画像表示装置において、
 前記3次元画像形成装置が、超多眼方式を用いて3次元画像を形成してもよい。
In the image display device on the first side surface according to the present technology,
The three-dimensional image forming apparatus may form a three-dimensional image by using a super-multicular method.
 本技術に係る第1の側面の画像表示装置において、
 前記3次元画像形成装置が、ホログラフィ方式を用いて3次元画像を形成してもよい。
In the image display device on the first side surface according to the present technology,
The three-dimensional image forming apparatus may form a three-dimensional image by using a holographic method.
 本技術に係る第1の側面の画像表示装置において、
 前記3次元画像形成装置が、空間的に多層化された像面により3次元画像を形成してもよい。
In the image display device on the first side surface according to the present technology,
The three-dimensional image forming apparatus may form a three-dimensional image by spatially multi-layered image planes.
 本技術に係る第1の側面の画像表示装置において、
 前記3次元画像形成装置が、時間的に多層化された像面により3次元画像を形成してもよい。
In the image display device on the first side surface according to the present technology,
The three-dimensional image forming apparatus may form a three-dimensional image by the image planes which are multi-layered in time.
 本技術に係る第1の側面の画像表示装置は、前記ビームスプリッタと前記接眼レンズとを含む自由曲面レンズを備えていてもよい。 The image display device on the first side surface according to the present technology may include a free curved lens including the beam splitter and the eyepiece.
 本技術に係る第1の側面の画像表示装置は、視線検出装置を更に備えていてもよい。 The image display device on the first side surface according to the present technology may further include a line-of-sight detection device.
 本技術は、第2の側面として、
 ユーザの頭部に装着されるフレームと、
 該フレームに取り付けられた画像表示装置と、を備え、
 該画像表示装置が、本技術に係る第1の側面の画像示装置である、表示装置を提供する。
This technology has the second aspect,
The frame attached to the user's head and
With an image display device attached to the frame,
The image display device provides a display device, which is an image display device on the first side surface according to the present technology.
 本技術によれば、没入感の更なる向上や、レンダリングコストの更なる抑制や、伝送コストの更なる抑制が実現され得る。なお、ここに記載された効果は、必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 According to this technique, it is possible to further improve the immersive feeling, further suppress the rendering cost, and further suppress the transmission cost. The effects described herein are not necessarily limited, and may be any of the effects described in the present disclosure.
図1は、本技術を適用した第1の実施形態の画像表示装置の構成例を示す図である。FIG. 1 is a diagram showing a configuration example of an image display device according to a first embodiment to which the present technology is applied. 図2は、本技術を適用した第1の実施形態の画像表示装置が2次元画像と3次元画像とを重畳して表示する方法の一例を示す図である。FIG. 2 is a diagram showing an example of a method in which an image display device of a first embodiment to which the present technology is applied superimposes and displays a two-dimensional image and a three-dimensional image. 図3は、本技術を適用した第1の実施形態の画像表示装置が2次元画像と3次元画像とを重畳して表示する方法の変形例1を示す図である。FIG. 3 is a diagram showing a modified example 1 of a method in which an image display device of a first embodiment to which the present technique is applied superimposes and displays a two-dimensional image and a three-dimensional image. 図4は、本技術を適用した第1の実施形態の画像表示装置が2次元画像と3次元画像とを重畳して表示する方法の変形例2を示す図である。FIG. 4 is a diagram showing a modified example 2 of a method in which an image display device of a first embodiment to which the present technique is applied superimposes and displays a two-dimensional image and a three-dimensional image. 図5は、本技術を適用した第1の実施形態の画像表示装置が2次元画像と3次元画像とを重畳して表示する方法の変形例3を示す図である。FIG. 5 is a diagram showing a modified example 3 of a method in which an image display device of a first embodiment to which the present technique is applied superimposes and displays a two-dimensional image and a three-dimensional image. 図6は、本技術を適用した第2の実施形態の画像表示装置の構成例を示す図である。FIG. 6 is a diagram showing a configuration example of an image display device according to a second embodiment to which the present technology is applied. 図7は、本技術を適用した第3の実施形態の画像表示装置の構成例を示す図である。FIG. 7 is a diagram showing a configuration example of an image display device according to a third embodiment to which the present technology is applied. 図8は、本技術を適用した第4の実施形態の画像表示装置の構成例を示す図である。FIG. 8 is a diagram showing a configuration example of an image display device according to a fourth embodiment to which the present technology is applied. 図9は、本技術を適用した第5の実施形態の画像表示装置の構成例を示す図である。FIG. 9 is a diagram showing a configuration example of an image display device according to a fifth embodiment to which the present technology is applied. 図10は、本技術を適用した第6の実施形態の画像表示装置の構成例を示す図である。FIG. 10 is a diagram showing a configuration example of an image display device according to a sixth embodiment to which the present technology is applied. 図11は、本技術を適用した第7の実施形態の画像表示装置の構成例を示す図である。FIG. 11 is a diagram showing a configuration example of an image display device according to a seventh embodiment to which the present technology is applied. 図12は、本技術を適用した第8の実施形態の画像表示装置の構成例を示す図である。FIG. 12 is a diagram showing a configuration example of an image display device according to an eighth embodiment to which the present technology is applied.
 以下、本技術を実施するための好適な形態について説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、特に断りがない限り、図面において、「上」とは図中の上方向又は上側を意味し、「下」とは、図中の下方向又は下側を意味し、「左」とは図中の左方向又は左側を意味し、「右」とは図中の右方向又は右側を意味する。また、図面を用いた説明においては、同一又は同等の要素又は部材には同一の符号を付し、重複する説明は省略する。 Hereinafter, a suitable mode for carrying out this technique will be described. The embodiments described below show an example of a typical embodiment of the present technique, and the scope of the present technique is not narrowly interpreted by this. Unless otherwise specified, in the drawings, "upper" means the upper direction or the upper side in the drawing, "lower" means the lower direction or the lower side in the drawing, and "left" means. It means the left direction or the left side in the figure, and "right" means the right direction or the right side in the figure. Further, in the description using the drawings, the same or equivalent elements or members are designated by the same reference numerals, and duplicate description will be omitted.
 なお、説明は以下の順序で行う。
 1.本技術の概要
 2.第1の実施形態(画像表示装置の例1)
 3.第2の実施形態(画像表示装置の例2)
 4.第3の実施形態(画像表示装置の例3)
 5.第4の実施形態(画像表示装置の例4)
 6.第5の実施形態(画像表示装置の例5)
 7.第6の実施形態(画像表示装置の例6)
 8.第7の実施形態(画像表示装置の例7)
 9.第8の実施形態(画像表示装置の例8)
 10.第9の実施形態(表示装置の例1)
The explanation will be given in the following order.
1. 1. Outline of this technology 2. First Embodiment (Example 1 of an image display device)
3. 3. Second Embodiment (Example 2 of an image display device)
4. Third Embodiment (Example 3 of an image display device)
5. Fourth Embodiment (Example 4 of an image display device)
6. Fifth Embodiment (Example 5 of an image display device)
7. Sixth Embodiment (Example 6 of image display device)
8. Seventh Embodiment (Example 7 of an image display device)
9. Eighth Embodiment (Example 8 of image display device)
10. Ninth Embodiment (Example 1 of display device)
<1.本技術の概要>
 まず、本技術の概要について説明をする。
<1. Overview of this technology>
First, the outline of this technique will be described.
 本技術は、3次元映像を提示する画像表示装置及びその画像表示装置を備える表示装置(例えば、頭部装着型ディスプレイ(HMD: Head Mounted Display)が挙げられる。)に関する。 The present technology relates to an image display device that presents a three-dimensional image and a display device including the image display device (for example, a head-mounted display (HMD: Head Mounted Display)).
 頭部装着型ディスプレイ(HMD: Head Mounted Display)は、両眼視差を提示する一方で、奥行知覚として焦点調節が誘発されない構造を採用する場合があり、この場合、輻輳調節矛盾(VAC:Vergence Accommodation Conflict)を引き起こすことがある。VACは、両眼視差により提示された画像に対し輻輳角が反応する一方で、焦点調節が映像表示面に固定される現象であり、3D酔いや、VR酔いや、眼精疲労、頭痛等の生理的不快感や、ユーザ年齢の制約の要因等となる。 A head-mounted display (HMD: Head Mounted Display) may adopt a structure that does not induce accommodation as depth perception while presenting binocular disparity, in which case accommodation accommodation contradiction (VAC) is adopted. May cause contradiction). VAC is a phenomenon in which the focus adjustment is fixed on the image display surface while the convergence angle reacts to the image presented by binocular disparity, such as 3D sickness, VR sickness, eye strain, and headache. It causes physiological discomfort and restrictions on the age of the user.
 例えば、技術例1及び技術例2として、VACを解決するHMDとして、ホログラフィのように光波面を再現する方法や、ライトフィールドのように光線の位置と角度とを再現する方法が挙げられる。しかしながら、これらの方法は、奥行情報を付加するため、位相情報や角度情報を再現する必要があり、レンダリングコストや伝送コストが膨大になることがある。その結果として、解像度を低く抑える、又は視野を狭く制限する等の妥協が見られることが多く、没入感が阻害される。 For example, as Technical Example 1 and Technical Example 2, as an HMD for solving VAC, a method of reproducing a light wave surface like holography and a method of reproducing the position and angle of a light ray like a light field can be mentioned. However, since these methods add depth information, it is necessary to reproduce the phase information and the angle information, and the rendering cost and the transmission cost may become enormous. As a result, compromises such as keeping the resolution low or narrowing the field of view are often seen, and the immersive feeling is hindered.
 例えば、技術例3として、ディスプレイとマイクロレンズアレイとから構成されるインテグラルイメージング方式のライトフィールドを用いて奥行情報を有する映像を表示する頭部装着型ディスプレイ(HMD: Head Mounted Display)が挙げられる。この技術例3においては、ライトフィールドにより生成された映像と、光学系を透過した現実世界とを重畳し、拡張現実をユーザに提示する。しかしながら、この技術例3においては、高解像度に映像を表示するため、視野を中心付近の限られた領域に制限しなければならず、没入感を得ることが困難である。 For example, as a technical example 3, a head-mounted display (HMD: Head Mounted Display) that displays an image having depth information by using an integral imaging type light field composed of a display and a microlens array can be mentioned. .. In the third technical example, the image generated by the light field and the real world transmitted through the optical system are superimposed to present the augmented reality to the user. However, in the third technical example, since the image is displayed at a high resolution, the field of view must be limited to a limited area near the center, and it is difficult to obtain an immersive feeling.
 また、例えば、技術例4として、上記の技術例3と同様に、インテグラルイメージング方式のライトフィールドを用いて奥行情報を有する映像を表示する頭部装着型ディスプレイ(HMD: Head Mounted Display)が挙げられる。この技術例4においては、ライトフィールドを生成するディスプレイは微小な光源であるLEDエミッタから構成されて、LEDエミッタを並べたディスプレイを機械的に移動させ、表示映像と同期させることで、時間分割により高解像度なライトフィールドを全視野にわたり生成することができる。しかしながら、この技術例4においては、視野全域にわたり高解像度の映像を表示するためには、高速に大量の映像をレンダリングして表示する必要があり、レンダリングコストや伝送コストの増大を招くおそれがある。 Further, as a technical example 4, as in the above technical example 3, a head-mounted display (HMD: Head Mounted Display) that displays an image having depth information using a light field of an integral imaging method can be mentioned. Be done. In the fourth technical example, the display that generates the light field is composed of an LED emitter which is a minute light source, and the display in which the LED emitters are arranged is mechanically moved and synchronized with the display image by time division. High resolution light fields can be generated over the entire field. However, in this technical example 4, in order to display a high-resolution image over the entire field of view, it is necessary to render and display a large amount of image at high speed, which may lead to an increase in rendering cost and transmission cost. ..
 さらに、例えば、技術例5として、VACを解決する頭部装着型ディスプレイ(HMD: Head Mounted Display)が挙げられる。この技術例5は、上記の技術例1~4以外の技術例として、虚像面を多層化する方法の技術である。この方法は、構造・機構が簡易であり、特殊な装置の要求や高コストな計算を伴わずに実装できる。しかしながら、この方法では、奥行情報は離散的であり、ユーザの眼のVACを十分に軽減させ、生理的不快感を解消するためには、虚像面数を増加させる必要があり、HMDが大型化する可能性がある。 Further, for example, as a technical example 5, a head-mounted display (HMD: Head Mounted Display) that solves the VAC can be mentioned. This technical example 5 is a technique of a method of forming multiple layers of virtual image planes as a technical example other than the above technical examples 1 to 4. This method has a simple structure and mechanism, and can be implemented without the need for special equipment or high-cost calculations. However, in this method, the depth information is discrete, and in order to sufficiently reduce the VAC of the user's eye and eliminate the physiological discomfort, it is necessary to increase the number of virtual image planes, and the HMD becomes large. there's a possibility that.
 本技術は、上記のような状況を鑑みてなされたものである。本技術は、例えば、2次元画像形成装置(例えば、2次元表示ディスプレイ)、3次元画像形成装置(例えば、3次元表示ディスプレイ)、ビームスプリッタ(例えば、ハーフミラー)及び接眼レンズを用いた光学回路から構成される。この構成は、両眼で用意される。本技術においては、2次元表示ディスプレイは、左右眼の視差を利用したステレオ立体映像を、視野全域に表示してよく、3次元表示ディスプレイは、ライトフィールド等を用いて、奥行情報を有して、焦点調節が誘発される立体画像(立体映像)を、視野中心の限られた範囲に表示してよい。2次元表示ディスプレイと3次元表示ディスプレイとが提示する画像(映像)は、光学回路を通ることで重畳されてユーザに視認され得る。 This technology was made in view of the above situation. The present technology is an optical circuit using, for example, a two-dimensional image forming apparatus (for example, a two-dimensional display display), a three-dimensional image forming apparatus (for example, a three-dimensional display display), a beam splitter (for example, a half mirror), and an eyepiece. Consists of. This configuration is prepared for both eyes. In the present technology, the two-dimensional display may display a stereoscopic image using the difference between the left and right eyes over the entire field of view, and the three-dimensional display may have depth information by using a light field or the like. , A stereoscopic image (stereoscopic image) in which focus adjustment is induced may be displayed in a limited range of the center of the visual field. The images (videos) presented by the two-dimensional display and the three-dimensional display can be superimposed and visually recognized by the user by passing through an optical circuit.
 本技術は、焦点調節を誘発しない2次元画像(2次元映像)を広視野に、焦点調節を誘発する高解像度な3次元画像(3次元映像)を限られた視野範囲に重畳して提示することができる。したがって、本技術によれば、輻輳調節矛盾が解決され、かつ高い没入感を得ることができ、また、本技術に係る画像表示装置の構造は比較的簡易にすることができるので、製造や組立コストを抑制することができる。さらに、本技術によれば、奥行情報を有する高解像度な映像を、例えば視野の中心に制限することできるので、視野全域に表示した場合に比べ、レンダリングコストや伝送コストを抑制することができる。 This technology superimposes a two-dimensional image (two-dimensional image) that does not induce focus adjustment on a wide field of view, and a high-resolution three-dimensional image (three-dimensional image) that induces focus adjustment on a limited field of view. be able to. Therefore, according to the present technology, the contradiction of congestion adjustment can be resolved and a high immersive feeling can be obtained, and the structure of the image display device according to the present technology can be relatively simplified, so that manufacturing and assembly can be performed. The cost can be suppressed. Further, according to the present technique, since a high-resolution image having depth information can be limited to, for example, the center of the field of view, rendering cost and transmission cost can be suppressed as compared with the case where the image is displayed in the entire field of view.
 以下、本技術を実施するための好適な形態について図面を参照しながら詳細に説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。 Hereinafter, suitable embodiments for carrying out this technique will be described in detail with reference to the drawings. The embodiments described below show an example of a typical embodiment of the present technique, and the scope of the present technique is not narrowly interpreted by this.
<2.第1の実施形態(画像表示装置の例1)>
 本技術に係る第1の実施形態(画像表示装置の例1)の画像表示装置は、ユーザの両眼のそれぞれに対して、2次元画像形成装置と、3次元画像形成装置と、ビームスプリッタと、接眼レンズと、を備える。本技術に係る第1の実施形態の画像表示装置においては、2次元画像形成装置から出射された第1画像光及び3次元画像形成装置から出射された第2画像光が、ビームスプリッタと、接眼レンズとをこの順で介して、ユーザの両眼のそれぞれに入射される。
<2. First Embodiment (Example 1 of image display device)>
The image display device of the first embodiment (example 1 of the image display device) according to the present technology includes a two-dimensional image forming device, a three-dimensional image forming device, and a beam splitter for each of the user's eyes. , With an eyepiece. In the image display device of the first embodiment according to the present technique, the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus are eyepieces with the beam splitter. It is incident on each of the user's eyes through the lens in this order.
 また、本技術に係る第1の実施形態の画像表示装置においては、3次元画像形成装置は、インテグラルイメージング方式を用いて3次元画像を形成する。ビームスプリッタとしては、例えば、ハーフミラー等が挙げられる。 Further, in the image display device of the first embodiment according to the present technology, the three-dimensional image forming device forms a three-dimensional image by using an integral imaging method. Examples of the beam splitter include a half mirror and the like.
 本技術に係る第1の実施形態の画像表示装置は、焦点調節を誘発しない2次元画像(2次元映像)を広視野に、焦点調節を誘発する高解像度な3次元画像(3次元映像)を限られた視野範囲に重畳して提示することができる。この画像表示方法(映像表示方法)により低コストで、輻輳調節矛盾が解決され、かつ高い没入感を得ることができる。 The image display device of the first embodiment according to the present technology has a wide field of view of a two-dimensional image (two-dimensional image) that does not induce focus adjustment, and a high-resolution three-dimensional image (three-dimensional image) that induces focus adjustment. It can be presented superimposed on a limited viewing range. By this image display method (image display method), the contradiction of accommodation control can be solved and a high immersive feeling can be obtained at low cost.
 本技術に係る第1の実施形態の画像表示装置は、片眼毎に、ステレオ画像(ステレオ映像)を提示する2次元画像形成装置(例えば、2次元表示ディスプレイ)、ライトフィールド等を用いて奥行情報を有する3次元画像(3次元映像)を提示する3次元画像形成装置(例えば、3次元表示ディスプレイ)、2次元画像(2次元映像)と3次元画像(3次元映像)とを重畳するビームスプリッタ及び接眼レンズを備える。2次元画像形成装置(例えば、2次元表示ディスプレイ)は、視野全域にわたる広範囲にステレオ画像を表示する。3次元画像形成装置(例えば、3次元表示ディスプレイ)は、限られた視野範囲に、高解像度に奥行情報を再現することができ、ライトフィールド方式に限らずホログラフィ方式(後述する本技術に係る第4の実施形態の画像表示装置等を参照。)や多層化像(虚像)面方式(後述する本技術に係る第5及び第6の実施形態の画像表示装置等を参照。)などを用いてもよい。 The image display device of the first embodiment according to the present technology has a depth using a two-dimensional image forming device (for example, a two-dimensional display display), a light field, or the like that presents a stereo image (stereo image) for each eye. A beam that superimposes a two-dimensional image (two-dimensional image) and a three-dimensional image (three-dimensional image) on a three-dimensional image forming device (for example, a three-dimensional display display) that presents a three-dimensional image (three-dimensional image) having information. It is equipped with a splitter and an eyepiece. A two-dimensional image forming apparatus (for example, a two-dimensional display display) displays a stereo image over a wide field of view. A three-dimensional image forming apparatus (for example, a three-dimensional display display) can reproduce depth information with high resolution in a limited viewing range, and is not limited to the light field method but also a holography method (the first technique according to the present technique described later). (Refer to the image display device and the like of the fourth embodiment) and the multilayer image (imaginary image) plane method (see the image display device and the like of the fifth and sixth embodiments according to the present technique described later) and the like. May be good.
 本技術に係る第1の実施形態の画像表示装置は、これまでにVACを改善するHMDとして前述された技術例1~5に比べ、比較的シンプルな構成で、広視野・高解像度を達成し、かつ、レンダリングコストや伝送コストを抑制することが可能である。人間の眼は視中心領域の視力が最も高く、それ以外の領域では低い。したがって、人間は視野周辺領域における画質劣化には鈍感である。 The image display device of the first embodiment according to the present technology achieves a wide field of view and high resolution with a relatively simple configuration as compared with the above-mentioned technical examples 1 to 5 as an HMD for improving VAC. Moreover, it is possible to suppress rendering costs and transmission costs. The human eye has the highest visual acuity in the central visual acuity region and low visual acuity in other regions. Therefore, humans are insensitive to image quality deterioration in the peripheral visual field region.
 この特性を利用し、後述する図2に示されるように、高解像度で奥行情報を有する3次元画像(3次元映像)を視野の略中心部に表示し、低解像度で広視野の2次元画像(2次元映像)を視野全域に表示することで、人間が高い没入感を得るために必要な解像度および視野の広さを満たすことができる。また、限られたリソースで高い奥行再現性を得るためには、奥行を再現する視野範囲を制限することが有効である。さらに、3次元画像(3次元映像)を表示する範囲を限定することで、3次元画像(3次元映像)をレンダリングするために必要な計算コストや伝送コストを抑制することができる。 Utilizing this characteristic, as shown in FIG. 2 described later, a 3D image (3D image) having high resolution and depth information is displayed in the substantially central part of the field of view, and a low resolution and wide field 2D image is displayed. By displaying (two-dimensional image) in the entire field of view, it is possible to satisfy the resolution and the width of the field of view necessary for human beings to obtain a high immersive feeling. Further, in order to obtain high depth reproducibility with limited resources, it is effective to limit the visual field range for reproducing the depth. Further, by limiting the range in which the three-dimensional image (three-dimensional image) is displayed, the calculation cost and the transmission cost required for rendering the three-dimensional image (three-dimensional image) can be suppressed.
 なお、上記の段落0043~段落0045で述べた内容は、後述する本技術に係る第2~第8の実施形態の画像表示装置にも特に技術的な矛盾がない限り適用され得る。 It should be noted that the contents described in paragraphs 0043 to 0045 above can be applied to the image display device of the second to eighth embodiments according to the present technology described later as long as there is no particular technical contradiction.
 以下、本技術に係る第1の実施形態(画像表示装置の例1)の画像表示装置について、図1~図5を用いて説明をする。 Hereinafter, the image display device of the first embodiment (example 1 of the image display device) according to the present technology will be described with reference to FIGS. 1 to 5.
 まず、図1を用いて、画像表示装置101を説明する。 First, the image display device 101 will be described with reference to FIG.
 画像表示装置101は、左眼用の画像表示装置101-Lと右眼用の画像表示装置101-Rとから構成されている。 The image display device 101 is composed of an image display device 101-L for the left eye and an image display device 101-R for the right eye.
 画像表示装置101-Lは、2次元表示ディスプレイ2-Lと、インテグラルイメージング方式の3次元表示ディスプレイ1-Lと、ハーフミラー3-Lと、接眼レンズ4-Lと、を備える。インテグラルイメージング方式の3次元表示ディスプレイ1-Lは、マイクロレンズ1-1-Lとディスプレイ1-2-Lとから構成される。画像表示101-Lにおいて、2次元表示ディスプレイ2-Lから出射された第1画像光及びインテグラルイメージング方式の3次元表示ディスプレイ1-Lから出射された第2画像光が、ハーフミラー3-Lと、接眼レンズ4-Lと、をこの順で介して、ユーザの左眼500-Lに入射される。したがって、画像表示装置101-Lにおいては、第1画像光に基づく2次元画像(2次元映像)と、第2画像光に基づく3次元画像(3次元映像)とが重畳して表示される。 The image display device 101-L includes a two-dimensional display 2-L, an integral imaging type three-dimensional display 1-L, a half mirror 3-L, and an eyepiece 4-L. The three-dimensional display 1-L of the integral imaging method is composed of a microlens 1-1-L and a display 1-2-L. In the image display 101-L, the first image light emitted from the two-dimensional display 2-L and the second image light emitted from the integral imaging type three-dimensional display 1-L are the half mirror 3-L. And the eyepiece lens 4-L are incident on the user's left eye 500-L in this order. Therefore, in the image display device 101-L, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
 画像表示装置101-Rは、2次元表示ディスプレイ2-Rと、インテグラルイメージング方式の3次元表示ディスプレイ1-Rと、ハーフミラー3-Rと、接眼レンズ4-Rと、を備える。インテグラルイメージング方式の3次元表示ディスプレイ1-Rは、マイクロレンズ1-1-Rとディスプレイ1-2-Rとから構成される。画像表示101-Rにおいて、2次元表示ディスプレイ2-Rから出射された第1画像光及びインテグラルイメージング方式の3次元表示ディスプレイ1-Rから出射された第2画像光が、ハーフミラー3-Rと、接眼レンズ4-Rと、をこの順で介して、ユーザの左眼500-Rに入射される。したがって、画像表示装置101-Rにおいては、第1画像光に基づく2次元画像(2次元映像)と、第2画像光に基づく3次元画像(3次元映像)とが重畳して表示される。 The image display device 101-R includes a two-dimensional display 2-R, an integral imaging type three-dimensional display 1-R, a half mirror 3-R, and an eyepiece 4-R. The three-dimensional display 1-R of the integral imaging method is composed of a microlens 1-1-R and a display 1-2-R. In the image display 101-R, the first image light emitted from the two-dimensional display 2-R and the second image light emitted from the integral imaging type three-dimensional display 1-R are the half mirror 3-R. And the eyepiece lens 4-R are incident on the user's left eye 500-R in this order. Therefore, in the image display device 101-R, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
 以上より、画像表示装置101においては、ユーザの視野の一部(例えば、ユーザの視野の略中心部)に表示される奥行情報を再生する3次元画像と、ユーザの視野の略全域に表示される2次元示視差画像とが重畳され得る。 From the above, in the image display device 101, a three-dimensional image for reproducing depth information displayed in a part of the user's field of view (for example, a substantially central portion of the user's field of view) and a three-dimensional image displayed in substantially the entire area of the user's field of view are displayed. Can be superimposed on a two-dimensional visual field image.
 図2を用いて説明する。図2は、本技術に係る第1の実施形態の画像表示装置が2次元画像と3次元画像とを重畳して表示する方法の一例を示す図である。 This will be explained with reference to FIG. FIG. 2 is a diagram showing an example of a method in which the image display device of the first embodiment according to the present technology superimposes and displays a two-dimensional image and a three-dimensional image.
 図2に示される画像表示装置102は、2次元表示ディスプレイ2と、インテグラルイメージング方式(ライトフィールド方式)の3次元表示ディスプレイ1と、ハーフミラー3と、接眼レンズ4と、を備える。3次元表示ディスプレイ1は、マイクロレンズ1と、ディスプレイ1-2とから構成される。 The image display device 102 shown in FIG. 2 includes a two-dimensional display display 2, an integral imaging method (light field method) three-dimensional display display 1, a half mirror 3, and an eyepiece lens 4. The three-dimensional display display 1 is composed of a microlens 1 and a display 1-2.
 図2Aに示されるように、奥行情報が再現された3次元画像(3次元映像)は、接眼レンズ4により虚像として拡大される(点線G32-A)。また、同様に、2次元画像(2次元映像)も接眼レンズ4により虚像として拡大される(実線G22-A)。図2Bに示されるように、ユーザの視野の略中心部には、3次元画像(3次元映像)の虚像G32-Bが表示され、ユーザの視野の略全域には、2次元画像(2次元映像)の虚像G32-Bが表示され、ユーザは、これら2つの虚像が重畳された映像を視聴することができる。 As shown in FIG. 2A, the three-dimensional image (three-dimensional image) in which the depth information is reproduced is magnified as a virtual image by the eyepiece 4 (dotted line G32-A). Similarly, the two-dimensional image (two-dimensional image) is also magnified as a virtual image by the eyepiece 4 (solid line G22-A). As shown in FIG. 2B, a virtual image G32-B of a three-dimensional image (three-dimensional image) is displayed in a substantially central portion of the user's field of view, and a two-dimensional image (two-dimensional) is displayed in substantially the entire area of the user's field of view. The virtual image G32-B of the video) is displayed, and the user can view the video in which these two virtual images are superimposed.
 図3~図5を用いて説明をする。 The explanation will be given using FIGS. 3 to 5.
 図3は、本技術に係る第1の実施形態の画像表示装置が2次元画像と3次元画像とを重畳して表示する方法の変形例1を示す図であり、詳しくは、輻輳を考慮し、3次元画像(3次元映像)の虚像を表示する範囲を、図2Bに示される範囲に対して変更した例である。 FIG. 3 is a diagram showing a modified example 1 of a method in which the image display device of the first embodiment according to the present technology superimposes and displays a two-dimensional image and a three-dimensional image, and more specifically, in consideration of congestion. This is an example in which the range for displaying a virtual image of a three-dimensional image (three-dimensional image) is changed with respect to the range shown in FIG. 2B.
 ユーザの左眼500-Lにおいては、2次元画像(2次元映像)の虚像G23-Lは、ユーザの視野の略全域に表示され、3次元画像(3次元映像)の虚像G33-Lは、ユーザの視野の略中心部に対して右側に表示されている(図3A)。図3Aに示される参照符号K1は光軸を示し、参照符号K2は奥行情報を有する画像(映像)の中心を示し、参照符号K1と参照符号K2との距離dはIPD/2である。一方、ユーザの右眼500-Rにおいては、2次元画像(2次元映像)の虚像G23-Rは、ユーザの視野の略全域に表示され、3次元画像(3次元映像)の虚像G33-Rは、ユーザの視野の略中心部に対して左側に表示されている(図3B)。 In the user's left eye 500-L, the virtual image G23-L of the two-dimensional image (two-dimensional image) is displayed in substantially the entire field of the user, and the virtual image G33-L of the three-dimensional image (three-dimensional image) is displayed. It is displayed on the right side with respect to the substantially center of the user's field of view (FIG. 3A). Reference numeral K1 shown in FIG. 3A indicates an optical axis, reference numeral K2 indicates a center of an image (video) having depth information, and a distance d between reference numeral K1 and reference numeral K2 is IPD / 2. On the other hand, in the user's right eye 500-R, the virtual image G23-R of the two-dimensional image (two-dimensional image) is displayed in substantially the entire field of the user's field of view, and the virtual image G33-R of the three-dimensional image (three-dimensional image) is displayed. Is displayed on the left side with respect to the substantially center of the user's field of view (FIG. 3B).
 図4は、本技術に係る第1の実施形態の画像表示装置が2次元画像と3次元画像とを重畳して表示する方法の変形例2を示す図であり、3次元画像(3次元映像)の範囲を円形にした例を示す図である(なお、図2B及び図3は、3次元画像(3次元映像)の範囲を矩形にした例である。)。 FIG. 4 is a diagram showing a modification 2 of a method in which the image display device of the first embodiment according to the present technology superimposes and displays a two-dimensional image and a three-dimensional image, and is a three-dimensional image (three-dimensional image). It is a figure which shows the example which made the range of () circular (Note that FIG. 2B and FIG. 3 are an example which made the range of a three-dimensional image (three-dimensional image) rectangular).
 ユーザの左眼500-Lにおいては、2次元画像(2次元映像)の虚像G24-Lは、ユーザの視野の略全域に表示され、3次元画像(3次元映像)の虚像G34-Lは、ユーザの視野の略中心部に対して右側に円形状で表示されている(図4A)。図4Aに示される参照符号K1は光軸を示し、参照符号K2は奥行情報を有する画像(映像)の中心を示し、参照符号K1と参照符号K2との距離dはIPD/2である。一方、ユーザの右眼500-Rにおいては、2次元画像(2次元映像)の虚像G24-Rは、ユーザの視野の略全域に表示され、3次元画像(3次元映像)の虚像G34-Rは、ユーザの視野の略中心部に対して左側に円形状で表示されている(図4B)。 In the user's left eye 500-L, the virtual image G24-L of the two-dimensional image (two-dimensional image) is displayed in substantially the entire field of the user, and the virtual image G34-L of the three-dimensional image (three-dimensional image) is displayed. It is displayed in a circular shape on the right side with respect to the substantially central portion of the user's field of view (FIG. 4A). Reference numeral K1 shown in FIG. 4A indicates an optical axis, reference numeral K2 indicates a center of an image (video) having depth information, and a distance d between reference numeral K1 and reference numeral K2 is IPD / 2. On the other hand, in the user's right eye 500-R, the virtual image G24-R of the two-dimensional image (two-dimensional image) is displayed in substantially the entire field of the user's field of view, and the virtual image G34-R of the three-dimensional image (three-dimensional image) is displayed. Is displayed in a circular shape on the left side with respect to the substantially central portion of the user's field of view (FIG. 4B).
 図5は、本技術に係る第1の実施形態の画像表示装置が2次元画像と3次元画像とを重畳して表示する方法の変形例3を示す図であり、3次元画像(3次元映像)の範囲を楕円形にした例を示す図である(なお、上述したとおり、図2B及び図3は、3次元画像(3次元映像)の範囲を矩形にした例であり、図4は、3次元画像(3次元映像)の範囲を円形にした例である。)。 FIG. 5 is a diagram showing a modified example 3 of a method in which the image display device of the first embodiment according to the present technology superimposes and displays a two-dimensional image and a three-dimensional image, and is a three-dimensional image (three-dimensional image). 2B and 3 are examples in which the range of the three-dimensional image (three-dimensional image) is rectangular, and FIG. 4 is a diagram showing an example in which the range of) is made elliptical. This is an example in which the range of a three-dimensional image (three-dimensional image) is made circular.)
 ユーザの左眼500-Lにおいては、2次元画像(2次元映像)の虚像G25-Lは、ユーザの視野の略全域に表示され、3次元画像(3次元映像)の虚像G35-Lは、ユーザの視野の略中心部に対して右側に楕円形状で表示されている(図5A)。図5Aに示される参照符号K1は光軸を示し、参照符号K2は奥行情報を有する画像(映像)の中心を示し、参照符号K1と参照符号K2との距離dはIPD/2である。一方、ユーザの右眼500-Rにおいては、2次元画像(2次元映像)の虚像G25-Rは、ユーザの視野の略全域に表示され、3次元画像(3次元映像)の虚像G35-Rは、ユーザの視野の略中心部に対して左側に楕円形状で表示されている(図4B)。 In the user's left eye 500-L, the virtual image G25-L of the two-dimensional image (two-dimensional image) is displayed in substantially the entire field of the user, and the virtual image G35-L of the three-dimensional image (three-dimensional image) is displayed. It is displayed in an elliptical shape on the right side with respect to the substantially central portion of the user's field of view (FIG. 5A). Reference numeral K1 shown in FIG. 5A indicates an optical axis, reference numeral K2 indicates a center of an image (video) having depth information, and a distance d between reference numeral K1 and reference numeral K2 is IPD / 2. On the other hand, in the user's right eye 500-R, the virtual image G25-R of the two-dimensional image (two-dimensional image) is displayed in substantially the entire field of the user's field of view, and the virtual image G35-R of the three-dimensional image (three-dimensional image) is displayed. Is displayed in an elliptical shape on the left side with respect to the substantially central portion of the user's field of view (FIG. 4B).
 以上、本技術に係る第1の実施形態(画像表示装置の例1)の画像表示装置について説明した内容は、特に技術的な矛盾がない限り、後述する本技術に係る第2~第8の実施形態の画像表示装置に適用することができる。 As described above, the contents of the description of the image display device of the first embodiment (example 1 of the image display device) according to the present technology will be described in the second to eighth aspects of the present technology, which will be described later, unless there is a particular technical contradiction. It can be applied to the image display device of the embodiment.
<3.第2の実施形態(画像表示装置の例2)>
 本技術に係る第2の実施形態(画像表示装置の例2)の画像表示装置は、ユーザの両眼のそれぞれに対して、2次元画像形成装置と、3次元画像形成装置と、ビームスプリッタと、接眼レンズと、を備える。本技術に係る第2の実施形態の画像表示装置においては、2次元画像形成装置から出射された第1画像光及び3次元画像形成装置から出射された第2画像光が、ビームスプリッタと、接眼レンズとをこの順で介して、ユーザの両眼のそれぞれに入射される。
<3. Second Embodiment (Example 2 of image display device)>
The image display device of the second embodiment (example 2 of the image display device) according to the present technology includes a two-dimensional image forming device, a three-dimensional image forming device, and a beam splitter for each of the user's eyes. , With an eyepiece. In the image display device of the second embodiment according to the present technique, the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus are eyepieces with the beam splitter. It is incident on each of the user's eyes through the lens in this order.
 また、本技術に係る第2の実施形態の画像表示装置においては、3次元画像形成装置は、テンソルディスプレイ方式(複数枚の透過型ディスプレイを用いる方式)を用いて3次元画像を形成する。テンソルディスプレイ方式を用いて3次元画像が形成されることで、計算コストはインテグラルイメージング方式に対しては増大するが、視野を制限することで既存の方法に比べて計算コストを抑制することができる。また、テンソルディスプレイ方式を用いて3次元画像が形成されることで、より広い奥行範囲にわたり、より高解像度の映像を表示できる。ビームスプリッタとしては、例えば、ハーフミラー等が挙げられる。 Further, in the image display device of the second embodiment according to the present technology, the three-dimensional image forming device forms a three-dimensional image by using a tensor display method (a method using a plurality of transmissive displays). By forming a 3D image using the tensor display method, the calculation cost increases compared to the integral imaging method, but by limiting the field of view, the calculation cost can be suppressed compared to the existing method. can. Further, by forming a three-dimensional image using the tensor display method, it is possible to display a higher resolution image over a wider depth range. Examples of the beam splitter include a half mirror and the like.
 以下、本技術に係る第2の実施形態(画像表示装置の例2)の画像表示装置について、図6を用いて説明をする。 Hereinafter, the image display device of the second embodiment (example 2 of the image display device) according to the present technology will be described with reference to FIG.
 図6には、画像表示装置106が示されている。画像表示装置106は、左眼用の画像表示装置106-Lと右眼用の画像表示装置106-Rとから構成されている。 FIG. 6 shows the image display device 106. The image display device 106 includes an image display device 106-L for the left eye and an image display device 106-R for the right eye.
 画像表示装置106-Lは、2次元表示ディスプレイ2-Lと、テンソルディスプレイ方式の3次元表示ディスプレイ16-Lと、ハーフミラー3-Lと、接眼レンズ4-Lと、を備える。テンソルディスプレイ方式の3次元表示ディスプレイ16-Lは、2枚のディスプレイ16-2-1-L及び16-2-2-Lとから構成されているが、3枚以上のディスプレイから構成されてもよい。 The image display device 106-L includes a two-dimensional display 2-L, a tensor display type three-dimensional display 16-L, a half mirror 3-L, and an eyepiece 4-L. The tensor display type three-dimensional display 16-L is composed of two displays 16-2-1-L and 16-2-2-L, but even if it is composed of three or more displays. good.
 画像表示106-Lにおいて、2次元表示ディスプレイ2-Lから出射された第1画像光及びテンソルディスプレイ方式の3次元表示ディスプレイ16-Lから出射された第2画像光が、ハーフミラー3-Lと、接眼レンズ4-Lと、をこの順で介して、ユーザの左眼500-Lに入射される。したがって、画像表示装置106-Lにおいては、第1画像光に基づく2次元画像(2次元映像)と、第2画像光に基づく3次元画像(3次元映像)とが重畳して表示される。 In the image display 106-L, the first image light emitted from the two-dimensional display 2-L and the second image light emitted from the tensor display type three-dimensional display 16-L are the half mirror 3-L. , And the eyepiece lens 4-L, are incident on the user's left eye 500-L in this order. Therefore, in the image display device 106-L, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
 画像表示装置106-Rは、2次元表示ディスプレイ2-Rと、テンソルディスプレイ方式の3次元表示ディスプレイ16-Rと、ハーフミラー3-Rと、接眼レンズ4-Rと、を備える。テンソルディスプレイ方式の3次元表示ディスプレイ16-Rは、2枚のディスプレイ16-2-1-R及び16-2-2-Rとから構成されているが、3枚以上のディスプレイから構成されてもよい。 The image display device 106-R includes a two-dimensional display 2-R, a tensor display type three-dimensional display 16-R, a half mirror 3-R, and an eyepiece 4-R. The tensor display type three-dimensional display 16-R is composed of two displays 16-2-1-R and 16-2-2-R, but even if it is composed of three or more displays. good.
 画像表示106-Rにおいて、2次元表示ディスプレイ2-Rから出射された第1画像光及びテンソルディスプレイ方式の3次元表示ディスプレイ16-Rから出射された第2画像光が、ハーフミラー3-Rと、接眼レンズ4-Rと、をこの順で介して、ユーザの左眼500-Rに入射される。したがって、画像表示装置106-Rにおいては、第1画像光に基づく2次元画像(2次元映像)と、第2画像光に基づく3次元画像(3次元映像)とが重畳して表示される。 In the image display 106-R, the first image light emitted from the two-dimensional display 2-R and the second image light emitted from the tensor display type three-dimensional display 16-R are referred to as a half mirror 3-R. , And the eyepiece lens 4-R, are incident on the user's left eye 500-R in this order. Therefore, in the image display device 106-R, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
 以上より、画像表示装置106においては、ユーザの視野の一部(例えば、ユーザの視野の略中心部)に表示される奥行情報を再生する3次元画像と、ユーザの視野の略全域に表示される2次元示視差画像とが重畳され得る。 From the above, in the image display device 106, a three-dimensional image for reproducing the depth information displayed in a part of the user's field of view (for example, a substantially central portion of the user's field of view) and a three-dimensional image displayed in substantially the entire area of the user's field of view are displayed. Can be superimposed on a two-dimensional visual field image.
 以上、本技術に係る第2の実施形態(画像表示装置の例2)の画像表示装置について説明した内容は、特に技術的な矛盾がない限り、前述した本技術に係る第1の実施形態の画像表示装置、及び後述する本技術に係る第3~第8の実施形態の画像表示装置に適用することができる。 As described above, the contents of the description of the image display device of the second embodiment (example 2 of the image display device) according to the present technology are the same as those of the first embodiment of the present technology described above, unless there is a particular technical contradiction. It can be applied to an image display device and an image display device according to a third to eighth embodiment of the present technique described later.
<4.第3の実施形態(画像表示装置の例3)>
 本技術に係る第3の実施形態(画像表示装置の例3)の画像表示装置は、ユーザの両眼のそれぞれに対して、2次元画像形成装置と、3次元画像形成装置と、ビームスプリッタと、接眼レンズと、を備える。本技術に係る第3の実施形態の画像表示装置においては、2次元画像形成装置から出射された第1画像光及び3次元画像形成装置から出射された第2画像光が、ビームスプリッタと、接眼レンズとをこの順で介して、ユーザの両眼のそれぞれに入射される。
<4. Third Embodiment (Example 3 of image display device)>
The image display device of the third embodiment (example 3 of the image display device) according to the present technology includes a two-dimensional image forming device, a three-dimensional image forming device, and a beam splitter for each of the user's eyes. , With an eyepiece. In the image display device of the third embodiment according to the present technique, the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus are eyepieces with the beam splitter. It is incident on each of the user's eyes through the lens in this order.
 また、本技術に係る第3の実施形態の画像表示装置においては、3次元画像形成装置は、超多眼方式を用いて3次元画像を形成する。ビームスプリッタとしては、例えば、ハーフミラー等が挙げられる。 Further, in the image display device of the third embodiment according to the present technology, the three-dimensional image forming device forms a three-dimensional image by using a super-multicular method. Examples of the beam splitter include a half mirror and the like.
 以下、本技術に係る第3の実施形態(画像表示装置の例3)の画像表示装置について、図7を用いて説明をする。 Hereinafter, the image display device of the third embodiment (example 3 of the image display device) according to the present technology will be described with reference to FIG. 7.
 図7には、画像表示装置107が示されている。画像表示装置107は、左眼用の画像表示装置107-Lと右眼用の画像表示装置107-Rとから構成されている。 FIG. 7 shows the image display device 107. The image display device 107 includes an image display device 107-L for the left eye and an image display device 107-R for the right eye.
 画像表示装置107-Lは、2次元表示ディスプレイ2-Lと、超多眼方式の3次元表示ディスプレイ17-Lと、ハーフミラー3-Lと、接眼レンズ4-Lと、を備える。超多眼方式の3次元表示ディスプレイ17-Lは、レンチキュラーレンズ17-1-Lと、ディスプレイ17-2-Lとから構成される。 The image display device 107-L includes a two-dimensional display display 2-L, a super-multi-eye type three-dimensional display display 17-L, a half mirror 3-L, and an eyepiece lens 4-L. The super-multicular three-dimensional display 17-L is composed of a lenticular lens 17-1-L and a display 17-2-L.
 画像表示107-Lにおいて、2次元表示ディスプレイ2-Lから出射された第1画像光及び超多眼方式の3次元表示ディスプレイ17-Lから出射された第2画像光が、ハーフミラー3-Lと、接眼レンズ4-Lと、をこの順で介して、ユーザの左眼500-Lに入射される。したがって、画像表示装置107-Lにおいては、第1画像光に基づく2次元画像(2次元映像)と、第2画像光に基づく3次元画像(3次元映像)とが重畳して表示される。 In the image display 107-L, the first image light emitted from the two-dimensional display display 2-L and the second image light emitted from the super-multicular three-dimensional display display 17-L are the half mirror 3-L. And the eyepiece lens 4-L are incident on the user's left eye 500-L in this order. Therefore, in the image display device 107-L, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
 画像表示装置107-Rは、2次元表示ディスプレイ2-Rと、超多眼方式の3次元表示ディスプレイ17-Rと、ハーフミラー3-Rと、接眼レンズ4-Rと、を備える。超多眼方式の3次元表示ディスプレイ17-Rは、レンチキュラーレンズ17-1-Rと、ディスプレイ17-2-Rとから構成される。 The image display device 107-R includes a two-dimensional display 2-R, a super-multi-eye type three-dimensional display 17-R, a half mirror 3-R, and an eyepiece 4-R. The super-multicular three-dimensional display 17-R is composed of a lenticular lens 17-1-R and a display 17-2-R.
 画像表示107-Rにおいて、2次元表示ディスプレイ2-Rから出射された第1画像光及び超多眼方式の3次元表示ディスプレイ17-Rから出射された第2画像光が、ハーフミラー3-Rと、接眼レンズ4-Rと、をこの順で介して、ユーザの左眼500-Rに入射される。したがって、画像表示装置107-Rにおいては、第1画像光に基づく2次元画像(2次元映像)と、第2画像光に基づく3次元画像(3次元映像)とが重畳して表示される。 In the image display 107-R, the first image light emitted from the two-dimensional display display 2-R and the second image light emitted from the super-multicular three-dimensional display display 17-R are the half mirror 3-R. And the eyepiece lens 4-R, in this order, are incident on the user's left eye 500-R. Therefore, in the image display device 107-R, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
 以上より、画像表示装置107においては、ユーザの視野の一部(例えば、ユーザの視野の略中心部)に表示される奥行情報を再生する3次元画像と、ユーザの視野の略全域に表示される2次元示視差画像とが重畳され得る。 From the above, in the image display device 107, a three-dimensional image for reproducing the depth information displayed in a part of the user's field of view (for example, a substantially central portion of the user's field of view) and a three-dimensional image displayed in substantially the entire area of the user's field of view are displayed. Can be superimposed on a two-dimensional visual field image.
 以上、本技術に係る第3の実施形態(画像表示装置の例3)の画像表示装置について説明した内容は、特に技術的な矛盾がない限り、前述した本技術に係る第1~第2の実施形態の画像表示装置、及び後述する本技術に係る第4~第8の実施形態の画像表示装置に適用することができる。 As described above, the contents of the description of the image display device of the third embodiment (example 3 of the image display device) according to the present technology are the first and second items according to the above-mentioned present technology, unless there is a particular technical contradiction. It can be applied to the image display device of the embodiment and the image display device of the fourth to eighth embodiments according to the present technique described later.
<5.第4の実施形態(画像表示装置の例4)>
 本技術に係る第4の実施形態(画像表示装置の例4)の画像表示装置は、ユーザの両眼のそれぞれに対して、2次元画像形成装置と、3次元画像形成装置と、ビームスプリッタと、接眼レンズと、を備える。本技術に係る第4の実施形態の画像表示装置においては、2次元画像形成装置から出射された第1画像光及び3次元画像形成装置から出射された第2画像光が、ビームスプリッタと、接眼レンズとをこの順で介して、ユーザの両眼のそれぞれに入射される。
<5. Fourth Embodiment (Example 4 of image display device)>
The image display device of the fourth embodiment (example 4 of the image display device) according to the present technology includes a two-dimensional image forming device, a three-dimensional image forming device, and a beam splitter for each of the user's eyes. , With an eyepiece. In the image display device of the fourth embodiment according to the present technique, the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus are eyepieces with the beam splitter. It is incident on each of the user's eyes through the lens in this order.
 また、本技術に係る第4の実施形態の画像表示装置においては、3次元画像形成装置は、ホログラフィ方式を用いて3次元画像を形成する。ホログラフィ方式を用いて3次元画像が形成されることで、計算コストはインテグラルイメージング方式に対しては増大するが、視野を制限することで既存の方法に比べて計算コストを抑制することができ、そして、構造が複雑になる可能性があるが、より高解像度で、より高い奥行再現性が実現され得る。ビームスプリッタとしては、例えば、ハーフミラー等が挙げられる。 Further, in the image display device of the fourth embodiment according to the present technology, the three-dimensional image forming device forms a three-dimensional image by using a holographic method. By forming a 3D image using the holography method, the calculation cost is higher than that of the integral imaging method, but by limiting the field of view, the calculation cost can be suppressed compared to the existing method. And, although the structure can be complicated, higher resolution and higher depth reproducibility can be achieved. Examples of the beam splitter include a half mirror and the like.
 以下、本技術に係る第4の実施形態(画像表示装置の例4)の画像表示装置について、図8を用いて説明をする。 Hereinafter, the image display device of the fourth embodiment (example 4 of the image display device) according to the present technology will be described with reference to FIG.
 図8には、画像表示装置108が示されている。画像表示装置108は、左眼用の画像表示装置108-Lと右眼用の画像表示装置108-Rとから構成されている。 FIG. 8 shows the image display device 108. The image display device 108 includes an image display device 108-L for the left eye and an image display device 108-R for the right eye.
 画像表示装置108-Lは、2次元表示ディスプレイ2-Lと、ホログラフィ方式の3次元表示ディスプレイ18-Lと、ハーフミラー3-Lと、接眼レンズ4-Lと、を備える。ホログラフィ方式の3次元表示ディスプレイ18-Lは、空間光変調器18-2-Lと、光源18-3-L(レーザ光源等)と、を有する。 The image display device 108-L includes a two-dimensional display 2-L, a holographic three-dimensional display 18-L, a half mirror 3-L, and an eyepiece 4-L. The holographic three-dimensional display 18-L has a spatial light modulator 18-2-L and a light source 18-3-L (laser light source or the like).
 画像表示108-Lにおいて、2次元表示ディスプレイ2-Lから出射された第1画像光及びホログラフィ方式の3次元表示ディスプレイ18-Lから出射された第2画像光が、ハーフミラー3-Lと、接眼レンズ4-Lと、をこの順で介して、ユーザの左眼500-Lに入射される。したがって、画像表示装置108-Lにおいては、第1画像光に基づく2次元画像(2次元映像)と、第2画像光に基づく3次元画像(3次元映像)とが重畳して表示される。 In the image display 108-L, the first image light emitted from the two-dimensional display display 2-L and the second image light emitted from the holographic three-dimensional display display 18-L are the half mirror 3-L and the half mirror 3-L. It is incident on the user's left eye 500-L via the eyepiece lenses 4-L and in this order. Therefore, in the image display device 108-L, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
 画像表示装置108-Rは、2次元表示ディスプレイ2-Rと、ホログラフィ方式の3次元表示ディスプレイ18-Rと、ハーフミラー3-Rと、接眼レンズ4-Rと、を備える。ホログラフィ方式の3次元表示ディスプレイ18-Rは、空間光変調器18-2-Rと、光源18-3-R(レーザ光源等)と、を有する。 The image display device 108-R includes a two-dimensional display 2-R, a holographic three-dimensional display 18-R, a half mirror 3-R, and an eyepiece 4-R. The holographic three-dimensional display 18-R has a spatial light modulator 18-2-R and a light source 18-3-R (laser light source or the like).
 画像表示108-Rにおいて、2次元表示ディスプレイ2-Rから出射された第1画像光及びホログラフィ方式の3次元表示ディスプレイ18-Rから出射された第2画像光が、ハーフミラー3-Rと、接眼レンズ4-Rと、をこの順で介して、ユーザの左眼500-Rに入射される。したがって、画像表示装置108-Rにおいては、第1画像光に基づく2次元画像(2次元映像)と、第2画像光に基づく3次元画像(3次元映像)とが重畳して表示される。 In the image display 108-R, the first image light emitted from the two-dimensional display display 2-R and the second image light emitted from the holographic three-dimensional display display 18-R are the half mirror 3-R and the half mirror 3-R. It is incident on the user's left eye 500-R via the eyepiece lenses 4-R in this order. Therefore, in the image display device 108-R, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
 以上より、画像表示装置108においては、ユーザの視野の一部(例えば、ユーザの視野の略中心部)に表示される奥行情報を再生する3次元画像と、ユーザの視野の略全域に表示される2次元示視差画像とが重畳され得る。 From the above, in the image display device 108, the three-dimensional image for reproducing the depth information displayed in a part of the user's field of view (for example, the substantially central portion of the user's field of view) and the three-dimensional image are displayed in substantially the entire area of the user's field of view. Can be superimposed on a two-dimensional visual field image.
 以上、本技術に係る第4の実施形態(画像表示装置の例4)の画像表示装置について説明した内容は、特に技術的な矛盾がない限り、前述した本技術に係る第1~第3の実施形態の画像表示装置、及び後述する本技術に係る第5~第8の実施形態の画像表示装置に適用することができる。 As described above, the contents of the description of the image display device of the fourth embodiment (example 4 of the image display device) according to the present technology are the first to third aspects of the present technology described above, unless there is a particular technical contradiction. It can be applied to the image display device of the embodiment and the image display device of the fifth to eighth embodiments according to the present technique described later.
<6.第5の実施形態(画像表示装置の例5)>
 本技術に係る第5の実施形態(画像表示装置の例5)の画像表示装置は、ユーザの両眼のそれぞれに対して、2次元画像形成装置と、3次元画像形成装置と、ビームスプリッタと、接眼レンズと、を備える。本技術に係る第5の実施形態の画像表示装置においては、2次元画像形成装置から出射された第1画像光及び3次元画像形成装置から出射された第2画像光が、ビームスプリッタと、接眼レンズとをこの順で介して、ユーザの両眼のそれぞれに入射される。
<6. Fifth Embodiment (Example 5 of image display device)>
The image display device of the fifth embodiment (example 5 of the image display device) according to the present technology includes a two-dimensional image forming device, a three-dimensional image forming device, and a beam splitter for each of the user's eyes. , With an eyepiece. In the image display device of the fifth embodiment according to the present technique, the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus are eyepieces with the beam splitter. It is incident on each of the user's eyes through the lens in this order.
 また、本技術に係る第5の実施形態の画像表示装置においては、3次元画像形成装置は、空間的に多層化された像面により、すなわち、積層されたディスプレイを用いた空間的多層化虚像面方式により、3次元画像を形成する。ビームスプリッタとしては、例えば、ハーフミラー等が挙げられる。 Further, in the image display device of the fifth embodiment according to the present technique, the three-dimensional image forming device has a spatially multi-layered image plane, that is, a spatially multi-layered imaginary image using a stacked display. A three-dimensional image is formed by the surface method. Examples of the beam splitter include a half mirror and the like.
 以下、本技術に係る第5の実施形態(画像表示装置の例5)の画像表示装置について、図9を用いて説明をする。 Hereinafter, the image display device of the fifth embodiment (example 5 of the image display device) according to the present technology will be described with reference to FIG.
 図9には、画像表示装置109が示されている。画像表示装置109は、左眼用の画像表示装置109-Lと右眼用の画像表示装置109-Rとから構成されている。 FIG. 9 shows the image display device 109. The image display device 109 includes an image display device 109-L for the left eye and an image display device 109-R for the right eye.
 画像表示装置109-Lは、2次元表示ディスプレイ2-Lと、多層化像面方式の3次元表示ディスプレイ19-Lと、ハーフミラー3-Lと、接眼レンズ4-Lと、を備える。多層化像面方式の3次元表示ディスプレイ19-Lは、空間的に多層化された像面により3次元画像を形成する。多層化像面方式の3次元表示ディスプレイ19-Lは、積層されたディスプレイ19-2-1-L及び19-2-Lとから構成されている。なお、多層化像面方式の3次元表示ディスプレイ19-Lは、2枚のディスプレイ19-2-1-L及び19-2-Lから構成されているが、3枚以上のディスプレイから構成されていてもよい。 The image display device 109-L includes a two-dimensional display 2-L, a multi-layered image plane type three-dimensional display display 19-L, a half mirror 3-L, and an eyepiece 4-L. The multi-layered image plane type three-dimensional display display 19-L forms a three-dimensional image by spatially multi-layered image planes. The multi-layered image plane type three-dimensional display display 19-L is composed of laminated displays 19-2-1-L and 19-2-L. The multi-layered image plane type three-dimensional display 19-L is composed of two displays 19-2-1-L and 19-2-L, but is composed of three or more displays. You may.
 画像表示109-Lにおいて、2次元表示ディスプレイ2-Lから出射された第1画像光及び多層化像面方式の3次元表示ディスプレイ19-Lから出射された第2画像光が、ハーフミラー3-Lと、接眼レンズ4-Lと、をこの順で介して、ユーザの左眼500-Lに入射される。したがって、画像表示装置109-Lにおいては、第1画像光に基づく2次元画像(2次元映像)と、第2画像光に基づく3次元画像(3次元映像)とが重畳して表示される。 In the image display 109-L, the first image light emitted from the two-dimensional display 2-L and the second image light emitted from the multi-layered image plane type three-dimensional display display 19-L are the half mirror 3-. L and the eyepiece lens 4-L are incident on the user's left eye 500-L in this order. Therefore, in the image display device 109-L, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
 画像表示装置109-Rは、2次元表示ディスプレイ2-Rと、多層化像面方式の3次元表示ディスプレイ19-Rと、ハーフミラー3-Rと、接眼レンズ4-Rと、を備える。多層化像面方式の3次元表示ディスプレイ19-Rは、空間的に多層化された像面により3次元画像を形成する。多層化像面方式の3次元表示ディスプレイ19-Rは、積層されたディスプレイ19-2-1-R及び19-2-Rとから構成されている。なお、多層化像面方式の3次元表示ディスプレイ19-Rは、2枚のディスプレイ19-2-1-R及び19-2-Rから構成されているが、3枚以上のディスプレイから構成されていてもよい。 The image display device 109-R includes a two-dimensional display 2-R, a multi-layered image plane type three-dimensional display display 19-R, a half mirror 3-R, and an eyepiece 4-R. The multi-layered image plane type three-dimensional display display 19-R forms a three-dimensional image by spatially multi-layered image planes. The multi-layered image plane type three-dimensional display 19-R is composed of laminated displays 19-2-1-R and 19-2-R. The multi-layered image plane type three-dimensional display 19-R is composed of two displays 19-2-1-R and 19-2-R, but is composed of three or more displays. You may.
 画像表示109-Rにおいて、2次元表示ディスプレイ2-Rから出射された第1画像光及び多層化像面方式の3次元表示ディスプレイ19-Rから出射された第2画像光が、ハーフミラー3-Rと、接眼レンズ4-Rと、をこの順で介して、ユーザの左眼500-Rに入射される。したがって、画像表示装置109-Rにおいては、第1画像光に基づく2次元画像(2次元映像)と、第2画像光に基づく3次元画像(3次元映像)とが重畳して表示される。 In the image display 109-R, the first image light emitted from the two-dimensional display display 2-R and the second image light emitted from the multi-layered image plane type three-dimensional display display 19-R are the half mirror 3-. The R and the eyepiece 4-R are incident on the user's left eye 500-R in this order. Therefore, in the image display device 109-R, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
 以上より、画像表示装置109においては、ユーザの視野の一部(例えば、ユーザの視野の略中心部)に表示される奥行情報を再生する3次元画像と、ユーザの視野の略全域に表示される2次元示視差画像とが重畳され得る。 From the above, in the image display device 109, a three-dimensional image for reproducing the depth information displayed in a part of the user's field of view (for example, a substantially central portion of the user's field of view) and a three-dimensional image displayed in substantially the entire area of the user's field of view are displayed. Can be superimposed on a two-dimensional visual field image.
 以上、本技術に係る第5の実施形態(画像表示装置の例5)の画像表示装置について説明した内容は、特に技術的な矛盾がない限り、前述した本技術に係る第1~第4の実施形態の画像表示装置、及び後述する本技術に係る第6~第8の実施形態の画像表示装置に適用することができる。 As described above, the contents of the description of the image display device of the fifth embodiment (example 5 of the image display device) according to the present technology are the first to fourth aspects of the present technology described above, unless there is a particular technical contradiction. It can be applied to the image display device of the embodiment and the image display device of the sixth to eighth embodiments according to the present technique described later.
<7.第6の実施形態(画像表示装置の例6)>
 本技術に係る第6の実施形態(画像表示装置の例6)の画像表示装置は、ユーザの両眼のそれぞれに対して、2次元画像形成装置と、3次元画像形成装置と、ビームスプリッタと、接眼レンズと、を備える。本技術に係る第6の実施形態の画像表示装置においては、2次元画像形成装置から出射された第1画像光及び3次元画像形成装置から出射された第2画像光が、ビームスプリッタと、接眼レンズとをこの順で介して、ユーザの両眼のそれぞれに入射される。
<7. Sixth Embodiment (Example 6 of image display device)>
The image display device of the sixth embodiment (example 6 of the image display device) according to the present technology includes a two-dimensional image forming device, a three-dimensional image forming device, and a beam splitter for each of the user's eyes. , With an eyepiece. In the image display device of the sixth embodiment according to the present technique, the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus are eyepieces with the beam splitter. It is incident on each of the user's eyes through the lens in this order.
 また、本技術に係る第6の実施形態の画像表示装置においては、3次元画像形成装置は、時間的に多層化された像面により、すなわち、ディスプレイを光軸方向に動かす時間的多層化虚像面方式により、3次元画像を形成する。ビームスプリッタとしては、例えば、ハーフミラー等が挙げられる。 Further, in the image display device of the sixth embodiment according to the present technique, the three-dimensional image forming device is a time-multilayered virtual image that moves the display in the optical axis direction by the time-multilayered image plane. A three-dimensional image is formed by the surface method. Examples of the beam splitter include a half mirror and the like.
 以下、本技術に係る第6の実施形態(画像表示装置の例6)の画像表示装置について、図10を用いて説明をする。 Hereinafter, the image display device of the sixth embodiment (example 6 of the image display device) according to the present technology will be described with reference to FIG.
 図10には、画像表示装置110が示されている。画像表示装置110は、左眼用の画像表示装置110-Lと右眼用の画像表示装置110-Rとから構成されている。 FIG. 10 shows the image display device 110. The image display device 110 includes an image display device 110-L for the left eye and an image display device 110-R for the right eye.
 画像表示装置110-Lは、2次元表示ディスプレイ2-Lと、多層化像面方式の3次元表示ディスプレイ610-Lと、ハーフミラー3-Lと、接眼レンズ4-Lと、を備える。多層化像面方式の3次元表示ディスプレイ610-Lは、時間的に多層化された像面により3次元画像を形成する。多層化像面方式の3次元表示ディスプレイ610-Lを、光軸方向(矢印P10-L)に移動させることで、虚像位置を変えることができる。 The image display device 110-L includes a two-dimensional display 2-L, a multi-layered image plane type three-dimensional display 610-L, a half mirror 3-L, and an eyepiece 4-L. The multi-layered image plane type three-dimensional display display 610-L forms a three-dimensional image by the time-multilayered image planes. The virtual image position can be changed by moving the multi-layered image plane type three-dimensional display 610-L in the optical axis direction (arrow P10-L).
 画像表示110-Lにおいて、2次元表示ディスプレイ2-Lから出射された第1画像光及び多層化像面方式の3次元表示ディスプレイ610-Lから出射された第2画像光が、ハーフミラー3-Lと、接眼レンズ4-Lと、をこの順で介して、ユーザの左眼500-Lに入射される。したがって、画像表示装置110-Lにおいては、第1画像光に基づく2次元画像(2次元映像)と、第2画像光に基づく3次元画像(3次元映像)とが重畳して表示される。 In the image display 110-L, the first image light emitted from the two-dimensional display display 2-L and the second image light emitted from the multi-layered image plane type three-dimensional display display 610-L are the half mirror 3-. L and the eyepiece lens 4-L are incident on the user's left eye 500-L in this order. Therefore, in the image display device 110-L, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
 画像表示装置110-Rは、2次元表示ディスプレイ2-Rと、多層化像面方式の3次元表示ディスプレイ610-Rと、ハーフミラー3-Rと、接眼レンズ4-Rと、を備える。多層化像面方式の3次元表示ディスプレイ610-Rは、時間的に多層化された像面により3次元画像を形成する。多層化像面方式の3次元表示ディスプレイ610-Rを、光軸方向(矢印P10-L)に移動させることで、虚像位置を変えることができる。 The image display device 110-R includes a two-dimensional display 2-R, a multi-layered image plane type three-dimensional display 610-R, a half mirror 3-R, and an eyepiece 4-R. The multi-layered image plane type three-dimensional display display 610-R forms a three-dimensional image by the time-multilayered image planes. The virtual image position can be changed by moving the multi-layered image plane type three-dimensional display 610-R in the optical axis direction (arrow P10-L).
 画像表示110-Rにおいて、2次元表示ディスプレイ2-Rから出射された第1画像光及び多層化像面方式の3次元表示ディスプレイ610-Rから出射された第2画像光が、ハーフミラー3-Rと、接眼レンズ4-Rと、をこの順で介して、ユーザの左眼500-Rに入射される。したがって、画像表示装置110-Rにおいては、第1画像光に基づく2次元画像(2次元映像)と、第2画像光に基づく3次元画像(3次元映像)とが重畳して表示される。 In the image display 110-R, the first image light emitted from the two-dimensional display display 2-R and the second image light emitted from the multi-layered image plane type three-dimensional display display 610-R are the half mirror 3-. The R and the eyepiece 4-R are incident on the user's left eye 500-R in this order. Therefore, in the image display device 110-R, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
 以上より、画像表示装置110においては、ユーザの視野の一部(例えば、ユーザの視野の略中心部)に表示される奥行情報を再生する3次元画像と、ユーザの視野の略全域に表示される2次元示視差画像とが重畳され得る。 From the above, in the image display device 110, a three-dimensional image for reproducing the depth information displayed in a part of the user's field of view (for example, a substantially central portion of the user's field of view) and a three-dimensional image displayed in substantially the entire area of the user's field of view are displayed. Can be superimposed on a two-dimensional visual field image.
 以上、本技術に係る第6の実施形態(画像表示装置の例6)の画像表示装置について説明した内容は、特に技術的な矛盾がない限り、前述した本技術に係る第1~第5の実施形態の画像表示装置、及び後述する本技術に係る第7~第8の実施形態の画像表示装置に適用することができる。 As described above, the contents of the description of the image display device of the sixth embodiment (example 6 of the image display device) according to the present technology are the first to fifth aspects of the present technology described above, unless there is a particular technical contradiction. It can be applied to the image display device of the embodiment and the image display device of the seventh to eighth embodiments according to the present technique described later.
<8.第7の実施形態(画像表示装置の例7)>
 本技術に係る第7の実施形態(画像表示装置の例7)の画像表示装置は、ユーザの両眼のそれぞれに対して、2次元画像形成装置と、3次元画像形成装置と、ビームスプリッタ及び接眼レンズを含む自由曲面レンズと、を備える。本技術に係る第7の実施形態の画像表示装置においては、2次元画像形成装置から出射された第1画像光及び3次元画像形成装置から出射された第2画像光が、自由曲面レンズを介して、ユーザの両眼のそれぞれに入射される。自由曲面レンズは、ビームスプリッタと、接眼レンズとを備える。自由曲面レンズは、例えば、接眼レンズ同士の接着面にビームスプリッタの機能を付加して作製することができる。
<8. Seventh Embodiment (Example 7 of image display device)>
The image display device of the seventh embodiment (example 7 of the image display device) according to the present technology includes a two-dimensional image forming device, a three-dimensional image forming device, a beam splitter, and a beam splitter for each of the user's eyes. It includes a free curved lens including an eyepiece. In the image display device of the seventh embodiment according to the present technique, the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus pass through the free curved lens. Then, it is incident on each of the user's eyes. The free-form surface lens includes a beam splitter and an eyepiece. The free-form surface lens can be manufactured, for example, by adding the function of a beam splitter to the adhesive surface between the eyepieces.
 本技術に係る第7の実施形態の画像表示装置に、自由曲面レンズが備えられることで、本技術に係る第7の実施形態の画像表示装置を、全体的に小型化・薄型化にすることができる。 By providing the image display device of the seventh embodiment according to the present technology with a free-form surface lens, the image display device of the seventh embodiment according to the present technology can be made smaller and thinner as a whole. Can be done.
 また、本技術に係る第7の実施形態の画像表示装置においては、3次元画像形成装置は、インテグラルイメージング方式を用いて3次元画像を形成する。なお、本技術に係る第7の実施形態の画像表示装置が備える3次元画像形成装置は、テンソルディスプレイ方式を用いて3次元画像を形成してもよいし、超多眼方式を用いて3次元画像を形成してもよいし、ホログラフィ方式を用いて3次元画像を形成してもよいし、空間的に多層化された像面により3次元画像を形成してもよいし、時間的に多層化された像面により3次元画像を形成してもよい。 Further, in the image display device of the seventh embodiment according to the present technology, the three-dimensional image forming device forms a three-dimensional image by using an integral imaging method. The three-dimensional image forming apparatus included in the image display apparatus of the seventh embodiment according to the present technology may form a three-dimensional image by using a tensor display method, or may use a super-multicular method to form a three-dimensional image. An image may be formed, a three-dimensional image may be formed by using a holography method, a three-dimensional image may be formed by a spatially multi-layered image plane, or a three-dimensional image may be formed by temporally multi-layered images. A three-dimensional image may be formed from the converted image plane.
 以下、本技術に係る第7の実施形態(画像表示装置の例7)の画像表示装置について、図11を用いて説明をする。 Hereinafter, the image display device of the seventh embodiment (example 7 of the image display device) according to the present technology will be described with reference to FIG.
 図11には、画像表示装置111が示されている。画像表示装置111は、左眼用の画像表示装置111-Lと右眼用の画像表示装置111-Rとから構成されている。 FIG. 11 shows the image display device 111. The image display device 111 includes an image display device 111-L for the left eye and an image display device 111-R for the right eye.
 画像表示装置111-Lは、2次元表示ディスプレイ2-Lと、インテグラルイメージング方式の3次元表示ディスプレイ1-Lと、自由曲面レンズ411-Lと、を備える。自由曲面レンズ411-Lは、ビームスプリッタと、接眼レンズとから構成される。 The image display device 111-L includes a two-dimensional display 2-L, an integral imaging type three-dimensional display 1-L, and a free-form surface lens 411-L. The free-form surface lens 411-L is composed of a beam splitter and an eyepiece.
 画像表示111-Lにおいて、2次元表示ディスプレイ2-Lから出射された第1画像光及びインテグラルイメージング方式の3次元表示ディスプレイ1-Lから出射された第2画像光が、自由曲面レンズ411-Lを介して、ユーザの左眼500-Lに入射される。したがって、画像表示装置111-Lにおいては、第1画像光に基づく2次元画像(2次元映像)と、第2画像光に基づく3次元画像(3次元映像)とが重畳して表示される。 In the image display 111-L, the first image light emitted from the two-dimensional display 2-L and the second image light emitted from the integral imaging type three-dimensional display 1-L are the free curved lens 411- It is incident on the user's left eye 500-L via L. Therefore, in the image display device 111-L, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
 画像表示装置111-Rは、2次元表示ディスプレイ2-Rと、インテグラルイメージング方式の3次元表示ディスプレイ1-Rと、自由曲面レンズ411-Rと、を備える。自由曲面レンズ411-Lは、ビームスプリッタと、接眼レンズとから構成される。 The image display device 111-R includes a two-dimensional display 2-R, an integral imaging type three-dimensional display 1-R, and a free-form surface lens 411-R. The free-form surface lens 411-L is composed of a beam splitter and an eyepiece.
 画像表示111-Rにおいて、2次元表示ディスプレイ2-Rから出射された第1画像光及びインテグラルイメージング方式の3次元表示ディスプレイ1-Rから出射された第2画像光が、自由曲面レンズ411-Rを介して、ユーザの左眼500-Rに入射される。したがって、画像表示装置111-Rにおいては、第1画像光に基づく2次元画像(2次元映像)と、第2画像光に基づく3次元画像(3次元映像)とが重畳して表示される。 In the image display 111-R, the first image light emitted from the two-dimensional display 2-R and the second image light emitted from the integral imaging type three-dimensional display 1-R are the free curved lens 411-. It is incident on the user's left eye 500-R via R. Therefore, in the image display device 111-R, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
 以上より、画像表示装置111においては、ユーザの視野の一部(例えば、ユーザの視野の略中心部)に表示される奥行情報を再生する3次元画像と、ユーザの視野の略全域に表示される2次元示視差画像とが重畳され得る。 From the above, in the image display device 111, the three-dimensional image for reproducing the depth information displayed in a part of the user's field of view (for example, the substantially central portion of the user's field of view) and the three-dimensional image are displayed in substantially the entire area of the user's field of view. Can be superimposed on a two-dimensional visual field image.
 以上、本技術に係る第7の実施形態(画像表示装置の例7)の画像表示装置について説明した内容は、特に技術的な矛盾がない限り、前述した本技術に係る第1~第6の実施形態の画像表示装置、及び後述する本技術に係る第8の実施形態の画像表示装置に適用することができる。 As described above, the contents of the description of the image display device of the seventh embodiment (example 7 of the image display device) according to the present technology are the first to sixth aspects of the present technology described above, unless there is a particular technical contradiction. It can be applied to the image display device of the embodiment and the image display device of the eighth embodiment according to the present technique described later.
<9.第8の実施形態(画像表示装置の例8)>
 本技術に係る第8の実施形態(画像表示装置の例8)の画像表示装置は、ユーザの両眼のそれぞれに対して、2次元画像形成装置と、3次元画像形成装置と、ビームスプリッタと、接眼レンズと、視線検出装置とを備える。本技術に係る第8の実施形態の画像表示装置においては、2次元画像形成装置から出射された第1画像光及び3次元画像形成装置から出射された第2画像光が、ビームスプリッタと、接眼レンズとをこの順で介して、ユーザの両眼のそれぞれに入射される。
<9. Eighth Embodiment (Example 8 of image display device)>
The image display device of the eighth embodiment (example 8 of the image display device) according to the present technology includes a two-dimensional image forming device, a three-dimensional image forming device, and a beam splitter for each of the user's eyes. , An eyepiece and a line-of-sight detection device. In the image display device of the eighth embodiment according to the present technique, the first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus are eyepieces with the beam splitter. It is incident on each of the user's eyes through the lens in this order.
 本技術に係る第8の実施形態の画像表示装置に、視線検出装置が備えられることで、視線に追随し、3次元画像(3次元映像)を表示する範囲を変えることができる。視線の検出には近赤外線光源とカメラを用いることができる。視線の追随には、光軸に対して垂直な面内に動かすことができるアクチュエータ等を用いる。本技術に係る第8の実施形態の画像表示装置によれば、視線方向に常に高解像度な奥行情報を持つ3次元画像(3次元映像)を表示することが可能となる。 By providing the image display device of the eighth embodiment according to the present technology with a line-of-sight detection device, it is possible to change the range of displaying a three-dimensional image (three-dimensional image) following the line of sight. A near-infrared light source and a camera can be used to detect the line of sight. To follow the line of sight, an actuator or the like that can be moved in a plane perpendicular to the optical axis is used. According to the image display device of the eighth embodiment according to the present technology, it is possible to display a three-dimensional image (three-dimensional image) having high-resolution depth information in the line-of-sight direction.
 また、本技術に係る第8の実施形態の画像表示装置においては、3次元画像形成装置は、インテグラルイメージング方式を用いて3次元画像を形成する。なお、本技術に係る第8の実施形態の画像表示装置が備える3次元画像形成装置は、テンソルディスプレイ方式を用いて3次元画像を形成してもよいし、超多眼方式を用いて3次元画像を形成してもよいし、ホログラフィ方式を用いて3次元画像を形成してもよいし、空間的に多層化された像面により3次元画像を形成してもよいし、時間的に多層化された像面により3次元画像を形成してもよい。ビームスプリッタとしては、例えば、ハーフミラー等が挙げられる。 Further, in the image display device of the eighth embodiment according to the present technology, the three-dimensional image forming device forms a three-dimensional image by using an integral imaging method. The three-dimensional image forming apparatus included in the image display apparatus of the eighth embodiment according to the present technology may form a three-dimensional image by using a tensor display method, or may use a super-multicular method to form a three-dimensional image. An image may be formed, a three-dimensional image may be formed by using a holography method, a three-dimensional image may be formed by a spatially multi-layered image plane, or a three-dimensional image may be formed by temporally multi-layered images. A three-dimensional image may be formed from the converted image plane. Examples of the beam splitter include a half mirror and the like.
 以下、本技術に係る第8の実施形態(画像表示装置の例8)の画像表示装置について、図12を用いて説明をする。 Hereinafter, the image display device of the eighth embodiment (example 8 of the image display device) according to the present technology will be described with reference to FIG.
 図12には、画像表示装置112が示されている。画像表示装置112は、左眼用の画像表示装置112-Lと右眼用の画像表示装置112-Rとから構成されている。 FIG. 12 shows the image display device 112. The image display device 112 includes an image display device 112-L for the left eye and an image display device 112-R for the right eye.
 画像表示装置112-Lは、2次元表示ディスプレイ2-Lと、インテグラルイメージング方式の3次元表示ディスプレイ1-Lと、ハーフミラー3-Lと、接眼レンズ4-Lと、視線検出装置712-Lと、を備える。視線検出装置712-Lは、光源712-1-L(近赤外線LED等)と、画像センサ712-2-Lとから構成されている。視線検出装置712-Lは、アクチュエータ等を用いて、上下方向(矢印P12-L)及び/又は左右方向(不図示、図12の左右方向)に視線に追随しながら動くことができる。 The image display device 112-L includes a two-dimensional display 2-L, an integral imaging type three-dimensional display 1-L, a half mirror 3-L, an eyepiece 4-L, and a line-of-sight detection device 712-. L and. The line-of-sight detection device 712-L is composed of a light source 712-1-L (near-infrared LED or the like) and an image sensor 712-2-L. The line-of-sight detection device 712-L can move while following the line of sight in the vertical direction (arrow P12-L) and / or the left-right direction (not shown, left-right direction in FIG. 12) by using an actuator or the like.
 画像表示112-Lにおいて、2次元表示ディスプレイ2-Lから出射された第1画像光及びインテグラルイメージング方式の3次元表示ディスプレイ1-Lから出射された第2画像光が、ハーフミラー3-Lと、接眼レンズ4-Lと、をこの順で介して、ユーザの左眼500-Lに入射される。したがって、画像表示装置112-Lにおいては、第1画像光に基づく2次元画像(2次元映像)と、第2画像光に基づく3次元画像(3次元映像)とが重畳して表示される。 In the image display 112-L, the first image light emitted from the two-dimensional display 2-L and the second image light emitted from the integral imaging type three-dimensional display 1-L are the half mirror 3-L. And the eyepiece lens 4-L are incident on the user's left eye 500-L in this order. Therefore, in the image display device 112-L, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
 画像表示装置112-Rは、2次元表示ディスプレイ2-Rと、インテグラルイメージング方式の3次元表示ディスプレイ1-Rと、ハーフミラー3-Rと、接眼レンズ4-Rと、視線検出装置712-Rと、を備える。視線検出装置712-Rは、光源712-1-R(近赤外線LED等)と、画像センサ712-2-Rとから構成されている。視線検出装置712-Rは、アクチュエータ等を用いて、上下方向(矢印P12-L)及び/又は左右方向(不図示、図12の左右方向)に視線に追随しながら動くことができる。 The image display device 112-R includes a two-dimensional display 2-R, an integral imaging type three-dimensional display 1-R, a half mirror 3-R, an eyepiece 4-R, and a line-of-sight detection device 712-. With R. The line-of-sight detection device 712-R is composed of a light source 712-1-R (near-infrared LED or the like) and an image sensor 712-2-R. The line-of-sight detection device 712-R can move while following the line of sight in the vertical direction (arrow P12-L) and / or the left-right direction (not shown, left-right direction in FIG. 12) by using an actuator or the like.
 画像表示112-Rにおいて、2次元表示ディスプレイ2-Rから出射された第1画像光及びインテグラルイメージング方式の3次元表示ディスプレイ1-Rから出射された第2画像光が、ハーフミラー3-Rと、接眼レンズ4-Rと、をこの順で介して、ユーザの左眼500-Rに入射される。したがって、画像表示装置112-Rにおいては、第1画像光に基づく2次元画像(2次元映像)と、第2画像光に基づく3次元画像(3次元映像)とが重畳して表示される。 In the image display 112-R, the first image light emitted from the two-dimensional display 2-R and the second image light emitted from the integral imaging type three-dimensional display 1-R are the half mirror 3-R. And the eyepiece lens 4-R are incident on the user's left eye 500-R in this order. Therefore, in the image display device 112-R, the two-dimensional image (two-dimensional image) based on the first image light and the three-dimensional image (three-dimensional image) based on the second image light are superimposed and displayed.
 以上より、画像表示装置112においては、ユーザの視野の一部(例えば、ユーザの視野の略中心部)に表示される奥行情報を再生する3次元画像と、ユーザの視野の略全域に表示される2次元示視差画像とが重畳され得る。また、画像表示装置112においては、視線追随を行い高解像度、かつ、奥行情報を有する3次元画像(3次元映像)を、例えば、常に視野の略中心部に表示することができる。 From the above, in the image display device 112, the three-dimensional image for reproducing the depth information displayed in a part of the user's field of view (for example, the substantially central portion of the user's field of view) and the three-dimensional image are displayed in substantially the entire area of the user's field of view. Can be superimposed on a two-dimensional visual field image. Further, in the image display device 112, it is possible to always display a three-dimensional image (three-dimensional image) having high resolution and depth information by following the line of sight, for example, at a substantially central portion of the field of view.
 以上、本技術に係る第8の実施形態(画像表示装置の例8)の画像表示装置について説明した内容は、特に技術的な矛盾がない限り、前述した本技術に係る第1~第7の実施形態の画像表示装置に適用することができる。 As described above, the contents of the description of the image display device of the eighth embodiment (example 8 of the image display device) according to the present technology are the first to seventh items according to the above-mentioned present technology, unless there is a particular technical contradiction. It can be applied to the image display device of the embodiment.
<10.第9の実施形態(表示装置の例1)>
 本技術に係る第9の実施形態(表示装置の例1)の表示装置は、ユーザの頭部に装着されるフレームと、フレームに取り付けられた画像表示装置と、を備え、画像表示装置が、本技術に係る第1の実施形態~第8の実施形態の画像表示装置のうち、少なくとも1つの実施形態の画像表示装置を備える表示装置である。本技術に係る第9の実施形態(表示装置の例1)の表示装置としては、例えば、アイウェアディスプレイ(Eyewear Display)、ヘッドマウントディスプレイ(HMD:Head Mounted Display)等が挙げられる。
<10. Ninth Embodiment (Example 1 of display device)>
The display device of the ninth embodiment (example 1 of the display device) according to the present technology includes a frame mounted on the user's head and an image display device attached to the frame, and the image display device includes an image display device. It is a display device provided with at least one image display device of the first embodiment to the eighth embodiment of the present technology. Examples of the display device of the ninth embodiment (example 1 of the display device) according to the present technology include an eyewear display (Eyewear Display), a head-mounted display (HMD: Head Mounted Display), and the like.
 本技術に係る第9の実施形態の表示装置は、例えば、ユーザの頭部に装着されて、メガネ状の形状を有し、両眼のそれぞれに画像光(映像光)を投射するように構成されていてよい。 The display device of the ninth embodiment according to the present technology is, for example, mounted on the head of a user, has a spectacle-like shape, and is configured to project image light (image light) to each of both eyes. It may have been done.
 なお、本技術に係る実施形態は、上述した各実施形態及に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 It should be noted that the embodiments relating to the present technology are not limited to the above-mentioned embodiments and various modifications can be made without departing from the gist of the present technology.
 また、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。 Further, the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 また、本技術は、以下のような構成を取ることもできる。
[1]
 ユーザの両眼のそれぞれに対して、2次元画像形成装置と、3次元画像形成装置と、ビームスプリッタと、接眼レンズと、を備え、
 該2次元画像形成装置から出射された第1画像光及び該3次元画像形成装置から出射された第2画像光が、該ビームスプリッタと、該接眼レンズとをこの順で介して、該ユーザの両眼のそれぞれに入射される、画像表示装置。
[2]
 前記ビームスプリッタがハーフミラーである、[1]に記載の画像表示装置。
[3]
 前記2次元画像形成装置から出射された前記第1画像光による2次元画像と、前記3次元画像形成装置から出射された前記第2画像光による3次元画像とが重畳されて、前記ユーザに視認される、[1]又は[2]に記載の画像表示装置。
[4]
 前記2次元画像形成装置から出射された前記第1画像光による2次元画像が、前記ユーザの視野の略全域に表示され、
 前記3次元画像形成装置から出射された前記第2画像光による3次元画像が、前記ユーザの視野の一部に表示される、[1]から[3]のいずれか1つに記載の画像表示装置。
[5]
 前記2次元画像形成装置から出射された前記第1画像光による2次元画像が、前記ユーザの視野の略全域に表示され、
 前記3次元画像形成装置から出射された前記第2画像光による3次元画像が、前記ユーザの視野の略中心部に表示される、[1]から[3]のいずれか1つに記載の画像表示装置。
[6]
 前記3次元画像形成装置から出射された前記第2画像光による3次元画像が、前記ユーザの視野において矩形状の範囲で表示される、[1]から[5]のいずれか1つに記載の画像表示装置。
[7]
 前記3次元画像形成装置から出射された前記第2画像光による3次元画像が、前記ユーザの視野において円形状の範囲で表示される、[1]から[5]のいずれか1つに記載の画像表示装置。
[8]
 前記3次元画像形成装置から出射された前記第2画像光による3次元画像が、前記ユーザの視野において楕円形状の範囲で表示される、[1]から[5]のいずれか1つに記載の画像表示装置。
[9]
 前記3次元画像形成装置が、インテグラルイメージング方式を用いて3次元画像を形成する、[1]から[8]のいずれか1つに記載の画像表示装置。
[10]
 前記3次元画像形成装置が、テンソルディスプレイ方式を用いて3次元画像を形成する、[1]から[8]のいずれか1つに記載の画像表示装置。
[11]
 前記3次元画像形成装置が、超多眼方式を用いて3次元画像を形成する、[1]から[8]のいずれか1つに記載の画像表示装置。
[12]
 前記3次元画像形成装置が、ホログラフィ方式を用いて3次元画像を形成する、[1]から[8]のいずれか1つに記載の画像表示装置。
[13]
 前記3次元画像形成装置が、空間的に多層化された像面により3次元画像を形成する、[1]から[8]のいずれか1つに記載の画像表示装置。
[14]
 前記3次元画像形成装置が、時間的に多層化された像面により3次元画像を形成する、[1]から[8]のいずれか1つに記載の画像表示装置。
[15]
 前記ビームスプリッタと前記接眼レンズとを含む自由曲面レンズを備える、[1]から[14]のいずれか1つに記載の画像表示装置。
[16]
 視線検出装置を更に備える、[1]から[15]のいずれか1つに記載の画像表示装置。
[17]
 ユーザの頭部に装着されるフレームと、
 該フレームに取り付けられた画像表示装置と、を備え、
 該画像表示装置が、[1]から[16]のいずれか1つに記載の画像表示装置である、表示装置。
In addition, the present technology can also have the following configurations.
[1]
A two-dimensional image forming apparatus, a three-dimensional image forming apparatus, a beam splitter, and an eyepiece are provided for each of the user's eyes.
The first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus pass through the beam splitter and the eyepiece in this order, and are used by the user. An image display device that is incident on each of both eyes.
[2]
The image display device according to [1], wherein the beam splitter is a half mirror.
[3]
The two-dimensional image by the first image light emitted from the two-dimensional image forming apparatus and the three-dimensional image by the second image light emitted from the three-dimensional image forming apparatus are superimposed and visually recognized by the user. The image display device according to [1] or [2].
[4]
The two-dimensional image generated by the first image light emitted from the two-dimensional image forming apparatus is displayed in substantially the entire field of view of the user.
The image display according to any one of [1] to [3], wherein the three-dimensional image by the second image light emitted from the three-dimensional image forming apparatus is displayed in a part of the field of view of the user. Device.
[5]
The two-dimensional image generated by the first image light emitted from the two-dimensional image forming apparatus is displayed in substantially the entire field of view of the user.
The image according to any one of [1] to [3], wherein the three-dimensional image generated by the second image light emitted from the three-dimensional image forming apparatus is displayed in a substantially central portion of the user's field of view. Display device.
[6]
The third-dimensional image by the second image light emitted from the three-dimensional image forming apparatus is displayed in a rectangular range in the user's field of view, according to any one of [1] to [5]. Image display device.
[7]
The third-dimensional image by the second image light emitted from the three-dimensional image forming apparatus is displayed in a circular range in the user's field of view, according to any one of [1] to [5]. Image display device.
[8]
The third-dimensional image by the second image light emitted from the three-dimensional image forming apparatus is displayed in an elliptical range in the user's visual field, according to any one of [1] to [5]. Image display device.
[9]
The image display device according to any one of [1] to [8], wherein the three-dimensional image forming apparatus forms a three-dimensional image by using an integral imaging method.
[10]
The image display device according to any one of [1] to [8], wherein the three-dimensional image forming device forms a three-dimensional image by using a tensor display method.
[11]
The image display device according to any one of [1] to [8], wherein the three-dimensional image forming apparatus forms a three-dimensional image by using a super-multicular method.
[12]
The image display device according to any one of [1] to [8], wherein the three-dimensional image forming apparatus forms a three-dimensional image by using a holographic method.
[13]
The image display device according to any one of [1] to [8], wherein the three-dimensional image forming apparatus forms a three-dimensional image by spatially multilayered image planes.
[14]
The image display device according to any one of [1] to [8], wherein the three-dimensional image forming apparatus forms a three-dimensional image by means of image planes having multiple layers in time.
[15]
The image display device according to any one of [1] to [14], comprising a free-form surface lens including the beam splitter and the eyepiece.
[16]
The image display device according to any one of [1] to [15], further comprising a line-of-sight detection device.
[17]
The frame attached to the user's head and
With an image display device attached to the frame,
The display device, wherein the image display device is the image display device according to any one of [1] to [16].
 1(1-L、1-R)…インテグラルイメージング方式の3次元表示ディスプレイ(3次元画像形成装置)、
 2(2-L、2-R)…2次元表示ディスプレイ(2次元画像形成装置)、
 3(3-L、3-R)…ハーフミラー(ビームスプリッタ)、
 4(4-L、4-R)…接眼レンズ、
 16(16-L、16-R)…テンソルディスプレイ方式の3次元表示ディスプレイ(3次元画像形成装置)、
 17(17-L、17-R)…超多眼方式の3次元表示ディスプレイ(3次元画像形成装置)、
 18(18-L、18-R)…ホログラフィ方式の3次元表示ディスプレイ(3次元画像形成装置)、
 19(19-L、19-R)…多層化像面方式(空間的に多層化された像面を採用した例)の3次元表示ディスプレイ(3次元画像形成装置)、
 101(101-L、101-R)、102、106(106-L、106-R)、107(107-L、107-R)、108(108-L、108-R)、109(109-L、109-R)、110(110-L、110-R)、111(111-L、111-R)、112(112-L、112-R)…画像表示装置、
 411(411-L、411-R)…自由曲面レンズ、
 500(500-L、500-R)…眼球、
 610(610-L、610-R)…多層化像面方式(時間的に多層化された像面を採用した例)の3次元表示ディスプレイ(3次元画像形成装置)、
 712(712-L、712-R)…視線検出装置。
1 (1-L, 1-R) ... Integral imaging type 3D display (3D image forming device),
2 (2-L, 2-R) ... 2D display display (2D image forming device),
3 (3-L, 3-R) ... Half mirror (beam splitter),
4 (4-L, 4-R) ... Eyepiece,
16 (16-L, 16-R) ... Tensor display type 3D display (3D image forming device),
17 (17-L, 17-R) ... Ultra-multicular 3D display (3D image forming device),
18 (18-L, 18-R) ... Holographic 3D display (3D image forming device),
19 (19-L, 19-R) ... A three-dimensional display (three-dimensional image forming apparatus) of a multi-layered image plane method (an example in which a spatially multi-layered image plane is adopted),
101 (101-L, 101-R), 102, 106 (106-L, 106-R), 107 (107-L, 107-R), 108 (108-L, 108-R), 109 (109-) L, 109-R), 110 (110-L, 110-R), 111 (111-L, 111-R), 112 (112-L, 112-R) ... Image display device,
411 (411-L, 411-R) ... Free-form surface lens,
500 (500-L, 500-R) ... Eyeball,
610 (610-L, 610-R) ... A three-dimensional display (three-dimensional image forming apparatus) of a multi-layered image plane method (an example in which a temporally multi-layered image plane is adopted).
712 (712-L, 712-R) ... Line-of-sight detection device.

Claims (17)

  1.  ユーザの両眼のそれぞれに対して、2次元画像形成装置と、3次元画像形成装置と、ビームスプリッタと、接眼レンズと、を備え、
     該2次元画像形成装置から出射された第1画像光及び該3次元画像形成装置から出射された第2画像光が、該ビームスプリッタと、該接眼レンズとをこの順で介して、該ユーザの両眼のそれぞれに入射される、画像表示装置。
    A two-dimensional image forming apparatus, a three-dimensional image forming apparatus, a beam splitter, and an eyepiece are provided for each of the user's eyes.
    The first image light emitted from the two-dimensional image forming apparatus and the second image light emitted from the three-dimensional image forming apparatus pass through the beam splitter and the eyepiece in this order, and are used by the user. An image display device that is incident on each of both eyes.
  2.  前記ビームスプリッタがハーフミラーである、請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the beam splitter is a half mirror.
  3.  前記2次元画像形成装置から出射された前記第1画像光による2次元画像と、前記3次元画像形成装置から出射された前記第2画像光による3次元画像とが重畳されて、前記ユーザに視認される、請求項1に記載の画像表示装置。 The two-dimensional image by the first image light emitted from the two-dimensional image forming apparatus and the three-dimensional image by the second image light emitted from the three-dimensional image forming apparatus are superimposed and visually recognized by the user. The image display device according to claim 1.
  4.  前記2次元画像形成装置から出射された前記第1画像光による2次元画像が、前記ユーザの視野の略全域に表示され、
     前記3次元画像形成装置から出射された前記第2画像光による3次元画像が、前記ユーザの視野の一部に表示される、請求項1に記載の画像表示装置。
    The two-dimensional image generated by the first image light emitted from the two-dimensional image forming apparatus is displayed in substantially the entire field of view of the user.
    The image display device according to claim 1, wherein a three-dimensional image generated by the second image light emitted from the three-dimensional image forming device is displayed in a part of the user's field of view.
  5.  前記2次元画像形成装置から出射された前記第1画像光による2次元画像が、前記ユーザの視野の略全域に表示され、
     前記3次元画像形成装置から出射された前記第2画像光による3次元画像が、前記ユーザの視野の略中心部に表示される、請求項1に記載の画像表示装置。
    The two-dimensional image generated by the first image light emitted from the two-dimensional image forming apparatus is displayed in substantially the entire field of view of the user.
    The image display device according to claim 1, wherein a three-dimensional image generated by the second image light emitted from the three-dimensional image forming device is displayed at a substantially central portion of the user's field of view.
  6.  前記3次元画像形成装置から出射された前記第2画像光による3次元画像が、前記ユーザの視野において矩形状の範囲で表示される、請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the three-dimensional image generated by the second image light emitted from the three-dimensional image forming device is displayed in a rectangular range in the user's field of view.
  7.  前記3次元画像形成装置から出射された前記第2画像光による3次元画像が、前記ユーザの視野において円形状の範囲で表示される、請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the three-dimensional image generated by the second image light emitted from the three-dimensional image forming device is displayed in a circular range in the user's field of view.
  8.  前記3次元画像形成装置から出射された前記第2画像光による3次元画像が、前記ユーザの視野において楕円形状の範囲で表示される、請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the three-dimensional image generated by the second image light emitted from the three-dimensional image forming device is displayed in an elliptical range in the user's visual field.
  9.  前記3次元画像形成装置が、インテグラルイメージング方式を用いて3次元画像を形成する、請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the three-dimensional image forming device forms a three-dimensional image by using an integral imaging method.
  10.  前記3次元画像形成装置が、テンソルディスプレイ方式を用いて3次元画像を形成する、請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the three-dimensional image forming device forms a three-dimensional image by using a tensor display method.
  11.  前記3次元画像形成装置が、超多眼方式を用いて3次元画像を形成する、請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the three-dimensional image forming device forms a three-dimensional image by using a super-multicular method.
  12.  前記3次元画像形成装置が、ホログラフィ方式を用いて3次元画像を形成する、請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the three-dimensional image forming device forms a three-dimensional image by using a holographic method.
  13.  前記3次元画像形成装置が、空間的に多層化された像面により3次元画像を形成する、請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the three-dimensional image forming device forms a three-dimensional image by spatially multi-layered image planes.
  14.  前記3次元画像形成装置が、時間的に多層化された像面により3次元画像を形成する、請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the three-dimensional image forming device forms a three-dimensional image by means of image planes having multiple layers in time.
  15.  前記ビームスプリッタと前記接眼レンズとを含む自由曲面レンズを備える、請求項1に記載の画像表示装置。 The image display device according to claim 1, further comprising a free-form surface lens including the beam splitter and the eyepiece.
  16.  視線検出装置を更に備える、請求項1に記載の画像表示装置。 The image display device according to claim 1, further comprising a line-of-sight detection device.
  17.  ユーザの頭部に装着されるフレームと、
     該フレームに取り付けられた画像表示装置と、を備え、
     該画像表示装置が、請求項1に記載の画像表示装置である、表示装置。
    The frame attached to the user's head and
    With an image display device attached to the frame,
    The display device, wherein the image display device is the image display device according to claim 1.
PCT/JP2021/038383 2020-11-26 2021-10-18 Image display device and display device WO2022113564A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180077948.5A CN116472488A (en) 2020-11-26 2021-10-18 Image display device and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020195865A JP2022084180A (en) 2020-11-26 2020-11-26 Image display device and display device
JP2020-195865 2020-11-26

Publications (1)

Publication Number Publication Date
WO2022113564A1 true WO2022113564A1 (en) 2022-06-02

Family

ID=81754276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038383 WO2022113564A1 (en) 2020-11-26 2021-10-18 Image display device and display device

Country Status (3)

Country Link
JP (1) JP2022084180A (en)
CN (1) CN116472488A (en)
WO (1) WO2022113564A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1013861A (en) * 1996-04-24 1998-01-16 Sony Corp Three-dimension image display method and its display device
JPH1043382A (en) * 1996-08-01 1998-02-17 Asahi Optical Co Ltd Image displaying device for pinball machine
JP2008233251A (en) * 2007-03-16 2008-10-02 Sony Corp Image display device
JP2012018349A (en) * 2010-07-09 2012-01-26 Sony Corp Lens array element, and image display device
JP2013205749A (en) * 2012-03-29 2013-10-07 Fujitsu Ltd Stereoscopic image display device and method
JP2014115447A (en) * 2012-12-10 2014-06-26 Toshiba Corp Image display device
JP2016024273A (en) * 2014-07-17 2016-02-08 株式会社ソニー・コンピュータエンタテインメント Stereoscopic image presentation device, stereoscopic image presentation method, and head-mounted display
WO2017026371A1 (en) * 2015-08-11 2017-02-16 株式会社ソニー・インタラクティブエンタテインメント Head-mounted display
JP2017229037A (en) * 2016-06-24 2017-12-28 日本電信電話株式会社 Display device
JP2019521370A (en) * 2016-04-25 2019-07-25 ジョンシャン ユニバーシティSun Yat−Sen University Three-dimensional display system and method based on division multiplexing of observer's entrance pupil

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1013861A (en) * 1996-04-24 1998-01-16 Sony Corp Three-dimension image display method and its display device
JPH1043382A (en) * 1996-08-01 1998-02-17 Asahi Optical Co Ltd Image displaying device for pinball machine
JP2008233251A (en) * 2007-03-16 2008-10-02 Sony Corp Image display device
JP2012018349A (en) * 2010-07-09 2012-01-26 Sony Corp Lens array element, and image display device
JP2013205749A (en) * 2012-03-29 2013-10-07 Fujitsu Ltd Stereoscopic image display device and method
JP2014115447A (en) * 2012-12-10 2014-06-26 Toshiba Corp Image display device
JP2016024273A (en) * 2014-07-17 2016-02-08 株式会社ソニー・コンピュータエンタテインメント Stereoscopic image presentation device, stereoscopic image presentation method, and head-mounted display
WO2017026371A1 (en) * 2015-08-11 2017-02-16 株式会社ソニー・インタラクティブエンタテインメント Head-mounted display
JP2019521370A (en) * 2016-04-25 2019-07-25 ジョンシャン ユニバーシティSun Yat−Sen University Three-dimensional display system and method based on division multiplexing of observer's entrance pupil
JP2017229037A (en) * 2016-06-24 2017-12-28 日本電信電話株式会社 Display device

Also Published As

Publication number Publication date
JP2022084180A (en) 2022-06-07
CN116472488A (en) 2023-07-21

Similar Documents

Publication Publication Date Title
JP6056171B2 (en) Stereoscopic image display apparatus and method
JP7474317B2 (en) Display systems providing concentric light fields and hybrid monocular to binocular
JP7185331B2 (en) How to render light field images for integral imaging light field displays
KR101919486B1 (en) Full parallax multi-focus 3d display
WO2015186735A1 (en) Mirror display system
CA2559920A1 (en) A stereoscopic display
JP2010113160A (en) Video display apparatus
JP2019512109A (en) Autostereoscopic screen
JP2010113161A (en) Video display apparatus
JP2020118963A (en) Head mount display
WO2023021732A1 (en) Display apparatus and display method
WO2022113564A1 (en) Image display device and display device
EP3762762B1 (en) Display device for head-mounting and display method
Zhang Design of Head mounted displays
JP2004226928A (en) Stereoscopic picture display device
JP2001218231A (en) Device and method for displaying stereoscopic image
Kovacs et al. 3D display technologies and effects on the human vision system
US20060152580A1 (en) Auto-stereoscopic volumetric imaging system and method
JP2011128235A (en) Display device and display method
WO2022123918A1 (en) Image display device and display device
US11947114B2 (en) Holographic lens and apparatus including the same
JP4893821B2 (en) Image display device
KR20110107988A (en) Method and system for displaying 3-dimensional images using depth map
EP3370100A1 (en) Virtual and augmented reality apparatus, near-eye displays comprising the same, and method of displaying virtual and augmented reality
Surman et al. Display development in the advanced displays laboratory at NTU

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897542

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180077948.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897542

Country of ref document: EP

Kind code of ref document: A1